ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.154
Committed: Mon Feb 11 06:57:51 2013 UTC (11 years, 3 months ago) by jsr166
Branch: MAIN
Changes since 1.153: +2 -0 lines
Log Message:
add missing @return

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.util.ArrayList;
10 import java.util.Arrays;
11 import java.util.Collection;
12 import java.util.Collections;
13 import java.util.List;
14 import java.util.concurrent.AbstractExecutorService;
15 import java.util.concurrent.Callable;
16 import java.util.concurrent.ExecutorService;
17 import java.util.concurrent.Future;
18 import java.util.concurrent.RejectedExecutionException;
19 import java.util.concurrent.RunnableFuture;
20 import java.util.concurrent.TimeUnit;
21
22 /**
23 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
24 * A {@code ForkJoinPool} provides the entry point for submissions
25 * from non-{@code ForkJoinTask} clients, as well as management and
26 * monitoring operations.
27 *
28 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
29 * ExecutorService} mainly by virtue of employing
30 * <em>work-stealing</em>: all threads in the pool attempt to find and
31 * execute tasks submitted to the pool and/or created by other active
32 * tasks (eventually blocking waiting for work if none exist). This
33 * enables efficient processing when most tasks spawn other subtasks
34 * (as do most {@code ForkJoinTask}s), as well as when many small
35 * tasks are submitted to the pool from external clients. Especially
36 * when setting <em>asyncMode</em> to true in constructors, {@code
37 * ForkJoinPool}s may also be appropriate for use with event-style
38 * tasks that are never joined.
39 *
40 * <p>A static {@link #commonPool()} is available and appropriate for
41 * most applications. The common pool is used by any ForkJoinTask that
42 * is not explicitly submitted to a specified pool. Using the common
43 * pool normally reduces resource usage (its threads are slowly
44 * reclaimed during periods of non-use, and reinstated upon subsequent
45 * use).
46 *
47 * <p>For applications that require separate or custom pools, a {@code
48 * ForkJoinPool} may be constructed with a given target parallelism
49 * level; by default, equal to the number of available processors. The
50 * pool attempts to maintain enough active (or available) threads by
51 * dynamically adding, suspending, or resuming internal worker
52 * threads, even if some tasks are stalled waiting to join
53 * others. However, no such adjustments are guaranteed in the face of
54 * blocked I/O or other unmanaged synchronization. The nested {@link
55 * ManagedBlocker} interface enables extension of the kinds of
56 * synchronization accommodated.
57 *
58 * <p>In addition to execution and lifecycle control methods, this
59 * class provides status check methods (for example
60 * {@link #getStealCount}) that are intended to aid in developing,
61 * tuning, and monitoring fork/join applications. Also, method
62 * {@link #toString} returns indications of pool state in a
63 * convenient form for informal monitoring.
64 *
65 * <p>As is the case with other ExecutorServices, there are three
66 * main task execution methods summarized in the following table.
67 * These are designed to be used primarily by clients not already
68 * engaged in fork/join computations in the current pool. The main
69 * forms of these methods accept instances of {@code ForkJoinTask},
70 * but overloaded forms also allow mixed execution of plain {@code
71 * Runnable}- or {@code Callable}- based activities as well. However,
72 * tasks that are already executing in a pool should normally instead
73 * use the within-computation forms listed in the table unless using
74 * async event-style tasks that are not usually joined, in which case
75 * there is little difference among choice of methods.
76 *
77 * <table BORDER CELLPADDING=3 CELLSPACING=1>
78 * <tr>
79 * <td></td>
80 * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
81 * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
82 * </tr>
83 * <tr>
84 * <td> <b>Arrange async execution</b></td>
85 * <td> {@link #execute(ForkJoinTask)}</td>
86 * <td> {@link ForkJoinTask#fork}</td>
87 * </tr>
88 * <tr>
89 * <td> <b>Await and obtain result</b></td>
90 * <td> {@link #invoke(ForkJoinTask)}</td>
91 * <td> {@link ForkJoinTask#invoke}</td>
92 * </tr>
93 * <tr>
94 * <td> <b>Arrange exec and obtain Future</b></td>
95 * <td> {@link #submit(ForkJoinTask)}</td>
96 * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
97 * </tr>
98 * </table>
99 *
100 * <p>The common pool is by default constructed with default
101 * parameters, but these may be controlled by setting three {@link
102 * System#getProperty system properties} with prefix {@code
103 * java.util.concurrent.ForkJoinPool.common}: {@code parallelism} --
104 * an integer greater than zero, {@code threadFactory} -- the class
105 * name of a {@link ForkJoinWorkerThreadFactory}, and {@code
106 * exceptionHandler} -- the class name of a {@link
107 * java.lang.Thread.UncaughtExceptionHandler
108 * Thread.UncaughtExceptionHandler}. Upon any error in establishing
109 * these settings, default parameters are used.
110 *
111 * <p><b>Implementation notes</b>: This implementation restricts the
112 * maximum number of running threads to 32767. Attempts to create
113 * pools with greater than the maximum number result in
114 * {@code IllegalArgumentException}.
115 *
116 * <p>This implementation rejects submitted tasks (that is, by throwing
117 * {@link RejectedExecutionException}) only when the pool is shut down
118 * or internal resources have been exhausted.
119 *
120 * @since 1.7
121 * @author Doug Lea
122 */
123 public class ForkJoinPool extends AbstractExecutorService {
124
125 /*
126 * Implementation Overview
127 *
128 * This class and its nested classes provide the main
129 * functionality and control for a set of worker threads:
130 * Submissions from non-FJ threads enter into submission queues.
131 * Workers take these tasks and typically split them into subtasks
132 * that may be stolen by other workers. Preference rules give
133 * first priority to processing tasks from their own queues (LIFO
134 * or FIFO, depending on mode), then to randomized FIFO steals of
135 * tasks in other queues.
136 *
137 * WorkQueues
138 * ==========
139 *
140 * Most operations occur within work-stealing queues (in nested
141 * class WorkQueue). These are special forms of Deques that
142 * support only three of the four possible end-operations -- push,
143 * pop, and poll (aka steal), under the further constraints that
144 * push and pop are called only from the owning thread (or, as
145 * extended here, under a lock), while poll may be called from
146 * other threads. (If you are unfamiliar with them, you probably
147 * want to read Herlihy and Shavit's book "The Art of
148 * Multiprocessor programming", chapter 16 describing these in
149 * more detail before proceeding.) The main work-stealing queue
150 * design is roughly similar to those in the papers "Dynamic
151 * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
152 * (http://research.sun.com/scalable/pubs/index.html) and
153 * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
154 * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
155 * The main differences ultimately stem from GC requirements that
156 * we null out taken slots as soon as we can, to maintain as small
157 * a footprint as possible even in programs generating huge
158 * numbers of tasks. To accomplish this, we shift the CAS
159 * arbitrating pop vs poll (steal) from being on the indices
160 * ("base" and "top") to the slots themselves. So, both a
161 * successful pop and poll mainly entail a CAS of a slot from
162 * non-null to null. Because we rely on CASes of references, we
163 * do not need tag bits on base or top. They are simple ints as
164 * used in any circular array-based queue (see for example
165 * ArrayDeque). Updates to the indices must still be ordered in a
166 * way that guarantees that top == base means the queue is empty,
167 * but otherwise may err on the side of possibly making the queue
168 * appear nonempty when a push, pop, or poll have not fully
169 * committed. Note that this means that the poll operation,
170 * considered individually, is not wait-free. One thief cannot
171 * successfully continue until another in-progress one (or, if
172 * previously empty, a push) completes. However, in the
173 * aggregate, we ensure at least probabilistic non-blockingness.
174 * If an attempted steal fails, a thief always chooses a different
175 * random victim target to try next. So, in order for one thief to
176 * progress, it suffices for any in-progress poll or new push on
177 * any empty queue to complete. (This is why we normally use
178 * method pollAt and its variants that try once at the apparent
179 * base index, else consider alternative actions, rather than
180 * method poll.)
181 *
182 * This approach also enables support of a user mode in which local
183 * task processing is in FIFO, not LIFO order, simply by using
184 * poll rather than pop. This can be useful in message-passing
185 * frameworks in which tasks are never joined. However neither
186 * mode considers affinities, loads, cache localities, etc, so
187 * rarely provide the best possible performance on a given
188 * machine, but portably provide good throughput by averaging over
189 * these factors. (Further, even if we did try to use such
190 * information, we do not usually have a basis for exploiting it.
191 * For example, some sets of tasks profit from cache affinities,
192 * but others are harmed by cache pollution effects.)
193 *
194 * WorkQueues are also used in a similar way for tasks submitted
195 * to the pool. We cannot mix these tasks in the same queues used
196 * for work-stealing (this would contaminate lifo/fifo
197 * processing). Instead, we randomly associate submission queues
198 * with submitting threads, using a form of hashing. The
199 * ThreadLocalRandom probe value serves as a hash code for
200 * choosing existing queues, and may be randomly repositioned upon
201 * contention with other submitters. In essence, submitters act
202 * like workers except that they are restricted to executing local
203 * tasks that they submitted (or in the case of CountedCompleters,
204 * others with the same root task). However, because most
205 * shared/external queue operations are more expensive than
206 * internal, and because, at steady state, external submitters
207 * will compete for CPU with workers, ForkJoinTask.join and
208 * related methods disable them from repeatedly helping to process
209 * tasks if all workers are active. Insertion of tasks in shared
210 * mode requires a lock (mainly to protect in the case of
211 * resizing) but we use only a simple spinlock (using bits in
212 * field qlock), because submitters encountering a busy queue move
213 * on to try or create other queues -- they block only when
214 * creating and registering new queues.
215 *
216 * Management
217 * ==========
218 *
219 * The main throughput advantages of work-stealing stem from
220 * decentralized control -- workers mostly take tasks from
221 * themselves or each other. We cannot negate this in the
222 * implementation of other management responsibilities. The main
223 * tactic for avoiding bottlenecks is packing nearly all
224 * essentially atomic control state into two volatile variables
225 * that are by far most often read (not written) as status and
226 * consistency checks.
227 *
228 * Field "ctl" contains 64 bits holding all the information needed
229 * to atomically decide to add, inactivate, enqueue (on an event
230 * queue), dequeue, and/or re-activate workers. To enable this
231 * packing, we restrict maximum parallelism to (1<<15)-1 (which is
232 * far in excess of normal operating range) to allow ids, counts,
233 * and their negations (used for thresholding) to fit into 16bit
234 * fields.
235 *
236 * Field "plock" is a form of sequence lock with a saturating
237 * shutdown bit (similarly for per-queue "qlocks"), mainly
238 * protecting updates to the workQueues array, as well as to
239 * enable shutdown. When used as a lock, it is normally only very
240 * briefly held, so is nearly always available after at most a
241 * brief spin, but we use a monitor-based backup strategy to
242 * block when needed.
243 *
244 * Recording WorkQueues. WorkQueues are recorded in the
245 * "workQueues" array that is created upon first use and expanded
246 * if necessary. Updates to the array while recording new workers
247 * and unrecording terminated ones are protected from each other
248 * by a lock but the array is otherwise concurrently readable, and
249 * accessed directly. To simplify index-based operations, the
250 * array size is always a power of two, and all readers must
251 * tolerate null slots. Worker queues are at odd indices. Shared
252 * (submission) queues are at even indices, up to a maximum of 64
253 * slots, to limit growth even if array needs to expand to add
254 * more workers. Grouping them together in this way simplifies and
255 * speeds up task scanning.
256 *
257 * All worker thread creation is on-demand, triggered by task
258 * submissions, replacement of terminated workers, and/or
259 * compensation for blocked workers. However, all other support
260 * code is set up to work with other policies. To ensure that we
261 * do not hold on to worker references that would prevent GC, ALL
262 * accesses to workQueues are via indices into the workQueues
263 * array (which is one source of some of the messy code
264 * constructions here). In essence, the workQueues array serves as
265 * a weak reference mechanism. Thus for example the wait queue
266 * field of ctl stores indices, not references. Access to the
267 * workQueues in associated methods (for example signalWork) must
268 * both index-check and null-check the IDs. All such accesses
269 * ignore bad IDs by returning out early from what they are doing,
270 * since this can only be associated with termination, in which
271 * case it is OK to give up. All uses of the workQueues array
272 * also check that it is non-null (even if previously
273 * non-null). This allows nulling during termination, which is
274 * currently not necessary, but remains an option for
275 * resource-revocation-based shutdown schemes. It also helps
276 * reduce JIT issuance of uncommon-trap code, which tends to
277 * unnecessarily complicate control flow in some methods.
278 *
279 * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
280 * let workers spin indefinitely scanning for tasks when none can
281 * be found immediately, and we cannot start/resume workers unless
282 * there appear to be tasks available. On the other hand, we must
283 * quickly prod them into action when new tasks are submitted or
284 * generated. In many usages, ramp-up time to activate workers is
285 * the main limiting factor in overall performance (this is
286 * compounded at program start-up by JIT compilation and
287 * allocation). So we try to streamline this as much as possible.
288 * We park/unpark workers after placing in an event wait queue
289 * when they cannot find work. This "queue" is actually a simple
290 * Treiber stack, headed by the "id" field of ctl, plus a 15bit
291 * counter value (that reflects the number of times a worker has
292 * been inactivated) to avoid ABA effects (we need only as many
293 * version numbers as worker threads). Successors are held in
294 * field WorkQueue.nextWait. Queuing deals with several intrinsic
295 * races, mainly that a task-producing thread can miss seeing (and
296 * signalling) another thread that gave up looking for work but
297 * has not yet entered the wait queue. We solve this by requiring
298 * a full sweep of all workers (via repeated calls to method
299 * scan()) both before and after a newly waiting worker is added
300 * to the wait queue. During a rescan, the worker might release
301 * some other queued worker rather than itself, which has the same
302 * net effect. Because enqueued workers may actually be rescanning
303 * rather than waiting, we set and clear the "parker" field of
304 * WorkQueues to reduce unnecessary calls to unpark. (This
305 * requires a secondary recheck to avoid missed signals.) Note
306 * the unusual conventions about Thread.interrupts surrounding
307 * parking and other blocking: Because interrupts are used solely
308 * to alert threads to check termination, which is checked anyway
309 * upon blocking, we clear status (using Thread.interrupted)
310 * before any call to park, so that park does not immediately
311 * return due to status being set via some other unrelated call to
312 * interrupt in user code.
313 *
314 * Signalling. We create or wake up workers only when there
315 * appears to be at least one task they might be able to find and
316 * execute. However, many other threads may notice the same task
317 * and each signal to wake up a thread that might take it. So in
318 * general, pools will be over-signalled. When a submission is
319 * added or another worker adds a task to a queue that has fewer
320 * than two tasks, they signal waiting workers (or trigger
321 * creation of new ones if fewer than the given parallelism level
322 * -- signalWork), and may leave a hint to the unparked worker to
323 * help signal others upon wakeup). These primary signals are
324 * buttressed by others (see method helpSignal) whenever other
325 * threads scan for work or do not have a task to process. On
326 * most platforms, signalling (unpark) overhead time is noticeably
327 * long, and the time between signalling a thread and it actually
328 * making progress can be very noticeably long, so it is worth
329 * offloading these delays from critical paths as much as
330 * possible.
331 *
332 * Trimming workers. To release resources after periods of lack of
333 * use, a worker starting to wait when the pool is quiescent will
334 * time out and terminate if the pool has remained quiescent for a
335 * given period -- a short period if there are more threads than
336 * parallelism, longer as the number of threads decreases. This
337 * will slowly propagate, eventually terminating all workers after
338 * periods of non-use.
339 *
340 * Shutdown and Termination. A call to shutdownNow atomically sets
341 * a plock bit and then (non-atomically) sets each worker's
342 * qlock status, cancels all unprocessed tasks, and wakes up
343 * all waiting workers. Detecting whether termination should
344 * commence after a non-abrupt shutdown() call requires more work
345 * and bookkeeping. We need consensus about quiescence (i.e., that
346 * there is no more work). The active count provides a primary
347 * indication but non-abrupt shutdown still requires a rechecking
348 * scan for any workers that are inactive but not queued.
349 *
350 * Joining Tasks
351 * =============
352 *
353 * Any of several actions may be taken when one worker is waiting
354 * to join a task stolen (or always held) by another. Because we
355 * are multiplexing many tasks on to a pool of workers, we can't
356 * just let them block (as in Thread.join). We also cannot just
357 * reassign the joiner's run-time stack with another and replace
358 * it later, which would be a form of "continuation", that even if
359 * possible is not necessarily a good idea since we sometimes need
360 * both an unblocked task and its continuation to progress.
361 * Instead we combine two tactics:
362 *
363 * Helping: Arranging for the joiner to execute some task that it
364 * would be running if the steal had not occurred.
365 *
366 * Compensating: Unless there are already enough live threads,
367 * method tryCompensate() may create or re-activate a spare
368 * thread to compensate for blocked joiners until they unblock.
369 *
370 * A third form (implemented in tryRemoveAndExec) amounts to
371 * helping a hypothetical compensator: If we can readily tell that
372 * a possible action of a compensator is to steal and execute the
373 * task being joined, the joining thread can do so directly,
374 * without the need for a compensation thread (although at the
375 * expense of larger run-time stacks, but the tradeoff is
376 * typically worthwhile).
377 *
378 * The ManagedBlocker extension API can't use helping so relies
379 * only on compensation in method awaitBlocker.
380 *
381 * The algorithm in tryHelpStealer entails a form of "linear"
382 * helping: Each worker records (in field currentSteal) the most
383 * recent task it stole from some other worker. Plus, it records
384 * (in field currentJoin) the task it is currently actively
385 * joining. Method tryHelpStealer uses these markers to try to
386 * find a worker to help (i.e., steal back a task from and execute
387 * it) that could hasten completion of the actively joined task.
388 * In essence, the joiner executes a task that would be on its own
389 * local deque had the to-be-joined task not been stolen. This may
390 * be seen as a conservative variant of the approach in Wagner &
391 * Calder "Leapfrogging: a portable technique for implementing
392 * efficient futures" SIGPLAN Notices, 1993
393 * (http://portal.acm.org/citation.cfm?id=155354). It differs in
394 * that: (1) We only maintain dependency links across workers upon
395 * steals, rather than use per-task bookkeeping. This sometimes
396 * requires a linear scan of workQueues array to locate stealers,
397 * but often doesn't because stealers leave hints (that may become
398 * stale/wrong) of where to locate them. It is only a hint
399 * because a worker might have had multiple steals and the hint
400 * records only one of them (usually the most current). Hinting
401 * isolates cost to when it is needed, rather than adding to
402 * per-task overhead. (2) It is "shallow", ignoring nesting and
403 * potentially cyclic mutual steals. (3) It is intentionally
404 * racy: field currentJoin is updated only while actively joining,
405 * which means that we miss links in the chain during long-lived
406 * tasks, GC stalls etc (which is OK since blocking in such cases
407 * is usually a good idea). (4) We bound the number of attempts
408 * to find work (see MAX_HELP) and fall back to suspending the
409 * worker and if necessary replacing it with another.
410 *
411 * Helping actions for CountedCompleters are much simpler: Method
412 * helpComplete can take and execute any task with the same root
413 * as the task being waited on. However, this still entails some
414 * traversal of completer chains, so is less efficient than using
415 * CountedCompleters without explicit joins.
416 *
417 * It is impossible to keep exactly the target parallelism number
418 * of threads running at any given time. Determining the
419 * existence of conservatively safe helping targets, the
420 * availability of already-created spares, and the apparent need
421 * to create new spares are all racy, so we rely on multiple
422 * retries of each. Compensation in the apparent absence of
423 * helping opportunities is challenging to control on JVMs, where
424 * GC and other activities can stall progress of tasks that in
425 * turn stall out many other dependent tasks, without us being
426 * able to determine whether they will ever require compensation.
427 * Even though work-stealing otherwise encounters little
428 * degradation in the presence of more threads than cores,
429 * aggressively adding new threads in such cases entails risk of
430 * unwanted positive feedback control loops in which more threads
431 * cause more dependent stalls (as well as delayed progress of
432 * unblocked threads to the point that we know they are available)
433 * leading to more situations requiring more threads, and so
434 * on. This aspect of control can be seen as an (analytically
435 * intractable) game with an opponent that may choose the worst
436 * (for us) active thread to stall at any time. We take several
437 * precautions to bound losses (and thus bound gains), mainly in
438 * methods tryCompensate and awaitJoin.
439 *
440 * Common Pool
441 * ===========
442 *
443 * The static common Pool always exists after static
444 * initialization. Since it (or any other created pool) need
445 * never be used, we minimize initial construction overhead and
446 * footprint to the setup of about a dozen fields, with no nested
447 * allocation. Most bootstrapping occurs within method
448 * fullExternalPush during the first submission to the pool.
449 *
450 * When external threads submit to the common pool, they can
451 * perform some subtask processing (see externalHelpJoin and
452 * related methods). We do not need to record whether these
453 * submissions are to the common pool -- if not, externalHelpJoin
454 * returns quickly (at the most helping to signal some common pool
455 * workers). These submitters would otherwise be blocked waiting
456 * for completion, so the extra effort (with liberally sprinkled
457 * task status checks) in inapplicable cases amounts to an odd
458 * form of limited spin-wait before blocking in ForkJoinTask.join.
459 *
460 * Style notes
461 * ===========
462 *
463 * There is a lot of representation-level coupling among classes
464 * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
465 * fields of WorkQueue maintain data structures managed by
466 * ForkJoinPool, so are directly accessed. There is little point
467 * trying to reduce this, since any associated future changes in
468 * representations will need to be accompanied by algorithmic
469 * changes anyway. Several methods intrinsically sprawl because
470 * they must accumulate sets of consistent reads of volatiles held
471 * in local variables. Methods signalWork() and scan() are the
472 * main bottlenecks, so are especially heavily
473 * micro-optimized/mangled. There are lots of inline assignments
474 * (of form "while ((local = field) != 0)") which are usually the
475 * simplest way to ensure the required read orderings (which are
476 * sometimes critical). This leads to a "C"-like style of listing
477 * declarations of these locals at the heads of methods or blocks.
478 * There are several occurrences of the unusual "do {} while
479 * (!cas...)" which is the simplest way to force an update of a
480 * CAS'ed variable. There are also other coding oddities (including
481 * several unnecessary-looking hoisted null checks) that help
482 * some methods perform reasonably even when interpreted (not
483 * compiled).
484 *
485 * The order of declarations in this file is:
486 * (1) Static utility functions
487 * (2) Nested (static) classes
488 * (3) Static fields
489 * (4) Fields, along with constants used when unpacking some of them
490 * (5) Internal control methods
491 * (6) Callbacks and other support for ForkJoinTask methods
492 * (7) Exported methods
493 * (8) Static block initializing statics in minimally dependent order
494 */
495
496 // Static utilities
497
498 /**
499 * If there is a security manager, makes sure caller has
500 * permission to modify threads.
501 */
502 private static void checkPermission() {
503 SecurityManager security = System.getSecurityManager();
504 if (security != null)
505 security.checkPermission(modifyThreadPermission);
506 }
507
508 // Nested classes
509
510 /**
511 * Factory for creating new {@link ForkJoinWorkerThread}s.
512 * A {@code ForkJoinWorkerThreadFactory} must be defined and used
513 * for {@code ForkJoinWorkerThread} subclasses that extend base
514 * functionality or initialize threads with different contexts.
515 */
516 public static interface ForkJoinWorkerThreadFactory {
517 /**
518 * Returns a new worker thread operating in the given pool.
519 *
520 * @param pool the pool this thread works in
521 * @throws NullPointerException if the pool is null
522 * @return the new worker thread
523 */
524 public ForkJoinWorkerThread newThread(ForkJoinPool pool);
525 }
526
527 /**
528 * Default ForkJoinWorkerThreadFactory implementation; creates a
529 * new ForkJoinWorkerThread.
530 */
531 static final class DefaultForkJoinWorkerThreadFactory
532 implements ForkJoinWorkerThreadFactory {
533 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
534 return new ForkJoinWorkerThread(pool);
535 }
536 }
537
538 /**
539 * Class for artificial tasks that are used to replace the target
540 * of local joins if they are removed from an interior queue slot
541 * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
542 * actually do anything beyond having a unique identity.
543 */
544 static final class EmptyTask extends ForkJoinTask<Void> {
545 private static final long serialVersionUID = -7721805057305804111L;
546 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
547 public final Void getRawResult() { return null; }
548 public final void setRawResult(Void x) {}
549 public final boolean exec() { return true; }
550 }
551
552 /**
553 * Queues supporting work-stealing as well as external task
554 * submission. See above for main rationale and algorithms.
555 * Implementation relies heavily on "Unsafe" intrinsics
556 * and selective use of "volatile":
557 *
558 * Field "base" is the index (mod array.length) of the least valid
559 * queue slot, which is always the next position to steal (poll)
560 * from if nonempty. Reads and writes require volatile orderings
561 * but not CAS, because updates are only performed after slot
562 * CASes.
563 *
564 * Field "top" is the index (mod array.length) of the next queue
565 * slot to push to or pop from. It is written only by owner thread
566 * for push, or under lock for external/shared push, and accessed
567 * by other threads only after reading (volatile) base. Both top
568 * and base are allowed to wrap around on overflow, but (top -
569 * base) (or more commonly -(base - top) to force volatile read of
570 * base before top) still estimates size. The lock ("qlock") is
571 * forced to -1 on termination, causing all further lock attempts
572 * to fail. (Note: we don't need CAS for termination state because
573 * upon pool shutdown, all shared-queues will stop being used
574 * anyway.) Nearly all lock bodies are set up so that exceptions
575 * within lock bodies are "impossible" (modulo JVM errors that
576 * would cause failure anyway.)
577 *
578 * The array slots are read and written using the emulation of
579 * volatiles/atomics provided by Unsafe. Insertions must in
580 * general use putOrderedObject as a form of releasing store to
581 * ensure that all writes to the task object are ordered before
582 * its publication in the queue. All removals entail a CAS to
583 * null. The array is always a power of two. To ensure safety of
584 * Unsafe array operations, all accesses perform explicit null
585 * checks and implicit bounds checks via power-of-two masking.
586 *
587 * In addition to basic queuing support, this class contains
588 * fields described elsewhere to control execution. It turns out
589 * to work better memory-layout-wise to include them in this class
590 * rather than a separate class.
591 *
592 * Performance on most platforms is very sensitive to placement of
593 * instances of both WorkQueues and their arrays -- we absolutely
594 * do not want multiple WorkQueue instances or multiple queue
595 * arrays sharing cache lines. (It would be best for queue objects
596 * and their arrays to share, but there is nothing available to
597 * help arrange that). Unfortunately, because they are recorded
598 * in a common array, WorkQueue instances are often moved to be
599 * adjacent by garbage collectors. To reduce impact, we use field
600 * padding that works OK on common platforms; this effectively
601 * trades off slightly slower average field access for the sake of
602 * avoiding really bad worst-case access. (Until better JVM
603 * support is in place, this padding is dependent on transient
604 * properties of JVM field layout rules.) We also take care in
605 * allocating, sizing and resizing the array. Non-shared queue
606 * arrays are initialized by workers before use. Others are
607 * allocated on first use.
608 */
609 static final class WorkQueue {
610 /**
611 * Capacity of work-stealing queue array upon initialization.
612 * Must be a power of two; at least 4, but should be larger to
613 * reduce or eliminate cacheline sharing among queues.
614 * Currently, it is much larger, as a partial workaround for
615 * the fact that JVMs often place arrays in locations that
616 * share GC bookkeeping (especially cardmarks) such that
617 * per-write accesses encounter serious memory contention.
618 */
619 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
620
621 /**
622 * Maximum size for queue arrays. Must be a power of two less
623 * than or equal to 1 << (31 - width of array entry) to ensure
624 * lack of wraparound of index calculations, but defined to a
625 * value a bit less than this to help users trap runaway
626 * programs before saturating systems.
627 */
628 static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
629
630 // Heuristic padding to ameliorate unfortunate memory placements
631 volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
632
633 int seed; // for random scanning; initialize nonzero
634 volatile int eventCount; // encoded inactivation count; < 0 if inactive
635 int nextWait; // encoded record of next event waiter
636 int hint; // steal or signal hint (index)
637 int poolIndex; // index of this queue in pool (or 0)
638 final int mode; // 0: lifo, > 0: fifo, < 0: shared
639 int nsteals; // number of steals
640 volatile int qlock; // 1: locked, -1: terminate; else 0
641 volatile int base; // index of next slot for poll
642 int top; // index of next slot for push
643 ForkJoinTask<?>[] array; // the elements (initially unallocated)
644 final ForkJoinPool pool; // the containing pool (may be null)
645 final ForkJoinWorkerThread owner; // owning thread or null if shared
646 volatile Thread parker; // == owner during call to park; else null
647 volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
648 ForkJoinTask<?> currentSteal; // current non-local task being executed
649
650 volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
651 volatile Object pad18, pad19, pad1a, pad1b, pad1c, pad1d;
652
653 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
654 int seed) {
655 this.pool = pool;
656 this.owner = owner;
657 this.mode = mode;
658 this.seed = seed;
659 // Place indices in the center of array (that is not yet allocated)
660 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
661 }
662
663 /**
664 * Returns the approximate number of tasks in the queue.
665 */
666 final int queueSize() {
667 int n = base - top; // non-owner callers must read base first
668 return (n >= 0) ? 0 : -n; // ignore transient negative
669 }
670
671 /**
672 * Provides a more accurate estimate of whether this queue has
673 * any tasks than does queueSize, by checking whether a
674 * near-empty queue has at least one unclaimed task.
675 */
676 final boolean isEmpty() {
677 ForkJoinTask<?>[] a; int m, s;
678 int n = base - (s = top);
679 return (n >= 0 ||
680 (n == -1 &&
681 ((a = array) == null ||
682 (m = a.length - 1) < 0 ||
683 U.getObject
684 (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
685 }
686
687 /**
688 * Pushes a task. Call only by owner in unshared queues. (The
689 * shared-queue version is embedded in method externalPush.)
690 *
691 * @param task the task. Caller must ensure non-null.
692 * @throws RejectedExecutionException if array cannot be resized
693 */
694 final void push(ForkJoinTask<?> task) {
695 ForkJoinTask<?>[] a; ForkJoinPool p;
696 int s = top, m, n;
697 if ((a = array) != null) { // ignore if queue removed
698 int j = (((m = a.length - 1) & s) << ASHIFT) + ABASE;
699 U.putOrderedObject(a, j, task);
700 if ((n = (top = s + 1) - base) <= 2) {
701 if ((p = pool) != null)
702 p.signalWork(this);
703 }
704 else if (n >= m)
705 growArray();
706 }
707 }
708
709 /**
710 * Initializes or doubles the capacity of array. Call either
711 * by owner or with lock held -- it is OK for base, but not
712 * top, to move while resizings are in progress.
713 */
714 final ForkJoinTask<?>[] growArray() {
715 ForkJoinTask<?>[] oldA = array;
716 int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
717 if (size > MAXIMUM_QUEUE_CAPACITY)
718 throw new RejectedExecutionException("Queue capacity exceeded");
719 int oldMask, t, b;
720 ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
721 if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
722 (t = top) - (b = base) > 0) {
723 int mask = size - 1;
724 do {
725 ForkJoinTask<?> x;
726 int oldj = ((b & oldMask) << ASHIFT) + ABASE;
727 int j = ((b & mask) << ASHIFT) + ABASE;
728 x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
729 if (x != null &&
730 U.compareAndSwapObject(oldA, oldj, x, null))
731 U.putObjectVolatile(a, j, x);
732 } while (++b != t);
733 }
734 return a;
735 }
736
737 /**
738 * Takes next task, if one exists, in LIFO order. Call only
739 * by owner in unshared queues.
740 */
741 final ForkJoinTask<?> pop() {
742 ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
743 if ((a = array) != null && (m = a.length - 1) >= 0) {
744 for (int s; (s = top - 1) - base >= 0;) {
745 long j = ((m & s) << ASHIFT) + ABASE;
746 if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
747 break;
748 if (U.compareAndSwapObject(a, j, t, null)) {
749 top = s;
750 return t;
751 }
752 }
753 }
754 return null;
755 }
756
757 /**
758 * Takes a task in FIFO order if b is base of queue and a task
759 * can be claimed without contention. Specialized versions
760 * appear in ForkJoinPool methods scan and tryHelpStealer.
761 */
762 final ForkJoinTask<?> pollAt(int b) {
763 ForkJoinTask<?> t; ForkJoinTask<?>[] a;
764 if ((a = array) != null) {
765 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
766 if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
767 base == b &&
768 U.compareAndSwapObject(a, j, t, null)) {
769 base = b + 1;
770 return t;
771 }
772 }
773 return null;
774 }
775
776 /**
777 * Takes next task, if one exists, in FIFO order.
778 */
779 final ForkJoinTask<?> poll() {
780 ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
781 while ((b = base) - top < 0 && (a = array) != null) {
782 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
783 t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
784 if (t != null) {
785 if (base == b &&
786 U.compareAndSwapObject(a, j, t, null)) {
787 base = b + 1;
788 return t;
789 }
790 }
791 else if (base == b) {
792 if (b + 1 == top)
793 break;
794 Thread.yield(); // wait for lagging update (very rare)
795 }
796 }
797 return null;
798 }
799
800 /**
801 * Takes next task, if one exists, in order specified by mode.
802 */
803 final ForkJoinTask<?> nextLocalTask() {
804 return mode == 0 ? pop() : poll();
805 }
806
807 /**
808 * Returns next task, if one exists, in order specified by mode.
809 */
810 final ForkJoinTask<?> peek() {
811 ForkJoinTask<?>[] a = array; int m;
812 if (a == null || (m = a.length - 1) < 0)
813 return null;
814 int i = mode == 0 ? top - 1 : base;
815 int j = ((i & m) << ASHIFT) + ABASE;
816 return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
817 }
818
819 /**
820 * Pops the given task only if it is at the current top.
821 * (A shared version is available only via FJP.tryExternalUnpush)
822 */
823 final boolean tryUnpush(ForkJoinTask<?> t) {
824 ForkJoinTask<?>[] a; int s;
825 if ((a = array) != null && (s = top) != base &&
826 U.compareAndSwapObject
827 (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
828 top = s;
829 return true;
830 }
831 return false;
832 }
833
834 /**
835 * Removes and cancels all known tasks, ignoring any exceptions.
836 */
837 final void cancelAll() {
838 ForkJoinTask.cancelIgnoringExceptions(currentJoin);
839 ForkJoinTask.cancelIgnoringExceptions(currentSteal);
840 for (ForkJoinTask<?> t; (t = poll()) != null; )
841 ForkJoinTask.cancelIgnoringExceptions(t);
842 }
843
844 /**
845 * Computes next value for random probes. Scans don't require
846 * a very high quality generator, but also not a crummy one.
847 * Marsaglia xor-shift is cheap and works well enough. Note:
848 * This is manually inlined in its usages in ForkJoinPool to
849 * avoid writes inside busy scan loops.
850 */
851 final int nextSeed() {
852 int r = seed;
853 r ^= r << 13;
854 r ^= r >>> 17;
855 return seed = r ^= r << 5;
856 }
857
858 // Specialized execution methods
859
860 /**
861 * Pops and runs tasks until empty.
862 */
863 private void popAndExecAll() {
864 // A bit faster than repeated pop calls
865 ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
866 while ((a = array) != null && (m = a.length - 1) >= 0 &&
867 (s = top - 1) - base >= 0 &&
868 (t = ((ForkJoinTask<?>)
869 U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
870 != null) {
871 if (U.compareAndSwapObject(a, j, t, null)) {
872 top = s;
873 t.doExec();
874 }
875 }
876 }
877
878 /**
879 * Polls and runs tasks until empty.
880 */
881 private void pollAndExecAll() {
882 for (ForkJoinTask<?> t; (t = poll()) != null;)
883 t.doExec();
884 }
885
886 /**
887 * If present, removes from queue and executes the given task,
888 * or any other cancelled task. Returns (true) on any CAS
889 * or consistency check failure so caller can retry.
890 *
891 * @return false if no progress can be made, else true
892 */
893 final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
894 boolean stat = true, removed = false, empty = true;
895 ForkJoinTask<?>[] a; int m, s, b, n;
896 if ((a = array) != null && (m = a.length - 1) >= 0 &&
897 (n = (s = top) - (b = base)) > 0) {
898 for (ForkJoinTask<?> t;;) { // traverse from s to b
899 int j = ((--s & m) << ASHIFT) + ABASE;
900 t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
901 if (t == null) // inconsistent length
902 break;
903 else if (t == task) {
904 if (s + 1 == top) { // pop
905 if (!U.compareAndSwapObject(a, j, task, null))
906 break;
907 top = s;
908 removed = true;
909 }
910 else if (base == b) // replace with proxy
911 removed = U.compareAndSwapObject(a, j, task,
912 new EmptyTask());
913 break;
914 }
915 else if (t.status >= 0)
916 empty = false;
917 else if (s + 1 == top) { // pop and throw away
918 if (U.compareAndSwapObject(a, j, t, null))
919 top = s;
920 break;
921 }
922 if (--n == 0) {
923 if (!empty && base == b)
924 stat = false;
925 break;
926 }
927 }
928 }
929 if (removed)
930 task.doExec();
931 return stat;
932 }
933
934 /**
935 * Polls for and executes the given task or any other task in
936 * its CountedCompleter computation.
937 */
938 final boolean pollAndExecCC(ForkJoinTask<?> root) {
939 ForkJoinTask<?>[] a; int b; Object o;
940 outer: while ((b = base) - top < 0 && (a = array) != null) {
941 long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
942 if ((o = U.getObject(a, j)) == null ||
943 !(o instanceof CountedCompleter))
944 break;
945 for (CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;;) {
946 if (r == root) {
947 if (base == b &&
948 U.compareAndSwapObject(a, j, t, null)) {
949 base = b + 1;
950 t.doExec();
951 return true;
952 }
953 else
954 break; // restart
955 }
956 if ((r = r.completer) == null)
957 break outer; // not part of root computation
958 }
959 }
960 return false;
961 }
962
963 /**
964 * Executes a top-level task and any local tasks remaining
965 * after execution.
966 */
967 final void runTask(ForkJoinTask<?> t) {
968 if (t != null) {
969 (currentSteal = t).doExec();
970 currentSteal = null;
971 ++nsteals;
972 if (base - top < 0) { // process remaining local tasks
973 if (mode == 0)
974 popAndExecAll();
975 else
976 pollAndExecAll();
977 }
978 }
979 }
980
981 /**
982 * Executes a non-top-level (stolen) task.
983 */
984 final void runSubtask(ForkJoinTask<?> t) {
985 if (t != null) {
986 ForkJoinTask<?> ps = currentSteal;
987 (currentSteal = t).doExec();
988 currentSteal = ps;
989 }
990 }
991
992 /**
993 * Returns true if owned and not known to be blocked.
994 */
995 final boolean isApparentlyUnblocked() {
996 Thread wt; Thread.State s;
997 return (eventCount >= 0 &&
998 (wt = owner) != null &&
999 (s = wt.getState()) != Thread.State.BLOCKED &&
1000 s != Thread.State.WAITING &&
1001 s != Thread.State.TIMED_WAITING);
1002 }
1003
1004 // Unsafe mechanics
1005 private static final sun.misc.Unsafe U;
1006 private static final long QLOCK;
1007 private static final int ABASE;
1008 private static final int ASHIFT;
1009 static {
1010 try {
1011 U = sun.misc.Unsafe.getUnsafe();
1012 Class<?> k = WorkQueue.class;
1013 Class<?> ak = ForkJoinTask[].class;
1014 QLOCK = U.objectFieldOffset
1015 (k.getDeclaredField("qlock"));
1016 ABASE = U.arrayBaseOffset(ak);
1017 int scale = U.arrayIndexScale(ak);
1018 if ((scale & (scale - 1)) != 0)
1019 throw new Error("data type scale not a power of two");
1020 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1021 } catch (Exception e) {
1022 throw new Error(e);
1023 }
1024 }
1025 }
1026
1027 // static fields (initialized in static initializer below)
1028
1029 /**
1030 * Creates a new ForkJoinWorkerThread. This factory is used unless
1031 * overridden in ForkJoinPool constructors.
1032 */
1033 public static final ForkJoinWorkerThreadFactory
1034 defaultForkJoinWorkerThreadFactory;
1035
1036 /**
1037 * Permission required for callers of methods that may start or
1038 * kill threads.
1039 */
1040 private static final RuntimePermission modifyThreadPermission;
1041
1042 /**
1043 * Common (static) pool. Non-null for public use unless a static
1044 * construction exception, but internal usages null-check on use
1045 * to paranoically avoid potential initialization circularities
1046 * as well as to simplify generated code.
1047 */
1048 static final ForkJoinPool common;
1049
1050 /**
1051 * Common pool parallelism. Must equal common.parallelism.
1052 */
1053 static final int commonParallelism;
1054
1055 /**
1056 * Sequence number for creating workerNamePrefix.
1057 */
1058 private static int poolNumberSequence;
1059
1060 /**
1061 * Returns the next sequence number. We don't expect this to
1062 * ever contend, so use simple builtin sync.
1063 */
1064 private static final synchronized int nextPoolId() {
1065 return ++poolNumberSequence;
1066 }
1067
1068 // static constants
1069
1070 /**
1071 * Initial timeout value (in nanoseconds) for the thread
1072 * triggering quiescence to park waiting for new work. On timeout,
1073 * the thread will instead try to shrink the number of
1074 * workers. The value should be large enough to avoid overly
1075 * aggressive shrinkage during most transient stalls (long GCs
1076 * etc).
1077 */
1078 private static final long IDLE_TIMEOUT = 2000L * 1000L * 1000L; // 2sec
1079
1080 /**
1081 * Timeout value when there are more threads than parallelism level
1082 */
1083 private static final long FAST_IDLE_TIMEOUT = 200L * 1000L * 1000L;
1084
1085 /**
1086 * Tolerance for idle timeouts, to cope with timer undershoots
1087 */
1088 private static final long TIMEOUT_SLOP = 2000000L;
1089
1090 /**
1091 * The maximum stolen->joining link depth allowed in method
1092 * tryHelpStealer. Must be a power of two. Depths for legitimate
1093 * chains are unbounded, but we use a fixed constant to avoid
1094 * (otherwise unchecked) cycles and to bound staleness of
1095 * traversal parameters at the expense of sometimes blocking when
1096 * we could be helping.
1097 */
1098 private static final int MAX_HELP = 64;
1099
1100 /**
1101 * Increment for seed generators. See class ThreadLocal for
1102 * explanation.
1103 */
1104 private static final int SEED_INCREMENT = 0x61c88647;
1105
1106 /**
1107 * Bits and masks for control variables
1108 *
1109 * Field ctl is a long packed with:
1110 * AC: Number of active running workers minus target parallelism (16 bits)
1111 * TC: Number of total workers minus target parallelism (16 bits)
1112 * ST: true if pool is terminating (1 bit)
1113 * EC: the wait count of top waiting thread (15 bits)
1114 * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1115 *
1116 * When convenient, we can extract the upper 32 bits of counts and
1117 * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1118 * (int)ctl. The ec field is never accessed alone, but always
1119 * together with id and st. The offsets of counts by the target
1120 * parallelism and the positionings of fields makes it possible to
1121 * perform the most common checks via sign tests of fields: When
1122 * ac is negative, there are not enough active workers, when tc is
1123 * negative, there are not enough total workers, and when e is
1124 * negative, the pool is terminating. To deal with these possibly
1125 * negative fields, we use casts in and out of "short" and/or
1126 * signed shifts to maintain signedness.
1127 *
1128 * When a thread is queued (inactivated), its eventCount field is
1129 * set negative, which is the only way to tell if a worker is
1130 * prevented from executing tasks, even though it must continue to
1131 * scan for them to avoid queuing races. Note however that
1132 * eventCount updates lag releases so usage requires care.
1133 *
1134 * Field plock is an int packed with:
1135 * SHUTDOWN: true if shutdown is enabled (1 bit)
1136 * SEQ: a sequence lock, with PL_LOCK bit set if locked (30 bits)
1137 * SIGNAL: set when threads may be waiting on the lock (1 bit)
1138 *
1139 * The sequence number enables simple consistency checks:
1140 * Staleness of read-only operations on the workQueues array can
1141 * be checked by comparing plock before vs after the reads.
1142 */
1143
1144 // bit positions/shifts for fields
1145 private static final int AC_SHIFT = 48;
1146 private static final int TC_SHIFT = 32;
1147 private static final int ST_SHIFT = 31;
1148 private static final int EC_SHIFT = 16;
1149
1150 // bounds
1151 private static final int SMASK = 0xffff; // short bits
1152 private static final int MAX_CAP = 0x7fff; // max #workers - 1
1153 private static final int EVENMASK = 0xfffe; // even short bits
1154 private static final int SQMASK = 0x007e; // max 64 (even) slots
1155 private static final int SHORT_SIGN = 1 << 15;
1156 private static final int INT_SIGN = 1 << 31;
1157
1158 // masks
1159 private static final long STOP_BIT = 0x0001L << ST_SHIFT;
1160 private static final long AC_MASK = ((long)SMASK) << AC_SHIFT;
1161 private static final long TC_MASK = ((long)SMASK) << TC_SHIFT;
1162
1163 // units for incrementing and decrementing
1164 private static final long TC_UNIT = 1L << TC_SHIFT;
1165 private static final long AC_UNIT = 1L << AC_SHIFT;
1166
1167 // masks and units for dealing with u = (int)(ctl >>> 32)
1168 private static final int UAC_SHIFT = AC_SHIFT - 32;
1169 private static final int UTC_SHIFT = TC_SHIFT - 32;
1170 private static final int UAC_MASK = SMASK << UAC_SHIFT;
1171 private static final int UTC_MASK = SMASK << UTC_SHIFT;
1172 private static final int UAC_UNIT = 1 << UAC_SHIFT;
1173 private static final int UTC_UNIT = 1 << UTC_SHIFT;
1174
1175 // masks and units for dealing with e = (int)ctl
1176 private static final int E_MASK = 0x7fffffff; // no STOP_BIT
1177 private static final int E_SEQ = 1 << EC_SHIFT;
1178
1179 // plock bits
1180 private static final int SHUTDOWN = 1 << 31;
1181 private static final int PL_LOCK = 2;
1182 private static final int PL_SIGNAL = 1;
1183 private static final int PL_SPINS = 1 << 8;
1184
1185 // access mode for WorkQueue
1186 static final int LIFO_QUEUE = 0;
1187 static final int FIFO_QUEUE = 1;
1188 static final int SHARED_QUEUE = -1;
1189
1190 // bounds for #steps in scan loop -- must be power 2 minus 1
1191 private static final int MIN_SCAN = 0x1ff; // cover estimation slop
1192 private static final int MAX_SCAN = 0x1ffff; // 4 * max workers
1193
1194 // Instance fields
1195
1196 /*
1197 * Field layout of this class tends to matter more than one would
1198 * like. Runtime layout order is only loosely related to
1199 * declaration order and may differ across JVMs, but the following
1200 * empirically works OK on current JVMs.
1201 */
1202
1203 // Heuristic padding to ameliorate unfortunate memory placements
1204 volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
1205
1206 volatile long stealCount; // collects worker counts
1207 volatile long ctl; // main pool control
1208 volatile int plock; // shutdown status and seqLock
1209 volatile int indexSeed; // worker/submitter index seed
1210 final int config; // mode and parallelism level
1211 WorkQueue[] workQueues; // main registry
1212 final ForkJoinWorkerThreadFactory factory;
1213 final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1214 final String workerNamePrefix; // to create worker name string
1215
1216 volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
1217 volatile Object pad18, pad19, pad1a, pad1b;
1218
1219 /**
1220 * Acquires the plock lock to protect worker array and related
1221 * updates. This method is called only if an initial CAS on plock
1222 * fails. This acts as a spinlock for normal cases, but falls back
1223 * to builtin monitor to block when (rarely) needed. This would be
1224 * a terrible idea for a highly contended lock, but works fine as
1225 * a more conservative alternative to a pure spinlock.
1226 */
1227 private int acquirePlock() {
1228 int spins = PL_SPINS, ps, nps;
1229 for (;;) {
1230 if (((ps = plock) & PL_LOCK) == 0 &&
1231 U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1232 return nps;
1233 else if (spins >= 0) {
1234 if (ThreadLocalRandom.nextSecondarySeed() >= 0)
1235 --spins;
1236 }
1237 else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1238 synchronized (this) {
1239 if ((plock & PL_SIGNAL) != 0) {
1240 try {
1241 wait();
1242 } catch (InterruptedException ie) {
1243 try {
1244 Thread.currentThread().interrupt();
1245 } catch (SecurityException ignore) {
1246 }
1247 }
1248 }
1249 else
1250 notifyAll();
1251 }
1252 }
1253 }
1254 }
1255
1256 /**
1257 * Unlocks and signals any thread waiting for plock. Called only
1258 * when CAS of seq value for unlock fails.
1259 */
1260 private void releasePlock(int ps) {
1261 plock = ps;
1262 synchronized (this) { notifyAll(); }
1263 }
1264
1265 /**
1266 * Tries to create and start one worker if fewer than target
1267 * parallelism level exist. Adjusts counts etc on failure.
1268 */
1269 private void tryAddWorker() {
1270 long c; int u;
1271 while ((u = (int)((c = ctl) >>> 32)) < 0 &&
1272 (u & SHORT_SIGN) != 0 && (int)c == 0) {
1273 long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1274 ((u + UAC_UNIT) & UAC_MASK)) << 32;
1275 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1276 ForkJoinWorkerThreadFactory fac;
1277 Throwable ex = null;
1278 ForkJoinWorkerThread wt = null;
1279 try {
1280 if ((fac = factory) != null &&
1281 (wt = fac.newThread(this)) != null) {
1282 wt.start();
1283 break;
1284 }
1285 } catch (Throwable e) {
1286 ex = e;
1287 }
1288 deregisterWorker(wt, ex);
1289 break;
1290 }
1291 }
1292 }
1293
1294 // Registering and deregistering workers
1295
1296 /**
1297 * Callback from ForkJoinWorkerThread to establish and record its
1298 * WorkQueue. To avoid scanning bias due to packing entries in
1299 * front of the workQueues array, we treat the array as a simple
1300 * power-of-two hash table using per-thread seed as hash,
1301 * expanding as needed.
1302 *
1303 * @param wt the worker thread
1304 * @return the worker's queue
1305 */
1306 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1307 Thread.UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps;
1308 wt.setDaemon(true);
1309 if ((handler = ueh) != null)
1310 wt.setUncaughtExceptionHandler(handler);
1311 do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
1312 s += SEED_INCREMENT) ||
1313 s == 0); // skip 0
1314 WorkQueue w = new WorkQueue(this, wt, config >>> 16, s);
1315 if (((ps = plock) & PL_LOCK) != 0 ||
1316 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1317 ps = acquirePlock();
1318 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1319 try {
1320 if ((ws = workQueues) != null) { // skip if shutting down
1321 int n = ws.length, m = n - 1;
1322 int r = (s << 1) | 1; // use odd-numbered indices
1323 if (ws[r &= m] != null) { // collision
1324 int probes = 0; // step by approx half size
1325 int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1326 while (ws[r = (r + step) & m] != null) {
1327 if (++probes >= n) {
1328 workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1329 m = n - 1;
1330 probes = 0;
1331 }
1332 }
1333 }
1334 w.eventCount = w.poolIndex = r; // volatile write orders
1335 ws[r] = w;
1336 }
1337 } finally {
1338 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1339 releasePlock(nps);
1340 }
1341 wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex)));
1342 return w;
1343 }
1344
1345 /**
1346 * Final callback from terminating worker, as well as upon failure
1347 * to construct or start a worker. Removes record of worker from
1348 * array, and adjusts counts. If pool is shutting down, tries to
1349 * complete termination.
1350 *
1351 * @param wt the worker thread, or null if construction failed
1352 * @param ex the exception causing failure, or null if none
1353 */
1354 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1355 WorkQueue w = null;
1356 if (wt != null && (w = wt.workQueue) != null) {
1357 int ps;
1358 w.qlock = -1; // ensure set
1359 long ns = w.nsteals, sc; // collect steal count
1360 do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1361 sc = stealCount, sc + ns));
1362 if (((ps = plock) & PL_LOCK) != 0 ||
1363 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1364 ps = acquirePlock();
1365 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1366 try {
1367 int idx = w.poolIndex;
1368 WorkQueue[] ws = workQueues;
1369 if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1370 ws[idx] = null;
1371 } finally {
1372 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1373 releasePlock(nps);
1374 }
1375 }
1376
1377 long c; // adjust ctl counts
1378 do {} while (!U.compareAndSwapLong
1379 (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1380 ((c - TC_UNIT) & TC_MASK) |
1381 (c & ~(AC_MASK|TC_MASK)))));
1382
1383 if (!tryTerminate(false, false) && w != null && w.array != null) {
1384 w.cancelAll(); // cancel remaining tasks
1385 WorkQueue[] ws; WorkQueue v; Thread p; int u, i, e;
1386 while ((u = (int)((c = ctl) >>> 32)) < 0 && (e = (int)c) >= 0) {
1387 if (e > 0) { // activate or create replacement
1388 if ((ws = workQueues) == null ||
1389 (i = e & SMASK) >= ws.length ||
1390 (v = ws[i]) == null)
1391 break;
1392 long nc = (((long)(v.nextWait & E_MASK)) |
1393 ((long)(u + UAC_UNIT) << 32));
1394 if (v.eventCount != (e | INT_SIGN))
1395 break;
1396 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1397 v.eventCount = (e + E_SEQ) & E_MASK;
1398 if ((p = v.parker) != null)
1399 U.unpark(p);
1400 break;
1401 }
1402 }
1403 else {
1404 if ((short)u < 0)
1405 tryAddWorker();
1406 break;
1407 }
1408 }
1409 }
1410 if (ex == null) // help clean refs on way out
1411 ForkJoinTask.helpExpungeStaleExceptions();
1412 else // rethrow
1413 ForkJoinTask.rethrow(ex);
1414 }
1415
1416 // Submissions
1417
1418 /**
1419 * Unless shutting down, adds the given task to a submission queue
1420 * at submitter's current queue index (modulo submission
1421 * range). Only the most common path is directly handled in this
1422 * method. All others are relayed to fullExternalPush.
1423 *
1424 * @param task the task. Caller must ensure non-null.
1425 */
1426 final void externalPush(ForkJoinTask<?> task) {
1427 WorkQueue[] ws; WorkQueue q; int z, m; ForkJoinTask<?>[] a;
1428 if ((z = ThreadLocalRandom.getProbe()) != 0 && plock > 0 &&
1429 (ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
1430 (q = ws[m & z & SQMASK]) != null &&
1431 U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1432 int b = q.base, s = q.top, n, an;
1433 if ((a = q.array) != null && (an = a.length) > (n = s + 1 - b)) {
1434 int j = (((an - 1) & s) << ASHIFT) + ABASE;
1435 U.putOrderedObject(a, j, task);
1436 q.top = s + 1; // push on to deque
1437 q.qlock = 0;
1438 if (n <= 2)
1439 signalWork(q);
1440 return;
1441 }
1442 q.qlock = 0;
1443 }
1444 fullExternalPush(task);
1445 }
1446
1447 /**
1448 * Full version of externalPush. This method is called, among
1449 * other times, upon the first submission of the first task to the
1450 * pool, so must perform secondary initialization. It also
1451 * detects first submission by an external thread by looking up
1452 * its ThreadLocal, and creates a new shared queue if the one at
1453 * index if empty or contended. The plock lock body must be
1454 * exception-free (so no try/finally) so we optimistically
1455 * allocate new queues outside the lock and throw them away if
1456 * (very rarely) not needed.
1457 *
1458 * Secondary initialization occurs when plock is zero, to create
1459 * workQueue array and set plock to a valid value. This lock body
1460 * must also be exception-free. Because the plock seq value can
1461 * eventually wrap around zero, this method harmlessly fails to
1462 * reinitialize if workQueues exists, while still advancing plock.
1463 */
1464 private void fullExternalPush(ForkJoinTask<?> task) {
1465 int r;
1466 if ((r = ThreadLocalRandom.getProbe()) == 0) {
1467 ThreadLocalRandom.localInit();
1468 r = ThreadLocalRandom.getProbe();
1469 }
1470 for (;;) {
1471 WorkQueue[] ws; WorkQueue q; int ps, m, k;
1472 boolean move = false;
1473 if ((ps = plock) < 0)
1474 throw new RejectedExecutionException();
1475 else if (ps == 0 || (ws = workQueues) == null ||
1476 (m = ws.length - 1) < 0) { // initialize workQueues
1477 int p = config & SMASK; // find power of two table size
1478 int n = (p > 1) ? p - 1 : 1; // ensure at least 2 slots
1479 n |= n >>> 1; n |= n >>> 2; n |= n >>> 4;
1480 n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1;
1481 WorkQueue[] nws = ((ws = workQueues) == null || ws.length == 0 ?
1482 new WorkQueue[n] : null);
1483 if (((ps = plock) & PL_LOCK) != 0 ||
1484 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1485 ps = acquirePlock();
1486 if (((ws = workQueues) == null || ws.length == 0) && nws != null)
1487 workQueues = nws;
1488 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1489 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1490 releasePlock(nps);
1491 }
1492 else if ((q = ws[k = r & m & SQMASK]) != null) {
1493 if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
1494 ForkJoinTask<?>[] a = q.array;
1495 int s = q.top;
1496 boolean submitted = false;
1497 try { // locked version of push
1498 if ((a != null && a.length > s + 1 - q.base) ||
1499 (a = q.growArray()) != null) { // must presize
1500 int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
1501 U.putOrderedObject(a, j, task);
1502 q.top = s + 1;
1503 submitted = true;
1504 }
1505 } finally {
1506 q.qlock = 0; // unlock
1507 }
1508 if (submitted) {
1509 signalWork(q);
1510 return;
1511 }
1512 }
1513 move = true; // move on failure
1514 }
1515 else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
1516 q = new WorkQueue(this, null, SHARED_QUEUE, r);
1517 if (((ps = plock) & PL_LOCK) != 0 ||
1518 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1519 ps = acquirePlock();
1520 if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
1521 ws[k] = q;
1522 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1523 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1524 releasePlock(nps);
1525 }
1526 else
1527 move = true; // move if busy
1528 if (move)
1529 r = ThreadLocalRandom.advanceProbe(r);
1530 }
1531 }
1532
1533 // Maintaining ctl counts
1534
1535 /**
1536 * Increments active count; mainly called upon return from blocking.
1537 */
1538 final void incrementActiveCount() {
1539 long c;
1540 do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1541 }
1542
1543 /**
1544 * Tries to create or activate a worker if too few are active.
1545 *
1546 * @param q the (non-null) queue holding tasks to be signalled
1547 */
1548 final void signalWork(WorkQueue q) {
1549 int hint = q.poolIndex;
1550 long c; int e, u, i, n; WorkQueue[] ws; WorkQueue w; Thread p;
1551 while ((u = (int)((c = ctl) >>> 32)) < 0) {
1552 if ((e = (int)c) > 0) {
1553 if ((ws = workQueues) != null && ws.length > (i = e & SMASK) &&
1554 (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1555 long nc = (((long)(w.nextWait & E_MASK)) |
1556 ((long)(u + UAC_UNIT) << 32));
1557 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1558 w.hint = hint;
1559 w.eventCount = (e + E_SEQ) & E_MASK;
1560 if ((p = w.parker) != null)
1561 U.unpark(p);
1562 break;
1563 }
1564 if (q.top - q.base <= 0)
1565 break;
1566 }
1567 else
1568 break;
1569 }
1570 else {
1571 if ((short)u < 0)
1572 tryAddWorker();
1573 break;
1574 }
1575 }
1576 }
1577
1578 // Scanning for tasks
1579
1580 /**
1581 * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1582 */
1583 final void runWorker(WorkQueue w) {
1584 w.growArray(); // allocate queue
1585 do { w.runTask(scan(w)); } while (w.qlock >= 0);
1586 }
1587
1588 /**
1589 * Scans for and, if found, returns one task, else possibly
1590 * inactivates the worker. This method operates on single reads of
1591 * volatile state and is designed to be re-invoked continuously,
1592 * in part because it returns upon detecting inconsistencies,
1593 * contention, or state changes that indicate possible success on
1594 * re-invocation.
1595 *
1596 * The scan searches for tasks across queues (starting at a random
1597 * index, and relying on registerWorker to irregularly scatter
1598 * them within array to avoid bias), checking each at least twice.
1599 * The scan terminates upon either finding a non-empty queue, or
1600 * completing the sweep. If the worker is not inactivated, it
1601 * takes and returns a task from this queue. Otherwise, if not
1602 * activated, it signals workers (that may include itself) and
1603 * returns so caller can retry. Also returns for true if the
1604 * worker array may have changed during an empty scan. On failure
1605 * to find a task, we take one of the following actions, after
1606 * which the caller will retry calling this method unless
1607 * terminated.
1608 *
1609 * * If pool is terminating, terminate the worker.
1610 *
1611 * * If not already enqueued, try to inactivate and enqueue the
1612 * worker on wait queue. Or, if inactivating has caused the pool
1613 * to be quiescent, relay to idleAwaitWork to possibly shrink
1614 * pool.
1615 *
1616 * * If already enqueued and none of the above apply, possibly
1617 * park awaiting signal, else lingering to help scan and signal.
1618 *
1619 * * If a non-empty queue discovered or left as a hint,
1620 * help wake up other workers before return.
1621 *
1622 * @param w the worker (via its WorkQueue)
1623 * @return a task or null if none found
1624 */
1625 private final ForkJoinTask<?> scan(WorkQueue w) {
1626 WorkQueue[] ws; int m;
1627 int ps = plock; // read plock before ws
1628 if (w != null && (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1629 int ec = w.eventCount; // ec is negative if inactive
1630 int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1631 w.hint = -1; // update seed and clear hint
1632 int j = ((m + m + 1) | MIN_SCAN) & MAX_SCAN;
1633 do {
1634 WorkQueue q; ForkJoinTask<?>[] a; int b;
1635 if ((q = ws[(r + j) & m]) != null && (b = q.base) - q.top < 0 &&
1636 (a = q.array) != null) { // probably nonempty
1637 int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1638 ForkJoinTask<?> t = (ForkJoinTask<?>)
1639 U.getObjectVolatile(a, i);
1640 if (q.base == b && ec >= 0 && t != null &&
1641 U.compareAndSwapObject(a, i, t, null)) {
1642 if ((q.base = b + 1) - q.top < 0)
1643 signalWork(q);
1644 return t; // taken
1645 }
1646 else if ((ec < 0 || j < m) && (int)(ctl >> AC_SHIFT) <= 0) {
1647 w.hint = (r + j) & m; // help signal below
1648 break; // cannot take
1649 }
1650 }
1651 } while (--j >= 0);
1652
1653 int h, e, ns; long c, sc; WorkQueue q;
1654 if ((ns = w.nsteals) != 0) {
1655 if (U.compareAndSwapLong(this, STEALCOUNT,
1656 sc = stealCount, sc + ns))
1657 w.nsteals = 0; // collect steals and rescan
1658 }
1659 else if (plock != ps) // consistency check
1660 ; // skip
1661 else if ((e = (int)(c = ctl)) < 0)
1662 w.qlock = -1; // pool is terminating
1663 else {
1664 if ((h = w.hint) < 0) {
1665 if (ec >= 0) { // try to enqueue/inactivate
1666 long nc = (((long)ec |
1667 ((c - AC_UNIT) & (AC_MASK|TC_MASK))));
1668 w.nextWait = e; // link and mark inactive
1669 w.eventCount = ec | INT_SIGN;
1670 if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1671 w.eventCount = ec; // unmark on CAS failure
1672 else if ((int)(c >> AC_SHIFT) == 1 - (config & SMASK))
1673 idleAwaitWork(w, nc, c);
1674 }
1675 else if (w.eventCount < 0 && ctl == c) {
1676 Thread wt = Thread.currentThread();
1677 Thread.interrupted(); // clear status
1678 U.putObject(wt, PARKBLOCKER, this);
1679 w.parker = wt; // emulate LockSupport.park
1680 if (w.eventCount < 0) // recheck
1681 U.park(false, 0L); // block
1682 w.parker = null;
1683 U.putObject(wt, PARKBLOCKER, null);
1684 }
1685 }
1686 if ((h >= 0 || (h = w.hint) >= 0) &&
1687 (ws = workQueues) != null && h < ws.length &&
1688 (q = ws[h]) != null) { // signal others before retry
1689 WorkQueue v; Thread p; int u, i, s;
1690 for (int n = (config & SMASK) - 1;;) {
1691 int idleCount = (w.eventCount < 0) ? 0 : -1;
1692 if (((s = idleCount - q.base + q.top) <= n &&
1693 (n = s) <= 0) ||
1694 (u = (int)((c = ctl) >>> 32)) >= 0 ||
1695 (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1696 (v = ws[i]) == null)
1697 break;
1698 long nc = (((long)(v.nextWait & E_MASK)) |
1699 ((long)(u + UAC_UNIT) << 32));
1700 if (v.eventCount != (e | INT_SIGN) ||
1701 !U.compareAndSwapLong(this, CTL, c, nc))
1702 break;
1703 v.hint = h;
1704 v.eventCount = (e + E_SEQ) & E_MASK;
1705 if ((p = v.parker) != null)
1706 U.unpark(p);
1707 if (--n <= 0)
1708 break;
1709 }
1710 }
1711 }
1712 }
1713 return null;
1714 }
1715
1716 /**
1717 * If inactivating worker w has caused the pool to become
1718 * quiescent, checks for pool termination, and, so long as this is
1719 * not the only worker, waits for event for up to a given
1720 * duration. On timeout, if ctl has not changed, terminates the
1721 * worker, which will in turn wake up another worker to possibly
1722 * repeat this process.
1723 *
1724 * @param w the calling worker
1725 * @param currentCtl the ctl value triggering possible quiescence
1726 * @param prevCtl the ctl value to restore if thread is terminated
1727 */
1728 private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1729 if (w != null && w.eventCount < 0 &&
1730 !tryTerminate(false, false) && (int)prevCtl != 0 &&
1731 ctl == currentCtl) {
1732 int dc = -(short)(currentCtl >>> TC_SHIFT);
1733 long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1734 long deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
1735 Thread wt = Thread.currentThread();
1736 while (ctl == currentCtl) {
1737 Thread.interrupted(); // timed variant of version in scan()
1738 U.putObject(wt, PARKBLOCKER, this);
1739 w.parker = wt;
1740 if (ctl == currentCtl)
1741 U.park(false, parkTime);
1742 w.parker = null;
1743 U.putObject(wt, PARKBLOCKER, null);
1744 if (ctl != currentCtl)
1745 break;
1746 if (deadline - System.nanoTime() <= 0L &&
1747 U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1748 w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1749 w.hint = -1;
1750 w.qlock = -1; // shrink
1751 break;
1752 }
1753 }
1754 }
1755 }
1756
1757 /**
1758 * Scans through queues looking for work while joining a task; if
1759 * any present, signals. May return early if more signalling is
1760 * detectably unneeded.
1761 *
1762 * @param task return early if done
1763 * @param origin an index to start scan
1764 */
1765 private void helpSignal(ForkJoinTask<?> task, int origin) {
1766 WorkQueue[] ws; WorkQueue w; Thread p; long c; int m, u, e, i, s;
1767 if (task != null && task.status >= 0 &&
1768 (u = (int)(ctl >>> 32)) < 0 && (u >> UAC_SHIFT) < 0 &&
1769 (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1770 outer: for (int k = origin, j = m; j >= 0; --j) {
1771 WorkQueue q = ws[k++ & m];
1772 for (int n = m;;) { // limit to at most m signals
1773 if (task.status < 0)
1774 break outer;
1775 if (q == null ||
1776 ((s = -q.base + q.top) <= n && (n = s) <= 0))
1777 break;
1778 if ((u = (int)((c = ctl) >>> 32)) >= 0 ||
1779 (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1780 (w = ws[i]) == null)
1781 break outer;
1782 long nc = (((long)(w.nextWait & E_MASK)) |
1783 ((long)(u + UAC_UNIT) << 32));
1784 if (w.eventCount != (e | INT_SIGN))
1785 break outer;
1786 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1787 w.eventCount = (e + E_SEQ) & E_MASK;
1788 if ((p = w.parker) != null)
1789 U.unpark(p);
1790 if (--n <= 0)
1791 break;
1792 }
1793 }
1794 }
1795 }
1796 }
1797
1798 /**
1799 * Tries to locate and execute tasks for a stealer of the given
1800 * task, or in turn one of its stealers, Traces currentSteal ->
1801 * currentJoin links looking for a thread working on a descendant
1802 * of the given task and with a non-empty queue to steal back and
1803 * execute tasks from. The first call to this method upon a
1804 * waiting join will often entail scanning/search, (which is OK
1805 * because the joiner has nothing better to do), but this method
1806 * leaves hints in workers to speed up subsequent calls. The
1807 * implementation is very branchy to cope with potential
1808 * inconsistencies or loops encountering chains that are stale,
1809 * unknown, or so long that they are likely cyclic.
1810 *
1811 * @param joiner the joining worker
1812 * @param task the task to join
1813 * @return 0 if no progress can be made, negative if task
1814 * known complete, else positive
1815 */
1816 private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1817 int stat = 0, steps = 0; // bound to avoid cycles
1818 if (joiner != null && task != null) { // hoist null checks
1819 restart: for (;;) {
1820 ForkJoinTask<?> subtask = task; // current target
1821 for (WorkQueue j = joiner, v;;) { // v is stealer of subtask
1822 WorkQueue[] ws; int m, s, h;
1823 if ((s = task.status) < 0) {
1824 stat = s;
1825 break restart;
1826 }
1827 if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1828 break restart; // shutting down
1829 if ((v = ws[h = (j.hint | 1) & m]) == null ||
1830 v.currentSteal != subtask) {
1831 for (int origin = h;;) { // find stealer
1832 if (((h = (h + 2) & m) & 15) == 1 &&
1833 (subtask.status < 0 || j.currentJoin != subtask))
1834 continue restart; // occasional staleness check
1835 if ((v = ws[h]) != null &&
1836 v.currentSteal == subtask) {
1837 j.hint = h; // save hint
1838 break;
1839 }
1840 if (h == origin)
1841 break restart; // cannot find stealer
1842 }
1843 }
1844 for (;;) { // help stealer or descend to its stealer
1845 ForkJoinTask[] a; int b;
1846 if (subtask.status < 0) // surround probes with
1847 continue restart; // consistency checks
1848 if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1849 int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1850 ForkJoinTask<?> t =
1851 (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1852 if (subtask.status < 0 || j.currentJoin != subtask ||
1853 v.currentSteal != subtask)
1854 continue restart; // stale
1855 stat = 1; // apparent progress
1856 if (t != null && v.base == b &&
1857 U.compareAndSwapObject(a, i, t, null)) {
1858 v.base = b + 1; // help stealer
1859 joiner.runSubtask(t);
1860 }
1861 else if (v.base == b && ++steps == MAX_HELP)
1862 break restart; // v apparently stalled
1863 }
1864 else { // empty -- try to descend
1865 ForkJoinTask<?> next = v.currentJoin;
1866 if (subtask.status < 0 || j.currentJoin != subtask ||
1867 v.currentSteal != subtask)
1868 continue restart; // stale
1869 else if (next == null || ++steps == MAX_HELP)
1870 break restart; // dead-end or maybe cyclic
1871 else {
1872 subtask = next;
1873 j = v;
1874 break;
1875 }
1876 }
1877 }
1878 }
1879 }
1880 }
1881 return stat;
1882 }
1883
1884 /**
1885 * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1886 * and run tasks within the target's computation.
1887 *
1888 * @param task the task to join
1889 * @param mode if shared, exit upon completing any task
1890 * if all workers are active
1891 */
1892 private int helpComplete(ForkJoinTask<?> task, int mode) {
1893 WorkQueue[] ws; WorkQueue q; int m, n, s, u;
1894 if (task != null && (ws = workQueues) != null &&
1895 (m = ws.length - 1) >= 0) {
1896 for (int j = 1, origin = j;;) {
1897 if ((s = task.status) < 0)
1898 return s;
1899 if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) {
1900 origin = j;
1901 if (mode == SHARED_QUEUE &&
1902 ((u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0))
1903 break;
1904 }
1905 else if ((j = (j + 2) & m) == origin)
1906 break;
1907 }
1908 }
1909 return 0;
1910 }
1911
1912 /**
1913 * Tries to decrement active count (sometimes implicitly) and
1914 * possibly release or create a compensating worker in preparation
1915 * for blocking. Fails on contention or termination. Otherwise,
1916 * adds a new thread if no idle workers are available and pool
1917 * may become starved.
1918 */
1919 final boolean tryCompensate() {
1920 int pc = config & SMASK, e, i, tc; long c;
1921 WorkQueue[] ws; WorkQueue w; Thread p;
1922 if ((ws = workQueues) != null && (e = (int)(c = ctl)) >= 0) {
1923 if (e != 0 && (i = e & SMASK) < ws.length &&
1924 (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1925 long nc = ((long)(w.nextWait & E_MASK) |
1926 (c & (AC_MASK|TC_MASK)));
1927 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1928 w.eventCount = (e + E_SEQ) & E_MASK;
1929 if ((p = w.parker) != null)
1930 U.unpark(p);
1931 return true; // replace with idle worker
1932 }
1933 }
1934 else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
1935 (int)(c >> AC_SHIFT) + pc > 1) {
1936 long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1937 if (U.compareAndSwapLong(this, CTL, c, nc))
1938 return true; // no compensation
1939 }
1940 else if (tc + pc < MAX_CAP) {
1941 long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1942 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1943 ForkJoinWorkerThreadFactory fac;
1944 Throwable ex = null;
1945 ForkJoinWorkerThread wt = null;
1946 try {
1947 if ((fac = factory) != null &&
1948 (wt = fac.newThread(this)) != null) {
1949 wt.start();
1950 return true;
1951 }
1952 } catch (Throwable rex) {
1953 ex = rex;
1954 }
1955 deregisterWorker(wt, ex); // clean up and return false
1956 }
1957 }
1958 }
1959 return false;
1960 }
1961
1962 /**
1963 * Helps and/or blocks until the given task is done.
1964 *
1965 * @param joiner the joining worker
1966 * @param task the task
1967 * @return task status on exit
1968 */
1969 final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1970 int s = 0;
1971 if (joiner != null && task != null && (s = task.status) >= 0) {
1972 ForkJoinTask<?> prevJoin = joiner.currentJoin;
1973 joiner.currentJoin = task;
1974 do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
1975 joiner.tryRemoveAndExec(task)); // process local tasks
1976 if (s >= 0 && (s = task.status) >= 0) {
1977 helpSignal(task, joiner.poolIndex);
1978 if ((s = task.status) >= 0 &&
1979 (task instanceof CountedCompleter))
1980 s = helpComplete(task, LIFO_QUEUE);
1981 }
1982 while (s >= 0 && (s = task.status) >= 0) {
1983 if ((!joiner.isEmpty() || // try helping
1984 (s = tryHelpStealer(joiner, task)) == 0) &&
1985 (s = task.status) >= 0) {
1986 helpSignal(task, joiner.poolIndex);
1987 if ((s = task.status) >= 0 && tryCompensate()) {
1988 if (task.trySetSignal() && (s = task.status) >= 0) {
1989 synchronized (task) {
1990 if (task.status >= 0) {
1991 try { // see ForkJoinTask
1992 task.wait(); // for explanation
1993 } catch (InterruptedException ie) {
1994 }
1995 }
1996 else
1997 task.notifyAll();
1998 }
1999 }
2000 long c; // re-activate
2001 do {} while (!U.compareAndSwapLong
2002 (this, CTL, c = ctl, c + AC_UNIT));
2003 }
2004 }
2005 }
2006 joiner.currentJoin = prevJoin;
2007 }
2008 return s;
2009 }
2010
2011 /**
2012 * Stripped-down variant of awaitJoin used by timed joins. Tries
2013 * to help join only while there is continuous progress. (Caller
2014 * will then enter a timed wait.)
2015 *
2016 * @param joiner the joining worker
2017 * @param task the task
2018 */
2019 final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2020 int s;
2021 if (joiner != null && task != null && (s = task.status) >= 0) {
2022 ForkJoinTask<?> prevJoin = joiner.currentJoin;
2023 joiner.currentJoin = task;
2024 do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
2025 joiner.tryRemoveAndExec(task));
2026 if (s >= 0 && (s = task.status) >= 0) {
2027 helpSignal(task, joiner.poolIndex);
2028 if ((s = task.status) >= 0 &&
2029 (task instanceof CountedCompleter))
2030 s = helpComplete(task, LIFO_QUEUE);
2031 }
2032 if (s >= 0 && joiner.isEmpty()) {
2033 do {} while (task.status >= 0 &&
2034 tryHelpStealer(joiner, task) > 0);
2035 }
2036 joiner.currentJoin = prevJoin;
2037 }
2038 }
2039
2040 /**
2041 * Returns a (probably) non-empty steal queue, if one is found
2042 * during a scan, else null. This method must be retried by
2043 * caller if, by the time it tries to use the queue, it is empty.
2044 * @param r a (random) seed for scanning
2045 */
2046 private WorkQueue findNonEmptyStealQueue(int r) {
2047 for (;;) {
2048 int ps = plock, m; WorkQueue[] ws; WorkQueue q;
2049 if ((ws = workQueues) != null && (m = ws.length - 1) >= 0) {
2050 for (int j = (m + 1) << 2; j >= 0; --j) {
2051 if ((q = ws[(((r + j) << 1) | 1) & m]) != null &&
2052 q.base - q.top < 0)
2053 return q;
2054 }
2055 }
2056 if (plock == ps)
2057 return null;
2058 }
2059 }
2060
2061 /**
2062 * Runs tasks until {@code isQuiescent()}. We piggyback on
2063 * active count ctl maintenance, but rather than blocking
2064 * when tasks cannot be found, we rescan until all others cannot
2065 * find tasks either.
2066 */
2067 final void helpQuiescePool(WorkQueue w) {
2068 for (boolean active = true;;) {
2069 long c; WorkQueue q; ForkJoinTask<?> t; int b;
2070 while ((t = w.nextLocalTask()) != null) {
2071 if (w.base - w.top < 0)
2072 signalWork(w);
2073 t.doExec();
2074 }
2075 if ((q = findNonEmptyStealQueue(w.nextSeed())) != null) {
2076 if (!active) { // re-establish active count
2077 active = true;
2078 do {} while (!U.compareAndSwapLong
2079 (this, CTL, c = ctl, c + AC_UNIT));
2080 }
2081 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2082 if (q.base - q.top < 0)
2083 signalWork(q);
2084 w.runSubtask(t);
2085 }
2086 }
2087 else if (active) { // decrement active count without queuing
2088 long nc = (c = ctl) - AC_UNIT;
2089 if ((int)(nc >> AC_SHIFT) + (config & SMASK) == 0)
2090 return; // bypass decrement-then-increment
2091 if (U.compareAndSwapLong(this, CTL, c, nc))
2092 active = false;
2093 }
2094 else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) == 0 &&
2095 U.compareAndSwapLong(this, CTL, c, c + AC_UNIT))
2096 return;
2097 }
2098 }
2099
2100 /**
2101 * Gets and removes a local or stolen task for the given worker.
2102 *
2103 * @return a task, if available
2104 */
2105 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2106 for (ForkJoinTask<?> t;;) {
2107 WorkQueue q; int b;
2108 if ((t = w.nextLocalTask()) != null)
2109 return t;
2110 if ((q = findNonEmptyStealQueue(w.nextSeed())) == null)
2111 return null;
2112 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2113 if (q.base - q.top < 0)
2114 signalWork(q);
2115 return t;
2116 }
2117 }
2118 }
2119
2120 /**
2121 * Returns a cheap heuristic guide for task partitioning when
2122 * programmers, frameworks, tools, or languages have little or no
2123 * idea about task granularity. In essence by offering this
2124 * method, we ask users only about tradeoffs in overhead vs
2125 * expected throughput and its variance, rather than how finely to
2126 * partition tasks.
2127 *
2128 * In a steady state strict (tree-structured) computation, each
2129 * thread makes available for stealing enough tasks for other
2130 * threads to remain active. Inductively, if all threads play by
2131 * the same rules, each thread should make available only a
2132 * constant number of tasks.
2133 *
2134 * The minimum useful constant is just 1. But using a value of 1
2135 * would require immediate replenishment upon each steal to
2136 * maintain enough tasks, which is infeasible. Further,
2137 * partitionings/granularities of offered tasks should minimize
2138 * steal rates, which in general means that threads nearer the top
2139 * of computation tree should generate more than those nearer the
2140 * bottom. In perfect steady state, each thread is at
2141 * approximately the same level of computation tree. However,
2142 * producing extra tasks amortizes the uncertainty of progress and
2143 * diffusion assumptions.
2144 *
2145 * So, users will want to use values larger, but not much larger
2146 * than 1 to both smooth over transient shortages and hedge
2147 * against uneven progress; as traded off against the cost of
2148 * extra task overhead. We leave the user to pick a threshold
2149 * value to compare with the results of this call to guide
2150 * decisions, but recommend values such as 3.
2151 *
2152 * When all threads are active, it is on average OK to estimate
2153 * surplus strictly locally. In steady-state, if one thread is
2154 * maintaining say 2 surplus tasks, then so are others. So we can
2155 * just use estimated queue length. However, this strategy alone
2156 * leads to serious mis-estimates in some non-steady-state
2157 * conditions (ramp-up, ramp-down, other stalls). We can detect
2158 * many of these by further considering the number of "idle"
2159 * threads, that are known to have zero queued tasks, so
2160 * compensate by a factor of (#idle/#active) threads.
2161 *
2162 * Note: The approximation of #busy workers as #active workers is
2163 * not very good under current signalling scheme, and should be
2164 * improved.
2165 */
2166 static int getSurplusQueuedTaskCount() {
2167 Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2168 if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2169 int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2170 int n = (q = wt.workQueue).top - q.base;
2171 int a = (int)(pool.ctl >> AC_SHIFT) + p;
2172 return n - (a > (p >>>= 1) ? 0 :
2173 a > (p >>>= 1) ? 1 :
2174 a > (p >>>= 1) ? 2 :
2175 a > (p >>>= 1) ? 4 :
2176 8);
2177 }
2178 return 0;
2179 }
2180
2181 // Termination
2182
2183 /**
2184 * Possibly initiates and/or completes termination. The caller
2185 * triggering termination runs three passes through workQueues:
2186 * (0) Setting termination status, followed by wakeups of queued
2187 * workers; (1) cancelling all tasks; (2) interrupting lagging
2188 * threads (likely in external tasks, but possibly also blocked in
2189 * joins). Each pass repeats previous steps because of potential
2190 * lagging thread creation.
2191 *
2192 * @param now if true, unconditionally terminate, else only
2193 * if no work and no active workers
2194 * @param enable if true, enable shutdown when next possible
2195 * @return true if now terminating or terminated
2196 */
2197 private boolean tryTerminate(boolean now, boolean enable) {
2198 int ps;
2199 if (this == common) // cannot shut down
2200 return false;
2201 if ((ps = plock) >= 0) { // enable by setting plock
2202 if (!enable)
2203 return false;
2204 if ((ps & PL_LOCK) != 0 ||
2205 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2206 ps = acquirePlock();
2207 int nps = ((ps + PL_LOCK) & ~SHUTDOWN) | SHUTDOWN;
2208 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2209 releasePlock(nps);
2210 }
2211 for (long c;;) {
2212 if (((c = ctl) & STOP_BIT) != 0) { // already terminating
2213 if ((short)(c >>> TC_SHIFT) == -(config & SMASK)) {
2214 synchronized (this) {
2215 notifyAll(); // signal when 0 workers
2216 }
2217 }
2218 return true;
2219 }
2220 if (!now) { // check if idle & no tasks
2221 WorkQueue[] ws; WorkQueue w;
2222 if ((int)(c >> AC_SHIFT) != -(config & SMASK))
2223 return false;
2224 if ((ws = workQueues) != null) {
2225 for (int i = 0; i < ws.length; ++i) {
2226 if ((w = ws[i]) != null) {
2227 if (!w.isEmpty()) { // signal unprocessed tasks
2228 signalWork(w);
2229 return false;
2230 }
2231 if ((i & 1) != 0 && w.eventCount >= 0)
2232 return false; // unqueued inactive worker
2233 }
2234 }
2235 }
2236 }
2237 if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2238 for (int pass = 0; pass < 3; ++pass) {
2239 WorkQueue[] ws; WorkQueue w; Thread wt;
2240 if ((ws = workQueues) != null) {
2241 int n = ws.length;
2242 for (int i = 0; i < n; ++i) {
2243 if ((w = ws[i]) != null) {
2244 w.qlock = -1;
2245 if (pass > 0) {
2246 w.cancelAll();
2247 if (pass > 1 && (wt = w.owner) != null) {
2248 if (!wt.isInterrupted()) {
2249 try {
2250 wt.interrupt();
2251 } catch (Throwable ignore) {
2252 }
2253 }
2254 U.unpark(wt);
2255 }
2256 }
2257 }
2258 }
2259 // Wake up workers parked on event queue
2260 int i, e; long cc; Thread p;
2261 while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2262 (i = e & SMASK) < n && i >= 0 &&
2263 (w = ws[i]) != null) {
2264 long nc = ((long)(w.nextWait & E_MASK) |
2265 ((cc + AC_UNIT) & AC_MASK) |
2266 (cc & (TC_MASK|STOP_BIT)));
2267 if (w.eventCount == (e | INT_SIGN) &&
2268 U.compareAndSwapLong(this, CTL, cc, nc)) {
2269 w.eventCount = (e + E_SEQ) & E_MASK;
2270 w.qlock = -1;
2271 if ((p = w.parker) != null)
2272 U.unpark(p);
2273 }
2274 }
2275 }
2276 }
2277 }
2278 }
2279 }
2280
2281 // external operations on common pool
2282
2283 /**
2284 * Returns common pool queue for a thread that has submitted at
2285 * least one task.
2286 */
2287 static WorkQueue commonSubmitterQueue() {
2288 ForkJoinPool p; WorkQueue[] ws; int m, z;
2289 return ((z = ThreadLocalRandom.getProbe()) != 0 &&
2290 (p = common) != null &&
2291 (ws = p.workQueues) != null &&
2292 (m = ws.length - 1) >= 0) ?
2293 ws[m & z & SQMASK] : null;
2294 }
2295
2296 /**
2297 * Tries to pop the given task from submitter's queue in common pool.
2298 */
2299 static boolean tryExternalUnpush(ForkJoinTask<?> t) {
2300 ForkJoinPool p; WorkQueue[] ws; WorkQueue q;
2301 ForkJoinTask<?>[] a; int m, s, z;
2302 if (t != null &&
2303 (z = ThreadLocalRandom.getProbe()) != 0 &&
2304 (p = common) != null &&
2305 (ws = p.workQueues) != null &&
2306 (m = ws.length - 1) >= 0 &&
2307 (q = ws[m & z & SQMASK]) != null &&
2308 (s = q.top) != q.base &&
2309 (a = q.array) != null) {
2310 long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
2311 if (U.getObject(a, j) == t &&
2312 U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2313 if (q.array == a && q.top == s && // recheck
2314 U.compareAndSwapObject(a, j, t, null)) {
2315 q.top = s - 1;
2316 q.qlock = 0;
2317 return true;
2318 }
2319 q.qlock = 0;
2320 }
2321 }
2322 return false;
2323 }
2324
2325 /**
2326 * Tries to pop and run local tasks within the same computation
2327 * as the given root. On failure, tries to help complete from
2328 * other queues via helpComplete.
2329 */
2330 private void externalHelpComplete(WorkQueue q, ForkJoinTask<?> root) {
2331 ForkJoinTask<?>[] a; int m;
2332 if (q != null && (a = q.array) != null && (m = (a.length - 1)) >= 0 &&
2333 root != null && root.status >= 0) {
2334 for (;;) {
2335 int s, u; Object o; CountedCompleter<?> task = null;
2336 if ((s = q.top) - q.base > 0) {
2337 long j = ((m & (s - 1)) << ASHIFT) + ABASE;
2338 if ((o = U.getObject(a, j)) != null &&
2339 (o instanceof CountedCompleter)) {
2340 CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2341 do {
2342 if (r == root) {
2343 if (U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2344 if (q.array == a && q.top == s &&
2345 U.compareAndSwapObject(a, j, t, null)) {
2346 q.top = s - 1;
2347 task = t;
2348 }
2349 q.qlock = 0;
2350 }
2351 break;
2352 }
2353 } while ((r = r.completer) != null);
2354 }
2355 }
2356 if (task != null)
2357 task.doExec();
2358 if (root.status < 0 ||
2359 (u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0)
2360 break;
2361 if (task == null) {
2362 helpSignal(root, q.poolIndex);
2363 if (root.status >= 0)
2364 helpComplete(root, SHARED_QUEUE);
2365 break;
2366 }
2367 }
2368 }
2369 }
2370
2371 /**
2372 * Tries to help execute or signal availability of the given task
2373 * from submitter's queue in common pool.
2374 */
2375 static void externalHelpJoin(ForkJoinTask<?> t) {
2376 // Some hard-to-avoid overlap with tryExternalUnpush
2377 ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w;
2378 ForkJoinTask<?>[] a; int m, s, n, z;
2379 if (t != null &&
2380 (z = ThreadLocalRandom.getProbe()) != 0 &&
2381 (p = common) != null &&
2382 (ws = p.workQueues) != null &&
2383 (m = ws.length - 1) >= 0 &&
2384 (q = ws[m & z & SQMASK]) != null &&
2385 (a = q.array) != null) {
2386 int am = a.length - 1;
2387 if ((s = q.top) != q.base) {
2388 long j = ((am & (s - 1)) << ASHIFT) + ABASE;
2389 if (U.getObject(a, j) == t &&
2390 U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2391 if (q.array == a && q.top == s &&
2392 U.compareAndSwapObject(a, j, t, null)) {
2393 q.top = s - 1;
2394 q.qlock = 0;
2395 t.doExec();
2396 }
2397 else
2398 q.qlock = 0;
2399 }
2400 }
2401 if (t.status >= 0) {
2402 if (t instanceof CountedCompleter)
2403 p.externalHelpComplete(q, t);
2404 else
2405 p.helpSignal(t, q.poolIndex);
2406 }
2407 }
2408 }
2409
2410 // Exported methods
2411
2412 // Constructors
2413
2414 /**
2415 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2416 * java.lang.Runtime#availableProcessors}, using the {@linkplain
2417 * #defaultForkJoinWorkerThreadFactory default thread factory},
2418 * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2419 *
2420 * @throws SecurityException if a security manager exists and
2421 * the caller is not permitted to modify threads
2422 * because it does not hold {@link
2423 * java.lang.RuntimePermission}{@code ("modifyThread")}
2424 */
2425 public ForkJoinPool() {
2426 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2427 defaultForkJoinWorkerThreadFactory, null, false);
2428 }
2429
2430 /**
2431 * Creates a {@code ForkJoinPool} with the indicated parallelism
2432 * level, the {@linkplain
2433 * #defaultForkJoinWorkerThreadFactory default thread factory},
2434 * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2435 *
2436 * @param parallelism the parallelism level
2437 * @throws IllegalArgumentException if parallelism less than or
2438 * equal to zero, or greater than implementation limit
2439 * @throws SecurityException if a security manager exists and
2440 * the caller is not permitted to modify threads
2441 * because it does not hold {@link
2442 * java.lang.RuntimePermission}{@code ("modifyThread")}
2443 */
2444 public ForkJoinPool(int parallelism) {
2445 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2446 }
2447
2448 /**
2449 * Creates a {@code ForkJoinPool} with the given parameters.
2450 *
2451 * @param parallelism the parallelism level. For default value,
2452 * use {@link java.lang.Runtime#availableProcessors}.
2453 * @param factory the factory for creating new threads. For default value,
2454 * use {@link #defaultForkJoinWorkerThreadFactory}.
2455 * @param handler the handler for internal worker threads that
2456 * terminate due to unrecoverable errors encountered while executing
2457 * tasks. For default value, use {@code null}.
2458 * @param asyncMode if true,
2459 * establishes local first-in-first-out scheduling mode for forked
2460 * tasks that are never joined. This mode may be more appropriate
2461 * than default locally stack-based mode in applications in which
2462 * worker threads only process event-style asynchronous tasks.
2463 * For default value, use {@code false}.
2464 * @throws IllegalArgumentException if parallelism less than or
2465 * equal to zero, or greater than implementation limit
2466 * @throws NullPointerException if the factory is null
2467 * @throws SecurityException if a security manager exists and
2468 * the caller is not permitted to modify threads
2469 * because it does not hold {@link
2470 * java.lang.RuntimePermission}{@code ("modifyThread")}
2471 */
2472 public ForkJoinPool(int parallelism,
2473 ForkJoinWorkerThreadFactory factory,
2474 Thread.UncaughtExceptionHandler handler,
2475 boolean asyncMode) {
2476 this(checkParallelism(parallelism),
2477 checkFactory(factory),
2478 handler,
2479 asyncMode,
2480 "ForkJoinPool-" + nextPoolId() + "-worker-");
2481 checkPermission();
2482 }
2483
2484 private static int checkParallelism(int parallelism) {
2485 if (parallelism <= 0 || parallelism > MAX_CAP)
2486 throw new IllegalArgumentException();
2487 return parallelism;
2488 }
2489
2490 private static ForkJoinWorkerThreadFactory checkFactory
2491 (ForkJoinWorkerThreadFactory factory) {
2492 if (factory == null)
2493 throw new NullPointerException();
2494 return factory;
2495 }
2496
2497 /**
2498 * Creates a {@code ForkJoinPool} with the given parameters, without
2499 * any security checks or parameter validation. Invoked directly by
2500 * makeCommonPool.
2501 */
2502 private ForkJoinPool(int parallelism,
2503 ForkJoinWorkerThreadFactory factory,
2504 Thread.UncaughtExceptionHandler handler,
2505 boolean asyncMode,
2506 String workerNamePrefix) {
2507 this.workerNamePrefix = workerNamePrefix;
2508 this.factory = factory;
2509 this.ueh = handler;
2510 this.config = parallelism | (asyncMode ? (FIFO_QUEUE << 16) : 0);
2511 long np = (long)(-parallelism); // offset ctl counts
2512 this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2513 }
2514
2515 /**
2516 * Returns the common pool instance. This pool is statically
2517 * constructed; its run state is unaffected by attempts to {@link
2518 * #shutdown} or {@link #shutdownNow}. However this pool and any
2519 * ongoing processing are automatically terminated upon program
2520 * {@link System#exit}. Any program that relies on asynchronous
2521 * task processing to complete before program termination should
2522 * invoke {@code commonPool().}{@link #awaitQuiescence}, before
2523 * exit.
2524 *
2525 * @return the common pool instance
2526 * @since 1.8
2527 */
2528 public static ForkJoinPool commonPool() {
2529 // assert common != null : "static init error";
2530 return common;
2531 }
2532
2533 // Execution methods
2534
2535 /**
2536 * Performs the given task, returning its result upon completion.
2537 * If the computation encounters an unchecked Exception or Error,
2538 * it is rethrown as the outcome of this invocation. Rethrown
2539 * exceptions behave in the same way as regular exceptions, but,
2540 * when possible, contain stack traces (as displayed for example
2541 * using {@code ex.printStackTrace()}) of both the current thread
2542 * as well as the thread actually encountering the exception;
2543 * minimally only the latter.
2544 *
2545 * @param task the task
2546 * @return the task's result
2547 * @throws NullPointerException if the task is null
2548 * @throws RejectedExecutionException if the task cannot be
2549 * scheduled for execution
2550 */
2551 public <T> T invoke(ForkJoinTask<T> task) {
2552 if (task == null)
2553 throw new NullPointerException();
2554 externalPush(task);
2555 return task.join();
2556 }
2557
2558 /**
2559 * Arranges for (asynchronous) execution of the given task.
2560 *
2561 * @param task the task
2562 * @throws NullPointerException if the task is null
2563 * @throws RejectedExecutionException if the task cannot be
2564 * scheduled for execution
2565 */
2566 public void execute(ForkJoinTask<?> task) {
2567 if (task == null)
2568 throw new NullPointerException();
2569 externalPush(task);
2570 }
2571
2572 // AbstractExecutorService methods
2573
2574 /**
2575 * @throws NullPointerException if the task is null
2576 * @throws RejectedExecutionException if the task cannot be
2577 * scheduled for execution
2578 */
2579 public void execute(Runnable task) {
2580 if (task == null)
2581 throw new NullPointerException();
2582 ForkJoinTask<?> job;
2583 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2584 job = (ForkJoinTask<?>) task;
2585 else
2586 job = new ForkJoinTask.RunnableExecuteAction(task);
2587 externalPush(job);
2588 }
2589
2590 /**
2591 * Submits a ForkJoinTask for execution.
2592 *
2593 * @param task the task to submit
2594 * @return the task
2595 * @throws NullPointerException if the task is null
2596 * @throws RejectedExecutionException if the task cannot be
2597 * scheduled for execution
2598 */
2599 public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2600 if (task == null)
2601 throw new NullPointerException();
2602 externalPush(task);
2603 return task;
2604 }
2605
2606 /**
2607 * @throws NullPointerException if the task is null
2608 * @throws RejectedExecutionException if the task cannot be
2609 * scheduled for execution
2610 */
2611 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2612 ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2613 externalPush(job);
2614 return job;
2615 }
2616
2617 /**
2618 * @throws NullPointerException if the task is null
2619 * @throws RejectedExecutionException if the task cannot be
2620 * scheduled for execution
2621 */
2622 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2623 ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2624 externalPush(job);
2625 return job;
2626 }
2627
2628 /**
2629 * @throws NullPointerException if the task is null
2630 * @throws RejectedExecutionException if the task cannot be
2631 * scheduled for execution
2632 */
2633 public ForkJoinTask<?> submit(Runnable task) {
2634 if (task == null)
2635 throw new NullPointerException();
2636 ForkJoinTask<?> job;
2637 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2638 job = (ForkJoinTask<?>) task;
2639 else
2640 job = new ForkJoinTask.AdaptedRunnableAction(task);
2641 externalPush(job);
2642 return job;
2643 }
2644
2645 /**
2646 * @throws NullPointerException {@inheritDoc}
2647 * @throws RejectedExecutionException {@inheritDoc}
2648 */
2649 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2650 // In previous versions of this class, this method constructed
2651 // a task to run ForkJoinTask.invokeAll, but now external
2652 // invocation of multiple tasks is at least as efficient.
2653 ArrayList<Future<T>> futures = new ArrayList<Future<T>>(tasks.size());
2654
2655 boolean done = false;
2656 try {
2657 for (Callable<T> t : tasks) {
2658 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2659 futures.add(f);
2660 externalPush(f);
2661 }
2662 for (int i = 0, size = futures.size(); i < size; i++)
2663 ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2664 done = true;
2665 return futures;
2666 } finally {
2667 if (!done)
2668 for (int i = 0, size = futures.size(); i < size; i++)
2669 futures.get(i).cancel(false);
2670 }
2671 }
2672
2673 /**
2674 * Returns the factory used for constructing new workers.
2675 *
2676 * @return the factory used for constructing new workers
2677 */
2678 public ForkJoinWorkerThreadFactory getFactory() {
2679 return factory;
2680 }
2681
2682 /**
2683 * Returns the handler for internal worker threads that terminate
2684 * due to unrecoverable errors encountered while executing tasks.
2685 *
2686 * @return the handler, or {@code null} if none
2687 */
2688 public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
2689 return ueh;
2690 }
2691
2692 /**
2693 * Returns the targeted parallelism level of this pool.
2694 *
2695 * @return the targeted parallelism level of this pool
2696 */
2697 public int getParallelism() {
2698 return config & SMASK;
2699 }
2700
2701 /**
2702 * Returns the targeted parallelism level of the common pool.
2703 *
2704 * @return the targeted parallelism level of the common pool
2705 * @since 1.8
2706 */
2707 public static int getCommonPoolParallelism() {
2708 return commonParallelism;
2709 }
2710
2711 /**
2712 * Returns the number of worker threads that have started but not
2713 * yet terminated. The result returned by this method may differ
2714 * from {@link #getParallelism} when threads are created to
2715 * maintain parallelism when others are cooperatively blocked.
2716 *
2717 * @return the number of worker threads
2718 */
2719 public int getPoolSize() {
2720 return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2721 }
2722
2723 /**
2724 * Returns {@code true} if this pool uses local first-in-first-out
2725 * scheduling mode for forked tasks that are never joined.
2726 *
2727 * @return {@code true} if this pool uses async mode
2728 */
2729 public boolean getAsyncMode() {
2730 return (config >>> 16) == FIFO_QUEUE;
2731 }
2732
2733 /**
2734 * Returns an estimate of the number of worker threads that are
2735 * not blocked waiting to join tasks or for other managed
2736 * synchronization. This method may overestimate the
2737 * number of running threads.
2738 *
2739 * @return the number of worker threads
2740 */
2741 public int getRunningThreadCount() {
2742 int rc = 0;
2743 WorkQueue[] ws; WorkQueue w;
2744 if ((ws = workQueues) != null) {
2745 for (int i = 1; i < ws.length; i += 2) {
2746 if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2747 ++rc;
2748 }
2749 }
2750 return rc;
2751 }
2752
2753 /**
2754 * Returns an estimate of the number of threads that are currently
2755 * stealing or executing tasks. This method may overestimate the
2756 * number of active threads.
2757 *
2758 * @return the number of active threads
2759 */
2760 public int getActiveThreadCount() {
2761 int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2762 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2763 }
2764
2765 /**
2766 * Returns {@code true} if all worker threads are currently idle.
2767 * An idle worker is one that cannot obtain a task to execute
2768 * because none are available to steal from other threads, and
2769 * there are no pending submissions to the pool. This method is
2770 * conservative; it might not return {@code true} immediately upon
2771 * idleness of all threads, but will eventually become true if
2772 * threads remain inactive.
2773 *
2774 * @return {@code true} if all threads are currently idle
2775 */
2776 public boolean isQuiescent() {
2777 return (int)(ctl >> AC_SHIFT) + (config & SMASK) == 0;
2778 }
2779
2780 /**
2781 * Returns an estimate of the total number of tasks stolen from
2782 * one thread's work queue by another. The reported value
2783 * underestimates the actual total number of steals when the pool
2784 * is not quiescent. This value may be useful for monitoring and
2785 * tuning fork/join programs: in general, steal counts should be
2786 * high enough to keep threads busy, but low enough to avoid
2787 * overhead and contention across threads.
2788 *
2789 * @return the number of steals
2790 */
2791 public long getStealCount() {
2792 long count = stealCount;
2793 WorkQueue[] ws; WorkQueue w;
2794 if ((ws = workQueues) != null) {
2795 for (int i = 1; i < ws.length; i += 2) {
2796 if ((w = ws[i]) != null)
2797 count += w.nsteals;
2798 }
2799 }
2800 return count;
2801 }
2802
2803 /**
2804 * Returns an estimate of the total number of tasks currently held
2805 * in queues by worker threads (but not including tasks submitted
2806 * to the pool that have not begun executing). This value is only
2807 * an approximation, obtained by iterating across all threads in
2808 * the pool. This method may be useful for tuning task
2809 * granularities.
2810 *
2811 * @return the number of queued tasks
2812 */
2813 public long getQueuedTaskCount() {
2814 long count = 0;
2815 WorkQueue[] ws; WorkQueue w;
2816 if ((ws = workQueues) != null) {
2817 for (int i = 1; i < ws.length; i += 2) {
2818 if ((w = ws[i]) != null)
2819 count += w.queueSize();
2820 }
2821 }
2822 return count;
2823 }
2824
2825 /**
2826 * Returns an estimate of the number of tasks submitted to this
2827 * pool that have not yet begun executing. This method may take
2828 * time proportional to the number of submissions.
2829 *
2830 * @return the number of queued submissions
2831 */
2832 public int getQueuedSubmissionCount() {
2833 int count = 0;
2834 WorkQueue[] ws; WorkQueue w;
2835 if ((ws = workQueues) != null) {
2836 for (int i = 0; i < ws.length; i += 2) {
2837 if ((w = ws[i]) != null)
2838 count += w.queueSize();
2839 }
2840 }
2841 return count;
2842 }
2843
2844 /**
2845 * Returns {@code true} if there are any tasks submitted to this
2846 * pool that have not yet begun executing.
2847 *
2848 * @return {@code true} if there are any queued submissions
2849 */
2850 public boolean hasQueuedSubmissions() {
2851 WorkQueue[] ws; WorkQueue w;
2852 if ((ws = workQueues) != null) {
2853 for (int i = 0; i < ws.length; i += 2) {
2854 if ((w = ws[i]) != null && !w.isEmpty())
2855 return true;
2856 }
2857 }
2858 return false;
2859 }
2860
2861 /**
2862 * Removes and returns the next unexecuted submission if one is
2863 * available. This method may be useful in extensions to this
2864 * class that re-assign work in systems with multiple pools.
2865 *
2866 * @return the next submission, or {@code null} if none
2867 */
2868 protected ForkJoinTask<?> pollSubmission() {
2869 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2870 if ((ws = workQueues) != null) {
2871 for (int i = 0; i < ws.length; i += 2) {
2872 if ((w = ws[i]) != null && (t = w.poll()) != null)
2873 return t;
2874 }
2875 }
2876 return null;
2877 }
2878
2879 /**
2880 * Removes all available unexecuted submitted and forked tasks
2881 * from scheduling queues and adds them to the given collection,
2882 * without altering their execution status. These may include
2883 * artificially generated or wrapped tasks. This method is
2884 * designed to be invoked only when the pool is known to be
2885 * quiescent. Invocations at other times may not remove all
2886 * tasks. A failure encountered while attempting to add elements
2887 * to collection {@code c} may result in elements being in
2888 * neither, either or both collections when the associated
2889 * exception is thrown. The behavior of this operation is
2890 * undefined if the specified collection is modified while the
2891 * operation is in progress.
2892 *
2893 * @param c the collection to transfer elements into
2894 * @return the number of elements transferred
2895 */
2896 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2897 int count = 0;
2898 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2899 if ((ws = workQueues) != null) {
2900 for (int i = 0; i < ws.length; ++i) {
2901 if ((w = ws[i]) != null) {
2902 while ((t = w.poll()) != null) {
2903 c.add(t);
2904 ++count;
2905 }
2906 }
2907 }
2908 }
2909 return count;
2910 }
2911
2912 /**
2913 * Returns a string identifying this pool, as well as its state,
2914 * including indications of run state, parallelism level, and
2915 * worker and task counts.
2916 *
2917 * @return a string identifying this pool, as well as its state
2918 */
2919 public String toString() {
2920 // Use a single pass through workQueues to collect counts
2921 long qt = 0L, qs = 0L; int rc = 0;
2922 long st = stealCount;
2923 long c = ctl;
2924 WorkQueue[] ws; WorkQueue w;
2925 if ((ws = workQueues) != null) {
2926 for (int i = 0; i < ws.length; ++i) {
2927 if ((w = ws[i]) != null) {
2928 int size = w.queueSize();
2929 if ((i & 1) == 0)
2930 qs += size;
2931 else {
2932 qt += size;
2933 st += w.nsteals;
2934 if (w.isApparentlyUnblocked())
2935 ++rc;
2936 }
2937 }
2938 }
2939 }
2940 int pc = (config & SMASK);
2941 int tc = pc + (short)(c >>> TC_SHIFT);
2942 int ac = pc + (int)(c >> AC_SHIFT);
2943 if (ac < 0) // ignore transient negative
2944 ac = 0;
2945 String level;
2946 if ((c & STOP_BIT) != 0)
2947 level = (tc == 0) ? "Terminated" : "Terminating";
2948 else
2949 level = plock < 0 ? "Shutting down" : "Running";
2950 return super.toString() +
2951 "[" + level +
2952 ", parallelism = " + pc +
2953 ", size = " + tc +
2954 ", active = " + ac +
2955 ", running = " + rc +
2956 ", steals = " + st +
2957 ", tasks = " + qt +
2958 ", submissions = " + qs +
2959 "]";
2960 }
2961
2962 /**
2963 * Possibly initiates an orderly shutdown in which previously
2964 * submitted tasks are executed, but no new tasks will be
2965 * accepted. Invocation has no effect on execution state if this
2966 * is the {@link #commonPool()}, and no additional effect if
2967 * already shut down. Tasks that are in the process of being
2968 * submitted concurrently during the course of this method may or
2969 * may not be rejected.
2970 *
2971 * @throws SecurityException if a security manager exists and
2972 * the caller is not permitted to modify threads
2973 * because it does not hold {@link
2974 * java.lang.RuntimePermission}{@code ("modifyThread")}
2975 */
2976 public void shutdown() {
2977 checkPermission();
2978 tryTerminate(false, true);
2979 }
2980
2981 /**
2982 * Possibly attempts to cancel and/or stop all tasks, and reject
2983 * all subsequently submitted tasks. Invocation has no effect on
2984 * execution state if this is the {@link #commonPool()}, and no
2985 * additional effect if already shut down. Otherwise, tasks that
2986 * are in the process of being submitted or executed concurrently
2987 * during the course of this method may or may not be
2988 * rejected. This method cancels both existing and unexecuted
2989 * tasks, in order to permit termination in the presence of task
2990 * dependencies. So the method always returns an empty list
2991 * (unlike the case for some other Executors).
2992 *
2993 * @return an empty list
2994 * @throws SecurityException if a security manager exists and
2995 * the caller is not permitted to modify threads
2996 * because it does not hold {@link
2997 * java.lang.RuntimePermission}{@code ("modifyThread")}
2998 */
2999 public List<Runnable> shutdownNow() {
3000 checkPermission();
3001 tryTerminate(true, true);
3002 return Collections.emptyList();
3003 }
3004
3005 /**
3006 * Returns {@code true} if all tasks have completed following shut down.
3007 *
3008 * @return {@code true} if all tasks have completed following shut down
3009 */
3010 public boolean isTerminated() {
3011 long c = ctl;
3012 return ((c & STOP_BIT) != 0L &&
3013 (short)(c >>> TC_SHIFT) == -(config & SMASK));
3014 }
3015
3016 /**
3017 * Returns {@code true} if the process of termination has
3018 * commenced but not yet completed. This method may be useful for
3019 * debugging. A return of {@code true} reported a sufficient
3020 * period after shutdown may indicate that submitted tasks have
3021 * ignored or suppressed interruption, or are waiting for I/O,
3022 * causing this executor not to properly terminate. (See the
3023 * advisory notes for class {@link ForkJoinTask} stating that
3024 * tasks should not normally entail blocking operations. But if
3025 * they do, they must abort them on interrupt.)
3026 *
3027 * @return {@code true} if terminating but not yet terminated
3028 */
3029 public boolean isTerminating() {
3030 long c = ctl;
3031 return ((c & STOP_BIT) != 0L &&
3032 (short)(c >>> TC_SHIFT) != -(config & SMASK));
3033 }
3034
3035 /**
3036 * Returns {@code true} if this pool has been shut down.
3037 *
3038 * @return {@code true} if this pool has been shut down
3039 */
3040 public boolean isShutdown() {
3041 return plock < 0;
3042 }
3043
3044 /**
3045 * Blocks until all tasks have completed execution after a
3046 * shutdown request, or the timeout occurs, or the current thread
3047 * is interrupted, whichever happens first. Because the {@link
3048 * #commonPool()} never terminates until program shutdown, when
3049 * applied to the common pool, this method is equivalent to {@link
3050 * #awaitQuiescence} but always returns {@code false}.
3051 *
3052 * @param timeout the maximum time to wait
3053 * @param unit the time unit of the timeout argument
3054 * @return {@code true} if this executor terminated and
3055 * {@code false} if the timeout elapsed before termination
3056 * @throws InterruptedException if interrupted while waiting
3057 */
3058 public boolean awaitTermination(long timeout, TimeUnit unit)
3059 throws InterruptedException {
3060 if (Thread.interrupted())
3061 throw new InterruptedException();
3062 if (this == common) {
3063 awaitQuiescence(timeout, unit);
3064 return false;
3065 }
3066 long nanos = unit.toNanos(timeout);
3067 if (isTerminated())
3068 return true;
3069 long startTime = System.nanoTime();
3070 boolean terminated = false;
3071 synchronized (this) {
3072 for (long waitTime = nanos, millis = 0L;;) {
3073 if (terminated = isTerminated() ||
3074 waitTime <= 0L ||
3075 (millis = unit.toMillis(waitTime)) <= 0L)
3076 break;
3077 wait(millis);
3078 waitTime = nanos - (System.nanoTime() - startTime);
3079 }
3080 }
3081 return terminated;
3082 }
3083
3084 /**
3085 * If called by a ForkJoinTask operating in this pool, equivalent
3086 * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3087 * waits and/or attempts to assist performing tasks until this
3088 * pool {@link #isQuiescent} or the indicated timeout elapses.
3089 *
3090 * @param timeout the maximum time to wait
3091 * @param unit the time unit of the timeout argument
3092 * @return {@code true} if quiescent; {@code false} if the
3093 * timeout elapsed.
3094 */
3095 public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3096 long nanos = unit.toNanos(timeout);
3097 ForkJoinWorkerThread wt;
3098 Thread thread = Thread.currentThread();
3099 if ((thread instanceof ForkJoinWorkerThread) &&
3100 (wt = (ForkJoinWorkerThread)thread).pool == this) {
3101 helpQuiescePool(wt.workQueue);
3102 return true;
3103 }
3104 long startTime = System.nanoTime();
3105 WorkQueue[] ws;
3106 int r = 0, m;
3107 boolean found = true;
3108 while (!isQuiescent() && (ws = workQueues) != null &&
3109 (m = ws.length - 1) >= 0) {
3110 if (!found) {
3111 if ((System.nanoTime() - startTime) > nanos)
3112 return false;
3113 Thread.yield(); // cannot block
3114 }
3115 found = false;
3116 for (int j = (m + 1) << 2; j >= 0; --j) {
3117 ForkJoinTask<?> t; WorkQueue q; int b;
3118 if ((q = ws[r++ & m]) != null && (b = q.base) - q.top < 0) {
3119 found = true;
3120 if ((t = q.pollAt(b)) != null) {
3121 if (q.base - q.top < 0)
3122 signalWork(q);
3123 t.doExec();
3124 }
3125 break;
3126 }
3127 }
3128 }
3129 return true;
3130 }
3131
3132 /**
3133 * Waits and/or attempts to assist performing tasks indefinitely
3134 * until the {@link #commonPool()} {@link #isQuiescent}.
3135 */
3136 static void quiesceCommonPool() {
3137 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3138 }
3139
3140 /**
3141 * Interface for extending managed parallelism for tasks running
3142 * in {@link ForkJoinPool}s.
3143 *
3144 * <p>A {@code ManagedBlocker} provides two methods. Method
3145 * {@code isReleasable} must return {@code true} if blocking is
3146 * not necessary. Method {@code block} blocks the current thread
3147 * if necessary (perhaps internally invoking {@code isReleasable}
3148 * before actually blocking). These actions are performed by any
3149 * thread invoking {@link ForkJoinPool#managedBlock}. The
3150 * unusual methods in this API accommodate synchronizers that may,
3151 * but don't usually, block for long periods. Similarly, they
3152 * allow more efficient internal handling of cases in which
3153 * additional workers may be, but usually are not, needed to
3154 * ensure sufficient parallelism. Toward this end,
3155 * implementations of method {@code isReleasable} must be amenable
3156 * to repeated invocation.
3157 *
3158 * <p>For example, here is a ManagedBlocker based on a
3159 * ReentrantLock:
3160 * <pre> {@code
3161 * class ManagedLocker implements ManagedBlocker {
3162 * final ReentrantLock lock;
3163 * boolean hasLock = false;
3164 * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3165 * public boolean block() {
3166 * if (!hasLock)
3167 * lock.lock();
3168 * return true;
3169 * }
3170 * public boolean isReleasable() {
3171 * return hasLock || (hasLock = lock.tryLock());
3172 * }
3173 * }}</pre>
3174 *
3175 * <p>Here is a class that possibly blocks waiting for an
3176 * item on a given queue:
3177 * <pre> {@code
3178 * class QueueTaker<E> implements ManagedBlocker {
3179 * final BlockingQueue<E> queue;
3180 * volatile E item = null;
3181 * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3182 * public boolean block() throws InterruptedException {
3183 * if (item == null)
3184 * item = queue.take();
3185 * return true;
3186 * }
3187 * public boolean isReleasable() {
3188 * return item != null || (item = queue.poll()) != null;
3189 * }
3190 * public E getItem() { // call after pool.managedBlock completes
3191 * return item;
3192 * }
3193 * }}</pre>
3194 */
3195 public static interface ManagedBlocker {
3196 /**
3197 * Possibly blocks the current thread, for example waiting for
3198 * a lock or condition.
3199 *
3200 * @return {@code true} if no additional blocking is necessary
3201 * (i.e., if isReleasable would return true)
3202 * @throws InterruptedException if interrupted while waiting
3203 * (the method is not required to do so, but is allowed to)
3204 */
3205 boolean block() throws InterruptedException;
3206
3207 /**
3208 * Returns {@code true} if blocking is unnecessary.
3209 * @return {@code true} if blocking is unnecessary
3210 */
3211 boolean isReleasable();
3212 }
3213
3214 /**
3215 * Blocks in accord with the given blocker. If the current thread
3216 * is a {@link ForkJoinWorkerThread}, this method possibly
3217 * arranges for a spare thread to be activated if necessary to
3218 * ensure sufficient parallelism while the current thread is blocked.
3219 *
3220 * <p>If the caller is not a {@link ForkJoinTask}, this method is
3221 * behaviorally equivalent to
3222 * <pre> {@code
3223 * while (!blocker.isReleasable())
3224 * if (blocker.block())
3225 * return;
3226 * }</pre>
3227 *
3228 * If the caller is a {@code ForkJoinTask}, then the pool may
3229 * first be expanded to ensure parallelism, and later adjusted.
3230 *
3231 * @param blocker the blocker
3232 * @throws InterruptedException if blocker.block did so
3233 */
3234 public static void managedBlock(ManagedBlocker blocker)
3235 throws InterruptedException {
3236 Thread t = Thread.currentThread();
3237 if (t instanceof ForkJoinWorkerThread) {
3238 ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3239 while (!blocker.isReleasable()) { // variant of helpSignal
3240 WorkQueue[] ws; WorkQueue q; int m, u;
3241 if ((ws = p.workQueues) != null && (m = ws.length - 1) >= 0) {
3242 for (int i = 0; i <= m; ++i) {
3243 if (blocker.isReleasable())
3244 return;
3245 if ((q = ws[i]) != null && q.base - q.top < 0) {
3246 p.signalWork(q);
3247 if ((u = (int)(p.ctl >>> 32)) >= 0 ||
3248 (u >> UAC_SHIFT) >= 0)
3249 break;
3250 }
3251 }
3252 }
3253 if (p.tryCompensate()) {
3254 try {
3255 do {} while (!blocker.isReleasable() &&
3256 !blocker.block());
3257 } finally {
3258 p.incrementActiveCount();
3259 }
3260 break;
3261 }
3262 }
3263 }
3264 else {
3265 do {} while (!blocker.isReleasable() &&
3266 !blocker.block());
3267 }
3268 }
3269
3270 // AbstractExecutorService overrides. These rely on undocumented
3271 // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3272 // implement RunnableFuture.
3273
3274 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3275 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3276 }
3277
3278 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3279 return new ForkJoinTask.AdaptedCallable<T>(callable);
3280 }
3281
3282 // Unsafe mechanics
3283 private static final sun.misc.Unsafe U;
3284 private static final long CTL;
3285 private static final long PARKBLOCKER;
3286 private static final int ABASE;
3287 private static final int ASHIFT;
3288 private static final long STEALCOUNT;
3289 private static final long PLOCK;
3290 private static final long INDEXSEED;
3291 private static final long QLOCK;
3292
3293 static {
3294 // initialize field offsets for CAS etc
3295 try {
3296 U = sun.misc.Unsafe.getUnsafe();
3297 Class<?> k = ForkJoinPool.class;
3298 CTL = U.objectFieldOffset
3299 (k.getDeclaredField("ctl"));
3300 STEALCOUNT = U.objectFieldOffset
3301 (k.getDeclaredField("stealCount"));
3302 PLOCK = U.objectFieldOffset
3303 (k.getDeclaredField("plock"));
3304 INDEXSEED = U.objectFieldOffset
3305 (k.getDeclaredField("indexSeed"));
3306 Class<?> tk = Thread.class;
3307 PARKBLOCKER = U.objectFieldOffset
3308 (tk.getDeclaredField("parkBlocker"));
3309 Class<?> wk = WorkQueue.class;
3310 QLOCK = U.objectFieldOffset
3311 (wk.getDeclaredField("qlock"));
3312 Class<?> ak = ForkJoinTask[].class;
3313 ABASE = U.arrayBaseOffset(ak);
3314 int scale = U.arrayIndexScale(ak);
3315 if ((scale & (scale - 1)) != 0)
3316 throw new Error("data type scale not a power of two");
3317 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3318 } catch (Exception e) {
3319 throw new Error(e);
3320 }
3321
3322 defaultForkJoinWorkerThreadFactory =
3323 new DefaultForkJoinWorkerThreadFactory();
3324 modifyThreadPermission = new RuntimePermission("modifyThread");
3325
3326 common = java.security.AccessController.doPrivileged
3327 (new java.security.PrivilegedAction<ForkJoinPool>() {
3328 public ForkJoinPool run() { return makeCommonPool(); }});
3329 commonParallelism = common.config; // cannot be async
3330 }
3331
3332 /**
3333 * Creates and returns the common pool, respecting user settings
3334 * specified via system properties.
3335 */
3336 private static ForkJoinPool makeCommonPool() {
3337 int parallelism = 0;
3338 ForkJoinWorkerThreadFactory factory
3339 = defaultForkJoinWorkerThreadFactory;
3340 Thread.UncaughtExceptionHandler handler = null;
3341 try { // ignore exceptions in accesing/parsing properties
3342 String pp = System.getProperty
3343 ("java.util.concurrent.ForkJoinPool.common.parallelism");
3344 String fp = System.getProperty
3345 ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3346 String hp = System.getProperty
3347 ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3348 if (pp != null)
3349 parallelism = Integer.parseInt(pp);
3350 if (fp != null)
3351 factory = ((ForkJoinWorkerThreadFactory)ClassLoader.
3352 getSystemClassLoader().loadClass(fp).newInstance());
3353 if (hp != null)
3354 handler = ((Thread.UncaughtExceptionHandler)ClassLoader.
3355 getSystemClassLoader().loadClass(hp).newInstance());
3356 } catch (Exception ignore) {
3357 }
3358
3359 if (parallelism <= 0)
3360 parallelism = Runtime.getRuntime().availableProcessors();
3361 if (parallelism > MAX_CAP)
3362 parallelism = MAX_CAP;
3363
3364 return new ForkJoinPool(parallelism, factory, handler, false,
3365 "ForkJoinPool.commonPool-worker-");
3366 }
3367
3368 }