ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.160
Committed: Tue Feb 12 01:23:06 2013 UTC (11 years, 3 months ago) by dl
Branch: MAIN
Changes since 1.159: +17 -10 lines
Log Message:
Allow zero common pool property

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.lang.Thread.UncaughtExceptionHandler;
10 import java.util.ArrayList;
11 import java.util.Arrays;
12 import java.util.Collection;
13 import java.util.Collections;
14 import java.util.List;
15 import java.util.concurrent.AbstractExecutorService;
16 import java.util.concurrent.Callable;
17 import java.util.concurrent.ExecutorService;
18 import java.util.concurrent.Future;
19 import java.util.concurrent.RejectedExecutionException;
20 import java.util.concurrent.RunnableFuture;
21 import java.util.concurrent.TimeUnit;
22
23 /**
24 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
25 * A {@code ForkJoinPool} provides the entry point for submissions
26 * from non-{@code ForkJoinTask} clients, as well as management and
27 * monitoring operations.
28 *
29 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
30 * ExecutorService} mainly by virtue of employing
31 * <em>work-stealing</em>: all threads in the pool attempt to find and
32 * execute tasks submitted to the pool and/or created by other active
33 * tasks (eventually blocking waiting for work if none exist). This
34 * enables efficient processing when most tasks spawn other subtasks
35 * (as do most {@code ForkJoinTask}s), as well as when many small
36 * tasks are submitted to the pool from external clients. Especially
37 * when setting <em>asyncMode</em> to true in constructors, {@code
38 * ForkJoinPool}s may also be appropriate for use with event-style
39 * tasks that are never joined.
40 *
41 * <p>A static {@link #commonPool()} is available and appropriate for
42 * most applications. The common pool is used by any ForkJoinTask that
43 * is not explicitly submitted to a specified pool. Using the common
44 * pool normally reduces resource usage (its threads are slowly
45 * reclaimed during periods of non-use, and reinstated upon subsequent
46 * use).
47 *
48 * <p>For applications that require separate or custom pools, a {@code
49 * ForkJoinPool} may be constructed with a given target parallelism
50 * level; by default, equal to the number of available processors. The
51 * pool attempts to maintain enough active (or available) threads by
52 * dynamically adding, suspending, or resuming internal worker
53 * threads, even if some tasks are stalled waiting to join
54 * others. However, no such adjustments are guaranteed in the face of
55 * blocked I/O or other unmanaged synchronization. The nested {@link
56 * ManagedBlocker} interface enables extension of the kinds of
57 * synchronization accommodated.
58 *
59 * <p>In addition to execution and lifecycle control methods, this
60 * class provides status check methods (for example
61 * {@link #getStealCount}) that are intended to aid in developing,
62 * tuning, and monitoring fork/join applications. Also, method
63 * {@link #toString} returns indications of pool state in a
64 * convenient form for informal monitoring.
65 *
66 * <p>As is the case with other ExecutorServices, there are three
67 * main task execution methods summarized in the following table.
68 * These are designed to be used primarily by clients not already
69 * engaged in fork/join computations in the current pool. The main
70 * forms of these methods accept instances of {@code ForkJoinTask},
71 * but overloaded forms also allow mixed execution of plain {@code
72 * Runnable}- or {@code Callable}- based activities as well. However,
73 * tasks that are already executing in a pool should normally instead
74 * use the within-computation forms listed in the table unless using
75 * async event-style tasks that are not usually joined, in which case
76 * there is little difference among choice of methods.
77 *
78 * <table BORDER CELLPADDING=3 CELLSPACING=1>
79 * <caption>Summary of task execution methods</caption>
80 * <tr>
81 * <td></td>
82 * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
83 * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
84 * </tr>
85 * <tr>
86 * <td> <b>Arrange async execution</b></td>
87 * <td> {@link #execute(ForkJoinTask)}</td>
88 * <td> {@link ForkJoinTask#fork}</td>
89 * </tr>
90 * <tr>
91 * <td> <b>Await and obtain result</b></td>
92 * <td> {@link #invoke(ForkJoinTask)}</td>
93 * <td> {@link ForkJoinTask#invoke}</td>
94 * </tr>
95 * <tr>
96 * <td> <b>Arrange exec and obtain Future</b></td>
97 * <td> {@link #submit(ForkJoinTask)}</td>
98 * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
99 * </tr>
100 * </table>
101 *
102 * <p>The common pool is by default constructed with default
103 * parameters, but these may be controlled by setting three
104 * {@linkplain System#getProperty system properties} with prefix
105 * {@code "java.util.concurrent.ForkJoinPool.common."}:
106 * {@code parallelism} -- a non-negative integer,
107 * {@code threadFactory} -- the class name of a
108 * {@link ForkJoinWorkerThreadFactory}, and
109 * {@code exceptionHandler} --
110 * the class name of a {@link UncaughtExceptionHandler}.
111 * Upon any error in establishing these settings, default parameters
112 * are used. It is possible to disable or limit the use of threads in
113 * the common pool by setting the parallelism property to zero, and/or
114 * using a factory that may return {@code null}.
115 *
116 * <p><b>Implementation notes</b>: This implementation restricts the
117 * maximum number of running threads to 32767. Attempts to create
118 * pools with greater than the maximum number result in
119 * {@code IllegalArgumentException}.
120 *
121 * <p>This implementation rejects submitted tasks (that is, by throwing
122 * {@link RejectedExecutionException}) only when the pool is shut down
123 * or internal resources have been exhausted.
124 *
125 * @since 1.7
126 * @author Doug Lea
127 */
128 public class ForkJoinPool extends AbstractExecutorService {
129
130 /*
131 * Implementation Overview
132 *
133 * This class and its nested classes provide the main
134 * functionality and control for a set of worker threads:
135 * Submissions from non-FJ threads enter into submission queues.
136 * Workers take these tasks and typically split them into subtasks
137 * that may be stolen by other workers. Preference rules give
138 * first priority to processing tasks from their own queues (LIFO
139 * or FIFO, depending on mode), then to randomized FIFO steals of
140 * tasks in other queues.
141 *
142 * WorkQueues
143 * ==========
144 *
145 * Most operations occur within work-stealing queues (in nested
146 * class WorkQueue). These are special forms of Deques that
147 * support only three of the four possible end-operations -- push,
148 * pop, and poll (aka steal), under the further constraints that
149 * push and pop are called only from the owning thread (or, as
150 * extended here, under a lock), while poll may be called from
151 * other threads. (If you are unfamiliar with them, you probably
152 * want to read Herlihy and Shavit's book "The Art of
153 * Multiprocessor programming", chapter 16 describing these in
154 * more detail before proceeding.) The main work-stealing queue
155 * design is roughly similar to those in the papers "Dynamic
156 * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
157 * (http://research.sun.com/scalable/pubs/index.html) and
158 * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
159 * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
160 * The main differences ultimately stem from GC requirements that
161 * we null out taken slots as soon as we can, to maintain as small
162 * a footprint as possible even in programs generating huge
163 * numbers of tasks. To accomplish this, we shift the CAS
164 * arbitrating pop vs poll (steal) from being on the indices
165 * ("base" and "top") to the slots themselves. So, both a
166 * successful pop and poll mainly entail a CAS of a slot from
167 * non-null to null. Because we rely on CASes of references, we
168 * do not need tag bits on base or top. They are simple ints as
169 * used in any circular array-based queue (see for example
170 * ArrayDeque). Updates to the indices must still be ordered in a
171 * way that guarantees that top == base means the queue is empty,
172 * but otherwise may err on the side of possibly making the queue
173 * appear nonempty when a push, pop, or poll have not fully
174 * committed. Note that this means that the poll operation,
175 * considered individually, is not wait-free. One thief cannot
176 * successfully continue until another in-progress one (or, if
177 * previously empty, a push) completes. However, in the
178 * aggregate, we ensure at least probabilistic non-blockingness.
179 * If an attempted steal fails, a thief always chooses a different
180 * random victim target to try next. So, in order for one thief to
181 * progress, it suffices for any in-progress poll or new push on
182 * any empty queue to complete. (This is why we normally use
183 * method pollAt and its variants that try once at the apparent
184 * base index, else consider alternative actions, rather than
185 * method poll.)
186 *
187 * This approach also enables support of a user mode in which local
188 * task processing is in FIFO, not LIFO order, simply by using
189 * poll rather than pop. This can be useful in message-passing
190 * frameworks in which tasks are never joined. However neither
191 * mode considers affinities, loads, cache localities, etc, so
192 * rarely provide the best possible performance on a given
193 * machine, but portably provide good throughput by averaging over
194 * these factors. (Further, even if we did try to use such
195 * information, we do not usually have a basis for exploiting it.
196 * For example, some sets of tasks profit from cache affinities,
197 * but others are harmed by cache pollution effects.)
198 *
199 * WorkQueues are also used in a similar way for tasks submitted
200 * to the pool. We cannot mix these tasks in the same queues used
201 * for work-stealing (this would contaminate lifo/fifo
202 * processing). Instead, we randomly associate submission queues
203 * with submitting threads, using a form of hashing. The
204 * ThreadLocalRandom probe value serves as a hash code for
205 * choosing existing queues, and may be randomly repositioned upon
206 * contention with other submitters. In essence, submitters act
207 * like workers except that they are restricted to executing local
208 * tasks that they submitted (or in the case of CountedCompleters,
209 * others with the same root task). However, because most
210 * shared/external queue operations are more expensive than
211 * internal, and because, at steady state, external submitters
212 * will compete for CPU with workers, ForkJoinTask.join and
213 * related methods disable them from repeatedly helping to process
214 * tasks if all workers are active. Insertion of tasks in shared
215 * mode requires a lock (mainly to protect in the case of
216 * resizing) but we use only a simple spinlock (using bits in
217 * field qlock), because submitters encountering a busy queue move
218 * on to try or create other queues -- they block only when
219 * creating and registering new queues.
220 *
221 * Management
222 * ==========
223 *
224 * The main throughput advantages of work-stealing stem from
225 * decentralized control -- workers mostly take tasks from
226 * themselves or each other. We cannot negate this in the
227 * implementation of other management responsibilities. The main
228 * tactic for avoiding bottlenecks is packing nearly all
229 * essentially atomic control state into two volatile variables
230 * that are by far most often read (not written) as status and
231 * consistency checks.
232 *
233 * Field "ctl" contains 64 bits holding all the information needed
234 * to atomically decide to add, inactivate, enqueue (on an event
235 * queue), dequeue, and/or re-activate workers. To enable this
236 * packing, we restrict maximum parallelism to (1<<15)-1 (which is
237 * far in excess of normal operating range) to allow ids, counts,
238 * and their negations (used for thresholding) to fit into 16bit
239 * fields.
240 *
241 * Field "plock" is a form of sequence lock with a saturating
242 * shutdown bit (similarly for per-queue "qlocks"), mainly
243 * protecting updates to the workQueues array, as well as to
244 * enable shutdown. When used as a lock, it is normally only very
245 * briefly held, so is nearly always available after at most a
246 * brief spin, but we use a monitor-based backup strategy to
247 * block when needed.
248 *
249 * Recording WorkQueues. WorkQueues are recorded in the
250 * "workQueues" array that is created upon first use and expanded
251 * if necessary. Updates to the array while recording new workers
252 * and unrecording terminated ones are protected from each other
253 * by a lock but the array is otherwise concurrently readable, and
254 * accessed directly. To simplify index-based operations, the
255 * array size is always a power of two, and all readers must
256 * tolerate null slots. Worker queues are at odd indices. Shared
257 * (submission) queues are at even indices, up to a maximum of 64
258 * slots, to limit growth even if array needs to expand to add
259 * more workers. Grouping them together in this way simplifies and
260 * speeds up task scanning.
261 *
262 * All worker thread creation is on-demand, triggered by task
263 * submissions, replacement of terminated workers, and/or
264 * compensation for blocked workers. However, all other support
265 * code is set up to work with other policies. To ensure that we
266 * do not hold on to worker references that would prevent GC, ALL
267 * accesses to workQueues are via indices into the workQueues
268 * array (which is one source of some of the messy code
269 * constructions here). In essence, the workQueues array serves as
270 * a weak reference mechanism. Thus for example the wait queue
271 * field of ctl stores indices, not references. Access to the
272 * workQueues in associated methods (for example signalWork) must
273 * both index-check and null-check the IDs. All such accesses
274 * ignore bad IDs by returning out early from what they are doing,
275 * since this can only be associated with termination, in which
276 * case it is OK to give up. All uses of the workQueues array
277 * also check that it is non-null (even if previously
278 * non-null). This allows nulling during termination, which is
279 * currently not necessary, but remains an option for
280 * resource-revocation-based shutdown schemes. It also helps
281 * reduce JIT issuance of uncommon-trap code, which tends to
282 * unnecessarily complicate control flow in some methods.
283 *
284 * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
285 * let workers spin indefinitely scanning for tasks when none can
286 * be found immediately, and we cannot start/resume workers unless
287 * there appear to be tasks available. On the other hand, we must
288 * quickly prod them into action when new tasks are submitted or
289 * generated. In many usages, ramp-up time to activate workers is
290 * the main limiting factor in overall performance (this is
291 * compounded at program start-up by JIT compilation and
292 * allocation). So we try to streamline this as much as possible.
293 * We park/unpark workers after placing in an event wait queue
294 * when they cannot find work. This "queue" is actually a simple
295 * Treiber stack, headed by the "id" field of ctl, plus a 15bit
296 * counter value (that reflects the number of times a worker has
297 * been inactivated) to avoid ABA effects (we need only as many
298 * version numbers as worker threads). Successors are held in
299 * field WorkQueue.nextWait. Queuing deals with several intrinsic
300 * races, mainly that a task-producing thread can miss seeing (and
301 * signalling) another thread that gave up looking for work but
302 * has not yet entered the wait queue. We solve this by requiring
303 * a full sweep of all workers (via repeated calls to method
304 * scan()) both before and after a newly waiting worker is added
305 * to the wait queue. During a rescan, the worker might release
306 * some other queued worker rather than itself, which has the same
307 * net effect. Because enqueued workers may actually be rescanning
308 * rather than waiting, we set and clear the "parker" field of
309 * WorkQueues to reduce unnecessary calls to unpark. (This
310 * requires a secondary recheck to avoid missed signals.) Note
311 * the unusual conventions about Thread.interrupts surrounding
312 * parking and other blocking: Because interrupts are used solely
313 * to alert threads to check termination, which is checked anyway
314 * upon blocking, we clear status (using Thread.interrupted)
315 * before any call to park, so that park does not immediately
316 * return due to status being set via some other unrelated call to
317 * interrupt in user code.
318 *
319 * Signalling. We create or wake up workers only when there
320 * appears to be at least one task they might be able to find and
321 * execute. However, many other threads may notice the same task
322 * and each signal to wake up a thread that might take it. So in
323 * general, pools will be over-signalled. When a submission is
324 * added or another worker adds a task to a queue that has fewer
325 * than two tasks, they signal waiting workers (or trigger
326 * creation of new ones if fewer than the given parallelism level
327 * -- signalWork), and may leave a hint to the unparked worker to
328 * help signal others upon wakeup). These primary signals are
329 * buttressed by others (see method helpSignal) whenever other
330 * threads scan for work or do not have a task to process. On
331 * most platforms, signalling (unpark) overhead time is noticeably
332 * long, and the time between signalling a thread and it actually
333 * making progress can be very noticeably long, so it is worth
334 * offloading these delays from critical paths as much as
335 * possible.
336 *
337 * Trimming workers. To release resources after periods of lack of
338 * use, a worker starting to wait when the pool is quiescent will
339 * time out and terminate if the pool has remained quiescent for a
340 * given period -- a short period if there are more threads than
341 * parallelism, longer as the number of threads decreases. This
342 * will slowly propagate, eventually terminating all workers after
343 * periods of non-use.
344 *
345 * Shutdown and Termination. A call to shutdownNow atomically sets
346 * a plock bit and then (non-atomically) sets each worker's
347 * qlock status, cancels all unprocessed tasks, and wakes up
348 * all waiting workers. Detecting whether termination should
349 * commence after a non-abrupt shutdown() call requires more work
350 * and bookkeeping. We need consensus about quiescence (i.e., that
351 * there is no more work). The active count provides a primary
352 * indication but non-abrupt shutdown still requires a rechecking
353 * scan for any workers that are inactive but not queued.
354 *
355 * Joining Tasks
356 * =============
357 *
358 * Any of several actions may be taken when one worker is waiting
359 * to join a task stolen (or always held) by another. Because we
360 * are multiplexing many tasks on to a pool of workers, we can't
361 * just let them block (as in Thread.join). We also cannot just
362 * reassign the joiner's run-time stack with another and replace
363 * it later, which would be a form of "continuation", that even if
364 * possible is not necessarily a good idea since we sometimes need
365 * both an unblocked task and its continuation to progress.
366 * Instead we combine two tactics:
367 *
368 * Helping: Arranging for the joiner to execute some task that it
369 * would be running if the steal had not occurred.
370 *
371 * Compensating: Unless there are already enough live threads,
372 * method tryCompensate() may create or re-activate a spare
373 * thread to compensate for blocked joiners until they unblock.
374 *
375 * A third form (implemented in tryRemoveAndExec) amounts to
376 * helping a hypothetical compensator: If we can readily tell that
377 * a possible action of a compensator is to steal and execute the
378 * task being joined, the joining thread can do so directly,
379 * without the need for a compensation thread (although at the
380 * expense of larger run-time stacks, but the tradeoff is
381 * typically worthwhile).
382 *
383 * The ManagedBlocker extension API can't use helping so relies
384 * only on compensation in method awaitBlocker.
385 *
386 * The algorithm in tryHelpStealer entails a form of "linear"
387 * helping: Each worker records (in field currentSteal) the most
388 * recent task it stole from some other worker. Plus, it records
389 * (in field currentJoin) the task it is currently actively
390 * joining. Method tryHelpStealer uses these markers to try to
391 * find a worker to help (i.e., steal back a task from and execute
392 * it) that could hasten completion of the actively joined task.
393 * In essence, the joiner executes a task that would be on its own
394 * local deque had the to-be-joined task not been stolen. This may
395 * be seen as a conservative variant of the approach in Wagner &
396 * Calder "Leapfrogging: a portable technique for implementing
397 * efficient futures" SIGPLAN Notices, 1993
398 * (http://portal.acm.org/citation.cfm?id=155354). It differs in
399 * that: (1) We only maintain dependency links across workers upon
400 * steals, rather than use per-task bookkeeping. This sometimes
401 * requires a linear scan of workQueues array to locate stealers,
402 * but often doesn't because stealers leave hints (that may become
403 * stale/wrong) of where to locate them. It is only a hint
404 * because a worker might have had multiple steals and the hint
405 * records only one of them (usually the most current). Hinting
406 * isolates cost to when it is needed, rather than adding to
407 * per-task overhead. (2) It is "shallow", ignoring nesting and
408 * potentially cyclic mutual steals. (3) It is intentionally
409 * racy: field currentJoin is updated only while actively joining,
410 * which means that we miss links in the chain during long-lived
411 * tasks, GC stalls etc (which is OK since blocking in such cases
412 * is usually a good idea). (4) We bound the number of attempts
413 * to find work (see MAX_HELP) and fall back to suspending the
414 * worker and if necessary replacing it with another.
415 *
416 * Helping actions for CountedCompleters are much simpler: Method
417 * helpComplete can take and execute any task with the same root
418 * as the task being waited on. However, this still entails some
419 * traversal of completer chains, so is less efficient than using
420 * CountedCompleters without explicit joins.
421 *
422 * It is impossible to keep exactly the target parallelism number
423 * of threads running at any given time. Determining the
424 * existence of conservatively safe helping targets, the
425 * availability of already-created spares, and the apparent need
426 * to create new spares are all racy, so we rely on multiple
427 * retries of each. Compensation in the apparent absence of
428 * helping opportunities is challenging to control on JVMs, where
429 * GC and other activities can stall progress of tasks that in
430 * turn stall out many other dependent tasks, without us being
431 * able to determine whether they will ever require compensation.
432 * Even though work-stealing otherwise encounters little
433 * degradation in the presence of more threads than cores,
434 * aggressively adding new threads in such cases entails risk of
435 * unwanted positive feedback control loops in which more threads
436 * cause more dependent stalls (as well as delayed progress of
437 * unblocked threads to the point that we know they are available)
438 * leading to more situations requiring more threads, and so
439 * on. This aspect of control can be seen as an (analytically
440 * intractable) game with an opponent that may choose the worst
441 * (for us) active thread to stall at any time. We take several
442 * precautions to bound losses (and thus bound gains), mainly in
443 * methods tryCompensate and awaitJoin.
444 *
445 * Common Pool
446 * ===========
447 *
448 * The static common Pool always exists after static
449 * initialization. Since it (or any other created pool) need
450 * never be used, we minimize initial construction overhead and
451 * footprint to the setup of about a dozen fields, with no nested
452 * allocation. Most bootstrapping occurs within method
453 * fullExternalPush during the first submission to the pool.
454 *
455 * When external threads submit to the common pool, they can
456 * perform some subtask processing (see externalHelpJoin and
457 * related methods). We do not need to record whether these
458 * submissions are to the common pool -- if not, externalHelpJoin
459 * returns quickly (at the most helping to signal some common pool
460 * workers). These submitters would otherwise be blocked waiting
461 * for completion, so the extra effort (with liberally sprinkled
462 * task status checks) in inapplicable cases amounts to an odd
463 * form of limited spin-wait before blocking in ForkJoinTask.join.
464 *
465 * Style notes
466 * ===========
467 *
468 * There is a lot of representation-level coupling among classes
469 * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
470 * fields of WorkQueue maintain data structures managed by
471 * ForkJoinPool, so are directly accessed. There is little point
472 * trying to reduce this, since any associated future changes in
473 * representations will need to be accompanied by algorithmic
474 * changes anyway. Several methods intrinsically sprawl because
475 * they must accumulate sets of consistent reads of volatiles held
476 * in local variables. Methods signalWork() and scan() are the
477 * main bottlenecks, so are especially heavily
478 * micro-optimized/mangled. There are lots of inline assignments
479 * (of form "while ((local = field) != 0)") which are usually the
480 * simplest way to ensure the required read orderings (which are
481 * sometimes critical). This leads to a "C"-like style of listing
482 * declarations of these locals at the heads of methods or blocks.
483 * There are several occurrences of the unusual "do {} while
484 * (!cas...)" which is the simplest way to force an update of a
485 * CAS'ed variable. There are also other coding oddities (including
486 * several unnecessary-looking hoisted null checks) that help
487 * some methods perform reasonably even when interpreted (not
488 * compiled).
489 *
490 * The order of declarations in this file is:
491 * (1) Static utility functions
492 * (2) Nested (static) classes
493 * (3) Static fields
494 * (4) Fields, along with constants used when unpacking some of them
495 * (5) Internal control methods
496 * (6) Callbacks and other support for ForkJoinTask methods
497 * (7) Exported methods
498 * (8) Static block initializing statics in minimally dependent order
499 */
500
501 // Static utilities
502
503 /**
504 * If there is a security manager, makes sure caller has
505 * permission to modify threads.
506 */
507 private static void checkPermission() {
508 SecurityManager security = System.getSecurityManager();
509 if (security != null)
510 security.checkPermission(modifyThreadPermission);
511 }
512
513 // Nested classes
514
515 /**
516 * Factory for creating new {@link ForkJoinWorkerThread}s.
517 * A {@code ForkJoinWorkerThreadFactory} must be defined and used
518 * for {@code ForkJoinWorkerThread} subclasses that extend base
519 * functionality or initialize threads with different contexts.
520 */
521 public static interface ForkJoinWorkerThreadFactory {
522 /**
523 * Returns a new worker thread operating in the given pool.
524 *
525 * @param pool the pool this thread works in
526 * @throws NullPointerException if the pool is null
527 * @return the new worker thread
528 */
529 public ForkJoinWorkerThread newThread(ForkJoinPool pool);
530 }
531
532 /**
533 * Default ForkJoinWorkerThreadFactory implementation; creates a
534 * new ForkJoinWorkerThread.
535 */
536 static final class DefaultForkJoinWorkerThreadFactory
537 implements ForkJoinWorkerThreadFactory {
538 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
539 return new ForkJoinWorkerThread(pool);
540 }
541 }
542
543 /**
544 * Class for artificial tasks that are used to replace the target
545 * of local joins if they are removed from an interior queue slot
546 * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
547 * actually do anything beyond having a unique identity.
548 */
549 static final class EmptyTask extends ForkJoinTask<Void> {
550 private static final long serialVersionUID = -7721805057305804111L;
551 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
552 public final Void getRawResult() { return null; }
553 public final void setRawResult(Void x) {}
554 public final boolean exec() { return true; }
555 }
556
557 /**
558 * Queues supporting work-stealing as well as external task
559 * submission. See above for main rationale and algorithms.
560 * Implementation relies heavily on "Unsafe" intrinsics
561 * and selective use of "volatile":
562 *
563 * Field "base" is the index (mod array.length) of the least valid
564 * queue slot, which is always the next position to steal (poll)
565 * from if nonempty. Reads and writes require volatile orderings
566 * but not CAS, because updates are only performed after slot
567 * CASes.
568 *
569 * Field "top" is the index (mod array.length) of the next queue
570 * slot to push to or pop from. It is written only by owner thread
571 * for push, or under lock for external/shared push, and accessed
572 * by other threads only after reading (volatile) base. Both top
573 * and base are allowed to wrap around on overflow, but (top -
574 * base) (or more commonly -(base - top) to force volatile read of
575 * base before top) still estimates size. The lock ("qlock") is
576 * forced to -1 on termination, causing all further lock attempts
577 * to fail. (Note: we don't need CAS for termination state because
578 * upon pool shutdown, all shared-queues will stop being used
579 * anyway.) Nearly all lock bodies are set up so that exceptions
580 * within lock bodies are "impossible" (modulo JVM errors that
581 * would cause failure anyway.)
582 *
583 * The array slots are read and written using the emulation of
584 * volatiles/atomics provided by Unsafe. Insertions must in
585 * general use putOrderedObject as a form of releasing store to
586 * ensure that all writes to the task object are ordered before
587 * its publication in the queue. All removals entail a CAS to
588 * null. The array is always a power of two. To ensure safety of
589 * Unsafe array operations, all accesses perform explicit null
590 * checks and implicit bounds checks via power-of-two masking.
591 *
592 * In addition to basic queuing support, this class contains
593 * fields described elsewhere to control execution. It turns out
594 * to work better memory-layout-wise to include them in this class
595 * rather than a separate class.
596 *
597 * Performance on most platforms is very sensitive to placement of
598 * instances of both WorkQueues and their arrays -- we absolutely
599 * do not want multiple WorkQueue instances or multiple queue
600 * arrays sharing cache lines. (It would be best for queue objects
601 * and their arrays to share, but there is nothing available to
602 * help arrange that). Unfortunately, because they are recorded
603 * in a common array, WorkQueue instances are often moved to be
604 * adjacent by garbage collectors. To reduce impact, we use field
605 * padding that works OK on common platforms; this effectively
606 * trades off slightly slower average field access for the sake of
607 * avoiding really bad worst-case access. (Until better JVM
608 * support is in place, this padding is dependent on transient
609 * properties of JVM field layout rules.) We also take care in
610 * allocating, sizing and resizing the array. Non-shared queue
611 * arrays are initialized by workers before use. Others are
612 * allocated on first use.
613 */
614 static final class WorkQueue {
615 /**
616 * Capacity of work-stealing queue array upon initialization.
617 * Must be a power of two; at least 4, but should be larger to
618 * reduce or eliminate cacheline sharing among queues.
619 * Currently, it is much larger, as a partial workaround for
620 * the fact that JVMs often place arrays in locations that
621 * share GC bookkeeping (especially cardmarks) such that
622 * per-write accesses encounter serious memory contention.
623 */
624 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
625
626 /**
627 * Maximum size for queue arrays. Must be a power of two less
628 * than or equal to 1 << (31 - width of array entry) to ensure
629 * lack of wraparound of index calculations, but defined to a
630 * value a bit less than this to help users trap runaway
631 * programs before saturating systems.
632 */
633 static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
634
635 // Heuristic padding to ameliorate unfortunate memory placements
636 volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
637
638 int seed; // for random scanning; initialize nonzero
639 volatile int eventCount; // encoded inactivation count; < 0 if inactive
640 int nextWait; // encoded record of next event waiter
641 int hint; // steal or signal hint (index)
642 int poolIndex; // index of this queue in pool (or 0)
643 final int mode; // 0: lifo, > 0: fifo, < 0: shared
644 int nsteals; // number of steals
645 volatile int qlock; // 1: locked, -1: terminate; else 0
646 volatile int base; // index of next slot for poll
647 int top; // index of next slot for push
648 ForkJoinTask<?>[] array; // the elements (initially unallocated)
649 final ForkJoinPool pool; // the containing pool (may be null)
650 final ForkJoinWorkerThread owner; // owning thread or null if shared
651 volatile Thread parker; // == owner during call to park; else null
652 volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
653 ForkJoinTask<?> currentSteal; // current non-local task being executed
654
655 volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
656 volatile Object pad18, pad19, pad1a, pad1b, pad1c, pad1d;
657
658 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
659 int seed) {
660 this.pool = pool;
661 this.owner = owner;
662 this.mode = mode;
663 this.seed = seed;
664 // Place indices in the center of array (that is not yet allocated)
665 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
666 }
667
668 /**
669 * Returns the approximate number of tasks in the queue.
670 */
671 final int queueSize() {
672 int n = base - top; // non-owner callers must read base first
673 return (n >= 0) ? 0 : -n; // ignore transient negative
674 }
675
676 /**
677 * Provides a more accurate estimate of whether this queue has
678 * any tasks than does queueSize, by checking whether a
679 * near-empty queue has at least one unclaimed task.
680 */
681 final boolean isEmpty() {
682 ForkJoinTask<?>[] a; int m, s;
683 int n = base - (s = top);
684 return (n >= 0 ||
685 (n == -1 &&
686 ((a = array) == null ||
687 (m = a.length - 1) < 0 ||
688 U.getObject
689 (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
690 }
691
692 /**
693 * Pushes a task. Call only by owner in unshared queues. (The
694 * shared-queue version is embedded in method externalPush.)
695 *
696 * @param task the task. Caller must ensure non-null.
697 * @throws RejectedExecutionException if array cannot be resized
698 */
699 final void push(ForkJoinTask<?> task) {
700 ForkJoinTask<?>[] a; ForkJoinPool p;
701 int s = top, m, n;
702 if ((a = array) != null) { // ignore if queue removed
703 int j = (((m = a.length - 1) & s) << ASHIFT) + ABASE;
704 U.putOrderedObject(a, j, task);
705 if ((n = (top = s + 1) - base) <= 2) {
706 if ((p = pool) != null)
707 p.signalWork(this);
708 }
709 else if (n >= m)
710 growArray();
711 }
712 }
713
714 /**
715 * Initializes or doubles the capacity of array. Call either
716 * by owner or with lock held -- it is OK for base, but not
717 * top, to move while resizings are in progress.
718 */
719 final ForkJoinTask<?>[] growArray() {
720 ForkJoinTask<?>[] oldA = array;
721 int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
722 if (size > MAXIMUM_QUEUE_CAPACITY)
723 throw new RejectedExecutionException("Queue capacity exceeded");
724 int oldMask, t, b;
725 ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
726 if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
727 (t = top) - (b = base) > 0) {
728 int mask = size - 1;
729 do {
730 ForkJoinTask<?> x;
731 int oldj = ((b & oldMask) << ASHIFT) + ABASE;
732 int j = ((b & mask) << ASHIFT) + ABASE;
733 x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
734 if (x != null &&
735 U.compareAndSwapObject(oldA, oldj, x, null))
736 U.putObjectVolatile(a, j, x);
737 } while (++b != t);
738 }
739 return a;
740 }
741
742 /**
743 * Takes next task, if one exists, in LIFO order. Call only
744 * by owner in unshared queues.
745 */
746 final ForkJoinTask<?> pop() {
747 ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
748 if ((a = array) != null && (m = a.length - 1) >= 0) {
749 for (int s; (s = top - 1) - base >= 0;) {
750 long j = ((m & s) << ASHIFT) + ABASE;
751 if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
752 break;
753 if (U.compareAndSwapObject(a, j, t, null)) {
754 top = s;
755 return t;
756 }
757 }
758 }
759 return null;
760 }
761
762 /**
763 * Takes a task in FIFO order if b is base of queue and a task
764 * can be claimed without contention. Specialized versions
765 * appear in ForkJoinPool methods scan and tryHelpStealer.
766 */
767 final ForkJoinTask<?> pollAt(int b) {
768 ForkJoinTask<?> t; ForkJoinTask<?>[] a;
769 if ((a = array) != null) {
770 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
771 if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
772 base == b &&
773 U.compareAndSwapObject(a, j, t, null)) {
774 base = b + 1;
775 return t;
776 }
777 }
778 return null;
779 }
780
781 /**
782 * Takes next task, if one exists, in FIFO order.
783 */
784 final ForkJoinTask<?> poll() {
785 ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
786 while ((b = base) - top < 0 && (a = array) != null) {
787 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
788 t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
789 if (t != null) {
790 if (base == b &&
791 U.compareAndSwapObject(a, j, t, null)) {
792 base = b + 1;
793 return t;
794 }
795 }
796 else if (base == b) {
797 if (b + 1 == top)
798 break;
799 Thread.yield(); // wait for lagging update (very rare)
800 }
801 }
802 return null;
803 }
804
805 /**
806 * Takes next task, if one exists, in order specified by mode.
807 */
808 final ForkJoinTask<?> nextLocalTask() {
809 return mode == 0 ? pop() : poll();
810 }
811
812 /**
813 * Returns next task, if one exists, in order specified by mode.
814 */
815 final ForkJoinTask<?> peek() {
816 ForkJoinTask<?>[] a = array; int m;
817 if (a == null || (m = a.length - 1) < 0)
818 return null;
819 int i = mode == 0 ? top - 1 : base;
820 int j = ((i & m) << ASHIFT) + ABASE;
821 return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
822 }
823
824 /**
825 * Pops the given task only if it is at the current top.
826 * (A shared version is available only via FJP.tryExternalUnpush)
827 */
828 final boolean tryUnpush(ForkJoinTask<?> t) {
829 ForkJoinTask<?>[] a; int s;
830 if ((a = array) != null && (s = top) != base &&
831 U.compareAndSwapObject
832 (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
833 top = s;
834 return true;
835 }
836 return false;
837 }
838
839 /**
840 * Removes and cancels all known tasks, ignoring any exceptions.
841 */
842 final void cancelAll() {
843 ForkJoinTask.cancelIgnoringExceptions(currentJoin);
844 ForkJoinTask.cancelIgnoringExceptions(currentSteal);
845 for (ForkJoinTask<?> t; (t = poll()) != null; )
846 ForkJoinTask.cancelIgnoringExceptions(t);
847 }
848
849 /**
850 * Computes next value for random probes. Scans don't require
851 * a very high quality generator, but also not a crummy one.
852 * Marsaglia xor-shift is cheap and works well enough. Note:
853 * This is manually inlined in its usages in ForkJoinPool to
854 * avoid writes inside busy scan loops.
855 */
856 final int nextSeed() {
857 int r = seed;
858 r ^= r << 13;
859 r ^= r >>> 17;
860 return seed = r ^= r << 5;
861 }
862
863 // Specialized execution methods
864
865 /**
866 * Pops and runs tasks until empty.
867 */
868 private void popAndExecAll() {
869 // A bit faster than repeated pop calls
870 ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
871 while ((a = array) != null && (m = a.length - 1) >= 0 &&
872 (s = top - 1) - base >= 0 &&
873 (t = ((ForkJoinTask<?>)
874 U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
875 != null) {
876 if (U.compareAndSwapObject(a, j, t, null)) {
877 top = s;
878 t.doExec();
879 }
880 }
881 }
882
883 /**
884 * Polls and runs tasks until empty.
885 */
886 private void pollAndExecAll() {
887 for (ForkJoinTask<?> t; (t = poll()) != null;)
888 t.doExec();
889 }
890
891 /**
892 * If present, removes from queue and executes the given task,
893 * or any other cancelled task. Returns (true) on any CAS
894 * or consistency check failure so caller can retry.
895 *
896 * @return false if no progress can be made, else true
897 */
898 final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
899 boolean stat = true, removed = false, empty = true;
900 ForkJoinTask<?>[] a; int m, s, b, n;
901 if ((a = array) != null && (m = a.length - 1) >= 0 &&
902 (n = (s = top) - (b = base)) > 0) {
903 for (ForkJoinTask<?> t;;) { // traverse from s to b
904 int j = ((--s & m) << ASHIFT) + ABASE;
905 t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
906 if (t == null) // inconsistent length
907 break;
908 else if (t == task) {
909 if (s + 1 == top) { // pop
910 if (!U.compareAndSwapObject(a, j, task, null))
911 break;
912 top = s;
913 removed = true;
914 }
915 else if (base == b) // replace with proxy
916 removed = U.compareAndSwapObject(a, j, task,
917 new EmptyTask());
918 break;
919 }
920 else if (t.status >= 0)
921 empty = false;
922 else if (s + 1 == top) { // pop and throw away
923 if (U.compareAndSwapObject(a, j, t, null))
924 top = s;
925 break;
926 }
927 if (--n == 0) {
928 if (!empty && base == b)
929 stat = false;
930 break;
931 }
932 }
933 }
934 if (removed)
935 task.doExec();
936 return stat;
937 }
938
939 /**
940 * Polls for and executes the given task or any other task in
941 * its CountedCompleter computation.
942 */
943 final boolean pollAndExecCC(ForkJoinTask<?> root) {
944 ForkJoinTask<?>[] a; int b; Object o;
945 outer: while ((b = base) - top < 0 && (a = array) != null) {
946 long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
947 if ((o = U.getObject(a, j)) == null ||
948 !(o instanceof CountedCompleter))
949 break;
950 for (CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;;) {
951 if (r == root) {
952 if (base == b &&
953 U.compareAndSwapObject(a, j, t, null)) {
954 base = b + 1;
955 t.doExec();
956 return true;
957 }
958 else
959 break; // restart
960 }
961 if ((r = r.completer) == null)
962 break outer; // not part of root computation
963 }
964 }
965 return false;
966 }
967
968 /**
969 * Executes a top-level task and any local tasks remaining
970 * after execution.
971 */
972 final void runTask(ForkJoinTask<?> t) {
973 if (t != null) {
974 (currentSteal = t).doExec();
975 currentSteal = null;
976 ++nsteals;
977 if (base - top < 0) { // process remaining local tasks
978 if (mode == 0)
979 popAndExecAll();
980 else
981 pollAndExecAll();
982 }
983 }
984 }
985
986 /**
987 * Executes a non-top-level (stolen) task.
988 */
989 final void runSubtask(ForkJoinTask<?> t) {
990 if (t != null) {
991 ForkJoinTask<?> ps = currentSteal;
992 (currentSteal = t).doExec();
993 currentSteal = ps;
994 }
995 }
996
997 /**
998 * Returns true if owned and not known to be blocked.
999 */
1000 final boolean isApparentlyUnblocked() {
1001 Thread wt; Thread.State s;
1002 return (eventCount >= 0 &&
1003 (wt = owner) != null &&
1004 (s = wt.getState()) != Thread.State.BLOCKED &&
1005 s != Thread.State.WAITING &&
1006 s != Thread.State.TIMED_WAITING);
1007 }
1008
1009 // Unsafe mechanics
1010 private static final sun.misc.Unsafe U;
1011 private static final long QLOCK;
1012 private static final int ABASE;
1013 private static final int ASHIFT;
1014 static {
1015 try {
1016 U = sun.misc.Unsafe.getUnsafe();
1017 Class<?> k = WorkQueue.class;
1018 Class<?> ak = ForkJoinTask[].class;
1019 QLOCK = U.objectFieldOffset
1020 (k.getDeclaredField("qlock"));
1021 ABASE = U.arrayBaseOffset(ak);
1022 int scale = U.arrayIndexScale(ak);
1023 if ((scale & (scale - 1)) != 0)
1024 throw new Error("data type scale not a power of two");
1025 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1026 } catch (Exception e) {
1027 throw new Error(e);
1028 }
1029 }
1030 }
1031
1032 // static fields (initialized in static initializer below)
1033
1034 /**
1035 * Creates a new ForkJoinWorkerThread. This factory is used unless
1036 * overridden in ForkJoinPool constructors.
1037 */
1038 public static final ForkJoinWorkerThreadFactory
1039 defaultForkJoinWorkerThreadFactory;
1040
1041 /**
1042 * Permission required for callers of methods that may start or
1043 * kill threads.
1044 */
1045 private static final RuntimePermission modifyThreadPermission;
1046
1047 /**
1048 * Common (static) pool. Non-null for public use unless a static
1049 * construction exception, but internal usages null-check on use
1050 * to paranoically avoid potential initialization circularities
1051 * as well as to simplify generated code.
1052 */
1053 static final ForkJoinPool common;
1054
1055 /**
1056 * Common pool parallelism. To allow simpler use and management
1057 * when common pool threads are disabled, we allow the underlying
1058 * common.config field to be zero, but in that case still report
1059 * parallelism as 1 to reflect resulting caller-runs mechanics.
1060 */
1061 static final int commonParallelism;
1062
1063 /**
1064 * Sequence number for creating workerNamePrefix.
1065 */
1066 private static int poolNumberSequence;
1067
1068 /**
1069 * Returns the next sequence number. We don't expect this to
1070 * ever contend, so use simple builtin sync.
1071 */
1072 private static final synchronized int nextPoolId() {
1073 return ++poolNumberSequence;
1074 }
1075
1076 // static constants
1077
1078 /**
1079 * Initial timeout value (in nanoseconds) for the thread
1080 * triggering quiescence to park waiting for new work. On timeout,
1081 * the thread will instead try to shrink the number of
1082 * workers. The value should be large enough to avoid overly
1083 * aggressive shrinkage during most transient stalls (long GCs
1084 * etc).
1085 */
1086 private static final long IDLE_TIMEOUT = 2000L * 1000L * 1000L; // 2sec
1087
1088 /**
1089 * Timeout value when there are more threads than parallelism level
1090 */
1091 private static final long FAST_IDLE_TIMEOUT = 200L * 1000L * 1000L;
1092
1093 /**
1094 * Tolerance for idle timeouts, to cope with timer undershoots
1095 */
1096 private static final long TIMEOUT_SLOP = 2000000L;
1097
1098 /**
1099 * The maximum stolen->joining link depth allowed in method
1100 * tryHelpStealer. Must be a power of two. Depths for legitimate
1101 * chains are unbounded, but we use a fixed constant to avoid
1102 * (otherwise unchecked) cycles and to bound staleness of
1103 * traversal parameters at the expense of sometimes blocking when
1104 * we could be helping.
1105 */
1106 private static final int MAX_HELP = 64;
1107
1108 /**
1109 * Increment for seed generators. See class ThreadLocal for
1110 * explanation.
1111 */
1112 private static final int SEED_INCREMENT = 0x61c88647;
1113
1114 /**
1115 * Bits and masks for control variables
1116 *
1117 * Field ctl is a long packed with:
1118 * AC: Number of active running workers minus target parallelism (16 bits)
1119 * TC: Number of total workers minus target parallelism (16 bits)
1120 * ST: true if pool is terminating (1 bit)
1121 * EC: the wait count of top waiting thread (15 bits)
1122 * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1123 *
1124 * When convenient, we can extract the upper 32 bits of counts and
1125 * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1126 * (int)ctl. The ec field is never accessed alone, but always
1127 * together with id and st. The offsets of counts by the target
1128 * parallelism and the positionings of fields makes it possible to
1129 * perform the most common checks via sign tests of fields: When
1130 * ac is negative, there are not enough active workers, when tc is
1131 * negative, there are not enough total workers, and when e is
1132 * negative, the pool is terminating. To deal with these possibly
1133 * negative fields, we use casts in and out of "short" and/or
1134 * signed shifts to maintain signedness.
1135 *
1136 * When a thread is queued (inactivated), its eventCount field is
1137 * set negative, which is the only way to tell if a worker is
1138 * prevented from executing tasks, even though it must continue to
1139 * scan for them to avoid queuing races. Note however that
1140 * eventCount updates lag releases so usage requires care.
1141 *
1142 * Field plock is an int packed with:
1143 * SHUTDOWN: true if shutdown is enabled (1 bit)
1144 * SEQ: a sequence lock, with PL_LOCK bit set if locked (30 bits)
1145 * SIGNAL: set when threads may be waiting on the lock (1 bit)
1146 *
1147 * The sequence number enables simple consistency checks:
1148 * Staleness of read-only operations on the workQueues array can
1149 * be checked by comparing plock before vs after the reads.
1150 */
1151
1152 // bit positions/shifts for fields
1153 private static final int AC_SHIFT = 48;
1154 private static final int TC_SHIFT = 32;
1155 private static final int ST_SHIFT = 31;
1156 private static final int EC_SHIFT = 16;
1157
1158 // bounds
1159 private static final int SMASK = 0xffff; // short bits
1160 private static final int MAX_CAP = 0x7fff; // max #workers - 1
1161 private static final int EVENMASK = 0xfffe; // even short bits
1162 private static final int SQMASK = 0x007e; // max 64 (even) slots
1163 private static final int SHORT_SIGN = 1 << 15;
1164 private static final int INT_SIGN = 1 << 31;
1165
1166 // masks
1167 private static final long STOP_BIT = 0x0001L << ST_SHIFT;
1168 private static final long AC_MASK = ((long)SMASK) << AC_SHIFT;
1169 private static final long TC_MASK = ((long)SMASK) << TC_SHIFT;
1170
1171 // units for incrementing and decrementing
1172 private static final long TC_UNIT = 1L << TC_SHIFT;
1173 private static final long AC_UNIT = 1L << AC_SHIFT;
1174
1175 // masks and units for dealing with u = (int)(ctl >>> 32)
1176 private static final int UAC_SHIFT = AC_SHIFT - 32;
1177 private static final int UTC_SHIFT = TC_SHIFT - 32;
1178 private static final int UAC_MASK = SMASK << UAC_SHIFT;
1179 private static final int UTC_MASK = SMASK << UTC_SHIFT;
1180 private static final int UAC_UNIT = 1 << UAC_SHIFT;
1181 private static final int UTC_UNIT = 1 << UTC_SHIFT;
1182
1183 // masks and units for dealing with e = (int)ctl
1184 private static final int E_MASK = 0x7fffffff; // no STOP_BIT
1185 private static final int E_SEQ = 1 << EC_SHIFT;
1186
1187 // plock bits
1188 private static final int SHUTDOWN = 1 << 31;
1189 private static final int PL_LOCK = 2;
1190 private static final int PL_SIGNAL = 1;
1191 private static final int PL_SPINS = 1 << 8;
1192
1193 // access mode for WorkQueue
1194 static final int LIFO_QUEUE = 0;
1195 static final int FIFO_QUEUE = 1;
1196 static final int SHARED_QUEUE = -1;
1197
1198 // bounds for #steps in scan loop -- must be power 2 minus 1
1199 private static final int MIN_SCAN = 0x1ff; // cover estimation slop
1200 private static final int MAX_SCAN = 0x1ffff; // 4 * max workers
1201
1202 // Instance fields
1203
1204 /*
1205 * Field layout of this class tends to matter more than one would
1206 * like. Runtime layout order is only loosely related to
1207 * declaration order and may differ across JVMs, but the following
1208 * empirically works OK on current JVMs.
1209 */
1210
1211 // Heuristic padding to ameliorate unfortunate memory placements
1212 volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
1213
1214 volatile long stealCount; // collects worker counts
1215 volatile long ctl; // main pool control
1216 volatile int plock; // shutdown status and seqLock
1217 volatile int indexSeed; // worker/submitter index seed
1218 final int config; // mode and parallelism level
1219 WorkQueue[] workQueues; // main registry
1220 final ForkJoinWorkerThreadFactory factory;
1221 final UncaughtExceptionHandler ueh; // per-worker UEH
1222 final String workerNamePrefix; // to create worker name string
1223
1224 volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
1225 volatile Object pad18, pad19, pad1a, pad1b;
1226
1227 /**
1228 * Acquires the plock lock to protect worker array and related
1229 * updates. This method is called only if an initial CAS on plock
1230 * fails. This acts as a spinlock for normal cases, but falls back
1231 * to builtin monitor to block when (rarely) needed. This would be
1232 * a terrible idea for a highly contended lock, but works fine as
1233 * a more conservative alternative to a pure spinlock.
1234 */
1235 private int acquirePlock() {
1236 int spins = PL_SPINS, ps, nps;
1237 for (;;) {
1238 if (((ps = plock) & PL_LOCK) == 0 &&
1239 U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1240 return nps;
1241 else if (spins >= 0) {
1242 if (ThreadLocalRandom.nextSecondarySeed() >= 0)
1243 --spins;
1244 }
1245 else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1246 synchronized (this) {
1247 if ((plock & PL_SIGNAL) != 0) {
1248 try {
1249 wait();
1250 } catch (InterruptedException ie) {
1251 try {
1252 Thread.currentThread().interrupt();
1253 } catch (SecurityException ignore) {
1254 }
1255 }
1256 }
1257 else
1258 notifyAll();
1259 }
1260 }
1261 }
1262 }
1263
1264 /**
1265 * Unlocks and signals any thread waiting for plock. Called only
1266 * when CAS of seq value for unlock fails.
1267 */
1268 private void releasePlock(int ps) {
1269 plock = ps;
1270 synchronized (this) { notifyAll(); }
1271 }
1272
1273 /**
1274 * Tries to create and start one worker if fewer than target
1275 * parallelism level exist. Adjusts counts etc on failure.
1276 */
1277 private void tryAddWorker() {
1278 long c; int u;
1279 while ((u = (int)((c = ctl) >>> 32)) < 0 &&
1280 (u & SHORT_SIGN) != 0 && (int)c == 0) {
1281 long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1282 ((u + UAC_UNIT) & UAC_MASK)) << 32;
1283 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1284 ForkJoinWorkerThreadFactory fac;
1285 Throwable ex = null;
1286 ForkJoinWorkerThread wt = null;
1287 try {
1288 if ((fac = factory) != null &&
1289 (wt = fac.newThread(this)) != null) {
1290 wt.start();
1291 break;
1292 }
1293 } catch (Throwable e) {
1294 ex = e;
1295 }
1296 deregisterWorker(wt, ex);
1297 break;
1298 }
1299 }
1300 }
1301
1302 // Registering and deregistering workers
1303
1304 /**
1305 * Callback from ForkJoinWorkerThread to establish and record its
1306 * WorkQueue. To avoid scanning bias due to packing entries in
1307 * front of the workQueues array, we treat the array as a simple
1308 * power-of-two hash table using per-thread seed as hash,
1309 * expanding as needed.
1310 *
1311 * @param wt the worker thread
1312 * @return the worker's queue
1313 */
1314 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1315 UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps;
1316 wt.setDaemon(true);
1317 if ((handler = ueh) != null)
1318 wt.setUncaughtExceptionHandler(handler);
1319 do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
1320 s += SEED_INCREMENT) ||
1321 s == 0); // skip 0
1322 WorkQueue w = new WorkQueue(this, wt, config >>> 16, s);
1323 if (((ps = plock) & PL_LOCK) != 0 ||
1324 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1325 ps = acquirePlock();
1326 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1327 try {
1328 if ((ws = workQueues) != null) { // skip if shutting down
1329 int n = ws.length, m = n - 1;
1330 int r = (s << 1) | 1; // use odd-numbered indices
1331 if (ws[r &= m] != null) { // collision
1332 int probes = 0; // step by approx half size
1333 int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1334 while (ws[r = (r + step) & m] != null) {
1335 if (++probes >= n) {
1336 workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1337 m = n - 1;
1338 probes = 0;
1339 }
1340 }
1341 }
1342 w.eventCount = w.poolIndex = r; // volatile write orders
1343 ws[r] = w;
1344 }
1345 } finally {
1346 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1347 releasePlock(nps);
1348 }
1349 wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex)));
1350 return w;
1351 }
1352
1353 /**
1354 * Final callback from terminating worker, as well as upon failure
1355 * to construct or start a worker. Removes record of worker from
1356 * array, and adjusts counts. If pool is shutting down, tries to
1357 * complete termination.
1358 *
1359 * @param wt the worker thread, or null if construction failed
1360 * @param ex the exception causing failure, or null if none
1361 */
1362 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1363 WorkQueue w = null;
1364 if (wt != null && (w = wt.workQueue) != null) {
1365 int ps;
1366 w.qlock = -1; // ensure set
1367 long ns = w.nsteals, sc; // collect steal count
1368 do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1369 sc = stealCount, sc + ns));
1370 if (((ps = plock) & PL_LOCK) != 0 ||
1371 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1372 ps = acquirePlock();
1373 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1374 try {
1375 int idx = w.poolIndex;
1376 WorkQueue[] ws = workQueues;
1377 if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1378 ws[idx] = null;
1379 } finally {
1380 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1381 releasePlock(nps);
1382 }
1383 }
1384
1385 long c; // adjust ctl counts
1386 do {} while (!U.compareAndSwapLong
1387 (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1388 ((c - TC_UNIT) & TC_MASK) |
1389 (c & ~(AC_MASK|TC_MASK)))));
1390
1391 if (!tryTerminate(false, false) && w != null && w.array != null) {
1392 w.cancelAll(); // cancel remaining tasks
1393 WorkQueue[] ws; WorkQueue v; Thread p; int u, i, e;
1394 while ((u = (int)((c = ctl) >>> 32)) < 0 && (e = (int)c) >= 0) {
1395 if (e > 0) { // activate or create replacement
1396 if ((ws = workQueues) == null ||
1397 (i = e & SMASK) >= ws.length ||
1398 (v = ws[i]) == null)
1399 break;
1400 long nc = (((long)(v.nextWait & E_MASK)) |
1401 ((long)(u + UAC_UNIT) << 32));
1402 if (v.eventCount != (e | INT_SIGN))
1403 break;
1404 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1405 v.eventCount = (e + E_SEQ) & E_MASK;
1406 if ((p = v.parker) != null)
1407 U.unpark(p);
1408 break;
1409 }
1410 }
1411 else {
1412 if ((short)u < 0)
1413 tryAddWorker();
1414 break;
1415 }
1416 }
1417 }
1418 if (ex == null) // help clean refs on way out
1419 ForkJoinTask.helpExpungeStaleExceptions();
1420 else // rethrow
1421 ForkJoinTask.rethrow(ex);
1422 }
1423
1424 // Submissions
1425
1426 /**
1427 * Unless shutting down, adds the given task to a submission queue
1428 * at submitter's current queue index (modulo submission
1429 * range). Only the most common path is directly handled in this
1430 * method. All others are relayed to fullExternalPush.
1431 *
1432 * @param task the task. Caller must ensure non-null.
1433 */
1434 final void externalPush(ForkJoinTask<?> task) {
1435 WorkQueue[] ws; WorkQueue q; int z, m; ForkJoinTask<?>[] a;
1436 if ((z = ThreadLocalRandom.getProbe()) != 0 && plock > 0 &&
1437 (ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
1438 (q = ws[m & z & SQMASK]) != null &&
1439 U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1440 int b = q.base, s = q.top, n, an;
1441 if ((a = q.array) != null && (an = a.length) > (n = s + 1 - b)) {
1442 int j = (((an - 1) & s) << ASHIFT) + ABASE;
1443 U.putOrderedObject(a, j, task);
1444 q.top = s + 1; // push on to deque
1445 q.qlock = 0;
1446 if (n <= 2)
1447 signalWork(q);
1448 return;
1449 }
1450 q.qlock = 0;
1451 }
1452 fullExternalPush(task);
1453 }
1454
1455 /**
1456 * Full version of externalPush. This method is called, among
1457 * other times, upon the first submission of the first task to the
1458 * pool, so must perform secondary initialization. It also
1459 * detects first submission by an external thread by looking up
1460 * its ThreadLocal, and creates a new shared queue if the one at
1461 * index if empty or contended. The plock lock body must be
1462 * exception-free (so no try/finally) so we optimistically
1463 * allocate new queues outside the lock and throw them away if
1464 * (very rarely) not needed.
1465 *
1466 * Secondary initialization occurs when plock is zero, to create
1467 * workQueue array and set plock to a valid value. This lock body
1468 * must also be exception-free. Because the plock seq value can
1469 * eventually wrap around zero, this method harmlessly fails to
1470 * reinitialize if workQueues exists, while still advancing plock.
1471 */
1472 private void fullExternalPush(ForkJoinTask<?> task) {
1473 int r;
1474 if ((r = ThreadLocalRandom.getProbe()) == 0) {
1475 ThreadLocalRandom.localInit();
1476 r = ThreadLocalRandom.getProbe();
1477 }
1478 for (;;) {
1479 WorkQueue[] ws; WorkQueue q; int ps, m, k;
1480 boolean move = false;
1481 if ((ps = plock) < 0)
1482 throw new RejectedExecutionException();
1483 else if (ps == 0 || (ws = workQueues) == null ||
1484 (m = ws.length - 1) < 0) { // initialize workQueues
1485 int p = config & SMASK; // find power of two table size
1486 int n = (p > 1) ? p - 1 : 1; // ensure at least 2 slots
1487 n |= n >>> 1; n |= n >>> 2; n |= n >>> 4;
1488 n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1;
1489 WorkQueue[] nws = ((ws = workQueues) == null || ws.length == 0 ?
1490 new WorkQueue[n] : null);
1491 if (((ps = plock) & PL_LOCK) != 0 ||
1492 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1493 ps = acquirePlock();
1494 if (((ws = workQueues) == null || ws.length == 0) && nws != null)
1495 workQueues = nws;
1496 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1497 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1498 releasePlock(nps);
1499 }
1500 else if ((q = ws[k = r & m & SQMASK]) != null) {
1501 if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
1502 ForkJoinTask<?>[] a = q.array;
1503 int s = q.top;
1504 boolean submitted = false;
1505 try { // locked version of push
1506 if ((a != null && a.length > s + 1 - q.base) ||
1507 (a = q.growArray()) != null) { // must presize
1508 int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
1509 U.putOrderedObject(a, j, task);
1510 q.top = s + 1;
1511 submitted = true;
1512 }
1513 } finally {
1514 q.qlock = 0; // unlock
1515 }
1516 if (submitted) {
1517 signalWork(q);
1518 return;
1519 }
1520 }
1521 move = true; // move on failure
1522 }
1523 else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
1524 q = new WorkQueue(this, null, SHARED_QUEUE, r);
1525 if (((ps = plock) & PL_LOCK) != 0 ||
1526 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1527 ps = acquirePlock();
1528 if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
1529 ws[k] = q;
1530 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1531 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1532 releasePlock(nps);
1533 }
1534 else
1535 move = true; // move if busy
1536 if (move)
1537 r = ThreadLocalRandom.advanceProbe(r);
1538 }
1539 }
1540
1541 // Maintaining ctl counts
1542
1543 /**
1544 * Increments active count; mainly called upon return from blocking.
1545 */
1546 final void incrementActiveCount() {
1547 long c;
1548 do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1549 }
1550
1551 /**
1552 * Tries to create or activate a worker if too few are active.
1553 *
1554 * @param q the (non-null) queue holding tasks to be signalled
1555 */
1556 final void signalWork(WorkQueue q) {
1557 int hint = q.poolIndex;
1558 long c; int e, u, i, n; WorkQueue[] ws; WorkQueue w; Thread p;
1559 while ((u = (int)((c = ctl) >>> 32)) < 0) {
1560 if ((e = (int)c) > 0) {
1561 if ((ws = workQueues) != null && ws.length > (i = e & SMASK) &&
1562 (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1563 long nc = (((long)(w.nextWait & E_MASK)) |
1564 ((long)(u + UAC_UNIT) << 32));
1565 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1566 w.hint = hint;
1567 w.eventCount = (e + E_SEQ) & E_MASK;
1568 if ((p = w.parker) != null)
1569 U.unpark(p);
1570 break;
1571 }
1572 if (q.top - q.base <= 0)
1573 break;
1574 }
1575 else
1576 break;
1577 }
1578 else {
1579 if ((short)u < 0)
1580 tryAddWorker();
1581 break;
1582 }
1583 }
1584 }
1585
1586 // Scanning for tasks
1587
1588 /**
1589 * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1590 */
1591 final void runWorker(WorkQueue w) {
1592 w.growArray(); // allocate queue
1593 do { w.runTask(scan(w)); } while (w.qlock >= 0);
1594 }
1595
1596 /**
1597 * Scans for and, if found, returns one task, else possibly
1598 * inactivates the worker. This method operates on single reads of
1599 * volatile state and is designed to be re-invoked continuously,
1600 * in part because it returns upon detecting inconsistencies,
1601 * contention, or state changes that indicate possible success on
1602 * re-invocation.
1603 *
1604 * The scan searches for tasks across queues (starting at a random
1605 * index, and relying on registerWorker to irregularly scatter
1606 * them within array to avoid bias), checking each at least twice.
1607 * The scan terminates upon either finding a non-empty queue, or
1608 * completing the sweep. If the worker is not inactivated, it
1609 * takes and returns a task from this queue. Otherwise, if not
1610 * activated, it signals workers (that may include itself) and
1611 * returns so caller can retry. Also returns for true if the
1612 * worker array may have changed during an empty scan. On failure
1613 * to find a task, we take one of the following actions, after
1614 * which the caller will retry calling this method unless
1615 * terminated.
1616 *
1617 * * If pool is terminating, terminate the worker.
1618 *
1619 * * If not already enqueued, try to inactivate and enqueue the
1620 * worker on wait queue. Or, if inactivating has caused the pool
1621 * to be quiescent, relay to idleAwaitWork to possibly shrink
1622 * pool.
1623 *
1624 * * If already enqueued and none of the above apply, possibly
1625 * park awaiting signal, else lingering to help scan and signal.
1626 *
1627 * * If a non-empty queue discovered or left as a hint,
1628 * help wake up other workers before return.
1629 *
1630 * @param w the worker (via its WorkQueue)
1631 * @return a task or null if none found
1632 */
1633 private final ForkJoinTask<?> scan(WorkQueue w) {
1634 WorkQueue[] ws; int m;
1635 int ps = plock; // read plock before ws
1636 if (w != null && (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1637 int ec = w.eventCount; // ec is negative if inactive
1638 int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1639 w.hint = -1; // update seed and clear hint
1640 int j = ((m + m + 1) | MIN_SCAN) & MAX_SCAN;
1641 do {
1642 WorkQueue q; ForkJoinTask<?>[] a; int b;
1643 if ((q = ws[(r + j) & m]) != null && (b = q.base) - q.top < 0 &&
1644 (a = q.array) != null) { // probably nonempty
1645 int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1646 ForkJoinTask<?> t = (ForkJoinTask<?>)
1647 U.getObjectVolatile(a, i);
1648 if (q.base == b && ec >= 0 && t != null &&
1649 U.compareAndSwapObject(a, i, t, null)) {
1650 if ((q.base = b + 1) - q.top < 0)
1651 signalWork(q);
1652 return t; // taken
1653 }
1654 else if ((ec < 0 || j < m) && (int)(ctl >> AC_SHIFT) <= 0) {
1655 w.hint = (r + j) & m; // help signal below
1656 break; // cannot take
1657 }
1658 }
1659 } while (--j >= 0);
1660
1661 int h, e, ns; long c, sc; WorkQueue q;
1662 if ((ns = w.nsteals) != 0) {
1663 if (U.compareAndSwapLong(this, STEALCOUNT,
1664 sc = stealCount, sc + ns))
1665 w.nsteals = 0; // collect steals and rescan
1666 }
1667 else if (plock != ps) // consistency check
1668 ; // skip
1669 else if ((e = (int)(c = ctl)) < 0)
1670 w.qlock = -1; // pool is terminating
1671 else {
1672 if ((h = w.hint) < 0) {
1673 if (ec >= 0) { // try to enqueue/inactivate
1674 long nc = (((long)ec |
1675 ((c - AC_UNIT) & (AC_MASK|TC_MASK))));
1676 w.nextWait = e; // link and mark inactive
1677 w.eventCount = ec | INT_SIGN;
1678 if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1679 w.eventCount = ec; // unmark on CAS failure
1680 else if ((int)(c >> AC_SHIFT) == 1 - (config & SMASK))
1681 idleAwaitWork(w, nc, c);
1682 }
1683 else if (w.eventCount < 0 && ctl == c) {
1684 Thread wt = Thread.currentThread();
1685 Thread.interrupted(); // clear status
1686 U.putObject(wt, PARKBLOCKER, this);
1687 w.parker = wt; // emulate LockSupport.park
1688 if (w.eventCount < 0) // recheck
1689 U.park(false, 0L); // block
1690 w.parker = null;
1691 U.putObject(wt, PARKBLOCKER, null);
1692 }
1693 }
1694 if ((h >= 0 || (h = w.hint) >= 0) &&
1695 (ws = workQueues) != null && h < ws.length &&
1696 (q = ws[h]) != null) { // signal others before retry
1697 WorkQueue v; Thread p; int u, i, s;
1698 for (int n = (config & SMASK) - 1;;) {
1699 int idleCount = (w.eventCount < 0) ? 0 : -1;
1700 if (((s = idleCount - q.base + q.top) <= n &&
1701 (n = s) <= 0) ||
1702 (u = (int)((c = ctl) >>> 32)) >= 0 ||
1703 (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1704 (v = ws[i]) == null)
1705 break;
1706 long nc = (((long)(v.nextWait & E_MASK)) |
1707 ((long)(u + UAC_UNIT) << 32));
1708 if (v.eventCount != (e | INT_SIGN) ||
1709 !U.compareAndSwapLong(this, CTL, c, nc))
1710 break;
1711 v.hint = h;
1712 v.eventCount = (e + E_SEQ) & E_MASK;
1713 if ((p = v.parker) != null)
1714 U.unpark(p);
1715 if (--n <= 0)
1716 break;
1717 }
1718 }
1719 }
1720 }
1721 return null;
1722 }
1723
1724 /**
1725 * If inactivating worker w has caused the pool to become
1726 * quiescent, checks for pool termination, and, so long as this is
1727 * not the only worker, waits for event for up to a given
1728 * duration. On timeout, if ctl has not changed, terminates the
1729 * worker, which will in turn wake up another worker to possibly
1730 * repeat this process.
1731 *
1732 * @param w the calling worker
1733 * @param currentCtl the ctl value triggering possible quiescence
1734 * @param prevCtl the ctl value to restore if thread is terminated
1735 */
1736 private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1737 if (w != null && w.eventCount < 0 &&
1738 !tryTerminate(false, false) && (int)prevCtl != 0 &&
1739 ctl == currentCtl) {
1740 int dc = -(short)(currentCtl >>> TC_SHIFT);
1741 long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1742 long deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
1743 Thread wt = Thread.currentThread();
1744 while (ctl == currentCtl) {
1745 Thread.interrupted(); // timed variant of version in scan()
1746 U.putObject(wt, PARKBLOCKER, this);
1747 w.parker = wt;
1748 if (ctl == currentCtl)
1749 U.park(false, parkTime);
1750 w.parker = null;
1751 U.putObject(wt, PARKBLOCKER, null);
1752 if (ctl != currentCtl)
1753 break;
1754 if (deadline - System.nanoTime() <= 0L &&
1755 U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1756 w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1757 w.hint = -1;
1758 w.qlock = -1; // shrink
1759 break;
1760 }
1761 }
1762 }
1763 }
1764
1765 /**
1766 * Scans through queues looking for work while joining a task; if
1767 * any present, signals. May return early if more signalling is
1768 * detectably unneeded.
1769 *
1770 * @param task return early if done
1771 * @param origin an index to start scan
1772 */
1773 private void helpSignal(ForkJoinTask<?> task, int origin) {
1774 WorkQueue[] ws; WorkQueue w; Thread p; long c; int m, u, e, i, s;
1775 if (task != null && task.status >= 0 &&
1776 (u = (int)(ctl >>> 32)) < 0 && (u >> UAC_SHIFT) < 0 &&
1777 (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1778 outer: for (int k = origin, j = m; j >= 0; --j) {
1779 WorkQueue q = ws[k++ & m];
1780 for (int n = m;;) { // limit to at most m signals
1781 if (task.status < 0)
1782 break outer;
1783 if (q == null ||
1784 ((s = -q.base + q.top) <= n && (n = s) <= 0))
1785 break;
1786 if ((u = (int)((c = ctl) >>> 32)) >= 0 ||
1787 (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1788 (w = ws[i]) == null)
1789 break outer;
1790 long nc = (((long)(w.nextWait & E_MASK)) |
1791 ((long)(u + UAC_UNIT) << 32));
1792 if (w.eventCount != (e | INT_SIGN))
1793 break outer;
1794 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1795 w.eventCount = (e + E_SEQ) & E_MASK;
1796 if ((p = w.parker) != null)
1797 U.unpark(p);
1798 if (--n <= 0)
1799 break;
1800 }
1801 }
1802 }
1803 }
1804 }
1805
1806 /**
1807 * Tries to locate and execute tasks for a stealer of the given
1808 * task, or in turn one of its stealers, Traces currentSteal ->
1809 * currentJoin links looking for a thread working on a descendant
1810 * of the given task and with a non-empty queue to steal back and
1811 * execute tasks from. The first call to this method upon a
1812 * waiting join will often entail scanning/search, (which is OK
1813 * because the joiner has nothing better to do), but this method
1814 * leaves hints in workers to speed up subsequent calls. The
1815 * implementation is very branchy to cope with potential
1816 * inconsistencies or loops encountering chains that are stale,
1817 * unknown, or so long that they are likely cyclic.
1818 *
1819 * @param joiner the joining worker
1820 * @param task the task to join
1821 * @return 0 if no progress can be made, negative if task
1822 * known complete, else positive
1823 */
1824 private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1825 int stat = 0, steps = 0; // bound to avoid cycles
1826 if (joiner != null && task != null) { // hoist null checks
1827 restart: for (;;) {
1828 ForkJoinTask<?> subtask = task; // current target
1829 for (WorkQueue j = joiner, v;;) { // v is stealer of subtask
1830 WorkQueue[] ws; int m, s, h;
1831 if ((s = task.status) < 0) {
1832 stat = s;
1833 break restart;
1834 }
1835 if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1836 break restart; // shutting down
1837 if ((v = ws[h = (j.hint | 1) & m]) == null ||
1838 v.currentSteal != subtask) {
1839 for (int origin = h;;) { // find stealer
1840 if (((h = (h + 2) & m) & 15) == 1 &&
1841 (subtask.status < 0 || j.currentJoin != subtask))
1842 continue restart; // occasional staleness check
1843 if ((v = ws[h]) != null &&
1844 v.currentSteal == subtask) {
1845 j.hint = h; // save hint
1846 break;
1847 }
1848 if (h == origin)
1849 break restart; // cannot find stealer
1850 }
1851 }
1852 for (;;) { // help stealer or descend to its stealer
1853 ForkJoinTask[] a; int b;
1854 if (subtask.status < 0) // surround probes with
1855 continue restart; // consistency checks
1856 if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1857 int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1858 ForkJoinTask<?> t =
1859 (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1860 if (subtask.status < 0 || j.currentJoin != subtask ||
1861 v.currentSteal != subtask)
1862 continue restart; // stale
1863 stat = 1; // apparent progress
1864 if (t != null && v.base == b &&
1865 U.compareAndSwapObject(a, i, t, null)) {
1866 v.base = b + 1; // help stealer
1867 joiner.runSubtask(t);
1868 }
1869 else if (v.base == b && ++steps == MAX_HELP)
1870 break restart; // v apparently stalled
1871 }
1872 else { // empty -- try to descend
1873 ForkJoinTask<?> next = v.currentJoin;
1874 if (subtask.status < 0 || j.currentJoin != subtask ||
1875 v.currentSteal != subtask)
1876 continue restart; // stale
1877 else if (next == null || ++steps == MAX_HELP)
1878 break restart; // dead-end or maybe cyclic
1879 else {
1880 subtask = next;
1881 j = v;
1882 break;
1883 }
1884 }
1885 }
1886 }
1887 }
1888 }
1889 return stat;
1890 }
1891
1892 /**
1893 * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1894 * and run tasks within the target's computation.
1895 *
1896 * @param task the task to join
1897 * @param mode if shared, exit upon completing any task
1898 * if all workers are active
1899 */
1900 private int helpComplete(ForkJoinTask<?> task, int mode) {
1901 WorkQueue[] ws; WorkQueue q; int m, n, s, u;
1902 if (task != null && (ws = workQueues) != null &&
1903 (m = ws.length - 1) >= 0) {
1904 for (int j = 1, origin = j;;) {
1905 if ((s = task.status) < 0)
1906 return s;
1907 if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) {
1908 origin = j;
1909 if (mode == SHARED_QUEUE &&
1910 ((u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0))
1911 break;
1912 }
1913 else if ((j = (j + 2) & m) == origin)
1914 break;
1915 }
1916 }
1917 return 0;
1918 }
1919
1920 /**
1921 * Tries to decrement active count (sometimes implicitly) and
1922 * possibly release or create a compensating worker in preparation
1923 * for blocking. Fails on contention or termination. Otherwise,
1924 * adds a new thread if no idle workers are available and pool
1925 * may become starved.
1926 */
1927 final boolean tryCompensate() {
1928 int pc = config & SMASK, e, i, tc; long c;
1929 WorkQueue[] ws; WorkQueue w; Thread p;
1930 if ((ws = workQueues) != null && (e = (int)(c = ctl)) >= 0) {
1931 if (e != 0 && (i = e & SMASK) < ws.length &&
1932 (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1933 long nc = ((long)(w.nextWait & E_MASK) |
1934 (c & (AC_MASK|TC_MASK)));
1935 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1936 w.eventCount = (e + E_SEQ) & E_MASK;
1937 if ((p = w.parker) != null)
1938 U.unpark(p);
1939 return true; // replace with idle worker
1940 }
1941 }
1942 else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
1943 (int)(c >> AC_SHIFT) + pc > 1) {
1944 long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1945 if (U.compareAndSwapLong(this, CTL, c, nc))
1946 return true; // no compensation
1947 }
1948 else if (tc + pc < MAX_CAP) {
1949 long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1950 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1951 ForkJoinWorkerThreadFactory fac;
1952 Throwable ex = null;
1953 ForkJoinWorkerThread wt = null;
1954 try {
1955 if ((fac = factory) != null &&
1956 (wt = fac.newThread(this)) != null) {
1957 wt.start();
1958 return true;
1959 }
1960 } catch (Throwable rex) {
1961 ex = rex;
1962 }
1963 deregisterWorker(wt, ex); // clean up and return false
1964 }
1965 }
1966 }
1967 return false;
1968 }
1969
1970 /**
1971 * Helps and/or blocks until the given task is done.
1972 *
1973 * @param joiner the joining worker
1974 * @param task the task
1975 * @return task status on exit
1976 */
1977 final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1978 int s = 0;
1979 if (joiner != null && task != null && (s = task.status) >= 0) {
1980 ForkJoinTask<?> prevJoin = joiner.currentJoin;
1981 joiner.currentJoin = task;
1982 do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
1983 joiner.tryRemoveAndExec(task)); // process local tasks
1984 if (s >= 0 && (s = task.status) >= 0) {
1985 helpSignal(task, joiner.poolIndex);
1986 if ((s = task.status) >= 0 &&
1987 (task instanceof CountedCompleter))
1988 s = helpComplete(task, LIFO_QUEUE);
1989 }
1990 while (s >= 0 && (s = task.status) >= 0) {
1991 if ((!joiner.isEmpty() || // try helping
1992 (s = tryHelpStealer(joiner, task)) == 0) &&
1993 (s = task.status) >= 0) {
1994 helpSignal(task, joiner.poolIndex);
1995 if ((s = task.status) >= 0 && tryCompensate()) {
1996 if (task.trySetSignal() && (s = task.status) >= 0) {
1997 synchronized (task) {
1998 if (task.status >= 0) {
1999 try { // see ForkJoinTask
2000 task.wait(); // for explanation
2001 } catch (InterruptedException ie) {
2002 }
2003 }
2004 else
2005 task.notifyAll();
2006 }
2007 }
2008 long c; // re-activate
2009 do {} while (!U.compareAndSwapLong
2010 (this, CTL, c = ctl, c + AC_UNIT));
2011 }
2012 }
2013 }
2014 joiner.currentJoin = prevJoin;
2015 }
2016 return s;
2017 }
2018
2019 /**
2020 * Stripped-down variant of awaitJoin used by timed joins. Tries
2021 * to help join only while there is continuous progress. (Caller
2022 * will then enter a timed wait.)
2023 *
2024 * @param joiner the joining worker
2025 * @param task the task
2026 */
2027 final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2028 int s;
2029 if (joiner != null && task != null && (s = task.status) >= 0) {
2030 ForkJoinTask<?> prevJoin = joiner.currentJoin;
2031 joiner.currentJoin = task;
2032 do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
2033 joiner.tryRemoveAndExec(task));
2034 if (s >= 0 && (s = task.status) >= 0) {
2035 helpSignal(task, joiner.poolIndex);
2036 if ((s = task.status) >= 0 &&
2037 (task instanceof CountedCompleter))
2038 s = helpComplete(task, LIFO_QUEUE);
2039 }
2040 if (s >= 0 && joiner.isEmpty()) {
2041 do {} while (task.status >= 0 &&
2042 tryHelpStealer(joiner, task) > 0);
2043 }
2044 joiner.currentJoin = prevJoin;
2045 }
2046 }
2047
2048 /**
2049 * Returns a (probably) non-empty steal queue, if one is found
2050 * during a scan, else null. This method must be retried by
2051 * caller if, by the time it tries to use the queue, it is empty.
2052 * @param r a (random) seed for scanning
2053 */
2054 private WorkQueue findNonEmptyStealQueue(int r) {
2055 for (;;) {
2056 int ps = plock, m; WorkQueue[] ws; WorkQueue q;
2057 if ((ws = workQueues) != null && (m = ws.length - 1) >= 0) {
2058 for (int j = (m + 1) << 2; j >= 0; --j) {
2059 if ((q = ws[(((r + j) << 1) | 1) & m]) != null &&
2060 q.base - q.top < 0)
2061 return q;
2062 }
2063 }
2064 if (plock == ps)
2065 return null;
2066 }
2067 }
2068
2069 /**
2070 * Runs tasks until {@code isQuiescent()}. We piggyback on
2071 * active count ctl maintenance, but rather than blocking
2072 * when tasks cannot be found, we rescan until all others cannot
2073 * find tasks either.
2074 */
2075 final void helpQuiescePool(WorkQueue w) {
2076 for (boolean active = true;;) {
2077 long c; WorkQueue q; ForkJoinTask<?> t; int b;
2078 while ((t = w.nextLocalTask()) != null) {
2079 if (w.base - w.top < 0)
2080 signalWork(w);
2081 t.doExec();
2082 }
2083 if ((q = findNonEmptyStealQueue(w.nextSeed())) != null) {
2084 if (!active) { // re-establish active count
2085 active = true;
2086 do {} while (!U.compareAndSwapLong
2087 (this, CTL, c = ctl, c + AC_UNIT));
2088 }
2089 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2090 if (q.base - q.top < 0)
2091 signalWork(q);
2092 w.runSubtask(t);
2093 }
2094 }
2095 else if (active) { // decrement active count without queuing
2096 long nc = (c = ctl) - AC_UNIT;
2097 if ((int)(nc >> AC_SHIFT) + (config & SMASK) == 0)
2098 return; // bypass decrement-then-increment
2099 if (U.compareAndSwapLong(this, CTL, c, nc))
2100 active = false;
2101 }
2102 else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) == 0 &&
2103 U.compareAndSwapLong(this, CTL, c, c + AC_UNIT))
2104 return;
2105 }
2106 }
2107
2108 /**
2109 * Gets and removes a local or stolen task for the given worker.
2110 *
2111 * @return a task, if available
2112 */
2113 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2114 for (ForkJoinTask<?> t;;) {
2115 WorkQueue q; int b;
2116 if ((t = w.nextLocalTask()) != null)
2117 return t;
2118 if ((q = findNonEmptyStealQueue(w.nextSeed())) == null)
2119 return null;
2120 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2121 if (q.base - q.top < 0)
2122 signalWork(q);
2123 return t;
2124 }
2125 }
2126 }
2127
2128 /**
2129 * Returns a cheap heuristic guide for task partitioning when
2130 * programmers, frameworks, tools, or languages have little or no
2131 * idea about task granularity. In essence by offering this
2132 * method, we ask users only about tradeoffs in overhead vs
2133 * expected throughput and its variance, rather than how finely to
2134 * partition tasks.
2135 *
2136 * In a steady state strict (tree-structured) computation, each
2137 * thread makes available for stealing enough tasks for other
2138 * threads to remain active. Inductively, if all threads play by
2139 * the same rules, each thread should make available only a
2140 * constant number of tasks.
2141 *
2142 * The minimum useful constant is just 1. But using a value of 1
2143 * would require immediate replenishment upon each steal to
2144 * maintain enough tasks, which is infeasible. Further,
2145 * partitionings/granularities of offered tasks should minimize
2146 * steal rates, which in general means that threads nearer the top
2147 * of computation tree should generate more than those nearer the
2148 * bottom. In perfect steady state, each thread is at
2149 * approximately the same level of computation tree. However,
2150 * producing extra tasks amortizes the uncertainty of progress and
2151 * diffusion assumptions.
2152 *
2153 * So, users will want to use values larger, but not much larger
2154 * than 1 to both smooth over transient shortages and hedge
2155 * against uneven progress; as traded off against the cost of
2156 * extra task overhead. We leave the user to pick a threshold
2157 * value to compare with the results of this call to guide
2158 * decisions, but recommend values such as 3.
2159 *
2160 * When all threads are active, it is on average OK to estimate
2161 * surplus strictly locally. In steady-state, if one thread is
2162 * maintaining say 2 surplus tasks, then so are others. So we can
2163 * just use estimated queue length. However, this strategy alone
2164 * leads to serious mis-estimates in some non-steady-state
2165 * conditions (ramp-up, ramp-down, other stalls). We can detect
2166 * many of these by further considering the number of "idle"
2167 * threads, that are known to have zero queued tasks, so
2168 * compensate by a factor of (#idle/#active) threads.
2169 *
2170 * Note: The approximation of #busy workers as #active workers is
2171 * not very good under current signalling scheme, and should be
2172 * improved.
2173 */
2174 static int getSurplusQueuedTaskCount() {
2175 Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2176 if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2177 int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2178 int n = (q = wt.workQueue).top - q.base;
2179 int a = (int)(pool.ctl >> AC_SHIFT) + p;
2180 return n - (a > (p >>>= 1) ? 0 :
2181 a > (p >>>= 1) ? 1 :
2182 a > (p >>>= 1) ? 2 :
2183 a > (p >>>= 1) ? 4 :
2184 8);
2185 }
2186 return 0;
2187 }
2188
2189 // Termination
2190
2191 /**
2192 * Possibly initiates and/or completes termination. The caller
2193 * triggering termination runs three passes through workQueues:
2194 * (0) Setting termination status, followed by wakeups of queued
2195 * workers; (1) cancelling all tasks; (2) interrupting lagging
2196 * threads (likely in external tasks, but possibly also blocked in
2197 * joins). Each pass repeats previous steps because of potential
2198 * lagging thread creation.
2199 *
2200 * @param now if true, unconditionally terminate, else only
2201 * if no work and no active workers
2202 * @param enable if true, enable shutdown when next possible
2203 * @return true if now terminating or terminated
2204 */
2205 private boolean tryTerminate(boolean now, boolean enable) {
2206 int ps;
2207 if (this == common) // cannot shut down
2208 return false;
2209 if ((ps = plock) >= 0) { // enable by setting plock
2210 if (!enable)
2211 return false;
2212 if ((ps & PL_LOCK) != 0 ||
2213 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2214 ps = acquirePlock();
2215 int nps = ((ps + PL_LOCK) & ~SHUTDOWN) | SHUTDOWN;
2216 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2217 releasePlock(nps);
2218 }
2219 for (long c;;) {
2220 if (((c = ctl) & STOP_BIT) != 0) { // already terminating
2221 if ((short)(c >>> TC_SHIFT) == -(config & SMASK)) {
2222 synchronized (this) {
2223 notifyAll(); // signal when 0 workers
2224 }
2225 }
2226 return true;
2227 }
2228 if (!now) { // check if idle & no tasks
2229 WorkQueue[] ws; WorkQueue w;
2230 if ((int)(c >> AC_SHIFT) != -(config & SMASK))
2231 return false;
2232 if ((ws = workQueues) != null) {
2233 for (int i = 0; i < ws.length; ++i) {
2234 if ((w = ws[i]) != null) {
2235 if (!w.isEmpty()) { // signal unprocessed tasks
2236 signalWork(w);
2237 return false;
2238 }
2239 if ((i & 1) != 0 && w.eventCount >= 0)
2240 return false; // unqueued inactive worker
2241 }
2242 }
2243 }
2244 }
2245 if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2246 for (int pass = 0; pass < 3; ++pass) {
2247 WorkQueue[] ws; WorkQueue w; Thread wt;
2248 if ((ws = workQueues) != null) {
2249 int n = ws.length;
2250 for (int i = 0; i < n; ++i) {
2251 if ((w = ws[i]) != null) {
2252 w.qlock = -1;
2253 if (pass > 0) {
2254 w.cancelAll();
2255 if (pass > 1 && (wt = w.owner) != null) {
2256 if (!wt.isInterrupted()) {
2257 try {
2258 wt.interrupt();
2259 } catch (Throwable ignore) {
2260 }
2261 }
2262 U.unpark(wt);
2263 }
2264 }
2265 }
2266 }
2267 // Wake up workers parked on event queue
2268 int i, e; long cc; Thread p;
2269 while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2270 (i = e & SMASK) < n && i >= 0 &&
2271 (w = ws[i]) != null) {
2272 long nc = ((long)(w.nextWait & E_MASK) |
2273 ((cc + AC_UNIT) & AC_MASK) |
2274 (cc & (TC_MASK|STOP_BIT)));
2275 if (w.eventCount == (e | INT_SIGN) &&
2276 U.compareAndSwapLong(this, CTL, cc, nc)) {
2277 w.eventCount = (e + E_SEQ) & E_MASK;
2278 w.qlock = -1;
2279 if ((p = w.parker) != null)
2280 U.unpark(p);
2281 }
2282 }
2283 }
2284 }
2285 }
2286 }
2287 }
2288
2289 // external operations on common pool
2290
2291 /**
2292 * Returns common pool queue for a thread that has submitted at
2293 * least one task.
2294 */
2295 static WorkQueue commonSubmitterQueue() {
2296 ForkJoinPool p; WorkQueue[] ws; int m, z;
2297 return ((z = ThreadLocalRandom.getProbe()) != 0 &&
2298 (p = common) != null &&
2299 (ws = p.workQueues) != null &&
2300 (m = ws.length - 1) >= 0) ?
2301 ws[m & z & SQMASK] : null;
2302 }
2303
2304 /**
2305 * Tries to pop the given task from submitter's queue in common pool.
2306 */
2307 static boolean tryExternalUnpush(ForkJoinTask<?> t) {
2308 ForkJoinPool p; WorkQueue[] ws; WorkQueue q;
2309 ForkJoinTask<?>[] a; int m, s, z;
2310 if (t != null &&
2311 (z = ThreadLocalRandom.getProbe()) != 0 &&
2312 (p = common) != null &&
2313 (ws = p.workQueues) != null &&
2314 (m = ws.length - 1) >= 0 &&
2315 (q = ws[m & z & SQMASK]) != null &&
2316 (s = q.top) != q.base &&
2317 (a = q.array) != null) {
2318 long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
2319 if (U.getObject(a, j) == t &&
2320 U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2321 if (q.array == a && q.top == s && // recheck
2322 U.compareAndSwapObject(a, j, t, null)) {
2323 q.top = s - 1;
2324 q.qlock = 0;
2325 return true;
2326 }
2327 q.qlock = 0;
2328 }
2329 }
2330 return false;
2331 }
2332
2333 /**
2334 * Tries to pop and run local tasks within the same computation
2335 * as the given root. On failure, tries to help complete from
2336 * other queues via helpComplete.
2337 */
2338 private void externalHelpComplete(WorkQueue q, ForkJoinTask<?> root) {
2339 ForkJoinTask<?>[] a; int m;
2340 if (q != null && (a = q.array) != null && (m = (a.length - 1)) >= 0 &&
2341 root != null && root.status >= 0) {
2342 for (;;) {
2343 int s, u; Object o; CountedCompleter<?> task = null;
2344 if ((s = q.top) - q.base > 0) {
2345 long j = ((m & (s - 1)) << ASHIFT) + ABASE;
2346 if ((o = U.getObject(a, j)) != null &&
2347 (o instanceof CountedCompleter)) {
2348 CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2349 do {
2350 if (r == root) {
2351 if (U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2352 if (q.array == a && q.top == s &&
2353 U.compareAndSwapObject(a, j, t, null)) {
2354 q.top = s - 1;
2355 task = t;
2356 }
2357 q.qlock = 0;
2358 }
2359 break;
2360 }
2361 } while ((r = r.completer) != null);
2362 }
2363 }
2364 if (task != null)
2365 task.doExec();
2366 if (root.status < 0 ||
2367 (config != 0 &&
2368 ((u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0)))
2369 break;
2370 if (task == null) {
2371 helpSignal(root, q.poolIndex);
2372 if (root.status >= 0)
2373 helpComplete(root, SHARED_QUEUE);
2374 break;
2375 }
2376 }
2377 }
2378 }
2379
2380 /**
2381 * Tries to help execute or signal availability of the given task
2382 * from submitter's queue in common pool.
2383 */
2384 static void externalHelpJoin(ForkJoinTask<?> t) {
2385 // Some hard-to-avoid overlap with tryExternalUnpush
2386 ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w;
2387 ForkJoinTask<?>[] a; int m, s, n, z;
2388 if (t != null &&
2389 (z = ThreadLocalRandom.getProbe()) != 0 &&
2390 (p = common) != null &&
2391 (ws = p.workQueues) != null &&
2392 (m = ws.length - 1) >= 0 &&
2393 (q = ws[m & z & SQMASK]) != null &&
2394 (a = q.array) != null) {
2395 int am = a.length - 1;
2396 if ((s = q.top) != q.base) {
2397 long j = ((am & (s - 1)) << ASHIFT) + ABASE;
2398 if (U.getObject(a, j) == t &&
2399 U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2400 if (q.array == a && q.top == s &&
2401 U.compareAndSwapObject(a, j, t, null)) {
2402 q.top = s - 1;
2403 q.qlock = 0;
2404 t.doExec();
2405 }
2406 else
2407 q.qlock = 0;
2408 }
2409 }
2410 if (t.status >= 0) {
2411 if (t instanceof CountedCompleter)
2412 p.externalHelpComplete(q, t);
2413 else
2414 p.helpSignal(t, q.poolIndex);
2415 }
2416 }
2417 }
2418
2419 // Exported methods
2420
2421 // Constructors
2422
2423 /**
2424 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2425 * java.lang.Runtime#availableProcessors}, using the {@linkplain
2426 * #defaultForkJoinWorkerThreadFactory default thread factory},
2427 * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2428 *
2429 * @throws SecurityException if a security manager exists and
2430 * the caller is not permitted to modify threads
2431 * because it does not hold {@link
2432 * java.lang.RuntimePermission}{@code ("modifyThread")}
2433 */
2434 public ForkJoinPool() {
2435 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2436 defaultForkJoinWorkerThreadFactory, null, false);
2437 }
2438
2439 /**
2440 * Creates a {@code ForkJoinPool} with the indicated parallelism
2441 * level, the {@linkplain
2442 * #defaultForkJoinWorkerThreadFactory default thread factory},
2443 * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2444 *
2445 * @param parallelism the parallelism level
2446 * @throws IllegalArgumentException if parallelism less than or
2447 * equal to zero, or greater than implementation limit
2448 * @throws SecurityException if a security manager exists and
2449 * the caller is not permitted to modify threads
2450 * because it does not hold {@link
2451 * java.lang.RuntimePermission}{@code ("modifyThread")}
2452 */
2453 public ForkJoinPool(int parallelism) {
2454 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2455 }
2456
2457 /**
2458 * Creates a {@code ForkJoinPool} with the given parameters.
2459 *
2460 * @param parallelism the parallelism level. For default value,
2461 * use {@link java.lang.Runtime#availableProcessors}.
2462 * @param factory the factory for creating new threads. For default value,
2463 * use {@link #defaultForkJoinWorkerThreadFactory}.
2464 * @param handler the handler for internal worker threads that
2465 * terminate due to unrecoverable errors encountered while executing
2466 * tasks. For default value, use {@code null}.
2467 * @param asyncMode if true,
2468 * establishes local first-in-first-out scheduling mode for forked
2469 * tasks that are never joined. This mode may be more appropriate
2470 * than default locally stack-based mode in applications in which
2471 * worker threads only process event-style asynchronous tasks.
2472 * For default value, use {@code false}.
2473 * @throws IllegalArgumentException if parallelism less than or
2474 * equal to zero, or greater than implementation limit
2475 * @throws NullPointerException if the factory is null
2476 * @throws SecurityException if a security manager exists and
2477 * the caller is not permitted to modify threads
2478 * because it does not hold {@link
2479 * java.lang.RuntimePermission}{@code ("modifyThread")}
2480 */
2481 public ForkJoinPool(int parallelism,
2482 ForkJoinWorkerThreadFactory factory,
2483 UncaughtExceptionHandler handler,
2484 boolean asyncMode) {
2485 this(checkParallelism(parallelism),
2486 checkFactory(factory),
2487 handler,
2488 asyncMode,
2489 "ForkJoinPool-" + nextPoolId() + "-worker-");
2490 checkPermission();
2491 }
2492
2493 private static int checkParallelism(int parallelism) {
2494 if (parallelism <= 0 || parallelism > MAX_CAP)
2495 throw new IllegalArgumentException();
2496 return parallelism;
2497 }
2498
2499 private static ForkJoinWorkerThreadFactory checkFactory
2500 (ForkJoinWorkerThreadFactory factory) {
2501 if (factory == null)
2502 throw new NullPointerException();
2503 return factory;
2504 }
2505
2506 /**
2507 * Creates a {@code ForkJoinPool} with the given parameters, without
2508 * any security checks or parameter validation. Invoked directly by
2509 * makeCommonPool.
2510 */
2511 private ForkJoinPool(int parallelism,
2512 ForkJoinWorkerThreadFactory factory,
2513 UncaughtExceptionHandler handler,
2514 boolean asyncMode,
2515 String workerNamePrefix) {
2516 this.workerNamePrefix = workerNamePrefix;
2517 this.factory = factory;
2518 this.ueh = handler;
2519 this.config = parallelism | (asyncMode ? (FIFO_QUEUE << 16) : 0);
2520 long np = (long)(-parallelism); // offset ctl counts
2521 this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2522 }
2523
2524 /**
2525 * Returns the common pool instance. This pool is statically
2526 * constructed; its run state is unaffected by attempts to {@link
2527 * #shutdown} or {@link #shutdownNow}. However this pool and any
2528 * ongoing processing are automatically terminated upon program
2529 * {@link System#exit}. Any program that relies on asynchronous
2530 * task processing to complete before program termination should
2531 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2532 * before exit.
2533 *
2534 * @return the common pool instance
2535 * @since 1.8
2536 */
2537 public static ForkJoinPool commonPool() {
2538 // assert common != null : "static init error";
2539 return common;
2540 }
2541
2542 // Execution methods
2543
2544 /**
2545 * Performs the given task, returning its result upon completion.
2546 * If the computation encounters an unchecked Exception or Error,
2547 * it is rethrown as the outcome of this invocation. Rethrown
2548 * exceptions behave in the same way as regular exceptions, but,
2549 * when possible, contain stack traces (as displayed for example
2550 * using {@code ex.printStackTrace()}) of both the current thread
2551 * as well as the thread actually encountering the exception;
2552 * minimally only the latter.
2553 *
2554 * @param task the task
2555 * @return the task's result
2556 * @throws NullPointerException if the task is null
2557 * @throws RejectedExecutionException if the task cannot be
2558 * scheduled for execution
2559 */
2560 public <T> T invoke(ForkJoinTask<T> task) {
2561 if (task == null)
2562 throw new NullPointerException();
2563 externalPush(task);
2564 return task.join();
2565 }
2566
2567 /**
2568 * Arranges for (asynchronous) execution of the given task.
2569 *
2570 * @param task the task
2571 * @throws NullPointerException if the task is null
2572 * @throws RejectedExecutionException if the task cannot be
2573 * scheduled for execution
2574 */
2575 public void execute(ForkJoinTask<?> task) {
2576 if (task == null)
2577 throw new NullPointerException();
2578 externalPush(task);
2579 }
2580
2581 // AbstractExecutorService methods
2582
2583 /**
2584 * @throws NullPointerException if the task is null
2585 * @throws RejectedExecutionException if the task cannot be
2586 * scheduled for execution
2587 */
2588 public void execute(Runnable task) {
2589 if (task == null)
2590 throw new NullPointerException();
2591 ForkJoinTask<?> job;
2592 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2593 job = (ForkJoinTask<?>) task;
2594 else
2595 job = new ForkJoinTask.RunnableExecuteAction(task);
2596 externalPush(job);
2597 }
2598
2599 /**
2600 * Submits a ForkJoinTask for execution.
2601 *
2602 * @param task the task to submit
2603 * @return the task
2604 * @throws NullPointerException if the task is null
2605 * @throws RejectedExecutionException if the task cannot be
2606 * scheduled for execution
2607 */
2608 public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2609 if (task == null)
2610 throw new NullPointerException();
2611 externalPush(task);
2612 return task;
2613 }
2614
2615 /**
2616 * @throws NullPointerException if the task is null
2617 * @throws RejectedExecutionException if the task cannot be
2618 * scheduled for execution
2619 */
2620 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2621 ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2622 externalPush(job);
2623 return job;
2624 }
2625
2626 /**
2627 * @throws NullPointerException if the task is null
2628 * @throws RejectedExecutionException if the task cannot be
2629 * scheduled for execution
2630 */
2631 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2632 ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2633 externalPush(job);
2634 return job;
2635 }
2636
2637 /**
2638 * @throws NullPointerException if the task is null
2639 * @throws RejectedExecutionException if the task cannot be
2640 * scheduled for execution
2641 */
2642 public ForkJoinTask<?> submit(Runnable task) {
2643 if (task == null)
2644 throw new NullPointerException();
2645 ForkJoinTask<?> job;
2646 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2647 job = (ForkJoinTask<?>) task;
2648 else
2649 job = new ForkJoinTask.AdaptedRunnableAction(task);
2650 externalPush(job);
2651 return job;
2652 }
2653
2654 /**
2655 * @throws NullPointerException {@inheritDoc}
2656 * @throws RejectedExecutionException {@inheritDoc}
2657 */
2658 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2659 // In previous versions of this class, this method constructed
2660 // a task to run ForkJoinTask.invokeAll, but now external
2661 // invocation of multiple tasks is at least as efficient.
2662 ArrayList<Future<T>> futures = new ArrayList<Future<T>>(tasks.size());
2663
2664 boolean done = false;
2665 try {
2666 for (Callable<T> t : tasks) {
2667 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2668 futures.add(f);
2669 externalPush(f);
2670 }
2671 for (int i = 0, size = futures.size(); i < size; i++)
2672 ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2673 done = true;
2674 return futures;
2675 } finally {
2676 if (!done)
2677 for (int i = 0, size = futures.size(); i < size; i++)
2678 futures.get(i).cancel(false);
2679 }
2680 }
2681
2682 /**
2683 * Returns the factory used for constructing new workers.
2684 *
2685 * @return the factory used for constructing new workers
2686 */
2687 public ForkJoinWorkerThreadFactory getFactory() {
2688 return factory;
2689 }
2690
2691 /**
2692 * Returns the handler for internal worker threads that terminate
2693 * due to unrecoverable errors encountered while executing tasks.
2694 *
2695 * @return the handler, or {@code null} if none
2696 */
2697 public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2698 return ueh;
2699 }
2700
2701 /**
2702 * Returns the targeted parallelism level of this pool.
2703 *
2704 * @return the targeted parallelism level of this pool
2705 */
2706 public int getParallelism() {
2707 int par = (config & SMASK);
2708 return (par > 0) ? par : 1;
2709 }
2710
2711 /**
2712 * Returns the targeted parallelism level of the common pool.
2713 *
2714 * @return the targeted parallelism level of the common pool
2715 * @since 1.8
2716 */
2717 public static int getCommonPoolParallelism() {
2718 return commonParallelism;
2719 }
2720
2721 /**
2722 * Returns the number of worker threads that have started but not
2723 * yet terminated. The result returned by this method may differ
2724 * from {@link #getParallelism} when threads are created to
2725 * maintain parallelism when others are cooperatively blocked.
2726 *
2727 * @return the number of worker threads
2728 */
2729 public int getPoolSize() {
2730 return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2731 }
2732
2733 /**
2734 * Returns {@code true} if this pool uses local first-in-first-out
2735 * scheduling mode for forked tasks that are never joined.
2736 *
2737 * @return {@code true} if this pool uses async mode
2738 */
2739 public boolean getAsyncMode() {
2740 return (config >>> 16) == FIFO_QUEUE;
2741 }
2742
2743 /**
2744 * Returns an estimate of the number of worker threads that are
2745 * not blocked waiting to join tasks or for other managed
2746 * synchronization. This method may overestimate the
2747 * number of running threads.
2748 *
2749 * @return the number of worker threads
2750 */
2751 public int getRunningThreadCount() {
2752 int rc = 0;
2753 WorkQueue[] ws; WorkQueue w;
2754 if ((ws = workQueues) != null) {
2755 for (int i = 1; i < ws.length; i += 2) {
2756 if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2757 ++rc;
2758 }
2759 }
2760 return rc;
2761 }
2762
2763 /**
2764 * Returns an estimate of the number of threads that are currently
2765 * stealing or executing tasks. This method may overestimate the
2766 * number of active threads.
2767 *
2768 * @return the number of active threads
2769 */
2770 public int getActiveThreadCount() {
2771 int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2772 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2773 }
2774
2775 /**
2776 * Returns {@code true} if all worker threads are currently idle.
2777 * An idle worker is one that cannot obtain a task to execute
2778 * because none are available to steal from other threads, and
2779 * there are no pending submissions to the pool. This method is
2780 * conservative; it might not return {@code true} immediately upon
2781 * idleness of all threads, but will eventually become true if
2782 * threads remain inactive.
2783 *
2784 * @return {@code true} if all threads are currently idle
2785 */
2786 public boolean isQuiescent() {
2787 return (int)(ctl >> AC_SHIFT) + (config & SMASK) == 0;
2788 }
2789
2790 /**
2791 * Returns an estimate of the total number of tasks stolen from
2792 * one thread's work queue by another. The reported value
2793 * underestimates the actual total number of steals when the pool
2794 * is not quiescent. This value may be useful for monitoring and
2795 * tuning fork/join programs: in general, steal counts should be
2796 * high enough to keep threads busy, but low enough to avoid
2797 * overhead and contention across threads.
2798 *
2799 * @return the number of steals
2800 */
2801 public long getStealCount() {
2802 long count = stealCount;
2803 WorkQueue[] ws; WorkQueue w;
2804 if ((ws = workQueues) != null) {
2805 for (int i = 1; i < ws.length; i += 2) {
2806 if ((w = ws[i]) != null)
2807 count += w.nsteals;
2808 }
2809 }
2810 return count;
2811 }
2812
2813 /**
2814 * Returns an estimate of the total number of tasks currently held
2815 * in queues by worker threads (but not including tasks submitted
2816 * to the pool that have not begun executing). This value is only
2817 * an approximation, obtained by iterating across all threads in
2818 * the pool. This method may be useful for tuning task
2819 * granularities.
2820 *
2821 * @return the number of queued tasks
2822 */
2823 public long getQueuedTaskCount() {
2824 long count = 0;
2825 WorkQueue[] ws; WorkQueue w;
2826 if ((ws = workQueues) != null) {
2827 for (int i = 1; i < ws.length; i += 2) {
2828 if ((w = ws[i]) != null)
2829 count += w.queueSize();
2830 }
2831 }
2832 return count;
2833 }
2834
2835 /**
2836 * Returns an estimate of the number of tasks submitted to this
2837 * pool that have not yet begun executing. This method may take
2838 * time proportional to the number of submissions.
2839 *
2840 * @return the number of queued submissions
2841 */
2842 public int getQueuedSubmissionCount() {
2843 int count = 0;
2844 WorkQueue[] ws; WorkQueue w;
2845 if ((ws = workQueues) != null) {
2846 for (int i = 0; i < ws.length; i += 2) {
2847 if ((w = ws[i]) != null)
2848 count += w.queueSize();
2849 }
2850 }
2851 return count;
2852 }
2853
2854 /**
2855 * Returns {@code true} if there are any tasks submitted to this
2856 * pool that have not yet begun executing.
2857 *
2858 * @return {@code true} if there are any queued submissions
2859 */
2860 public boolean hasQueuedSubmissions() {
2861 WorkQueue[] ws; WorkQueue w;
2862 if ((ws = workQueues) != null) {
2863 for (int i = 0; i < ws.length; i += 2) {
2864 if ((w = ws[i]) != null && !w.isEmpty())
2865 return true;
2866 }
2867 }
2868 return false;
2869 }
2870
2871 /**
2872 * Removes and returns the next unexecuted submission if one is
2873 * available. This method may be useful in extensions to this
2874 * class that re-assign work in systems with multiple pools.
2875 *
2876 * @return the next submission, or {@code null} if none
2877 */
2878 protected ForkJoinTask<?> pollSubmission() {
2879 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2880 if ((ws = workQueues) != null) {
2881 for (int i = 0; i < ws.length; i += 2) {
2882 if ((w = ws[i]) != null && (t = w.poll()) != null)
2883 return t;
2884 }
2885 }
2886 return null;
2887 }
2888
2889 /**
2890 * Removes all available unexecuted submitted and forked tasks
2891 * from scheduling queues and adds them to the given collection,
2892 * without altering their execution status. These may include
2893 * artificially generated or wrapped tasks. This method is
2894 * designed to be invoked only when the pool is known to be
2895 * quiescent. Invocations at other times may not remove all
2896 * tasks. A failure encountered while attempting to add elements
2897 * to collection {@code c} may result in elements being in
2898 * neither, either or both collections when the associated
2899 * exception is thrown. The behavior of this operation is
2900 * undefined if the specified collection is modified while the
2901 * operation is in progress.
2902 *
2903 * @param c the collection to transfer elements into
2904 * @return the number of elements transferred
2905 */
2906 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2907 int count = 0;
2908 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2909 if ((ws = workQueues) != null) {
2910 for (int i = 0; i < ws.length; ++i) {
2911 if ((w = ws[i]) != null) {
2912 while ((t = w.poll()) != null) {
2913 c.add(t);
2914 ++count;
2915 }
2916 }
2917 }
2918 }
2919 return count;
2920 }
2921
2922 /**
2923 * Returns a string identifying this pool, as well as its state,
2924 * including indications of run state, parallelism level, and
2925 * worker and task counts.
2926 *
2927 * @return a string identifying this pool, as well as its state
2928 */
2929 public String toString() {
2930 // Use a single pass through workQueues to collect counts
2931 long qt = 0L, qs = 0L; int rc = 0;
2932 long st = stealCount;
2933 long c = ctl;
2934 WorkQueue[] ws; WorkQueue w;
2935 if ((ws = workQueues) != null) {
2936 for (int i = 0; i < ws.length; ++i) {
2937 if ((w = ws[i]) != null) {
2938 int size = w.queueSize();
2939 if ((i & 1) == 0)
2940 qs += size;
2941 else {
2942 qt += size;
2943 st += w.nsteals;
2944 if (w.isApparentlyUnblocked())
2945 ++rc;
2946 }
2947 }
2948 }
2949 }
2950 int pc = (config & SMASK);
2951 int tc = pc + (short)(c >>> TC_SHIFT);
2952 int ac = pc + (int)(c >> AC_SHIFT);
2953 if (ac < 0) // ignore transient negative
2954 ac = 0;
2955 String level;
2956 if ((c & STOP_BIT) != 0)
2957 level = (tc == 0) ? "Terminated" : "Terminating";
2958 else
2959 level = plock < 0 ? "Shutting down" : "Running";
2960 return super.toString() +
2961 "[" + level +
2962 ", parallelism = " + pc +
2963 ", size = " + tc +
2964 ", active = " + ac +
2965 ", running = " + rc +
2966 ", steals = " + st +
2967 ", tasks = " + qt +
2968 ", submissions = " + qs +
2969 "]";
2970 }
2971
2972 /**
2973 * Possibly initiates an orderly shutdown in which previously
2974 * submitted tasks are executed, but no new tasks will be
2975 * accepted. Invocation has no effect on execution state if this
2976 * is the {@link #commonPool()}, and no additional effect if
2977 * already shut down. Tasks that are in the process of being
2978 * submitted concurrently during the course of this method may or
2979 * may not be rejected.
2980 *
2981 * @throws SecurityException if a security manager exists and
2982 * the caller is not permitted to modify threads
2983 * because it does not hold {@link
2984 * java.lang.RuntimePermission}{@code ("modifyThread")}
2985 */
2986 public void shutdown() {
2987 checkPermission();
2988 tryTerminate(false, true);
2989 }
2990
2991 /**
2992 * Possibly attempts to cancel and/or stop all tasks, and reject
2993 * all subsequently submitted tasks. Invocation has no effect on
2994 * execution state if this is the {@link #commonPool()}, and no
2995 * additional effect if already shut down. Otherwise, tasks that
2996 * are in the process of being submitted or executed concurrently
2997 * during the course of this method may or may not be
2998 * rejected. This method cancels both existing and unexecuted
2999 * tasks, in order to permit termination in the presence of task
3000 * dependencies. So the method always returns an empty list
3001 * (unlike the case for some other Executors).
3002 *
3003 * @return an empty list
3004 * @throws SecurityException if a security manager exists and
3005 * the caller is not permitted to modify threads
3006 * because it does not hold {@link
3007 * java.lang.RuntimePermission}{@code ("modifyThread")}
3008 */
3009 public List<Runnable> shutdownNow() {
3010 checkPermission();
3011 tryTerminate(true, true);
3012 return Collections.emptyList();
3013 }
3014
3015 /**
3016 * Returns {@code true} if all tasks have completed following shut down.
3017 *
3018 * @return {@code true} if all tasks have completed following shut down
3019 */
3020 public boolean isTerminated() {
3021 long c = ctl;
3022 return ((c & STOP_BIT) != 0L &&
3023 (short)(c >>> TC_SHIFT) == -(config & SMASK));
3024 }
3025
3026 /**
3027 * Returns {@code true} if the process of termination has
3028 * commenced but not yet completed. This method may be useful for
3029 * debugging. A return of {@code true} reported a sufficient
3030 * period after shutdown may indicate that submitted tasks have
3031 * ignored or suppressed interruption, or are waiting for I/O,
3032 * causing this executor not to properly terminate. (See the
3033 * advisory notes for class {@link ForkJoinTask} stating that
3034 * tasks should not normally entail blocking operations. But if
3035 * they do, they must abort them on interrupt.)
3036 *
3037 * @return {@code true} if terminating but not yet terminated
3038 */
3039 public boolean isTerminating() {
3040 long c = ctl;
3041 return ((c & STOP_BIT) != 0L &&
3042 (short)(c >>> TC_SHIFT) != -(config & SMASK));
3043 }
3044
3045 /**
3046 * Returns {@code true} if this pool has been shut down.
3047 *
3048 * @return {@code true} if this pool has been shut down
3049 */
3050 public boolean isShutdown() {
3051 return plock < 0;
3052 }
3053
3054 /**
3055 * Blocks until all tasks have completed execution after a
3056 * shutdown request, or the timeout occurs, or the current thread
3057 * is interrupted, whichever happens first. Because the {@link
3058 * #commonPool()} never terminates until program shutdown, when
3059 * applied to the common pool, this method is equivalent to {@link
3060 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
3061 *
3062 * @param timeout the maximum time to wait
3063 * @param unit the time unit of the timeout argument
3064 * @return {@code true} if this executor terminated and
3065 * {@code false} if the timeout elapsed before termination
3066 * @throws InterruptedException if interrupted while waiting
3067 */
3068 public boolean awaitTermination(long timeout, TimeUnit unit)
3069 throws InterruptedException {
3070 if (Thread.interrupted())
3071 throw new InterruptedException();
3072 if (this == common) {
3073 awaitQuiescence(timeout, unit);
3074 return false;
3075 }
3076 long nanos = unit.toNanos(timeout);
3077 if (isTerminated())
3078 return true;
3079 long startTime = System.nanoTime();
3080 boolean terminated = false;
3081 synchronized (this) {
3082 for (long waitTime = nanos, millis = 0L;;) {
3083 if (terminated = isTerminated() ||
3084 waitTime <= 0L ||
3085 (millis = unit.toMillis(waitTime)) <= 0L)
3086 break;
3087 wait(millis);
3088 waitTime = nanos - (System.nanoTime() - startTime);
3089 }
3090 }
3091 return terminated;
3092 }
3093
3094 /**
3095 * If called by a ForkJoinTask operating in this pool, equivalent
3096 * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3097 * waits and/or attempts to assist performing tasks until this
3098 * pool {@link #isQuiescent} or the indicated timeout elapses.
3099 *
3100 * @param timeout the maximum time to wait
3101 * @param unit the time unit of the timeout argument
3102 * @return {@code true} if quiescent; {@code false} if the
3103 * timeout elapsed.
3104 */
3105 public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3106 long nanos = unit.toNanos(timeout);
3107 ForkJoinWorkerThread wt;
3108 Thread thread = Thread.currentThread();
3109 if ((thread instanceof ForkJoinWorkerThread) &&
3110 (wt = (ForkJoinWorkerThread)thread).pool == this) {
3111 helpQuiescePool(wt.workQueue);
3112 return true;
3113 }
3114 long startTime = System.nanoTime();
3115 WorkQueue[] ws;
3116 int r = 0, m;
3117 boolean found = true;
3118 while (!isQuiescent() && (ws = workQueues) != null &&
3119 (m = ws.length - 1) >= 0) {
3120 if (!found) {
3121 if ((System.nanoTime() - startTime) > nanos)
3122 return false;
3123 Thread.yield(); // cannot block
3124 }
3125 found = false;
3126 for (int j = (m + 1) << 2; j >= 0; --j) {
3127 ForkJoinTask<?> t; WorkQueue q; int b;
3128 if ((q = ws[r++ & m]) != null && (b = q.base) - q.top < 0) {
3129 found = true;
3130 if ((t = q.pollAt(b)) != null) {
3131 if (q.base - q.top < 0)
3132 signalWork(q);
3133 t.doExec();
3134 }
3135 break;
3136 }
3137 }
3138 }
3139 return true;
3140 }
3141
3142 /**
3143 * Waits and/or attempts to assist performing tasks indefinitely
3144 * until the {@link #commonPool()} {@link #isQuiescent}.
3145 */
3146 static void quiesceCommonPool() {
3147 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3148 }
3149
3150 /**
3151 * Interface for extending managed parallelism for tasks running
3152 * in {@link ForkJoinPool}s.
3153 *
3154 * <p>A {@code ManagedBlocker} provides two methods. Method
3155 * {@code isReleasable} must return {@code true} if blocking is
3156 * not necessary. Method {@code block} blocks the current thread
3157 * if necessary (perhaps internally invoking {@code isReleasable}
3158 * before actually blocking). These actions are performed by any
3159 * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
3160 * The unusual methods in this API accommodate synchronizers that
3161 * may, but don't usually, block for long periods. Similarly, they
3162 * allow more efficient internal handling of cases in which
3163 * additional workers may be, but usually are not, needed to
3164 * ensure sufficient parallelism. Toward this end,
3165 * implementations of method {@code isReleasable} must be amenable
3166 * to repeated invocation.
3167 *
3168 * <p>For example, here is a ManagedBlocker based on a
3169 * ReentrantLock:
3170 * <pre> {@code
3171 * class ManagedLocker implements ManagedBlocker {
3172 * final ReentrantLock lock;
3173 * boolean hasLock = false;
3174 * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3175 * public boolean block() {
3176 * if (!hasLock)
3177 * lock.lock();
3178 * return true;
3179 * }
3180 * public boolean isReleasable() {
3181 * return hasLock || (hasLock = lock.tryLock());
3182 * }
3183 * }}</pre>
3184 *
3185 * <p>Here is a class that possibly blocks waiting for an
3186 * item on a given queue:
3187 * <pre> {@code
3188 * class QueueTaker<E> implements ManagedBlocker {
3189 * final BlockingQueue<E> queue;
3190 * volatile E item = null;
3191 * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3192 * public boolean block() throws InterruptedException {
3193 * if (item == null)
3194 * item = queue.take();
3195 * return true;
3196 * }
3197 * public boolean isReleasable() {
3198 * return item != null || (item = queue.poll()) != null;
3199 * }
3200 * public E getItem() { // call after pool.managedBlock completes
3201 * return item;
3202 * }
3203 * }}</pre>
3204 */
3205 public static interface ManagedBlocker {
3206 /**
3207 * Possibly blocks the current thread, for example waiting for
3208 * a lock or condition.
3209 *
3210 * @return {@code true} if no additional blocking is necessary
3211 * (i.e., if isReleasable would return true)
3212 * @throws InterruptedException if interrupted while waiting
3213 * (the method is not required to do so, but is allowed to)
3214 */
3215 boolean block() throws InterruptedException;
3216
3217 /**
3218 * Returns {@code true} if blocking is unnecessary.
3219 * @return {@code true} if blocking is unnecessary
3220 */
3221 boolean isReleasable();
3222 }
3223
3224 /**
3225 * Blocks in accord with the given blocker. If the current thread
3226 * is a {@link ForkJoinWorkerThread}, this method possibly
3227 * arranges for a spare thread to be activated if necessary to
3228 * ensure sufficient parallelism while the current thread is blocked.
3229 *
3230 * <p>If the caller is not a {@link ForkJoinTask}, this method is
3231 * behaviorally equivalent to
3232 * <pre> {@code
3233 * while (!blocker.isReleasable())
3234 * if (blocker.block())
3235 * return;
3236 * }</pre>
3237 *
3238 * If the caller is a {@code ForkJoinTask}, then the pool may
3239 * first be expanded to ensure parallelism, and later adjusted.
3240 *
3241 * @param blocker the blocker
3242 * @throws InterruptedException if blocker.block did so
3243 */
3244 public static void managedBlock(ManagedBlocker blocker)
3245 throws InterruptedException {
3246 Thread t = Thread.currentThread();
3247 if (t instanceof ForkJoinWorkerThread) {
3248 ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3249 while (!blocker.isReleasable()) { // variant of helpSignal
3250 WorkQueue[] ws; WorkQueue q; int m, u;
3251 if ((ws = p.workQueues) != null && (m = ws.length - 1) >= 0) {
3252 for (int i = 0; i <= m; ++i) {
3253 if (blocker.isReleasable())
3254 return;
3255 if ((q = ws[i]) != null && q.base - q.top < 0) {
3256 p.signalWork(q);
3257 if ((u = (int)(p.ctl >>> 32)) >= 0 ||
3258 (u >> UAC_SHIFT) >= 0)
3259 break;
3260 }
3261 }
3262 }
3263 if (p.tryCompensate()) {
3264 try {
3265 do {} while (!blocker.isReleasable() &&
3266 !blocker.block());
3267 } finally {
3268 p.incrementActiveCount();
3269 }
3270 break;
3271 }
3272 }
3273 }
3274 else {
3275 do {} while (!blocker.isReleasable() &&
3276 !blocker.block());
3277 }
3278 }
3279
3280 // AbstractExecutorService overrides. These rely on undocumented
3281 // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3282 // implement RunnableFuture.
3283
3284 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3285 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3286 }
3287
3288 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3289 return new ForkJoinTask.AdaptedCallable<T>(callable);
3290 }
3291
3292 // Unsafe mechanics
3293 private static final sun.misc.Unsafe U;
3294 private static final long CTL;
3295 private static final long PARKBLOCKER;
3296 private static final int ABASE;
3297 private static final int ASHIFT;
3298 private static final long STEALCOUNT;
3299 private static final long PLOCK;
3300 private static final long INDEXSEED;
3301 private static final long QLOCK;
3302
3303 static {
3304 // initialize field offsets for CAS etc
3305 try {
3306 U = sun.misc.Unsafe.getUnsafe();
3307 Class<?> k = ForkJoinPool.class;
3308 CTL = U.objectFieldOffset
3309 (k.getDeclaredField("ctl"));
3310 STEALCOUNT = U.objectFieldOffset
3311 (k.getDeclaredField("stealCount"));
3312 PLOCK = U.objectFieldOffset
3313 (k.getDeclaredField("plock"));
3314 INDEXSEED = U.objectFieldOffset
3315 (k.getDeclaredField("indexSeed"));
3316 Class<?> tk = Thread.class;
3317 PARKBLOCKER = U.objectFieldOffset
3318 (tk.getDeclaredField("parkBlocker"));
3319 Class<?> wk = WorkQueue.class;
3320 QLOCK = U.objectFieldOffset
3321 (wk.getDeclaredField("qlock"));
3322 Class<?> ak = ForkJoinTask[].class;
3323 ABASE = U.arrayBaseOffset(ak);
3324 int scale = U.arrayIndexScale(ak);
3325 if ((scale & (scale - 1)) != 0)
3326 throw new Error("data type scale not a power of two");
3327 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3328 } catch (Exception e) {
3329 throw new Error(e);
3330 }
3331
3332 defaultForkJoinWorkerThreadFactory =
3333 new DefaultForkJoinWorkerThreadFactory();
3334 modifyThreadPermission = new RuntimePermission("modifyThread");
3335
3336 common = java.security.AccessController.doPrivileged
3337 (new java.security.PrivilegedAction<ForkJoinPool>() {
3338 public ForkJoinPool run() { return makeCommonPool(); }});
3339 int par = common.config; // report 1 even if threads disabled
3340 commonParallelism = par > 0 ? par : 1;
3341 }
3342
3343 /**
3344 * Creates and returns the common pool, respecting user settings
3345 * specified via system properties.
3346 */
3347 private static ForkJoinPool makeCommonPool() {
3348 int parallelism = -1;
3349 ForkJoinWorkerThreadFactory factory
3350 = defaultForkJoinWorkerThreadFactory;
3351 UncaughtExceptionHandler handler = null;
3352 try { // ignore exceptions in accesing/parsing properties
3353 String pp = System.getProperty
3354 ("java.util.concurrent.ForkJoinPool.common.parallelism");
3355 String fp = System.getProperty
3356 ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3357 String hp = System.getProperty
3358 ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3359 if (pp != null)
3360 parallelism = Integer.parseInt(pp);
3361 if (fp != null)
3362 factory = ((ForkJoinWorkerThreadFactory)ClassLoader.
3363 getSystemClassLoader().loadClass(fp).newInstance());
3364 if (hp != null)
3365 handler = ((UncaughtExceptionHandler)ClassLoader.
3366 getSystemClassLoader().loadClass(hp).newInstance());
3367 } catch (Exception ignore) {
3368 }
3369
3370 if (parallelism < 0)
3371 parallelism = Runtime.getRuntime().availableProcessors();
3372 if (parallelism > MAX_CAP)
3373 parallelism = MAX_CAP;
3374 return new ForkJoinPool(parallelism, factory, handler, false,
3375 "ForkJoinPool.commonPool-worker-");
3376 }
3377
3378 }