ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.153
Committed: Mon Feb 11 06:41:08 2013 UTC (11 years, 3 months ago) by jsr166
Branch: MAIN
Changes since 1.152: +3 -3 lines
Log Message:
close <b> tags

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.util.ArrayList;
10 import java.util.Arrays;
11 import java.util.Collection;
12 import java.util.Collections;
13 import java.util.List;
14 import java.util.concurrent.AbstractExecutorService;
15 import java.util.concurrent.Callable;
16 import java.util.concurrent.ExecutorService;
17 import java.util.concurrent.Future;
18 import java.util.concurrent.RejectedExecutionException;
19 import java.util.concurrent.RunnableFuture;
20 import java.util.concurrent.TimeUnit;
21
22 /**
23 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
24 * A {@code ForkJoinPool} provides the entry point for submissions
25 * from non-{@code ForkJoinTask} clients, as well as management and
26 * monitoring operations.
27 *
28 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
29 * ExecutorService} mainly by virtue of employing
30 * <em>work-stealing</em>: all threads in the pool attempt to find and
31 * execute tasks submitted to the pool and/or created by other active
32 * tasks (eventually blocking waiting for work if none exist). This
33 * enables efficient processing when most tasks spawn other subtasks
34 * (as do most {@code ForkJoinTask}s), as well as when many small
35 * tasks are submitted to the pool from external clients. Especially
36 * when setting <em>asyncMode</em> to true in constructors, {@code
37 * ForkJoinPool}s may also be appropriate for use with event-style
38 * tasks that are never joined.
39 *
40 * <p>A static {@link #commonPool()} is available and appropriate for
41 * most applications. The common pool is used by any ForkJoinTask that
42 * is not explicitly submitted to a specified pool. Using the common
43 * pool normally reduces resource usage (its threads are slowly
44 * reclaimed during periods of non-use, and reinstated upon subsequent
45 * use).
46 *
47 * <p>For applications that require separate or custom pools, a {@code
48 * ForkJoinPool} may be constructed with a given target parallelism
49 * level; by default, equal to the number of available processors. The
50 * pool attempts to maintain enough active (or available) threads by
51 * dynamically adding, suspending, or resuming internal worker
52 * threads, even if some tasks are stalled waiting to join
53 * others. However, no such adjustments are guaranteed in the face of
54 * blocked I/O or other unmanaged synchronization. The nested {@link
55 * ManagedBlocker} interface enables extension of the kinds of
56 * synchronization accommodated.
57 *
58 * <p>In addition to execution and lifecycle control methods, this
59 * class provides status check methods (for example
60 * {@link #getStealCount}) that are intended to aid in developing,
61 * tuning, and monitoring fork/join applications. Also, method
62 * {@link #toString} returns indications of pool state in a
63 * convenient form for informal monitoring.
64 *
65 * <p>As is the case with other ExecutorServices, there are three
66 * main task execution methods summarized in the following table.
67 * These are designed to be used primarily by clients not already
68 * engaged in fork/join computations in the current pool. The main
69 * forms of these methods accept instances of {@code ForkJoinTask},
70 * but overloaded forms also allow mixed execution of plain {@code
71 * Runnable}- or {@code Callable}- based activities as well. However,
72 * tasks that are already executing in a pool should normally instead
73 * use the within-computation forms listed in the table unless using
74 * async event-style tasks that are not usually joined, in which case
75 * there is little difference among choice of methods.
76 *
77 * <table BORDER CELLPADDING=3 CELLSPACING=1>
78 * <tr>
79 * <td></td>
80 * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
81 * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
82 * </tr>
83 * <tr>
84 * <td> <b>Arrange async execution</b></td>
85 * <td> {@link #execute(ForkJoinTask)}</td>
86 * <td> {@link ForkJoinTask#fork}</td>
87 * </tr>
88 * <tr>
89 * <td> <b>Await and obtain result</b></td>
90 * <td> {@link #invoke(ForkJoinTask)}</td>
91 * <td> {@link ForkJoinTask#invoke}</td>
92 * </tr>
93 * <tr>
94 * <td> <b>Arrange exec and obtain Future</b></td>
95 * <td> {@link #submit(ForkJoinTask)}</td>
96 * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
97 * </tr>
98 * </table>
99 *
100 * <p>The common pool is by default constructed with default
101 * parameters, but these may be controlled by setting three {@link
102 * System#getProperty system properties} with prefix {@code
103 * java.util.concurrent.ForkJoinPool.common}: {@code parallelism} --
104 * an integer greater than zero, {@code threadFactory} -- the class
105 * name of a {@link ForkJoinWorkerThreadFactory}, and {@code
106 * exceptionHandler} -- the class name of a {@link
107 * java.lang.Thread.UncaughtExceptionHandler
108 * Thread.UncaughtExceptionHandler}. Upon any error in establishing
109 * these settings, default parameters are used.
110 *
111 * <p><b>Implementation notes</b>: This implementation restricts the
112 * maximum number of running threads to 32767. Attempts to create
113 * pools with greater than the maximum number result in
114 * {@code IllegalArgumentException}.
115 *
116 * <p>This implementation rejects submitted tasks (that is, by throwing
117 * {@link RejectedExecutionException}) only when the pool is shut down
118 * or internal resources have been exhausted.
119 *
120 * @since 1.7
121 * @author Doug Lea
122 */
123 public class ForkJoinPool extends AbstractExecutorService {
124
125 /*
126 * Implementation Overview
127 *
128 * This class and its nested classes provide the main
129 * functionality and control for a set of worker threads:
130 * Submissions from non-FJ threads enter into submission queues.
131 * Workers take these tasks and typically split them into subtasks
132 * that may be stolen by other workers. Preference rules give
133 * first priority to processing tasks from their own queues (LIFO
134 * or FIFO, depending on mode), then to randomized FIFO steals of
135 * tasks in other queues.
136 *
137 * WorkQueues
138 * ==========
139 *
140 * Most operations occur within work-stealing queues (in nested
141 * class WorkQueue). These are special forms of Deques that
142 * support only three of the four possible end-operations -- push,
143 * pop, and poll (aka steal), under the further constraints that
144 * push and pop are called only from the owning thread (or, as
145 * extended here, under a lock), while poll may be called from
146 * other threads. (If you are unfamiliar with them, you probably
147 * want to read Herlihy and Shavit's book "The Art of
148 * Multiprocessor programming", chapter 16 describing these in
149 * more detail before proceeding.) The main work-stealing queue
150 * design is roughly similar to those in the papers "Dynamic
151 * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
152 * (http://research.sun.com/scalable/pubs/index.html) and
153 * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
154 * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
155 * The main differences ultimately stem from GC requirements that
156 * we null out taken slots as soon as we can, to maintain as small
157 * a footprint as possible even in programs generating huge
158 * numbers of tasks. To accomplish this, we shift the CAS
159 * arbitrating pop vs poll (steal) from being on the indices
160 * ("base" and "top") to the slots themselves. So, both a
161 * successful pop and poll mainly entail a CAS of a slot from
162 * non-null to null. Because we rely on CASes of references, we
163 * do not need tag bits on base or top. They are simple ints as
164 * used in any circular array-based queue (see for example
165 * ArrayDeque). Updates to the indices must still be ordered in a
166 * way that guarantees that top == base means the queue is empty,
167 * but otherwise may err on the side of possibly making the queue
168 * appear nonempty when a push, pop, or poll have not fully
169 * committed. Note that this means that the poll operation,
170 * considered individually, is not wait-free. One thief cannot
171 * successfully continue until another in-progress one (or, if
172 * previously empty, a push) completes. However, in the
173 * aggregate, we ensure at least probabilistic non-blockingness.
174 * If an attempted steal fails, a thief always chooses a different
175 * random victim target to try next. So, in order for one thief to
176 * progress, it suffices for any in-progress poll or new push on
177 * any empty queue to complete. (This is why we normally use
178 * method pollAt and its variants that try once at the apparent
179 * base index, else consider alternative actions, rather than
180 * method poll.)
181 *
182 * This approach also enables support of a user mode in which local
183 * task processing is in FIFO, not LIFO order, simply by using
184 * poll rather than pop. This can be useful in message-passing
185 * frameworks in which tasks are never joined. However neither
186 * mode considers affinities, loads, cache localities, etc, so
187 * rarely provide the best possible performance on a given
188 * machine, but portably provide good throughput by averaging over
189 * these factors. (Further, even if we did try to use such
190 * information, we do not usually have a basis for exploiting it.
191 * For example, some sets of tasks profit from cache affinities,
192 * but others are harmed by cache pollution effects.)
193 *
194 * WorkQueues are also used in a similar way for tasks submitted
195 * to the pool. We cannot mix these tasks in the same queues used
196 * for work-stealing (this would contaminate lifo/fifo
197 * processing). Instead, we randomly associate submission queues
198 * with submitting threads, using a form of hashing. The
199 * ThreadLocalRandom probe value serves as a hash code for
200 * choosing existing queues, and may be randomly repositioned upon
201 * contention with other submitters. In essence, submitters act
202 * like workers except that they are restricted to executing local
203 * tasks that they submitted (or in the case of CountedCompleters,
204 * others with the same root task). However, because most
205 * shared/external queue operations are more expensive than
206 * internal, and because, at steady state, external submitters
207 * will compete for CPU with workers, ForkJoinTask.join and
208 * related methods disable them from repeatedly helping to process
209 * tasks if all workers are active. Insertion of tasks in shared
210 * mode requires a lock (mainly to protect in the case of
211 * resizing) but we use only a simple spinlock (using bits in
212 * field qlock), because submitters encountering a busy queue move
213 * on to try or create other queues -- they block only when
214 * creating and registering new queues.
215 *
216 * Management
217 * ==========
218 *
219 * The main throughput advantages of work-stealing stem from
220 * decentralized control -- workers mostly take tasks from
221 * themselves or each other. We cannot negate this in the
222 * implementation of other management responsibilities. The main
223 * tactic for avoiding bottlenecks is packing nearly all
224 * essentially atomic control state into two volatile variables
225 * that are by far most often read (not written) as status and
226 * consistency checks.
227 *
228 * Field "ctl" contains 64 bits holding all the information needed
229 * to atomically decide to add, inactivate, enqueue (on an event
230 * queue), dequeue, and/or re-activate workers. To enable this
231 * packing, we restrict maximum parallelism to (1<<15)-1 (which is
232 * far in excess of normal operating range) to allow ids, counts,
233 * and their negations (used for thresholding) to fit into 16bit
234 * fields.
235 *
236 * Field "plock" is a form of sequence lock with a saturating
237 * shutdown bit (similarly for per-queue "qlocks"), mainly
238 * protecting updates to the workQueues array, as well as to
239 * enable shutdown. When used as a lock, it is normally only very
240 * briefly held, so is nearly always available after at most a
241 * brief spin, but we use a monitor-based backup strategy to
242 * block when needed.
243 *
244 * Recording WorkQueues. WorkQueues are recorded in the
245 * "workQueues" array that is created upon first use and expanded
246 * if necessary. Updates to the array while recording new workers
247 * and unrecording terminated ones are protected from each other
248 * by a lock but the array is otherwise concurrently readable, and
249 * accessed directly. To simplify index-based operations, the
250 * array size is always a power of two, and all readers must
251 * tolerate null slots. Worker queues are at odd indices. Shared
252 * (submission) queues are at even indices, up to a maximum of 64
253 * slots, to limit growth even if array needs to expand to add
254 * more workers. Grouping them together in this way simplifies and
255 * speeds up task scanning.
256 *
257 * All worker thread creation is on-demand, triggered by task
258 * submissions, replacement of terminated workers, and/or
259 * compensation for blocked workers. However, all other support
260 * code is set up to work with other policies. To ensure that we
261 * do not hold on to worker references that would prevent GC, ALL
262 * accesses to workQueues are via indices into the workQueues
263 * array (which is one source of some of the messy code
264 * constructions here). In essence, the workQueues array serves as
265 * a weak reference mechanism. Thus for example the wait queue
266 * field of ctl stores indices, not references. Access to the
267 * workQueues in associated methods (for example signalWork) must
268 * both index-check and null-check the IDs. All such accesses
269 * ignore bad IDs by returning out early from what they are doing,
270 * since this can only be associated with termination, in which
271 * case it is OK to give up. All uses of the workQueues array
272 * also check that it is non-null (even if previously
273 * non-null). This allows nulling during termination, which is
274 * currently not necessary, but remains an option for
275 * resource-revocation-based shutdown schemes. It also helps
276 * reduce JIT issuance of uncommon-trap code, which tends to
277 * unnecessarily complicate control flow in some methods.
278 *
279 * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
280 * let workers spin indefinitely scanning for tasks when none can
281 * be found immediately, and we cannot start/resume workers unless
282 * there appear to be tasks available. On the other hand, we must
283 * quickly prod them into action when new tasks are submitted or
284 * generated. In many usages, ramp-up time to activate workers is
285 * the main limiting factor in overall performance (this is
286 * compounded at program start-up by JIT compilation and
287 * allocation). So we try to streamline this as much as possible.
288 * We park/unpark workers after placing in an event wait queue
289 * when they cannot find work. This "queue" is actually a simple
290 * Treiber stack, headed by the "id" field of ctl, plus a 15bit
291 * counter value (that reflects the number of times a worker has
292 * been inactivated) to avoid ABA effects (we need only as many
293 * version numbers as worker threads). Successors are held in
294 * field WorkQueue.nextWait. Queuing deals with several intrinsic
295 * races, mainly that a task-producing thread can miss seeing (and
296 * signalling) another thread that gave up looking for work but
297 * has not yet entered the wait queue. We solve this by requiring
298 * a full sweep of all workers (via repeated calls to method
299 * scan()) both before and after a newly waiting worker is added
300 * to the wait queue. During a rescan, the worker might release
301 * some other queued worker rather than itself, which has the same
302 * net effect. Because enqueued workers may actually be rescanning
303 * rather than waiting, we set and clear the "parker" field of
304 * WorkQueues to reduce unnecessary calls to unpark. (This
305 * requires a secondary recheck to avoid missed signals.) Note
306 * the unusual conventions about Thread.interrupts surrounding
307 * parking and other blocking: Because interrupts are used solely
308 * to alert threads to check termination, which is checked anyway
309 * upon blocking, we clear status (using Thread.interrupted)
310 * before any call to park, so that park does not immediately
311 * return due to status being set via some other unrelated call to
312 * interrupt in user code.
313 *
314 * Signalling. We create or wake up workers only when there
315 * appears to be at least one task they might be able to find and
316 * execute. However, many other threads may notice the same task
317 * and each signal to wake up a thread that might take it. So in
318 * general, pools will be over-signalled. When a submission is
319 * added or another worker adds a task to a queue that has fewer
320 * than two tasks, they signal waiting workers (or trigger
321 * creation of new ones if fewer than the given parallelism level
322 * -- signalWork), and may leave a hint to the unparked worker to
323 * help signal others upon wakeup). These primary signals are
324 * buttressed by others (see method helpSignal) whenever other
325 * threads scan for work or do not have a task to process. On
326 * most platforms, signalling (unpark) overhead time is noticeably
327 * long, and the time between signalling a thread and it actually
328 * making progress can be very noticeably long, so it is worth
329 * offloading these delays from critical paths as much as
330 * possible.
331 *
332 * Trimming workers. To release resources after periods of lack of
333 * use, a worker starting to wait when the pool is quiescent will
334 * time out and terminate if the pool has remained quiescent for a
335 * given period -- a short period if there are more threads than
336 * parallelism, longer as the number of threads decreases. This
337 * will slowly propagate, eventually terminating all workers after
338 * periods of non-use.
339 *
340 * Shutdown and Termination. A call to shutdownNow atomically sets
341 * a plock bit and then (non-atomically) sets each worker's
342 * qlock status, cancels all unprocessed tasks, and wakes up
343 * all waiting workers. Detecting whether termination should
344 * commence after a non-abrupt shutdown() call requires more work
345 * and bookkeeping. We need consensus about quiescence (i.e., that
346 * there is no more work). The active count provides a primary
347 * indication but non-abrupt shutdown still requires a rechecking
348 * scan for any workers that are inactive but not queued.
349 *
350 * Joining Tasks
351 * =============
352 *
353 * Any of several actions may be taken when one worker is waiting
354 * to join a task stolen (or always held) by another. Because we
355 * are multiplexing many tasks on to a pool of workers, we can't
356 * just let them block (as in Thread.join). We also cannot just
357 * reassign the joiner's run-time stack with another and replace
358 * it later, which would be a form of "continuation", that even if
359 * possible is not necessarily a good idea since we sometimes need
360 * both an unblocked task and its continuation to progress.
361 * Instead we combine two tactics:
362 *
363 * Helping: Arranging for the joiner to execute some task that it
364 * would be running if the steal had not occurred.
365 *
366 * Compensating: Unless there are already enough live threads,
367 * method tryCompensate() may create or re-activate a spare
368 * thread to compensate for blocked joiners until they unblock.
369 *
370 * A third form (implemented in tryRemoveAndExec) amounts to
371 * helping a hypothetical compensator: If we can readily tell that
372 * a possible action of a compensator is to steal and execute the
373 * task being joined, the joining thread can do so directly,
374 * without the need for a compensation thread (although at the
375 * expense of larger run-time stacks, but the tradeoff is
376 * typically worthwhile).
377 *
378 * The ManagedBlocker extension API can't use helping so relies
379 * only on compensation in method awaitBlocker.
380 *
381 * The algorithm in tryHelpStealer entails a form of "linear"
382 * helping: Each worker records (in field currentSteal) the most
383 * recent task it stole from some other worker. Plus, it records
384 * (in field currentJoin) the task it is currently actively
385 * joining. Method tryHelpStealer uses these markers to try to
386 * find a worker to help (i.e., steal back a task from and execute
387 * it) that could hasten completion of the actively joined task.
388 * In essence, the joiner executes a task that would be on its own
389 * local deque had the to-be-joined task not been stolen. This may
390 * be seen as a conservative variant of the approach in Wagner &
391 * Calder "Leapfrogging: a portable technique for implementing
392 * efficient futures" SIGPLAN Notices, 1993
393 * (http://portal.acm.org/citation.cfm?id=155354). It differs in
394 * that: (1) We only maintain dependency links across workers upon
395 * steals, rather than use per-task bookkeeping. This sometimes
396 * requires a linear scan of workQueues array to locate stealers,
397 * but often doesn't because stealers leave hints (that may become
398 * stale/wrong) of where to locate them. It is only a hint
399 * because a worker might have had multiple steals and the hint
400 * records only one of them (usually the most current). Hinting
401 * isolates cost to when it is needed, rather than adding to
402 * per-task overhead. (2) It is "shallow", ignoring nesting and
403 * potentially cyclic mutual steals. (3) It is intentionally
404 * racy: field currentJoin is updated only while actively joining,
405 * which means that we miss links in the chain during long-lived
406 * tasks, GC stalls etc (which is OK since blocking in such cases
407 * is usually a good idea). (4) We bound the number of attempts
408 * to find work (see MAX_HELP) and fall back to suspending the
409 * worker and if necessary replacing it with another.
410 *
411 * Helping actions for CountedCompleters are much simpler: Method
412 * helpComplete can take and execute any task with the same root
413 * as the task being waited on. However, this still entails some
414 * traversal of completer chains, so is less efficient than using
415 * CountedCompleters without explicit joins.
416 *
417 * It is impossible to keep exactly the target parallelism number
418 * of threads running at any given time. Determining the
419 * existence of conservatively safe helping targets, the
420 * availability of already-created spares, and the apparent need
421 * to create new spares are all racy, so we rely on multiple
422 * retries of each. Compensation in the apparent absence of
423 * helping opportunities is challenging to control on JVMs, where
424 * GC and other activities can stall progress of tasks that in
425 * turn stall out many other dependent tasks, without us being
426 * able to determine whether they will ever require compensation.
427 * Even though work-stealing otherwise encounters little
428 * degradation in the presence of more threads than cores,
429 * aggressively adding new threads in such cases entails risk of
430 * unwanted positive feedback control loops in which more threads
431 * cause more dependent stalls (as well as delayed progress of
432 * unblocked threads to the point that we know they are available)
433 * leading to more situations requiring more threads, and so
434 * on. This aspect of control can be seen as an (analytically
435 * intractable) game with an opponent that may choose the worst
436 * (for us) active thread to stall at any time. We take several
437 * precautions to bound losses (and thus bound gains), mainly in
438 * methods tryCompensate and awaitJoin.
439 *
440 * Common Pool
441 * ===========
442 *
443 * The static common Pool always exists after static
444 * initialization. Since it (or any other created pool) need
445 * never be used, we minimize initial construction overhead and
446 * footprint to the setup of about a dozen fields, with no nested
447 * allocation. Most bootstrapping occurs within method
448 * fullExternalPush during the first submission to the pool.
449 *
450 * When external threads submit to the common pool, they can
451 * perform some subtask processing (see externalHelpJoin and
452 * related methods). We do not need to record whether these
453 * submissions are to the common pool -- if not, externalHelpJoin
454 * returns quickly (at the most helping to signal some common pool
455 * workers). These submitters would otherwise be blocked waiting
456 * for completion, so the extra effort (with liberally sprinkled
457 * task status checks) in inapplicable cases amounts to an odd
458 * form of limited spin-wait before blocking in ForkJoinTask.join.
459 *
460 * Style notes
461 * ===========
462 *
463 * There is a lot of representation-level coupling among classes
464 * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
465 * fields of WorkQueue maintain data structures managed by
466 * ForkJoinPool, so are directly accessed. There is little point
467 * trying to reduce this, since any associated future changes in
468 * representations will need to be accompanied by algorithmic
469 * changes anyway. Several methods intrinsically sprawl because
470 * they must accumulate sets of consistent reads of volatiles held
471 * in local variables. Methods signalWork() and scan() are the
472 * main bottlenecks, so are especially heavily
473 * micro-optimized/mangled. There are lots of inline assignments
474 * (of form "while ((local = field) != 0)") which are usually the
475 * simplest way to ensure the required read orderings (which are
476 * sometimes critical). This leads to a "C"-like style of listing
477 * declarations of these locals at the heads of methods or blocks.
478 * There are several occurrences of the unusual "do {} while
479 * (!cas...)" which is the simplest way to force an update of a
480 * CAS'ed variable. There are also other coding oddities (including
481 * several unnecessary-looking hoisted null checks) that help
482 * some methods perform reasonably even when interpreted (not
483 * compiled).
484 *
485 * The order of declarations in this file is:
486 * (1) Static utility functions
487 * (2) Nested (static) classes
488 * (3) Static fields
489 * (4) Fields, along with constants used when unpacking some of them
490 * (5) Internal control methods
491 * (6) Callbacks and other support for ForkJoinTask methods
492 * (7) Exported methods
493 * (8) Static block initializing statics in minimally dependent order
494 */
495
496 // Static utilities
497
498 /**
499 * If there is a security manager, makes sure caller has
500 * permission to modify threads.
501 */
502 private static void checkPermission() {
503 SecurityManager security = System.getSecurityManager();
504 if (security != null)
505 security.checkPermission(modifyThreadPermission);
506 }
507
508 // Nested classes
509
510 /**
511 * Factory for creating new {@link ForkJoinWorkerThread}s.
512 * A {@code ForkJoinWorkerThreadFactory} must be defined and used
513 * for {@code ForkJoinWorkerThread} subclasses that extend base
514 * functionality or initialize threads with different contexts.
515 */
516 public static interface ForkJoinWorkerThreadFactory {
517 /**
518 * Returns a new worker thread operating in the given pool.
519 *
520 * @param pool the pool this thread works in
521 * @throws NullPointerException if the pool is null
522 */
523 public ForkJoinWorkerThread newThread(ForkJoinPool pool);
524 }
525
526 /**
527 * Default ForkJoinWorkerThreadFactory implementation; creates a
528 * new ForkJoinWorkerThread.
529 */
530 static final class DefaultForkJoinWorkerThreadFactory
531 implements ForkJoinWorkerThreadFactory {
532 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
533 return new ForkJoinWorkerThread(pool);
534 }
535 }
536
537 /**
538 * Class for artificial tasks that are used to replace the target
539 * of local joins if they are removed from an interior queue slot
540 * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
541 * actually do anything beyond having a unique identity.
542 */
543 static final class EmptyTask extends ForkJoinTask<Void> {
544 private static final long serialVersionUID = -7721805057305804111L;
545 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
546 public final Void getRawResult() { return null; }
547 public final void setRawResult(Void x) {}
548 public final boolean exec() { return true; }
549 }
550
551 /**
552 * Queues supporting work-stealing as well as external task
553 * submission. See above for main rationale and algorithms.
554 * Implementation relies heavily on "Unsafe" intrinsics
555 * and selective use of "volatile":
556 *
557 * Field "base" is the index (mod array.length) of the least valid
558 * queue slot, which is always the next position to steal (poll)
559 * from if nonempty. Reads and writes require volatile orderings
560 * but not CAS, because updates are only performed after slot
561 * CASes.
562 *
563 * Field "top" is the index (mod array.length) of the next queue
564 * slot to push to or pop from. It is written only by owner thread
565 * for push, or under lock for external/shared push, and accessed
566 * by other threads only after reading (volatile) base. Both top
567 * and base are allowed to wrap around on overflow, but (top -
568 * base) (or more commonly -(base - top) to force volatile read of
569 * base before top) still estimates size. The lock ("qlock") is
570 * forced to -1 on termination, causing all further lock attempts
571 * to fail. (Note: we don't need CAS for termination state because
572 * upon pool shutdown, all shared-queues will stop being used
573 * anyway.) Nearly all lock bodies are set up so that exceptions
574 * within lock bodies are "impossible" (modulo JVM errors that
575 * would cause failure anyway.)
576 *
577 * The array slots are read and written using the emulation of
578 * volatiles/atomics provided by Unsafe. Insertions must in
579 * general use putOrderedObject as a form of releasing store to
580 * ensure that all writes to the task object are ordered before
581 * its publication in the queue. All removals entail a CAS to
582 * null. The array is always a power of two. To ensure safety of
583 * Unsafe array operations, all accesses perform explicit null
584 * checks and implicit bounds checks via power-of-two masking.
585 *
586 * In addition to basic queuing support, this class contains
587 * fields described elsewhere to control execution. It turns out
588 * to work better memory-layout-wise to include them in this class
589 * rather than a separate class.
590 *
591 * Performance on most platforms is very sensitive to placement of
592 * instances of both WorkQueues and their arrays -- we absolutely
593 * do not want multiple WorkQueue instances or multiple queue
594 * arrays sharing cache lines. (It would be best for queue objects
595 * and their arrays to share, but there is nothing available to
596 * help arrange that). Unfortunately, because they are recorded
597 * in a common array, WorkQueue instances are often moved to be
598 * adjacent by garbage collectors. To reduce impact, we use field
599 * padding that works OK on common platforms; this effectively
600 * trades off slightly slower average field access for the sake of
601 * avoiding really bad worst-case access. (Until better JVM
602 * support is in place, this padding is dependent on transient
603 * properties of JVM field layout rules.) We also take care in
604 * allocating, sizing and resizing the array. Non-shared queue
605 * arrays are initialized by workers before use. Others are
606 * allocated on first use.
607 */
608 static final class WorkQueue {
609 /**
610 * Capacity of work-stealing queue array upon initialization.
611 * Must be a power of two; at least 4, but should be larger to
612 * reduce or eliminate cacheline sharing among queues.
613 * Currently, it is much larger, as a partial workaround for
614 * the fact that JVMs often place arrays in locations that
615 * share GC bookkeeping (especially cardmarks) such that
616 * per-write accesses encounter serious memory contention.
617 */
618 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
619
620 /**
621 * Maximum size for queue arrays. Must be a power of two less
622 * than or equal to 1 << (31 - width of array entry) to ensure
623 * lack of wraparound of index calculations, but defined to a
624 * value a bit less than this to help users trap runaway
625 * programs before saturating systems.
626 */
627 static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
628
629 // Heuristic padding to ameliorate unfortunate memory placements
630 volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
631
632 int seed; // for random scanning; initialize nonzero
633 volatile int eventCount; // encoded inactivation count; < 0 if inactive
634 int nextWait; // encoded record of next event waiter
635 int hint; // steal or signal hint (index)
636 int poolIndex; // index of this queue in pool (or 0)
637 final int mode; // 0: lifo, > 0: fifo, < 0: shared
638 int nsteals; // number of steals
639 volatile int qlock; // 1: locked, -1: terminate; else 0
640 volatile int base; // index of next slot for poll
641 int top; // index of next slot for push
642 ForkJoinTask<?>[] array; // the elements (initially unallocated)
643 final ForkJoinPool pool; // the containing pool (may be null)
644 final ForkJoinWorkerThread owner; // owning thread or null if shared
645 volatile Thread parker; // == owner during call to park; else null
646 volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
647 ForkJoinTask<?> currentSteal; // current non-local task being executed
648
649 volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
650 volatile Object pad18, pad19, pad1a, pad1b, pad1c, pad1d;
651
652 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
653 int seed) {
654 this.pool = pool;
655 this.owner = owner;
656 this.mode = mode;
657 this.seed = seed;
658 // Place indices in the center of array (that is not yet allocated)
659 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
660 }
661
662 /**
663 * Returns the approximate number of tasks in the queue.
664 */
665 final int queueSize() {
666 int n = base - top; // non-owner callers must read base first
667 return (n >= 0) ? 0 : -n; // ignore transient negative
668 }
669
670 /**
671 * Provides a more accurate estimate of whether this queue has
672 * any tasks than does queueSize, by checking whether a
673 * near-empty queue has at least one unclaimed task.
674 */
675 final boolean isEmpty() {
676 ForkJoinTask<?>[] a; int m, s;
677 int n = base - (s = top);
678 return (n >= 0 ||
679 (n == -1 &&
680 ((a = array) == null ||
681 (m = a.length - 1) < 0 ||
682 U.getObject
683 (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
684 }
685
686 /**
687 * Pushes a task. Call only by owner in unshared queues. (The
688 * shared-queue version is embedded in method externalPush.)
689 *
690 * @param task the task. Caller must ensure non-null.
691 * @throws RejectedExecutionException if array cannot be resized
692 */
693 final void push(ForkJoinTask<?> task) {
694 ForkJoinTask<?>[] a; ForkJoinPool p;
695 int s = top, m, n;
696 if ((a = array) != null) { // ignore if queue removed
697 int j = (((m = a.length - 1) & s) << ASHIFT) + ABASE;
698 U.putOrderedObject(a, j, task);
699 if ((n = (top = s + 1) - base) <= 2) {
700 if ((p = pool) != null)
701 p.signalWork(this);
702 }
703 else if (n >= m)
704 growArray();
705 }
706 }
707
708 /**
709 * Initializes or doubles the capacity of array. Call either
710 * by owner or with lock held -- it is OK for base, but not
711 * top, to move while resizings are in progress.
712 */
713 final ForkJoinTask<?>[] growArray() {
714 ForkJoinTask<?>[] oldA = array;
715 int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
716 if (size > MAXIMUM_QUEUE_CAPACITY)
717 throw new RejectedExecutionException("Queue capacity exceeded");
718 int oldMask, t, b;
719 ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
720 if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
721 (t = top) - (b = base) > 0) {
722 int mask = size - 1;
723 do {
724 ForkJoinTask<?> x;
725 int oldj = ((b & oldMask) << ASHIFT) + ABASE;
726 int j = ((b & mask) << ASHIFT) + ABASE;
727 x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
728 if (x != null &&
729 U.compareAndSwapObject(oldA, oldj, x, null))
730 U.putObjectVolatile(a, j, x);
731 } while (++b != t);
732 }
733 return a;
734 }
735
736 /**
737 * Takes next task, if one exists, in LIFO order. Call only
738 * by owner in unshared queues.
739 */
740 final ForkJoinTask<?> pop() {
741 ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
742 if ((a = array) != null && (m = a.length - 1) >= 0) {
743 for (int s; (s = top - 1) - base >= 0;) {
744 long j = ((m & s) << ASHIFT) + ABASE;
745 if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
746 break;
747 if (U.compareAndSwapObject(a, j, t, null)) {
748 top = s;
749 return t;
750 }
751 }
752 }
753 return null;
754 }
755
756 /**
757 * Takes a task in FIFO order if b is base of queue and a task
758 * can be claimed without contention. Specialized versions
759 * appear in ForkJoinPool methods scan and tryHelpStealer.
760 */
761 final ForkJoinTask<?> pollAt(int b) {
762 ForkJoinTask<?> t; ForkJoinTask<?>[] a;
763 if ((a = array) != null) {
764 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
765 if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
766 base == b &&
767 U.compareAndSwapObject(a, j, t, null)) {
768 base = b + 1;
769 return t;
770 }
771 }
772 return null;
773 }
774
775 /**
776 * Takes next task, if one exists, in FIFO order.
777 */
778 final ForkJoinTask<?> poll() {
779 ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
780 while ((b = base) - top < 0 && (a = array) != null) {
781 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
782 t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
783 if (t != null) {
784 if (base == b &&
785 U.compareAndSwapObject(a, j, t, null)) {
786 base = b + 1;
787 return t;
788 }
789 }
790 else if (base == b) {
791 if (b + 1 == top)
792 break;
793 Thread.yield(); // wait for lagging update (very rare)
794 }
795 }
796 return null;
797 }
798
799 /**
800 * Takes next task, if one exists, in order specified by mode.
801 */
802 final ForkJoinTask<?> nextLocalTask() {
803 return mode == 0 ? pop() : poll();
804 }
805
806 /**
807 * Returns next task, if one exists, in order specified by mode.
808 */
809 final ForkJoinTask<?> peek() {
810 ForkJoinTask<?>[] a = array; int m;
811 if (a == null || (m = a.length - 1) < 0)
812 return null;
813 int i = mode == 0 ? top - 1 : base;
814 int j = ((i & m) << ASHIFT) + ABASE;
815 return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
816 }
817
818 /**
819 * Pops the given task only if it is at the current top.
820 * (A shared version is available only via FJP.tryExternalUnpush)
821 */
822 final boolean tryUnpush(ForkJoinTask<?> t) {
823 ForkJoinTask<?>[] a; int s;
824 if ((a = array) != null && (s = top) != base &&
825 U.compareAndSwapObject
826 (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
827 top = s;
828 return true;
829 }
830 return false;
831 }
832
833 /**
834 * Removes and cancels all known tasks, ignoring any exceptions.
835 */
836 final void cancelAll() {
837 ForkJoinTask.cancelIgnoringExceptions(currentJoin);
838 ForkJoinTask.cancelIgnoringExceptions(currentSteal);
839 for (ForkJoinTask<?> t; (t = poll()) != null; )
840 ForkJoinTask.cancelIgnoringExceptions(t);
841 }
842
843 /**
844 * Computes next value for random probes. Scans don't require
845 * a very high quality generator, but also not a crummy one.
846 * Marsaglia xor-shift is cheap and works well enough. Note:
847 * This is manually inlined in its usages in ForkJoinPool to
848 * avoid writes inside busy scan loops.
849 */
850 final int nextSeed() {
851 int r = seed;
852 r ^= r << 13;
853 r ^= r >>> 17;
854 return seed = r ^= r << 5;
855 }
856
857 // Specialized execution methods
858
859 /**
860 * Pops and runs tasks until empty.
861 */
862 private void popAndExecAll() {
863 // A bit faster than repeated pop calls
864 ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
865 while ((a = array) != null && (m = a.length - 1) >= 0 &&
866 (s = top - 1) - base >= 0 &&
867 (t = ((ForkJoinTask<?>)
868 U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
869 != null) {
870 if (U.compareAndSwapObject(a, j, t, null)) {
871 top = s;
872 t.doExec();
873 }
874 }
875 }
876
877 /**
878 * Polls and runs tasks until empty.
879 */
880 private void pollAndExecAll() {
881 for (ForkJoinTask<?> t; (t = poll()) != null;)
882 t.doExec();
883 }
884
885 /**
886 * If present, removes from queue and executes the given task,
887 * or any other cancelled task. Returns (true) on any CAS
888 * or consistency check failure so caller can retry.
889 *
890 * @return false if no progress can be made, else true
891 */
892 final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
893 boolean stat = true, removed = false, empty = true;
894 ForkJoinTask<?>[] a; int m, s, b, n;
895 if ((a = array) != null && (m = a.length - 1) >= 0 &&
896 (n = (s = top) - (b = base)) > 0) {
897 for (ForkJoinTask<?> t;;) { // traverse from s to b
898 int j = ((--s & m) << ASHIFT) + ABASE;
899 t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
900 if (t == null) // inconsistent length
901 break;
902 else if (t == task) {
903 if (s + 1 == top) { // pop
904 if (!U.compareAndSwapObject(a, j, task, null))
905 break;
906 top = s;
907 removed = true;
908 }
909 else if (base == b) // replace with proxy
910 removed = U.compareAndSwapObject(a, j, task,
911 new EmptyTask());
912 break;
913 }
914 else if (t.status >= 0)
915 empty = false;
916 else if (s + 1 == top) { // pop and throw away
917 if (U.compareAndSwapObject(a, j, t, null))
918 top = s;
919 break;
920 }
921 if (--n == 0) {
922 if (!empty && base == b)
923 stat = false;
924 break;
925 }
926 }
927 }
928 if (removed)
929 task.doExec();
930 return stat;
931 }
932
933 /**
934 * Polls for and executes the given task or any other task in
935 * its CountedCompleter computation.
936 */
937 final boolean pollAndExecCC(ForkJoinTask<?> root) {
938 ForkJoinTask<?>[] a; int b; Object o;
939 outer: while ((b = base) - top < 0 && (a = array) != null) {
940 long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
941 if ((o = U.getObject(a, j)) == null ||
942 !(o instanceof CountedCompleter))
943 break;
944 for (CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;;) {
945 if (r == root) {
946 if (base == b &&
947 U.compareAndSwapObject(a, j, t, null)) {
948 base = b + 1;
949 t.doExec();
950 return true;
951 }
952 else
953 break; // restart
954 }
955 if ((r = r.completer) == null)
956 break outer; // not part of root computation
957 }
958 }
959 return false;
960 }
961
962 /**
963 * Executes a top-level task and any local tasks remaining
964 * after execution.
965 */
966 final void runTask(ForkJoinTask<?> t) {
967 if (t != null) {
968 (currentSteal = t).doExec();
969 currentSteal = null;
970 ++nsteals;
971 if (base - top < 0) { // process remaining local tasks
972 if (mode == 0)
973 popAndExecAll();
974 else
975 pollAndExecAll();
976 }
977 }
978 }
979
980 /**
981 * Executes a non-top-level (stolen) task.
982 */
983 final void runSubtask(ForkJoinTask<?> t) {
984 if (t != null) {
985 ForkJoinTask<?> ps = currentSteal;
986 (currentSteal = t).doExec();
987 currentSteal = ps;
988 }
989 }
990
991 /**
992 * Returns true if owned and not known to be blocked.
993 */
994 final boolean isApparentlyUnblocked() {
995 Thread wt; Thread.State s;
996 return (eventCount >= 0 &&
997 (wt = owner) != null &&
998 (s = wt.getState()) != Thread.State.BLOCKED &&
999 s != Thread.State.WAITING &&
1000 s != Thread.State.TIMED_WAITING);
1001 }
1002
1003 // Unsafe mechanics
1004 private static final sun.misc.Unsafe U;
1005 private static final long QLOCK;
1006 private static final int ABASE;
1007 private static final int ASHIFT;
1008 static {
1009 try {
1010 U = sun.misc.Unsafe.getUnsafe();
1011 Class<?> k = WorkQueue.class;
1012 Class<?> ak = ForkJoinTask[].class;
1013 QLOCK = U.objectFieldOffset
1014 (k.getDeclaredField("qlock"));
1015 ABASE = U.arrayBaseOffset(ak);
1016 int scale = U.arrayIndexScale(ak);
1017 if ((scale & (scale - 1)) != 0)
1018 throw new Error("data type scale not a power of two");
1019 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1020 } catch (Exception e) {
1021 throw new Error(e);
1022 }
1023 }
1024 }
1025
1026 // static fields (initialized in static initializer below)
1027
1028 /**
1029 * Creates a new ForkJoinWorkerThread. This factory is used unless
1030 * overridden in ForkJoinPool constructors.
1031 */
1032 public static final ForkJoinWorkerThreadFactory
1033 defaultForkJoinWorkerThreadFactory;
1034
1035 /**
1036 * Permission required for callers of methods that may start or
1037 * kill threads.
1038 */
1039 private static final RuntimePermission modifyThreadPermission;
1040
1041 /**
1042 * Common (static) pool. Non-null for public use unless a static
1043 * construction exception, but internal usages null-check on use
1044 * to paranoically avoid potential initialization circularities
1045 * as well as to simplify generated code.
1046 */
1047 static final ForkJoinPool common;
1048
1049 /**
1050 * Common pool parallelism. Must equal common.parallelism.
1051 */
1052 static final int commonParallelism;
1053
1054 /**
1055 * Sequence number for creating workerNamePrefix.
1056 */
1057 private static int poolNumberSequence;
1058
1059 /**
1060 * Returns the next sequence number. We don't expect this to
1061 * ever contend, so use simple builtin sync.
1062 */
1063 private static final synchronized int nextPoolId() {
1064 return ++poolNumberSequence;
1065 }
1066
1067 // static constants
1068
1069 /**
1070 * Initial timeout value (in nanoseconds) for the thread
1071 * triggering quiescence to park waiting for new work. On timeout,
1072 * the thread will instead try to shrink the number of
1073 * workers. The value should be large enough to avoid overly
1074 * aggressive shrinkage during most transient stalls (long GCs
1075 * etc).
1076 */
1077 private static final long IDLE_TIMEOUT = 2000L * 1000L * 1000L; // 2sec
1078
1079 /**
1080 * Timeout value when there are more threads than parallelism level
1081 */
1082 private static final long FAST_IDLE_TIMEOUT = 200L * 1000L * 1000L;
1083
1084 /**
1085 * Tolerance for idle timeouts, to cope with timer undershoots
1086 */
1087 private static final long TIMEOUT_SLOP = 2000000L;
1088
1089 /**
1090 * The maximum stolen->joining link depth allowed in method
1091 * tryHelpStealer. Must be a power of two. Depths for legitimate
1092 * chains are unbounded, but we use a fixed constant to avoid
1093 * (otherwise unchecked) cycles and to bound staleness of
1094 * traversal parameters at the expense of sometimes blocking when
1095 * we could be helping.
1096 */
1097 private static final int MAX_HELP = 64;
1098
1099 /**
1100 * Increment for seed generators. See class ThreadLocal for
1101 * explanation.
1102 */
1103 private static final int SEED_INCREMENT = 0x61c88647;
1104
1105 /**
1106 * Bits and masks for control variables
1107 *
1108 * Field ctl is a long packed with:
1109 * AC: Number of active running workers minus target parallelism (16 bits)
1110 * TC: Number of total workers minus target parallelism (16 bits)
1111 * ST: true if pool is terminating (1 bit)
1112 * EC: the wait count of top waiting thread (15 bits)
1113 * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1114 *
1115 * When convenient, we can extract the upper 32 bits of counts and
1116 * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1117 * (int)ctl. The ec field is never accessed alone, but always
1118 * together with id and st. The offsets of counts by the target
1119 * parallelism and the positionings of fields makes it possible to
1120 * perform the most common checks via sign tests of fields: When
1121 * ac is negative, there are not enough active workers, when tc is
1122 * negative, there are not enough total workers, and when e is
1123 * negative, the pool is terminating. To deal with these possibly
1124 * negative fields, we use casts in and out of "short" and/or
1125 * signed shifts to maintain signedness.
1126 *
1127 * When a thread is queued (inactivated), its eventCount field is
1128 * set negative, which is the only way to tell if a worker is
1129 * prevented from executing tasks, even though it must continue to
1130 * scan for them to avoid queuing races. Note however that
1131 * eventCount updates lag releases so usage requires care.
1132 *
1133 * Field plock is an int packed with:
1134 * SHUTDOWN: true if shutdown is enabled (1 bit)
1135 * SEQ: a sequence lock, with PL_LOCK bit set if locked (30 bits)
1136 * SIGNAL: set when threads may be waiting on the lock (1 bit)
1137 *
1138 * The sequence number enables simple consistency checks:
1139 * Staleness of read-only operations on the workQueues array can
1140 * be checked by comparing plock before vs after the reads.
1141 */
1142
1143 // bit positions/shifts for fields
1144 private static final int AC_SHIFT = 48;
1145 private static final int TC_SHIFT = 32;
1146 private static final int ST_SHIFT = 31;
1147 private static final int EC_SHIFT = 16;
1148
1149 // bounds
1150 private static final int SMASK = 0xffff; // short bits
1151 private static final int MAX_CAP = 0x7fff; // max #workers - 1
1152 private static final int EVENMASK = 0xfffe; // even short bits
1153 private static final int SQMASK = 0x007e; // max 64 (even) slots
1154 private static final int SHORT_SIGN = 1 << 15;
1155 private static final int INT_SIGN = 1 << 31;
1156
1157 // masks
1158 private static final long STOP_BIT = 0x0001L << ST_SHIFT;
1159 private static final long AC_MASK = ((long)SMASK) << AC_SHIFT;
1160 private static final long TC_MASK = ((long)SMASK) << TC_SHIFT;
1161
1162 // units for incrementing and decrementing
1163 private static final long TC_UNIT = 1L << TC_SHIFT;
1164 private static final long AC_UNIT = 1L << AC_SHIFT;
1165
1166 // masks and units for dealing with u = (int)(ctl >>> 32)
1167 private static final int UAC_SHIFT = AC_SHIFT - 32;
1168 private static final int UTC_SHIFT = TC_SHIFT - 32;
1169 private static final int UAC_MASK = SMASK << UAC_SHIFT;
1170 private static final int UTC_MASK = SMASK << UTC_SHIFT;
1171 private static final int UAC_UNIT = 1 << UAC_SHIFT;
1172 private static final int UTC_UNIT = 1 << UTC_SHIFT;
1173
1174 // masks and units for dealing with e = (int)ctl
1175 private static final int E_MASK = 0x7fffffff; // no STOP_BIT
1176 private static final int E_SEQ = 1 << EC_SHIFT;
1177
1178 // plock bits
1179 private static final int SHUTDOWN = 1 << 31;
1180 private static final int PL_LOCK = 2;
1181 private static final int PL_SIGNAL = 1;
1182 private static final int PL_SPINS = 1 << 8;
1183
1184 // access mode for WorkQueue
1185 static final int LIFO_QUEUE = 0;
1186 static final int FIFO_QUEUE = 1;
1187 static final int SHARED_QUEUE = -1;
1188
1189 // bounds for #steps in scan loop -- must be power 2 minus 1
1190 private static final int MIN_SCAN = 0x1ff; // cover estimation slop
1191 private static final int MAX_SCAN = 0x1ffff; // 4 * max workers
1192
1193 // Instance fields
1194
1195 /*
1196 * Field layout of this class tends to matter more than one would
1197 * like. Runtime layout order is only loosely related to
1198 * declaration order and may differ across JVMs, but the following
1199 * empirically works OK on current JVMs.
1200 */
1201
1202 // Heuristic padding to ameliorate unfortunate memory placements
1203 volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
1204
1205 volatile long stealCount; // collects worker counts
1206 volatile long ctl; // main pool control
1207 volatile int plock; // shutdown status and seqLock
1208 volatile int indexSeed; // worker/submitter index seed
1209 final int config; // mode and parallelism level
1210 WorkQueue[] workQueues; // main registry
1211 final ForkJoinWorkerThreadFactory factory;
1212 final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1213 final String workerNamePrefix; // to create worker name string
1214
1215 volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
1216 volatile Object pad18, pad19, pad1a, pad1b;
1217
1218 /**
1219 * Acquires the plock lock to protect worker array and related
1220 * updates. This method is called only if an initial CAS on plock
1221 * fails. This acts as a spinlock for normal cases, but falls back
1222 * to builtin monitor to block when (rarely) needed. This would be
1223 * a terrible idea for a highly contended lock, but works fine as
1224 * a more conservative alternative to a pure spinlock.
1225 */
1226 private int acquirePlock() {
1227 int spins = PL_SPINS, ps, nps;
1228 for (;;) {
1229 if (((ps = plock) & PL_LOCK) == 0 &&
1230 U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1231 return nps;
1232 else if (spins >= 0) {
1233 if (ThreadLocalRandom.nextSecondarySeed() >= 0)
1234 --spins;
1235 }
1236 else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1237 synchronized (this) {
1238 if ((plock & PL_SIGNAL) != 0) {
1239 try {
1240 wait();
1241 } catch (InterruptedException ie) {
1242 try {
1243 Thread.currentThread().interrupt();
1244 } catch (SecurityException ignore) {
1245 }
1246 }
1247 }
1248 else
1249 notifyAll();
1250 }
1251 }
1252 }
1253 }
1254
1255 /**
1256 * Unlocks and signals any thread waiting for plock. Called only
1257 * when CAS of seq value for unlock fails.
1258 */
1259 private void releasePlock(int ps) {
1260 plock = ps;
1261 synchronized (this) { notifyAll(); }
1262 }
1263
1264 /**
1265 * Tries to create and start one worker if fewer than target
1266 * parallelism level exist. Adjusts counts etc on failure.
1267 */
1268 private void tryAddWorker() {
1269 long c; int u;
1270 while ((u = (int)((c = ctl) >>> 32)) < 0 &&
1271 (u & SHORT_SIGN) != 0 && (int)c == 0) {
1272 long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1273 ((u + UAC_UNIT) & UAC_MASK)) << 32;
1274 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1275 ForkJoinWorkerThreadFactory fac;
1276 Throwable ex = null;
1277 ForkJoinWorkerThread wt = null;
1278 try {
1279 if ((fac = factory) != null &&
1280 (wt = fac.newThread(this)) != null) {
1281 wt.start();
1282 break;
1283 }
1284 } catch (Throwable e) {
1285 ex = e;
1286 }
1287 deregisterWorker(wt, ex);
1288 break;
1289 }
1290 }
1291 }
1292
1293 // Registering and deregistering workers
1294
1295 /**
1296 * Callback from ForkJoinWorkerThread to establish and record its
1297 * WorkQueue. To avoid scanning bias due to packing entries in
1298 * front of the workQueues array, we treat the array as a simple
1299 * power-of-two hash table using per-thread seed as hash,
1300 * expanding as needed.
1301 *
1302 * @param wt the worker thread
1303 * @return the worker's queue
1304 */
1305 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1306 Thread.UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps;
1307 wt.setDaemon(true);
1308 if ((handler = ueh) != null)
1309 wt.setUncaughtExceptionHandler(handler);
1310 do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
1311 s += SEED_INCREMENT) ||
1312 s == 0); // skip 0
1313 WorkQueue w = new WorkQueue(this, wt, config >>> 16, s);
1314 if (((ps = plock) & PL_LOCK) != 0 ||
1315 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1316 ps = acquirePlock();
1317 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1318 try {
1319 if ((ws = workQueues) != null) { // skip if shutting down
1320 int n = ws.length, m = n - 1;
1321 int r = (s << 1) | 1; // use odd-numbered indices
1322 if (ws[r &= m] != null) { // collision
1323 int probes = 0; // step by approx half size
1324 int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1325 while (ws[r = (r + step) & m] != null) {
1326 if (++probes >= n) {
1327 workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1328 m = n - 1;
1329 probes = 0;
1330 }
1331 }
1332 }
1333 w.eventCount = w.poolIndex = r; // volatile write orders
1334 ws[r] = w;
1335 }
1336 } finally {
1337 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1338 releasePlock(nps);
1339 }
1340 wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex)));
1341 return w;
1342 }
1343
1344 /**
1345 * Final callback from terminating worker, as well as upon failure
1346 * to construct or start a worker. Removes record of worker from
1347 * array, and adjusts counts. If pool is shutting down, tries to
1348 * complete termination.
1349 *
1350 * @param wt the worker thread, or null if construction failed
1351 * @param ex the exception causing failure, or null if none
1352 */
1353 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1354 WorkQueue w = null;
1355 if (wt != null && (w = wt.workQueue) != null) {
1356 int ps;
1357 w.qlock = -1; // ensure set
1358 long ns = w.nsteals, sc; // collect steal count
1359 do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1360 sc = stealCount, sc + ns));
1361 if (((ps = plock) & PL_LOCK) != 0 ||
1362 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1363 ps = acquirePlock();
1364 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1365 try {
1366 int idx = w.poolIndex;
1367 WorkQueue[] ws = workQueues;
1368 if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1369 ws[idx] = null;
1370 } finally {
1371 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1372 releasePlock(nps);
1373 }
1374 }
1375
1376 long c; // adjust ctl counts
1377 do {} while (!U.compareAndSwapLong
1378 (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1379 ((c - TC_UNIT) & TC_MASK) |
1380 (c & ~(AC_MASK|TC_MASK)))));
1381
1382 if (!tryTerminate(false, false) && w != null && w.array != null) {
1383 w.cancelAll(); // cancel remaining tasks
1384 WorkQueue[] ws; WorkQueue v; Thread p; int u, i, e;
1385 while ((u = (int)((c = ctl) >>> 32)) < 0 && (e = (int)c) >= 0) {
1386 if (e > 0) { // activate or create replacement
1387 if ((ws = workQueues) == null ||
1388 (i = e & SMASK) >= ws.length ||
1389 (v = ws[i]) == null)
1390 break;
1391 long nc = (((long)(v.nextWait & E_MASK)) |
1392 ((long)(u + UAC_UNIT) << 32));
1393 if (v.eventCount != (e | INT_SIGN))
1394 break;
1395 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1396 v.eventCount = (e + E_SEQ) & E_MASK;
1397 if ((p = v.parker) != null)
1398 U.unpark(p);
1399 break;
1400 }
1401 }
1402 else {
1403 if ((short)u < 0)
1404 tryAddWorker();
1405 break;
1406 }
1407 }
1408 }
1409 if (ex == null) // help clean refs on way out
1410 ForkJoinTask.helpExpungeStaleExceptions();
1411 else // rethrow
1412 ForkJoinTask.rethrow(ex);
1413 }
1414
1415 // Submissions
1416
1417 /**
1418 * Unless shutting down, adds the given task to a submission queue
1419 * at submitter's current queue index (modulo submission
1420 * range). Only the most common path is directly handled in this
1421 * method. All others are relayed to fullExternalPush.
1422 *
1423 * @param task the task. Caller must ensure non-null.
1424 */
1425 final void externalPush(ForkJoinTask<?> task) {
1426 WorkQueue[] ws; WorkQueue q; int z, m; ForkJoinTask<?>[] a;
1427 if ((z = ThreadLocalRandom.getProbe()) != 0 && plock > 0 &&
1428 (ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
1429 (q = ws[m & z & SQMASK]) != null &&
1430 U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1431 int b = q.base, s = q.top, n, an;
1432 if ((a = q.array) != null && (an = a.length) > (n = s + 1 - b)) {
1433 int j = (((an - 1) & s) << ASHIFT) + ABASE;
1434 U.putOrderedObject(a, j, task);
1435 q.top = s + 1; // push on to deque
1436 q.qlock = 0;
1437 if (n <= 2)
1438 signalWork(q);
1439 return;
1440 }
1441 q.qlock = 0;
1442 }
1443 fullExternalPush(task);
1444 }
1445
1446 /**
1447 * Full version of externalPush. This method is called, among
1448 * other times, upon the first submission of the first task to the
1449 * pool, so must perform secondary initialization. It also
1450 * detects first submission by an external thread by looking up
1451 * its ThreadLocal, and creates a new shared queue if the one at
1452 * index if empty or contended. The plock lock body must be
1453 * exception-free (so no try/finally) so we optimistically
1454 * allocate new queues outside the lock and throw them away if
1455 * (very rarely) not needed.
1456 *
1457 * Secondary initialization occurs when plock is zero, to create
1458 * workQueue array and set plock to a valid value. This lock body
1459 * must also be exception-free. Because the plock seq value can
1460 * eventually wrap around zero, this method harmlessly fails to
1461 * reinitialize if workQueues exists, while still advancing plock.
1462 */
1463 private void fullExternalPush(ForkJoinTask<?> task) {
1464 int r;
1465 if ((r = ThreadLocalRandom.getProbe()) == 0) {
1466 ThreadLocalRandom.localInit();
1467 r = ThreadLocalRandom.getProbe();
1468 }
1469 for (;;) {
1470 WorkQueue[] ws; WorkQueue q; int ps, m, k;
1471 boolean move = false;
1472 if ((ps = plock) < 0)
1473 throw new RejectedExecutionException();
1474 else if (ps == 0 || (ws = workQueues) == null ||
1475 (m = ws.length - 1) < 0) { // initialize workQueues
1476 int p = config & SMASK; // find power of two table size
1477 int n = (p > 1) ? p - 1 : 1; // ensure at least 2 slots
1478 n |= n >>> 1; n |= n >>> 2; n |= n >>> 4;
1479 n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1;
1480 WorkQueue[] nws = ((ws = workQueues) == null || ws.length == 0 ?
1481 new WorkQueue[n] : null);
1482 if (((ps = plock) & PL_LOCK) != 0 ||
1483 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1484 ps = acquirePlock();
1485 if (((ws = workQueues) == null || ws.length == 0) && nws != null)
1486 workQueues = nws;
1487 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1488 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1489 releasePlock(nps);
1490 }
1491 else if ((q = ws[k = r & m & SQMASK]) != null) {
1492 if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
1493 ForkJoinTask<?>[] a = q.array;
1494 int s = q.top;
1495 boolean submitted = false;
1496 try { // locked version of push
1497 if ((a != null && a.length > s + 1 - q.base) ||
1498 (a = q.growArray()) != null) { // must presize
1499 int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
1500 U.putOrderedObject(a, j, task);
1501 q.top = s + 1;
1502 submitted = true;
1503 }
1504 } finally {
1505 q.qlock = 0; // unlock
1506 }
1507 if (submitted) {
1508 signalWork(q);
1509 return;
1510 }
1511 }
1512 move = true; // move on failure
1513 }
1514 else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
1515 q = new WorkQueue(this, null, SHARED_QUEUE, r);
1516 if (((ps = plock) & PL_LOCK) != 0 ||
1517 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1518 ps = acquirePlock();
1519 if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
1520 ws[k] = q;
1521 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1522 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1523 releasePlock(nps);
1524 }
1525 else
1526 move = true; // move if busy
1527 if (move)
1528 r = ThreadLocalRandom.advanceProbe(r);
1529 }
1530 }
1531
1532 // Maintaining ctl counts
1533
1534 /**
1535 * Increments active count; mainly called upon return from blocking.
1536 */
1537 final void incrementActiveCount() {
1538 long c;
1539 do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1540 }
1541
1542 /**
1543 * Tries to create or activate a worker if too few are active.
1544 *
1545 * @param q the (non-null) queue holding tasks to be signalled
1546 */
1547 final void signalWork(WorkQueue q) {
1548 int hint = q.poolIndex;
1549 long c; int e, u, i, n; WorkQueue[] ws; WorkQueue w; Thread p;
1550 while ((u = (int)((c = ctl) >>> 32)) < 0) {
1551 if ((e = (int)c) > 0) {
1552 if ((ws = workQueues) != null && ws.length > (i = e & SMASK) &&
1553 (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1554 long nc = (((long)(w.nextWait & E_MASK)) |
1555 ((long)(u + UAC_UNIT) << 32));
1556 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1557 w.hint = hint;
1558 w.eventCount = (e + E_SEQ) & E_MASK;
1559 if ((p = w.parker) != null)
1560 U.unpark(p);
1561 break;
1562 }
1563 if (q.top - q.base <= 0)
1564 break;
1565 }
1566 else
1567 break;
1568 }
1569 else {
1570 if ((short)u < 0)
1571 tryAddWorker();
1572 break;
1573 }
1574 }
1575 }
1576
1577 // Scanning for tasks
1578
1579 /**
1580 * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1581 */
1582 final void runWorker(WorkQueue w) {
1583 w.growArray(); // allocate queue
1584 do { w.runTask(scan(w)); } while (w.qlock >= 0);
1585 }
1586
1587 /**
1588 * Scans for and, if found, returns one task, else possibly
1589 * inactivates the worker. This method operates on single reads of
1590 * volatile state and is designed to be re-invoked continuously,
1591 * in part because it returns upon detecting inconsistencies,
1592 * contention, or state changes that indicate possible success on
1593 * re-invocation.
1594 *
1595 * The scan searches for tasks across queues (starting at a random
1596 * index, and relying on registerWorker to irregularly scatter
1597 * them within array to avoid bias), checking each at least twice.
1598 * The scan terminates upon either finding a non-empty queue, or
1599 * completing the sweep. If the worker is not inactivated, it
1600 * takes and returns a task from this queue. Otherwise, if not
1601 * activated, it signals workers (that may include itself) and
1602 * returns so caller can retry. Also returns for true if the
1603 * worker array may have changed during an empty scan. On failure
1604 * to find a task, we take one of the following actions, after
1605 * which the caller will retry calling this method unless
1606 * terminated.
1607 *
1608 * * If pool is terminating, terminate the worker.
1609 *
1610 * * If not already enqueued, try to inactivate and enqueue the
1611 * worker on wait queue. Or, if inactivating has caused the pool
1612 * to be quiescent, relay to idleAwaitWork to possibly shrink
1613 * pool.
1614 *
1615 * * If already enqueued and none of the above apply, possibly
1616 * park awaiting signal, else lingering to help scan and signal.
1617 *
1618 * * If a non-empty queue discovered or left as a hint,
1619 * help wake up other workers before return.
1620 *
1621 * @param w the worker (via its WorkQueue)
1622 * @return a task or null if none found
1623 */
1624 private final ForkJoinTask<?> scan(WorkQueue w) {
1625 WorkQueue[] ws; int m;
1626 int ps = plock; // read plock before ws
1627 if (w != null && (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1628 int ec = w.eventCount; // ec is negative if inactive
1629 int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1630 w.hint = -1; // update seed and clear hint
1631 int j = ((m + m + 1) | MIN_SCAN) & MAX_SCAN;
1632 do {
1633 WorkQueue q; ForkJoinTask<?>[] a; int b;
1634 if ((q = ws[(r + j) & m]) != null && (b = q.base) - q.top < 0 &&
1635 (a = q.array) != null) { // probably nonempty
1636 int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1637 ForkJoinTask<?> t = (ForkJoinTask<?>)
1638 U.getObjectVolatile(a, i);
1639 if (q.base == b && ec >= 0 && t != null &&
1640 U.compareAndSwapObject(a, i, t, null)) {
1641 if ((q.base = b + 1) - q.top < 0)
1642 signalWork(q);
1643 return t; // taken
1644 }
1645 else if ((ec < 0 || j < m) && (int)(ctl >> AC_SHIFT) <= 0) {
1646 w.hint = (r + j) & m; // help signal below
1647 break; // cannot take
1648 }
1649 }
1650 } while (--j >= 0);
1651
1652 int h, e, ns; long c, sc; WorkQueue q;
1653 if ((ns = w.nsteals) != 0) {
1654 if (U.compareAndSwapLong(this, STEALCOUNT,
1655 sc = stealCount, sc + ns))
1656 w.nsteals = 0; // collect steals and rescan
1657 }
1658 else if (plock != ps) // consistency check
1659 ; // skip
1660 else if ((e = (int)(c = ctl)) < 0)
1661 w.qlock = -1; // pool is terminating
1662 else {
1663 if ((h = w.hint) < 0) {
1664 if (ec >= 0) { // try to enqueue/inactivate
1665 long nc = (((long)ec |
1666 ((c - AC_UNIT) & (AC_MASK|TC_MASK))));
1667 w.nextWait = e; // link and mark inactive
1668 w.eventCount = ec | INT_SIGN;
1669 if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1670 w.eventCount = ec; // unmark on CAS failure
1671 else if ((int)(c >> AC_SHIFT) == 1 - (config & SMASK))
1672 idleAwaitWork(w, nc, c);
1673 }
1674 else if (w.eventCount < 0 && ctl == c) {
1675 Thread wt = Thread.currentThread();
1676 Thread.interrupted(); // clear status
1677 U.putObject(wt, PARKBLOCKER, this);
1678 w.parker = wt; // emulate LockSupport.park
1679 if (w.eventCount < 0) // recheck
1680 U.park(false, 0L); // block
1681 w.parker = null;
1682 U.putObject(wt, PARKBLOCKER, null);
1683 }
1684 }
1685 if ((h >= 0 || (h = w.hint) >= 0) &&
1686 (ws = workQueues) != null && h < ws.length &&
1687 (q = ws[h]) != null) { // signal others before retry
1688 WorkQueue v; Thread p; int u, i, s;
1689 for (int n = (config & SMASK) - 1;;) {
1690 int idleCount = (w.eventCount < 0) ? 0 : -1;
1691 if (((s = idleCount - q.base + q.top) <= n &&
1692 (n = s) <= 0) ||
1693 (u = (int)((c = ctl) >>> 32)) >= 0 ||
1694 (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1695 (v = ws[i]) == null)
1696 break;
1697 long nc = (((long)(v.nextWait & E_MASK)) |
1698 ((long)(u + UAC_UNIT) << 32));
1699 if (v.eventCount != (e | INT_SIGN) ||
1700 !U.compareAndSwapLong(this, CTL, c, nc))
1701 break;
1702 v.hint = h;
1703 v.eventCount = (e + E_SEQ) & E_MASK;
1704 if ((p = v.parker) != null)
1705 U.unpark(p);
1706 if (--n <= 0)
1707 break;
1708 }
1709 }
1710 }
1711 }
1712 return null;
1713 }
1714
1715 /**
1716 * If inactivating worker w has caused the pool to become
1717 * quiescent, checks for pool termination, and, so long as this is
1718 * not the only worker, waits for event for up to a given
1719 * duration. On timeout, if ctl has not changed, terminates the
1720 * worker, which will in turn wake up another worker to possibly
1721 * repeat this process.
1722 *
1723 * @param w the calling worker
1724 * @param currentCtl the ctl value triggering possible quiescence
1725 * @param prevCtl the ctl value to restore if thread is terminated
1726 */
1727 private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1728 if (w != null && w.eventCount < 0 &&
1729 !tryTerminate(false, false) && (int)prevCtl != 0 &&
1730 ctl == currentCtl) {
1731 int dc = -(short)(currentCtl >>> TC_SHIFT);
1732 long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1733 long deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
1734 Thread wt = Thread.currentThread();
1735 while (ctl == currentCtl) {
1736 Thread.interrupted(); // timed variant of version in scan()
1737 U.putObject(wt, PARKBLOCKER, this);
1738 w.parker = wt;
1739 if (ctl == currentCtl)
1740 U.park(false, parkTime);
1741 w.parker = null;
1742 U.putObject(wt, PARKBLOCKER, null);
1743 if (ctl != currentCtl)
1744 break;
1745 if (deadline - System.nanoTime() <= 0L &&
1746 U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1747 w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1748 w.hint = -1;
1749 w.qlock = -1; // shrink
1750 break;
1751 }
1752 }
1753 }
1754 }
1755
1756 /**
1757 * Scans through queues looking for work while joining a task; if
1758 * any present, signals. May return early if more signalling is
1759 * detectably unneeded.
1760 *
1761 * @param task return early if done
1762 * @param origin an index to start scan
1763 */
1764 private void helpSignal(ForkJoinTask<?> task, int origin) {
1765 WorkQueue[] ws; WorkQueue w; Thread p; long c; int m, u, e, i, s;
1766 if (task != null && task.status >= 0 &&
1767 (u = (int)(ctl >>> 32)) < 0 && (u >> UAC_SHIFT) < 0 &&
1768 (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1769 outer: for (int k = origin, j = m; j >= 0; --j) {
1770 WorkQueue q = ws[k++ & m];
1771 for (int n = m;;) { // limit to at most m signals
1772 if (task.status < 0)
1773 break outer;
1774 if (q == null ||
1775 ((s = -q.base + q.top) <= n && (n = s) <= 0))
1776 break;
1777 if ((u = (int)((c = ctl) >>> 32)) >= 0 ||
1778 (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1779 (w = ws[i]) == null)
1780 break outer;
1781 long nc = (((long)(w.nextWait & E_MASK)) |
1782 ((long)(u + UAC_UNIT) << 32));
1783 if (w.eventCount != (e | INT_SIGN))
1784 break outer;
1785 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1786 w.eventCount = (e + E_SEQ) & E_MASK;
1787 if ((p = w.parker) != null)
1788 U.unpark(p);
1789 if (--n <= 0)
1790 break;
1791 }
1792 }
1793 }
1794 }
1795 }
1796
1797 /**
1798 * Tries to locate and execute tasks for a stealer of the given
1799 * task, or in turn one of its stealers, Traces currentSteal ->
1800 * currentJoin links looking for a thread working on a descendant
1801 * of the given task and with a non-empty queue to steal back and
1802 * execute tasks from. The first call to this method upon a
1803 * waiting join will often entail scanning/search, (which is OK
1804 * because the joiner has nothing better to do), but this method
1805 * leaves hints in workers to speed up subsequent calls. The
1806 * implementation is very branchy to cope with potential
1807 * inconsistencies or loops encountering chains that are stale,
1808 * unknown, or so long that they are likely cyclic.
1809 *
1810 * @param joiner the joining worker
1811 * @param task the task to join
1812 * @return 0 if no progress can be made, negative if task
1813 * known complete, else positive
1814 */
1815 private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1816 int stat = 0, steps = 0; // bound to avoid cycles
1817 if (joiner != null && task != null) { // hoist null checks
1818 restart: for (;;) {
1819 ForkJoinTask<?> subtask = task; // current target
1820 for (WorkQueue j = joiner, v;;) { // v is stealer of subtask
1821 WorkQueue[] ws; int m, s, h;
1822 if ((s = task.status) < 0) {
1823 stat = s;
1824 break restart;
1825 }
1826 if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1827 break restart; // shutting down
1828 if ((v = ws[h = (j.hint | 1) & m]) == null ||
1829 v.currentSteal != subtask) {
1830 for (int origin = h;;) { // find stealer
1831 if (((h = (h + 2) & m) & 15) == 1 &&
1832 (subtask.status < 0 || j.currentJoin != subtask))
1833 continue restart; // occasional staleness check
1834 if ((v = ws[h]) != null &&
1835 v.currentSteal == subtask) {
1836 j.hint = h; // save hint
1837 break;
1838 }
1839 if (h == origin)
1840 break restart; // cannot find stealer
1841 }
1842 }
1843 for (;;) { // help stealer or descend to its stealer
1844 ForkJoinTask[] a; int b;
1845 if (subtask.status < 0) // surround probes with
1846 continue restart; // consistency checks
1847 if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1848 int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1849 ForkJoinTask<?> t =
1850 (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1851 if (subtask.status < 0 || j.currentJoin != subtask ||
1852 v.currentSteal != subtask)
1853 continue restart; // stale
1854 stat = 1; // apparent progress
1855 if (t != null && v.base == b &&
1856 U.compareAndSwapObject(a, i, t, null)) {
1857 v.base = b + 1; // help stealer
1858 joiner.runSubtask(t);
1859 }
1860 else if (v.base == b && ++steps == MAX_HELP)
1861 break restart; // v apparently stalled
1862 }
1863 else { // empty -- try to descend
1864 ForkJoinTask<?> next = v.currentJoin;
1865 if (subtask.status < 0 || j.currentJoin != subtask ||
1866 v.currentSteal != subtask)
1867 continue restart; // stale
1868 else if (next == null || ++steps == MAX_HELP)
1869 break restart; // dead-end or maybe cyclic
1870 else {
1871 subtask = next;
1872 j = v;
1873 break;
1874 }
1875 }
1876 }
1877 }
1878 }
1879 }
1880 return stat;
1881 }
1882
1883 /**
1884 * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1885 * and run tasks within the target's computation.
1886 *
1887 * @param task the task to join
1888 * @param mode if shared, exit upon completing any task
1889 * if all workers are active
1890 */
1891 private int helpComplete(ForkJoinTask<?> task, int mode) {
1892 WorkQueue[] ws; WorkQueue q; int m, n, s, u;
1893 if (task != null && (ws = workQueues) != null &&
1894 (m = ws.length - 1) >= 0) {
1895 for (int j = 1, origin = j;;) {
1896 if ((s = task.status) < 0)
1897 return s;
1898 if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) {
1899 origin = j;
1900 if (mode == SHARED_QUEUE &&
1901 ((u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0))
1902 break;
1903 }
1904 else if ((j = (j + 2) & m) == origin)
1905 break;
1906 }
1907 }
1908 return 0;
1909 }
1910
1911 /**
1912 * Tries to decrement active count (sometimes implicitly) and
1913 * possibly release or create a compensating worker in preparation
1914 * for blocking. Fails on contention or termination. Otherwise,
1915 * adds a new thread if no idle workers are available and pool
1916 * may become starved.
1917 */
1918 final boolean tryCompensate() {
1919 int pc = config & SMASK, e, i, tc; long c;
1920 WorkQueue[] ws; WorkQueue w; Thread p;
1921 if ((ws = workQueues) != null && (e = (int)(c = ctl)) >= 0) {
1922 if (e != 0 && (i = e & SMASK) < ws.length &&
1923 (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1924 long nc = ((long)(w.nextWait & E_MASK) |
1925 (c & (AC_MASK|TC_MASK)));
1926 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1927 w.eventCount = (e + E_SEQ) & E_MASK;
1928 if ((p = w.parker) != null)
1929 U.unpark(p);
1930 return true; // replace with idle worker
1931 }
1932 }
1933 else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
1934 (int)(c >> AC_SHIFT) + pc > 1) {
1935 long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1936 if (U.compareAndSwapLong(this, CTL, c, nc))
1937 return true; // no compensation
1938 }
1939 else if (tc + pc < MAX_CAP) {
1940 long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1941 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1942 ForkJoinWorkerThreadFactory fac;
1943 Throwable ex = null;
1944 ForkJoinWorkerThread wt = null;
1945 try {
1946 if ((fac = factory) != null &&
1947 (wt = fac.newThread(this)) != null) {
1948 wt.start();
1949 return true;
1950 }
1951 } catch (Throwable rex) {
1952 ex = rex;
1953 }
1954 deregisterWorker(wt, ex); // clean up and return false
1955 }
1956 }
1957 }
1958 return false;
1959 }
1960
1961 /**
1962 * Helps and/or blocks until the given task is done.
1963 *
1964 * @param joiner the joining worker
1965 * @param task the task
1966 * @return task status on exit
1967 */
1968 final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1969 int s = 0;
1970 if (joiner != null && task != null && (s = task.status) >= 0) {
1971 ForkJoinTask<?> prevJoin = joiner.currentJoin;
1972 joiner.currentJoin = task;
1973 do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
1974 joiner.tryRemoveAndExec(task)); // process local tasks
1975 if (s >= 0 && (s = task.status) >= 0) {
1976 helpSignal(task, joiner.poolIndex);
1977 if ((s = task.status) >= 0 &&
1978 (task instanceof CountedCompleter))
1979 s = helpComplete(task, LIFO_QUEUE);
1980 }
1981 while (s >= 0 && (s = task.status) >= 0) {
1982 if ((!joiner.isEmpty() || // try helping
1983 (s = tryHelpStealer(joiner, task)) == 0) &&
1984 (s = task.status) >= 0) {
1985 helpSignal(task, joiner.poolIndex);
1986 if ((s = task.status) >= 0 && tryCompensate()) {
1987 if (task.trySetSignal() && (s = task.status) >= 0) {
1988 synchronized (task) {
1989 if (task.status >= 0) {
1990 try { // see ForkJoinTask
1991 task.wait(); // for explanation
1992 } catch (InterruptedException ie) {
1993 }
1994 }
1995 else
1996 task.notifyAll();
1997 }
1998 }
1999 long c; // re-activate
2000 do {} while (!U.compareAndSwapLong
2001 (this, CTL, c = ctl, c + AC_UNIT));
2002 }
2003 }
2004 }
2005 joiner.currentJoin = prevJoin;
2006 }
2007 return s;
2008 }
2009
2010 /**
2011 * Stripped-down variant of awaitJoin used by timed joins. Tries
2012 * to help join only while there is continuous progress. (Caller
2013 * will then enter a timed wait.)
2014 *
2015 * @param joiner the joining worker
2016 * @param task the task
2017 */
2018 final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2019 int s;
2020 if (joiner != null && task != null && (s = task.status) >= 0) {
2021 ForkJoinTask<?> prevJoin = joiner.currentJoin;
2022 joiner.currentJoin = task;
2023 do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
2024 joiner.tryRemoveAndExec(task));
2025 if (s >= 0 && (s = task.status) >= 0) {
2026 helpSignal(task, joiner.poolIndex);
2027 if ((s = task.status) >= 0 &&
2028 (task instanceof CountedCompleter))
2029 s = helpComplete(task, LIFO_QUEUE);
2030 }
2031 if (s >= 0 && joiner.isEmpty()) {
2032 do {} while (task.status >= 0 &&
2033 tryHelpStealer(joiner, task) > 0);
2034 }
2035 joiner.currentJoin = prevJoin;
2036 }
2037 }
2038
2039 /**
2040 * Returns a (probably) non-empty steal queue, if one is found
2041 * during a scan, else null. This method must be retried by
2042 * caller if, by the time it tries to use the queue, it is empty.
2043 * @param r a (random) seed for scanning
2044 */
2045 private WorkQueue findNonEmptyStealQueue(int r) {
2046 for (;;) {
2047 int ps = plock, m; WorkQueue[] ws; WorkQueue q;
2048 if ((ws = workQueues) != null && (m = ws.length - 1) >= 0) {
2049 for (int j = (m + 1) << 2; j >= 0; --j) {
2050 if ((q = ws[(((r + j) << 1) | 1) & m]) != null &&
2051 q.base - q.top < 0)
2052 return q;
2053 }
2054 }
2055 if (plock == ps)
2056 return null;
2057 }
2058 }
2059
2060 /**
2061 * Runs tasks until {@code isQuiescent()}. We piggyback on
2062 * active count ctl maintenance, but rather than blocking
2063 * when tasks cannot be found, we rescan until all others cannot
2064 * find tasks either.
2065 */
2066 final void helpQuiescePool(WorkQueue w) {
2067 for (boolean active = true;;) {
2068 long c; WorkQueue q; ForkJoinTask<?> t; int b;
2069 while ((t = w.nextLocalTask()) != null) {
2070 if (w.base - w.top < 0)
2071 signalWork(w);
2072 t.doExec();
2073 }
2074 if ((q = findNonEmptyStealQueue(w.nextSeed())) != null) {
2075 if (!active) { // re-establish active count
2076 active = true;
2077 do {} while (!U.compareAndSwapLong
2078 (this, CTL, c = ctl, c + AC_UNIT));
2079 }
2080 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2081 if (q.base - q.top < 0)
2082 signalWork(q);
2083 w.runSubtask(t);
2084 }
2085 }
2086 else if (active) { // decrement active count without queuing
2087 long nc = (c = ctl) - AC_UNIT;
2088 if ((int)(nc >> AC_SHIFT) + (config & SMASK) == 0)
2089 return; // bypass decrement-then-increment
2090 if (U.compareAndSwapLong(this, CTL, c, nc))
2091 active = false;
2092 }
2093 else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) == 0 &&
2094 U.compareAndSwapLong(this, CTL, c, c + AC_UNIT))
2095 return;
2096 }
2097 }
2098
2099 /**
2100 * Gets and removes a local or stolen task for the given worker.
2101 *
2102 * @return a task, if available
2103 */
2104 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2105 for (ForkJoinTask<?> t;;) {
2106 WorkQueue q; int b;
2107 if ((t = w.nextLocalTask()) != null)
2108 return t;
2109 if ((q = findNonEmptyStealQueue(w.nextSeed())) == null)
2110 return null;
2111 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2112 if (q.base - q.top < 0)
2113 signalWork(q);
2114 return t;
2115 }
2116 }
2117 }
2118
2119 /**
2120 * Returns a cheap heuristic guide for task partitioning when
2121 * programmers, frameworks, tools, or languages have little or no
2122 * idea about task granularity. In essence by offering this
2123 * method, we ask users only about tradeoffs in overhead vs
2124 * expected throughput and its variance, rather than how finely to
2125 * partition tasks.
2126 *
2127 * In a steady state strict (tree-structured) computation, each
2128 * thread makes available for stealing enough tasks for other
2129 * threads to remain active. Inductively, if all threads play by
2130 * the same rules, each thread should make available only a
2131 * constant number of tasks.
2132 *
2133 * The minimum useful constant is just 1. But using a value of 1
2134 * would require immediate replenishment upon each steal to
2135 * maintain enough tasks, which is infeasible. Further,
2136 * partitionings/granularities of offered tasks should minimize
2137 * steal rates, which in general means that threads nearer the top
2138 * of computation tree should generate more than those nearer the
2139 * bottom. In perfect steady state, each thread is at
2140 * approximately the same level of computation tree. However,
2141 * producing extra tasks amortizes the uncertainty of progress and
2142 * diffusion assumptions.
2143 *
2144 * So, users will want to use values larger, but not much larger
2145 * than 1 to both smooth over transient shortages and hedge
2146 * against uneven progress; as traded off against the cost of
2147 * extra task overhead. We leave the user to pick a threshold
2148 * value to compare with the results of this call to guide
2149 * decisions, but recommend values such as 3.
2150 *
2151 * When all threads are active, it is on average OK to estimate
2152 * surplus strictly locally. In steady-state, if one thread is
2153 * maintaining say 2 surplus tasks, then so are others. So we can
2154 * just use estimated queue length. However, this strategy alone
2155 * leads to serious mis-estimates in some non-steady-state
2156 * conditions (ramp-up, ramp-down, other stalls). We can detect
2157 * many of these by further considering the number of "idle"
2158 * threads, that are known to have zero queued tasks, so
2159 * compensate by a factor of (#idle/#active) threads.
2160 *
2161 * Note: The approximation of #busy workers as #active workers is
2162 * not very good under current signalling scheme, and should be
2163 * improved.
2164 */
2165 static int getSurplusQueuedTaskCount() {
2166 Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2167 if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2168 int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2169 int n = (q = wt.workQueue).top - q.base;
2170 int a = (int)(pool.ctl >> AC_SHIFT) + p;
2171 return n - (a > (p >>>= 1) ? 0 :
2172 a > (p >>>= 1) ? 1 :
2173 a > (p >>>= 1) ? 2 :
2174 a > (p >>>= 1) ? 4 :
2175 8);
2176 }
2177 return 0;
2178 }
2179
2180 // Termination
2181
2182 /**
2183 * Possibly initiates and/or completes termination. The caller
2184 * triggering termination runs three passes through workQueues:
2185 * (0) Setting termination status, followed by wakeups of queued
2186 * workers; (1) cancelling all tasks; (2) interrupting lagging
2187 * threads (likely in external tasks, but possibly also blocked in
2188 * joins). Each pass repeats previous steps because of potential
2189 * lagging thread creation.
2190 *
2191 * @param now if true, unconditionally terminate, else only
2192 * if no work and no active workers
2193 * @param enable if true, enable shutdown when next possible
2194 * @return true if now terminating or terminated
2195 */
2196 private boolean tryTerminate(boolean now, boolean enable) {
2197 int ps;
2198 if (this == common) // cannot shut down
2199 return false;
2200 if ((ps = plock) >= 0) { // enable by setting plock
2201 if (!enable)
2202 return false;
2203 if ((ps & PL_LOCK) != 0 ||
2204 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2205 ps = acquirePlock();
2206 int nps = ((ps + PL_LOCK) & ~SHUTDOWN) | SHUTDOWN;
2207 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2208 releasePlock(nps);
2209 }
2210 for (long c;;) {
2211 if (((c = ctl) & STOP_BIT) != 0) { // already terminating
2212 if ((short)(c >>> TC_SHIFT) == -(config & SMASK)) {
2213 synchronized (this) {
2214 notifyAll(); // signal when 0 workers
2215 }
2216 }
2217 return true;
2218 }
2219 if (!now) { // check if idle & no tasks
2220 WorkQueue[] ws; WorkQueue w;
2221 if ((int)(c >> AC_SHIFT) != -(config & SMASK))
2222 return false;
2223 if ((ws = workQueues) != null) {
2224 for (int i = 0; i < ws.length; ++i) {
2225 if ((w = ws[i]) != null) {
2226 if (!w.isEmpty()) { // signal unprocessed tasks
2227 signalWork(w);
2228 return false;
2229 }
2230 if ((i & 1) != 0 && w.eventCount >= 0)
2231 return false; // unqueued inactive worker
2232 }
2233 }
2234 }
2235 }
2236 if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2237 for (int pass = 0; pass < 3; ++pass) {
2238 WorkQueue[] ws; WorkQueue w; Thread wt;
2239 if ((ws = workQueues) != null) {
2240 int n = ws.length;
2241 for (int i = 0; i < n; ++i) {
2242 if ((w = ws[i]) != null) {
2243 w.qlock = -1;
2244 if (pass > 0) {
2245 w.cancelAll();
2246 if (pass > 1 && (wt = w.owner) != null) {
2247 if (!wt.isInterrupted()) {
2248 try {
2249 wt.interrupt();
2250 } catch (Throwable ignore) {
2251 }
2252 }
2253 U.unpark(wt);
2254 }
2255 }
2256 }
2257 }
2258 // Wake up workers parked on event queue
2259 int i, e; long cc; Thread p;
2260 while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2261 (i = e & SMASK) < n && i >= 0 &&
2262 (w = ws[i]) != null) {
2263 long nc = ((long)(w.nextWait & E_MASK) |
2264 ((cc + AC_UNIT) & AC_MASK) |
2265 (cc & (TC_MASK|STOP_BIT)));
2266 if (w.eventCount == (e | INT_SIGN) &&
2267 U.compareAndSwapLong(this, CTL, cc, nc)) {
2268 w.eventCount = (e + E_SEQ) & E_MASK;
2269 w.qlock = -1;
2270 if ((p = w.parker) != null)
2271 U.unpark(p);
2272 }
2273 }
2274 }
2275 }
2276 }
2277 }
2278 }
2279
2280 // external operations on common pool
2281
2282 /**
2283 * Returns common pool queue for a thread that has submitted at
2284 * least one task.
2285 */
2286 static WorkQueue commonSubmitterQueue() {
2287 ForkJoinPool p; WorkQueue[] ws; int m, z;
2288 return ((z = ThreadLocalRandom.getProbe()) != 0 &&
2289 (p = common) != null &&
2290 (ws = p.workQueues) != null &&
2291 (m = ws.length - 1) >= 0) ?
2292 ws[m & z & SQMASK] : null;
2293 }
2294
2295 /**
2296 * Tries to pop the given task from submitter's queue in common pool.
2297 */
2298 static boolean tryExternalUnpush(ForkJoinTask<?> t) {
2299 ForkJoinPool p; WorkQueue[] ws; WorkQueue q;
2300 ForkJoinTask<?>[] a; int m, s, z;
2301 if (t != null &&
2302 (z = ThreadLocalRandom.getProbe()) != 0 &&
2303 (p = common) != null &&
2304 (ws = p.workQueues) != null &&
2305 (m = ws.length - 1) >= 0 &&
2306 (q = ws[m & z & SQMASK]) != null &&
2307 (s = q.top) != q.base &&
2308 (a = q.array) != null) {
2309 long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
2310 if (U.getObject(a, j) == t &&
2311 U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2312 if (q.array == a && q.top == s && // recheck
2313 U.compareAndSwapObject(a, j, t, null)) {
2314 q.top = s - 1;
2315 q.qlock = 0;
2316 return true;
2317 }
2318 q.qlock = 0;
2319 }
2320 }
2321 return false;
2322 }
2323
2324 /**
2325 * Tries to pop and run local tasks within the same computation
2326 * as the given root. On failure, tries to help complete from
2327 * other queues via helpComplete.
2328 */
2329 private void externalHelpComplete(WorkQueue q, ForkJoinTask<?> root) {
2330 ForkJoinTask<?>[] a; int m;
2331 if (q != null && (a = q.array) != null && (m = (a.length - 1)) >= 0 &&
2332 root != null && root.status >= 0) {
2333 for (;;) {
2334 int s, u; Object o; CountedCompleter<?> task = null;
2335 if ((s = q.top) - q.base > 0) {
2336 long j = ((m & (s - 1)) << ASHIFT) + ABASE;
2337 if ((o = U.getObject(a, j)) != null &&
2338 (o instanceof CountedCompleter)) {
2339 CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2340 do {
2341 if (r == root) {
2342 if (U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2343 if (q.array == a && q.top == s &&
2344 U.compareAndSwapObject(a, j, t, null)) {
2345 q.top = s - 1;
2346 task = t;
2347 }
2348 q.qlock = 0;
2349 }
2350 break;
2351 }
2352 } while ((r = r.completer) != null);
2353 }
2354 }
2355 if (task != null)
2356 task.doExec();
2357 if (root.status < 0 ||
2358 (u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0)
2359 break;
2360 if (task == null) {
2361 helpSignal(root, q.poolIndex);
2362 if (root.status >= 0)
2363 helpComplete(root, SHARED_QUEUE);
2364 break;
2365 }
2366 }
2367 }
2368 }
2369
2370 /**
2371 * Tries to help execute or signal availability of the given task
2372 * from submitter's queue in common pool.
2373 */
2374 static void externalHelpJoin(ForkJoinTask<?> t) {
2375 // Some hard-to-avoid overlap with tryExternalUnpush
2376 ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w;
2377 ForkJoinTask<?>[] a; int m, s, n, z;
2378 if (t != null &&
2379 (z = ThreadLocalRandom.getProbe()) != 0 &&
2380 (p = common) != null &&
2381 (ws = p.workQueues) != null &&
2382 (m = ws.length - 1) >= 0 &&
2383 (q = ws[m & z & SQMASK]) != null &&
2384 (a = q.array) != null) {
2385 int am = a.length - 1;
2386 if ((s = q.top) != q.base) {
2387 long j = ((am & (s - 1)) << ASHIFT) + ABASE;
2388 if (U.getObject(a, j) == t &&
2389 U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2390 if (q.array == a && q.top == s &&
2391 U.compareAndSwapObject(a, j, t, null)) {
2392 q.top = s - 1;
2393 q.qlock = 0;
2394 t.doExec();
2395 }
2396 else
2397 q.qlock = 0;
2398 }
2399 }
2400 if (t.status >= 0) {
2401 if (t instanceof CountedCompleter)
2402 p.externalHelpComplete(q, t);
2403 else
2404 p.helpSignal(t, q.poolIndex);
2405 }
2406 }
2407 }
2408
2409 // Exported methods
2410
2411 // Constructors
2412
2413 /**
2414 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2415 * java.lang.Runtime#availableProcessors}, using the {@linkplain
2416 * #defaultForkJoinWorkerThreadFactory default thread factory},
2417 * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2418 *
2419 * @throws SecurityException if a security manager exists and
2420 * the caller is not permitted to modify threads
2421 * because it does not hold {@link
2422 * java.lang.RuntimePermission}{@code ("modifyThread")}
2423 */
2424 public ForkJoinPool() {
2425 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2426 defaultForkJoinWorkerThreadFactory, null, false);
2427 }
2428
2429 /**
2430 * Creates a {@code ForkJoinPool} with the indicated parallelism
2431 * level, the {@linkplain
2432 * #defaultForkJoinWorkerThreadFactory default thread factory},
2433 * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2434 *
2435 * @param parallelism the parallelism level
2436 * @throws IllegalArgumentException if parallelism less than or
2437 * equal to zero, or greater than implementation limit
2438 * @throws SecurityException if a security manager exists and
2439 * the caller is not permitted to modify threads
2440 * because it does not hold {@link
2441 * java.lang.RuntimePermission}{@code ("modifyThread")}
2442 */
2443 public ForkJoinPool(int parallelism) {
2444 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2445 }
2446
2447 /**
2448 * Creates a {@code ForkJoinPool} with the given parameters.
2449 *
2450 * @param parallelism the parallelism level. For default value,
2451 * use {@link java.lang.Runtime#availableProcessors}.
2452 * @param factory the factory for creating new threads. For default value,
2453 * use {@link #defaultForkJoinWorkerThreadFactory}.
2454 * @param handler the handler for internal worker threads that
2455 * terminate due to unrecoverable errors encountered while executing
2456 * tasks. For default value, use {@code null}.
2457 * @param asyncMode if true,
2458 * establishes local first-in-first-out scheduling mode for forked
2459 * tasks that are never joined. This mode may be more appropriate
2460 * than default locally stack-based mode in applications in which
2461 * worker threads only process event-style asynchronous tasks.
2462 * For default value, use {@code false}.
2463 * @throws IllegalArgumentException if parallelism less than or
2464 * equal to zero, or greater than implementation limit
2465 * @throws NullPointerException if the factory is null
2466 * @throws SecurityException if a security manager exists and
2467 * the caller is not permitted to modify threads
2468 * because it does not hold {@link
2469 * java.lang.RuntimePermission}{@code ("modifyThread")}
2470 */
2471 public ForkJoinPool(int parallelism,
2472 ForkJoinWorkerThreadFactory factory,
2473 Thread.UncaughtExceptionHandler handler,
2474 boolean asyncMode) {
2475 this(checkParallelism(parallelism),
2476 checkFactory(factory),
2477 handler,
2478 asyncMode,
2479 "ForkJoinPool-" + nextPoolId() + "-worker-");
2480 checkPermission();
2481 }
2482
2483 private static int checkParallelism(int parallelism) {
2484 if (parallelism <= 0 || parallelism > MAX_CAP)
2485 throw new IllegalArgumentException();
2486 return parallelism;
2487 }
2488
2489 private static ForkJoinWorkerThreadFactory checkFactory
2490 (ForkJoinWorkerThreadFactory factory) {
2491 if (factory == null)
2492 throw new NullPointerException();
2493 return factory;
2494 }
2495
2496 /**
2497 * Creates a {@code ForkJoinPool} with the given parameters, without
2498 * any security checks or parameter validation. Invoked directly by
2499 * makeCommonPool.
2500 */
2501 private ForkJoinPool(int parallelism,
2502 ForkJoinWorkerThreadFactory factory,
2503 Thread.UncaughtExceptionHandler handler,
2504 boolean asyncMode,
2505 String workerNamePrefix) {
2506 this.workerNamePrefix = workerNamePrefix;
2507 this.factory = factory;
2508 this.ueh = handler;
2509 this.config = parallelism | (asyncMode ? (FIFO_QUEUE << 16) : 0);
2510 long np = (long)(-parallelism); // offset ctl counts
2511 this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2512 }
2513
2514 /**
2515 * Returns the common pool instance. This pool is statically
2516 * constructed; its run state is unaffected by attempts to {@link
2517 * #shutdown} or {@link #shutdownNow}. However this pool and any
2518 * ongoing processing are automatically terminated upon program
2519 * {@link System#exit}. Any program that relies on asynchronous
2520 * task processing to complete before program termination should
2521 * invoke {@code commonPool().}{@link #awaitQuiescence}, before
2522 * exit.
2523 *
2524 * @return the common pool instance
2525 * @since 1.8
2526 */
2527 public static ForkJoinPool commonPool() {
2528 // assert common != null : "static init error";
2529 return common;
2530 }
2531
2532 // Execution methods
2533
2534 /**
2535 * Performs the given task, returning its result upon completion.
2536 * If the computation encounters an unchecked Exception or Error,
2537 * it is rethrown as the outcome of this invocation. Rethrown
2538 * exceptions behave in the same way as regular exceptions, but,
2539 * when possible, contain stack traces (as displayed for example
2540 * using {@code ex.printStackTrace()}) of both the current thread
2541 * as well as the thread actually encountering the exception;
2542 * minimally only the latter.
2543 *
2544 * @param task the task
2545 * @return the task's result
2546 * @throws NullPointerException if the task is null
2547 * @throws RejectedExecutionException if the task cannot be
2548 * scheduled for execution
2549 */
2550 public <T> T invoke(ForkJoinTask<T> task) {
2551 if (task == null)
2552 throw new NullPointerException();
2553 externalPush(task);
2554 return task.join();
2555 }
2556
2557 /**
2558 * Arranges for (asynchronous) execution of the given task.
2559 *
2560 * @param task the task
2561 * @throws NullPointerException if the task is null
2562 * @throws RejectedExecutionException if the task cannot be
2563 * scheduled for execution
2564 */
2565 public void execute(ForkJoinTask<?> task) {
2566 if (task == null)
2567 throw new NullPointerException();
2568 externalPush(task);
2569 }
2570
2571 // AbstractExecutorService methods
2572
2573 /**
2574 * @throws NullPointerException if the task is null
2575 * @throws RejectedExecutionException if the task cannot be
2576 * scheduled for execution
2577 */
2578 public void execute(Runnable task) {
2579 if (task == null)
2580 throw new NullPointerException();
2581 ForkJoinTask<?> job;
2582 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2583 job = (ForkJoinTask<?>) task;
2584 else
2585 job = new ForkJoinTask.RunnableExecuteAction(task);
2586 externalPush(job);
2587 }
2588
2589 /**
2590 * Submits a ForkJoinTask for execution.
2591 *
2592 * @param task the task to submit
2593 * @return the task
2594 * @throws NullPointerException if the task is null
2595 * @throws RejectedExecutionException if the task cannot be
2596 * scheduled for execution
2597 */
2598 public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2599 if (task == null)
2600 throw new NullPointerException();
2601 externalPush(task);
2602 return task;
2603 }
2604
2605 /**
2606 * @throws NullPointerException if the task is null
2607 * @throws RejectedExecutionException if the task cannot be
2608 * scheduled for execution
2609 */
2610 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2611 ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2612 externalPush(job);
2613 return job;
2614 }
2615
2616 /**
2617 * @throws NullPointerException if the task is null
2618 * @throws RejectedExecutionException if the task cannot be
2619 * scheduled for execution
2620 */
2621 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2622 ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2623 externalPush(job);
2624 return job;
2625 }
2626
2627 /**
2628 * @throws NullPointerException if the task is null
2629 * @throws RejectedExecutionException if the task cannot be
2630 * scheduled for execution
2631 */
2632 public ForkJoinTask<?> submit(Runnable task) {
2633 if (task == null)
2634 throw new NullPointerException();
2635 ForkJoinTask<?> job;
2636 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2637 job = (ForkJoinTask<?>) task;
2638 else
2639 job = new ForkJoinTask.AdaptedRunnableAction(task);
2640 externalPush(job);
2641 return job;
2642 }
2643
2644 /**
2645 * @throws NullPointerException {@inheritDoc}
2646 * @throws RejectedExecutionException {@inheritDoc}
2647 */
2648 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2649 // In previous versions of this class, this method constructed
2650 // a task to run ForkJoinTask.invokeAll, but now external
2651 // invocation of multiple tasks is at least as efficient.
2652 ArrayList<Future<T>> futures = new ArrayList<Future<T>>(tasks.size());
2653
2654 boolean done = false;
2655 try {
2656 for (Callable<T> t : tasks) {
2657 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2658 futures.add(f);
2659 externalPush(f);
2660 }
2661 for (int i = 0, size = futures.size(); i < size; i++)
2662 ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2663 done = true;
2664 return futures;
2665 } finally {
2666 if (!done)
2667 for (int i = 0, size = futures.size(); i < size; i++)
2668 futures.get(i).cancel(false);
2669 }
2670 }
2671
2672 /**
2673 * Returns the factory used for constructing new workers.
2674 *
2675 * @return the factory used for constructing new workers
2676 */
2677 public ForkJoinWorkerThreadFactory getFactory() {
2678 return factory;
2679 }
2680
2681 /**
2682 * Returns the handler for internal worker threads that terminate
2683 * due to unrecoverable errors encountered while executing tasks.
2684 *
2685 * @return the handler, or {@code null} if none
2686 */
2687 public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
2688 return ueh;
2689 }
2690
2691 /**
2692 * Returns the targeted parallelism level of this pool.
2693 *
2694 * @return the targeted parallelism level of this pool
2695 */
2696 public int getParallelism() {
2697 return config & SMASK;
2698 }
2699
2700 /**
2701 * Returns the targeted parallelism level of the common pool.
2702 *
2703 * @return the targeted parallelism level of the common pool
2704 * @since 1.8
2705 */
2706 public static int getCommonPoolParallelism() {
2707 return commonParallelism;
2708 }
2709
2710 /**
2711 * Returns the number of worker threads that have started but not
2712 * yet terminated. The result returned by this method may differ
2713 * from {@link #getParallelism} when threads are created to
2714 * maintain parallelism when others are cooperatively blocked.
2715 *
2716 * @return the number of worker threads
2717 */
2718 public int getPoolSize() {
2719 return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2720 }
2721
2722 /**
2723 * Returns {@code true} if this pool uses local first-in-first-out
2724 * scheduling mode for forked tasks that are never joined.
2725 *
2726 * @return {@code true} if this pool uses async mode
2727 */
2728 public boolean getAsyncMode() {
2729 return (config >>> 16) == FIFO_QUEUE;
2730 }
2731
2732 /**
2733 * Returns an estimate of the number of worker threads that are
2734 * not blocked waiting to join tasks or for other managed
2735 * synchronization. This method may overestimate the
2736 * number of running threads.
2737 *
2738 * @return the number of worker threads
2739 */
2740 public int getRunningThreadCount() {
2741 int rc = 0;
2742 WorkQueue[] ws; WorkQueue w;
2743 if ((ws = workQueues) != null) {
2744 for (int i = 1; i < ws.length; i += 2) {
2745 if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2746 ++rc;
2747 }
2748 }
2749 return rc;
2750 }
2751
2752 /**
2753 * Returns an estimate of the number of threads that are currently
2754 * stealing or executing tasks. This method may overestimate the
2755 * number of active threads.
2756 *
2757 * @return the number of active threads
2758 */
2759 public int getActiveThreadCount() {
2760 int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2761 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2762 }
2763
2764 /**
2765 * Returns {@code true} if all worker threads are currently idle.
2766 * An idle worker is one that cannot obtain a task to execute
2767 * because none are available to steal from other threads, and
2768 * there are no pending submissions to the pool. This method is
2769 * conservative; it might not return {@code true} immediately upon
2770 * idleness of all threads, but will eventually become true if
2771 * threads remain inactive.
2772 *
2773 * @return {@code true} if all threads are currently idle
2774 */
2775 public boolean isQuiescent() {
2776 return (int)(ctl >> AC_SHIFT) + (config & SMASK) == 0;
2777 }
2778
2779 /**
2780 * Returns an estimate of the total number of tasks stolen from
2781 * one thread's work queue by another. The reported value
2782 * underestimates the actual total number of steals when the pool
2783 * is not quiescent. This value may be useful for monitoring and
2784 * tuning fork/join programs: in general, steal counts should be
2785 * high enough to keep threads busy, but low enough to avoid
2786 * overhead and contention across threads.
2787 *
2788 * @return the number of steals
2789 */
2790 public long getStealCount() {
2791 long count = stealCount;
2792 WorkQueue[] ws; WorkQueue w;
2793 if ((ws = workQueues) != null) {
2794 for (int i = 1; i < ws.length; i += 2) {
2795 if ((w = ws[i]) != null)
2796 count += w.nsteals;
2797 }
2798 }
2799 return count;
2800 }
2801
2802 /**
2803 * Returns an estimate of the total number of tasks currently held
2804 * in queues by worker threads (but not including tasks submitted
2805 * to the pool that have not begun executing). This value is only
2806 * an approximation, obtained by iterating across all threads in
2807 * the pool. This method may be useful for tuning task
2808 * granularities.
2809 *
2810 * @return the number of queued tasks
2811 */
2812 public long getQueuedTaskCount() {
2813 long count = 0;
2814 WorkQueue[] ws; WorkQueue w;
2815 if ((ws = workQueues) != null) {
2816 for (int i = 1; i < ws.length; i += 2) {
2817 if ((w = ws[i]) != null)
2818 count += w.queueSize();
2819 }
2820 }
2821 return count;
2822 }
2823
2824 /**
2825 * Returns an estimate of the number of tasks submitted to this
2826 * pool that have not yet begun executing. This method may take
2827 * time proportional to the number of submissions.
2828 *
2829 * @return the number of queued submissions
2830 */
2831 public int getQueuedSubmissionCount() {
2832 int count = 0;
2833 WorkQueue[] ws; WorkQueue w;
2834 if ((ws = workQueues) != null) {
2835 for (int i = 0; i < ws.length; i += 2) {
2836 if ((w = ws[i]) != null)
2837 count += w.queueSize();
2838 }
2839 }
2840 return count;
2841 }
2842
2843 /**
2844 * Returns {@code true} if there are any tasks submitted to this
2845 * pool that have not yet begun executing.
2846 *
2847 * @return {@code true} if there are any queued submissions
2848 */
2849 public boolean hasQueuedSubmissions() {
2850 WorkQueue[] ws; WorkQueue w;
2851 if ((ws = workQueues) != null) {
2852 for (int i = 0; i < ws.length; i += 2) {
2853 if ((w = ws[i]) != null && !w.isEmpty())
2854 return true;
2855 }
2856 }
2857 return false;
2858 }
2859
2860 /**
2861 * Removes and returns the next unexecuted submission if one is
2862 * available. This method may be useful in extensions to this
2863 * class that re-assign work in systems with multiple pools.
2864 *
2865 * @return the next submission, or {@code null} if none
2866 */
2867 protected ForkJoinTask<?> pollSubmission() {
2868 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2869 if ((ws = workQueues) != null) {
2870 for (int i = 0; i < ws.length; i += 2) {
2871 if ((w = ws[i]) != null && (t = w.poll()) != null)
2872 return t;
2873 }
2874 }
2875 return null;
2876 }
2877
2878 /**
2879 * Removes all available unexecuted submitted and forked tasks
2880 * from scheduling queues and adds them to the given collection,
2881 * without altering their execution status. These may include
2882 * artificially generated or wrapped tasks. This method is
2883 * designed to be invoked only when the pool is known to be
2884 * quiescent. Invocations at other times may not remove all
2885 * tasks. A failure encountered while attempting to add elements
2886 * to collection {@code c} may result in elements being in
2887 * neither, either or both collections when the associated
2888 * exception is thrown. The behavior of this operation is
2889 * undefined if the specified collection is modified while the
2890 * operation is in progress.
2891 *
2892 * @param c the collection to transfer elements into
2893 * @return the number of elements transferred
2894 */
2895 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2896 int count = 0;
2897 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2898 if ((ws = workQueues) != null) {
2899 for (int i = 0; i < ws.length; ++i) {
2900 if ((w = ws[i]) != null) {
2901 while ((t = w.poll()) != null) {
2902 c.add(t);
2903 ++count;
2904 }
2905 }
2906 }
2907 }
2908 return count;
2909 }
2910
2911 /**
2912 * Returns a string identifying this pool, as well as its state,
2913 * including indications of run state, parallelism level, and
2914 * worker and task counts.
2915 *
2916 * @return a string identifying this pool, as well as its state
2917 */
2918 public String toString() {
2919 // Use a single pass through workQueues to collect counts
2920 long qt = 0L, qs = 0L; int rc = 0;
2921 long st = stealCount;
2922 long c = ctl;
2923 WorkQueue[] ws; WorkQueue w;
2924 if ((ws = workQueues) != null) {
2925 for (int i = 0; i < ws.length; ++i) {
2926 if ((w = ws[i]) != null) {
2927 int size = w.queueSize();
2928 if ((i & 1) == 0)
2929 qs += size;
2930 else {
2931 qt += size;
2932 st += w.nsteals;
2933 if (w.isApparentlyUnblocked())
2934 ++rc;
2935 }
2936 }
2937 }
2938 }
2939 int pc = (config & SMASK);
2940 int tc = pc + (short)(c >>> TC_SHIFT);
2941 int ac = pc + (int)(c >> AC_SHIFT);
2942 if (ac < 0) // ignore transient negative
2943 ac = 0;
2944 String level;
2945 if ((c & STOP_BIT) != 0)
2946 level = (tc == 0) ? "Terminated" : "Terminating";
2947 else
2948 level = plock < 0 ? "Shutting down" : "Running";
2949 return super.toString() +
2950 "[" + level +
2951 ", parallelism = " + pc +
2952 ", size = " + tc +
2953 ", active = " + ac +
2954 ", running = " + rc +
2955 ", steals = " + st +
2956 ", tasks = " + qt +
2957 ", submissions = " + qs +
2958 "]";
2959 }
2960
2961 /**
2962 * Possibly initiates an orderly shutdown in which previously
2963 * submitted tasks are executed, but no new tasks will be
2964 * accepted. Invocation has no effect on execution state if this
2965 * is the {@link #commonPool()}, and no additional effect if
2966 * already shut down. Tasks that are in the process of being
2967 * submitted concurrently during the course of this method may or
2968 * may not be rejected.
2969 *
2970 * @throws SecurityException if a security manager exists and
2971 * the caller is not permitted to modify threads
2972 * because it does not hold {@link
2973 * java.lang.RuntimePermission}{@code ("modifyThread")}
2974 */
2975 public void shutdown() {
2976 checkPermission();
2977 tryTerminate(false, true);
2978 }
2979
2980 /**
2981 * Possibly attempts to cancel and/or stop all tasks, and reject
2982 * all subsequently submitted tasks. Invocation has no effect on
2983 * execution state if this is the {@link #commonPool()}, and no
2984 * additional effect if already shut down. Otherwise, tasks that
2985 * are in the process of being submitted or executed concurrently
2986 * during the course of this method may or may not be
2987 * rejected. This method cancels both existing and unexecuted
2988 * tasks, in order to permit termination in the presence of task
2989 * dependencies. So the method always returns an empty list
2990 * (unlike the case for some other Executors).
2991 *
2992 * @return an empty list
2993 * @throws SecurityException if a security manager exists and
2994 * the caller is not permitted to modify threads
2995 * because it does not hold {@link
2996 * java.lang.RuntimePermission}{@code ("modifyThread")}
2997 */
2998 public List<Runnable> shutdownNow() {
2999 checkPermission();
3000 tryTerminate(true, true);
3001 return Collections.emptyList();
3002 }
3003
3004 /**
3005 * Returns {@code true} if all tasks have completed following shut down.
3006 *
3007 * @return {@code true} if all tasks have completed following shut down
3008 */
3009 public boolean isTerminated() {
3010 long c = ctl;
3011 return ((c & STOP_BIT) != 0L &&
3012 (short)(c >>> TC_SHIFT) == -(config & SMASK));
3013 }
3014
3015 /**
3016 * Returns {@code true} if the process of termination has
3017 * commenced but not yet completed. This method may be useful for
3018 * debugging. A return of {@code true} reported a sufficient
3019 * period after shutdown may indicate that submitted tasks have
3020 * ignored or suppressed interruption, or are waiting for I/O,
3021 * causing this executor not to properly terminate. (See the
3022 * advisory notes for class {@link ForkJoinTask} stating that
3023 * tasks should not normally entail blocking operations. But if
3024 * they do, they must abort them on interrupt.)
3025 *
3026 * @return {@code true} if terminating but not yet terminated
3027 */
3028 public boolean isTerminating() {
3029 long c = ctl;
3030 return ((c & STOP_BIT) != 0L &&
3031 (short)(c >>> TC_SHIFT) != -(config & SMASK));
3032 }
3033
3034 /**
3035 * Returns {@code true} if this pool has been shut down.
3036 *
3037 * @return {@code true} if this pool has been shut down
3038 */
3039 public boolean isShutdown() {
3040 return plock < 0;
3041 }
3042
3043 /**
3044 * Blocks until all tasks have completed execution after a
3045 * shutdown request, or the timeout occurs, or the current thread
3046 * is interrupted, whichever happens first. Because the {@link
3047 * #commonPool()} never terminates until program shutdown, when
3048 * applied to the common pool, this method is equivalent to {@link
3049 * #awaitQuiescence} but always returns {@code false}.
3050 *
3051 * @param timeout the maximum time to wait
3052 * @param unit the time unit of the timeout argument
3053 * @return {@code true} if this executor terminated and
3054 * {@code false} if the timeout elapsed before termination
3055 * @throws InterruptedException if interrupted while waiting
3056 */
3057 public boolean awaitTermination(long timeout, TimeUnit unit)
3058 throws InterruptedException {
3059 if (Thread.interrupted())
3060 throw new InterruptedException();
3061 if (this == common) {
3062 awaitQuiescence(timeout, unit);
3063 return false;
3064 }
3065 long nanos = unit.toNanos(timeout);
3066 if (isTerminated())
3067 return true;
3068 long startTime = System.nanoTime();
3069 boolean terminated = false;
3070 synchronized (this) {
3071 for (long waitTime = nanos, millis = 0L;;) {
3072 if (terminated = isTerminated() ||
3073 waitTime <= 0L ||
3074 (millis = unit.toMillis(waitTime)) <= 0L)
3075 break;
3076 wait(millis);
3077 waitTime = nanos - (System.nanoTime() - startTime);
3078 }
3079 }
3080 return terminated;
3081 }
3082
3083 /**
3084 * If called by a ForkJoinTask operating in this pool, equivalent
3085 * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3086 * waits and/or attempts to assist performing tasks until this
3087 * pool {@link #isQuiescent} or the indicated timeout elapses.
3088 *
3089 * @param timeout the maximum time to wait
3090 * @param unit the time unit of the timeout argument
3091 * @return {@code true} if quiescent; {@code false} if the
3092 * timeout elapsed.
3093 */
3094 public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3095 long nanos = unit.toNanos(timeout);
3096 ForkJoinWorkerThread wt;
3097 Thread thread = Thread.currentThread();
3098 if ((thread instanceof ForkJoinWorkerThread) &&
3099 (wt = (ForkJoinWorkerThread)thread).pool == this) {
3100 helpQuiescePool(wt.workQueue);
3101 return true;
3102 }
3103 long startTime = System.nanoTime();
3104 WorkQueue[] ws;
3105 int r = 0, m;
3106 boolean found = true;
3107 while (!isQuiescent() && (ws = workQueues) != null &&
3108 (m = ws.length - 1) >= 0) {
3109 if (!found) {
3110 if ((System.nanoTime() - startTime) > nanos)
3111 return false;
3112 Thread.yield(); // cannot block
3113 }
3114 found = false;
3115 for (int j = (m + 1) << 2; j >= 0; --j) {
3116 ForkJoinTask<?> t; WorkQueue q; int b;
3117 if ((q = ws[r++ & m]) != null && (b = q.base) - q.top < 0) {
3118 found = true;
3119 if ((t = q.pollAt(b)) != null) {
3120 if (q.base - q.top < 0)
3121 signalWork(q);
3122 t.doExec();
3123 }
3124 break;
3125 }
3126 }
3127 }
3128 return true;
3129 }
3130
3131 /**
3132 * Waits and/or attempts to assist performing tasks indefinitely
3133 * until the {@link #commonPool()} {@link #isQuiescent}.
3134 */
3135 static void quiesceCommonPool() {
3136 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3137 }
3138
3139 /**
3140 * Interface for extending managed parallelism for tasks running
3141 * in {@link ForkJoinPool}s.
3142 *
3143 * <p>A {@code ManagedBlocker} provides two methods. Method
3144 * {@code isReleasable} must return {@code true} if blocking is
3145 * not necessary. Method {@code block} blocks the current thread
3146 * if necessary (perhaps internally invoking {@code isReleasable}
3147 * before actually blocking). These actions are performed by any
3148 * thread invoking {@link ForkJoinPool#managedBlock}. The
3149 * unusual methods in this API accommodate synchronizers that may,
3150 * but don't usually, block for long periods. Similarly, they
3151 * allow more efficient internal handling of cases in which
3152 * additional workers may be, but usually are not, needed to
3153 * ensure sufficient parallelism. Toward this end,
3154 * implementations of method {@code isReleasable} must be amenable
3155 * to repeated invocation.
3156 *
3157 * <p>For example, here is a ManagedBlocker based on a
3158 * ReentrantLock:
3159 * <pre> {@code
3160 * class ManagedLocker implements ManagedBlocker {
3161 * final ReentrantLock lock;
3162 * boolean hasLock = false;
3163 * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3164 * public boolean block() {
3165 * if (!hasLock)
3166 * lock.lock();
3167 * return true;
3168 * }
3169 * public boolean isReleasable() {
3170 * return hasLock || (hasLock = lock.tryLock());
3171 * }
3172 * }}</pre>
3173 *
3174 * <p>Here is a class that possibly blocks waiting for an
3175 * item on a given queue:
3176 * <pre> {@code
3177 * class QueueTaker<E> implements ManagedBlocker {
3178 * final BlockingQueue<E> queue;
3179 * volatile E item = null;
3180 * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3181 * public boolean block() throws InterruptedException {
3182 * if (item == null)
3183 * item = queue.take();
3184 * return true;
3185 * }
3186 * public boolean isReleasable() {
3187 * return item != null || (item = queue.poll()) != null;
3188 * }
3189 * public E getItem() { // call after pool.managedBlock completes
3190 * return item;
3191 * }
3192 * }}</pre>
3193 */
3194 public static interface ManagedBlocker {
3195 /**
3196 * Possibly blocks the current thread, for example waiting for
3197 * a lock or condition.
3198 *
3199 * @return {@code true} if no additional blocking is necessary
3200 * (i.e., if isReleasable would return true)
3201 * @throws InterruptedException if interrupted while waiting
3202 * (the method is not required to do so, but is allowed to)
3203 */
3204 boolean block() throws InterruptedException;
3205
3206 /**
3207 * Returns {@code true} if blocking is unnecessary.
3208 */
3209 boolean isReleasable();
3210 }
3211
3212 /**
3213 * Blocks in accord with the given blocker. If the current thread
3214 * is a {@link ForkJoinWorkerThread}, this method possibly
3215 * arranges for a spare thread to be activated if necessary to
3216 * ensure sufficient parallelism while the current thread is blocked.
3217 *
3218 * <p>If the caller is not a {@link ForkJoinTask}, this method is
3219 * behaviorally equivalent to
3220 * <pre> {@code
3221 * while (!blocker.isReleasable())
3222 * if (blocker.block())
3223 * return;
3224 * }</pre>
3225 *
3226 * If the caller is a {@code ForkJoinTask}, then the pool may
3227 * first be expanded to ensure parallelism, and later adjusted.
3228 *
3229 * @param blocker the blocker
3230 * @throws InterruptedException if blocker.block did so
3231 */
3232 public static void managedBlock(ManagedBlocker blocker)
3233 throws InterruptedException {
3234 Thread t = Thread.currentThread();
3235 if (t instanceof ForkJoinWorkerThread) {
3236 ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3237 while (!blocker.isReleasable()) { // variant of helpSignal
3238 WorkQueue[] ws; WorkQueue q; int m, u;
3239 if ((ws = p.workQueues) != null && (m = ws.length - 1) >= 0) {
3240 for (int i = 0; i <= m; ++i) {
3241 if (blocker.isReleasable())
3242 return;
3243 if ((q = ws[i]) != null && q.base - q.top < 0) {
3244 p.signalWork(q);
3245 if ((u = (int)(p.ctl >>> 32)) >= 0 ||
3246 (u >> UAC_SHIFT) >= 0)
3247 break;
3248 }
3249 }
3250 }
3251 if (p.tryCompensate()) {
3252 try {
3253 do {} while (!blocker.isReleasable() &&
3254 !blocker.block());
3255 } finally {
3256 p.incrementActiveCount();
3257 }
3258 break;
3259 }
3260 }
3261 }
3262 else {
3263 do {} while (!blocker.isReleasable() &&
3264 !blocker.block());
3265 }
3266 }
3267
3268 // AbstractExecutorService overrides. These rely on undocumented
3269 // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3270 // implement RunnableFuture.
3271
3272 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3273 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3274 }
3275
3276 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3277 return new ForkJoinTask.AdaptedCallable<T>(callable);
3278 }
3279
3280 // Unsafe mechanics
3281 private static final sun.misc.Unsafe U;
3282 private static final long CTL;
3283 private static final long PARKBLOCKER;
3284 private static final int ABASE;
3285 private static final int ASHIFT;
3286 private static final long STEALCOUNT;
3287 private static final long PLOCK;
3288 private static final long INDEXSEED;
3289 private static final long QLOCK;
3290
3291 static {
3292 // initialize field offsets for CAS etc
3293 try {
3294 U = sun.misc.Unsafe.getUnsafe();
3295 Class<?> k = ForkJoinPool.class;
3296 CTL = U.objectFieldOffset
3297 (k.getDeclaredField("ctl"));
3298 STEALCOUNT = U.objectFieldOffset
3299 (k.getDeclaredField("stealCount"));
3300 PLOCK = U.objectFieldOffset
3301 (k.getDeclaredField("plock"));
3302 INDEXSEED = U.objectFieldOffset
3303 (k.getDeclaredField("indexSeed"));
3304 Class<?> tk = Thread.class;
3305 PARKBLOCKER = U.objectFieldOffset
3306 (tk.getDeclaredField("parkBlocker"));
3307 Class<?> wk = WorkQueue.class;
3308 QLOCK = U.objectFieldOffset
3309 (wk.getDeclaredField("qlock"));
3310 Class<?> ak = ForkJoinTask[].class;
3311 ABASE = U.arrayBaseOffset(ak);
3312 int scale = U.arrayIndexScale(ak);
3313 if ((scale & (scale - 1)) != 0)
3314 throw new Error("data type scale not a power of two");
3315 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3316 } catch (Exception e) {
3317 throw new Error(e);
3318 }
3319
3320 defaultForkJoinWorkerThreadFactory =
3321 new DefaultForkJoinWorkerThreadFactory();
3322 modifyThreadPermission = new RuntimePermission("modifyThread");
3323
3324 common = java.security.AccessController.doPrivileged
3325 (new java.security.PrivilegedAction<ForkJoinPool>() {
3326 public ForkJoinPool run() { return makeCommonPool(); }});
3327 commonParallelism = common.config; // cannot be async
3328 }
3329
3330 /**
3331 * Creates and returns the common pool, respecting user settings
3332 * specified via system properties.
3333 */
3334 private static ForkJoinPool makeCommonPool() {
3335 int parallelism = 0;
3336 ForkJoinWorkerThreadFactory factory
3337 = defaultForkJoinWorkerThreadFactory;
3338 Thread.UncaughtExceptionHandler handler = null;
3339 try { // ignore exceptions in accesing/parsing properties
3340 String pp = System.getProperty
3341 ("java.util.concurrent.ForkJoinPool.common.parallelism");
3342 String fp = System.getProperty
3343 ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3344 String hp = System.getProperty
3345 ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3346 if (pp != null)
3347 parallelism = Integer.parseInt(pp);
3348 if (fp != null)
3349 factory = ((ForkJoinWorkerThreadFactory)ClassLoader.
3350 getSystemClassLoader().loadClass(fp).newInstance());
3351 if (hp != null)
3352 handler = ((Thread.UncaughtExceptionHandler)ClassLoader.
3353 getSystemClassLoader().loadClass(hp).newInstance());
3354 } catch (Exception ignore) {
3355 }
3356
3357 if (parallelism <= 0)
3358 parallelism = Runtime.getRuntime().availableProcessors();
3359 if (parallelism > MAX_CAP)
3360 parallelism = MAX_CAP;
3361
3362 return new ForkJoinPool(parallelism, factory, handler, false,
3363 "ForkJoinPool.commonPool-worker-");
3364 }
3365
3366 }