ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.141
Committed: Wed Jan 16 22:10:06 2013 UTC (11 years, 4 months ago) by jsr166
Branch: MAIN
Changes since 1.140: +1 -1 lines
Log Message:
punctuation

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.util.ArrayList;
10 import java.util.Arrays;
11 import java.util.Collection;
12 import java.util.Collections;
13 import java.util.List;
14 import java.util.concurrent.AbstractExecutorService;
15 import java.util.concurrent.Callable;
16 import java.util.concurrent.ExecutorService;
17 import java.util.concurrent.Future;
18 import java.util.concurrent.RejectedExecutionException;
19 import java.util.concurrent.RunnableFuture;
20 import java.util.concurrent.TimeUnit;
21
22 /**
23 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
24 * A {@code ForkJoinPool} provides the entry point for submissions
25 * from non-{@code ForkJoinTask} clients, as well as management and
26 * monitoring operations.
27 *
28 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
29 * ExecutorService} mainly by virtue of employing
30 * <em>work-stealing</em>: all threads in the pool attempt to find and
31 * execute tasks submitted to the pool and/or created by other active
32 * tasks (eventually blocking waiting for work if none exist). This
33 * enables efficient processing when most tasks spawn other subtasks
34 * (as do most {@code ForkJoinTask}s), as well as when many small
35 * tasks are submitted to the pool from external clients. Especially
36 * when setting <em>asyncMode</em> to true in constructors, {@code
37 * ForkJoinPool}s may also be appropriate for use with event-style
38 * tasks that are never joined.
39 *
40 * <p>A static {@link #commonPool()} is available and appropriate for
41 * most applications. The common pool is used by any ForkJoinTask that
42 * is not explicitly submitted to a specified pool. Using the common
43 * pool normally reduces resource usage (its threads are slowly
44 * reclaimed during periods of non-use, and reinstated upon subsequent
45 * use).
46 *
47 * <p>For applications that require separate or custom pools, a {@code
48 * ForkJoinPool} may be constructed with a given target parallelism
49 * level; by default, equal to the number of available processors. The
50 * pool attempts to maintain enough active (or available) threads by
51 * dynamically adding, suspending, or resuming internal worker
52 * threads, even if some tasks are stalled waiting to join
53 * others. However, no such adjustments are guaranteed in the face of
54 * blocked I/O or other unmanaged synchronization. The nested {@link
55 * ManagedBlocker} interface enables extension of the kinds of
56 * synchronization accommodated.
57 *
58 * <p>In addition to execution and lifecycle control methods, this
59 * class provides status check methods (for example
60 * {@link #getStealCount}) that are intended to aid in developing,
61 * tuning, and monitoring fork/join applications. Also, method
62 * {@link #toString} returns indications of pool state in a
63 * convenient form for informal monitoring.
64 *
65 * <p>As is the case with other ExecutorServices, there are three
66 * main task execution methods summarized in the following table.
67 * These are designed to be used primarily by clients not already
68 * engaged in fork/join computations in the current pool. The main
69 * forms of these methods accept instances of {@code ForkJoinTask},
70 * but overloaded forms also allow mixed execution of plain {@code
71 * Runnable}- or {@code Callable}- based activities as well. However,
72 * tasks that are already executing in a pool should normally instead
73 * use the within-computation forms listed in the table unless using
74 * async event-style tasks that are not usually joined, in which case
75 * there is little difference among choice of methods.
76 *
77 * <table BORDER CELLPADDING=3 CELLSPACING=1>
78 * <tr>
79 * <td></td>
80 * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
81 * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
82 * </tr>
83 * <tr>
84 * <td> <b>Arrange async execution</td>
85 * <td> {@link #execute(ForkJoinTask)}</td>
86 * <td> {@link ForkJoinTask#fork}</td>
87 * </tr>
88 * <tr>
89 * <td> <b>Await and obtain result</td>
90 * <td> {@link #invoke(ForkJoinTask)}</td>
91 * <td> {@link ForkJoinTask#invoke}</td>
92 * </tr>
93 * <tr>
94 * <td> <b>Arrange exec and obtain Future</td>
95 * <td> {@link #submit(ForkJoinTask)}</td>
96 * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
97 * </tr>
98 * </table>
99 *
100 * <p>The common pool is by default constructed with default
101 * parameters, but these may be controlled by setting three {@link
102 * System#getProperty system properties} with prefix {@code
103 * java.util.concurrent.ForkJoinPool.common}: {@code parallelism} --
104 * an integer greater than zero, {@code threadFactory} -- the class
105 * name of a {@link ForkJoinWorkerThreadFactory}, and {@code
106 * exceptionHandler} -- the class name of a {@link
107 * java.lang.Thread.UncaughtExceptionHandler
108 * Thread.UncaughtExceptionHandler}. Upon any error in establishing
109 * these settings, default parameters are used.
110 *
111 * <p><b>Implementation notes</b>: This implementation restricts the
112 * maximum number of running threads to 32767. Attempts to create
113 * pools with greater than the maximum number result in
114 * {@code IllegalArgumentException}.
115 *
116 * <p>This implementation rejects submitted tasks (that is, by throwing
117 * {@link RejectedExecutionException}) only when the pool is shut down
118 * or internal resources have been exhausted.
119 *
120 * @since 1.7
121 * @author Doug Lea
122 */
123 public class ForkJoinPool extends AbstractExecutorService {
124
125 /*
126 * Implementation Overview
127 *
128 * This class and its nested classes provide the main
129 * functionality and control for a set of worker threads:
130 * Submissions from non-FJ threads enter into submission queues.
131 * Workers take these tasks and typically split them into subtasks
132 * that may be stolen by other workers. Preference rules give
133 * first priority to processing tasks from their own queues (LIFO
134 * or FIFO, depending on mode), then to randomized FIFO steals of
135 * tasks in other queues.
136 *
137 * WorkQueues
138 * ==========
139 *
140 * Most operations occur within work-stealing queues (in nested
141 * class WorkQueue). These are special forms of Deques that
142 * support only three of the four possible end-operations -- push,
143 * pop, and poll (aka steal), under the further constraints that
144 * push and pop are called only from the owning thread (or, as
145 * extended here, under a lock), while poll may be called from
146 * other threads. (If you are unfamiliar with them, you probably
147 * want to read Herlihy and Shavit's book "The Art of
148 * Multiprocessor programming", chapter 16 describing these in
149 * more detail before proceeding.) The main work-stealing queue
150 * design is roughly similar to those in the papers "Dynamic
151 * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
152 * (http://research.sun.com/scalable/pubs/index.html) and
153 * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
154 * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
155 * The main differences ultimately stem from GC requirements that
156 * we null out taken slots as soon as we can, to maintain as small
157 * a footprint as possible even in programs generating huge
158 * numbers of tasks. To accomplish this, we shift the CAS
159 * arbitrating pop vs poll (steal) from being on the indices
160 * ("base" and "top") to the slots themselves. So, both a
161 * successful pop and poll mainly entail a CAS of a slot from
162 * non-null to null. Because we rely on CASes of references, we
163 * do not need tag bits on base or top. They are simple ints as
164 * used in any circular array-based queue (see for example
165 * ArrayDeque). Updates to the indices must still be ordered in a
166 * way that guarantees that top == base means the queue is empty,
167 * but otherwise may err on the side of possibly making the queue
168 * appear nonempty when a push, pop, or poll have not fully
169 * committed. Note that this means that the poll operation,
170 * considered individually, is not wait-free. One thief cannot
171 * successfully continue until another in-progress one (or, if
172 * previously empty, a push) completes. However, in the
173 * aggregate, we ensure at least probabilistic non-blockingness.
174 * If an attempted steal fails, a thief always chooses a different
175 * random victim target to try next. So, in order for one thief to
176 * progress, it suffices for any in-progress poll or new push on
177 * any empty queue to complete. (This is why we normally use
178 * method pollAt and its variants that try once at the apparent
179 * base index, else consider alternative actions, rather than
180 * method poll.)
181 *
182 * This approach also enables support of a user mode in which local
183 * task processing is in FIFO, not LIFO order, simply by using
184 * poll rather than pop. This can be useful in message-passing
185 * frameworks in which tasks are never joined. However neither
186 * mode considers affinities, loads, cache localities, etc, so
187 * rarely provide the best possible performance on a given
188 * machine, but portably provide good throughput by averaging over
189 * these factors. (Further, even if we did try to use such
190 * information, we do not usually have a basis for exploiting it.
191 * For example, some sets of tasks profit from cache affinities,
192 * but others are harmed by cache pollution effects.)
193 *
194 * WorkQueues are also used in a similar way for tasks submitted
195 * to the pool. We cannot mix these tasks in the same queues used
196 * for work-stealing (this would contaminate lifo/fifo
197 * processing). Instead, we randomly associate submission queues
198 * with submitting threads, using a form of hashing. The
199 * ThreadLocalRandom probe value serves as a hash code for
200 * choosing existing queues, and may be randomly repositioned upon
201 * contention with other submitters. In essence, submitters act
202 * like workers except that they are restricted to executing local
203 * tasks that they submitted (or in the case of CountedCompleters,
204 * others with the same root task). However, because most
205 * shared/external queue operations are more expensive than
206 * internal, and because, at steady state, external submitters
207 * will compete for CPU with workers, ForkJoinTask.join and
208 * related methods disable them from repeatedly helping to process
209 * tasks if all workers are active. Insertion of tasks in shared
210 * mode requires a lock (mainly to protect in the case of
211 * resizing) but we use only a simple spinlock (using bits in
212 * field qlock), because submitters encountering a busy queue move
213 * on to try or create other queues -- they block only when
214 * creating and registering new queues.
215 *
216 * Management
217 * ==========
218 *
219 * The main throughput advantages of work-stealing stem from
220 * decentralized control -- workers mostly take tasks from
221 * themselves or each other. We cannot negate this in the
222 * implementation of other management responsibilities. The main
223 * tactic for avoiding bottlenecks is packing nearly all
224 * essentially atomic control state into two volatile variables
225 * that are by far most often read (not written) as status and
226 * consistency checks.
227 *
228 * Field "ctl" contains 64 bits holding all the information needed
229 * to atomically decide to add, inactivate, enqueue (on an event
230 * queue), dequeue, and/or re-activate workers. To enable this
231 * packing, we restrict maximum parallelism to (1<<15)-1 (which is
232 * far in excess of normal operating range) to allow ids, counts,
233 * and their negations (used for thresholding) to fit into 16bit
234 * fields.
235 *
236 * Field "plock" is a form of sequence lock with a saturating
237 * shutdown bit (similarly for per-queue "qlocks"), mainly
238 * protecting updates to the workQueues array, as well as to
239 * enable shutdown. When used as a lock, it is normally only very
240 * briefly held, so is nearly always available after at most a
241 * brief spin, but we use a monitor-based backup strategy to
242 * block when needed.
243 *
244 * Recording WorkQueues. WorkQueues are recorded in the
245 * "workQueues" array that is created upon first use and expanded
246 * if necessary. Updates to the array while recording new workers
247 * and unrecording terminated ones are protected from each other
248 * by a lock but the array is otherwise concurrently readable, and
249 * accessed directly. To simplify index-based operations, the
250 * array size is always a power of two, and all readers must
251 * tolerate null slots. Worker queues are at odd indices. Shared
252 * (submission) queues are at even indices, up to a maximum of 64
253 * slots, to limit growth even if array needs to expand to add
254 * more workers. Grouping them together in this way simplifies and
255 * speeds up task scanning.
256 *
257 * All worker thread creation is on-demand, triggered by task
258 * submissions, replacement of terminated workers, and/or
259 * compensation for blocked workers. However, all other support
260 * code is set up to work with other policies. To ensure that we
261 * do not hold on to worker references that would prevent GC, ALL
262 * accesses to workQueues are via indices into the workQueues
263 * array (which is one source of some of the messy code
264 * constructions here). In essence, the workQueues array serves as
265 * a weak reference mechanism. Thus for example the wait queue
266 * field of ctl stores indices, not references. Access to the
267 * workQueues in associated methods (for example signalWork) must
268 * both index-check and null-check the IDs. All such accesses
269 * ignore bad IDs by returning out early from what they are doing,
270 * since this can only be associated with termination, in which
271 * case it is OK to give up. All uses of the workQueues array
272 * also check that it is non-null (even if previously
273 * non-null). This allows nulling during termination, which is
274 * currently not necessary, but remains an option for
275 * resource-revocation-based shutdown schemes. It also helps
276 * reduce JIT issuance of uncommon-trap code, which tends to
277 * unnecessarily complicate control flow in some methods.
278 *
279 * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
280 * let workers spin indefinitely scanning for tasks when none can
281 * be found immediately, and we cannot start/resume workers unless
282 * there appear to be tasks available. On the other hand, we must
283 * quickly prod them into action when new tasks are submitted or
284 * generated. In many usages, ramp-up time to activate workers is
285 * the main limiting factor in overall performance (this is
286 * compounded at program start-up by JIT compilation and
287 * allocation). So we try to streamline this as much as possible.
288 * We park/unpark workers after placing in an event wait queue
289 * when they cannot find work. This "queue" is actually a simple
290 * Treiber stack, headed by the "id" field of ctl, plus a 15bit
291 * counter value (that reflects the number of times a worker has
292 * been inactivated) to avoid ABA effects (we need only as many
293 * version numbers as worker threads). Successors are held in
294 * field WorkQueue.nextWait. Queuing deals with several intrinsic
295 * races, mainly that a task-producing thread can miss seeing (and
296 * signalling) another thread that gave up looking for work but
297 * has not yet entered the wait queue. We solve this by requiring
298 * a full sweep of all workers (via repeated calls to method
299 * scan()) both before and after a newly waiting worker is added
300 * to the wait queue. During a rescan, the worker might release
301 * some other queued worker rather than itself, which has the same
302 * net effect. Because enqueued workers may actually be rescanning
303 * rather than waiting, we set and clear the "parker" field of
304 * WorkQueues to reduce unnecessary calls to unpark. (This
305 * requires a secondary recheck to avoid missed signals.) Note
306 * the unusual conventions about Thread.interrupts surrounding
307 * parking and other blocking: Because interrupts are used solely
308 * to alert threads to check termination, which is checked anyway
309 * upon blocking, we clear status (using Thread.interrupted)
310 * before any call to park, so that park does not immediately
311 * return due to status being set via some other unrelated call to
312 * interrupt in user code.
313 *
314 * Signalling. We create or wake up workers only when there
315 * appears to be at least one task they might be able to find and
316 * execute. However, many other threads may notice the same task
317 * and each signal to wake up a thread that might take it. So in
318 * general, pools will be over-signalled. When a submission is
319 * added or another worker adds a task to a queue that has fewer
320 * than two tasks, they signal waiting workers (or trigger
321 * creation of new ones if fewer than the given parallelism level
322 * -- signalWork), and may leave a hint to the unparked worker to
323 * help signal others upon wakeup). These primary signals are
324 * buttressed by others (see method helpSignal) whenever other
325 * threads scan for work or do not have a task to process. On
326 * most platforms, signalling (unpark) overhead time is noticeably
327 * long, and the time between signalling a thread and it actually
328 * making progress can be very noticeably long, so it is worth
329 * offloading these delays from critical paths as much as
330 * possible.
331 *
332 * Trimming workers. To release resources after periods of lack of
333 * use, a worker starting to wait when the pool is quiescent will
334 * time out and terminate if the pool has remained quiescent for a
335 * given period -- a short period if there are more threads than
336 * parallelism, longer as the number of threads decreases. This
337 * will slowly propagate, eventually terminating all workers after
338 * periods of non-use.
339 *
340 * Shutdown and Termination. A call to shutdownNow atomically sets
341 * a plock bit and then (non-atomically) sets each worker's
342 * qlock status, cancels all unprocessed tasks, and wakes up
343 * all waiting workers. Detecting whether termination should
344 * commence after a non-abrupt shutdown() call requires more work
345 * and bookkeeping. We need consensus about quiescence (i.e., that
346 * there is no more work). The active count provides a primary
347 * indication but non-abrupt shutdown still requires a rechecking
348 * scan for any workers that are inactive but not queued.
349 *
350 * Joining Tasks
351 * =============
352 *
353 * Any of several actions may be taken when one worker is waiting
354 * to join a task stolen (or always held) by another. Because we
355 * are multiplexing many tasks on to a pool of workers, we can't
356 * just let them block (as in Thread.join). We also cannot just
357 * reassign the joiner's run-time stack with another and replace
358 * it later, which would be a form of "continuation", that even if
359 * possible is not necessarily a good idea since we sometimes need
360 * both an unblocked task and its continuation to progress.
361 * Instead we combine two tactics:
362 *
363 * Helping: Arranging for the joiner to execute some task that it
364 * would be running if the steal had not occurred.
365 *
366 * Compensating: Unless there are already enough live threads,
367 * method tryCompensate() may create or re-activate a spare
368 * thread to compensate for blocked joiners until they unblock.
369 *
370 * A third form (implemented in tryRemoveAndExec) amounts to
371 * helping a hypothetical compensator: If we can readily tell that
372 * a possible action of a compensator is to steal and execute the
373 * task being joined, the joining thread can do so directly,
374 * without the need for a compensation thread (although at the
375 * expense of larger run-time stacks, but the tradeoff is
376 * typically worthwhile).
377 *
378 * The ManagedBlocker extension API can't use helping so relies
379 * only on compensation in method awaitBlocker.
380 *
381 * The algorithm in tryHelpStealer entails a form of "linear"
382 * helping: Each worker records (in field currentSteal) the most
383 * recent task it stole from some other worker. Plus, it records
384 * (in field currentJoin) the task it is currently actively
385 * joining. Method tryHelpStealer uses these markers to try to
386 * find a worker to help (i.e., steal back a task from and execute
387 * it) that could hasten completion of the actively joined task.
388 * In essence, the joiner executes a task that would be on its own
389 * local deque had the to-be-joined task not been stolen. This may
390 * be seen as a conservative variant of the approach in Wagner &
391 * Calder "Leapfrogging: a portable technique for implementing
392 * efficient futures" SIGPLAN Notices, 1993
393 * (http://portal.acm.org/citation.cfm?id=155354). It differs in
394 * that: (1) We only maintain dependency links across workers upon
395 * steals, rather than use per-task bookkeeping. This sometimes
396 * requires a linear scan of workQueues array to locate stealers,
397 * but often doesn't because stealers leave hints (that may become
398 * stale/wrong) of where to locate them. It is only a hint
399 * because a worker might have had multiple steals and the hint
400 * records only one of them (usually the most current). Hinting
401 * isolates cost to when it is needed, rather than adding to
402 * per-task overhead. (2) It is "shallow", ignoring nesting and
403 * potentially cyclic mutual steals. (3) It is intentionally
404 * racy: field currentJoin is updated only while actively joining,
405 * which means that we miss links in the chain during long-lived
406 * tasks, GC stalls etc (which is OK since blocking in such cases
407 * is usually a good idea). (4) We bound the number of attempts
408 * to find work (see MAX_HELP) and fall back to suspending the
409 * worker and if necessary replacing it with another.
410 *
411 * Helping actions for CountedCompleters are much simpler: Method
412 * helpComplete can take and execute any task with the same root
413 * as the task being waited on. However, this still entails some
414 * traversal of completer chains, so is less efficient than using
415 * CountedCompleters without explicit joins.
416 *
417 * It is impossible to keep exactly the target parallelism number
418 * of threads running at any given time. Determining the
419 * existence of conservatively safe helping targets, the
420 * availability of already-created spares, and the apparent need
421 * to create new spares are all racy, so we rely on multiple
422 * retries of each. Compensation in the apparent absence of
423 * helping opportunities is challenging to control on JVMs, where
424 * GC and other activities can stall progress of tasks that in
425 * turn stall out many other dependent tasks, without us being
426 * able to determine whether they will ever require compensation.
427 * Even though work-stealing otherwise encounters little
428 * degradation in the presence of more threads than cores,
429 * aggressively adding new threads in such cases entails risk of
430 * unwanted positive feedback control loops in which more threads
431 * cause more dependent stalls (as well as delayed progress of
432 * unblocked threads to the point that we know they are available)
433 * leading to more situations requiring more threads, and so
434 * on. This aspect of control can be seen as an (analytically
435 * intractable) game with an opponent that may choose the worst
436 * (for us) active thread to stall at any time. We take several
437 * precautions to bound losses (and thus bound gains), mainly in
438 * methods tryCompensate and awaitJoin.
439 *
440 * Common Pool
441 * ===========
442 *
443 * The static common Pool always exists after static
444 * initialization. Since it (or any other created pool) need
445 * never be used, we minimize initial construction overhead and
446 * footprint to the setup of about a dozen fields, with no nested
447 * allocation. Most bootstrapping occurs within method
448 * fullExternalPush during the first submission to the pool.
449 *
450 * When external threads submit to the common pool, they can
451 * perform some subtask processing (see externalHelpJoin and
452 * related methods). We do not need to record whether these
453 * submissions are to the common pool -- if not, externalHelpJoin
454 * returns quickly (at the most helping to signal some common pool
455 * workers). These submitters would otherwise be blocked waiting
456 * for completion, so the extra effort (with liberally sprinkled
457 * task status checks) in inapplicable cases amounts to an odd
458 * form of limited spin-wait before blocking in ForkJoinTask.join.
459 *
460 * Style notes
461 * ===========
462 *
463 * There is a lot of representation-level coupling among classes
464 * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
465 * fields of WorkQueue maintain data structures managed by
466 * ForkJoinPool, so are directly accessed. There is little point
467 * trying to reduce this, since any associated future changes in
468 * representations will need to be accompanied by algorithmic
469 * changes anyway. Several methods intrinsically sprawl because
470 * they must accumulate sets of consistent reads of volatiles held
471 * in local variables. Methods signalWork() and scan() are the
472 * main bottlenecks, so are especially heavily
473 * micro-optimized/mangled. There are lots of inline assignments
474 * (of form "while ((local = field) != 0)") which are usually the
475 * simplest way to ensure the required read orderings (which are
476 * sometimes critical). This leads to a "C"-like style of listing
477 * declarations of these locals at the heads of methods or blocks.
478 * There are several occurrences of the unusual "do {} while
479 * (!cas...)" which is the simplest way to force an update of a
480 * CAS'ed variable. There are also other coding oddities (including
481 * several unnecessary-looking hoisted null checks) that help
482 * some methods perform reasonably even when interpreted (not
483 * compiled).
484 *
485 * The order of declarations in this file is:
486 * (1) Static utility functions
487 * (2) Nested (static) classes
488 * (3) Static fields
489 * (4) Fields, along with constants used when unpacking some of them
490 * (5) Internal control methods
491 * (6) Callbacks and other support for ForkJoinTask methods
492 * (7) Exported methods
493 * (8) Static block initializing statics in minimally dependent order
494 */
495
496 // Static utilities
497
498 /**
499 * If there is a security manager, makes sure caller has
500 * permission to modify threads.
501 */
502 private static void checkPermission() {
503 SecurityManager security = System.getSecurityManager();
504 if (security != null)
505 security.checkPermission(modifyThreadPermission);
506 }
507
508 // Nested classes
509
510 /**
511 * Factory for creating new {@link ForkJoinWorkerThread}s.
512 * A {@code ForkJoinWorkerThreadFactory} must be defined and used
513 * for {@code ForkJoinWorkerThread} subclasses that extend base
514 * functionality or initialize threads with different contexts.
515 */
516 public static interface ForkJoinWorkerThreadFactory {
517 /**
518 * Returns a new worker thread operating in the given pool.
519 *
520 * @param pool the pool this thread works in
521 * @throws NullPointerException if the pool is null
522 */
523 public ForkJoinWorkerThread newThread(ForkJoinPool pool);
524 }
525
526 /**
527 * Default ForkJoinWorkerThreadFactory implementation; creates a
528 * new ForkJoinWorkerThread.
529 */
530 static final class DefaultForkJoinWorkerThreadFactory
531 implements ForkJoinWorkerThreadFactory {
532 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
533 return new ForkJoinWorkerThread(pool);
534 }
535 }
536
537 /**
538 * Class for artificial tasks that are used to replace the target
539 * of local joins if they are removed from an interior queue slot
540 * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
541 * actually do anything beyond having a unique identity.
542 */
543 static final class EmptyTask extends ForkJoinTask<Void> {
544 private static final long serialVersionUID = -7721805057305804111L;
545 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
546 public final Void getRawResult() { return null; }
547 public final void setRawResult(Void x) {}
548 public final boolean exec() { return true; }
549 }
550
551 /**
552 * Queues supporting work-stealing as well as external task
553 * submission. See above for main rationale and algorithms.
554 * Implementation relies heavily on "Unsafe" intrinsics
555 * and selective use of "volatile":
556 *
557 * Field "base" is the index (mod array.length) of the least valid
558 * queue slot, which is always the next position to steal (poll)
559 * from if nonempty. Reads and writes require volatile orderings
560 * but not CAS, because updates are only performed after slot
561 * CASes.
562 *
563 * Field "top" is the index (mod array.length) of the next queue
564 * slot to push to or pop from. It is written only by owner thread
565 * for push, or under lock for external/shared push, and accessed
566 * by other threads only after reading (volatile) base. Both top
567 * and base are allowed to wrap around on overflow, but (top -
568 * base) (or more commonly -(base - top) to force volatile read of
569 * base before top) still estimates size. The lock ("qlock") is
570 * forced to -1 on termination, causing all further lock attempts
571 * to fail. (Note: we don't need CAS for termination state because
572 * upon pool shutdown, all shared-queues will stop being used
573 * anyway.) Nearly all lock bodies are set up so that exceptions
574 * within lock bodies are "impossible" (modulo JVM errors that
575 * would cause failure anyway.)
576 *
577 * The array slots are read and written using the emulation of
578 * volatiles/atomics provided by Unsafe. Insertions must in
579 * general use putOrderedObject as a form of releasing store to
580 * ensure that all writes to the task object are ordered before
581 * its publication in the queue. All removals entail a CAS to
582 * null. The array is always a power of two. To ensure safety of
583 * Unsafe array operations, all accesses perform explicit null
584 * checks and implicit bounds checks via power-of-two masking.
585 *
586 * In addition to basic queuing support, this class contains
587 * fields described elsewhere to control execution. It turns out
588 * to work better memory-layout-wise to include them in this class
589 * rather than a separate class.
590 *
591 * Performance on most platforms is very sensitive to placement of
592 * instances of both WorkQueues and their arrays -- we absolutely
593 * do not want multiple WorkQueue instances or multiple queue
594 * arrays sharing cache lines. (It would be best for queue objects
595 * and their arrays to share, but there is nothing available to
596 * help arrange that). Unfortunately, because they are recorded
597 * in a common array, WorkQueue instances are often moved to be
598 * adjacent by garbage collectors. To reduce impact, we use field
599 * padding that works OK on common platforms; this effectively
600 * trades off slightly slower average field access for the sake of
601 * avoiding really bad worst-case access. (Until better JVM
602 * support is in place, this padding is dependent on transient
603 * properties of JVM field layout rules.) We also take care in
604 * allocating, sizing and resizing the array. Non-shared queue
605 * arrays are initialized by workers before use. Others are
606 * allocated on first use.
607 */
608 static final class WorkQueue {
609 /**
610 * Capacity of work-stealing queue array upon initialization.
611 * Must be a power of two; at least 4, but should be larger to
612 * reduce or eliminate cacheline sharing among queues.
613 * Currently, it is much larger, as a partial workaround for
614 * the fact that JVMs often place arrays in locations that
615 * share GC bookkeeping (especially cardmarks) such that
616 * per-write accesses encounter serious memory contention.
617 */
618 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
619
620 /**
621 * Maximum size for queue arrays. Must be a power of two less
622 * than or equal to 1 << (31 - width of array entry) to ensure
623 * lack of wraparound of index calculations, but defined to a
624 * value a bit less than this to help users trap runaway
625 * programs before saturating systems.
626 */
627 static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
628
629 // Heuristic padding to ameliorate unfortunate memory placements
630 volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
631
632 int seed; // for random scanning; initialize nonzero
633 volatile int eventCount; // encoded inactivation count; < 0 if inactive
634 int nextWait; // encoded record of next event waiter
635 int hint; // steal or signal hint (index)
636 int poolIndex; // index of this queue in pool (or 0)
637 final int mode; // 0: lifo, > 0: fifo, < 0: shared
638 int nsteals; // number of steals
639 volatile int qlock; // 1: locked, -1: terminate; else 0
640 volatile int base; // index of next slot for poll
641 int top; // index of next slot for push
642 ForkJoinTask<?>[] array; // the elements (initially unallocated)
643 final ForkJoinPool pool; // the containing pool (may be null)
644 final ForkJoinWorkerThread owner; // owning thread or null if shared
645 volatile Thread parker; // == owner during call to park; else null
646 volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
647 ForkJoinTask<?> currentSteal; // current non-local task being executed
648
649 volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
650 volatile Object pad18, pad19, pad1a, pad1b, pad1c, pad1d;
651
652 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
653 int seed) {
654 this.pool = pool;
655 this.owner = owner;
656 this.mode = mode;
657 this.seed = seed;
658 // Place indices in the center of array (that is not yet allocated)
659 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
660 }
661
662 /**
663 * Returns the approximate number of tasks in the queue.
664 */
665 final int queueSize() {
666 int n = base - top; // non-owner callers must read base first
667 return (n >= 0) ? 0 : -n; // ignore transient negative
668 }
669
670 /**
671 * Provides a more accurate estimate of whether this queue has
672 * any tasks than does queueSize, by checking whether a
673 * near-empty queue has at least one unclaimed task.
674 */
675 final boolean isEmpty() {
676 ForkJoinTask<?>[] a; int m, s;
677 int n = base - (s = top);
678 return (n >= 0 ||
679 (n == -1 &&
680 ((a = array) == null ||
681 (m = a.length - 1) < 0 ||
682 U.getObject
683 (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
684 }
685
686 /**
687 * Pushes a task. Call only by owner in unshared queues. (The
688 * shared-queue version is embedded in method externalPush.)
689 *
690 * @param task the task. Caller must ensure non-null.
691 * @throw RejectedExecutionException if array cannot be resized
692 */
693 final void push(ForkJoinTask<?> task) {
694 ForkJoinTask<?>[] a; ForkJoinPool p;
695 int s = top, m, n;
696 if ((a = array) != null) { // ignore if queue removed
697 int j = (((m = a.length - 1) & s) << ASHIFT) + ABASE;
698 U.putOrderedObject(a, j, task);
699 if ((n = (top = s + 1) - base) <= 2) {
700 if ((p = pool) != null)
701 p.signalWork(this);
702 }
703 else if (n >= m)
704 growArray();
705 }
706 }
707
708 /**
709 * Initializes or doubles the capacity of array. Call either
710 * by owner or with lock held -- it is OK for base, but not
711 * top, to move while resizings are in progress.
712 */
713 final ForkJoinTask<?>[] growArray() {
714 ForkJoinTask<?>[] oldA = array;
715 int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
716 if (size > MAXIMUM_QUEUE_CAPACITY)
717 throw new RejectedExecutionException("Queue capacity exceeded");
718 int oldMask, t, b;
719 ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
720 if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
721 (t = top) - (b = base) > 0) {
722 int mask = size - 1;
723 do {
724 ForkJoinTask<?> x;
725 int oldj = ((b & oldMask) << ASHIFT) + ABASE;
726 int j = ((b & mask) << ASHIFT) + ABASE;
727 x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
728 if (x != null &&
729 U.compareAndSwapObject(oldA, oldj, x, null))
730 U.putObjectVolatile(a, j, x);
731 } while (++b != t);
732 }
733 return a;
734 }
735
736 /**
737 * Takes next task, if one exists, in LIFO order. Call only
738 * by owner in unshared queues.
739 */
740 final ForkJoinTask<?> pop() {
741 ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
742 if ((a = array) != null && (m = a.length - 1) >= 0) {
743 for (int s; (s = top - 1) - base >= 0;) {
744 long j = ((m & s) << ASHIFT) + ABASE;
745 if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
746 break;
747 if (U.compareAndSwapObject(a, j, t, null)) {
748 top = s;
749 return t;
750 }
751 }
752 }
753 return null;
754 }
755
756 /**
757 * Takes a task in FIFO order if b is base of queue and a task
758 * can be claimed without contention. Specialized versions
759 * appear in ForkJoinPool methods scan and tryHelpStealer.
760 */
761 final ForkJoinTask<?> pollAt(int b) {
762 ForkJoinTask<?> t; ForkJoinTask<?>[] a;
763 if ((a = array) != null) {
764 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
765 if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
766 base == b &&
767 U.compareAndSwapObject(a, j, t, null)) {
768 base = b + 1;
769 return t;
770 }
771 }
772 return null;
773 }
774
775 /**
776 * Takes next task, if one exists, in FIFO order.
777 */
778 final ForkJoinTask<?> poll() {
779 ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
780 while ((b = base) - top < 0 && (a = array) != null) {
781 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
782 t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
783 if (t != null) {
784 if (base == b &&
785 U.compareAndSwapObject(a, j, t, null)) {
786 base = b + 1;
787 return t;
788 }
789 }
790 else if (base == b) {
791 if (b + 1 == top)
792 break;
793 Thread.yield(); // wait for lagging update (very rare)
794 }
795 }
796 return null;
797 }
798
799 /**
800 * Takes next task, if one exists, in order specified by mode.
801 */
802 final ForkJoinTask<?> nextLocalTask() {
803 return mode == 0 ? pop() : poll();
804 }
805
806 /**
807 * Returns next task, if one exists, in order specified by mode.
808 */
809 final ForkJoinTask<?> peek() {
810 ForkJoinTask<?>[] a = array; int m;
811 if (a == null || (m = a.length - 1) < 0)
812 return null;
813 int i = mode == 0 ? top - 1 : base;
814 int j = ((i & m) << ASHIFT) + ABASE;
815 return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
816 }
817
818 /**
819 * Pops the given task only if it is at the current top.
820 * (A shared version is available only via FJP.tryExternalUnpush)
821 */
822 final boolean tryUnpush(ForkJoinTask<?> t) {
823 ForkJoinTask<?>[] a; int s;
824 if ((a = array) != null && (s = top) != base &&
825 U.compareAndSwapObject
826 (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
827 top = s;
828 return true;
829 }
830 return false;
831 }
832
833 /**
834 * Removes and cancels all known tasks, ignoring any exceptions.
835 */
836 final void cancelAll() {
837 ForkJoinTask.cancelIgnoringExceptions(currentJoin);
838 ForkJoinTask.cancelIgnoringExceptions(currentSteal);
839 for (ForkJoinTask<?> t; (t = poll()) != null; )
840 ForkJoinTask.cancelIgnoringExceptions(t);
841 }
842
843 /**
844 * Computes next value for random probes. Scans don't require
845 * a very high quality generator, but also not a crummy one.
846 * Marsaglia xor-shift is cheap and works well enough. Note:
847 * This is manually inlined in its usages in ForkJoinPool to
848 * avoid writes inside busy scan loops.
849 */
850 final int nextSeed() {
851 int r = seed;
852 r ^= r << 13;
853 r ^= r >>> 17;
854 return seed = r ^= r << 5;
855 }
856
857 // Specialized execution methods
858
859 /**
860 * Pops and runs tasks until empty.
861 */
862 private void popAndExecAll() {
863 // A bit faster than repeated pop calls
864 ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
865 while ((a = array) != null && (m = a.length - 1) >= 0 &&
866 (s = top - 1) - base >= 0 &&
867 (t = ((ForkJoinTask<?>)
868 U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
869 != null) {
870 if (U.compareAndSwapObject(a, j, t, null)) {
871 top = s;
872 t.doExec();
873 }
874 }
875 }
876
877 /**
878 * Polls and runs tasks until empty.
879 */
880 private void pollAndExecAll() {
881 for (ForkJoinTask<?> t; (t = poll()) != null;)
882 t.doExec();
883 }
884
885 /**
886 * If present, removes from queue and executes the given task,
887 * or any other cancelled task. Returns (true) on any CAS
888 * or consistency check failure so caller can retry.
889 *
890 * @return false if no progress can be made, else true;
891 */
892 final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
893 boolean stat = true, removed = false, empty = true;
894 ForkJoinTask<?>[] a; int m, s, b, n;
895 if ((a = array) != null && (m = a.length - 1) >= 0 &&
896 (n = (s = top) - (b = base)) > 0) {
897 for (ForkJoinTask<?> t;;) { // traverse from s to b
898 int j = ((--s & m) << ASHIFT) + ABASE;
899 t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
900 if (t == null) // inconsistent length
901 break;
902 else if (t == task) {
903 if (s + 1 == top) { // pop
904 if (!U.compareAndSwapObject(a, j, task, null))
905 break;
906 top = s;
907 removed = true;
908 }
909 else if (base == b) // replace with proxy
910 removed = U.compareAndSwapObject(a, j, task,
911 new EmptyTask());
912 break;
913 }
914 else if (t.status >= 0)
915 empty = false;
916 else if (s + 1 == top) { // pop and throw away
917 if (U.compareAndSwapObject(a, j, t, null))
918 top = s;
919 break;
920 }
921 if (--n == 0) {
922 if (!empty && base == b)
923 stat = false;
924 break;
925 }
926 }
927 }
928 if (removed)
929 task.doExec();
930 return stat;
931 }
932
933 /**
934 * Polls for and executes the given task or any other task in
935 * its CountedCompleter computation
936 */
937 final boolean pollAndExecCC(ForkJoinTask<?> root) {
938 ForkJoinTask<?>[] a; int b; Object o;
939 outer: while ((b = base) - top < 0 && (a = array) != null) {
940 long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
941 if ((o = U.getObject(a, j)) == null ||
942 !(o instanceof CountedCompleter))
943 break;
944 for (CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;;) {
945 if (r == root) {
946 if (base == b &&
947 U.compareAndSwapObject(a, j, t, null)) {
948 base = b + 1;
949 t.doExec();
950 return true;
951 }
952 else
953 break; // restart
954 }
955 if ((r = r.completer) == null)
956 break outer; // not part of root computation
957 }
958 }
959 return false;
960 }
961
962 /**
963 * Executes a top-level task and any local tasks remaining
964 * after execution.
965 */
966 final void runTask(ForkJoinTask<?> t) {
967 if (t != null) {
968 (currentSteal = t).doExec();
969 currentSteal = null;
970 ++nsteals;
971 if (base - top < 0) { // process remaining local tasks
972 if (mode == 0)
973 popAndExecAll();
974 else
975 pollAndExecAll();
976 }
977 }
978 }
979
980 /**
981 * Executes a non-top-level (stolen) task.
982 */
983 final void runSubtask(ForkJoinTask<?> t) {
984 if (t != null) {
985 ForkJoinTask<?> ps = currentSteal;
986 (currentSteal = t).doExec();
987 currentSteal = ps;
988 }
989 }
990
991 /**
992 * Returns true if owned and not known to be blocked.
993 */
994 final boolean isApparentlyUnblocked() {
995 Thread wt; Thread.State s;
996 return (eventCount >= 0 &&
997 (wt = owner) != null &&
998 (s = wt.getState()) != Thread.State.BLOCKED &&
999 s != Thread.State.WAITING &&
1000 s != Thread.State.TIMED_WAITING);
1001 }
1002
1003 // Unsafe mechanics
1004 private static final sun.misc.Unsafe U;
1005 private static final long QLOCK;
1006 private static final int ABASE;
1007 private static final int ASHIFT;
1008 static {
1009 int s;
1010 try {
1011 U = sun.misc.Unsafe.getUnsafe();
1012 Class<?> k = WorkQueue.class;
1013 Class<?> ak = ForkJoinTask[].class;
1014 QLOCK = U.objectFieldOffset
1015 (k.getDeclaredField("qlock"));
1016 ABASE = U.arrayBaseOffset(ak);
1017 s = U.arrayIndexScale(ak);
1018 } catch (Exception e) {
1019 throw new Error(e);
1020 }
1021 if ((s & (s-1)) != 0)
1022 throw new Error("data type scale not a power of two");
1023 ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
1024 }
1025 }
1026
1027 // static fields (initialized in static initializer below)
1028
1029 /**
1030 * Creates a new ForkJoinWorkerThread. This factory is used unless
1031 * overridden in ForkJoinPool constructors.
1032 */
1033 public static final ForkJoinWorkerThreadFactory
1034 defaultForkJoinWorkerThreadFactory;
1035
1036 /**
1037 * Permission required for callers of methods that may start or
1038 * kill threads.
1039 */
1040 private static final RuntimePermission modifyThreadPermission;
1041
1042 /**
1043 * Common (static) pool. Non-null for public use unless a static
1044 * construction exception, but internal usages null-check on use
1045 * to paranoically avoid potential initialization circularities
1046 * as well as to simplify generated code.
1047 */
1048 static final ForkJoinPool common;
1049
1050 /**
1051 * Common pool parallelism. Must equal common.parallelism.
1052 */
1053 static final int commonParallelism;
1054
1055 /**
1056 * Sequence number for creating workerNamePrefix.
1057 */
1058 private static int poolNumberSequence;
1059
1060 /**
1061 * Returns the next sequence number. We don't expect this to
1062 * ever contend, so use simple builtin sync.
1063 */
1064 private static final synchronized int nextPoolId() {
1065 return ++poolNumberSequence;
1066 }
1067
1068 // static constants
1069
1070 /**
1071 * Initial timeout value (in nanoseconds) for the thread
1072 * triggering quiescence to park waiting for new work. On timeout,
1073 * the thread will instead try to shrink the number of
1074 * workers. The value should be large enough to avoid overly
1075 * aggressive shrinkage during most transient stalls (long GCs
1076 * etc).
1077 */
1078 private static final long IDLE_TIMEOUT = 2000L * 1000L * 1000L; // 2sec
1079
1080 /**
1081 * Timeout value when there are more threads than parallelism level
1082 */
1083 private static final long FAST_IDLE_TIMEOUT = 200L * 1000L * 1000L;
1084
1085 /**
1086 * Tolerance for idle timeouts, to cope with timer undershoots
1087 */
1088 private static final long TIMEOUT_SLOP = 2000000L;
1089
1090 /**
1091 * The maximum stolen->joining link depth allowed in method
1092 * tryHelpStealer. Must be a power of two. Depths for legitimate
1093 * chains are unbounded, but we use a fixed constant to avoid
1094 * (otherwise unchecked) cycles and to bound staleness of
1095 * traversal parameters at the expense of sometimes blocking when
1096 * we could be helping.
1097 */
1098 private static final int MAX_HELP = 64;
1099
1100 /**
1101 * Increment for seed generators. See class ThreadLocal for
1102 * explanation.
1103 */
1104 private static final int SEED_INCREMENT = 0x61c88647;
1105
1106 /**
1107 * Bits and masks for control variables
1108 *
1109 * Field ctl is a long packed with:
1110 * AC: Number of active running workers minus target parallelism (16 bits)
1111 * TC: Number of total workers minus target parallelism (16 bits)
1112 * ST: true if pool is terminating (1 bit)
1113 * EC: the wait count of top waiting thread (15 bits)
1114 * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1115 *
1116 * When convenient, we can extract the upper 32 bits of counts and
1117 * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1118 * (int)ctl. The ec field is never accessed alone, but always
1119 * together with id and st. The offsets of counts by the target
1120 * parallelism and the positionings of fields makes it possible to
1121 * perform the most common checks via sign tests of fields: When
1122 * ac is negative, there are not enough active workers, when tc is
1123 * negative, there are not enough total workers, and when e is
1124 * negative, the pool is terminating. To deal with these possibly
1125 * negative fields, we use casts in and out of "short" and/or
1126 * signed shifts to maintain signedness.
1127 *
1128 * When a thread is queued (inactivated), its eventCount field is
1129 * set negative, which is the only way to tell if a worker is
1130 * prevented from executing tasks, even though it must continue to
1131 * scan for them to avoid queuing races. Note however that
1132 * eventCount updates lag releases so usage requires care.
1133 *
1134 * Field plock is an int packed with:
1135 * SHUTDOWN: true if shutdown is enabled (1 bit)
1136 * SEQ: a sequence lock, with PL_LOCK bit set if locked (30 bits)
1137 * SIGNAL: set when threads may be waiting on the lock (1 bit)
1138 *
1139 * The sequence number enables simple consistency checks:
1140 * Staleness of read-only operations on the workQueues array can
1141 * be checked by comparing plock before vs after the reads.
1142 */
1143
1144 // bit positions/shifts for fields
1145 private static final int AC_SHIFT = 48;
1146 private static final int TC_SHIFT = 32;
1147 private static final int ST_SHIFT = 31;
1148 private static final int EC_SHIFT = 16;
1149
1150 // bounds
1151 private static final int SMASK = 0xffff; // short bits
1152 private static final int MAX_CAP = 0x7fff; // max #workers - 1
1153 private static final int EVENMASK = 0xfffe; // even short bits
1154 private static final int SQMASK = 0x007e; // max 64 (even) slots
1155 private static final int SHORT_SIGN = 1 << 15;
1156 private static final int INT_SIGN = 1 << 31;
1157
1158 // masks
1159 private static final long STOP_BIT = 0x0001L << ST_SHIFT;
1160 private static final long AC_MASK = ((long)SMASK) << AC_SHIFT;
1161 private static final long TC_MASK = ((long)SMASK) << TC_SHIFT;
1162
1163 // units for incrementing and decrementing
1164 private static final long TC_UNIT = 1L << TC_SHIFT;
1165 private static final long AC_UNIT = 1L << AC_SHIFT;
1166
1167 // masks and units for dealing with u = (int)(ctl >>> 32)
1168 private static final int UAC_SHIFT = AC_SHIFT - 32;
1169 private static final int UTC_SHIFT = TC_SHIFT - 32;
1170 private static final int UAC_MASK = SMASK << UAC_SHIFT;
1171 private static final int UTC_MASK = SMASK << UTC_SHIFT;
1172 private static final int UAC_UNIT = 1 << UAC_SHIFT;
1173 private static final int UTC_UNIT = 1 << UTC_SHIFT;
1174
1175 // masks and units for dealing with e = (int)ctl
1176 private static final int E_MASK = 0x7fffffff; // no STOP_BIT
1177 private static final int E_SEQ = 1 << EC_SHIFT;
1178
1179 // plock bits
1180 private static final int SHUTDOWN = 1 << 31;
1181 private static final int PL_LOCK = 2;
1182 private static final int PL_SIGNAL = 1;
1183 private static final int PL_SPINS = 1 << 8;
1184
1185 // access mode for WorkQueue
1186 static final int LIFO_QUEUE = 0;
1187 static final int FIFO_QUEUE = 1;
1188 static final int SHARED_QUEUE = -1;
1189
1190 // bounds for #steps in scan loop -- must be power 2 minus 1
1191 private static final int MIN_SCAN = 0x1ff; // cover estimation slop
1192 private static final int MAX_SCAN = 0x1ffff; // 4 * max workers
1193
1194 // Instance fields
1195
1196 /*
1197 * Field layout of this class tends to matter more than one would
1198 * like. Runtime layout order is only loosely related to
1199 * declaration order and may differ across JVMs, but the following
1200 * empirically works OK on current JVMs.
1201 */
1202
1203 // Heuristic padding to ameliorate unfortunate memory placements
1204 volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
1205
1206 volatile long stealCount; // collects worker counts
1207 volatile long ctl; // main pool control
1208 volatile int plock; // shutdown status and seqLock
1209 volatile int indexSeed; // worker/submitter index seed
1210 final int config; // mode and parallelism level
1211 WorkQueue[] workQueues; // main registry
1212 final ForkJoinWorkerThreadFactory factory;
1213 final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1214 final String workerNamePrefix; // to create worker name string
1215
1216 volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
1217 volatile Object pad18, pad19, pad1a, pad1b;
1218
1219 /*
1220 * Acquires the plock lock to protect worker array and related
1221 * updates. This method is called only if an initial CAS on plock
1222 * fails. This acts as a spinlock for normal cases, but falls back
1223 * to builtin monitor to block when (rarely) needed. This would be
1224 * a terrible idea for a highly contended lock, but works fine as
1225 * a more conservative alternative to a pure spinlock.
1226 */
1227 private int acquirePlock() {
1228 int spins = PL_SPINS, ps, nps;
1229 for (;;) {
1230 if (((ps = plock) & PL_LOCK) == 0 &&
1231 U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1232 return nps;
1233 else if (spins >= 0) {
1234 if (ThreadLocalRandom.nextSecondarySeed() >= 0)
1235 --spins;
1236 }
1237 else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1238 synchronized (this) {
1239 if ((plock & PL_SIGNAL) != 0) {
1240 try {
1241 wait();
1242 } catch (InterruptedException ie) {
1243 try {
1244 Thread.currentThread().interrupt();
1245 } catch (SecurityException ignore) {
1246 }
1247 }
1248 }
1249 else
1250 notifyAll();
1251 }
1252 }
1253 }
1254 }
1255
1256 /**
1257 * Unlocks and signals any thread waiting for plock. Called only
1258 * when CAS of seq value for unlock fails.
1259 */
1260 private void releasePlock(int ps) {
1261 plock = ps;
1262 synchronized (this) { notifyAll(); }
1263 }
1264
1265 /**
1266 * Tries to create and start one worker if fewer than target
1267 * parallelism level exist. Adjusts counts etc on failure.
1268 */
1269 private void tryAddWorker() {
1270 long c; int u;
1271 while ((u = (int)((c = ctl) >>> 32)) < 0 &&
1272 (u & SHORT_SIGN) != 0 && (int)c == 0) {
1273 long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1274 ((u + UAC_UNIT) & UAC_MASK)) << 32;
1275 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1276 ForkJoinWorkerThreadFactory fac;
1277 Throwable ex = null;
1278 ForkJoinWorkerThread wt = null;
1279 try {
1280 if ((fac = factory) != null &&
1281 (wt = fac.newThread(this)) != null) {
1282 wt.start();
1283 break;
1284 }
1285 } catch (Throwable e) {
1286 ex = e;
1287 }
1288 deregisterWorker(wt, ex);
1289 break;
1290 }
1291 }
1292 }
1293
1294 // Registering and deregistering workers
1295
1296 /**
1297 * Callback from ForkJoinWorkerThread to establish and record its
1298 * WorkQueue. To avoid scanning bias due to packing entries in
1299 * front of the workQueues array, we treat the array as a simple
1300 * power-of-two hash table using per-thread seed as hash,
1301 * expanding as needed.
1302 *
1303 * @param wt the worker thread
1304 * @return the worker's queue
1305 */
1306 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1307 Thread.UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps;
1308 wt.setDaemon(true);
1309 if ((handler = ueh) != null)
1310 wt.setUncaughtExceptionHandler(handler);
1311 do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
1312 s += SEED_INCREMENT) ||
1313 s == 0); // skip 0
1314 WorkQueue w = new WorkQueue(this, wt, config >>> 16, s);
1315 if (((ps = plock) & PL_LOCK) != 0 ||
1316 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1317 ps = acquirePlock();
1318 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1319 try {
1320 if ((ws = workQueues) != null) { // skip if shutting down
1321 int n = ws.length, m = n - 1;
1322 int r = (s << 1) | 1; // use odd-numbered indices
1323 if (ws[r &= m] != null) { // collision
1324 int probes = 0; // step by approx half size
1325 int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1326 while (ws[r = (r + step) & m] != null) {
1327 if (++probes >= n) {
1328 workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1329 m = n - 1;
1330 probes = 0;
1331 }
1332 }
1333 }
1334 w.eventCount = w.poolIndex = r; // volatile write orders
1335 ws[r] = w;
1336 }
1337 } finally {
1338 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1339 releasePlock(nps);
1340 }
1341 wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex)));
1342 return w;
1343 }
1344
1345 /**
1346 * Final callback from terminating worker, as well as upon failure
1347 * to construct or start a worker. Removes record of worker from
1348 * array, and adjusts counts. If pool is shutting down, tries to
1349 * complete termination.
1350 *
1351 * @param wt the worker thread or null if construction failed
1352 * @param ex the exception causing failure, or null if none
1353 */
1354 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1355 WorkQueue w = null;
1356 if (wt != null && (w = wt.workQueue) != null) {
1357 int ps;
1358 w.qlock = -1; // ensure set
1359 long ns = w.nsteals, sc; // collect steal count
1360 do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1361 sc = stealCount, sc + ns));
1362 if (((ps = plock) & PL_LOCK) != 0 ||
1363 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1364 ps = acquirePlock();
1365 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1366 try {
1367 int idx = w.poolIndex;
1368 WorkQueue[] ws = workQueues;
1369 if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1370 ws[idx] = null;
1371 } finally {
1372 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1373 releasePlock(nps);
1374 }
1375 }
1376
1377 long c; // adjust ctl counts
1378 do {} while (!U.compareAndSwapLong
1379 (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1380 ((c - TC_UNIT) & TC_MASK) |
1381 (c & ~(AC_MASK|TC_MASK)))));
1382
1383 if (!tryTerminate(false, false) && w != null && w.array != null) {
1384 w.cancelAll(); // cancel remaining tasks
1385 WorkQueue[] ws; WorkQueue v; Thread p; int u, i, e;
1386 while ((u = (int)((c = ctl) >>> 32)) < 0 && (e = (int)c) >= 0) {
1387 if (e > 0) { // activate or create replacement
1388 if ((ws = workQueues) == null ||
1389 (i = e & SMASK) >= ws.length ||
1390 (v = ws[i]) == null)
1391 break;
1392 long nc = (((long)(v.nextWait & E_MASK)) |
1393 ((long)(u + UAC_UNIT) << 32));
1394 if (v.eventCount != (e | INT_SIGN))
1395 break;
1396 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1397 v.eventCount = (e + E_SEQ) & E_MASK;
1398 if ((p = v.parker) != null)
1399 U.unpark(p);
1400 break;
1401 }
1402 }
1403 else {
1404 if ((short)u < 0)
1405 tryAddWorker();
1406 break;
1407 }
1408 }
1409 }
1410 if (ex == null) // help clean refs on way out
1411 ForkJoinTask.helpExpungeStaleExceptions();
1412 else // rethrow
1413 ForkJoinTask.rethrow(ex);
1414 }
1415
1416 // Submissions
1417
1418 /**
1419 * Unless shutting down, adds the given task to a submission queue
1420 * at submitter's current queue index (modulo submission
1421 * range). Only the most common path is directly handled in this
1422 * method. All others are relayed to fullExternalPush.
1423 *
1424 * @param task the task. Caller must ensure non-null.
1425 */
1426 final void externalPush(ForkJoinTask<?> task) {
1427 WorkQueue[] ws; WorkQueue q; int z, m; ForkJoinTask<?>[] a;
1428 if ((z = ThreadLocalRandom.getProbe()) != 0 && plock > 0 &&
1429 (ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
1430 (q = ws[m & z & SQMASK]) != null &&
1431 U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1432 int b = q.base, s = q.top, n, an;
1433 if ((a = q.array) != null && (an = a.length) > (n = s + 1 - b)) {
1434 int j = (((an - 1) & s) << ASHIFT) + ABASE;
1435 U.putOrderedObject(a, j, task);
1436 q.top = s + 1; // push on to deque
1437 q.qlock = 0;
1438 if (n <= 2)
1439 signalWork(q);
1440 return;
1441 }
1442 q.qlock = 0;
1443 }
1444 fullExternalPush(task);
1445 }
1446
1447 /**
1448 * Full version of externalPush. This method is called, among
1449 * other times, upon the first submission of the first task to the
1450 * pool, so must perform secondary initialization. It also
1451 * detects first submission by an external thread by looking up
1452 * its ThreadLocal, and creates a new shared queue if the one at
1453 * index if empty or contended. The plock lock body must be
1454 * exception-free (so no try/finally) so we optimistically
1455 * allocate new queues outside the lock and throw them away if
1456 * (very rarely) not needed.
1457 *
1458 * Secondary initialization occurs when plock is zero, to create
1459 * workQueue array and set plock to a valid value. This lock body
1460 * must also be exception-free. Because the plock seq value can
1461 * eventually wrap around zero, this method harmlessly fails to
1462 * reinitialize if workQueues exists, while still advancing plock.
1463 */
1464 private void fullExternalPush(ForkJoinTask<?> task) {
1465 int r;
1466 if ((r = ThreadLocalRandom.getProbe()) == 0) {
1467 ThreadLocalRandom.localInit();
1468 r = ThreadLocalRandom.getProbe();
1469 }
1470 for (;;) {
1471 WorkQueue[] ws; WorkQueue q; int ps, m, k;
1472 boolean move = false;
1473 if ((ps = plock) < 0)
1474 throw new RejectedExecutionException();
1475 else if (ps == 0 || (ws = workQueues) == null ||
1476 (m = ws.length - 1) < 0) { // initialize workQueues
1477 int p = config & SMASK; // find power of two table size
1478 int n = (p > 1) ? p - 1 : 1; // ensure at least 2 slots
1479 n |= n >>> 1; n |= n >>> 2; n |= n >>> 4;
1480 n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1;
1481 WorkQueue[] nws = ((ws = workQueues) == null || ws.length == 0 ?
1482 new WorkQueue[n] : null);
1483 if (((ps = plock) & PL_LOCK) != 0 ||
1484 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1485 ps = acquirePlock();
1486 if (((ws = workQueues) == null || ws.length == 0) && nws != null)
1487 workQueues = nws;
1488 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1489 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1490 releasePlock(nps);
1491 }
1492 else if ((q = ws[k = r & m & SQMASK]) != null) {
1493 if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
1494 ForkJoinTask<?>[] a = q.array;
1495 int s = q.top;
1496 boolean submitted = false;
1497 try { // locked version of push
1498 if ((a != null && a.length > s + 1 - q.base) ||
1499 (a = q.growArray()) != null) { // must presize
1500 int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
1501 U.putOrderedObject(a, j, task);
1502 q.top = s + 1;
1503 submitted = true;
1504 }
1505 } finally {
1506 q.qlock = 0; // unlock
1507 }
1508 if (submitted) {
1509 signalWork(q);
1510 return;
1511 }
1512 }
1513 move = true; // move on failure
1514 }
1515 else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
1516 q = new WorkQueue(this, null, SHARED_QUEUE, r);
1517 if (((ps = plock) & PL_LOCK) != 0 ||
1518 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1519 ps = acquirePlock();
1520 if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
1521 ws[k] = q;
1522 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1523 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1524 releasePlock(nps);
1525 }
1526 else
1527 move = true; // move if busy
1528 if (move)
1529 r = ThreadLocalRandom.advanceProbe(r);
1530 }
1531 }
1532
1533 // Maintaining ctl counts
1534
1535 /**
1536 * Increments active count; mainly called upon return from blocking.
1537 */
1538 final void incrementActiveCount() {
1539 long c;
1540 do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1541 }
1542
1543 /**
1544 * Tries to create or activate a worker if too few are active.
1545 *
1546 * @param q the (non-null) queue holding tasks to be signalled
1547 */
1548 final void signalWork(WorkQueue q) {
1549 int hint = q.poolIndex;
1550 long c; int e, u, i, n; WorkQueue[] ws; WorkQueue w; Thread p;
1551 while ((u = (int)((c = ctl) >>> 32)) < 0) {
1552 if ((e = (int)c) > 0) {
1553 if ((ws = workQueues) != null && ws.length > (i = e & SMASK) &&
1554 (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1555 long nc = (((long)(w.nextWait & E_MASK)) |
1556 ((long)(u + UAC_UNIT) << 32));
1557 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1558 w.hint = hint;
1559 w.eventCount = (e + E_SEQ) & E_MASK;
1560 if ((p = w.parker) != null)
1561 U.unpark(p);
1562 break;
1563 }
1564 if (q.top - q.base <= 0)
1565 break;
1566 }
1567 else
1568 break;
1569 }
1570 else {
1571 if ((short)u < 0)
1572 tryAddWorker();
1573 break;
1574 }
1575 }
1576 }
1577
1578 // Scanning for tasks
1579
1580 /**
1581 * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1582 */
1583 final void runWorker(WorkQueue w) {
1584 w.growArray(); // allocate queue
1585 do { w.runTask(scan(w)); } while (w.qlock >= 0);
1586 }
1587
1588 /**
1589 * Scans for and, if found, returns one task, else possibly
1590 * inactivates the worker. This method operates on single reads of
1591 * volatile state and is designed to be re-invoked continuously,
1592 * in part because it returns upon detecting inconsistencies,
1593 * contention, or state changes that indicate possible success on
1594 * re-invocation.
1595 *
1596 * The scan searches for tasks across queues (starting at a random
1597 * index, and relying on registerWorker to irregularly scatter
1598 * them within array to avoid bias), checking each at least twice.
1599 * The scan terminates upon either finding a non-empty queue, or
1600 * completing the sweep. If the worker is not inactivated, it
1601 * takes and returns a task from this queue. Otherwise, if not
1602 * activated, it signals workers (that may include itself) and
1603 * returns so caller can retry. Also returns for true if the
1604 * worker array may have changed during an empty scan. On failure
1605 * to find a task, we take one of the following actions, after
1606 * which the caller will retry calling this method unless
1607 * terminated.
1608 *
1609 * * If pool is terminating, terminate the worker.
1610 *
1611 * * If not already enqueued, try to inactivate and enqueue the
1612 * worker on wait queue. Or, if inactivating has caused the pool
1613 * to be quiescent, relay to idleAwaitWork to possibly shrink
1614 * pool.
1615 *
1616 * * If already enqueued and none of the above apply, possibly
1617 * park awaiting signal, else lingering to help scan and signal.
1618 *
1619 * * If a non-empty queue discovered or left as a hint,
1620 * help wake up other workers before return.
1621 *
1622 * @param w the worker (via its WorkQueue)
1623 * @return a task or null if none found
1624 */
1625 private final ForkJoinTask<?> scan(WorkQueue w) {
1626 WorkQueue[] ws; int m;
1627 int ps = plock; // read plock before ws
1628 if (w != null && (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1629 int ec = w.eventCount; // ec is negative if inactive
1630 int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1631 w.hint = -1; // update seed and clear hint
1632 int j = ((m + m + 1) | MIN_SCAN) & MAX_SCAN;
1633 do {
1634 WorkQueue q; ForkJoinTask<?>[] a; int b;
1635 if ((q = ws[(r + j) & m]) != null && (b = q.base) - q.top < 0 &&
1636 (a = q.array) != null) { // probably nonempty
1637 int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1638 ForkJoinTask<?> t = (ForkJoinTask<?>)
1639 U.getObjectVolatile(a, i);
1640 if (q.base == b && ec >= 0 && t != null &&
1641 U.compareAndSwapObject(a, i, t, null)) {
1642 if ((q.base = b + 1) - q.top < 0)
1643 signalWork(q);
1644 return t; // taken
1645 }
1646 else if ((ec < 0 || j < m) && (int)(ctl >> AC_SHIFT) <= 0) {
1647 w.hint = (r + j) & m; // help signal below
1648 break; // cannot take
1649 }
1650 }
1651 } while (--j >= 0);
1652
1653 int h, e, ns; long c, sc; WorkQueue q;
1654 if ((ns = w.nsteals) != 0) {
1655 if (U.compareAndSwapLong(this, STEALCOUNT,
1656 sc = stealCount, sc + ns))
1657 w.nsteals = 0; // collect steals and rescan
1658 }
1659 else if (plock != ps) // consistency check
1660 ; // skip
1661 else if ((e = (int)(c = ctl)) < 0)
1662 w.qlock = -1; // pool is terminating
1663 else {
1664 if ((h = w.hint) < 0) {
1665 if (ec >= 0) { // try to enqueue/inactivate
1666 long nc = (((long)ec |
1667 ((c - AC_UNIT) & (AC_MASK|TC_MASK))));
1668 w.nextWait = e; // link and mark inactive
1669 w.eventCount = ec | INT_SIGN;
1670 if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1671 w.eventCount = ec; // unmark on CAS failure
1672 else if ((int)(c >> AC_SHIFT) == 1 - (config & SMASK))
1673 idleAwaitWork(w, nc, c);
1674 }
1675 else if (w.eventCount < 0 && ctl == c) {
1676 Thread wt = Thread.currentThread();
1677 Thread.interrupted(); // clear status
1678 U.putObject(wt, PARKBLOCKER, this);
1679 w.parker = wt; // emulate LockSupport.park
1680 if (w.eventCount < 0) // recheck
1681 U.park(false, 0L); // block
1682 w.parker = null;
1683 U.putObject(wt, PARKBLOCKER, null);
1684 }
1685 }
1686 if ((h >= 0 || (h = w.hint) >= 0) &&
1687 (ws = workQueues) != null && h < ws.length &&
1688 (q = ws[h]) != null) { // signal others before retry
1689 WorkQueue v; Thread p; int u, i, s;
1690 for (int n = (config & SMASK) - 1;;) {
1691 int idleCount = (w.eventCount < 0) ? 0 : -1;
1692 if (((s = idleCount - q.base + q.top) <= n &&
1693 (n = s) <= 0) ||
1694 (u = (int)((c = ctl) >>> 32)) >= 0 ||
1695 (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1696 (v = ws[i]) == null)
1697 break;
1698 long nc = (((long)(v.nextWait & E_MASK)) |
1699 ((long)(u + UAC_UNIT) << 32));
1700 if (v.eventCount != (e | INT_SIGN) ||
1701 !U.compareAndSwapLong(this, CTL, c, nc))
1702 break;
1703 v.hint = h;
1704 v.eventCount = (e + E_SEQ) & E_MASK;
1705 if ((p = v.parker) != null)
1706 U.unpark(p);
1707 if (--n <= 0)
1708 break;
1709 }
1710 }
1711 }
1712 }
1713 return null;
1714 }
1715
1716 /**
1717 * If inactivating worker w has caused the pool to become
1718 * quiescent, checks for pool termination, and, so long as this is
1719 * not the only worker, waits for event for up to a given
1720 * duration. On timeout, if ctl has not changed, terminates the
1721 * worker, which will in turn wake up another worker to possibly
1722 * repeat this process.
1723 *
1724 * @param w the calling worker
1725 * @param currentCtl the ctl value triggering possible quiescence
1726 * @param prevCtl the ctl value to restore if thread is terminated
1727 */
1728 private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1729 if (w != null && w.eventCount < 0 &&
1730 !tryTerminate(false, false) && (int)prevCtl != 0 &&
1731 ctl == currentCtl) {
1732 int dc = -(short)(currentCtl >>> TC_SHIFT);
1733 long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1734 long deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
1735 Thread wt = Thread.currentThread();
1736 while (ctl == currentCtl) {
1737 Thread.interrupted(); // timed variant of version in scan()
1738 U.putObject(wt, PARKBLOCKER, this);
1739 w.parker = wt;
1740 if (ctl == currentCtl)
1741 U.park(false, parkTime);
1742 w.parker = null;
1743 U.putObject(wt, PARKBLOCKER, null);
1744 if (ctl != currentCtl)
1745 break;
1746 if (deadline - System.nanoTime() <= 0L &&
1747 U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1748 w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1749 w.hint = -1;
1750 w.qlock = -1; // shrink
1751 break;
1752 }
1753 }
1754 }
1755 }
1756
1757 /**
1758 * Scans through queues looking for work while joining a task; if
1759 * any present, signals. May return early if more signalling is
1760 * detectably unneeded.
1761 *
1762 * @param task return early if done
1763 * @param origin an index to start scan
1764 */
1765 private void helpSignal(ForkJoinTask<?> task, int origin) {
1766 WorkQueue[] ws; WorkQueue w; Thread p; long c; int m, u, e, i, s;
1767 if (task != null && task.status >= 0 &&
1768 (u = (int)(ctl >>> 32)) < 0 && (u >> UAC_SHIFT) < 0 &&
1769 (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1770 outer: for (int k = origin, j = m; j >= 0; --j) {
1771 WorkQueue q = ws[k++ & m];
1772 for (int n = m;;) { // limit to at most m signals
1773 if (task.status < 0)
1774 break outer;
1775 if (q == null ||
1776 ((s = -q.base + q.top) <= n && (n = s) <= 0))
1777 break;
1778 if ((u = (int)((c = ctl) >>> 32)) >= 0 ||
1779 (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1780 (w = ws[i]) == null)
1781 break outer;
1782 long nc = (((long)(w.nextWait & E_MASK)) |
1783 ((long)(u + UAC_UNIT) << 32));
1784 if (w.eventCount != (e | INT_SIGN))
1785 break outer;
1786 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1787 w.eventCount = (e + E_SEQ) & E_MASK;
1788 if ((p = w.parker) != null)
1789 U.unpark(p);
1790 if (--n <= 0)
1791 break;
1792 }
1793 }
1794 }
1795 }
1796 }
1797
1798 /**
1799 * Tries to locate and execute tasks for a stealer of the given
1800 * task, or in turn one of its stealers, Traces currentSteal ->
1801 * currentJoin links looking for a thread working on a descendant
1802 * of the given task and with a non-empty queue to steal back and
1803 * execute tasks from. The first call to this method upon a
1804 * waiting join will often entail scanning/search, (which is OK
1805 * because the joiner has nothing better to do), but this method
1806 * leaves hints in workers to speed up subsequent calls. The
1807 * implementation is very branchy to cope with potential
1808 * inconsistencies or loops encountering chains that are stale,
1809 * unknown, or so long that they are likely cyclic.
1810 *
1811 * @param joiner the joining worker
1812 * @param task the task to join
1813 * @return 0 if no progress can be made, negative if task
1814 * known complete, else positive
1815 */
1816 private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1817 int stat = 0, steps = 0; // bound to avoid cycles
1818 if (joiner != null && task != null) { // hoist null checks
1819 restart: for (;;) {
1820 ForkJoinTask<?> subtask = task; // current target
1821 for (WorkQueue j = joiner, v;;) { // v is stealer of subtask
1822 WorkQueue[] ws; int m, s, h;
1823 if ((s = task.status) < 0) {
1824 stat = s;
1825 break restart;
1826 }
1827 if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1828 break restart; // shutting down
1829 if ((v = ws[h = (j.hint | 1) & m]) == null ||
1830 v.currentSteal != subtask) {
1831 for (int origin = h;;) { // find stealer
1832 if (((h = (h + 2) & m) & 15) == 1 &&
1833 (subtask.status < 0 || j.currentJoin != subtask))
1834 continue restart; // occasional staleness check
1835 if ((v = ws[h]) != null &&
1836 v.currentSteal == subtask) {
1837 j.hint = h; // save hint
1838 break;
1839 }
1840 if (h == origin)
1841 break restart; // cannot find stealer
1842 }
1843 }
1844 for (;;) { // help stealer or descend to its stealer
1845 ForkJoinTask[] a; int b;
1846 if (subtask.status < 0) // surround probes with
1847 continue restart; // consistency checks
1848 if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1849 int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1850 ForkJoinTask<?> t =
1851 (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1852 if (subtask.status < 0 || j.currentJoin != subtask ||
1853 v.currentSteal != subtask)
1854 continue restart; // stale
1855 stat = 1; // apparent progress
1856 if (t != null && v.base == b &&
1857 U.compareAndSwapObject(a, i, t, null)) {
1858 v.base = b + 1; // help stealer
1859 joiner.runSubtask(t);
1860 }
1861 else if (v.base == b && ++steps == MAX_HELP)
1862 break restart; // v apparently stalled
1863 }
1864 else { // empty -- try to descend
1865 ForkJoinTask<?> next = v.currentJoin;
1866 if (subtask.status < 0 || j.currentJoin != subtask ||
1867 v.currentSteal != subtask)
1868 continue restart; // stale
1869 else if (next == null || ++steps == MAX_HELP)
1870 break restart; // dead-end or maybe cyclic
1871 else {
1872 subtask = next;
1873 j = v;
1874 break;
1875 }
1876 }
1877 }
1878 }
1879 }
1880 }
1881 return stat;
1882 }
1883
1884 /**
1885 * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1886 * and run tasks within the target's computation.
1887 *
1888 * @param task the task to join
1889 * @param mode if shared, exit upon completing any task
1890 * if all workers are active
1891 */
1892 private int helpComplete(ForkJoinTask<?> task, int mode) {
1893 WorkQueue[] ws; WorkQueue q; int m, n, s, u;
1894 if (task != null && (ws = workQueues) != null &&
1895 (m = ws.length - 1) >= 0) {
1896 for (int j = 1, origin = j;;) {
1897 if ((s = task.status) < 0)
1898 return s;
1899 if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) {
1900 origin = j;
1901 if (mode == SHARED_QUEUE &&
1902 ((u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0))
1903 break;
1904 }
1905 else if ((j = (j + 2) & m) == origin)
1906 break;
1907 }
1908 }
1909 return 0;
1910 }
1911
1912 /**
1913 * Tries to decrement active count (sometimes implicitly) and
1914 * possibly release or create a compensating worker in preparation
1915 * for blocking. Fails on contention or termination. Otherwise,
1916 * adds a new thread if no idle workers are available and pool
1917 * may become starved.
1918 */
1919 final boolean tryCompensate() {
1920 int pc = config & SMASK, e, i, tc; long c;
1921 WorkQueue[] ws; WorkQueue w; Thread p;
1922 if ((ws = workQueues) != null && (e = (int)(c = ctl)) >= 0) {
1923 if (e != 0 && (i = e & SMASK) < ws.length &&
1924 (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1925 long nc = ((long)(w.nextWait & E_MASK) |
1926 (c & (AC_MASK|TC_MASK)));
1927 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1928 w.eventCount = (e + E_SEQ) & E_MASK;
1929 if ((p = w.parker) != null)
1930 U.unpark(p);
1931 return true; // replace with idle worker
1932 }
1933 }
1934 else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
1935 (int)(c >> AC_SHIFT) + pc > 1) {
1936 long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1937 if (U.compareAndSwapLong(this, CTL, c, nc))
1938 return true; // no compensation
1939 }
1940 else if (tc + pc < MAX_CAP) {
1941 long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1942 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1943 ForkJoinWorkerThreadFactory fac;
1944 Throwable ex = null;
1945 ForkJoinWorkerThread wt = null;
1946 try {
1947 if ((fac = factory) != null &&
1948 (wt = fac.newThread(this)) != null) {
1949 wt.start();
1950 return true;
1951 }
1952 } catch (Throwable rex) {
1953 ex = rex;
1954 }
1955 deregisterWorker(wt, ex); // clean up and return false
1956 }
1957 }
1958 }
1959 return false;
1960 }
1961
1962 /**
1963 * Helps and/or blocks until the given task is done.
1964 *
1965 * @param joiner the joining worker
1966 * @param task the task
1967 * @return task status on exit
1968 */
1969 final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1970 int s = 0;
1971 if (joiner != null && task != null && (s = task.status) >= 0) {
1972 ForkJoinTask<?> prevJoin = joiner.currentJoin;
1973 joiner.currentJoin = task;
1974 do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
1975 joiner.tryRemoveAndExec(task)); // process local tasks
1976 if (s >= 0 && (s = task.status) >= 0) {
1977 helpSignal(task, joiner.poolIndex);
1978 if ((s = task.status) >= 0 &&
1979 (task instanceof CountedCompleter))
1980 s = helpComplete(task, LIFO_QUEUE);
1981 }
1982 while (s >= 0 && (s = task.status) >= 0) {
1983 if ((!joiner.isEmpty() || // try helping
1984 (s = tryHelpStealer(joiner, task)) == 0) &&
1985 (s = task.status) >= 0) {
1986 helpSignal(task, joiner.poolIndex);
1987 if ((s = task.status) >= 0 && tryCompensate()) {
1988 if (task.trySetSignal() && (s = task.status) >= 0) {
1989 synchronized (task) {
1990 if (task.status >= 0) {
1991 try { // see ForkJoinTask
1992 task.wait(); // for explanation
1993 } catch (InterruptedException ie) {
1994 }
1995 }
1996 else
1997 task.notifyAll();
1998 }
1999 }
2000 long c; // re-activate
2001 do {} while (!U.compareAndSwapLong
2002 (this, CTL, c = ctl, c + AC_UNIT));
2003 }
2004 }
2005 }
2006 joiner.currentJoin = prevJoin;
2007 }
2008 return s;
2009 }
2010
2011 /**
2012 * Stripped-down variant of awaitJoin used by timed joins. Tries
2013 * to help join only while there is continuous progress. (Caller
2014 * will then enter a timed wait.)
2015 *
2016 * @param joiner the joining worker
2017 * @param task the task
2018 */
2019 final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2020 int s;
2021 if (joiner != null && task != null && (s = task.status) >= 0) {
2022 ForkJoinTask<?> prevJoin = joiner.currentJoin;
2023 joiner.currentJoin = task;
2024 do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
2025 joiner.tryRemoveAndExec(task));
2026 if (s >= 0 && (s = task.status) >= 0) {
2027 helpSignal(task, joiner.poolIndex);
2028 if ((s = task.status) >= 0 &&
2029 (task instanceof CountedCompleter))
2030 s = helpComplete(task, LIFO_QUEUE);
2031 }
2032 if (s >= 0 && joiner.isEmpty()) {
2033 do {} while (task.status >= 0 &&
2034 tryHelpStealer(joiner, task) > 0);
2035 }
2036 joiner.currentJoin = prevJoin;
2037 }
2038 }
2039
2040 /**
2041 * Returns a (probably) non-empty steal queue, if one is found
2042 * during a scan, else null. This method must be retried by
2043 * caller if, by the time it tries to use the queue, it is empty.
2044 * @param r a (random) seed for scanning
2045 */
2046 private WorkQueue findNonEmptyStealQueue(int r) {
2047 for (;;) {
2048 int ps = plock, m; WorkQueue[] ws; WorkQueue q;
2049 if ((ws = workQueues) != null && (m = ws.length - 1) >= 0) {
2050 for (int j = (m + 1) << 2; j >= 0; --j) {
2051 if ((q = ws[(((r + j) << 1) | 1) & m]) != null &&
2052 q.base - q.top < 0)
2053 return q;
2054 }
2055 }
2056 if (plock == ps)
2057 return null;
2058 }
2059 }
2060
2061 /**
2062 * Runs tasks until {@code isQuiescent()}. We piggyback on
2063 * active count ctl maintenance, but rather than blocking
2064 * when tasks cannot be found, we rescan until all others cannot
2065 * find tasks either.
2066 */
2067 final void helpQuiescePool(WorkQueue w) {
2068 for (boolean active = true;;) {
2069 long c; WorkQueue q; ForkJoinTask<?> t; int b;
2070 while ((t = w.nextLocalTask()) != null) {
2071 if (w.base - w.top < 0)
2072 signalWork(w);
2073 t.doExec();
2074 }
2075 if ((q = findNonEmptyStealQueue(w.nextSeed())) != null) {
2076 if (!active) { // re-establish active count
2077 active = true;
2078 do {} while (!U.compareAndSwapLong
2079 (this, CTL, c = ctl, c + AC_UNIT));
2080 }
2081 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2082 if (q.base - q.top < 0)
2083 signalWork(q);
2084 w.runSubtask(t);
2085 }
2086 }
2087 else if (active) { // decrement active count without queuing
2088 long nc = (c = ctl) - AC_UNIT;
2089 if ((int)(nc >> AC_SHIFT) + (config & SMASK) == 0)
2090 return; // bypass decrement-then-increment
2091 if (U.compareAndSwapLong(this, CTL, c, nc))
2092 active = false;
2093 }
2094 else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) == 0 &&
2095 U.compareAndSwapLong(this, CTL, c, c + AC_UNIT))
2096 return;
2097 }
2098 }
2099
2100 /**
2101 * Gets and removes a local or stolen task for the given worker.
2102 *
2103 * @return a task, if available
2104 */
2105 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2106 for (ForkJoinTask<?> t;;) {
2107 WorkQueue q; int b;
2108 if ((t = w.nextLocalTask()) != null)
2109 return t;
2110 if ((q = findNonEmptyStealQueue(w.nextSeed())) == null)
2111 return null;
2112 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2113 if (q.base - q.top < 0)
2114 signalWork(q);
2115 return t;
2116 }
2117 }
2118 }
2119
2120 /**
2121 * Returns a cheap heuristic guide for task partitioning when
2122 * programmers, frameworks, tools, or languages have little or no
2123 * idea about task granularity. In essence by offering this
2124 * method, we ask users only about tradeoffs in overhead vs
2125 * expected throughput and its variance, rather than how finely to
2126 * partition tasks.
2127 *
2128 * In a steady state strict (tree-structured) computation, each
2129 * thread makes available for stealing enough tasks for other
2130 * threads to remain active. Inductively, if all threads play by
2131 * the same rules, each thread should make available only a
2132 * constant number of tasks.
2133 *
2134 * The minimum useful constant is just 1. But using a value of 1
2135 * would require immediate replenishment upon each steal to
2136 * maintain enough tasks, which is infeasible. Further,
2137 * partitionings/granularities of offered tasks should minimize
2138 * steal rates, which in general means that threads nearer the top
2139 * of computation tree should generate more than those nearer the
2140 * bottom. In perfect steady state, each thread is at
2141 * approximately the same level of computation tree. However,
2142 * producing extra tasks amortizes the uncertainty of progress and
2143 * diffusion assumptions.
2144 *
2145 * So, users will want to use values larger, but not much larger
2146 * than 1 to both smooth over transient shortages and hedge
2147 * against uneven progress; as traded off against the cost of
2148 * extra task overhead. We leave the user to pick a threshold
2149 * value to compare with the results of this call to guide
2150 * decisions, but recommend values such as 3.
2151 *
2152 * When all threads are active, it is on average OK to estimate
2153 * surplus strictly locally. In steady-state, if one thread is
2154 * maintaining say 2 surplus tasks, then so are others. So we can
2155 * just use estimated queue length. However, this strategy alone
2156 * leads to serious mis-estimates in some non-steady-state
2157 * conditions (ramp-up, ramp-down, other stalls). We can detect
2158 * many of these by further considering the number of "idle"
2159 * threads, that are known to have zero queued tasks, so
2160 * compensate by a factor of (#idle/#active) threads.
2161 *
2162 * Note: The approximation of #busy workers as #active workers is
2163 * not very good under current signalling scheme, and should be
2164 * improved.
2165 */
2166 static int getSurplusQueuedTaskCount() {
2167 Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2168 if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2169 int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2170 int n = (q = wt.workQueue).top - q.base;
2171 int a = (int)(pool.ctl >> AC_SHIFT) + p;
2172 return n - (a > (p >>>= 1) ? 0 :
2173 a > (p >>>= 1) ? 1 :
2174 a > (p >>>= 1) ? 2 :
2175 a > (p >>>= 1) ? 4 :
2176 8);
2177 }
2178 return 0;
2179 }
2180
2181 // Termination
2182
2183 /**
2184 * Possibly initiates and/or completes termination. The caller
2185 * triggering termination runs three passes through workQueues:
2186 * (0) Setting termination status, followed by wakeups of queued
2187 * workers; (1) cancelling all tasks; (2) interrupting lagging
2188 * threads (likely in external tasks, but possibly also blocked in
2189 * joins). Each pass repeats previous steps because of potential
2190 * lagging thread creation.
2191 *
2192 * @param now if true, unconditionally terminate, else only
2193 * if no work and no active workers
2194 * @param enable if true, enable shutdown when next possible
2195 * @return true if now terminating or terminated
2196 */
2197 private boolean tryTerminate(boolean now, boolean enable) {
2198 int ps;
2199 if (this == common) // cannot shut down
2200 return false;
2201 if ((ps = plock) >= 0) { // enable by setting plock
2202 if (!enable)
2203 return false;
2204 if ((ps & PL_LOCK) != 0 ||
2205 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2206 ps = acquirePlock();
2207 int nps = ((ps + PL_LOCK) & ~SHUTDOWN) | SHUTDOWN;
2208 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2209 releasePlock(nps);
2210 }
2211 for (long c;;) {
2212 if (((c = ctl) & STOP_BIT) != 0) { // already terminating
2213 if ((short)(c >>> TC_SHIFT) == -(config & SMASK)) {
2214 synchronized (this) {
2215 notifyAll(); // signal when 0 workers
2216 }
2217 }
2218 return true;
2219 }
2220 if (!now) { // check if idle & no tasks
2221 WorkQueue[] ws; WorkQueue w;
2222 if ((int)(c >> AC_SHIFT) != -(config & SMASK))
2223 return false;
2224 if ((ws = workQueues) != null) {
2225 for (int i = 0; i < ws.length; ++i) {
2226 if ((w = ws[i]) != null) {
2227 if (!w.isEmpty()) { // signal unprocessed tasks
2228 signalWork(w);
2229 return false;
2230 }
2231 if ((i & 1) != 0 && w.eventCount >= 0)
2232 return false; // unqueued inactive worker
2233 }
2234 }
2235 }
2236 }
2237 if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2238 for (int pass = 0; pass < 3; ++pass) {
2239 WorkQueue[] ws; WorkQueue w; Thread wt;
2240 if ((ws = workQueues) != null) {
2241 int n = ws.length;
2242 for (int i = 0; i < n; ++i) {
2243 if ((w = ws[i]) != null) {
2244 w.qlock = -1;
2245 if (pass > 0) {
2246 w.cancelAll();
2247 if (pass > 1 && (wt = w.owner) != null) {
2248 if (!wt.isInterrupted()) {
2249 try {
2250 wt.interrupt();
2251 } catch (Throwable ignore) {
2252 }
2253 }
2254 U.unpark(wt);
2255 }
2256 }
2257 }
2258 }
2259 // Wake up workers parked on event queue
2260 int i, e; long cc; Thread p;
2261 while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2262 (i = e & SMASK) < n && i >= 0 &&
2263 (w = ws[i]) != null) {
2264 long nc = ((long)(w.nextWait & E_MASK) |
2265 ((cc + AC_UNIT) & AC_MASK) |
2266 (cc & (TC_MASK|STOP_BIT)));
2267 if (w.eventCount == (e | INT_SIGN) &&
2268 U.compareAndSwapLong(this, CTL, cc, nc)) {
2269 w.eventCount = (e + E_SEQ) & E_MASK;
2270 w.qlock = -1;
2271 if ((p = w.parker) != null)
2272 U.unpark(p);
2273 }
2274 }
2275 }
2276 }
2277 }
2278 }
2279 }
2280
2281 // external operations on common pool
2282
2283 /**
2284 * Returns common pool queue for a thread that has submitted at
2285 * least one task.
2286 */
2287 static WorkQueue commonSubmitterQueue() {
2288 ForkJoinPool p; WorkQueue[] ws; int m, z;
2289 return ((z = ThreadLocalRandom.getProbe()) != 0 &&
2290 (p = common) != null &&
2291 (ws = p.workQueues) != null &&
2292 (m = ws.length - 1) >= 0) ?
2293 ws[m & z & SQMASK] : null;
2294 }
2295
2296 /**
2297 * Tries to pop the given task from submitter's queue in common pool.
2298 */
2299 static boolean tryExternalUnpush(ForkJoinTask<?> t) {
2300 ForkJoinPool p; WorkQueue[] ws; WorkQueue q;
2301 ForkJoinTask<?>[] a; int m, s, z;
2302 if (t != null &&
2303 (z = ThreadLocalRandom.getProbe()) != 0 &&
2304 (p = common) != null &&
2305 (ws = p.workQueues) != null &&
2306 (m = ws.length - 1) >= 0 &&
2307 (q = ws[m & z & SQMASK]) != null &&
2308 (s = q.top) != q.base &&
2309 (a = q.array) != null) {
2310 long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
2311 if (U.getObject(a, j) == t &&
2312 U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2313 if (q.array == a && q.top == s && // recheck
2314 U.compareAndSwapObject(a, j, t, null)) {
2315 q.top = s - 1;
2316 q.qlock = 0;
2317 return true;
2318 }
2319 q.qlock = 0;
2320 }
2321 }
2322 return false;
2323 }
2324
2325 /**
2326 * Tries to pop and run local tasks within the same computation
2327 * as the given root. On failure, tries to help complete from
2328 * other queues via helpComplete.
2329 */
2330 private void externalHelpComplete(WorkQueue q, ForkJoinTask<?> root) {
2331 ForkJoinTask<?>[] a; int m;
2332 if (q != null && (a = q.array) != null && (m = (a.length - 1)) >= 0 &&
2333 root != null && root.status >= 0) {
2334 for (;;) {
2335 int s, u; Object o; CountedCompleter<?> task = null;
2336 if ((s = q.top) - q.base > 0) {
2337 long j = ((m & (s - 1)) << ASHIFT) + ABASE;
2338 if ((o = U.getObject(a, j)) != null &&
2339 (o instanceof CountedCompleter)) {
2340 CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2341 do {
2342 if (r == root) {
2343 if (U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2344 if (q.array == a && q.top == s &&
2345 U.compareAndSwapObject(a, j, t, null)) {
2346 q.top = s - 1;
2347 task = t;
2348 }
2349 q.qlock = 0;
2350 }
2351 break;
2352 }
2353 } while ((r = r.completer) != null);
2354 }
2355 }
2356 if (task != null)
2357 task.doExec();
2358 if (root.status < 0 ||
2359 (u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0)
2360 break;
2361 if (task == null) {
2362 helpSignal(root, q.poolIndex);
2363 if (root.status >= 0)
2364 helpComplete(root, SHARED_QUEUE);
2365 break;
2366 }
2367 }
2368 }
2369 }
2370
2371 /**
2372 * Tries to help execute or signal availability of the given task
2373 * from submitter's queue in common pool.
2374 */
2375 static void externalHelpJoin(ForkJoinTask<?> t) {
2376 // Some hard-to-avoid overlap with tryExternalUnpush
2377 ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w;
2378 ForkJoinTask<?>[] a; int m, s, n, z;
2379 if (t != null &&
2380 (z = ThreadLocalRandom.getProbe()) != 0 &&
2381 (p = common) != null &&
2382 (ws = p.workQueues) != null &&
2383 (m = ws.length - 1) >= 0 &&
2384 (q = ws[m & z & SQMASK]) != null &&
2385 (a = q.array) != null) {
2386 int am = a.length - 1;
2387 if ((s = q.top) != q.base) {
2388 long j = ((am & (s - 1)) << ASHIFT) + ABASE;
2389 if (U.getObject(a, j) == t &&
2390 U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2391 if (q.array == a && q.top == s &&
2392 U.compareAndSwapObject(a, j, t, null)) {
2393 q.top = s - 1;
2394 q.qlock = 0;
2395 t.doExec();
2396 }
2397 else
2398 q.qlock = 0;
2399 }
2400 }
2401 if (t.status >= 0) {
2402 if (t instanceof CountedCompleter)
2403 p.externalHelpComplete(q, t);
2404 else
2405 p.helpSignal(t, q.poolIndex);
2406 }
2407 }
2408 }
2409
2410 // Exported methods
2411
2412 // Constructors
2413
2414 /**
2415 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2416 * java.lang.Runtime#availableProcessors}, using the {@linkplain
2417 * #defaultForkJoinWorkerThreadFactory default thread factory},
2418 * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2419 *
2420 * @throws SecurityException if a security manager exists and
2421 * the caller is not permitted to modify threads
2422 * because it does not hold {@link
2423 * java.lang.RuntimePermission}{@code ("modifyThread")}
2424 */
2425 public ForkJoinPool() {
2426 this(Runtime.getRuntime().availableProcessors(),
2427 defaultForkJoinWorkerThreadFactory, null, false);
2428 }
2429
2430 /**
2431 * Creates a {@code ForkJoinPool} with the indicated parallelism
2432 * level, the {@linkplain
2433 * #defaultForkJoinWorkerThreadFactory default thread factory},
2434 * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2435 *
2436 * @param parallelism the parallelism level
2437 * @throws IllegalArgumentException if parallelism less than or
2438 * equal to zero, or greater than implementation limit
2439 * @throws SecurityException if a security manager exists and
2440 * the caller is not permitted to modify threads
2441 * because it does not hold {@link
2442 * java.lang.RuntimePermission}{@code ("modifyThread")}
2443 */
2444 public ForkJoinPool(int parallelism) {
2445 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2446 }
2447
2448 /**
2449 * Creates a {@code ForkJoinPool} with the given parameters.
2450 *
2451 * @param parallelism the parallelism level. For default value,
2452 * use {@link java.lang.Runtime#availableProcessors}.
2453 * @param factory the factory for creating new threads. For default value,
2454 * use {@link #defaultForkJoinWorkerThreadFactory}.
2455 * @param handler the handler for internal worker threads that
2456 * terminate due to unrecoverable errors encountered while executing
2457 * tasks. For default value, use {@code null}.
2458 * @param asyncMode if true,
2459 * establishes local first-in-first-out scheduling mode for forked
2460 * tasks that are never joined. This mode may be more appropriate
2461 * than default locally stack-based mode in applications in which
2462 * worker threads only process event-style asynchronous tasks.
2463 * For default value, use {@code false}.
2464 * @throws IllegalArgumentException if parallelism less than or
2465 * equal to zero, or greater than implementation limit
2466 * @throws NullPointerException if the factory is null
2467 * @throws SecurityException if a security manager exists and
2468 * the caller is not permitted to modify threads
2469 * because it does not hold {@link
2470 * java.lang.RuntimePermission}{@code ("modifyThread")}
2471 */
2472 public ForkJoinPool(int parallelism,
2473 ForkJoinWorkerThreadFactory factory,
2474 Thread.UncaughtExceptionHandler handler,
2475 boolean asyncMode) {
2476 checkPermission();
2477 if (factory == null)
2478 throw new NullPointerException();
2479 if (parallelism <= 0 || parallelism > MAX_CAP)
2480 throw new IllegalArgumentException();
2481 this.factory = factory;
2482 this.ueh = handler;
2483 this.config = parallelism | (asyncMode ? (FIFO_QUEUE << 16) : 0);
2484 long np = (long)(-parallelism); // offset ctl counts
2485 this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2486 int pn = nextPoolId();
2487 StringBuilder sb = new StringBuilder("ForkJoinPool-");
2488 sb.append(Integer.toString(pn));
2489 sb.append("-worker-");
2490 this.workerNamePrefix = sb.toString();
2491 }
2492
2493 /**
2494 * Constructor for common pool, suitable only for static initialization.
2495 * Basically the same as above, but uses smallest possible initial footprint.
2496 */
2497 ForkJoinPool(int parallelism, long ctl,
2498 ForkJoinWorkerThreadFactory factory,
2499 Thread.UncaughtExceptionHandler handler) {
2500 this.config = parallelism;
2501 this.ctl = ctl;
2502 this.factory = factory;
2503 this.ueh = handler;
2504 this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2505 }
2506
2507 /**
2508 * Returns the common pool instance. This pool is statically
2509 * constructed; its run state is unaffected by attempts to {@link
2510 * #shutdown} or {@link #shutdownNow}. However this pool and any
2511 * ongoing processing are automatically terminated upon program
2512 * {@link System#exit}. Any program that relies on asynchronous
2513 * task processing to complete before program termination should
2514 * invoke {@code commonPool().}{@link #awaitQuiescence}, before
2515 * exit.
2516 *
2517 * @return the common pool instance
2518 * @since 1.8
2519 */
2520 public static ForkJoinPool commonPool() {
2521 // assert common != null : "static init error";
2522 return common;
2523 }
2524
2525 // Execution methods
2526
2527 /**
2528 * Performs the given task, returning its result upon completion.
2529 * If the computation encounters an unchecked Exception or Error,
2530 * it is rethrown as the outcome of this invocation. Rethrown
2531 * exceptions behave in the same way as regular exceptions, but,
2532 * when possible, contain stack traces (as displayed for example
2533 * using {@code ex.printStackTrace()}) of both the current thread
2534 * as well as the thread actually encountering the exception;
2535 * minimally only the latter.
2536 *
2537 * @param task the task
2538 * @return the task's result
2539 * @throws NullPointerException if the task is null
2540 * @throws RejectedExecutionException if the task cannot be
2541 * scheduled for execution
2542 */
2543 public <T> T invoke(ForkJoinTask<T> task) {
2544 if (task == null)
2545 throw new NullPointerException();
2546 externalPush(task);
2547 return task.join();
2548 }
2549
2550 /**
2551 * Arranges for (asynchronous) execution of the given task.
2552 *
2553 * @param task the task
2554 * @throws NullPointerException if the task is null
2555 * @throws RejectedExecutionException if the task cannot be
2556 * scheduled for execution
2557 */
2558 public void execute(ForkJoinTask<?> task) {
2559 if (task == null)
2560 throw new NullPointerException();
2561 externalPush(task);
2562 }
2563
2564 // AbstractExecutorService methods
2565
2566 /**
2567 * @throws NullPointerException if the task is null
2568 * @throws RejectedExecutionException if the task cannot be
2569 * scheduled for execution
2570 */
2571 public void execute(Runnable task) {
2572 if (task == null)
2573 throw new NullPointerException();
2574 ForkJoinTask<?> job;
2575 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2576 job = (ForkJoinTask<?>) task;
2577 else
2578 job = new ForkJoinTask.AdaptedRunnableAction(task);
2579 externalPush(job);
2580 }
2581
2582 /**
2583 * Submits a ForkJoinTask for execution.
2584 *
2585 * @param task the task to submit
2586 * @return the task
2587 * @throws NullPointerException if the task is null
2588 * @throws RejectedExecutionException if the task cannot be
2589 * scheduled for execution
2590 */
2591 public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2592 if (task == null)
2593 throw new NullPointerException();
2594 externalPush(task);
2595 return task;
2596 }
2597
2598 /**
2599 * @throws NullPointerException if the task is null
2600 * @throws RejectedExecutionException if the task cannot be
2601 * scheduled for execution
2602 */
2603 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2604 ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2605 externalPush(job);
2606 return job;
2607 }
2608
2609 /**
2610 * @throws NullPointerException if the task is null
2611 * @throws RejectedExecutionException if the task cannot be
2612 * scheduled for execution
2613 */
2614 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2615 ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2616 externalPush(job);
2617 return job;
2618 }
2619
2620 /**
2621 * @throws NullPointerException if the task is null
2622 * @throws RejectedExecutionException if the task cannot be
2623 * scheduled for execution
2624 */
2625 public ForkJoinTask<?> submit(Runnable task) {
2626 if (task == null)
2627 throw new NullPointerException();
2628 ForkJoinTask<?> job;
2629 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2630 job = (ForkJoinTask<?>) task;
2631 else
2632 job = new ForkJoinTask.AdaptedRunnableAction(task);
2633 externalPush(job);
2634 return job;
2635 }
2636
2637 /**
2638 * @throws NullPointerException {@inheritDoc}
2639 * @throws RejectedExecutionException {@inheritDoc}
2640 */
2641 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2642 // In previous versions of this class, this method constructed
2643 // a task to run ForkJoinTask.invokeAll, but now external
2644 // invocation of multiple tasks is at least as efficient.
2645 List<ForkJoinTask<T>> fs = new ArrayList<ForkJoinTask<T>>(tasks.size());
2646 // Workaround needed because method wasn't declared with
2647 // wildcards in return type but should have been.
2648 @SuppressWarnings({"unchecked", "rawtypes"})
2649 List<Future<T>> futures = (List<Future<T>>) (List) fs;
2650
2651 boolean done = false;
2652 try {
2653 for (Callable<T> t : tasks) {
2654 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2655 externalPush(f);
2656 fs.add(f);
2657 }
2658 for (ForkJoinTask<T> f : fs)
2659 f.quietlyJoin();
2660 done = true;
2661 return futures;
2662 } finally {
2663 if (!done)
2664 for (ForkJoinTask<T> f : fs)
2665 f.cancel(false);
2666 }
2667 }
2668
2669 /**
2670 * Returns the factory used for constructing new workers.
2671 *
2672 * @return the factory used for constructing new workers
2673 */
2674 public ForkJoinWorkerThreadFactory getFactory() {
2675 return factory;
2676 }
2677
2678 /**
2679 * Returns the handler for internal worker threads that terminate
2680 * due to unrecoverable errors encountered while executing tasks.
2681 *
2682 * @return the handler, or {@code null} if none
2683 */
2684 public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
2685 return ueh;
2686 }
2687
2688 /**
2689 * Returns the targeted parallelism level of this pool.
2690 *
2691 * @return the targeted parallelism level of this pool
2692 */
2693 public int getParallelism() {
2694 return config & SMASK;
2695 }
2696
2697 /**
2698 * Returns the targeted parallelism level of the common pool.
2699 *
2700 * @return the targeted parallelism level of the common pool
2701 * @since 1.8
2702 */
2703 public static int getCommonPoolParallelism() {
2704 return commonParallelism;
2705 }
2706
2707 /**
2708 * Returns the number of worker threads that have started but not
2709 * yet terminated. The result returned by this method may differ
2710 * from {@link #getParallelism} when threads are created to
2711 * maintain parallelism when others are cooperatively blocked.
2712 *
2713 * @return the number of worker threads
2714 */
2715 public int getPoolSize() {
2716 return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2717 }
2718
2719 /**
2720 * Returns {@code true} if this pool uses local first-in-first-out
2721 * scheduling mode for forked tasks that are never joined.
2722 *
2723 * @return {@code true} if this pool uses async mode
2724 */
2725 public boolean getAsyncMode() {
2726 return (config >>> 16) == FIFO_QUEUE;
2727 }
2728
2729 /**
2730 * Returns an estimate of the number of worker threads that are
2731 * not blocked waiting to join tasks or for other managed
2732 * synchronization. This method may overestimate the
2733 * number of running threads.
2734 *
2735 * @return the number of worker threads
2736 */
2737 public int getRunningThreadCount() {
2738 int rc = 0;
2739 WorkQueue[] ws; WorkQueue w;
2740 if ((ws = workQueues) != null) {
2741 for (int i = 1; i < ws.length; i += 2) {
2742 if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2743 ++rc;
2744 }
2745 }
2746 return rc;
2747 }
2748
2749 /**
2750 * Returns an estimate of the number of threads that are currently
2751 * stealing or executing tasks. This method may overestimate the
2752 * number of active threads.
2753 *
2754 * @return the number of active threads
2755 */
2756 public int getActiveThreadCount() {
2757 int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2758 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2759 }
2760
2761 /**
2762 * Returns {@code true} if all worker threads are currently idle.
2763 * An idle worker is one that cannot obtain a task to execute
2764 * because none are available to steal from other threads, and
2765 * there are no pending submissions to the pool. This method is
2766 * conservative; it might not return {@code true} immediately upon
2767 * idleness of all threads, but will eventually become true if
2768 * threads remain inactive.
2769 *
2770 * @return {@code true} if all threads are currently idle
2771 */
2772 public boolean isQuiescent() {
2773 return (int)(ctl >> AC_SHIFT) + (config & SMASK) == 0;
2774 }
2775
2776 /**
2777 * Returns an estimate of the total number of tasks stolen from
2778 * one thread's work queue by another. The reported value
2779 * underestimates the actual total number of steals when the pool
2780 * is not quiescent. This value may be useful for monitoring and
2781 * tuning fork/join programs: in general, steal counts should be
2782 * high enough to keep threads busy, but low enough to avoid
2783 * overhead and contention across threads.
2784 *
2785 * @return the number of steals
2786 */
2787 public long getStealCount() {
2788 long count = stealCount;
2789 WorkQueue[] ws; WorkQueue w;
2790 if ((ws = workQueues) != null) {
2791 for (int i = 1; i < ws.length; i += 2) {
2792 if ((w = ws[i]) != null)
2793 count += w.nsteals;
2794 }
2795 }
2796 return count;
2797 }
2798
2799 /**
2800 * Returns an estimate of the total number of tasks currently held
2801 * in queues by worker threads (but not including tasks submitted
2802 * to the pool that have not begun executing). This value is only
2803 * an approximation, obtained by iterating across all threads in
2804 * the pool. This method may be useful for tuning task
2805 * granularities.
2806 *
2807 * @return the number of queued tasks
2808 */
2809 public long getQueuedTaskCount() {
2810 long count = 0;
2811 WorkQueue[] ws; WorkQueue w;
2812 if ((ws = workQueues) != null) {
2813 for (int i = 1; i < ws.length; i += 2) {
2814 if ((w = ws[i]) != null)
2815 count += w.queueSize();
2816 }
2817 }
2818 return count;
2819 }
2820
2821 /**
2822 * Returns an estimate of the number of tasks submitted to this
2823 * pool that have not yet begun executing. This method may take
2824 * time proportional to the number of submissions.
2825 *
2826 * @return the number of queued submissions
2827 */
2828 public int getQueuedSubmissionCount() {
2829 int count = 0;
2830 WorkQueue[] ws; WorkQueue w;
2831 if ((ws = workQueues) != null) {
2832 for (int i = 0; i < ws.length; i += 2) {
2833 if ((w = ws[i]) != null)
2834 count += w.queueSize();
2835 }
2836 }
2837 return count;
2838 }
2839
2840 /**
2841 * Returns {@code true} if there are any tasks submitted to this
2842 * pool that have not yet begun executing.
2843 *
2844 * @return {@code true} if there are any queued submissions
2845 */
2846 public boolean hasQueuedSubmissions() {
2847 WorkQueue[] ws; WorkQueue w;
2848 if ((ws = workQueues) != null) {
2849 for (int i = 0; i < ws.length; i += 2) {
2850 if ((w = ws[i]) != null && !w.isEmpty())
2851 return true;
2852 }
2853 }
2854 return false;
2855 }
2856
2857 /**
2858 * Removes and returns the next unexecuted submission if one is
2859 * available. This method may be useful in extensions to this
2860 * class that re-assign work in systems with multiple pools.
2861 *
2862 * @return the next submission, or {@code null} if none
2863 */
2864 protected ForkJoinTask<?> pollSubmission() {
2865 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2866 if ((ws = workQueues) != null) {
2867 for (int i = 0; i < ws.length; i += 2) {
2868 if ((w = ws[i]) != null && (t = w.poll()) != null)
2869 return t;
2870 }
2871 }
2872 return null;
2873 }
2874
2875 /**
2876 * Removes all available unexecuted submitted and forked tasks
2877 * from scheduling queues and adds them to the given collection,
2878 * without altering their execution status. These may include
2879 * artificially generated or wrapped tasks. This method is
2880 * designed to be invoked only when the pool is known to be
2881 * quiescent. Invocations at other times may not remove all
2882 * tasks. A failure encountered while attempting to add elements
2883 * to collection {@code c} may result in elements being in
2884 * neither, either or both collections when the associated
2885 * exception is thrown. The behavior of this operation is
2886 * undefined if the specified collection is modified while the
2887 * operation is in progress.
2888 *
2889 * @param c the collection to transfer elements into
2890 * @return the number of elements transferred
2891 */
2892 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2893 int count = 0;
2894 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2895 if ((ws = workQueues) != null) {
2896 for (int i = 0; i < ws.length; ++i) {
2897 if ((w = ws[i]) != null) {
2898 while ((t = w.poll()) != null) {
2899 c.add(t);
2900 ++count;
2901 }
2902 }
2903 }
2904 }
2905 return count;
2906 }
2907
2908 /**
2909 * Returns a string identifying this pool, as well as its state,
2910 * including indications of run state, parallelism level, and
2911 * worker and task counts.
2912 *
2913 * @return a string identifying this pool, as well as its state
2914 */
2915 public String toString() {
2916 // Use a single pass through workQueues to collect counts
2917 long qt = 0L, qs = 0L; int rc = 0;
2918 long st = stealCount;
2919 long c = ctl;
2920 WorkQueue[] ws; WorkQueue w;
2921 if ((ws = workQueues) != null) {
2922 for (int i = 0; i < ws.length; ++i) {
2923 if ((w = ws[i]) != null) {
2924 int size = w.queueSize();
2925 if ((i & 1) == 0)
2926 qs += size;
2927 else {
2928 qt += size;
2929 st += w.nsteals;
2930 if (w.isApparentlyUnblocked())
2931 ++rc;
2932 }
2933 }
2934 }
2935 }
2936 int pc = (config & SMASK);
2937 int tc = pc + (short)(c >>> TC_SHIFT);
2938 int ac = pc + (int)(c >> AC_SHIFT);
2939 if (ac < 0) // ignore transient negative
2940 ac = 0;
2941 String level;
2942 if ((c & STOP_BIT) != 0)
2943 level = (tc == 0) ? "Terminated" : "Terminating";
2944 else
2945 level = plock < 0 ? "Shutting down" : "Running";
2946 return super.toString() +
2947 "[" + level +
2948 ", parallelism = " + pc +
2949 ", size = " + tc +
2950 ", active = " + ac +
2951 ", running = " + rc +
2952 ", steals = " + st +
2953 ", tasks = " + qt +
2954 ", submissions = " + qs +
2955 "]";
2956 }
2957
2958 /**
2959 * Possibly initiates an orderly shutdown in which previously
2960 * submitted tasks are executed, but no new tasks will be
2961 * accepted. Invocation has no effect on execution state if this
2962 * is the {@link #commonPool()}, and no additional effect if
2963 * already shut down. Tasks that are in the process of being
2964 * submitted concurrently during the course of this method may or
2965 * may not be rejected.
2966 *
2967 * @throws SecurityException if a security manager exists and
2968 * the caller is not permitted to modify threads
2969 * because it does not hold {@link
2970 * java.lang.RuntimePermission}{@code ("modifyThread")}
2971 */
2972 public void shutdown() {
2973 checkPermission();
2974 tryTerminate(false, true);
2975 }
2976
2977 /**
2978 * Possibly attempts to cancel and/or stop all tasks, and reject
2979 * all subsequently submitted tasks. Invocation has no effect on
2980 * execution state if this is the {@link #commonPool()}, and no
2981 * additional effect if already shut down. Otherwise, tasks that
2982 * are in the process of being submitted or executed concurrently
2983 * during the course of this method may or may not be
2984 * rejected. This method cancels both existing and unexecuted
2985 * tasks, in order to permit termination in the presence of task
2986 * dependencies. So the method always returns an empty list
2987 * (unlike the case for some other Executors).
2988 *
2989 * @return an empty list
2990 * @throws SecurityException if a security manager exists and
2991 * the caller is not permitted to modify threads
2992 * because it does not hold {@link
2993 * java.lang.RuntimePermission}{@code ("modifyThread")}
2994 */
2995 public List<Runnable> shutdownNow() {
2996 checkPermission();
2997 tryTerminate(true, true);
2998 return Collections.emptyList();
2999 }
3000
3001 /**
3002 * Returns {@code true} if all tasks have completed following shut down.
3003 *
3004 * @return {@code true} if all tasks have completed following shut down
3005 */
3006 public boolean isTerminated() {
3007 long c = ctl;
3008 return ((c & STOP_BIT) != 0L &&
3009 (short)(c >>> TC_SHIFT) == -(config & SMASK));
3010 }
3011
3012 /**
3013 * Returns {@code true} if the process of termination has
3014 * commenced but not yet completed. This method may be useful for
3015 * debugging. A return of {@code true} reported a sufficient
3016 * period after shutdown may indicate that submitted tasks have
3017 * ignored or suppressed interruption, or are waiting for I/O,
3018 * causing this executor not to properly terminate. (See the
3019 * advisory notes for class {@link ForkJoinTask} stating that
3020 * tasks should not normally entail blocking operations. But if
3021 * they do, they must abort them on interrupt.)
3022 *
3023 * @return {@code true} if terminating but not yet terminated
3024 */
3025 public boolean isTerminating() {
3026 long c = ctl;
3027 return ((c & STOP_BIT) != 0L &&
3028 (short)(c >>> TC_SHIFT) != -(config & SMASK));
3029 }
3030
3031 /**
3032 * Returns {@code true} if this pool has been shut down.
3033 *
3034 * @return {@code true} if this pool has been shut down
3035 */
3036 public boolean isShutdown() {
3037 return plock < 0;
3038 }
3039
3040 /**
3041 * Blocks until all tasks have completed execution after a
3042 * shutdown request, or the timeout occurs, or the current thread
3043 * is interrupted, whichever happens first. Because the {@link
3044 * #commonPool()} never terminates until program shutdown, when
3045 * applied to the common pool, this method is equivalent to {@link
3046 * #awaitQuiescence} but always returns {@code false}.
3047 *
3048 * @param timeout the maximum time to wait
3049 * @param unit the time unit of the timeout argument
3050 * @return {@code true} if this executor terminated and
3051 * {@code false} if the timeout elapsed before termination
3052 * @throws InterruptedException if interrupted while waiting
3053 */
3054 public boolean awaitTermination(long timeout, TimeUnit unit)
3055 throws InterruptedException {
3056 if (Thread.interrupted())
3057 throw new InterruptedException();
3058 if (this == common) {
3059 awaitQuiescence(timeout, unit);
3060 return false;
3061 }
3062 long nanos = unit.toNanos(timeout);
3063 if (isTerminated())
3064 return true;
3065 long startTime = System.nanoTime();
3066 boolean terminated = false;
3067 synchronized (this) {
3068 for (long waitTime = nanos, millis = 0L;;) {
3069 if (terminated = isTerminated() ||
3070 waitTime <= 0L ||
3071 (millis = unit.toMillis(waitTime)) <= 0L)
3072 break;
3073 wait(millis);
3074 waitTime = nanos - (System.nanoTime() - startTime);
3075 }
3076 }
3077 return terminated;
3078 }
3079
3080 /**
3081 * If called by a ForkJoinTask operating in this pool, equivalent
3082 * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3083 * waits and/or attempts to assist performing tasks until this
3084 * pool {@link #isQuiescent} or the indicated timeout elapses.
3085 *
3086 * @param timeout the maximum time to wait
3087 * @param unit the time unit of the timeout argument
3088 * @return {@code true} if quiescent; {@code false} if the
3089 * timeout elapsed.
3090 */
3091 public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3092 long nanos = unit.toNanos(timeout);
3093 ForkJoinWorkerThread wt;
3094 Thread thread = Thread.currentThread();
3095 if ((thread instanceof ForkJoinWorkerThread) &&
3096 (wt = (ForkJoinWorkerThread)thread).pool == this) {
3097 helpQuiescePool(wt.workQueue);
3098 return true;
3099 }
3100 long startTime = System.nanoTime();
3101 WorkQueue[] ws;
3102 int r = 0, m;
3103 boolean found = true;
3104 while (!isQuiescent() && (ws = workQueues) != null &&
3105 (m = ws.length - 1) >= 0) {
3106 if (!found) {
3107 if ((System.nanoTime() - startTime) > nanos)
3108 return false;
3109 Thread.yield(); // cannot block
3110 }
3111 found = false;
3112 for (int j = (m + 1) << 2; j >= 0; --j) {
3113 ForkJoinTask<?> t; WorkQueue q; int b;
3114 if ((q = ws[r++ & m]) != null && (b = q.base) - q.top < 0) {
3115 found = true;
3116 if ((t = q.pollAt(b)) != null) {
3117 if (q.base - q.top < 0)
3118 signalWork(q);
3119 t.doExec();
3120 }
3121 break;
3122 }
3123 }
3124 }
3125 return true;
3126 }
3127
3128 /**
3129 * Waits and/or attempts to assist performing tasks indefinitely
3130 * until the {@link #commonPool()} {@link #isQuiescent}.
3131 */
3132 static void quiesceCommonPool() {
3133 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3134 }
3135
3136 /**
3137 * Interface for extending managed parallelism for tasks running
3138 * in {@link ForkJoinPool}s.
3139 *
3140 * <p>A {@code ManagedBlocker} provides two methods. Method
3141 * {@code isReleasable} must return {@code true} if blocking is
3142 * not necessary. Method {@code block} blocks the current thread
3143 * if necessary (perhaps internally invoking {@code isReleasable}
3144 * before actually blocking). These actions are performed by any
3145 * thread invoking {@link ForkJoinPool#managedBlock}. The
3146 * unusual methods in this API accommodate synchronizers that may,
3147 * but don't usually, block for long periods. Similarly, they
3148 * allow more efficient internal handling of cases in which
3149 * additional workers may be, but usually are not, needed to
3150 * ensure sufficient parallelism. Toward this end,
3151 * implementations of method {@code isReleasable} must be amenable
3152 * to repeated invocation.
3153 *
3154 * <p>For example, here is a ManagedBlocker based on a
3155 * ReentrantLock:
3156 * <pre> {@code
3157 * class ManagedLocker implements ManagedBlocker {
3158 * final ReentrantLock lock;
3159 * boolean hasLock = false;
3160 * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3161 * public boolean block() {
3162 * if (!hasLock)
3163 * lock.lock();
3164 * return true;
3165 * }
3166 * public boolean isReleasable() {
3167 * return hasLock || (hasLock = lock.tryLock());
3168 * }
3169 * }}</pre>
3170 *
3171 * <p>Here is a class that possibly blocks waiting for an
3172 * item on a given queue:
3173 * <pre> {@code
3174 * class QueueTaker<E> implements ManagedBlocker {
3175 * final BlockingQueue<E> queue;
3176 * volatile E item = null;
3177 * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3178 * public boolean block() throws InterruptedException {
3179 * if (item == null)
3180 * item = queue.take();
3181 * return true;
3182 * }
3183 * public boolean isReleasable() {
3184 * return item != null || (item = queue.poll()) != null;
3185 * }
3186 * public E getItem() { // call after pool.managedBlock completes
3187 * return item;
3188 * }
3189 * }}</pre>
3190 */
3191 public static interface ManagedBlocker {
3192 /**
3193 * Possibly blocks the current thread, for example waiting for
3194 * a lock or condition.
3195 *
3196 * @return {@code true} if no additional blocking is necessary
3197 * (i.e., if isReleasable would return true)
3198 * @throws InterruptedException if interrupted while waiting
3199 * (the method is not required to do so, but is allowed to)
3200 */
3201 boolean block() throws InterruptedException;
3202
3203 /**
3204 * Returns {@code true} if blocking is unnecessary.
3205 */
3206 boolean isReleasable();
3207 }
3208
3209 /**
3210 * Blocks in accord with the given blocker. If the current thread
3211 * is a {@link ForkJoinWorkerThread}, this method possibly
3212 * arranges for a spare thread to be activated if necessary to
3213 * ensure sufficient parallelism while the current thread is blocked.
3214 *
3215 * <p>If the caller is not a {@link ForkJoinTask}, this method is
3216 * behaviorally equivalent to
3217 * <pre> {@code
3218 * while (!blocker.isReleasable())
3219 * if (blocker.block())
3220 * return;
3221 * }</pre>
3222 *
3223 * If the caller is a {@code ForkJoinTask}, then the pool may
3224 * first be expanded to ensure parallelism, and later adjusted.
3225 *
3226 * @param blocker the blocker
3227 * @throws InterruptedException if blocker.block did so
3228 */
3229 public static void managedBlock(ManagedBlocker blocker)
3230 throws InterruptedException {
3231 Thread t = Thread.currentThread();
3232 if (t instanceof ForkJoinWorkerThread) {
3233 ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3234 while (!blocker.isReleasable()) { // variant of helpSignal
3235 WorkQueue[] ws; WorkQueue q; int m, u;
3236 if ((ws = p.workQueues) != null && (m = ws.length - 1) >= 0) {
3237 for (int i = 0; i <= m; ++i) {
3238 if (blocker.isReleasable())
3239 return;
3240 if ((q = ws[i]) != null && q.base - q.top < 0) {
3241 p.signalWork(q);
3242 if ((u = (int)(p.ctl >>> 32)) >= 0 ||
3243 (u >> UAC_SHIFT) >= 0)
3244 break;
3245 }
3246 }
3247 }
3248 if (p.tryCompensate()) {
3249 try {
3250 do {} while (!blocker.isReleasable() &&
3251 !blocker.block());
3252 } finally {
3253 p.incrementActiveCount();
3254 }
3255 break;
3256 }
3257 }
3258 }
3259 else {
3260 do {} while (!blocker.isReleasable() &&
3261 !blocker.block());
3262 }
3263 }
3264
3265 // AbstractExecutorService overrides. These rely on undocumented
3266 // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3267 // implement RunnableFuture.
3268
3269 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3270 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3271 }
3272
3273 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3274 return new ForkJoinTask.AdaptedCallable<T>(callable);
3275 }
3276
3277 // Unsafe mechanics
3278 private static final sun.misc.Unsafe U;
3279 private static final long CTL;
3280 private static final long PARKBLOCKER;
3281 private static final int ABASE;
3282 private static final int ASHIFT;
3283 private static final long STEALCOUNT;
3284 private static final long PLOCK;
3285 private static final long INDEXSEED;
3286 private static final long QLOCK;
3287
3288 static {
3289 int s; // initialize field offsets for CAS etc
3290 try {
3291 U = sun.misc.Unsafe.getUnsafe();
3292 Class<?> k = ForkJoinPool.class;
3293 CTL = U.objectFieldOffset
3294 (k.getDeclaredField("ctl"));
3295 STEALCOUNT = U.objectFieldOffset
3296 (k.getDeclaredField("stealCount"));
3297 PLOCK = U.objectFieldOffset
3298 (k.getDeclaredField("plock"));
3299 INDEXSEED = U.objectFieldOffset
3300 (k.getDeclaredField("indexSeed"));
3301 Class<?> tk = Thread.class;
3302 PARKBLOCKER = U.objectFieldOffset
3303 (tk.getDeclaredField("parkBlocker"));
3304 Class<?> wk = WorkQueue.class;
3305 QLOCK = U.objectFieldOffset
3306 (wk.getDeclaredField("qlock"));
3307 Class<?> ak = ForkJoinTask[].class;
3308 ABASE = U.arrayBaseOffset(ak);
3309 s = U.arrayIndexScale(ak);
3310 ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
3311 } catch (Exception e) {
3312 throw new Error(e);
3313 }
3314 if ((s & (s-1)) != 0)
3315 throw new Error("data type scale not a power of two");
3316
3317 ForkJoinWorkerThreadFactory fac = defaultForkJoinWorkerThreadFactory =
3318 new DefaultForkJoinWorkerThreadFactory();
3319 modifyThreadPermission = new RuntimePermission("modifyThread");
3320
3321 /*
3322 * Establish common pool parameters. For extra caution,
3323 * computations to set up common pool state are here; the
3324 * constructor just assigns these values to fields.
3325 */
3326
3327 int par = 0;
3328 Thread.UncaughtExceptionHandler handler = null;
3329 try { // TBD: limit or report ignored exceptions?
3330 String pp = System.getProperty
3331 ("java.util.concurrent.ForkJoinPool.common.parallelism");
3332 String hp = System.getProperty
3333 ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3334 String fp = System.getProperty
3335 ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3336 if (fp != null)
3337 fac = ((ForkJoinWorkerThreadFactory)ClassLoader.
3338 getSystemClassLoader().loadClass(fp).newInstance());
3339 if (hp != null)
3340 handler = ((Thread.UncaughtExceptionHandler)ClassLoader.
3341 getSystemClassLoader().loadClass(hp).newInstance());
3342 if (pp != null)
3343 par = Integer.parseInt(pp);
3344 } catch (Exception ignore) {
3345 }
3346
3347 if (par <= 0)
3348 par = Runtime.getRuntime().availableProcessors();
3349 if (par > MAX_CAP)
3350 par = MAX_CAP;
3351 commonParallelism = par;
3352 long np = (long)(-par); // precompute initial ctl value
3353 long ct = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
3354
3355 common = new ForkJoinPool(par, ct, fac, handler);
3356 }
3357
3358 }