ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.159
Committed: Mon Feb 11 17:27:45 2013 UTC (11 years, 3 months ago) by jsr166
Branch: MAIN
Changes since 1.158: +1 -0 lines
Log Message:
add <caption> tags to all tables

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.lang.Thread.UncaughtExceptionHandler;
10 import java.util.ArrayList;
11 import java.util.Arrays;
12 import java.util.Collection;
13 import java.util.Collections;
14 import java.util.List;
15 import java.util.concurrent.AbstractExecutorService;
16 import java.util.concurrent.Callable;
17 import java.util.concurrent.ExecutorService;
18 import java.util.concurrent.Future;
19 import java.util.concurrent.RejectedExecutionException;
20 import java.util.concurrent.RunnableFuture;
21 import java.util.concurrent.TimeUnit;
22
23 /**
24 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
25 * A {@code ForkJoinPool} provides the entry point for submissions
26 * from non-{@code ForkJoinTask} clients, as well as management and
27 * monitoring operations.
28 *
29 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
30 * ExecutorService} mainly by virtue of employing
31 * <em>work-stealing</em>: all threads in the pool attempt to find and
32 * execute tasks submitted to the pool and/or created by other active
33 * tasks (eventually blocking waiting for work if none exist). This
34 * enables efficient processing when most tasks spawn other subtasks
35 * (as do most {@code ForkJoinTask}s), as well as when many small
36 * tasks are submitted to the pool from external clients. Especially
37 * when setting <em>asyncMode</em> to true in constructors, {@code
38 * ForkJoinPool}s may also be appropriate for use with event-style
39 * tasks that are never joined.
40 *
41 * <p>A static {@link #commonPool()} is available and appropriate for
42 * most applications. The common pool is used by any ForkJoinTask that
43 * is not explicitly submitted to a specified pool. Using the common
44 * pool normally reduces resource usage (its threads are slowly
45 * reclaimed during periods of non-use, and reinstated upon subsequent
46 * use).
47 *
48 * <p>For applications that require separate or custom pools, a {@code
49 * ForkJoinPool} may be constructed with a given target parallelism
50 * level; by default, equal to the number of available processors. The
51 * pool attempts to maintain enough active (or available) threads by
52 * dynamically adding, suspending, or resuming internal worker
53 * threads, even if some tasks are stalled waiting to join
54 * others. However, no such adjustments are guaranteed in the face of
55 * blocked I/O or other unmanaged synchronization. The nested {@link
56 * ManagedBlocker} interface enables extension of the kinds of
57 * synchronization accommodated.
58 *
59 * <p>In addition to execution and lifecycle control methods, this
60 * class provides status check methods (for example
61 * {@link #getStealCount}) that are intended to aid in developing,
62 * tuning, and monitoring fork/join applications. Also, method
63 * {@link #toString} returns indications of pool state in a
64 * convenient form for informal monitoring.
65 *
66 * <p>As is the case with other ExecutorServices, there are three
67 * main task execution methods summarized in the following table.
68 * These are designed to be used primarily by clients not already
69 * engaged in fork/join computations in the current pool. The main
70 * forms of these methods accept instances of {@code ForkJoinTask},
71 * but overloaded forms also allow mixed execution of plain {@code
72 * Runnable}- or {@code Callable}- based activities as well. However,
73 * tasks that are already executing in a pool should normally instead
74 * use the within-computation forms listed in the table unless using
75 * async event-style tasks that are not usually joined, in which case
76 * there is little difference among choice of methods.
77 *
78 * <table BORDER CELLPADDING=3 CELLSPACING=1>
79 * <caption>Summary of task execution methods</caption>
80 * <tr>
81 * <td></td>
82 * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
83 * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
84 * </tr>
85 * <tr>
86 * <td> <b>Arrange async execution</b></td>
87 * <td> {@link #execute(ForkJoinTask)}</td>
88 * <td> {@link ForkJoinTask#fork}</td>
89 * </tr>
90 * <tr>
91 * <td> <b>Await and obtain result</b></td>
92 * <td> {@link #invoke(ForkJoinTask)}</td>
93 * <td> {@link ForkJoinTask#invoke}</td>
94 * </tr>
95 * <tr>
96 * <td> <b>Arrange exec and obtain Future</b></td>
97 * <td> {@link #submit(ForkJoinTask)}</td>
98 * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
99 * </tr>
100 * </table>
101 *
102 * <p>The common pool is by default constructed with default
103 * parameters, but these may be controlled by setting three
104 * {@linkplain System#getProperty system properties} with prefix
105 * {@code "java.util.concurrent.ForkJoinPool.common."}:
106 * {@code parallelism} -- an integer greater than zero,
107 * {@code threadFactory} -- the class name of a
108 * {@link ForkJoinWorkerThreadFactory}, and
109 * {@code exceptionHandler} --
110 * the class name of a {@link UncaughtExceptionHandler}.
111 * Upon any error in establishing these settings, default parameters
112 * are used.
113 *
114 * <p><b>Implementation notes</b>: This implementation restricts the
115 * maximum number of running threads to 32767. Attempts to create
116 * pools with greater than the maximum number result in
117 * {@code IllegalArgumentException}.
118 *
119 * <p>This implementation rejects submitted tasks (that is, by throwing
120 * {@link RejectedExecutionException}) only when the pool is shut down
121 * or internal resources have been exhausted.
122 *
123 * @since 1.7
124 * @author Doug Lea
125 */
126 public class ForkJoinPool extends AbstractExecutorService {
127
128 /*
129 * Implementation Overview
130 *
131 * This class and its nested classes provide the main
132 * functionality and control for a set of worker threads:
133 * Submissions from non-FJ threads enter into submission queues.
134 * Workers take these tasks and typically split them into subtasks
135 * that may be stolen by other workers. Preference rules give
136 * first priority to processing tasks from their own queues (LIFO
137 * or FIFO, depending on mode), then to randomized FIFO steals of
138 * tasks in other queues.
139 *
140 * WorkQueues
141 * ==========
142 *
143 * Most operations occur within work-stealing queues (in nested
144 * class WorkQueue). These are special forms of Deques that
145 * support only three of the four possible end-operations -- push,
146 * pop, and poll (aka steal), under the further constraints that
147 * push and pop are called only from the owning thread (or, as
148 * extended here, under a lock), while poll may be called from
149 * other threads. (If you are unfamiliar with them, you probably
150 * want to read Herlihy and Shavit's book "The Art of
151 * Multiprocessor programming", chapter 16 describing these in
152 * more detail before proceeding.) The main work-stealing queue
153 * design is roughly similar to those in the papers "Dynamic
154 * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
155 * (http://research.sun.com/scalable/pubs/index.html) and
156 * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
157 * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
158 * The main differences ultimately stem from GC requirements that
159 * we null out taken slots as soon as we can, to maintain as small
160 * a footprint as possible even in programs generating huge
161 * numbers of tasks. To accomplish this, we shift the CAS
162 * arbitrating pop vs poll (steal) from being on the indices
163 * ("base" and "top") to the slots themselves. So, both a
164 * successful pop and poll mainly entail a CAS of a slot from
165 * non-null to null. Because we rely on CASes of references, we
166 * do not need tag bits on base or top. They are simple ints as
167 * used in any circular array-based queue (see for example
168 * ArrayDeque). Updates to the indices must still be ordered in a
169 * way that guarantees that top == base means the queue is empty,
170 * but otherwise may err on the side of possibly making the queue
171 * appear nonempty when a push, pop, or poll have not fully
172 * committed. Note that this means that the poll operation,
173 * considered individually, is not wait-free. One thief cannot
174 * successfully continue until another in-progress one (or, if
175 * previously empty, a push) completes. However, in the
176 * aggregate, we ensure at least probabilistic non-blockingness.
177 * If an attempted steal fails, a thief always chooses a different
178 * random victim target to try next. So, in order for one thief to
179 * progress, it suffices for any in-progress poll or new push on
180 * any empty queue to complete. (This is why we normally use
181 * method pollAt and its variants that try once at the apparent
182 * base index, else consider alternative actions, rather than
183 * method poll.)
184 *
185 * This approach also enables support of a user mode in which local
186 * task processing is in FIFO, not LIFO order, simply by using
187 * poll rather than pop. This can be useful in message-passing
188 * frameworks in which tasks are never joined. However neither
189 * mode considers affinities, loads, cache localities, etc, so
190 * rarely provide the best possible performance on a given
191 * machine, but portably provide good throughput by averaging over
192 * these factors. (Further, even if we did try to use such
193 * information, we do not usually have a basis for exploiting it.
194 * For example, some sets of tasks profit from cache affinities,
195 * but others are harmed by cache pollution effects.)
196 *
197 * WorkQueues are also used in a similar way for tasks submitted
198 * to the pool. We cannot mix these tasks in the same queues used
199 * for work-stealing (this would contaminate lifo/fifo
200 * processing). Instead, we randomly associate submission queues
201 * with submitting threads, using a form of hashing. The
202 * ThreadLocalRandom probe value serves as a hash code for
203 * choosing existing queues, and may be randomly repositioned upon
204 * contention with other submitters. In essence, submitters act
205 * like workers except that they are restricted to executing local
206 * tasks that they submitted (or in the case of CountedCompleters,
207 * others with the same root task). However, because most
208 * shared/external queue operations are more expensive than
209 * internal, and because, at steady state, external submitters
210 * will compete for CPU with workers, ForkJoinTask.join and
211 * related methods disable them from repeatedly helping to process
212 * tasks if all workers are active. Insertion of tasks in shared
213 * mode requires a lock (mainly to protect in the case of
214 * resizing) but we use only a simple spinlock (using bits in
215 * field qlock), because submitters encountering a busy queue move
216 * on to try or create other queues -- they block only when
217 * creating and registering new queues.
218 *
219 * Management
220 * ==========
221 *
222 * The main throughput advantages of work-stealing stem from
223 * decentralized control -- workers mostly take tasks from
224 * themselves or each other. We cannot negate this in the
225 * implementation of other management responsibilities. The main
226 * tactic for avoiding bottlenecks is packing nearly all
227 * essentially atomic control state into two volatile variables
228 * that are by far most often read (not written) as status and
229 * consistency checks.
230 *
231 * Field "ctl" contains 64 bits holding all the information needed
232 * to atomically decide to add, inactivate, enqueue (on an event
233 * queue), dequeue, and/or re-activate workers. To enable this
234 * packing, we restrict maximum parallelism to (1<<15)-1 (which is
235 * far in excess of normal operating range) to allow ids, counts,
236 * and their negations (used for thresholding) to fit into 16bit
237 * fields.
238 *
239 * Field "plock" is a form of sequence lock with a saturating
240 * shutdown bit (similarly for per-queue "qlocks"), mainly
241 * protecting updates to the workQueues array, as well as to
242 * enable shutdown. When used as a lock, it is normally only very
243 * briefly held, so is nearly always available after at most a
244 * brief spin, but we use a monitor-based backup strategy to
245 * block when needed.
246 *
247 * Recording WorkQueues. WorkQueues are recorded in the
248 * "workQueues" array that is created upon first use and expanded
249 * if necessary. Updates to the array while recording new workers
250 * and unrecording terminated ones are protected from each other
251 * by a lock but the array is otherwise concurrently readable, and
252 * accessed directly. To simplify index-based operations, the
253 * array size is always a power of two, and all readers must
254 * tolerate null slots. Worker queues are at odd indices. Shared
255 * (submission) queues are at even indices, up to a maximum of 64
256 * slots, to limit growth even if array needs to expand to add
257 * more workers. Grouping them together in this way simplifies and
258 * speeds up task scanning.
259 *
260 * All worker thread creation is on-demand, triggered by task
261 * submissions, replacement of terminated workers, and/or
262 * compensation for blocked workers. However, all other support
263 * code is set up to work with other policies. To ensure that we
264 * do not hold on to worker references that would prevent GC, ALL
265 * accesses to workQueues are via indices into the workQueues
266 * array (which is one source of some of the messy code
267 * constructions here). In essence, the workQueues array serves as
268 * a weak reference mechanism. Thus for example the wait queue
269 * field of ctl stores indices, not references. Access to the
270 * workQueues in associated methods (for example signalWork) must
271 * both index-check and null-check the IDs. All such accesses
272 * ignore bad IDs by returning out early from what they are doing,
273 * since this can only be associated with termination, in which
274 * case it is OK to give up. All uses of the workQueues array
275 * also check that it is non-null (even if previously
276 * non-null). This allows nulling during termination, which is
277 * currently not necessary, but remains an option for
278 * resource-revocation-based shutdown schemes. It also helps
279 * reduce JIT issuance of uncommon-trap code, which tends to
280 * unnecessarily complicate control flow in some methods.
281 *
282 * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
283 * let workers spin indefinitely scanning for tasks when none can
284 * be found immediately, and we cannot start/resume workers unless
285 * there appear to be tasks available. On the other hand, we must
286 * quickly prod them into action when new tasks are submitted or
287 * generated. In many usages, ramp-up time to activate workers is
288 * the main limiting factor in overall performance (this is
289 * compounded at program start-up by JIT compilation and
290 * allocation). So we try to streamline this as much as possible.
291 * We park/unpark workers after placing in an event wait queue
292 * when they cannot find work. This "queue" is actually a simple
293 * Treiber stack, headed by the "id" field of ctl, plus a 15bit
294 * counter value (that reflects the number of times a worker has
295 * been inactivated) to avoid ABA effects (we need only as many
296 * version numbers as worker threads). Successors are held in
297 * field WorkQueue.nextWait. Queuing deals with several intrinsic
298 * races, mainly that a task-producing thread can miss seeing (and
299 * signalling) another thread that gave up looking for work but
300 * has not yet entered the wait queue. We solve this by requiring
301 * a full sweep of all workers (via repeated calls to method
302 * scan()) both before and after a newly waiting worker is added
303 * to the wait queue. During a rescan, the worker might release
304 * some other queued worker rather than itself, which has the same
305 * net effect. Because enqueued workers may actually be rescanning
306 * rather than waiting, we set and clear the "parker" field of
307 * WorkQueues to reduce unnecessary calls to unpark. (This
308 * requires a secondary recheck to avoid missed signals.) Note
309 * the unusual conventions about Thread.interrupts surrounding
310 * parking and other blocking: Because interrupts are used solely
311 * to alert threads to check termination, which is checked anyway
312 * upon blocking, we clear status (using Thread.interrupted)
313 * before any call to park, so that park does not immediately
314 * return due to status being set via some other unrelated call to
315 * interrupt in user code.
316 *
317 * Signalling. We create or wake up workers only when there
318 * appears to be at least one task they might be able to find and
319 * execute. However, many other threads may notice the same task
320 * and each signal to wake up a thread that might take it. So in
321 * general, pools will be over-signalled. When a submission is
322 * added or another worker adds a task to a queue that has fewer
323 * than two tasks, they signal waiting workers (or trigger
324 * creation of new ones if fewer than the given parallelism level
325 * -- signalWork), and may leave a hint to the unparked worker to
326 * help signal others upon wakeup). These primary signals are
327 * buttressed by others (see method helpSignal) whenever other
328 * threads scan for work or do not have a task to process. On
329 * most platforms, signalling (unpark) overhead time is noticeably
330 * long, and the time between signalling a thread and it actually
331 * making progress can be very noticeably long, so it is worth
332 * offloading these delays from critical paths as much as
333 * possible.
334 *
335 * Trimming workers. To release resources after periods of lack of
336 * use, a worker starting to wait when the pool is quiescent will
337 * time out and terminate if the pool has remained quiescent for a
338 * given period -- a short period if there are more threads than
339 * parallelism, longer as the number of threads decreases. This
340 * will slowly propagate, eventually terminating all workers after
341 * periods of non-use.
342 *
343 * Shutdown and Termination. A call to shutdownNow atomically sets
344 * a plock bit and then (non-atomically) sets each worker's
345 * qlock status, cancels all unprocessed tasks, and wakes up
346 * all waiting workers. Detecting whether termination should
347 * commence after a non-abrupt shutdown() call requires more work
348 * and bookkeeping. We need consensus about quiescence (i.e., that
349 * there is no more work). The active count provides a primary
350 * indication but non-abrupt shutdown still requires a rechecking
351 * scan for any workers that are inactive but not queued.
352 *
353 * Joining Tasks
354 * =============
355 *
356 * Any of several actions may be taken when one worker is waiting
357 * to join a task stolen (or always held) by another. Because we
358 * are multiplexing many tasks on to a pool of workers, we can't
359 * just let them block (as in Thread.join). We also cannot just
360 * reassign the joiner's run-time stack with another and replace
361 * it later, which would be a form of "continuation", that even if
362 * possible is not necessarily a good idea since we sometimes need
363 * both an unblocked task and its continuation to progress.
364 * Instead we combine two tactics:
365 *
366 * Helping: Arranging for the joiner to execute some task that it
367 * would be running if the steal had not occurred.
368 *
369 * Compensating: Unless there are already enough live threads,
370 * method tryCompensate() may create or re-activate a spare
371 * thread to compensate for blocked joiners until they unblock.
372 *
373 * A third form (implemented in tryRemoveAndExec) amounts to
374 * helping a hypothetical compensator: If we can readily tell that
375 * a possible action of a compensator is to steal and execute the
376 * task being joined, the joining thread can do so directly,
377 * without the need for a compensation thread (although at the
378 * expense of larger run-time stacks, but the tradeoff is
379 * typically worthwhile).
380 *
381 * The ManagedBlocker extension API can't use helping so relies
382 * only on compensation in method awaitBlocker.
383 *
384 * The algorithm in tryHelpStealer entails a form of "linear"
385 * helping: Each worker records (in field currentSteal) the most
386 * recent task it stole from some other worker. Plus, it records
387 * (in field currentJoin) the task it is currently actively
388 * joining. Method tryHelpStealer uses these markers to try to
389 * find a worker to help (i.e., steal back a task from and execute
390 * it) that could hasten completion of the actively joined task.
391 * In essence, the joiner executes a task that would be on its own
392 * local deque had the to-be-joined task not been stolen. This may
393 * be seen as a conservative variant of the approach in Wagner &
394 * Calder "Leapfrogging: a portable technique for implementing
395 * efficient futures" SIGPLAN Notices, 1993
396 * (http://portal.acm.org/citation.cfm?id=155354). It differs in
397 * that: (1) We only maintain dependency links across workers upon
398 * steals, rather than use per-task bookkeeping. This sometimes
399 * requires a linear scan of workQueues array to locate stealers,
400 * but often doesn't because stealers leave hints (that may become
401 * stale/wrong) of where to locate them. It is only a hint
402 * because a worker might have had multiple steals and the hint
403 * records only one of them (usually the most current). Hinting
404 * isolates cost to when it is needed, rather than adding to
405 * per-task overhead. (2) It is "shallow", ignoring nesting and
406 * potentially cyclic mutual steals. (3) It is intentionally
407 * racy: field currentJoin is updated only while actively joining,
408 * which means that we miss links in the chain during long-lived
409 * tasks, GC stalls etc (which is OK since blocking in such cases
410 * is usually a good idea). (4) We bound the number of attempts
411 * to find work (see MAX_HELP) and fall back to suspending the
412 * worker and if necessary replacing it with another.
413 *
414 * Helping actions for CountedCompleters are much simpler: Method
415 * helpComplete can take and execute any task with the same root
416 * as the task being waited on. However, this still entails some
417 * traversal of completer chains, so is less efficient than using
418 * CountedCompleters without explicit joins.
419 *
420 * It is impossible to keep exactly the target parallelism number
421 * of threads running at any given time. Determining the
422 * existence of conservatively safe helping targets, the
423 * availability of already-created spares, and the apparent need
424 * to create new spares are all racy, so we rely on multiple
425 * retries of each. Compensation in the apparent absence of
426 * helping opportunities is challenging to control on JVMs, where
427 * GC and other activities can stall progress of tasks that in
428 * turn stall out many other dependent tasks, without us being
429 * able to determine whether they will ever require compensation.
430 * Even though work-stealing otherwise encounters little
431 * degradation in the presence of more threads than cores,
432 * aggressively adding new threads in such cases entails risk of
433 * unwanted positive feedback control loops in which more threads
434 * cause more dependent stalls (as well as delayed progress of
435 * unblocked threads to the point that we know they are available)
436 * leading to more situations requiring more threads, and so
437 * on. This aspect of control can be seen as an (analytically
438 * intractable) game with an opponent that may choose the worst
439 * (for us) active thread to stall at any time. We take several
440 * precautions to bound losses (and thus bound gains), mainly in
441 * methods tryCompensate and awaitJoin.
442 *
443 * Common Pool
444 * ===========
445 *
446 * The static common Pool always exists after static
447 * initialization. Since it (or any other created pool) need
448 * never be used, we minimize initial construction overhead and
449 * footprint to the setup of about a dozen fields, with no nested
450 * allocation. Most bootstrapping occurs within method
451 * fullExternalPush during the first submission to the pool.
452 *
453 * When external threads submit to the common pool, they can
454 * perform some subtask processing (see externalHelpJoin and
455 * related methods). We do not need to record whether these
456 * submissions are to the common pool -- if not, externalHelpJoin
457 * returns quickly (at the most helping to signal some common pool
458 * workers). These submitters would otherwise be blocked waiting
459 * for completion, so the extra effort (with liberally sprinkled
460 * task status checks) in inapplicable cases amounts to an odd
461 * form of limited spin-wait before blocking in ForkJoinTask.join.
462 *
463 * Style notes
464 * ===========
465 *
466 * There is a lot of representation-level coupling among classes
467 * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
468 * fields of WorkQueue maintain data structures managed by
469 * ForkJoinPool, so are directly accessed. There is little point
470 * trying to reduce this, since any associated future changes in
471 * representations will need to be accompanied by algorithmic
472 * changes anyway. Several methods intrinsically sprawl because
473 * they must accumulate sets of consistent reads of volatiles held
474 * in local variables. Methods signalWork() and scan() are the
475 * main bottlenecks, so are especially heavily
476 * micro-optimized/mangled. There are lots of inline assignments
477 * (of form "while ((local = field) != 0)") which are usually the
478 * simplest way to ensure the required read orderings (which are
479 * sometimes critical). This leads to a "C"-like style of listing
480 * declarations of these locals at the heads of methods or blocks.
481 * There are several occurrences of the unusual "do {} while
482 * (!cas...)" which is the simplest way to force an update of a
483 * CAS'ed variable. There are also other coding oddities (including
484 * several unnecessary-looking hoisted null checks) that help
485 * some methods perform reasonably even when interpreted (not
486 * compiled).
487 *
488 * The order of declarations in this file is:
489 * (1) Static utility functions
490 * (2) Nested (static) classes
491 * (3) Static fields
492 * (4) Fields, along with constants used when unpacking some of them
493 * (5) Internal control methods
494 * (6) Callbacks and other support for ForkJoinTask methods
495 * (7) Exported methods
496 * (8) Static block initializing statics in minimally dependent order
497 */
498
499 // Static utilities
500
501 /**
502 * If there is a security manager, makes sure caller has
503 * permission to modify threads.
504 */
505 private static void checkPermission() {
506 SecurityManager security = System.getSecurityManager();
507 if (security != null)
508 security.checkPermission(modifyThreadPermission);
509 }
510
511 // Nested classes
512
513 /**
514 * Factory for creating new {@link ForkJoinWorkerThread}s.
515 * A {@code ForkJoinWorkerThreadFactory} must be defined and used
516 * for {@code ForkJoinWorkerThread} subclasses that extend base
517 * functionality or initialize threads with different contexts.
518 */
519 public static interface ForkJoinWorkerThreadFactory {
520 /**
521 * Returns a new worker thread operating in the given pool.
522 *
523 * @param pool the pool this thread works in
524 * @throws NullPointerException if the pool is null
525 * @return the new worker thread
526 */
527 public ForkJoinWorkerThread newThread(ForkJoinPool pool);
528 }
529
530 /**
531 * Default ForkJoinWorkerThreadFactory implementation; creates a
532 * new ForkJoinWorkerThread.
533 */
534 static final class DefaultForkJoinWorkerThreadFactory
535 implements ForkJoinWorkerThreadFactory {
536 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
537 return new ForkJoinWorkerThread(pool);
538 }
539 }
540
541 /**
542 * Class for artificial tasks that are used to replace the target
543 * of local joins if they are removed from an interior queue slot
544 * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
545 * actually do anything beyond having a unique identity.
546 */
547 static final class EmptyTask extends ForkJoinTask<Void> {
548 private static final long serialVersionUID = -7721805057305804111L;
549 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
550 public final Void getRawResult() { return null; }
551 public final void setRawResult(Void x) {}
552 public final boolean exec() { return true; }
553 }
554
555 /**
556 * Queues supporting work-stealing as well as external task
557 * submission. See above for main rationale and algorithms.
558 * Implementation relies heavily on "Unsafe" intrinsics
559 * and selective use of "volatile":
560 *
561 * Field "base" is the index (mod array.length) of the least valid
562 * queue slot, which is always the next position to steal (poll)
563 * from if nonempty. Reads and writes require volatile orderings
564 * but not CAS, because updates are only performed after slot
565 * CASes.
566 *
567 * Field "top" is the index (mod array.length) of the next queue
568 * slot to push to or pop from. It is written only by owner thread
569 * for push, or under lock for external/shared push, and accessed
570 * by other threads only after reading (volatile) base. Both top
571 * and base are allowed to wrap around on overflow, but (top -
572 * base) (or more commonly -(base - top) to force volatile read of
573 * base before top) still estimates size. The lock ("qlock") is
574 * forced to -1 on termination, causing all further lock attempts
575 * to fail. (Note: we don't need CAS for termination state because
576 * upon pool shutdown, all shared-queues will stop being used
577 * anyway.) Nearly all lock bodies are set up so that exceptions
578 * within lock bodies are "impossible" (modulo JVM errors that
579 * would cause failure anyway.)
580 *
581 * The array slots are read and written using the emulation of
582 * volatiles/atomics provided by Unsafe. Insertions must in
583 * general use putOrderedObject as a form of releasing store to
584 * ensure that all writes to the task object are ordered before
585 * its publication in the queue. All removals entail a CAS to
586 * null. The array is always a power of two. To ensure safety of
587 * Unsafe array operations, all accesses perform explicit null
588 * checks and implicit bounds checks via power-of-two masking.
589 *
590 * In addition to basic queuing support, this class contains
591 * fields described elsewhere to control execution. It turns out
592 * to work better memory-layout-wise to include them in this class
593 * rather than a separate class.
594 *
595 * Performance on most platforms is very sensitive to placement of
596 * instances of both WorkQueues and their arrays -- we absolutely
597 * do not want multiple WorkQueue instances or multiple queue
598 * arrays sharing cache lines. (It would be best for queue objects
599 * and their arrays to share, but there is nothing available to
600 * help arrange that). Unfortunately, because they are recorded
601 * in a common array, WorkQueue instances are often moved to be
602 * adjacent by garbage collectors. To reduce impact, we use field
603 * padding that works OK on common platforms; this effectively
604 * trades off slightly slower average field access for the sake of
605 * avoiding really bad worst-case access. (Until better JVM
606 * support is in place, this padding is dependent on transient
607 * properties of JVM field layout rules.) We also take care in
608 * allocating, sizing and resizing the array. Non-shared queue
609 * arrays are initialized by workers before use. Others are
610 * allocated on first use.
611 */
612 static final class WorkQueue {
613 /**
614 * Capacity of work-stealing queue array upon initialization.
615 * Must be a power of two; at least 4, but should be larger to
616 * reduce or eliminate cacheline sharing among queues.
617 * Currently, it is much larger, as a partial workaround for
618 * the fact that JVMs often place arrays in locations that
619 * share GC bookkeeping (especially cardmarks) such that
620 * per-write accesses encounter serious memory contention.
621 */
622 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
623
624 /**
625 * Maximum size for queue arrays. Must be a power of two less
626 * than or equal to 1 << (31 - width of array entry) to ensure
627 * lack of wraparound of index calculations, but defined to a
628 * value a bit less than this to help users trap runaway
629 * programs before saturating systems.
630 */
631 static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
632
633 // Heuristic padding to ameliorate unfortunate memory placements
634 volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
635
636 int seed; // for random scanning; initialize nonzero
637 volatile int eventCount; // encoded inactivation count; < 0 if inactive
638 int nextWait; // encoded record of next event waiter
639 int hint; // steal or signal hint (index)
640 int poolIndex; // index of this queue in pool (or 0)
641 final int mode; // 0: lifo, > 0: fifo, < 0: shared
642 int nsteals; // number of steals
643 volatile int qlock; // 1: locked, -1: terminate; else 0
644 volatile int base; // index of next slot for poll
645 int top; // index of next slot for push
646 ForkJoinTask<?>[] array; // the elements (initially unallocated)
647 final ForkJoinPool pool; // the containing pool (may be null)
648 final ForkJoinWorkerThread owner; // owning thread or null if shared
649 volatile Thread parker; // == owner during call to park; else null
650 volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
651 ForkJoinTask<?> currentSteal; // current non-local task being executed
652
653 volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
654 volatile Object pad18, pad19, pad1a, pad1b, pad1c, pad1d;
655
656 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
657 int seed) {
658 this.pool = pool;
659 this.owner = owner;
660 this.mode = mode;
661 this.seed = seed;
662 // Place indices in the center of array (that is not yet allocated)
663 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
664 }
665
666 /**
667 * Returns the approximate number of tasks in the queue.
668 */
669 final int queueSize() {
670 int n = base - top; // non-owner callers must read base first
671 return (n >= 0) ? 0 : -n; // ignore transient negative
672 }
673
674 /**
675 * Provides a more accurate estimate of whether this queue has
676 * any tasks than does queueSize, by checking whether a
677 * near-empty queue has at least one unclaimed task.
678 */
679 final boolean isEmpty() {
680 ForkJoinTask<?>[] a; int m, s;
681 int n = base - (s = top);
682 return (n >= 0 ||
683 (n == -1 &&
684 ((a = array) == null ||
685 (m = a.length - 1) < 0 ||
686 U.getObject
687 (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
688 }
689
690 /**
691 * Pushes a task. Call only by owner in unshared queues. (The
692 * shared-queue version is embedded in method externalPush.)
693 *
694 * @param task the task. Caller must ensure non-null.
695 * @throws RejectedExecutionException if array cannot be resized
696 */
697 final void push(ForkJoinTask<?> task) {
698 ForkJoinTask<?>[] a; ForkJoinPool p;
699 int s = top, m, n;
700 if ((a = array) != null) { // ignore if queue removed
701 int j = (((m = a.length - 1) & s) << ASHIFT) + ABASE;
702 U.putOrderedObject(a, j, task);
703 if ((n = (top = s + 1) - base) <= 2) {
704 if ((p = pool) != null)
705 p.signalWork(this);
706 }
707 else if (n >= m)
708 growArray();
709 }
710 }
711
712 /**
713 * Initializes or doubles the capacity of array. Call either
714 * by owner or with lock held -- it is OK for base, but not
715 * top, to move while resizings are in progress.
716 */
717 final ForkJoinTask<?>[] growArray() {
718 ForkJoinTask<?>[] oldA = array;
719 int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
720 if (size > MAXIMUM_QUEUE_CAPACITY)
721 throw new RejectedExecutionException("Queue capacity exceeded");
722 int oldMask, t, b;
723 ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
724 if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
725 (t = top) - (b = base) > 0) {
726 int mask = size - 1;
727 do {
728 ForkJoinTask<?> x;
729 int oldj = ((b & oldMask) << ASHIFT) + ABASE;
730 int j = ((b & mask) << ASHIFT) + ABASE;
731 x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
732 if (x != null &&
733 U.compareAndSwapObject(oldA, oldj, x, null))
734 U.putObjectVolatile(a, j, x);
735 } while (++b != t);
736 }
737 return a;
738 }
739
740 /**
741 * Takes next task, if one exists, in LIFO order. Call only
742 * by owner in unshared queues.
743 */
744 final ForkJoinTask<?> pop() {
745 ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
746 if ((a = array) != null && (m = a.length - 1) >= 0) {
747 for (int s; (s = top - 1) - base >= 0;) {
748 long j = ((m & s) << ASHIFT) + ABASE;
749 if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
750 break;
751 if (U.compareAndSwapObject(a, j, t, null)) {
752 top = s;
753 return t;
754 }
755 }
756 }
757 return null;
758 }
759
760 /**
761 * Takes a task in FIFO order if b is base of queue and a task
762 * can be claimed without contention. Specialized versions
763 * appear in ForkJoinPool methods scan and tryHelpStealer.
764 */
765 final ForkJoinTask<?> pollAt(int b) {
766 ForkJoinTask<?> t; ForkJoinTask<?>[] a;
767 if ((a = array) != null) {
768 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
769 if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
770 base == b &&
771 U.compareAndSwapObject(a, j, t, null)) {
772 base = b + 1;
773 return t;
774 }
775 }
776 return null;
777 }
778
779 /**
780 * Takes next task, if one exists, in FIFO order.
781 */
782 final ForkJoinTask<?> poll() {
783 ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
784 while ((b = base) - top < 0 && (a = array) != null) {
785 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
786 t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
787 if (t != null) {
788 if (base == b &&
789 U.compareAndSwapObject(a, j, t, null)) {
790 base = b + 1;
791 return t;
792 }
793 }
794 else if (base == b) {
795 if (b + 1 == top)
796 break;
797 Thread.yield(); // wait for lagging update (very rare)
798 }
799 }
800 return null;
801 }
802
803 /**
804 * Takes next task, if one exists, in order specified by mode.
805 */
806 final ForkJoinTask<?> nextLocalTask() {
807 return mode == 0 ? pop() : poll();
808 }
809
810 /**
811 * Returns next task, if one exists, in order specified by mode.
812 */
813 final ForkJoinTask<?> peek() {
814 ForkJoinTask<?>[] a = array; int m;
815 if (a == null || (m = a.length - 1) < 0)
816 return null;
817 int i = mode == 0 ? top - 1 : base;
818 int j = ((i & m) << ASHIFT) + ABASE;
819 return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
820 }
821
822 /**
823 * Pops the given task only if it is at the current top.
824 * (A shared version is available only via FJP.tryExternalUnpush)
825 */
826 final boolean tryUnpush(ForkJoinTask<?> t) {
827 ForkJoinTask<?>[] a; int s;
828 if ((a = array) != null && (s = top) != base &&
829 U.compareAndSwapObject
830 (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
831 top = s;
832 return true;
833 }
834 return false;
835 }
836
837 /**
838 * Removes and cancels all known tasks, ignoring any exceptions.
839 */
840 final void cancelAll() {
841 ForkJoinTask.cancelIgnoringExceptions(currentJoin);
842 ForkJoinTask.cancelIgnoringExceptions(currentSteal);
843 for (ForkJoinTask<?> t; (t = poll()) != null; )
844 ForkJoinTask.cancelIgnoringExceptions(t);
845 }
846
847 /**
848 * Computes next value for random probes. Scans don't require
849 * a very high quality generator, but also not a crummy one.
850 * Marsaglia xor-shift is cheap and works well enough. Note:
851 * This is manually inlined in its usages in ForkJoinPool to
852 * avoid writes inside busy scan loops.
853 */
854 final int nextSeed() {
855 int r = seed;
856 r ^= r << 13;
857 r ^= r >>> 17;
858 return seed = r ^= r << 5;
859 }
860
861 // Specialized execution methods
862
863 /**
864 * Pops and runs tasks until empty.
865 */
866 private void popAndExecAll() {
867 // A bit faster than repeated pop calls
868 ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
869 while ((a = array) != null && (m = a.length - 1) >= 0 &&
870 (s = top - 1) - base >= 0 &&
871 (t = ((ForkJoinTask<?>)
872 U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
873 != null) {
874 if (U.compareAndSwapObject(a, j, t, null)) {
875 top = s;
876 t.doExec();
877 }
878 }
879 }
880
881 /**
882 * Polls and runs tasks until empty.
883 */
884 private void pollAndExecAll() {
885 for (ForkJoinTask<?> t; (t = poll()) != null;)
886 t.doExec();
887 }
888
889 /**
890 * If present, removes from queue and executes the given task,
891 * or any other cancelled task. Returns (true) on any CAS
892 * or consistency check failure so caller can retry.
893 *
894 * @return false if no progress can be made, else true
895 */
896 final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
897 boolean stat = true, removed = false, empty = true;
898 ForkJoinTask<?>[] a; int m, s, b, n;
899 if ((a = array) != null && (m = a.length - 1) >= 0 &&
900 (n = (s = top) - (b = base)) > 0) {
901 for (ForkJoinTask<?> t;;) { // traverse from s to b
902 int j = ((--s & m) << ASHIFT) + ABASE;
903 t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
904 if (t == null) // inconsistent length
905 break;
906 else if (t == task) {
907 if (s + 1 == top) { // pop
908 if (!U.compareAndSwapObject(a, j, task, null))
909 break;
910 top = s;
911 removed = true;
912 }
913 else if (base == b) // replace with proxy
914 removed = U.compareAndSwapObject(a, j, task,
915 new EmptyTask());
916 break;
917 }
918 else if (t.status >= 0)
919 empty = false;
920 else if (s + 1 == top) { // pop and throw away
921 if (U.compareAndSwapObject(a, j, t, null))
922 top = s;
923 break;
924 }
925 if (--n == 0) {
926 if (!empty && base == b)
927 stat = false;
928 break;
929 }
930 }
931 }
932 if (removed)
933 task.doExec();
934 return stat;
935 }
936
937 /**
938 * Polls for and executes the given task or any other task in
939 * its CountedCompleter computation.
940 */
941 final boolean pollAndExecCC(ForkJoinTask<?> root) {
942 ForkJoinTask<?>[] a; int b; Object o;
943 outer: while ((b = base) - top < 0 && (a = array) != null) {
944 long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
945 if ((o = U.getObject(a, j)) == null ||
946 !(o instanceof CountedCompleter))
947 break;
948 for (CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;;) {
949 if (r == root) {
950 if (base == b &&
951 U.compareAndSwapObject(a, j, t, null)) {
952 base = b + 1;
953 t.doExec();
954 return true;
955 }
956 else
957 break; // restart
958 }
959 if ((r = r.completer) == null)
960 break outer; // not part of root computation
961 }
962 }
963 return false;
964 }
965
966 /**
967 * Executes a top-level task and any local tasks remaining
968 * after execution.
969 */
970 final void runTask(ForkJoinTask<?> t) {
971 if (t != null) {
972 (currentSteal = t).doExec();
973 currentSteal = null;
974 ++nsteals;
975 if (base - top < 0) { // process remaining local tasks
976 if (mode == 0)
977 popAndExecAll();
978 else
979 pollAndExecAll();
980 }
981 }
982 }
983
984 /**
985 * Executes a non-top-level (stolen) task.
986 */
987 final void runSubtask(ForkJoinTask<?> t) {
988 if (t != null) {
989 ForkJoinTask<?> ps = currentSteal;
990 (currentSteal = t).doExec();
991 currentSteal = ps;
992 }
993 }
994
995 /**
996 * Returns true if owned and not known to be blocked.
997 */
998 final boolean isApparentlyUnblocked() {
999 Thread wt; Thread.State s;
1000 return (eventCount >= 0 &&
1001 (wt = owner) != null &&
1002 (s = wt.getState()) != Thread.State.BLOCKED &&
1003 s != Thread.State.WAITING &&
1004 s != Thread.State.TIMED_WAITING);
1005 }
1006
1007 // Unsafe mechanics
1008 private static final sun.misc.Unsafe U;
1009 private static final long QLOCK;
1010 private static final int ABASE;
1011 private static final int ASHIFT;
1012 static {
1013 try {
1014 U = sun.misc.Unsafe.getUnsafe();
1015 Class<?> k = WorkQueue.class;
1016 Class<?> ak = ForkJoinTask[].class;
1017 QLOCK = U.objectFieldOffset
1018 (k.getDeclaredField("qlock"));
1019 ABASE = U.arrayBaseOffset(ak);
1020 int scale = U.arrayIndexScale(ak);
1021 if ((scale & (scale - 1)) != 0)
1022 throw new Error("data type scale not a power of two");
1023 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1024 } catch (Exception e) {
1025 throw new Error(e);
1026 }
1027 }
1028 }
1029
1030 // static fields (initialized in static initializer below)
1031
1032 /**
1033 * Creates a new ForkJoinWorkerThread. This factory is used unless
1034 * overridden in ForkJoinPool constructors.
1035 */
1036 public static final ForkJoinWorkerThreadFactory
1037 defaultForkJoinWorkerThreadFactory;
1038
1039 /**
1040 * Permission required for callers of methods that may start or
1041 * kill threads.
1042 */
1043 private static final RuntimePermission modifyThreadPermission;
1044
1045 /**
1046 * Common (static) pool. Non-null for public use unless a static
1047 * construction exception, but internal usages null-check on use
1048 * to paranoically avoid potential initialization circularities
1049 * as well as to simplify generated code.
1050 */
1051 static final ForkJoinPool common;
1052
1053 /**
1054 * Common pool parallelism. Must equal common.parallelism.
1055 */
1056 static final int commonParallelism;
1057
1058 /**
1059 * Sequence number for creating workerNamePrefix.
1060 */
1061 private static int poolNumberSequence;
1062
1063 /**
1064 * Returns the next sequence number. We don't expect this to
1065 * ever contend, so use simple builtin sync.
1066 */
1067 private static final synchronized int nextPoolId() {
1068 return ++poolNumberSequence;
1069 }
1070
1071 // static constants
1072
1073 /**
1074 * Initial timeout value (in nanoseconds) for the thread
1075 * triggering quiescence to park waiting for new work. On timeout,
1076 * the thread will instead try to shrink the number of
1077 * workers. The value should be large enough to avoid overly
1078 * aggressive shrinkage during most transient stalls (long GCs
1079 * etc).
1080 */
1081 private static final long IDLE_TIMEOUT = 2000L * 1000L * 1000L; // 2sec
1082
1083 /**
1084 * Timeout value when there are more threads than parallelism level
1085 */
1086 private static final long FAST_IDLE_TIMEOUT = 200L * 1000L * 1000L;
1087
1088 /**
1089 * Tolerance for idle timeouts, to cope with timer undershoots
1090 */
1091 private static final long TIMEOUT_SLOP = 2000000L;
1092
1093 /**
1094 * The maximum stolen->joining link depth allowed in method
1095 * tryHelpStealer. Must be a power of two. Depths for legitimate
1096 * chains are unbounded, but we use a fixed constant to avoid
1097 * (otherwise unchecked) cycles and to bound staleness of
1098 * traversal parameters at the expense of sometimes blocking when
1099 * we could be helping.
1100 */
1101 private static final int MAX_HELP = 64;
1102
1103 /**
1104 * Increment for seed generators. See class ThreadLocal for
1105 * explanation.
1106 */
1107 private static final int SEED_INCREMENT = 0x61c88647;
1108
1109 /**
1110 * Bits and masks for control variables
1111 *
1112 * Field ctl is a long packed with:
1113 * AC: Number of active running workers minus target parallelism (16 bits)
1114 * TC: Number of total workers minus target parallelism (16 bits)
1115 * ST: true if pool is terminating (1 bit)
1116 * EC: the wait count of top waiting thread (15 bits)
1117 * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1118 *
1119 * When convenient, we can extract the upper 32 bits of counts and
1120 * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1121 * (int)ctl. The ec field is never accessed alone, but always
1122 * together with id and st. The offsets of counts by the target
1123 * parallelism and the positionings of fields makes it possible to
1124 * perform the most common checks via sign tests of fields: When
1125 * ac is negative, there are not enough active workers, when tc is
1126 * negative, there are not enough total workers, and when e is
1127 * negative, the pool is terminating. To deal with these possibly
1128 * negative fields, we use casts in and out of "short" and/or
1129 * signed shifts to maintain signedness.
1130 *
1131 * When a thread is queued (inactivated), its eventCount field is
1132 * set negative, which is the only way to tell if a worker is
1133 * prevented from executing tasks, even though it must continue to
1134 * scan for them to avoid queuing races. Note however that
1135 * eventCount updates lag releases so usage requires care.
1136 *
1137 * Field plock is an int packed with:
1138 * SHUTDOWN: true if shutdown is enabled (1 bit)
1139 * SEQ: a sequence lock, with PL_LOCK bit set if locked (30 bits)
1140 * SIGNAL: set when threads may be waiting on the lock (1 bit)
1141 *
1142 * The sequence number enables simple consistency checks:
1143 * Staleness of read-only operations on the workQueues array can
1144 * be checked by comparing plock before vs after the reads.
1145 */
1146
1147 // bit positions/shifts for fields
1148 private static final int AC_SHIFT = 48;
1149 private static final int TC_SHIFT = 32;
1150 private static final int ST_SHIFT = 31;
1151 private static final int EC_SHIFT = 16;
1152
1153 // bounds
1154 private static final int SMASK = 0xffff; // short bits
1155 private static final int MAX_CAP = 0x7fff; // max #workers - 1
1156 private static final int EVENMASK = 0xfffe; // even short bits
1157 private static final int SQMASK = 0x007e; // max 64 (even) slots
1158 private static final int SHORT_SIGN = 1 << 15;
1159 private static final int INT_SIGN = 1 << 31;
1160
1161 // masks
1162 private static final long STOP_BIT = 0x0001L << ST_SHIFT;
1163 private static final long AC_MASK = ((long)SMASK) << AC_SHIFT;
1164 private static final long TC_MASK = ((long)SMASK) << TC_SHIFT;
1165
1166 // units for incrementing and decrementing
1167 private static final long TC_UNIT = 1L << TC_SHIFT;
1168 private static final long AC_UNIT = 1L << AC_SHIFT;
1169
1170 // masks and units for dealing with u = (int)(ctl >>> 32)
1171 private static final int UAC_SHIFT = AC_SHIFT - 32;
1172 private static final int UTC_SHIFT = TC_SHIFT - 32;
1173 private static final int UAC_MASK = SMASK << UAC_SHIFT;
1174 private static final int UTC_MASK = SMASK << UTC_SHIFT;
1175 private static final int UAC_UNIT = 1 << UAC_SHIFT;
1176 private static final int UTC_UNIT = 1 << UTC_SHIFT;
1177
1178 // masks and units for dealing with e = (int)ctl
1179 private static final int E_MASK = 0x7fffffff; // no STOP_BIT
1180 private static final int E_SEQ = 1 << EC_SHIFT;
1181
1182 // plock bits
1183 private static final int SHUTDOWN = 1 << 31;
1184 private static final int PL_LOCK = 2;
1185 private static final int PL_SIGNAL = 1;
1186 private static final int PL_SPINS = 1 << 8;
1187
1188 // access mode for WorkQueue
1189 static final int LIFO_QUEUE = 0;
1190 static final int FIFO_QUEUE = 1;
1191 static final int SHARED_QUEUE = -1;
1192
1193 // bounds for #steps in scan loop -- must be power 2 minus 1
1194 private static final int MIN_SCAN = 0x1ff; // cover estimation slop
1195 private static final int MAX_SCAN = 0x1ffff; // 4 * max workers
1196
1197 // Instance fields
1198
1199 /*
1200 * Field layout of this class tends to matter more than one would
1201 * like. Runtime layout order is only loosely related to
1202 * declaration order and may differ across JVMs, but the following
1203 * empirically works OK on current JVMs.
1204 */
1205
1206 // Heuristic padding to ameliorate unfortunate memory placements
1207 volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
1208
1209 volatile long stealCount; // collects worker counts
1210 volatile long ctl; // main pool control
1211 volatile int plock; // shutdown status and seqLock
1212 volatile int indexSeed; // worker/submitter index seed
1213 final int config; // mode and parallelism level
1214 WorkQueue[] workQueues; // main registry
1215 final ForkJoinWorkerThreadFactory factory;
1216 final UncaughtExceptionHandler ueh; // per-worker UEH
1217 final String workerNamePrefix; // to create worker name string
1218
1219 volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
1220 volatile Object pad18, pad19, pad1a, pad1b;
1221
1222 /**
1223 * Acquires the plock lock to protect worker array and related
1224 * updates. This method is called only if an initial CAS on plock
1225 * fails. This acts as a spinlock for normal cases, but falls back
1226 * to builtin monitor to block when (rarely) needed. This would be
1227 * a terrible idea for a highly contended lock, but works fine as
1228 * a more conservative alternative to a pure spinlock.
1229 */
1230 private int acquirePlock() {
1231 int spins = PL_SPINS, ps, nps;
1232 for (;;) {
1233 if (((ps = plock) & PL_LOCK) == 0 &&
1234 U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1235 return nps;
1236 else if (spins >= 0) {
1237 if (ThreadLocalRandom.nextSecondarySeed() >= 0)
1238 --spins;
1239 }
1240 else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1241 synchronized (this) {
1242 if ((plock & PL_SIGNAL) != 0) {
1243 try {
1244 wait();
1245 } catch (InterruptedException ie) {
1246 try {
1247 Thread.currentThread().interrupt();
1248 } catch (SecurityException ignore) {
1249 }
1250 }
1251 }
1252 else
1253 notifyAll();
1254 }
1255 }
1256 }
1257 }
1258
1259 /**
1260 * Unlocks and signals any thread waiting for plock. Called only
1261 * when CAS of seq value for unlock fails.
1262 */
1263 private void releasePlock(int ps) {
1264 plock = ps;
1265 synchronized (this) { notifyAll(); }
1266 }
1267
1268 /**
1269 * Tries to create and start one worker if fewer than target
1270 * parallelism level exist. Adjusts counts etc on failure.
1271 */
1272 private void tryAddWorker() {
1273 long c; int u;
1274 while ((u = (int)((c = ctl) >>> 32)) < 0 &&
1275 (u & SHORT_SIGN) != 0 && (int)c == 0) {
1276 long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1277 ((u + UAC_UNIT) & UAC_MASK)) << 32;
1278 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1279 ForkJoinWorkerThreadFactory fac;
1280 Throwable ex = null;
1281 ForkJoinWorkerThread wt = null;
1282 try {
1283 if ((fac = factory) != null &&
1284 (wt = fac.newThread(this)) != null) {
1285 wt.start();
1286 break;
1287 }
1288 } catch (Throwable e) {
1289 ex = e;
1290 }
1291 deregisterWorker(wt, ex);
1292 break;
1293 }
1294 }
1295 }
1296
1297 // Registering and deregistering workers
1298
1299 /**
1300 * Callback from ForkJoinWorkerThread to establish and record its
1301 * WorkQueue. To avoid scanning bias due to packing entries in
1302 * front of the workQueues array, we treat the array as a simple
1303 * power-of-two hash table using per-thread seed as hash,
1304 * expanding as needed.
1305 *
1306 * @param wt the worker thread
1307 * @return the worker's queue
1308 */
1309 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1310 UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps;
1311 wt.setDaemon(true);
1312 if ((handler = ueh) != null)
1313 wt.setUncaughtExceptionHandler(handler);
1314 do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
1315 s += SEED_INCREMENT) ||
1316 s == 0); // skip 0
1317 WorkQueue w = new WorkQueue(this, wt, config >>> 16, s);
1318 if (((ps = plock) & PL_LOCK) != 0 ||
1319 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1320 ps = acquirePlock();
1321 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1322 try {
1323 if ((ws = workQueues) != null) { // skip if shutting down
1324 int n = ws.length, m = n - 1;
1325 int r = (s << 1) | 1; // use odd-numbered indices
1326 if (ws[r &= m] != null) { // collision
1327 int probes = 0; // step by approx half size
1328 int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1329 while (ws[r = (r + step) & m] != null) {
1330 if (++probes >= n) {
1331 workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1332 m = n - 1;
1333 probes = 0;
1334 }
1335 }
1336 }
1337 w.eventCount = w.poolIndex = r; // volatile write orders
1338 ws[r] = w;
1339 }
1340 } finally {
1341 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1342 releasePlock(nps);
1343 }
1344 wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex)));
1345 return w;
1346 }
1347
1348 /**
1349 * Final callback from terminating worker, as well as upon failure
1350 * to construct or start a worker. Removes record of worker from
1351 * array, and adjusts counts. If pool is shutting down, tries to
1352 * complete termination.
1353 *
1354 * @param wt the worker thread, or null if construction failed
1355 * @param ex the exception causing failure, or null if none
1356 */
1357 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1358 WorkQueue w = null;
1359 if (wt != null && (w = wt.workQueue) != null) {
1360 int ps;
1361 w.qlock = -1; // ensure set
1362 long ns = w.nsteals, sc; // collect steal count
1363 do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1364 sc = stealCount, sc + ns));
1365 if (((ps = plock) & PL_LOCK) != 0 ||
1366 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1367 ps = acquirePlock();
1368 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1369 try {
1370 int idx = w.poolIndex;
1371 WorkQueue[] ws = workQueues;
1372 if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1373 ws[idx] = null;
1374 } finally {
1375 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1376 releasePlock(nps);
1377 }
1378 }
1379
1380 long c; // adjust ctl counts
1381 do {} while (!U.compareAndSwapLong
1382 (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1383 ((c - TC_UNIT) & TC_MASK) |
1384 (c & ~(AC_MASK|TC_MASK)))));
1385
1386 if (!tryTerminate(false, false) && w != null && w.array != null) {
1387 w.cancelAll(); // cancel remaining tasks
1388 WorkQueue[] ws; WorkQueue v; Thread p; int u, i, e;
1389 while ((u = (int)((c = ctl) >>> 32)) < 0 && (e = (int)c) >= 0) {
1390 if (e > 0) { // activate or create replacement
1391 if ((ws = workQueues) == null ||
1392 (i = e & SMASK) >= ws.length ||
1393 (v = ws[i]) == null)
1394 break;
1395 long nc = (((long)(v.nextWait & E_MASK)) |
1396 ((long)(u + UAC_UNIT) << 32));
1397 if (v.eventCount != (e | INT_SIGN))
1398 break;
1399 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1400 v.eventCount = (e + E_SEQ) & E_MASK;
1401 if ((p = v.parker) != null)
1402 U.unpark(p);
1403 break;
1404 }
1405 }
1406 else {
1407 if ((short)u < 0)
1408 tryAddWorker();
1409 break;
1410 }
1411 }
1412 }
1413 if (ex == null) // help clean refs on way out
1414 ForkJoinTask.helpExpungeStaleExceptions();
1415 else // rethrow
1416 ForkJoinTask.rethrow(ex);
1417 }
1418
1419 // Submissions
1420
1421 /**
1422 * Unless shutting down, adds the given task to a submission queue
1423 * at submitter's current queue index (modulo submission
1424 * range). Only the most common path is directly handled in this
1425 * method. All others are relayed to fullExternalPush.
1426 *
1427 * @param task the task. Caller must ensure non-null.
1428 */
1429 final void externalPush(ForkJoinTask<?> task) {
1430 WorkQueue[] ws; WorkQueue q; int z, m; ForkJoinTask<?>[] a;
1431 if ((z = ThreadLocalRandom.getProbe()) != 0 && plock > 0 &&
1432 (ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
1433 (q = ws[m & z & SQMASK]) != null &&
1434 U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1435 int b = q.base, s = q.top, n, an;
1436 if ((a = q.array) != null && (an = a.length) > (n = s + 1 - b)) {
1437 int j = (((an - 1) & s) << ASHIFT) + ABASE;
1438 U.putOrderedObject(a, j, task);
1439 q.top = s + 1; // push on to deque
1440 q.qlock = 0;
1441 if (n <= 2)
1442 signalWork(q);
1443 return;
1444 }
1445 q.qlock = 0;
1446 }
1447 fullExternalPush(task);
1448 }
1449
1450 /**
1451 * Full version of externalPush. This method is called, among
1452 * other times, upon the first submission of the first task to the
1453 * pool, so must perform secondary initialization. It also
1454 * detects first submission by an external thread by looking up
1455 * its ThreadLocal, and creates a new shared queue if the one at
1456 * index if empty or contended. The plock lock body must be
1457 * exception-free (so no try/finally) so we optimistically
1458 * allocate new queues outside the lock and throw them away if
1459 * (very rarely) not needed.
1460 *
1461 * Secondary initialization occurs when plock is zero, to create
1462 * workQueue array and set plock to a valid value. This lock body
1463 * must also be exception-free. Because the plock seq value can
1464 * eventually wrap around zero, this method harmlessly fails to
1465 * reinitialize if workQueues exists, while still advancing plock.
1466 */
1467 private void fullExternalPush(ForkJoinTask<?> task) {
1468 int r;
1469 if ((r = ThreadLocalRandom.getProbe()) == 0) {
1470 ThreadLocalRandom.localInit();
1471 r = ThreadLocalRandom.getProbe();
1472 }
1473 for (;;) {
1474 WorkQueue[] ws; WorkQueue q; int ps, m, k;
1475 boolean move = false;
1476 if ((ps = plock) < 0)
1477 throw new RejectedExecutionException();
1478 else if (ps == 0 || (ws = workQueues) == null ||
1479 (m = ws.length - 1) < 0) { // initialize workQueues
1480 int p = config & SMASK; // find power of two table size
1481 int n = (p > 1) ? p - 1 : 1; // ensure at least 2 slots
1482 n |= n >>> 1; n |= n >>> 2; n |= n >>> 4;
1483 n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1;
1484 WorkQueue[] nws = ((ws = workQueues) == null || ws.length == 0 ?
1485 new WorkQueue[n] : null);
1486 if (((ps = plock) & PL_LOCK) != 0 ||
1487 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1488 ps = acquirePlock();
1489 if (((ws = workQueues) == null || ws.length == 0) && nws != null)
1490 workQueues = nws;
1491 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1492 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1493 releasePlock(nps);
1494 }
1495 else if ((q = ws[k = r & m & SQMASK]) != null) {
1496 if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
1497 ForkJoinTask<?>[] a = q.array;
1498 int s = q.top;
1499 boolean submitted = false;
1500 try { // locked version of push
1501 if ((a != null && a.length > s + 1 - q.base) ||
1502 (a = q.growArray()) != null) { // must presize
1503 int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
1504 U.putOrderedObject(a, j, task);
1505 q.top = s + 1;
1506 submitted = true;
1507 }
1508 } finally {
1509 q.qlock = 0; // unlock
1510 }
1511 if (submitted) {
1512 signalWork(q);
1513 return;
1514 }
1515 }
1516 move = true; // move on failure
1517 }
1518 else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
1519 q = new WorkQueue(this, null, SHARED_QUEUE, r);
1520 if (((ps = plock) & PL_LOCK) != 0 ||
1521 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1522 ps = acquirePlock();
1523 if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
1524 ws[k] = q;
1525 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1526 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1527 releasePlock(nps);
1528 }
1529 else
1530 move = true; // move if busy
1531 if (move)
1532 r = ThreadLocalRandom.advanceProbe(r);
1533 }
1534 }
1535
1536 // Maintaining ctl counts
1537
1538 /**
1539 * Increments active count; mainly called upon return from blocking.
1540 */
1541 final void incrementActiveCount() {
1542 long c;
1543 do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1544 }
1545
1546 /**
1547 * Tries to create or activate a worker if too few are active.
1548 *
1549 * @param q the (non-null) queue holding tasks to be signalled
1550 */
1551 final void signalWork(WorkQueue q) {
1552 int hint = q.poolIndex;
1553 long c; int e, u, i, n; WorkQueue[] ws; WorkQueue w; Thread p;
1554 while ((u = (int)((c = ctl) >>> 32)) < 0) {
1555 if ((e = (int)c) > 0) {
1556 if ((ws = workQueues) != null && ws.length > (i = e & SMASK) &&
1557 (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1558 long nc = (((long)(w.nextWait & E_MASK)) |
1559 ((long)(u + UAC_UNIT) << 32));
1560 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1561 w.hint = hint;
1562 w.eventCount = (e + E_SEQ) & E_MASK;
1563 if ((p = w.parker) != null)
1564 U.unpark(p);
1565 break;
1566 }
1567 if (q.top - q.base <= 0)
1568 break;
1569 }
1570 else
1571 break;
1572 }
1573 else {
1574 if ((short)u < 0)
1575 tryAddWorker();
1576 break;
1577 }
1578 }
1579 }
1580
1581 // Scanning for tasks
1582
1583 /**
1584 * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1585 */
1586 final void runWorker(WorkQueue w) {
1587 w.growArray(); // allocate queue
1588 do { w.runTask(scan(w)); } while (w.qlock >= 0);
1589 }
1590
1591 /**
1592 * Scans for and, if found, returns one task, else possibly
1593 * inactivates the worker. This method operates on single reads of
1594 * volatile state and is designed to be re-invoked continuously,
1595 * in part because it returns upon detecting inconsistencies,
1596 * contention, or state changes that indicate possible success on
1597 * re-invocation.
1598 *
1599 * The scan searches for tasks across queues (starting at a random
1600 * index, and relying on registerWorker to irregularly scatter
1601 * them within array to avoid bias), checking each at least twice.
1602 * The scan terminates upon either finding a non-empty queue, or
1603 * completing the sweep. If the worker is not inactivated, it
1604 * takes and returns a task from this queue. Otherwise, if not
1605 * activated, it signals workers (that may include itself) and
1606 * returns so caller can retry. Also returns for true if the
1607 * worker array may have changed during an empty scan. On failure
1608 * to find a task, we take one of the following actions, after
1609 * which the caller will retry calling this method unless
1610 * terminated.
1611 *
1612 * * If pool is terminating, terminate the worker.
1613 *
1614 * * If not already enqueued, try to inactivate and enqueue the
1615 * worker on wait queue. Or, if inactivating has caused the pool
1616 * to be quiescent, relay to idleAwaitWork to possibly shrink
1617 * pool.
1618 *
1619 * * If already enqueued and none of the above apply, possibly
1620 * park awaiting signal, else lingering to help scan and signal.
1621 *
1622 * * If a non-empty queue discovered or left as a hint,
1623 * help wake up other workers before return.
1624 *
1625 * @param w the worker (via its WorkQueue)
1626 * @return a task or null if none found
1627 */
1628 private final ForkJoinTask<?> scan(WorkQueue w) {
1629 WorkQueue[] ws; int m;
1630 int ps = plock; // read plock before ws
1631 if (w != null && (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1632 int ec = w.eventCount; // ec is negative if inactive
1633 int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1634 w.hint = -1; // update seed and clear hint
1635 int j = ((m + m + 1) | MIN_SCAN) & MAX_SCAN;
1636 do {
1637 WorkQueue q; ForkJoinTask<?>[] a; int b;
1638 if ((q = ws[(r + j) & m]) != null && (b = q.base) - q.top < 0 &&
1639 (a = q.array) != null) { // probably nonempty
1640 int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1641 ForkJoinTask<?> t = (ForkJoinTask<?>)
1642 U.getObjectVolatile(a, i);
1643 if (q.base == b && ec >= 0 && t != null &&
1644 U.compareAndSwapObject(a, i, t, null)) {
1645 if ((q.base = b + 1) - q.top < 0)
1646 signalWork(q);
1647 return t; // taken
1648 }
1649 else if ((ec < 0 || j < m) && (int)(ctl >> AC_SHIFT) <= 0) {
1650 w.hint = (r + j) & m; // help signal below
1651 break; // cannot take
1652 }
1653 }
1654 } while (--j >= 0);
1655
1656 int h, e, ns; long c, sc; WorkQueue q;
1657 if ((ns = w.nsteals) != 0) {
1658 if (U.compareAndSwapLong(this, STEALCOUNT,
1659 sc = stealCount, sc + ns))
1660 w.nsteals = 0; // collect steals and rescan
1661 }
1662 else if (plock != ps) // consistency check
1663 ; // skip
1664 else if ((e = (int)(c = ctl)) < 0)
1665 w.qlock = -1; // pool is terminating
1666 else {
1667 if ((h = w.hint) < 0) {
1668 if (ec >= 0) { // try to enqueue/inactivate
1669 long nc = (((long)ec |
1670 ((c - AC_UNIT) & (AC_MASK|TC_MASK))));
1671 w.nextWait = e; // link and mark inactive
1672 w.eventCount = ec | INT_SIGN;
1673 if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1674 w.eventCount = ec; // unmark on CAS failure
1675 else if ((int)(c >> AC_SHIFT) == 1 - (config & SMASK))
1676 idleAwaitWork(w, nc, c);
1677 }
1678 else if (w.eventCount < 0 && ctl == c) {
1679 Thread wt = Thread.currentThread();
1680 Thread.interrupted(); // clear status
1681 U.putObject(wt, PARKBLOCKER, this);
1682 w.parker = wt; // emulate LockSupport.park
1683 if (w.eventCount < 0) // recheck
1684 U.park(false, 0L); // block
1685 w.parker = null;
1686 U.putObject(wt, PARKBLOCKER, null);
1687 }
1688 }
1689 if ((h >= 0 || (h = w.hint) >= 0) &&
1690 (ws = workQueues) != null && h < ws.length &&
1691 (q = ws[h]) != null) { // signal others before retry
1692 WorkQueue v; Thread p; int u, i, s;
1693 for (int n = (config & SMASK) - 1;;) {
1694 int idleCount = (w.eventCount < 0) ? 0 : -1;
1695 if (((s = idleCount - q.base + q.top) <= n &&
1696 (n = s) <= 0) ||
1697 (u = (int)((c = ctl) >>> 32)) >= 0 ||
1698 (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1699 (v = ws[i]) == null)
1700 break;
1701 long nc = (((long)(v.nextWait & E_MASK)) |
1702 ((long)(u + UAC_UNIT) << 32));
1703 if (v.eventCount != (e | INT_SIGN) ||
1704 !U.compareAndSwapLong(this, CTL, c, nc))
1705 break;
1706 v.hint = h;
1707 v.eventCount = (e + E_SEQ) & E_MASK;
1708 if ((p = v.parker) != null)
1709 U.unpark(p);
1710 if (--n <= 0)
1711 break;
1712 }
1713 }
1714 }
1715 }
1716 return null;
1717 }
1718
1719 /**
1720 * If inactivating worker w has caused the pool to become
1721 * quiescent, checks for pool termination, and, so long as this is
1722 * not the only worker, waits for event for up to a given
1723 * duration. On timeout, if ctl has not changed, terminates the
1724 * worker, which will in turn wake up another worker to possibly
1725 * repeat this process.
1726 *
1727 * @param w the calling worker
1728 * @param currentCtl the ctl value triggering possible quiescence
1729 * @param prevCtl the ctl value to restore if thread is terminated
1730 */
1731 private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1732 if (w != null && w.eventCount < 0 &&
1733 !tryTerminate(false, false) && (int)prevCtl != 0 &&
1734 ctl == currentCtl) {
1735 int dc = -(short)(currentCtl >>> TC_SHIFT);
1736 long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1737 long deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
1738 Thread wt = Thread.currentThread();
1739 while (ctl == currentCtl) {
1740 Thread.interrupted(); // timed variant of version in scan()
1741 U.putObject(wt, PARKBLOCKER, this);
1742 w.parker = wt;
1743 if (ctl == currentCtl)
1744 U.park(false, parkTime);
1745 w.parker = null;
1746 U.putObject(wt, PARKBLOCKER, null);
1747 if (ctl != currentCtl)
1748 break;
1749 if (deadline - System.nanoTime() <= 0L &&
1750 U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1751 w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1752 w.hint = -1;
1753 w.qlock = -1; // shrink
1754 break;
1755 }
1756 }
1757 }
1758 }
1759
1760 /**
1761 * Scans through queues looking for work while joining a task; if
1762 * any present, signals. May return early if more signalling is
1763 * detectably unneeded.
1764 *
1765 * @param task return early if done
1766 * @param origin an index to start scan
1767 */
1768 private void helpSignal(ForkJoinTask<?> task, int origin) {
1769 WorkQueue[] ws; WorkQueue w; Thread p; long c; int m, u, e, i, s;
1770 if (task != null && task.status >= 0 &&
1771 (u = (int)(ctl >>> 32)) < 0 && (u >> UAC_SHIFT) < 0 &&
1772 (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1773 outer: for (int k = origin, j = m; j >= 0; --j) {
1774 WorkQueue q = ws[k++ & m];
1775 for (int n = m;;) { // limit to at most m signals
1776 if (task.status < 0)
1777 break outer;
1778 if (q == null ||
1779 ((s = -q.base + q.top) <= n && (n = s) <= 0))
1780 break;
1781 if ((u = (int)((c = ctl) >>> 32)) >= 0 ||
1782 (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1783 (w = ws[i]) == null)
1784 break outer;
1785 long nc = (((long)(w.nextWait & E_MASK)) |
1786 ((long)(u + UAC_UNIT) << 32));
1787 if (w.eventCount != (e | INT_SIGN))
1788 break outer;
1789 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1790 w.eventCount = (e + E_SEQ) & E_MASK;
1791 if ((p = w.parker) != null)
1792 U.unpark(p);
1793 if (--n <= 0)
1794 break;
1795 }
1796 }
1797 }
1798 }
1799 }
1800
1801 /**
1802 * Tries to locate and execute tasks for a stealer of the given
1803 * task, or in turn one of its stealers, Traces currentSteal ->
1804 * currentJoin links looking for a thread working on a descendant
1805 * of the given task and with a non-empty queue to steal back and
1806 * execute tasks from. The first call to this method upon a
1807 * waiting join will often entail scanning/search, (which is OK
1808 * because the joiner has nothing better to do), but this method
1809 * leaves hints in workers to speed up subsequent calls. The
1810 * implementation is very branchy to cope with potential
1811 * inconsistencies or loops encountering chains that are stale,
1812 * unknown, or so long that they are likely cyclic.
1813 *
1814 * @param joiner the joining worker
1815 * @param task the task to join
1816 * @return 0 if no progress can be made, negative if task
1817 * known complete, else positive
1818 */
1819 private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1820 int stat = 0, steps = 0; // bound to avoid cycles
1821 if (joiner != null && task != null) { // hoist null checks
1822 restart: for (;;) {
1823 ForkJoinTask<?> subtask = task; // current target
1824 for (WorkQueue j = joiner, v;;) { // v is stealer of subtask
1825 WorkQueue[] ws; int m, s, h;
1826 if ((s = task.status) < 0) {
1827 stat = s;
1828 break restart;
1829 }
1830 if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1831 break restart; // shutting down
1832 if ((v = ws[h = (j.hint | 1) & m]) == null ||
1833 v.currentSteal != subtask) {
1834 for (int origin = h;;) { // find stealer
1835 if (((h = (h + 2) & m) & 15) == 1 &&
1836 (subtask.status < 0 || j.currentJoin != subtask))
1837 continue restart; // occasional staleness check
1838 if ((v = ws[h]) != null &&
1839 v.currentSteal == subtask) {
1840 j.hint = h; // save hint
1841 break;
1842 }
1843 if (h == origin)
1844 break restart; // cannot find stealer
1845 }
1846 }
1847 for (;;) { // help stealer or descend to its stealer
1848 ForkJoinTask[] a; int b;
1849 if (subtask.status < 0) // surround probes with
1850 continue restart; // consistency checks
1851 if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1852 int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1853 ForkJoinTask<?> t =
1854 (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1855 if (subtask.status < 0 || j.currentJoin != subtask ||
1856 v.currentSteal != subtask)
1857 continue restart; // stale
1858 stat = 1; // apparent progress
1859 if (t != null && v.base == b &&
1860 U.compareAndSwapObject(a, i, t, null)) {
1861 v.base = b + 1; // help stealer
1862 joiner.runSubtask(t);
1863 }
1864 else if (v.base == b && ++steps == MAX_HELP)
1865 break restart; // v apparently stalled
1866 }
1867 else { // empty -- try to descend
1868 ForkJoinTask<?> next = v.currentJoin;
1869 if (subtask.status < 0 || j.currentJoin != subtask ||
1870 v.currentSteal != subtask)
1871 continue restart; // stale
1872 else if (next == null || ++steps == MAX_HELP)
1873 break restart; // dead-end or maybe cyclic
1874 else {
1875 subtask = next;
1876 j = v;
1877 break;
1878 }
1879 }
1880 }
1881 }
1882 }
1883 }
1884 return stat;
1885 }
1886
1887 /**
1888 * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1889 * and run tasks within the target's computation.
1890 *
1891 * @param task the task to join
1892 * @param mode if shared, exit upon completing any task
1893 * if all workers are active
1894 */
1895 private int helpComplete(ForkJoinTask<?> task, int mode) {
1896 WorkQueue[] ws; WorkQueue q; int m, n, s, u;
1897 if (task != null && (ws = workQueues) != null &&
1898 (m = ws.length - 1) >= 0) {
1899 for (int j = 1, origin = j;;) {
1900 if ((s = task.status) < 0)
1901 return s;
1902 if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) {
1903 origin = j;
1904 if (mode == SHARED_QUEUE &&
1905 ((u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0))
1906 break;
1907 }
1908 else if ((j = (j + 2) & m) == origin)
1909 break;
1910 }
1911 }
1912 return 0;
1913 }
1914
1915 /**
1916 * Tries to decrement active count (sometimes implicitly) and
1917 * possibly release or create a compensating worker in preparation
1918 * for blocking. Fails on contention or termination. Otherwise,
1919 * adds a new thread if no idle workers are available and pool
1920 * may become starved.
1921 */
1922 final boolean tryCompensate() {
1923 int pc = config & SMASK, e, i, tc; long c;
1924 WorkQueue[] ws; WorkQueue w; Thread p;
1925 if ((ws = workQueues) != null && (e = (int)(c = ctl)) >= 0) {
1926 if (e != 0 && (i = e & SMASK) < ws.length &&
1927 (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1928 long nc = ((long)(w.nextWait & E_MASK) |
1929 (c & (AC_MASK|TC_MASK)));
1930 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1931 w.eventCount = (e + E_SEQ) & E_MASK;
1932 if ((p = w.parker) != null)
1933 U.unpark(p);
1934 return true; // replace with idle worker
1935 }
1936 }
1937 else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
1938 (int)(c >> AC_SHIFT) + pc > 1) {
1939 long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1940 if (U.compareAndSwapLong(this, CTL, c, nc))
1941 return true; // no compensation
1942 }
1943 else if (tc + pc < MAX_CAP) {
1944 long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1945 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1946 ForkJoinWorkerThreadFactory fac;
1947 Throwable ex = null;
1948 ForkJoinWorkerThread wt = null;
1949 try {
1950 if ((fac = factory) != null &&
1951 (wt = fac.newThread(this)) != null) {
1952 wt.start();
1953 return true;
1954 }
1955 } catch (Throwable rex) {
1956 ex = rex;
1957 }
1958 deregisterWorker(wt, ex); // clean up and return false
1959 }
1960 }
1961 }
1962 return false;
1963 }
1964
1965 /**
1966 * Helps and/or blocks until the given task is done.
1967 *
1968 * @param joiner the joining worker
1969 * @param task the task
1970 * @return task status on exit
1971 */
1972 final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1973 int s = 0;
1974 if (joiner != null && task != null && (s = task.status) >= 0) {
1975 ForkJoinTask<?> prevJoin = joiner.currentJoin;
1976 joiner.currentJoin = task;
1977 do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
1978 joiner.tryRemoveAndExec(task)); // process local tasks
1979 if (s >= 0 && (s = task.status) >= 0) {
1980 helpSignal(task, joiner.poolIndex);
1981 if ((s = task.status) >= 0 &&
1982 (task instanceof CountedCompleter))
1983 s = helpComplete(task, LIFO_QUEUE);
1984 }
1985 while (s >= 0 && (s = task.status) >= 0) {
1986 if ((!joiner.isEmpty() || // try helping
1987 (s = tryHelpStealer(joiner, task)) == 0) &&
1988 (s = task.status) >= 0) {
1989 helpSignal(task, joiner.poolIndex);
1990 if ((s = task.status) >= 0 && tryCompensate()) {
1991 if (task.trySetSignal() && (s = task.status) >= 0) {
1992 synchronized (task) {
1993 if (task.status >= 0) {
1994 try { // see ForkJoinTask
1995 task.wait(); // for explanation
1996 } catch (InterruptedException ie) {
1997 }
1998 }
1999 else
2000 task.notifyAll();
2001 }
2002 }
2003 long c; // re-activate
2004 do {} while (!U.compareAndSwapLong
2005 (this, CTL, c = ctl, c + AC_UNIT));
2006 }
2007 }
2008 }
2009 joiner.currentJoin = prevJoin;
2010 }
2011 return s;
2012 }
2013
2014 /**
2015 * Stripped-down variant of awaitJoin used by timed joins. Tries
2016 * to help join only while there is continuous progress. (Caller
2017 * will then enter a timed wait.)
2018 *
2019 * @param joiner the joining worker
2020 * @param task the task
2021 */
2022 final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2023 int s;
2024 if (joiner != null && task != null && (s = task.status) >= 0) {
2025 ForkJoinTask<?> prevJoin = joiner.currentJoin;
2026 joiner.currentJoin = task;
2027 do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
2028 joiner.tryRemoveAndExec(task));
2029 if (s >= 0 && (s = task.status) >= 0) {
2030 helpSignal(task, joiner.poolIndex);
2031 if ((s = task.status) >= 0 &&
2032 (task instanceof CountedCompleter))
2033 s = helpComplete(task, LIFO_QUEUE);
2034 }
2035 if (s >= 0 && joiner.isEmpty()) {
2036 do {} while (task.status >= 0 &&
2037 tryHelpStealer(joiner, task) > 0);
2038 }
2039 joiner.currentJoin = prevJoin;
2040 }
2041 }
2042
2043 /**
2044 * Returns a (probably) non-empty steal queue, if one is found
2045 * during a scan, else null. This method must be retried by
2046 * caller if, by the time it tries to use the queue, it is empty.
2047 * @param r a (random) seed for scanning
2048 */
2049 private WorkQueue findNonEmptyStealQueue(int r) {
2050 for (;;) {
2051 int ps = plock, m; WorkQueue[] ws; WorkQueue q;
2052 if ((ws = workQueues) != null && (m = ws.length - 1) >= 0) {
2053 for (int j = (m + 1) << 2; j >= 0; --j) {
2054 if ((q = ws[(((r + j) << 1) | 1) & m]) != null &&
2055 q.base - q.top < 0)
2056 return q;
2057 }
2058 }
2059 if (plock == ps)
2060 return null;
2061 }
2062 }
2063
2064 /**
2065 * Runs tasks until {@code isQuiescent()}. We piggyback on
2066 * active count ctl maintenance, but rather than blocking
2067 * when tasks cannot be found, we rescan until all others cannot
2068 * find tasks either.
2069 */
2070 final void helpQuiescePool(WorkQueue w) {
2071 for (boolean active = true;;) {
2072 long c; WorkQueue q; ForkJoinTask<?> t; int b;
2073 while ((t = w.nextLocalTask()) != null) {
2074 if (w.base - w.top < 0)
2075 signalWork(w);
2076 t.doExec();
2077 }
2078 if ((q = findNonEmptyStealQueue(w.nextSeed())) != null) {
2079 if (!active) { // re-establish active count
2080 active = true;
2081 do {} while (!U.compareAndSwapLong
2082 (this, CTL, c = ctl, c + AC_UNIT));
2083 }
2084 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2085 if (q.base - q.top < 0)
2086 signalWork(q);
2087 w.runSubtask(t);
2088 }
2089 }
2090 else if (active) { // decrement active count without queuing
2091 long nc = (c = ctl) - AC_UNIT;
2092 if ((int)(nc >> AC_SHIFT) + (config & SMASK) == 0)
2093 return; // bypass decrement-then-increment
2094 if (U.compareAndSwapLong(this, CTL, c, nc))
2095 active = false;
2096 }
2097 else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) == 0 &&
2098 U.compareAndSwapLong(this, CTL, c, c + AC_UNIT))
2099 return;
2100 }
2101 }
2102
2103 /**
2104 * Gets and removes a local or stolen task for the given worker.
2105 *
2106 * @return a task, if available
2107 */
2108 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2109 for (ForkJoinTask<?> t;;) {
2110 WorkQueue q; int b;
2111 if ((t = w.nextLocalTask()) != null)
2112 return t;
2113 if ((q = findNonEmptyStealQueue(w.nextSeed())) == null)
2114 return null;
2115 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2116 if (q.base - q.top < 0)
2117 signalWork(q);
2118 return t;
2119 }
2120 }
2121 }
2122
2123 /**
2124 * Returns a cheap heuristic guide for task partitioning when
2125 * programmers, frameworks, tools, or languages have little or no
2126 * idea about task granularity. In essence by offering this
2127 * method, we ask users only about tradeoffs in overhead vs
2128 * expected throughput and its variance, rather than how finely to
2129 * partition tasks.
2130 *
2131 * In a steady state strict (tree-structured) computation, each
2132 * thread makes available for stealing enough tasks for other
2133 * threads to remain active. Inductively, if all threads play by
2134 * the same rules, each thread should make available only a
2135 * constant number of tasks.
2136 *
2137 * The minimum useful constant is just 1. But using a value of 1
2138 * would require immediate replenishment upon each steal to
2139 * maintain enough tasks, which is infeasible. Further,
2140 * partitionings/granularities of offered tasks should minimize
2141 * steal rates, which in general means that threads nearer the top
2142 * of computation tree should generate more than those nearer the
2143 * bottom. In perfect steady state, each thread is at
2144 * approximately the same level of computation tree. However,
2145 * producing extra tasks amortizes the uncertainty of progress and
2146 * diffusion assumptions.
2147 *
2148 * So, users will want to use values larger, but not much larger
2149 * than 1 to both smooth over transient shortages and hedge
2150 * against uneven progress; as traded off against the cost of
2151 * extra task overhead. We leave the user to pick a threshold
2152 * value to compare with the results of this call to guide
2153 * decisions, but recommend values such as 3.
2154 *
2155 * When all threads are active, it is on average OK to estimate
2156 * surplus strictly locally. In steady-state, if one thread is
2157 * maintaining say 2 surplus tasks, then so are others. So we can
2158 * just use estimated queue length. However, this strategy alone
2159 * leads to serious mis-estimates in some non-steady-state
2160 * conditions (ramp-up, ramp-down, other stalls). We can detect
2161 * many of these by further considering the number of "idle"
2162 * threads, that are known to have zero queued tasks, so
2163 * compensate by a factor of (#idle/#active) threads.
2164 *
2165 * Note: The approximation of #busy workers as #active workers is
2166 * not very good under current signalling scheme, and should be
2167 * improved.
2168 */
2169 static int getSurplusQueuedTaskCount() {
2170 Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2171 if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2172 int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2173 int n = (q = wt.workQueue).top - q.base;
2174 int a = (int)(pool.ctl >> AC_SHIFT) + p;
2175 return n - (a > (p >>>= 1) ? 0 :
2176 a > (p >>>= 1) ? 1 :
2177 a > (p >>>= 1) ? 2 :
2178 a > (p >>>= 1) ? 4 :
2179 8);
2180 }
2181 return 0;
2182 }
2183
2184 // Termination
2185
2186 /**
2187 * Possibly initiates and/or completes termination. The caller
2188 * triggering termination runs three passes through workQueues:
2189 * (0) Setting termination status, followed by wakeups of queued
2190 * workers; (1) cancelling all tasks; (2) interrupting lagging
2191 * threads (likely in external tasks, but possibly also blocked in
2192 * joins). Each pass repeats previous steps because of potential
2193 * lagging thread creation.
2194 *
2195 * @param now if true, unconditionally terminate, else only
2196 * if no work and no active workers
2197 * @param enable if true, enable shutdown when next possible
2198 * @return true if now terminating or terminated
2199 */
2200 private boolean tryTerminate(boolean now, boolean enable) {
2201 int ps;
2202 if (this == common) // cannot shut down
2203 return false;
2204 if ((ps = plock) >= 0) { // enable by setting plock
2205 if (!enable)
2206 return false;
2207 if ((ps & PL_LOCK) != 0 ||
2208 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2209 ps = acquirePlock();
2210 int nps = ((ps + PL_LOCK) & ~SHUTDOWN) | SHUTDOWN;
2211 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2212 releasePlock(nps);
2213 }
2214 for (long c;;) {
2215 if (((c = ctl) & STOP_BIT) != 0) { // already terminating
2216 if ((short)(c >>> TC_SHIFT) == -(config & SMASK)) {
2217 synchronized (this) {
2218 notifyAll(); // signal when 0 workers
2219 }
2220 }
2221 return true;
2222 }
2223 if (!now) { // check if idle & no tasks
2224 WorkQueue[] ws; WorkQueue w;
2225 if ((int)(c >> AC_SHIFT) != -(config & SMASK))
2226 return false;
2227 if ((ws = workQueues) != null) {
2228 for (int i = 0; i < ws.length; ++i) {
2229 if ((w = ws[i]) != null) {
2230 if (!w.isEmpty()) { // signal unprocessed tasks
2231 signalWork(w);
2232 return false;
2233 }
2234 if ((i & 1) != 0 && w.eventCount >= 0)
2235 return false; // unqueued inactive worker
2236 }
2237 }
2238 }
2239 }
2240 if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2241 for (int pass = 0; pass < 3; ++pass) {
2242 WorkQueue[] ws; WorkQueue w; Thread wt;
2243 if ((ws = workQueues) != null) {
2244 int n = ws.length;
2245 for (int i = 0; i < n; ++i) {
2246 if ((w = ws[i]) != null) {
2247 w.qlock = -1;
2248 if (pass > 0) {
2249 w.cancelAll();
2250 if (pass > 1 && (wt = w.owner) != null) {
2251 if (!wt.isInterrupted()) {
2252 try {
2253 wt.interrupt();
2254 } catch (Throwable ignore) {
2255 }
2256 }
2257 U.unpark(wt);
2258 }
2259 }
2260 }
2261 }
2262 // Wake up workers parked on event queue
2263 int i, e; long cc; Thread p;
2264 while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2265 (i = e & SMASK) < n && i >= 0 &&
2266 (w = ws[i]) != null) {
2267 long nc = ((long)(w.nextWait & E_MASK) |
2268 ((cc + AC_UNIT) & AC_MASK) |
2269 (cc & (TC_MASK|STOP_BIT)));
2270 if (w.eventCount == (e | INT_SIGN) &&
2271 U.compareAndSwapLong(this, CTL, cc, nc)) {
2272 w.eventCount = (e + E_SEQ) & E_MASK;
2273 w.qlock = -1;
2274 if ((p = w.parker) != null)
2275 U.unpark(p);
2276 }
2277 }
2278 }
2279 }
2280 }
2281 }
2282 }
2283
2284 // external operations on common pool
2285
2286 /**
2287 * Returns common pool queue for a thread that has submitted at
2288 * least one task.
2289 */
2290 static WorkQueue commonSubmitterQueue() {
2291 ForkJoinPool p; WorkQueue[] ws; int m, z;
2292 return ((z = ThreadLocalRandom.getProbe()) != 0 &&
2293 (p = common) != null &&
2294 (ws = p.workQueues) != null &&
2295 (m = ws.length - 1) >= 0) ?
2296 ws[m & z & SQMASK] : null;
2297 }
2298
2299 /**
2300 * Tries to pop the given task from submitter's queue in common pool.
2301 */
2302 static boolean tryExternalUnpush(ForkJoinTask<?> t) {
2303 ForkJoinPool p; WorkQueue[] ws; WorkQueue q;
2304 ForkJoinTask<?>[] a; int m, s, z;
2305 if (t != null &&
2306 (z = ThreadLocalRandom.getProbe()) != 0 &&
2307 (p = common) != null &&
2308 (ws = p.workQueues) != null &&
2309 (m = ws.length - 1) >= 0 &&
2310 (q = ws[m & z & SQMASK]) != null &&
2311 (s = q.top) != q.base &&
2312 (a = q.array) != null) {
2313 long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
2314 if (U.getObject(a, j) == t &&
2315 U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2316 if (q.array == a && q.top == s && // recheck
2317 U.compareAndSwapObject(a, j, t, null)) {
2318 q.top = s - 1;
2319 q.qlock = 0;
2320 return true;
2321 }
2322 q.qlock = 0;
2323 }
2324 }
2325 return false;
2326 }
2327
2328 /**
2329 * Tries to pop and run local tasks within the same computation
2330 * as the given root. On failure, tries to help complete from
2331 * other queues via helpComplete.
2332 */
2333 private void externalHelpComplete(WorkQueue q, ForkJoinTask<?> root) {
2334 ForkJoinTask<?>[] a; int m;
2335 if (q != null && (a = q.array) != null && (m = (a.length - 1)) >= 0 &&
2336 root != null && root.status >= 0) {
2337 for (;;) {
2338 int s, u; Object o; CountedCompleter<?> task = null;
2339 if ((s = q.top) - q.base > 0) {
2340 long j = ((m & (s - 1)) << ASHIFT) + ABASE;
2341 if ((o = U.getObject(a, j)) != null &&
2342 (o instanceof CountedCompleter)) {
2343 CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2344 do {
2345 if (r == root) {
2346 if (U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2347 if (q.array == a && q.top == s &&
2348 U.compareAndSwapObject(a, j, t, null)) {
2349 q.top = s - 1;
2350 task = t;
2351 }
2352 q.qlock = 0;
2353 }
2354 break;
2355 }
2356 } while ((r = r.completer) != null);
2357 }
2358 }
2359 if (task != null)
2360 task.doExec();
2361 if (root.status < 0 ||
2362 (u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0)
2363 break;
2364 if (task == null) {
2365 helpSignal(root, q.poolIndex);
2366 if (root.status >= 0)
2367 helpComplete(root, SHARED_QUEUE);
2368 break;
2369 }
2370 }
2371 }
2372 }
2373
2374 /**
2375 * Tries to help execute or signal availability of the given task
2376 * from submitter's queue in common pool.
2377 */
2378 static void externalHelpJoin(ForkJoinTask<?> t) {
2379 // Some hard-to-avoid overlap with tryExternalUnpush
2380 ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w;
2381 ForkJoinTask<?>[] a; int m, s, n, z;
2382 if (t != null &&
2383 (z = ThreadLocalRandom.getProbe()) != 0 &&
2384 (p = common) != null &&
2385 (ws = p.workQueues) != null &&
2386 (m = ws.length - 1) >= 0 &&
2387 (q = ws[m & z & SQMASK]) != null &&
2388 (a = q.array) != null) {
2389 int am = a.length - 1;
2390 if ((s = q.top) != q.base) {
2391 long j = ((am & (s - 1)) << ASHIFT) + ABASE;
2392 if (U.getObject(a, j) == t &&
2393 U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2394 if (q.array == a && q.top == s &&
2395 U.compareAndSwapObject(a, j, t, null)) {
2396 q.top = s - 1;
2397 q.qlock = 0;
2398 t.doExec();
2399 }
2400 else
2401 q.qlock = 0;
2402 }
2403 }
2404 if (t.status >= 0) {
2405 if (t instanceof CountedCompleter)
2406 p.externalHelpComplete(q, t);
2407 else
2408 p.helpSignal(t, q.poolIndex);
2409 }
2410 }
2411 }
2412
2413 // Exported methods
2414
2415 // Constructors
2416
2417 /**
2418 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2419 * java.lang.Runtime#availableProcessors}, using the {@linkplain
2420 * #defaultForkJoinWorkerThreadFactory default thread factory},
2421 * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2422 *
2423 * @throws SecurityException if a security manager exists and
2424 * the caller is not permitted to modify threads
2425 * because it does not hold {@link
2426 * java.lang.RuntimePermission}{@code ("modifyThread")}
2427 */
2428 public ForkJoinPool() {
2429 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2430 defaultForkJoinWorkerThreadFactory, null, false);
2431 }
2432
2433 /**
2434 * Creates a {@code ForkJoinPool} with the indicated parallelism
2435 * level, the {@linkplain
2436 * #defaultForkJoinWorkerThreadFactory default thread factory},
2437 * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2438 *
2439 * @param parallelism the parallelism level
2440 * @throws IllegalArgumentException if parallelism less than or
2441 * equal to zero, or greater than implementation limit
2442 * @throws SecurityException if a security manager exists and
2443 * the caller is not permitted to modify threads
2444 * because it does not hold {@link
2445 * java.lang.RuntimePermission}{@code ("modifyThread")}
2446 */
2447 public ForkJoinPool(int parallelism) {
2448 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2449 }
2450
2451 /**
2452 * Creates a {@code ForkJoinPool} with the given parameters.
2453 *
2454 * @param parallelism the parallelism level. For default value,
2455 * use {@link java.lang.Runtime#availableProcessors}.
2456 * @param factory the factory for creating new threads. For default value,
2457 * use {@link #defaultForkJoinWorkerThreadFactory}.
2458 * @param handler the handler for internal worker threads that
2459 * terminate due to unrecoverable errors encountered while executing
2460 * tasks. For default value, use {@code null}.
2461 * @param asyncMode if true,
2462 * establishes local first-in-first-out scheduling mode for forked
2463 * tasks that are never joined. This mode may be more appropriate
2464 * than default locally stack-based mode in applications in which
2465 * worker threads only process event-style asynchronous tasks.
2466 * For default value, use {@code false}.
2467 * @throws IllegalArgumentException if parallelism less than or
2468 * equal to zero, or greater than implementation limit
2469 * @throws NullPointerException if the factory is null
2470 * @throws SecurityException if a security manager exists and
2471 * the caller is not permitted to modify threads
2472 * because it does not hold {@link
2473 * java.lang.RuntimePermission}{@code ("modifyThread")}
2474 */
2475 public ForkJoinPool(int parallelism,
2476 ForkJoinWorkerThreadFactory factory,
2477 UncaughtExceptionHandler handler,
2478 boolean asyncMode) {
2479 this(checkParallelism(parallelism),
2480 checkFactory(factory),
2481 handler,
2482 asyncMode,
2483 "ForkJoinPool-" + nextPoolId() + "-worker-");
2484 checkPermission();
2485 }
2486
2487 private static int checkParallelism(int parallelism) {
2488 if (parallelism <= 0 || parallelism > MAX_CAP)
2489 throw new IllegalArgumentException();
2490 return parallelism;
2491 }
2492
2493 private static ForkJoinWorkerThreadFactory checkFactory
2494 (ForkJoinWorkerThreadFactory factory) {
2495 if (factory == null)
2496 throw new NullPointerException();
2497 return factory;
2498 }
2499
2500 /**
2501 * Creates a {@code ForkJoinPool} with the given parameters, without
2502 * any security checks or parameter validation. Invoked directly by
2503 * makeCommonPool.
2504 */
2505 private ForkJoinPool(int parallelism,
2506 ForkJoinWorkerThreadFactory factory,
2507 UncaughtExceptionHandler handler,
2508 boolean asyncMode,
2509 String workerNamePrefix) {
2510 this.workerNamePrefix = workerNamePrefix;
2511 this.factory = factory;
2512 this.ueh = handler;
2513 this.config = parallelism | (asyncMode ? (FIFO_QUEUE << 16) : 0);
2514 long np = (long)(-parallelism); // offset ctl counts
2515 this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2516 }
2517
2518 /**
2519 * Returns the common pool instance. This pool is statically
2520 * constructed; its run state is unaffected by attempts to {@link
2521 * #shutdown} or {@link #shutdownNow}. However this pool and any
2522 * ongoing processing are automatically terminated upon program
2523 * {@link System#exit}. Any program that relies on asynchronous
2524 * task processing to complete before program termination should
2525 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2526 * before exit.
2527 *
2528 * @return the common pool instance
2529 * @since 1.8
2530 */
2531 public static ForkJoinPool commonPool() {
2532 // assert common != null : "static init error";
2533 return common;
2534 }
2535
2536 // Execution methods
2537
2538 /**
2539 * Performs the given task, returning its result upon completion.
2540 * If the computation encounters an unchecked Exception or Error,
2541 * it is rethrown as the outcome of this invocation. Rethrown
2542 * exceptions behave in the same way as regular exceptions, but,
2543 * when possible, contain stack traces (as displayed for example
2544 * using {@code ex.printStackTrace()}) of both the current thread
2545 * as well as the thread actually encountering the exception;
2546 * minimally only the latter.
2547 *
2548 * @param task the task
2549 * @return the task's result
2550 * @throws NullPointerException if the task is null
2551 * @throws RejectedExecutionException if the task cannot be
2552 * scheduled for execution
2553 */
2554 public <T> T invoke(ForkJoinTask<T> task) {
2555 if (task == null)
2556 throw new NullPointerException();
2557 externalPush(task);
2558 return task.join();
2559 }
2560
2561 /**
2562 * Arranges for (asynchronous) execution of the given task.
2563 *
2564 * @param task the task
2565 * @throws NullPointerException if the task is null
2566 * @throws RejectedExecutionException if the task cannot be
2567 * scheduled for execution
2568 */
2569 public void execute(ForkJoinTask<?> task) {
2570 if (task == null)
2571 throw new NullPointerException();
2572 externalPush(task);
2573 }
2574
2575 // AbstractExecutorService methods
2576
2577 /**
2578 * @throws NullPointerException if the task is null
2579 * @throws RejectedExecutionException if the task cannot be
2580 * scheduled for execution
2581 */
2582 public void execute(Runnable task) {
2583 if (task == null)
2584 throw new NullPointerException();
2585 ForkJoinTask<?> job;
2586 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2587 job = (ForkJoinTask<?>) task;
2588 else
2589 job = new ForkJoinTask.RunnableExecuteAction(task);
2590 externalPush(job);
2591 }
2592
2593 /**
2594 * Submits a ForkJoinTask for execution.
2595 *
2596 * @param task the task to submit
2597 * @return the task
2598 * @throws NullPointerException if the task is null
2599 * @throws RejectedExecutionException if the task cannot be
2600 * scheduled for execution
2601 */
2602 public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2603 if (task == null)
2604 throw new NullPointerException();
2605 externalPush(task);
2606 return task;
2607 }
2608
2609 /**
2610 * @throws NullPointerException if the task is null
2611 * @throws RejectedExecutionException if the task cannot be
2612 * scheduled for execution
2613 */
2614 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2615 ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2616 externalPush(job);
2617 return job;
2618 }
2619
2620 /**
2621 * @throws NullPointerException if the task is null
2622 * @throws RejectedExecutionException if the task cannot be
2623 * scheduled for execution
2624 */
2625 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2626 ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2627 externalPush(job);
2628 return job;
2629 }
2630
2631 /**
2632 * @throws NullPointerException if the task is null
2633 * @throws RejectedExecutionException if the task cannot be
2634 * scheduled for execution
2635 */
2636 public ForkJoinTask<?> submit(Runnable task) {
2637 if (task == null)
2638 throw new NullPointerException();
2639 ForkJoinTask<?> job;
2640 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2641 job = (ForkJoinTask<?>) task;
2642 else
2643 job = new ForkJoinTask.AdaptedRunnableAction(task);
2644 externalPush(job);
2645 return job;
2646 }
2647
2648 /**
2649 * @throws NullPointerException {@inheritDoc}
2650 * @throws RejectedExecutionException {@inheritDoc}
2651 */
2652 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2653 // In previous versions of this class, this method constructed
2654 // a task to run ForkJoinTask.invokeAll, but now external
2655 // invocation of multiple tasks is at least as efficient.
2656 ArrayList<Future<T>> futures = new ArrayList<Future<T>>(tasks.size());
2657
2658 boolean done = false;
2659 try {
2660 for (Callable<T> t : tasks) {
2661 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2662 futures.add(f);
2663 externalPush(f);
2664 }
2665 for (int i = 0, size = futures.size(); i < size; i++)
2666 ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2667 done = true;
2668 return futures;
2669 } finally {
2670 if (!done)
2671 for (int i = 0, size = futures.size(); i < size; i++)
2672 futures.get(i).cancel(false);
2673 }
2674 }
2675
2676 /**
2677 * Returns the factory used for constructing new workers.
2678 *
2679 * @return the factory used for constructing new workers
2680 */
2681 public ForkJoinWorkerThreadFactory getFactory() {
2682 return factory;
2683 }
2684
2685 /**
2686 * Returns the handler for internal worker threads that terminate
2687 * due to unrecoverable errors encountered while executing tasks.
2688 *
2689 * @return the handler, or {@code null} if none
2690 */
2691 public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2692 return ueh;
2693 }
2694
2695 /**
2696 * Returns the targeted parallelism level of this pool.
2697 *
2698 * @return the targeted parallelism level of this pool
2699 */
2700 public int getParallelism() {
2701 return config & SMASK;
2702 }
2703
2704 /**
2705 * Returns the targeted parallelism level of the common pool.
2706 *
2707 * @return the targeted parallelism level of the common pool
2708 * @since 1.8
2709 */
2710 public static int getCommonPoolParallelism() {
2711 return commonParallelism;
2712 }
2713
2714 /**
2715 * Returns the number of worker threads that have started but not
2716 * yet terminated. The result returned by this method may differ
2717 * from {@link #getParallelism} when threads are created to
2718 * maintain parallelism when others are cooperatively blocked.
2719 *
2720 * @return the number of worker threads
2721 */
2722 public int getPoolSize() {
2723 return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2724 }
2725
2726 /**
2727 * Returns {@code true} if this pool uses local first-in-first-out
2728 * scheduling mode for forked tasks that are never joined.
2729 *
2730 * @return {@code true} if this pool uses async mode
2731 */
2732 public boolean getAsyncMode() {
2733 return (config >>> 16) == FIFO_QUEUE;
2734 }
2735
2736 /**
2737 * Returns an estimate of the number of worker threads that are
2738 * not blocked waiting to join tasks or for other managed
2739 * synchronization. This method may overestimate the
2740 * number of running threads.
2741 *
2742 * @return the number of worker threads
2743 */
2744 public int getRunningThreadCount() {
2745 int rc = 0;
2746 WorkQueue[] ws; WorkQueue w;
2747 if ((ws = workQueues) != null) {
2748 for (int i = 1; i < ws.length; i += 2) {
2749 if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2750 ++rc;
2751 }
2752 }
2753 return rc;
2754 }
2755
2756 /**
2757 * Returns an estimate of the number of threads that are currently
2758 * stealing or executing tasks. This method may overestimate the
2759 * number of active threads.
2760 *
2761 * @return the number of active threads
2762 */
2763 public int getActiveThreadCount() {
2764 int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2765 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2766 }
2767
2768 /**
2769 * Returns {@code true} if all worker threads are currently idle.
2770 * An idle worker is one that cannot obtain a task to execute
2771 * because none are available to steal from other threads, and
2772 * there are no pending submissions to the pool. This method is
2773 * conservative; it might not return {@code true} immediately upon
2774 * idleness of all threads, but will eventually become true if
2775 * threads remain inactive.
2776 *
2777 * @return {@code true} if all threads are currently idle
2778 */
2779 public boolean isQuiescent() {
2780 return (int)(ctl >> AC_SHIFT) + (config & SMASK) == 0;
2781 }
2782
2783 /**
2784 * Returns an estimate of the total number of tasks stolen from
2785 * one thread's work queue by another. The reported value
2786 * underestimates the actual total number of steals when the pool
2787 * is not quiescent. This value may be useful for monitoring and
2788 * tuning fork/join programs: in general, steal counts should be
2789 * high enough to keep threads busy, but low enough to avoid
2790 * overhead and contention across threads.
2791 *
2792 * @return the number of steals
2793 */
2794 public long getStealCount() {
2795 long count = stealCount;
2796 WorkQueue[] ws; WorkQueue w;
2797 if ((ws = workQueues) != null) {
2798 for (int i = 1; i < ws.length; i += 2) {
2799 if ((w = ws[i]) != null)
2800 count += w.nsteals;
2801 }
2802 }
2803 return count;
2804 }
2805
2806 /**
2807 * Returns an estimate of the total number of tasks currently held
2808 * in queues by worker threads (but not including tasks submitted
2809 * to the pool that have not begun executing). This value is only
2810 * an approximation, obtained by iterating across all threads in
2811 * the pool. This method may be useful for tuning task
2812 * granularities.
2813 *
2814 * @return the number of queued tasks
2815 */
2816 public long getQueuedTaskCount() {
2817 long count = 0;
2818 WorkQueue[] ws; WorkQueue w;
2819 if ((ws = workQueues) != null) {
2820 for (int i = 1; i < ws.length; i += 2) {
2821 if ((w = ws[i]) != null)
2822 count += w.queueSize();
2823 }
2824 }
2825 return count;
2826 }
2827
2828 /**
2829 * Returns an estimate of the number of tasks submitted to this
2830 * pool that have not yet begun executing. This method may take
2831 * time proportional to the number of submissions.
2832 *
2833 * @return the number of queued submissions
2834 */
2835 public int getQueuedSubmissionCount() {
2836 int count = 0;
2837 WorkQueue[] ws; WorkQueue w;
2838 if ((ws = workQueues) != null) {
2839 for (int i = 0; i < ws.length; i += 2) {
2840 if ((w = ws[i]) != null)
2841 count += w.queueSize();
2842 }
2843 }
2844 return count;
2845 }
2846
2847 /**
2848 * Returns {@code true} if there are any tasks submitted to this
2849 * pool that have not yet begun executing.
2850 *
2851 * @return {@code true} if there are any queued submissions
2852 */
2853 public boolean hasQueuedSubmissions() {
2854 WorkQueue[] ws; WorkQueue w;
2855 if ((ws = workQueues) != null) {
2856 for (int i = 0; i < ws.length; i += 2) {
2857 if ((w = ws[i]) != null && !w.isEmpty())
2858 return true;
2859 }
2860 }
2861 return false;
2862 }
2863
2864 /**
2865 * Removes and returns the next unexecuted submission if one is
2866 * available. This method may be useful in extensions to this
2867 * class that re-assign work in systems with multiple pools.
2868 *
2869 * @return the next submission, or {@code null} if none
2870 */
2871 protected ForkJoinTask<?> pollSubmission() {
2872 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2873 if ((ws = workQueues) != null) {
2874 for (int i = 0; i < ws.length; i += 2) {
2875 if ((w = ws[i]) != null && (t = w.poll()) != null)
2876 return t;
2877 }
2878 }
2879 return null;
2880 }
2881
2882 /**
2883 * Removes all available unexecuted submitted and forked tasks
2884 * from scheduling queues and adds them to the given collection,
2885 * without altering their execution status. These may include
2886 * artificially generated or wrapped tasks. This method is
2887 * designed to be invoked only when the pool is known to be
2888 * quiescent. Invocations at other times may not remove all
2889 * tasks. A failure encountered while attempting to add elements
2890 * to collection {@code c} may result in elements being in
2891 * neither, either or both collections when the associated
2892 * exception is thrown. The behavior of this operation is
2893 * undefined if the specified collection is modified while the
2894 * operation is in progress.
2895 *
2896 * @param c the collection to transfer elements into
2897 * @return the number of elements transferred
2898 */
2899 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2900 int count = 0;
2901 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2902 if ((ws = workQueues) != null) {
2903 for (int i = 0; i < ws.length; ++i) {
2904 if ((w = ws[i]) != null) {
2905 while ((t = w.poll()) != null) {
2906 c.add(t);
2907 ++count;
2908 }
2909 }
2910 }
2911 }
2912 return count;
2913 }
2914
2915 /**
2916 * Returns a string identifying this pool, as well as its state,
2917 * including indications of run state, parallelism level, and
2918 * worker and task counts.
2919 *
2920 * @return a string identifying this pool, as well as its state
2921 */
2922 public String toString() {
2923 // Use a single pass through workQueues to collect counts
2924 long qt = 0L, qs = 0L; int rc = 0;
2925 long st = stealCount;
2926 long c = ctl;
2927 WorkQueue[] ws; WorkQueue w;
2928 if ((ws = workQueues) != null) {
2929 for (int i = 0; i < ws.length; ++i) {
2930 if ((w = ws[i]) != null) {
2931 int size = w.queueSize();
2932 if ((i & 1) == 0)
2933 qs += size;
2934 else {
2935 qt += size;
2936 st += w.nsteals;
2937 if (w.isApparentlyUnblocked())
2938 ++rc;
2939 }
2940 }
2941 }
2942 }
2943 int pc = (config & SMASK);
2944 int tc = pc + (short)(c >>> TC_SHIFT);
2945 int ac = pc + (int)(c >> AC_SHIFT);
2946 if (ac < 0) // ignore transient negative
2947 ac = 0;
2948 String level;
2949 if ((c & STOP_BIT) != 0)
2950 level = (tc == 0) ? "Terminated" : "Terminating";
2951 else
2952 level = plock < 0 ? "Shutting down" : "Running";
2953 return super.toString() +
2954 "[" + level +
2955 ", parallelism = " + pc +
2956 ", size = " + tc +
2957 ", active = " + ac +
2958 ", running = " + rc +
2959 ", steals = " + st +
2960 ", tasks = " + qt +
2961 ", submissions = " + qs +
2962 "]";
2963 }
2964
2965 /**
2966 * Possibly initiates an orderly shutdown in which previously
2967 * submitted tasks are executed, but no new tasks will be
2968 * accepted. Invocation has no effect on execution state if this
2969 * is the {@link #commonPool()}, and no additional effect if
2970 * already shut down. Tasks that are in the process of being
2971 * submitted concurrently during the course of this method may or
2972 * may not be rejected.
2973 *
2974 * @throws SecurityException if a security manager exists and
2975 * the caller is not permitted to modify threads
2976 * because it does not hold {@link
2977 * java.lang.RuntimePermission}{@code ("modifyThread")}
2978 */
2979 public void shutdown() {
2980 checkPermission();
2981 tryTerminate(false, true);
2982 }
2983
2984 /**
2985 * Possibly attempts to cancel and/or stop all tasks, and reject
2986 * all subsequently submitted tasks. Invocation has no effect on
2987 * execution state if this is the {@link #commonPool()}, and no
2988 * additional effect if already shut down. Otherwise, tasks that
2989 * are in the process of being submitted or executed concurrently
2990 * during the course of this method may or may not be
2991 * rejected. This method cancels both existing and unexecuted
2992 * tasks, in order to permit termination in the presence of task
2993 * dependencies. So the method always returns an empty list
2994 * (unlike the case for some other Executors).
2995 *
2996 * @return an empty list
2997 * @throws SecurityException if a security manager exists and
2998 * the caller is not permitted to modify threads
2999 * because it does not hold {@link
3000 * java.lang.RuntimePermission}{@code ("modifyThread")}
3001 */
3002 public List<Runnable> shutdownNow() {
3003 checkPermission();
3004 tryTerminate(true, true);
3005 return Collections.emptyList();
3006 }
3007
3008 /**
3009 * Returns {@code true} if all tasks have completed following shut down.
3010 *
3011 * @return {@code true} if all tasks have completed following shut down
3012 */
3013 public boolean isTerminated() {
3014 long c = ctl;
3015 return ((c & STOP_BIT) != 0L &&
3016 (short)(c >>> TC_SHIFT) == -(config & SMASK));
3017 }
3018
3019 /**
3020 * Returns {@code true} if the process of termination has
3021 * commenced but not yet completed. This method may be useful for
3022 * debugging. A return of {@code true} reported a sufficient
3023 * period after shutdown may indicate that submitted tasks have
3024 * ignored or suppressed interruption, or are waiting for I/O,
3025 * causing this executor not to properly terminate. (See the
3026 * advisory notes for class {@link ForkJoinTask} stating that
3027 * tasks should not normally entail blocking operations. But if
3028 * they do, they must abort them on interrupt.)
3029 *
3030 * @return {@code true} if terminating but not yet terminated
3031 */
3032 public boolean isTerminating() {
3033 long c = ctl;
3034 return ((c & STOP_BIT) != 0L &&
3035 (short)(c >>> TC_SHIFT) != -(config & SMASK));
3036 }
3037
3038 /**
3039 * Returns {@code true} if this pool has been shut down.
3040 *
3041 * @return {@code true} if this pool has been shut down
3042 */
3043 public boolean isShutdown() {
3044 return plock < 0;
3045 }
3046
3047 /**
3048 * Blocks until all tasks have completed execution after a
3049 * shutdown request, or the timeout occurs, or the current thread
3050 * is interrupted, whichever happens first. Because the {@link
3051 * #commonPool()} never terminates until program shutdown, when
3052 * applied to the common pool, this method is equivalent to {@link
3053 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
3054 *
3055 * @param timeout the maximum time to wait
3056 * @param unit the time unit of the timeout argument
3057 * @return {@code true} if this executor terminated and
3058 * {@code false} if the timeout elapsed before termination
3059 * @throws InterruptedException if interrupted while waiting
3060 */
3061 public boolean awaitTermination(long timeout, TimeUnit unit)
3062 throws InterruptedException {
3063 if (Thread.interrupted())
3064 throw new InterruptedException();
3065 if (this == common) {
3066 awaitQuiescence(timeout, unit);
3067 return false;
3068 }
3069 long nanos = unit.toNanos(timeout);
3070 if (isTerminated())
3071 return true;
3072 long startTime = System.nanoTime();
3073 boolean terminated = false;
3074 synchronized (this) {
3075 for (long waitTime = nanos, millis = 0L;;) {
3076 if (terminated = isTerminated() ||
3077 waitTime <= 0L ||
3078 (millis = unit.toMillis(waitTime)) <= 0L)
3079 break;
3080 wait(millis);
3081 waitTime = nanos - (System.nanoTime() - startTime);
3082 }
3083 }
3084 return terminated;
3085 }
3086
3087 /**
3088 * If called by a ForkJoinTask operating in this pool, equivalent
3089 * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3090 * waits and/or attempts to assist performing tasks until this
3091 * pool {@link #isQuiescent} or the indicated timeout elapses.
3092 *
3093 * @param timeout the maximum time to wait
3094 * @param unit the time unit of the timeout argument
3095 * @return {@code true} if quiescent; {@code false} if the
3096 * timeout elapsed.
3097 */
3098 public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3099 long nanos = unit.toNanos(timeout);
3100 ForkJoinWorkerThread wt;
3101 Thread thread = Thread.currentThread();
3102 if ((thread instanceof ForkJoinWorkerThread) &&
3103 (wt = (ForkJoinWorkerThread)thread).pool == this) {
3104 helpQuiescePool(wt.workQueue);
3105 return true;
3106 }
3107 long startTime = System.nanoTime();
3108 WorkQueue[] ws;
3109 int r = 0, m;
3110 boolean found = true;
3111 while (!isQuiescent() && (ws = workQueues) != null &&
3112 (m = ws.length - 1) >= 0) {
3113 if (!found) {
3114 if ((System.nanoTime() - startTime) > nanos)
3115 return false;
3116 Thread.yield(); // cannot block
3117 }
3118 found = false;
3119 for (int j = (m + 1) << 2; j >= 0; --j) {
3120 ForkJoinTask<?> t; WorkQueue q; int b;
3121 if ((q = ws[r++ & m]) != null && (b = q.base) - q.top < 0) {
3122 found = true;
3123 if ((t = q.pollAt(b)) != null) {
3124 if (q.base - q.top < 0)
3125 signalWork(q);
3126 t.doExec();
3127 }
3128 break;
3129 }
3130 }
3131 }
3132 return true;
3133 }
3134
3135 /**
3136 * Waits and/or attempts to assist performing tasks indefinitely
3137 * until the {@link #commonPool()} {@link #isQuiescent}.
3138 */
3139 static void quiesceCommonPool() {
3140 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3141 }
3142
3143 /**
3144 * Interface for extending managed parallelism for tasks running
3145 * in {@link ForkJoinPool}s.
3146 *
3147 * <p>A {@code ManagedBlocker} provides two methods. Method
3148 * {@code isReleasable} must return {@code true} if blocking is
3149 * not necessary. Method {@code block} blocks the current thread
3150 * if necessary (perhaps internally invoking {@code isReleasable}
3151 * before actually blocking). These actions are performed by any
3152 * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
3153 * The unusual methods in this API accommodate synchronizers that
3154 * may, but don't usually, block for long periods. Similarly, they
3155 * allow more efficient internal handling of cases in which
3156 * additional workers may be, but usually are not, needed to
3157 * ensure sufficient parallelism. Toward this end,
3158 * implementations of method {@code isReleasable} must be amenable
3159 * to repeated invocation.
3160 *
3161 * <p>For example, here is a ManagedBlocker based on a
3162 * ReentrantLock:
3163 * <pre> {@code
3164 * class ManagedLocker implements ManagedBlocker {
3165 * final ReentrantLock lock;
3166 * boolean hasLock = false;
3167 * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3168 * public boolean block() {
3169 * if (!hasLock)
3170 * lock.lock();
3171 * return true;
3172 * }
3173 * public boolean isReleasable() {
3174 * return hasLock || (hasLock = lock.tryLock());
3175 * }
3176 * }}</pre>
3177 *
3178 * <p>Here is a class that possibly blocks waiting for an
3179 * item on a given queue:
3180 * <pre> {@code
3181 * class QueueTaker<E> implements ManagedBlocker {
3182 * final BlockingQueue<E> queue;
3183 * volatile E item = null;
3184 * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3185 * public boolean block() throws InterruptedException {
3186 * if (item == null)
3187 * item = queue.take();
3188 * return true;
3189 * }
3190 * public boolean isReleasable() {
3191 * return item != null || (item = queue.poll()) != null;
3192 * }
3193 * public E getItem() { // call after pool.managedBlock completes
3194 * return item;
3195 * }
3196 * }}</pre>
3197 */
3198 public static interface ManagedBlocker {
3199 /**
3200 * Possibly blocks the current thread, for example waiting for
3201 * a lock or condition.
3202 *
3203 * @return {@code true} if no additional blocking is necessary
3204 * (i.e., if isReleasable would return true)
3205 * @throws InterruptedException if interrupted while waiting
3206 * (the method is not required to do so, but is allowed to)
3207 */
3208 boolean block() throws InterruptedException;
3209
3210 /**
3211 * Returns {@code true} if blocking is unnecessary.
3212 * @return {@code true} if blocking is unnecessary
3213 */
3214 boolean isReleasable();
3215 }
3216
3217 /**
3218 * Blocks in accord with the given blocker. If the current thread
3219 * is a {@link ForkJoinWorkerThread}, this method possibly
3220 * arranges for a spare thread to be activated if necessary to
3221 * ensure sufficient parallelism while the current thread is blocked.
3222 *
3223 * <p>If the caller is not a {@link ForkJoinTask}, this method is
3224 * behaviorally equivalent to
3225 * <pre> {@code
3226 * while (!blocker.isReleasable())
3227 * if (blocker.block())
3228 * return;
3229 * }</pre>
3230 *
3231 * If the caller is a {@code ForkJoinTask}, then the pool may
3232 * first be expanded to ensure parallelism, and later adjusted.
3233 *
3234 * @param blocker the blocker
3235 * @throws InterruptedException if blocker.block did so
3236 */
3237 public static void managedBlock(ManagedBlocker blocker)
3238 throws InterruptedException {
3239 Thread t = Thread.currentThread();
3240 if (t instanceof ForkJoinWorkerThread) {
3241 ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3242 while (!blocker.isReleasable()) { // variant of helpSignal
3243 WorkQueue[] ws; WorkQueue q; int m, u;
3244 if ((ws = p.workQueues) != null && (m = ws.length - 1) >= 0) {
3245 for (int i = 0; i <= m; ++i) {
3246 if (blocker.isReleasable())
3247 return;
3248 if ((q = ws[i]) != null && q.base - q.top < 0) {
3249 p.signalWork(q);
3250 if ((u = (int)(p.ctl >>> 32)) >= 0 ||
3251 (u >> UAC_SHIFT) >= 0)
3252 break;
3253 }
3254 }
3255 }
3256 if (p.tryCompensate()) {
3257 try {
3258 do {} while (!blocker.isReleasable() &&
3259 !blocker.block());
3260 } finally {
3261 p.incrementActiveCount();
3262 }
3263 break;
3264 }
3265 }
3266 }
3267 else {
3268 do {} while (!blocker.isReleasable() &&
3269 !blocker.block());
3270 }
3271 }
3272
3273 // AbstractExecutorService overrides. These rely on undocumented
3274 // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3275 // implement RunnableFuture.
3276
3277 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3278 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3279 }
3280
3281 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3282 return new ForkJoinTask.AdaptedCallable<T>(callable);
3283 }
3284
3285 // Unsafe mechanics
3286 private static final sun.misc.Unsafe U;
3287 private static final long CTL;
3288 private static final long PARKBLOCKER;
3289 private static final int ABASE;
3290 private static final int ASHIFT;
3291 private static final long STEALCOUNT;
3292 private static final long PLOCK;
3293 private static final long INDEXSEED;
3294 private static final long QLOCK;
3295
3296 static {
3297 // initialize field offsets for CAS etc
3298 try {
3299 U = sun.misc.Unsafe.getUnsafe();
3300 Class<?> k = ForkJoinPool.class;
3301 CTL = U.objectFieldOffset
3302 (k.getDeclaredField("ctl"));
3303 STEALCOUNT = U.objectFieldOffset
3304 (k.getDeclaredField("stealCount"));
3305 PLOCK = U.objectFieldOffset
3306 (k.getDeclaredField("plock"));
3307 INDEXSEED = U.objectFieldOffset
3308 (k.getDeclaredField("indexSeed"));
3309 Class<?> tk = Thread.class;
3310 PARKBLOCKER = U.objectFieldOffset
3311 (tk.getDeclaredField("parkBlocker"));
3312 Class<?> wk = WorkQueue.class;
3313 QLOCK = U.objectFieldOffset
3314 (wk.getDeclaredField("qlock"));
3315 Class<?> ak = ForkJoinTask[].class;
3316 ABASE = U.arrayBaseOffset(ak);
3317 int scale = U.arrayIndexScale(ak);
3318 if ((scale & (scale - 1)) != 0)
3319 throw new Error("data type scale not a power of two");
3320 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3321 } catch (Exception e) {
3322 throw new Error(e);
3323 }
3324
3325 defaultForkJoinWorkerThreadFactory =
3326 new DefaultForkJoinWorkerThreadFactory();
3327 modifyThreadPermission = new RuntimePermission("modifyThread");
3328
3329 common = java.security.AccessController.doPrivileged
3330 (new java.security.PrivilegedAction<ForkJoinPool>() {
3331 public ForkJoinPool run() { return makeCommonPool(); }});
3332 commonParallelism = common.config; // cannot be async
3333 }
3334
3335 /**
3336 * Creates and returns the common pool, respecting user settings
3337 * specified via system properties.
3338 */
3339 private static ForkJoinPool makeCommonPool() {
3340 int parallelism = 0;
3341 ForkJoinWorkerThreadFactory factory
3342 = defaultForkJoinWorkerThreadFactory;
3343 UncaughtExceptionHandler handler = null;
3344 try { // ignore exceptions in accesing/parsing properties
3345 String pp = System.getProperty
3346 ("java.util.concurrent.ForkJoinPool.common.parallelism");
3347 String fp = System.getProperty
3348 ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3349 String hp = System.getProperty
3350 ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3351 if (pp != null)
3352 parallelism = Integer.parseInt(pp);
3353 if (fp != null)
3354 factory = ((ForkJoinWorkerThreadFactory)ClassLoader.
3355 getSystemClassLoader().loadClass(fp).newInstance());
3356 if (hp != null)
3357 handler = ((UncaughtExceptionHandler)ClassLoader.
3358 getSystemClassLoader().loadClass(hp).newInstance());
3359 } catch (Exception ignore) {
3360 }
3361
3362 if (parallelism <= 0)
3363 parallelism = Runtime.getRuntime().availableProcessors();
3364 if (parallelism > MAX_CAP)
3365 parallelism = MAX_CAP;
3366
3367 return new ForkJoinPool(parallelism, factory, handler, false,
3368 "ForkJoinPool.commonPool-worker-");
3369 }
3370
3371 }