ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.166
Committed: Mon Feb 25 17:59:40 2013 UTC (11 years, 3 months ago) by dl
Branch: MAIN
Changes since 1.165: +46 -33 lines
Log Message:
lambda syncs and improvements

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.lang.Thread.UncaughtExceptionHandler;
10 import java.util.ArrayList;
11 import java.util.Arrays;
12 import java.util.Collection;
13 import java.util.Collections;
14 import java.util.List;
15 import java.util.concurrent.AbstractExecutorService;
16 import java.util.concurrent.Callable;
17 import java.util.concurrent.ExecutorService;
18 import java.util.concurrent.Future;
19 import java.util.concurrent.RejectedExecutionException;
20 import java.util.concurrent.RunnableFuture;
21 import java.util.concurrent.TimeUnit;
22
23 /**
24 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
25 * A {@code ForkJoinPool} provides the entry point for submissions
26 * from non-{@code ForkJoinTask} clients, as well as management and
27 * monitoring operations.
28 *
29 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
30 * ExecutorService} mainly by virtue of employing
31 * <em>work-stealing</em>: all threads in the pool attempt to find and
32 * execute tasks submitted to the pool and/or created by other active
33 * tasks (eventually blocking waiting for work if none exist). This
34 * enables efficient processing when most tasks spawn other subtasks
35 * (as do most {@code ForkJoinTask}s), as well as when many small
36 * tasks are submitted to the pool from external clients. Especially
37 * when setting <em>asyncMode</em> to true in constructors, {@code
38 * ForkJoinPool}s may also be appropriate for use with event-style
39 * tasks that are never joined.
40 *
41 * <p>A static {@link #commonPool()} is available and appropriate for
42 * most applications. The common pool is used by any ForkJoinTask that
43 * is not explicitly submitted to a specified pool. Using the common
44 * pool normally reduces resource usage (its threads are slowly
45 * reclaimed during periods of non-use, and reinstated upon subsequent
46 * use).
47 *
48 * <p>For applications that require separate or custom pools, a {@code
49 * ForkJoinPool} may be constructed with a given target parallelism
50 * level; by default, equal to the number of available processors. The
51 * pool attempts to maintain enough active (or available) threads by
52 * dynamically adding, suspending, or resuming internal worker
53 * threads, even if some tasks are stalled waiting to join
54 * others. However, no such adjustments are guaranteed in the face of
55 * blocked I/O or other unmanaged synchronization. The nested {@link
56 * ManagedBlocker} interface enables extension of the kinds of
57 * synchronization accommodated.
58 *
59 * <p>In addition to execution and lifecycle control methods, this
60 * class provides status check methods (for example
61 * {@link #getStealCount}) that are intended to aid in developing,
62 * tuning, and monitoring fork/join applications. Also, method
63 * {@link #toString} returns indications of pool state in a
64 * convenient form for informal monitoring.
65 *
66 * <p>As is the case with other ExecutorServices, there are three
67 * main task execution methods summarized in the following table.
68 * These are designed to be used primarily by clients not already
69 * engaged in fork/join computations in the current pool. The main
70 * forms of these methods accept instances of {@code ForkJoinTask},
71 * but overloaded forms also allow mixed execution of plain {@code
72 * Runnable}- or {@code Callable}- based activities as well. However,
73 * tasks that are already executing in a pool should normally instead
74 * use the within-computation forms listed in the table unless using
75 * async event-style tasks that are not usually joined, in which case
76 * there is little difference among choice of methods.
77 *
78 * <table BORDER CELLPADDING=3 CELLSPACING=1>
79 * <caption>Summary of task execution methods</caption>
80 * <tr>
81 * <td></td>
82 * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
83 * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
84 * </tr>
85 * <tr>
86 * <td> <b>Arrange async execution</b></td>
87 * <td> {@link #execute(ForkJoinTask)}</td>
88 * <td> {@link ForkJoinTask#fork}</td>
89 * </tr>
90 * <tr>
91 * <td> <b>Await and obtain result</b></td>
92 * <td> {@link #invoke(ForkJoinTask)}</td>
93 * <td> {@link ForkJoinTask#invoke}</td>
94 * </tr>
95 * <tr>
96 * <td> <b>Arrange exec and obtain Future</b></td>
97 * <td> {@link #submit(ForkJoinTask)}</td>
98 * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
99 * </tr>
100 * </table>
101 *
102 * <p>The common pool is by default constructed with default
103 * parameters, but these may be controlled by setting three
104 * {@linkplain System#getProperty system properties}:
105 * <ul>
106 * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
107 * - the parallelism level, a non-negative integer
108 * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
109 * - the class name of a {@link ForkJoinWorkerThreadFactory}
110 * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
111 * - the class name of a {@link UncaughtExceptionHandler}
112 * </ul>
113 * The system class loader is used to load these classes.
114 * Upon any error in establishing these settings, default parameters
115 * are used. It is possible to disable or limit the use of threads in
116 * the common pool by setting the parallelism property to zero, and/or
117 * using a factory that may return {@code null}.
118 *
119 * <p><b>Implementation notes</b>: This implementation restricts the
120 * maximum number of running threads to 32767. Attempts to create
121 * pools with greater than the maximum number result in
122 * {@code IllegalArgumentException}.
123 *
124 * <p>This implementation rejects submitted tasks (that is, by throwing
125 * {@link RejectedExecutionException}) only when the pool is shut down
126 * or internal resources have been exhausted.
127 *
128 * @since 1.7
129 * @author Doug Lea
130 */
131 //@sun.misc.Contended
132 public class ForkJoinPool extends AbstractExecutorService {
133
134 /*
135 * Implementation Overview
136 *
137 * This class and its nested classes provide the main
138 * functionality and control for a set of worker threads:
139 * Submissions from non-FJ threads enter into submission queues.
140 * Workers take these tasks and typically split them into subtasks
141 * that may be stolen by other workers. Preference rules give
142 * first priority to processing tasks from their own queues (LIFO
143 * or FIFO, depending on mode), then to randomized FIFO steals of
144 * tasks in other queues.
145 *
146 * WorkQueues
147 * ==========
148 *
149 * Most operations occur within work-stealing queues (in nested
150 * class WorkQueue). These are special forms of Deques that
151 * support only three of the four possible end-operations -- push,
152 * pop, and poll (aka steal), under the further constraints that
153 * push and pop are called only from the owning thread (or, as
154 * extended here, under a lock), while poll may be called from
155 * other threads. (If you are unfamiliar with them, you probably
156 * want to read Herlihy and Shavit's book "The Art of
157 * Multiprocessor programming", chapter 16 describing these in
158 * more detail before proceeding.) The main work-stealing queue
159 * design is roughly similar to those in the papers "Dynamic
160 * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
161 * (http://research.sun.com/scalable/pubs/index.html) and
162 * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
163 * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
164 * The main differences ultimately stem from GC requirements that
165 * we null out taken slots as soon as we can, to maintain as small
166 * a footprint as possible even in programs generating huge
167 * numbers of tasks. To accomplish this, we shift the CAS
168 * arbitrating pop vs poll (steal) from being on the indices
169 * ("base" and "top") to the slots themselves. So, both a
170 * successful pop and poll mainly entail a CAS of a slot from
171 * non-null to null. Because we rely on CASes of references, we
172 * do not need tag bits on base or top. They are simple ints as
173 * used in any circular array-based queue (see for example
174 * ArrayDeque). Updates to the indices must still be ordered in a
175 * way that guarantees that top == base means the queue is empty,
176 * but otherwise may err on the side of possibly making the queue
177 * appear nonempty when a push, pop, or poll have not fully
178 * committed. Note that this means that the poll operation,
179 * considered individually, is not wait-free. One thief cannot
180 * successfully continue until another in-progress one (or, if
181 * previously empty, a push) completes. However, in the
182 * aggregate, we ensure at least probabilistic non-blockingness.
183 * If an attempted steal fails, a thief always chooses a different
184 * random victim target to try next. So, in order for one thief to
185 * progress, it suffices for any in-progress poll or new push on
186 * any empty queue to complete. (This is why we normally use
187 * method pollAt and its variants that try once at the apparent
188 * base index, else consider alternative actions, rather than
189 * method poll.)
190 *
191 * This approach also enables support of a user mode in which local
192 * task processing is in FIFO, not LIFO order, simply by using
193 * poll rather than pop. This can be useful in message-passing
194 * frameworks in which tasks are never joined. However neither
195 * mode considers affinities, loads, cache localities, etc, so
196 * rarely provide the best possible performance on a given
197 * machine, but portably provide good throughput by averaging over
198 * these factors. (Further, even if we did try to use such
199 * information, we do not usually have a basis for exploiting it.
200 * For example, some sets of tasks profit from cache affinities,
201 * but others are harmed by cache pollution effects.)
202 *
203 * WorkQueues are also used in a similar way for tasks submitted
204 * to the pool. We cannot mix these tasks in the same queues used
205 * for work-stealing (this would contaminate lifo/fifo
206 * processing). Instead, we randomly associate submission queues
207 * with submitting threads, using a form of hashing. The
208 * ThreadLocalRandom probe value serves as a hash code for
209 * choosing existing queues, and may be randomly repositioned upon
210 * contention with other submitters. In essence, submitters act
211 * like workers except that they are restricted to executing local
212 * tasks that they submitted (or in the case of CountedCompleters,
213 * others with the same root task). However, because most
214 * shared/external queue operations are more expensive than
215 * internal, and because, at steady state, external submitters
216 * will compete for CPU with workers, ForkJoinTask.join and
217 * related methods disable them from repeatedly helping to process
218 * tasks if all workers are active. Insertion of tasks in shared
219 * mode requires a lock (mainly to protect in the case of
220 * resizing) but we use only a simple spinlock (using bits in
221 * field qlock), because submitters encountering a busy queue move
222 * on to try or create other queues -- they block only when
223 * creating and registering new queues.
224 *
225 * Management
226 * ==========
227 *
228 * The main throughput advantages of work-stealing stem from
229 * decentralized control -- workers mostly take tasks from
230 * themselves or each other. We cannot negate this in the
231 * implementation of other management responsibilities. The main
232 * tactic for avoiding bottlenecks is packing nearly all
233 * essentially atomic control state into two volatile variables
234 * that are by far most often read (not written) as status and
235 * consistency checks.
236 *
237 * Field "ctl" contains 64 bits holding all the information needed
238 * to atomically decide to add, inactivate, enqueue (on an event
239 * queue), dequeue, and/or re-activate workers. To enable this
240 * packing, we restrict maximum parallelism to (1<<15)-1 (which is
241 * far in excess of normal operating range) to allow ids, counts,
242 * and their negations (used for thresholding) to fit into 16bit
243 * fields.
244 *
245 * Field "plock" is a form of sequence lock with a saturating
246 * shutdown bit (similarly for per-queue "qlocks"), mainly
247 * protecting updates to the workQueues array, as well as to
248 * enable shutdown. When used as a lock, it is normally only very
249 * briefly held, so is nearly always available after at most a
250 * brief spin, but we use a monitor-based backup strategy to
251 * block when needed.
252 *
253 * Recording WorkQueues. WorkQueues are recorded in the
254 * "workQueues" array that is created upon first use and expanded
255 * if necessary. Updates to the array while recording new workers
256 * and unrecording terminated ones are protected from each other
257 * by a lock but the array is otherwise concurrently readable, and
258 * accessed directly. To simplify index-based operations, the
259 * array size is always a power of two, and all readers must
260 * tolerate null slots. Worker queues are at odd indices. Shared
261 * (submission) queues are at even indices, up to a maximum of 64
262 * slots, to limit growth even if array needs to expand to add
263 * more workers. Grouping them together in this way simplifies and
264 * speeds up task scanning.
265 *
266 * All worker thread creation is on-demand, triggered by task
267 * submissions, replacement of terminated workers, and/or
268 * compensation for blocked workers. However, all other support
269 * code is set up to work with other policies. To ensure that we
270 * do not hold on to worker references that would prevent GC, ALL
271 * accesses to workQueues are via indices into the workQueues
272 * array (which is one source of some of the messy code
273 * constructions here). In essence, the workQueues array serves as
274 * a weak reference mechanism. Thus for example the wait queue
275 * field of ctl stores indices, not references. Access to the
276 * workQueues in associated methods (for example signalWork) must
277 * both index-check and null-check the IDs. All such accesses
278 * ignore bad IDs by returning out early from what they are doing,
279 * since this can only be associated with termination, in which
280 * case it is OK to give up. All uses of the workQueues array
281 * also check that it is non-null (even if previously
282 * non-null). This allows nulling during termination, which is
283 * currently not necessary, but remains an option for
284 * resource-revocation-based shutdown schemes. It also helps
285 * reduce JIT issuance of uncommon-trap code, which tends to
286 * unnecessarily complicate control flow in some methods.
287 *
288 * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
289 * let workers spin indefinitely scanning for tasks when none can
290 * be found immediately, and we cannot start/resume workers unless
291 * there appear to be tasks available. On the other hand, we must
292 * quickly prod them into action when new tasks are submitted or
293 * generated. In many usages, ramp-up time to activate workers is
294 * the main limiting factor in overall performance (this is
295 * compounded at program start-up by JIT compilation and
296 * allocation). So we try to streamline this as much as possible.
297 * We park/unpark workers after placing in an event wait queue
298 * when they cannot find work. This "queue" is actually a simple
299 * Treiber stack, headed by the "id" field of ctl, plus a 15bit
300 * counter value (that reflects the number of times a worker has
301 * been inactivated) to avoid ABA effects (we need only as many
302 * version numbers as worker threads). Successors are held in
303 * field WorkQueue.nextWait. Queuing deals with several intrinsic
304 * races, mainly that a task-producing thread can miss seeing (and
305 * signalling) another thread that gave up looking for work but
306 * has not yet entered the wait queue. We solve this by requiring
307 * a full sweep of all workers (via repeated calls to method
308 * scan()) both before and after a newly waiting worker is added
309 * to the wait queue. During a rescan, the worker might release
310 * some other queued worker rather than itself, which has the same
311 * net effect. Because enqueued workers may actually be rescanning
312 * rather than waiting, we set and clear the "parker" field of
313 * WorkQueues to reduce unnecessary calls to unpark. (This
314 * requires a secondary recheck to avoid missed signals.) Note
315 * the unusual conventions about Thread.interrupts surrounding
316 * parking and other blocking: Because interrupts are used solely
317 * to alert threads to check termination, which is checked anyway
318 * upon blocking, we clear status (using Thread.interrupted)
319 * before any call to park, so that park does not immediately
320 * return due to status being set via some other unrelated call to
321 * interrupt in user code.
322 *
323 * Signalling. We create or wake up workers only when there
324 * appears to be at least one task they might be able to find and
325 * execute. However, many other threads may notice the same task
326 * and each signal to wake up a thread that might take it. So in
327 * general, pools will be over-signalled. When a submission is
328 * added or another worker adds a task to a queue that has fewer
329 * than two tasks, they signal waiting workers (or trigger
330 * creation of new ones if fewer than the given parallelism level
331 * -- signalWork), and may leave a hint to the unparked worker to
332 * help signal others upon wakeup). These primary signals are
333 * buttressed by others (see method helpSignal) whenever other
334 * threads scan for work or do not have a task to process. On
335 * most platforms, signalling (unpark) overhead time is noticeably
336 * long, and the time between signalling a thread and it actually
337 * making progress can be very noticeably long, so it is worth
338 * offloading these delays from critical paths as much as
339 * possible.
340 *
341 * Trimming workers. To release resources after periods of lack of
342 * use, a worker starting to wait when the pool is quiescent will
343 * time out and terminate if the pool has remained quiescent for a
344 * given period -- a short period if there are more threads than
345 * parallelism, longer as the number of threads decreases. This
346 * will slowly propagate, eventually terminating all workers after
347 * periods of non-use.
348 *
349 * Shutdown and Termination. A call to shutdownNow atomically sets
350 * a plock bit and then (non-atomically) sets each worker's
351 * qlock status, cancels all unprocessed tasks, and wakes up
352 * all waiting workers. Detecting whether termination should
353 * commence after a non-abrupt shutdown() call requires more work
354 * and bookkeeping. We need consensus about quiescence (i.e., that
355 * there is no more work). The active count provides a primary
356 * indication but non-abrupt shutdown still requires a rechecking
357 * scan for any workers that are inactive but not queued.
358 *
359 * Joining Tasks
360 * =============
361 *
362 * Any of several actions may be taken when one worker is waiting
363 * to join a task stolen (or always held) by another. Because we
364 * are multiplexing many tasks on to a pool of workers, we can't
365 * just let them block (as in Thread.join). We also cannot just
366 * reassign the joiner's run-time stack with another and replace
367 * it later, which would be a form of "continuation", that even if
368 * possible is not necessarily a good idea since we sometimes need
369 * both an unblocked task and its continuation to progress.
370 * Instead we combine two tactics:
371 *
372 * Helping: Arranging for the joiner to execute some task that it
373 * would be running if the steal had not occurred.
374 *
375 * Compensating: Unless there are already enough live threads,
376 * method tryCompensate() may create or re-activate a spare
377 * thread to compensate for blocked joiners until they unblock.
378 *
379 * A third form (implemented in tryRemoveAndExec) amounts to
380 * helping a hypothetical compensator: If we can readily tell that
381 * a possible action of a compensator is to steal and execute the
382 * task being joined, the joining thread can do so directly,
383 * without the need for a compensation thread (although at the
384 * expense of larger run-time stacks, but the tradeoff is
385 * typically worthwhile).
386 *
387 * The ManagedBlocker extension API can't use helping so relies
388 * only on compensation in method awaitBlocker.
389 *
390 * The algorithm in tryHelpStealer entails a form of "linear"
391 * helping: Each worker records (in field currentSteal) the most
392 * recent task it stole from some other worker. Plus, it records
393 * (in field currentJoin) the task it is currently actively
394 * joining. Method tryHelpStealer uses these markers to try to
395 * find a worker to help (i.e., steal back a task from and execute
396 * it) that could hasten completion of the actively joined task.
397 * In essence, the joiner executes a task that would be on its own
398 * local deque had the to-be-joined task not been stolen. This may
399 * be seen as a conservative variant of the approach in Wagner &
400 * Calder "Leapfrogging: a portable technique for implementing
401 * efficient futures" SIGPLAN Notices, 1993
402 * (http://portal.acm.org/citation.cfm?id=155354). It differs in
403 * that: (1) We only maintain dependency links across workers upon
404 * steals, rather than use per-task bookkeeping. This sometimes
405 * requires a linear scan of workQueues array to locate stealers,
406 * but often doesn't because stealers leave hints (that may become
407 * stale/wrong) of where to locate them. It is only a hint
408 * because a worker might have had multiple steals and the hint
409 * records only one of them (usually the most current). Hinting
410 * isolates cost to when it is needed, rather than adding to
411 * per-task overhead. (2) It is "shallow", ignoring nesting and
412 * potentially cyclic mutual steals. (3) It is intentionally
413 * racy: field currentJoin is updated only while actively joining,
414 * which means that we miss links in the chain during long-lived
415 * tasks, GC stalls etc (which is OK since blocking in such cases
416 * is usually a good idea). (4) We bound the number of attempts
417 * to find work (see MAX_HELP) and fall back to suspending the
418 * worker and if necessary replacing it with another.
419 *
420 * Helping actions for CountedCompleters are much simpler: Method
421 * helpComplete can take and execute any task with the same root
422 * as the task being waited on. However, this still entails some
423 * traversal of completer chains, so is less efficient than using
424 * CountedCompleters without explicit joins.
425 *
426 * It is impossible to keep exactly the target parallelism number
427 * of threads running at any given time. Determining the
428 * existence of conservatively safe helping targets, the
429 * availability of already-created spares, and the apparent need
430 * to create new spares are all racy, so we rely on multiple
431 * retries of each. Compensation in the apparent absence of
432 * helping opportunities is challenging to control on JVMs, where
433 * GC and other activities can stall progress of tasks that in
434 * turn stall out many other dependent tasks, without us being
435 * able to determine whether they will ever require compensation.
436 * Even though work-stealing otherwise encounters little
437 * degradation in the presence of more threads than cores,
438 * aggressively adding new threads in such cases entails risk of
439 * unwanted positive feedback control loops in which more threads
440 * cause more dependent stalls (as well as delayed progress of
441 * unblocked threads to the point that we know they are available)
442 * leading to more situations requiring more threads, and so
443 * on. This aspect of control can be seen as an (analytically
444 * intractable) game with an opponent that may choose the worst
445 * (for us) active thread to stall at any time. We take several
446 * precautions to bound losses (and thus bound gains), mainly in
447 * methods tryCompensate and awaitJoin.
448 *
449 * Common Pool
450 * ===========
451 *
452 * The static common Pool always exists after static
453 * initialization. Since it (or any other created pool) need
454 * never be used, we minimize initial construction overhead and
455 * footprint to the setup of about a dozen fields, with no nested
456 * allocation. Most bootstrapping occurs within method
457 * fullExternalPush during the first submission to the pool.
458 *
459 * When external threads submit to the common pool, they can
460 * perform some subtask processing (see externalHelpJoin and
461 * related methods). We do not need to record whether these
462 * submissions are to the common pool -- if not, externalHelpJoin
463 * returns quickly (at the most helping to signal some common pool
464 * workers). These submitters would otherwise be blocked waiting
465 * for completion, so the extra effort (with liberally sprinkled
466 * task status checks) in inapplicable cases amounts to an odd
467 * form of limited spin-wait before blocking in ForkJoinTask.join.
468 *
469 * Style notes
470 * ===========
471 *
472 * There is a lot of representation-level coupling among classes
473 * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
474 * fields of WorkQueue maintain data structures managed by
475 * ForkJoinPool, so are directly accessed. There is little point
476 * trying to reduce this, since any associated future changes in
477 * representations will need to be accompanied by algorithmic
478 * changes anyway. Several methods intrinsically sprawl because
479 * they must accumulate sets of consistent reads of volatiles held
480 * in local variables. Methods signalWork() and scan() are the
481 * main bottlenecks, so are especially heavily
482 * micro-optimized/mangled. There are lots of inline assignments
483 * (of form "while ((local = field) != 0)") which are usually the
484 * simplest way to ensure the required read orderings (which are
485 * sometimes critical). This leads to a "C"-like style of listing
486 * declarations of these locals at the heads of methods or blocks.
487 * There are several occurrences of the unusual "do {} while
488 * (!cas...)" which is the simplest way to force an update of a
489 * CAS'ed variable. There are also other coding oddities (including
490 * several unnecessary-looking hoisted null checks) that help
491 * some methods perform reasonably even when interpreted (not
492 * compiled).
493 *
494 * The order of declarations in this file is:
495 * (1) Static utility functions
496 * (2) Nested (static) classes
497 * (3) Static fields
498 * (4) Fields, along with constants used when unpacking some of them
499 * (5) Internal control methods
500 * (6) Callbacks and other support for ForkJoinTask methods
501 * (7) Exported methods
502 * (8) Static block initializing statics in minimally dependent order
503 */
504
505 // Static utilities
506
507 /**
508 * If there is a security manager, makes sure caller has
509 * permission to modify threads.
510 */
511 private static void checkPermission() {
512 SecurityManager security = System.getSecurityManager();
513 if (security != null)
514 security.checkPermission(modifyThreadPermission);
515 }
516
517 // Nested classes
518
519 /**
520 * Factory for creating new {@link ForkJoinWorkerThread}s.
521 * A {@code ForkJoinWorkerThreadFactory} must be defined and used
522 * for {@code ForkJoinWorkerThread} subclasses that extend base
523 * functionality or initialize threads with different contexts.
524 */
525 public static interface ForkJoinWorkerThreadFactory {
526 /**
527 * Returns a new worker thread operating in the given pool.
528 *
529 * @param pool the pool this thread works in
530 * @throws NullPointerException if the pool is null
531 * @return the new worker thread
532 */
533 public ForkJoinWorkerThread newThread(ForkJoinPool pool);
534 }
535
536 /**
537 * Default ForkJoinWorkerThreadFactory implementation; creates a
538 * new ForkJoinWorkerThread.
539 */
540 static final class DefaultForkJoinWorkerThreadFactory
541 implements ForkJoinWorkerThreadFactory {
542 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
543 return new ForkJoinWorkerThread(pool);
544 }
545 }
546
547 /**
548 * Class for artificial tasks that are used to replace the target
549 * of local joins if they are removed from an interior queue slot
550 * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
551 * actually do anything beyond having a unique identity.
552 */
553 static final class EmptyTask extends ForkJoinTask<Void> {
554 private static final long serialVersionUID = -7721805057305804111L;
555 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
556 public final Void getRawResult() { return null; }
557 public final void setRawResult(Void x) {}
558 public final boolean exec() { return true; }
559 }
560
561 /**
562 * Queues supporting work-stealing as well as external task
563 * submission. See above for main rationale and algorithms.
564 * Implementation relies heavily on "Unsafe" intrinsics
565 * and selective use of "volatile":
566 *
567 * Field "base" is the index (mod array.length) of the least valid
568 * queue slot, which is always the next position to steal (poll)
569 * from if nonempty. Reads and writes require volatile orderings
570 * but not CAS, because updates are only performed after slot
571 * CASes.
572 *
573 * Field "top" is the index (mod array.length) of the next queue
574 * slot to push to or pop from. It is written only by owner thread
575 * for push, or under lock for external/shared push, and accessed
576 * by other threads only after reading (volatile) base. Both top
577 * and base are allowed to wrap around on overflow, but (top -
578 * base) (or more commonly -(base - top) to force volatile read of
579 * base before top) still estimates size. The lock ("qlock") is
580 * forced to -1 on termination, causing all further lock attempts
581 * to fail. (Note: we don't need CAS for termination state because
582 * upon pool shutdown, all shared-queues will stop being used
583 * anyway.) Nearly all lock bodies are set up so that exceptions
584 * within lock bodies are "impossible" (modulo JVM errors that
585 * would cause failure anyway.)
586 *
587 * The array slots are read and written using the emulation of
588 * volatiles/atomics provided by Unsafe. Insertions must in
589 * general use putOrderedObject as a form of releasing store to
590 * ensure that all writes to the task object are ordered before
591 * its publication in the queue. All removals entail a CAS to
592 * null. The array is always a power of two. To ensure safety of
593 * Unsafe array operations, all accesses perform explicit null
594 * checks and implicit bounds checks via power-of-two masking.
595 *
596 * In addition to basic queuing support, this class contains
597 * fields described elsewhere to control execution. It turns out
598 * to work better memory-layout-wise to include them in this class
599 * rather than a separate class.
600 *
601 * Performance on most platforms is very sensitive to placement of
602 * instances of both WorkQueues and their arrays -- we absolutely
603 * do not want multiple WorkQueue instances or multiple queue
604 * arrays sharing cache lines. (It would be best for queue objects
605 * and their arrays to share, but there is nothing available to
606 * help arrange that). Unfortunately, because they are recorded
607 * in a common array, WorkQueue instances are often moved to be
608 * adjacent by garbage collectors. To reduce impact, we use field
609 * padding that works OK on common platforms; this effectively
610 * trades off slightly slower average field access for the sake of
611 * avoiding really bad worst-case access. (Until better JVM
612 * support is in place, this padding is dependent on transient
613 * properties of JVM field layout rules.) We also take care in
614 * allocating, sizing and resizing the array. Non-shared queue
615 * arrays are initialized by workers before use. Others are
616 * allocated on first use.
617 */
618 // disabled until compatible builds @sun.misc.Contended
619 static final class WorkQueue {
620 /**
621 * Capacity of work-stealing queue array upon initialization.
622 * Must be a power of two; at least 4, but should be larger to
623 * reduce or eliminate cacheline sharing among queues.
624 * Currently, it is much larger, as a partial workaround for
625 * the fact that JVMs often place arrays in locations that
626 * share GC bookkeeping (especially cardmarks) such that
627 * per-write accesses encounter serious memory contention.
628 */
629 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
630
631 /**
632 * Maximum size for queue arrays. Must be a power of two less
633 * than or equal to 1 << (31 - width of array entry) to ensure
634 * lack of wraparound of index calculations, but defined to a
635 * value a bit less than this to help users trap runaway
636 * programs before saturating systems.
637 */
638 static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
639
640 // Heuristic padding to ameliorate unfortunate memory placements
641 volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
642
643 int seed; // for random scanning; initialize nonzero
644 volatile int eventCount; // encoded inactivation count; < 0 if inactive
645 int nextWait; // encoded record of next event waiter
646 int hint; // steal or signal hint (index)
647 int poolIndex; // index of this queue in pool (or 0)
648 final int mode; // 0: lifo, > 0: fifo, < 0: shared
649 int nsteals; // number of steals
650 volatile int qlock; // 1: locked, -1: terminate; else 0
651 volatile int base; // index of next slot for poll
652 int top; // index of next slot for push
653 ForkJoinTask<?>[] array; // the elements (initially unallocated)
654 final ForkJoinPool pool; // the containing pool (may be null)
655 final ForkJoinWorkerThread owner; // owning thread or null if shared
656 volatile Thread parker; // == owner during call to park; else null
657 volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
658 ForkJoinTask<?> currentSteal; // current non-local task being executed
659
660 volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
661 volatile Object pad18, pad19, pad1a, pad1b, pad1c, pad1d;
662
663 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
664 int seed) {
665 this.pool = pool;
666 this.owner = owner;
667 this.mode = mode;
668 this.seed = seed;
669 // Place indices in the center of array (that is not yet allocated)
670 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
671 }
672
673 /**
674 * Returns the approximate number of tasks in the queue.
675 */
676 final int queueSize() {
677 int n = base - top; // non-owner callers must read base first
678 return (n >= 0) ? 0 : -n; // ignore transient negative
679 }
680
681 /**
682 * Provides a more accurate estimate of whether this queue has
683 * any tasks than does queueSize, by checking whether a
684 * near-empty queue has at least one unclaimed task.
685 */
686 final boolean isEmpty() {
687 ForkJoinTask<?>[] a; int m, s;
688 int n = base - (s = top);
689 return (n >= 0 ||
690 (n == -1 &&
691 ((a = array) == null ||
692 (m = a.length - 1) < 0 ||
693 U.getObject
694 (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
695 }
696
697 /**
698 * Pushes a task. Call only by owner in unshared queues. (The
699 * shared-queue version is embedded in method externalPush.)
700 *
701 * @param task the task. Caller must ensure non-null.
702 * @throws RejectedExecutionException if array cannot be resized
703 */
704 final void push(ForkJoinTask<?> task) {
705 ForkJoinTask<?>[] a; ForkJoinPool p;
706 int s = top, m, n;
707 if ((a = array) != null) { // ignore if queue removed
708 int j = (((m = a.length - 1) & s) << ASHIFT) + ABASE;
709 U.putOrderedObject(a, j, task);
710 if ((n = (top = s + 1) - base) <= 2) {
711 if ((p = pool) != null)
712 p.signalWork(this);
713 }
714 else if (n >= m)
715 growArray();
716 }
717 }
718
719 /**
720 * Initializes or doubles the capacity of array. Call either
721 * by owner or with lock held -- it is OK for base, but not
722 * top, to move while resizings are in progress.
723 */
724 final ForkJoinTask<?>[] growArray() {
725 ForkJoinTask<?>[] oldA = array;
726 int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
727 if (size > MAXIMUM_QUEUE_CAPACITY)
728 throw new RejectedExecutionException("Queue capacity exceeded");
729 int oldMask, t, b;
730 ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
731 if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
732 (t = top) - (b = base) > 0) {
733 int mask = size - 1;
734 do {
735 ForkJoinTask<?> x;
736 int oldj = ((b & oldMask) << ASHIFT) + ABASE;
737 int j = ((b & mask) << ASHIFT) + ABASE;
738 x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
739 if (x != null &&
740 U.compareAndSwapObject(oldA, oldj, x, null))
741 U.putObjectVolatile(a, j, x);
742 } while (++b != t);
743 }
744 return a;
745 }
746
747 /**
748 * Takes next task, if one exists, in LIFO order. Call only
749 * by owner in unshared queues.
750 */
751 final ForkJoinTask<?> pop() {
752 ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
753 if ((a = array) != null && (m = a.length - 1) >= 0) {
754 for (int s; (s = top - 1) - base >= 0;) {
755 long j = ((m & s) << ASHIFT) + ABASE;
756 if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
757 break;
758 if (U.compareAndSwapObject(a, j, t, null)) {
759 top = s;
760 return t;
761 }
762 }
763 }
764 return null;
765 }
766
767 /**
768 * Takes a task in FIFO order if b is base of queue and a task
769 * can be claimed without contention. Specialized versions
770 * appear in ForkJoinPool methods scan and tryHelpStealer.
771 */
772 final ForkJoinTask<?> pollAt(int b) {
773 ForkJoinTask<?> t; ForkJoinTask<?>[] a;
774 if ((a = array) != null) {
775 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
776 if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
777 base == b &&
778 U.compareAndSwapObject(a, j, t, null)) {
779 base = b + 1;
780 return t;
781 }
782 }
783 return null;
784 }
785
786 /**
787 * Takes next task, if one exists, in FIFO order.
788 */
789 final ForkJoinTask<?> poll() {
790 ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
791 while ((b = base) - top < 0 && (a = array) != null) {
792 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
793 t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
794 if (t != null) {
795 if (base == b &&
796 U.compareAndSwapObject(a, j, t, null)) {
797 base = b + 1;
798 return t;
799 }
800 }
801 else if (base == b) {
802 if (b + 1 == top)
803 break;
804 Thread.yield(); // wait for lagging update (very rare)
805 }
806 }
807 return null;
808 }
809
810 /**
811 * Takes next task, if one exists, in order specified by mode.
812 */
813 final ForkJoinTask<?> nextLocalTask() {
814 return mode == 0 ? pop() : poll();
815 }
816
817 /**
818 * Returns next task, if one exists, in order specified by mode.
819 */
820 final ForkJoinTask<?> peek() {
821 ForkJoinTask<?>[] a = array; int m;
822 if (a == null || (m = a.length - 1) < 0)
823 return null;
824 int i = mode == 0 ? top - 1 : base;
825 int j = ((i & m) << ASHIFT) + ABASE;
826 return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
827 }
828
829 /**
830 * Pops the given task only if it is at the current top.
831 * (A shared version is available only via FJP.tryExternalUnpush)
832 */
833 final boolean tryUnpush(ForkJoinTask<?> t) {
834 ForkJoinTask<?>[] a; int s;
835 if ((a = array) != null && (s = top) != base &&
836 U.compareAndSwapObject
837 (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
838 top = s;
839 return true;
840 }
841 return false;
842 }
843
844 /**
845 * Removes and cancels all known tasks, ignoring any exceptions.
846 */
847 final void cancelAll() {
848 ForkJoinTask.cancelIgnoringExceptions(currentJoin);
849 ForkJoinTask.cancelIgnoringExceptions(currentSteal);
850 for (ForkJoinTask<?> t; (t = poll()) != null; )
851 ForkJoinTask.cancelIgnoringExceptions(t);
852 }
853
854 /**
855 * Computes next value for random probes. Scans don't require
856 * a very high quality generator, but also not a crummy one.
857 * Marsaglia xor-shift is cheap and works well enough. Note:
858 * This is manually inlined in its usages in ForkJoinPool to
859 * avoid writes inside busy scan loops.
860 */
861 final int nextSeed() {
862 int r = seed;
863 r ^= r << 13;
864 r ^= r >>> 17;
865 return seed = r ^= r << 5;
866 }
867
868 // Specialized execution methods
869
870 /**
871 * Pops and runs tasks until empty.
872 */
873 private void popAndExecAll() {
874 // A bit faster than repeated pop calls
875 ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
876 while ((a = array) != null && (m = a.length - 1) >= 0 &&
877 (s = top - 1) - base >= 0 &&
878 (t = ((ForkJoinTask<?>)
879 U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
880 != null) {
881 if (U.compareAndSwapObject(a, j, t, null)) {
882 top = s;
883 t.doExec();
884 }
885 }
886 }
887
888 /**
889 * Polls and runs tasks until empty.
890 */
891 private void pollAndExecAll() {
892 for (ForkJoinTask<?> t; (t = poll()) != null;)
893 t.doExec();
894 }
895
896 /**
897 * If present, removes from queue and executes the given task,
898 * or any other cancelled task. Returns (true) on any CAS
899 * or consistency check failure so caller can retry.
900 *
901 * @return false if no progress can be made, else true
902 */
903 final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
904 boolean stat = true, removed = false, empty = true;
905 ForkJoinTask<?>[] a; int m, s, b, n;
906 if ((a = array) != null && (m = a.length - 1) >= 0 &&
907 (n = (s = top) - (b = base)) > 0) {
908 for (ForkJoinTask<?> t;;) { // traverse from s to b
909 int j = ((--s & m) << ASHIFT) + ABASE;
910 t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
911 if (t == null) // inconsistent length
912 break;
913 else if (t == task) {
914 if (s + 1 == top) { // pop
915 if (!U.compareAndSwapObject(a, j, task, null))
916 break;
917 top = s;
918 removed = true;
919 }
920 else if (base == b) // replace with proxy
921 removed = U.compareAndSwapObject(a, j, task,
922 new EmptyTask());
923 break;
924 }
925 else if (t.status >= 0)
926 empty = false;
927 else if (s + 1 == top) { // pop and throw away
928 if (U.compareAndSwapObject(a, j, t, null))
929 top = s;
930 break;
931 }
932 if (--n == 0) {
933 if (!empty && base == b)
934 stat = false;
935 break;
936 }
937 }
938 }
939 if (removed)
940 task.doExec();
941 return stat;
942 }
943
944 /**
945 * Polls for and executes the given task or any other task in
946 * its CountedCompleter computation.
947 */
948 final boolean pollAndExecCC(ForkJoinTask<?> root) {
949 ForkJoinTask<?>[] a; int b; Object o;
950 outer: while (root.status >= 0 && (b = base) - top < 0 &&
951 (a = array) != null) {
952 long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
953 if ((o = U.getObject(a, j)) == null ||
954 !(o instanceof CountedCompleter))
955 break;
956 for (CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;;) {
957 if (r == root) {
958 if (base == b &&
959 U.compareAndSwapObject(a, j, t, null)) {
960 base = b + 1;
961 t.doExec();
962 return true;
963 }
964 else
965 break; // restart
966 }
967 if ((r = r.completer) == null)
968 break outer; // not part of root computation
969 }
970 }
971 return false;
972 }
973
974 /**
975 * Executes a top-level task and any local tasks remaining
976 * after execution.
977 */
978 final void runTask(ForkJoinTask<?> t) {
979 if (t != null) {
980 (currentSteal = t).doExec();
981 currentSteal = null;
982 ++nsteals;
983 if (base - top < 0) { // process remaining local tasks
984 if (mode == 0)
985 popAndExecAll();
986 else
987 pollAndExecAll();
988 }
989 }
990 }
991
992 /**
993 * Executes a non-top-level (stolen) task.
994 */
995 final void runSubtask(ForkJoinTask<?> t) {
996 if (t != null) {
997 ForkJoinTask<?> ps = currentSteal;
998 (currentSteal = t).doExec();
999 currentSteal = ps;
1000 }
1001 }
1002
1003 /**
1004 * Returns true if owned and not known to be blocked.
1005 */
1006 final boolean isApparentlyUnblocked() {
1007 Thread wt; Thread.State s;
1008 return (eventCount >= 0 &&
1009 (wt = owner) != null &&
1010 (s = wt.getState()) != Thread.State.BLOCKED &&
1011 s != Thread.State.WAITING &&
1012 s != Thread.State.TIMED_WAITING);
1013 }
1014
1015 // Unsafe mechanics
1016 private static final sun.misc.Unsafe U;
1017 private static final long QLOCK;
1018 private static final int ABASE;
1019 private static final int ASHIFT;
1020 static {
1021 try {
1022 U = sun.misc.Unsafe.getUnsafe();
1023 Class<?> k = WorkQueue.class;
1024 Class<?> ak = ForkJoinTask[].class;
1025 QLOCK = U.objectFieldOffset
1026 (k.getDeclaredField("qlock"));
1027 ABASE = U.arrayBaseOffset(ak);
1028 int scale = U.arrayIndexScale(ak);
1029 if ((scale & (scale - 1)) != 0)
1030 throw new Error("data type scale not a power of two");
1031 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1032 } catch (Exception e) {
1033 throw new Error(e);
1034 }
1035 }
1036 }
1037
1038 // static fields (initialized in static initializer below)
1039
1040 /**
1041 * Creates a new ForkJoinWorkerThread. This factory is used unless
1042 * overridden in ForkJoinPool constructors.
1043 */
1044 public static final ForkJoinWorkerThreadFactory
1045 defaultForkJoinWorkerThreadFactory;
1046
1047 /**
1048 * Permission required for callers of methods that may start or
1049 * kill threads.
1050 */
1051 private static final RuntimePermission modifyThreadPermission;
1052
1053 /**
1054 * Common (static) pool. Non-null for public use unless a static
1055 * construction exception, but internal usages null-check on use
1056 * to paranoically avoid potential initialization circularities
1057 * as well as to simplify generated code.
1058 */
1059 static final ForkJoinPool common;
1060
1061 /**
1062 * Common pool parallelism. To allow simpler use and management
1063 * when common pool threads are disabled, we allow the underlying
1064 * common.config field to be zero, but in that case still report
1065 * parallelism as 1 to reflect resulting caller-runs mechanics.
1066 */
1067 static final int commonParallelism;
1068
1069 /**
1070 * Sequence number for creating workerNamePrefix.
1071 */
1072 private static int poolNumberSequence;
1073
1074 /**
1075 * Returns the next sequence number. We don't expect this to
1076 * ever contend, so use simple builtin sync.
1077 */
1078 private static final synchronized int nextPoolId() {
1079 return ++poolNumberSequence;
1080 }
1081
1082 // static constants
1083
1084 /**
1085 * Initial timeout value (in nanoseconds) for the thread
1086 * triggering quiescence to park waiting for new work. On timeout,
1087 * the thread will instead try to shrink the number of
1088 * workers. The value should be large enough to avoid overly
1089 * aggressive shrinkage during most transient stalls (long GCs
1090 * etc).
1091 */
1092 private static final long IDLE_TIMEOUT = 2000L * 1000L * 1000L; // 2sec
1093
1094 /**
1095 * Timeout value when there are more threads than parallelism level
1096 */
1097 private static final long FAST_IDLE_TIMEOUT = 200L * 1000L * 1000L;
1098
1099 /**
1100 * Tolerance for idle timeouts, to cope with timer undershoots
1101 */
1102 private static final long TIMEOUT_SLOP = 2000000L;
1103
1104 /**
1105 * The maximum stolen->joining link depth allowed in method
1106 * tryHelpStealer. Must be a power of two. Depths for legitimate
1107 * chains are unbounded, but we use a fixed constant to avoid
1108 * (otherwise unchecked) cycles and to bound staleness of
1109 * traversal parameters at the expense of sometimes blocking when
1110 * we could be helping.
1111 */
1112 private static final int MAX_HELP = 64;
1113
1114 /**
1115 * Increment for seed generators. See class ThreadLocal for
1116 * explanation.
1117 */
1118 private static final int SEED_INCREMENT = 0x61c88647;
1119
1120 /*
1121 * Bits and masks for control variables
1122 *
1123 * Field ctl is a long packed with:
1124 * AC: Number of active running workers minus target parallelism (16 bits)
1125 * TC: Number of total workers minus target parallelism (16 bits)
1126 * ST: true if pool is terminating (1 bit)
1127 * EC: the wait count of top waiting thread (15 bits)
1128 * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1129 *
1130 * When convenient, we can extract the upper 32 bits of counts and
1131 * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1132 * (int)ctl. The ec field is never accessed alone, but always
1133 * together with id and st. The offsets of counts by the target
1134 * parallelism and the positionings of fields makes it possible to
1135 * perform the most common checks via sign tests of fields: When
1136 * ac is negative, there are not enough active workers, when tc is
1137 * negative, there are not enough total workers, and when e is
1138 * negative, the pool is terminating. To deal with these possibly
1139 * negative fields, we use casts in and out of "short" and/or
1140 * signed shifts to maintain signedness.
1141 *
1142 * When a thread is queued (inactivated), its eventCount field is
1143 * set negative, which is the only way to tell if a worker is
1144 * prevented from executing tasks, even though it must continue to
1145 * scan for them to avoid queuing races. Note however that
1146 * eventCount updates lag releases so usage requires care.
1147 *
1148 * Field plock is an int packed with:
1149 * SHUTDOWN: true if shutdown is enabled (1 bit)
1150 * SEQ: a sequence lock, with PL_LOCK bit set if locked (30 bits)
1151 * SIGNAL: set when threads may be waiting on the lock (1 bit)
1152 *
1153 * The sequence number enables simple consistency checks:
1154 * Staleness of read-only operations on the workQueues array can
1155 * be checked by comparing plock before vs after the reads.
1156 */
1157
1158 // bit positions/shifts for fields
1159 private static final int AC_SHIFT = 48;
1160 private static final int TC_SHIFT = 32;
1161 private static final int ST_SHIFT = 31;
1162 private static final int EC_SHIFT = 16;
1163
1164 // bounds
1165 private static final int SMASK = 0xffff; // short bits
1166 private static final int MAX_CAP = 0x7fff; // max #workers - 1
1167 private static final int EVENMASK = 0xfffe; // even short bits
1168 private static final int SQMASK = 0x007e; // max 64 (even) slots
1169 private static final int SHORT_SIGN = 1 << 15;
1170 private static final int INT_SIGN = 1 << 31;
1171
1172 // masks
1173 private static final long STOP_BIT = 0x0001L << ST_SHIFT;
1174 private static final long AC_MASK = ((long)SMASK) << AC_SHIFT;
1175 private static final long TC_MASK = ((long)SMASK) << TC_SHIFT;
1176
1177 // units for incrementing and decrementing
1178 private static final long TC_UNIT = 1L << TC_SHIFT;
1179 private static final long AC_UNIT = 1L << AC_SHIFT;
1180
1181 // masks and units for dealing with u = (int)(ctl >>> 32)
1182 private static final int UAC_SHIFT = AC_SHIFT - 32;
1183 private static final int UTC_SHIFT = TC_SHIFT - 32;
1184 private static final int UAC_MASK = SMASK << UAC_SHIFT;
1185 private static final int UTC_MASK = SMASK << UTC_SHIFT;
1186 private static final int UAC_UNIT = 1 << UAC_SHIFT;
1187 private static final int UTC_UNIT = 1 << UTC_SHIFT;
1188
1189 // masks and units for dealing with e = (int)ctl
1190 private static final int E_MASK = 0x7fffffff; // no STOP_BIT
1191 private static final int E_SEQ = 1 << EC_SHIFT;
1192
1193 // plock bits
1194 private static final int SHUTDOWN = 1 << 31;
1195 private static final int PL_LOCK = 2;
1196 private static final int PL_SIGNAL = 1;
1197 private static final int PL_SPINS = 1 << 8;
1198
1199 // access mode for WorkQueue
1200 static final int LIFO_QUEUE = 0;
1201 static final int FIFO_QUEUE = 1;
1202 static final int SHARED_QUEUE = -1;
1203
1204 // bounds for #steps in scan loop -- must be power 2 minus 1
1205 private static final int MIN_SCAN = 0x7ff; // cover estimation slop
1206 private static final int MAX_SCAN = 0x1ffff; // 4 * max workers
1207
1208 // Instance fields
1209
1210 /*
1211 * Field layout of this class tends to matter more than one would
1212 * like. Runtime layout order is only loosely related to
1213 * declaration order and may differ across JVMs, but the following
1214 * empirically works OK on current JVMs.
1215 */
1216
1217 // Heuristic padding to ameliorate unfortunate memory placements
1218 volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
1219
1220 volatile long stealCount; // collects worker counts
1221 volatile long ctl; // main pool control
1222 volatile int plock; // shutdown status and seqLock
1223 volatile int indexSeed; // worker/submitter index seed
1224 final int config; // mode and parallelism level
1225 WorkQueue[] workQueues; // main registry
1226 final ForkJoinWorkerThreadFactory factory;
1227 final UncaughtExceptionHandler ueh; // per-worker UEH
1228 final String workerNamePrefix; // to create worker name string
1229
1230 volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
1231 volatile Object pad18, pad19, pad1a, pad1b;
1232
1233 /**
1234 * Acquires the plock lock to protect worker array and related
1235 * updates. This method is called only if an initial CAS on plock
1236 * fails. This acts as a spinlock for normal cases, but falls back
1237 * to builtin monitor to block when (rarely) needed. This would be
1238 * a terrible idea for a highly contended lock, but works fine as
1239 * a more conservative alternative to a pure spinlock.
1240 */
1241 private int acquirePlock() {
1242 int spins = PL_SPINS, ps, nps;
1243 for (;;) {
1244 if (((ps = plock) & PL_LOCK) == 0 &&
1245 U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1246 return nps;
1247 else if (spins >= 0) {
1248 if (ThreadLocalRandom.nextSecondarySeed() >= 0)
1249 --spins;
1250 }
1251 else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1252 synchronized (this) {
1253 if ((plock & PL_SIGNAL) != 0) {
1254 try {
1255 wait();
1256 } catch (InterruptedException ie) {
1257 try {
1258 Thread.currentThread().interrupt();
1259 } catch (SecurityException ignore) {
1260 }
1261 }
1262 }
1263 else
1264 notifyAll();
1265 }
1266 }
1267 }
1268 }
1269
1270 /**
1271 * Unlocks and signals any thread waiting for plock. Called only
1272 * when CAS of seq value for unlock fails.
1273 */
1274 private void releasePlock(int ps) {
1275 plock = ps;
1276 synchronized (this) { notifyAll(); }
1277 }
1278
1279 /**
1280 * Tries to create and start one worker if fewer than target
1281 * parallelism level exist. Adjusts counts etc on failure.
1282 */
1283 private void tryAddWorker() {
1284 long c; int u;
1285 while ((u = (int)((c = ctl) >>> 32)) < 0 &&
1286 (u & SHORT_SIGN) != 0 && (int)c == 0) {
1287 long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1288 ((u + UAC_UNIT) & UAC_MASK)) << 32;
1289 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1290 ForkJoinWorkerThreadFactory fac;
1291 Throwable ex = null;
1292 ForkJoinWorkerThread wt = null;
1293 try {
1294 if ((fac = factory) != null &&
1295 (wt = fac.newThread(this)) != null) {
1296 wt.start();
1297 break;
1298 }
1299 } catch (Throwable e) {
1300 ex = e;
1301 }
1302 deregisterWorker(wt, ex);
1303 break;
1304 }
1305 }
1306 }
1307
1308 // Registering and deregistering workers
1309
1310 /**
1311 * Callback from ForkJoinWorkerThread to establish and record its
1312 * WorkQueue. To avoid scanning bias due to packing entries in
1313 * front of the workQueues array, we treat the array as a simple
1314 * power-of-two hash table using per-thread seed as hash,
1315 * expanding as needed.
1316 *
1317 * @param wt the worker thread
1318 * @return the worker's queue
1319 */
1320 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1321 UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps;
1322 wt.setDaemon(true);
1323 if ((handler = ueh) != null)
1324 wt.setUncaughtExceptionHandler(handler);
1325 do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
1326 s += SEED_INCREMENT) ||
1327 s == 0); // skip 0
1328 WorkQueue w = new WorkQueue(this, wt, config >>> 16, s);
1329 if (((ps = plock) & PL_LOCK) != 0 ||
1330 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1331 ps = acquirePlock();
1332 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1333 try {
1334 if ((ws = workQueues) != null) { // skip if shutting down
1335 int n = ws.length, m = n - 1;
1336 int r = (s << 1) | 1; // use odd-numbered indices
1337 if (ws[r &= m] != null) { // collision
1338 int probes = 0; // step by approx half size
1339 int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1340 while (ws[r = (r + step) & m] != null) {
1341 if (++probes >= n) {
1342 workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1343 m = n - 1;
1344 probes = 0;
1345 }
1346 }
1347 }
1348 w.eventCount = w.poolIndex = r; // volatile write orders
1349 ws[r] = w;
1350 }
1351 } finally {
1352 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1353 releasePlock(nps);
1354 }
1355 wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex)));
1356 return w;
1357 }
1358
1359 /**
1360 * Final callback from terminating worker, as well as upon failure
1361 * to construct or start a worker. Removes record of worker from
1362 * array, and adjusts counts. If pool is shutting down, tries to
1363 * complete termination.
1364 *
1365 * @param wt the worker thread, or null if construction failed
1366 * @param ex the exception causing failure, or null if none
1367 */
1368 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1369 WorkQueue w = null;
1370 if (wt != null && (w = wt.workQueue) != null) {
1371 int ps;
1372 w.qlock = -1; // ensure set
1373 long ns = w.nsteals, sc; // collect steal count
1374 do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1375 sc = stealCount, sc + ns));
1376 if (((ps = plock) & PL_LOCK) != 0 ||
1377 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1378 ps = acquirePlock();
1379 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1380 try {
1381 int idx = w.poolIndex;
1382 WorkQueue[] ws = workQueues;
1383 if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1384 ws[idx] = null;
1385 } finally {
1386 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1387 releasePlock(nps);
1388 }
1389 }
1390
1391 long c; // adjust ctl counts
1392 do {} while (!U.compareAndSwapLong
1393 (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1394 ((c - TC_UNIT) & TC_MASK) |
1395 (c & ~(AC_MASK|TC_MASK)))));
1396
1397 if (!tryTerminate(false, false) && w != null && w.array != null) {
1398 w.cancelAll(); // cancel remaining tasks
1399 WorkQueue[] ws; WorkQueue v; Thread p; int u, i, e;
1400 while ((u = (int)((c = ctl) >>> 32)) < 0 && (e = (int)c) >= 0) {
1401 if (e > 0) { // activate or create replacement
1402 if ((ws = workQueues) == null ||
1403 (i = e & SMASK) >= ws.length ||
1404 (v = ws[i]) == null)
1405 break;
1406 long nc = (((long)(v.nextWait & E_MASK)) |
1407 ((long)(u + UAC_UNIT) << 32));
1408 if (v.eventCount != (e | INT_SIGN))
1409 break;
1410 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1411 v.eventCount = (e + E_SEQ) & E_MASK;
1412 if ((p = v.parker) != null)
1413 U.unpark(p);
1414 break;
1415 }
1416 }
1417 else {
1418 if ((short)u < 0)
1419 tryAddWorker();
1420 break;
1421 }
1422 }
1423 }
1424 if (ex == null) // help clean refs on way out
1425 ForkJoinTask.helpExpungeStaleExceptions();
1426 else // rethrow
1427 ForkJoinTask.rethrow(ex);
1428 }
1429
1430 // Submissions
1431
1432 /**
1433 * Unless shutting down, adds the given task to a submission queue
1434 * at submitter's current queue index (modulo submission
1435 * range). Only the most common path is directly handled in this
1436 * method. All others are relayed to fullExternalPush.
1437 *
1438 * @param task the task. Caller must ensure non-null.
1439 */
1440 final void externalPush(ForkJoinTask<?> task) {
1441 WorkQueue[] ws; WorkQueue q; int z, m; ForkJoinTask<?>[] a;
1442 if ((z = ThreadLocalRandom.getProbe()) != 0 && plock > 0 &&
1443 (ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
1444 (q = ws[m & z & SQMASK]) != null &&
1445 U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1446 int b = q.base, s = q.top, n, an;
1447 if ((a = q.array) != null && (an = a.length) > (n = s + 1 - b)) {
1448 int j = (((an - 1) & s) << ASHIFT) + ABASE;
1449 U.putOrderedObject(a, j, task);
1450 q.top = s + 1; // push on to deque
1451 q.qlock = 0;
1452 if (n <= 2)
1453 signalWork(q);
1454 return;
1455 }
1456 q.qlock = 0;
1457 }
1458 fullExternalPush(task);
1459 }
1460
1461 /**
1462 * Full version of externalPush. This method is called, among
1463 * other times, upon the first submission of the first task to the
1464 * pool, so must perform secondary initialization. It also
1465 * detects first submission by an external thread by looking up
1466 * its ThreadLocal, and creates a new shared queue if the one at
1467 * index if empty or contended. The plock lock body must be
1468 * exception-free (so no try/finally) so we optimistically
1469 * allocate new queues outside the lock and throw them away if
1470 * (very rarely) not needed.
1471 *
1472 * Secondary initialization occurs when plock is zero, to create
1473 * workQueue array and set plock to a valid value. This lock body
1474 * must also be exception-free. Because the plock seq value can
1475 * eventually wrap around zero, this method harmlessly fails to
1476 * reinitialize if workQueues exists, while still advancing plock.
1477 */
1478 private void fullExternalPush(ForkJoinTask<?> task) {
1479 int r;
1480 if ((r = ThreadLocalRandom.getProbe()) == 0) {
1481 ThreadLocalRandom.localInit();
1482 r = ThreadLocalRandom.getProbe();
1483 }
1484 for (;;) {
1485 WorkQueue[] ws; WorkQueue q; int ps, m, k;
1486 boolean move = false;
1487 if ((ps = plock) < 0)
1488 throw new RejectedExecutionException();
1489 else if (ps == 0 || (ws = workQueues) == null ||
1490 (m = ws.length - 1) < 0) { // initialize workQueues
1491 int p = config & SMASK; // find power of two table size
1492 int n = (p > 1) ? p - 1 : 1; // ensure at least 2 slots
1493 n |= n >>> 1; n |= n >>> 2; n |= n >>> 4;
1494 n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1;
1495 WorkQueue[] nws = ((ws = workQueues) == null || ws.length == 0 ?
1496 new WorkQueue[n] : null);
1497 if (((ps = plock) & PL_LOCK) != 0 ||
1498 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1499 ps = acquirePlock();
1500 if (((ws = workQueues) == null || ws.length == 0) && nws != null)
1501 workQueues = nws;
1502 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1503 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1504 releasePlock(nps);
1505 }
1506 else if ((q = ws[k = r & m & SQMASK]) != null) {
1507 if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
1508 ForkJoinTask<?>[] a = q.array;
1509 int s = q.top;
1510 boolean submitted = false;
1511 try { // locked version of push
1512 if ((a != null && a.length > s + 1 - q.base) ||
1513 (a = q.growArray()) != null) { // must presize
1514 int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
1515 U.putOrderedObject(a, j, task);
1516 q.top = s + 1;
1517 submitted = true;
1518 }
1519 } finally {
1520 q.qlock = 0; // unlock
1521 }
1522 if (submitted) {
1523 signalWork(q);
1524 return;
1525 }
1526 }
1527 move = true; // move on failure
1528 }
1529 else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
1530 q = new WorkQueue(this, null, SHARED_QUEUE, r);
1531 if (((ps = plock) & PL_LOCK) != 0 ||
1532 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1533 ps = acquirePlock();
1534 if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
1535 ws[k] = q;
1536 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1537 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1538 releasePlock(nps);
1539 }
1540 else
1541 move = true; // move if busy
1542 if (move)
1543 r = ThreadLocalRandom.advanceProbe(r);
1544 }
1545 }
1546
1547 // Maintaining ctl counts
1548
1549 /**
1550 * Increments active count; mainly called upon return from blocking.
1551 */
1552 final void incrementActiveCount() {
1553 long c;
1554 do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1555 }
1556
1557 /**
1558 * Tries to create or activate a worker if too few are active.
1559 *
1560 * @param q the (non-null) queue holding tasks to be signalled
1561 */
1562 final void signalWork(WorkQueue q) {
1563 int hint = q.poolIndex;
1564 long c; int e, u, i, n; WorkQueue[] ws; WorkQueue w; Thread p;
1565 while ((u = (int)((c = ctl) >>> 32)) < 0) {
1566 if ((e = (int)c) > 0) {
1567 if ((ws = workQueues) != null && ws.length > (i = e & SMASK) &&
1568 (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1569 long nc = (((long)(w.nextWait & E_MASK)) |
1570 ((long)(u + UAC_UNIT) << 32));
1571 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1572 w.hint = hint;
1573 w.eventCount = (e + E_SEQ) & E_MASK;
1574 if ((p = w.parker) != null)
1575 U.unpark(p);
1576 break;
1577 }
1578 if (q.top - q.base <= 0)
1579 break;
1580 }
1581 else
1582 break;
1583 }
1584 else {
1585 if ((short)u < 0)
1586 tryAddWorker();
1587 break;
1588 }
1589 }
1590 }
1591
1592 // Scanning for tasks
1593
1594 /**
1595 * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1596 */
1597 final void runWorker(WorkQueue w) {
1598 w.growArray(); // allocate queue
1599 do { w.runTask(scan(w)); } while (w.qlock >= 0);
1600 }
1601
1602 /**
1603 * Scans for and, if found, returns one task, else possibly
1604 * inactivates the worker. This method operates on single reads of
1605 * volatile state and is designed to be re-invoked continuously,
1606 * in part because it returns upon detecting inconsistencies,
1607 * contention, or state changes that indicate possible success on
1608 * re-invocation.
1609 *
1610 * The scan searches for tasks across queues (starting at a random
1611 * index, and relying on registerWorker to irregularly scatter
1612 * them within array to avoid bias), checking each at least twice.
1613 * The scan terminates upon either finding a non-empty queue, or
1614 * completing the sweep. If the worker is not inactivated, it
1615 * takes and returns a task from this queue. Otherwise, if not
1616 * activated, it signals workers (that may include itself) and
1617 * returns so caller can retry. Also returns for true if the
1618 * worker array may have changed during an empty scan. On failure
1619 * to find a task, we take one of the following actions, after
1620 * which the caller will retry calling this method unless
1621 * terminated.
1622 *
1623 * * If pool is terminating, terminate the worker.
1624 *
1625 * * If not already enqueued, try to inactivate and enqueue the
1626 * worker on wait queue. Or, if inactivating has caused the pool
1627 * to be quiescent, relay to idleAwaitWork to possibly shrink
1628 * pool.
1629 *
1630 * * If already enqueued and none of the above apply, possibly
1631 * park awaiting signal, else lingering to help scan and signal.
1632 *
1633 * * If a non-empty queue discovered or left as a hint,
1634 * help wake up other workers before return.
1635 *
1636 * @param w the worker (via its WorkQueue)
1637 * @return a task or null if none found
1638 */
1639 private final ForkJoinTask<?> scan(WorkQueue w) {
1640 WorkQueue[] ws; int m;
1641 int ps = plock; // read plock before ws
1642 if (w != null && (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1643 int ec = w.eventCount; // ec is negative if inactive
1644 int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1645 w.hint = -1; // update seed and clear hint
1646 int j = ((m + m + 1) | MIN_SCAN) & MAX_SCAN;
1647 do {
1648 WorkQueue q; ForkJoinTask<?>[] a; int b;
1649 if ((q = ws[(r + j) & m]) != null && (b = q.base) - q.top < 0 &&
1650 (a = q.array) != null) { // probably nonempty
1651 int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1652 ForkJoinTask<?> t = (ForkJoinTask<?>)
1653 U.getObjectVolatile(a, i);
1654 if (q.base == b && ec >= 0 && t != null &&
1655 U.compareAndSwapObject(a, i, t, null)) {
1656 if ((q.base = b + 1) - q.top < 0)
1657 signalWork(q);
1658 return t; // taken
1659 }
1660 else if ((ec < 0 || j < m) && (int)(ctl >> AC_SHIFT) <= 0) {
1661 w.hint = (r + j) & m; // help signal below
1662 break; // cannot take
1663 }
1664 }
1665 } while (--j >= 0);
1666
1667 int h, e, ns; long c, sc; WorkQueue q;
1668 if ((ns = w.nsteals) != 0) {
1669 if (U.compareAndSwapLong(this, STEALCOUNT,
1670 sc = stealCount, sc + ns))
1671 w.nsteals = 0; // collect steals and rescan
1672 }
1673 else if (plock != ps) // consistency check
1674 ; // skip
1675 else if ((e = (int)(c = ctl)) < 0)
1676 w.qlock = -1; // pool is terminating
1677 else {
1678 if ((h = w.hint) < 0) {
1679 if (ec >= 0) { // try to enqueue/inactivate
1680 long nc = (((long)ec |
1681 ((c - AC_UNIT) & (AC_MASK|TC_MASK))));
1682 w.nextWait = e; // link and mark inactive
1683 w.eventCount = ec | INT_SIGN;
1684 if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1685 w.eventCount = ec; // unmark on CAS failure
1686 else if ((int)(c >> AC_SHIFT) == 1 - (config & SMASK))
1687 idleAwaitWork(w, nc, c);
1688 }
1689 else if (w.eventCount < 0 && ctl == c) {
1690 Thread wt = Thread.currentThread();
1691 Thread.interrupted(); // clear status
1692 U.putObject(wt, PARKBLOCKER, this);
1693 w.parker = wt; // emulate LockSupport.park
1694 if (w.eventCount < 0) // recheck
1695 U.park(false, 0L); // block
1696 w.parker = null;
1697 U.putObject(wt, PARKBLOCKER, null);
1698 }
1699 }
1700 if ((h >= 0 || (h = w.hint) >= 0) &&
1701 (ws = workQueues) != null && h < ws.length &&
1702 (q = ws[h]) != null) { // signal others before retry
1703 WorkQueue v; Thread p; int u, i, s;
1704 for (int n = (config & SMASK) - 1;;) {
1705 int idleCount = (w.eventCount < 0) ? 0 : -1;
1706 if (((s = idleCount - q.base + q.top) <= n &&
1707 (n = s) <= 0) ||
1708 (u = (int)((c = ctl) >>> 32)) >= 0 ||
1709 (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1710 (v = ws[i]) == null)
1711 break;
1712 long nc = (((long)(v.nextWait & E_MASK)) |
1713 ((long)(u + UAC_UNIT) << 32));
1714 if (v.eventCount != (e | INT_SIGN) ||
1715 !U.compareAndSwapLong(this, CTL, c, nc))
1716 break;
1717 v.hint = h;
1718 v.eventCount = (e + E_SEQ) & E_MASK;
1719 if ((p = v.parker) != null)
1720 U.unpark(p);
1721 if (--n <= 0)
1722 break;
1723 }
1724 }
1725 }
1726 }
1727 return null;
1728 }
1729
1730 /**
1731 * If inactivating worker w has caused the pool to become
1732 * quiescent, checks for pool termination, and, so long as this is
1733 * not the only worker, waits for event for up to a given
1734 * duration. On timeout, if ctl has not changed, terminates the
1735 * worker, which will in turn wake up another worker to possibly
1736 * repeat this process.
1737 *
1738 * @param w the calling worker
1739 * @param currentCtl the ctl value triggering possible quiescence
1740 * @param prevCtl the ctl value to restore if thread is terminated
1741 */
1742 private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1743 if (w != null && w.eventCount < 0 &&
1744 !tryTerminate(false, false) && (int)prevCtl != 0 &&
1745 ctl == currentCtl) {
1746 int dc = -(short)(currentCtl >>> TC_SHIFT);
1747 long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1748 long deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
1749 Thread wt = Thread.currentThread();
1750 while (ctl == currentCtl) {
1751 Thread.interrupted(); // timed variant of version in scan()
1752 U.putObject(wt, PARKBLOCKER, this);
1753 w.parker = wt;
1754 if (ctl == currentCtl)
1755 U.park(false, parkTime);
1756 w.parker = null;
1757 U.putObject(wt, PARKBLOCKER, null);
1758 if (ctl != currentCtl)
1759 break;
1760 if (deadline - System.nanoTime() <= 0L &&
1761 U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1762 w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1763 w.hint = -1;
1764 w.qlock = -1; // shrink
1765 break;
1766 }
1767 }
1768 }
1769 }
1770
1771 /**
1772 * Scans through queues looking for work while joining a task; if
1773 * any present, signals. May return early if more signalling is
1774 * detectably unneeded.
1775 *
1776 * @param task return early if done
1777 * @param origin an index to start scan
1778 */
1779 private void helpSignal(ForkJoinTask<?> task, int origin) {
1780 WorkQueue[] ws; WorkQueue w; Thread p; long c; int m, u, e, i, s;
1781 if (task != null && task.status >= 0 &&
1782 (u = (int)(ctl >>> 32)) < 0 && (u >> UAC_SHIFT) < 0 &&
1783 (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1784 outer: for (int k = origin, j = m; j >= 0; --j) {
1785 WorkQueue q = ws[k++ & m];
1786 for (int n = m;;) { // limit to at most m signals
1787 if (task.status < 0)
1788 break outer;
1789 if (q == null ||
1790 ((s = -q.base + q.top) <= n && (n = s) <= 0))
1791 break;
1792 if ((u = (int)((c = ctl) >>> 32)) >= 0 ||
1793 (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1794 (w = ws[i]) == null)
1795 break outer;
1796 long nc = (((long)(w.nextWait & E_MASK)) |
1797 ((long)(u + UAC_UNIT) << 32));
1798 if (w.eventCount != (e | INT_SIGN))
1799 break outer;
1800 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1801 w.eventCount = (e + E_SEQ) & E_MASK;
1802 if ((p = w.parker) != null)
1803 U.unpark(p);
1804 if (--n <= 0)
1805 break;
1806 }
1807 }
1808 }
1809 }
1810 }
1811
1812 /**
1813 * Tries to locate and execute tasks for a stealer of the given
1814 * task, or in turn one of its stealers, Traces currentSteal ->
1815 * currentJoin links looking for a thread working on a descendant
1816 * of the given task and with a non-empty queue to steal back and
1817 * execute tasks from. The first call to this method upon a
1818 * waiting join will often entail scanning/search, (which is OK
1819 * because the joiner has nothing better to do), but this method
1820 * leaves hints in workers to speed up subsequent calls. The
1821 * implementation is very branchy to cope with potential
1822 * inconsistencies or loops encountering chains that are stale,
1823 * unknown, or so long that they are likely cyclic.
1824 *
1825 * @param joiner the joining worker
1826 * @param task the task to join
1827 * @return 0 if no progress can be made, negative if task
1828 * known complete, else positive
1829 */
1830 private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1831 int stat = 0, steps = 0; // bound to avoid cycles
1832 if (joiner != null && task != null) { // hoist null checks
1833 restart: for (;;) {
1834 ForkJoinTask<?> subtask = task; // current target
1835 for (WorkQueue j = joiner, v;;) { // v is stealer of subtask
1836 WorkQueue[] ws; int m, s, h;
1837 if ((s = task.status) < 0) {
1838 stat = s;
1839 break restart;
1840 }
1841 if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1842 break restart; // shutting down
1843 if ((v = ws[h = (j.hint | 1) & m]) == null ||
1844 v.currentSteal != subtask) {
1845 for (int origin = h;;) { // find stealer
1846 if (((h = (h + 2) & m) & 15) == 1 &&
1847 (subtask.status < 0 || j.currentJoin != subtask))
1848 continue restart; // occasional staleness check
1849 if ((v = ws[h]) != null &&
1850 v.currentSteal == subtask) {
1851 j.hint = h; // save hint
1852 break;
1853 }
1854 if (h == origin)
1855 break restart; // cannot find stealer
1856 }
1857 }
1858 for (;;) { // help stealer or descend to its stealer
1859 ForkJoinTask[] a; int b;
1860 if (subtask.status < 0) // surround probes with
1861 continue restart; // consistency checks
1862 if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1863 int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1864 ForkJoinTask<?> t =
1865 (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1866 if (subtask.status < 0 || j.currentJoin != subtask ||
1867 v.currentSteal != subtask)
1868 continue restart; // stale
1869 stat = 1; // apparent progress
1870 if (t != null && v.base == b &&
1871 U.compareAndSwapObject(a, i, t, null)) {
1872 v.base = b + 1; // help stealer
1873 joiner.runSubtask(t);
1874 }
1875 else if (v.base == b && ++steps == MAX_HELP)
1876 break restart; // v apparently stalled
1877 }
1878 else { // empty -- try to descend
1879 ForkJoinTask<?> next = v.currentJoin;
1880 if (subtask.status < 0 || j.currentJoin != subtask ||
1881 v.currentSteal != subtask)
1882 continue restart; // stale
1883 else if (next == null || ++steps == MAX_HELP)
1884 break restart; // dead-end or maybe cyclic
1885 else {
1886 subtask = next;
1887 j = v;
1888 break;
1889 }
1890 }
1891 }
1892 }
1893 }
1894 }
1895 return stat;
1896 }
1897
1898 /**
1899 * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1900 * and run tasks within the target's computation.
1901 *
1902 * @param task the task to join
1903 */
1904 private int helpComplete(ForkJoinTask<?> task) {
1905 WorkQueue[] ws; WorkQueue q; int m, n, s, u;
1906 if (task != null && task.status >= 0 && (ws = workQueues) != null &&
1907 (m = ws.length - 1) >= 0) {
1908 for (int j = 1, origin = j;;) {
1909 if ((s = task.status) < 0)
1910 return s;
1911 if ((q = ws[j & m]) != null && q.pollAndExecCC(task))
1912 origin = j;
1913 else if ((j = (j + 2) & m) == origin)
1914 break;
1915 }
1916 }
1917 return 0;
1918 }
1919
1920 /**
1921 * Tries to decrement active count (sometimes implicitly) and
1922 * possibly release or create a compensating worker in preparation
1923 * for blocking. Fails on contention or termination. Otherwise,
1924 * adds a new thread if no idle workers are available and pool
1925 * may become starved.
1926 */
1927 final boolean tryCompensate() {
1928 int pc = config & SMASK, e, i, tc; long c;
1929 WorkQueue[] ws; WorkQueue w; Thread p;
1930 if ((ws = workQueues) != null && (e = (int)(c = ctl)) >= 0) {
1931 if (e != 0 && (i = e & SMASK) < ws.length &&
1932 (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1933 long nc = ((long)(w.nextWait & E_MASK) |
1934 (c & (AC_MASK|TC_MASK)));
1935 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1936 w.eventCount = (e + E_SEQ) & E_MASK;
1937 if ((p = w.parker) != null)
1938 U.unpark(p);
1939 return true; // replace with idle worker
1940 }
1941 }
1942 else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
1943 (int)(c >> AC_SHIFT) + pc > 1) {
1944 long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1945 if (U.compareAndSwapLong(this, CTL, c, nc))
1946 return true; // no compensation
1947 }
1948 else if (tc + pc < MAX_CAP) {
1949 long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1950 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1951 ForkJoinWorkerThreadFactory fac;
1952 Throwable ex = null;
1953 ForkJoinWorkerThread wt = null;
1954 try {
1955 if ((fac = factory) != null &&
1956 (wt = fac.newThread(this)) != null) {
1957 wt.start();
1958 return true;
1959 }
1960 } catch (Throwable rex) {
1961 ex = rex;
1962 }
1963 deregisterWorker(wt, ex); // clean up and return false
1964 }
1965 }
1966 }
1967 return false;
1968 }
1969
1970 /**
1971 * Helps and/or blocks until the given task is done.
1972 *
1973 * @param joiner the joining worker
1974 * @param task the task
1975 * @return task status on exit
1976 */
1977 final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1978 int s = 0;
1979 if (joiner != null && task != null && (s = task.status) >= 0) {
1980 ForkJoinTask<?> prevJoin = joiner.currentJoin;
1981 joiner.currentJoin = task;
1982 do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
1983 joiner.tryRemoveAndExec(task)); // process local tasks
1984 if (s >= 0 && (s = task.status) >= 0) {
1985 helpSignal(task, joiner.poolIndex);
1986 if ((s = task.status) >= 0 &&
1987 (task instanceof CountedCompleter))
1988 s = helpComplete(task);
1989 }
1990 while (s >= 0 && (s = task.status) >= 0) {
1991 if ((!joiner.isEmpty() || // try helping
1992 (s = tryHelpStealer(joiner, task)) == 0) &&
1993 (s = task.status) >= 0) {
1994 helpSignal(task, joiner.poolIndex);
1995 if ((s = task.status) >= 0 && tryCompensate()) {
1996 if (task.trySetSignal() && (s = task.status) >= 0) {
1997 synchronized (task) {
1998 if (task.status >= 0) {
1999 try { // see ForkJoinTask
2000 task.wait(); // for explanation
2001 } catch (InterruptedException ie) {
2002 }
2003 }
2004 else
2005 task.notifyAll();
2006 }
2007 }
2008 long c; // re-activate
2009 do {} while (!U.compareAndSwapLong
2010 (this, CTL, c = ctl, c + AC_UNIT));
2011 }
2012 }
2013 }
2014 joiner.currentJoin = prevJoin;
2015 }
2016 return s;
2017 }
2018
2019 /**
2020 * Stripped-down variant of awaitJoin used by timed joins. Tries
2021 * to help join only while there is continuous progress. (Caller
2022 * will then enter a timed wait.)
2023 *
2024 * @param joiner the joining worker
2025 * @param task the task
2026 */
2027 final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2028 int s;
2029 if (joiner != null && task != null && (s = task.status) >= 0) {
2030 ForkJoinTask<?> prevJoin = joiner.currentJoin;
2031 joiner.currentJoin = task;
2032 do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
2033 joiner.tryRemoveAndExec(task));
2034 if (s >= 0 && (s = task.status) >= 0) {
2035 helpSignal(task, joiner.poolIndex);
2036 if ((s = task.status) >= 0 &&
2037 (task instanceof CountedCompleter))
2038 s = helpComplete(task);
2039 }
2040 if (s >= 0 && joiner.isEmpty()) {
2041 do {} while (task.status >= 0 &&
2042 tryHelpStealer(joiner, task) > 0);
2043 }
2044 joiner.currentJoin = prevJoin;
2045 }
2046 }
2047
2048 /**
2049 * Returns a (probably) non-empty steal queue, if one is found
2050 * during a scan, else null. This method must be retried by
2051 * caller if, by the time it tries to use the queue, it is empty.
2052 * @param r a (random) seed for scanning
2053 */
2054 private WorkQueue findNonEmptyStealQueue(int r) {
2055 for (;;) {
2056 int ps = plock, m; WorkQueue[] ws; WorkQueue q;
2057 if ((ws = workQueues) != null && (m = ws.length - 1) >= 0) {
2058 for (int j = (m + 1) << 2; j >= 0; --j) {
2059 if ((q = ws[(((r + j) << 1) | 1) & m]) != null &&
2060 q.base - q.top < 0)
2061 return q;
2062 }
2063 }
2064 if (plock == ps)
2065 return null;
2066 }
2067 }
2068
2069 /**
2070 * Runs tasks until {@code isQuiescent()}. We piggyback on
2071 * active count ctl maintenance, but rather than blocking
2072 * when tasks cannot be found, we rescan until all others cannot
2073 * find tasks either.
2074 */
2075 final void helpQuiescePool(WorkQueue w) {
2076 for (boolean active = true;;) {
2077 long c; WorkQueue q; ForkJoinTask<?> t; int b;
2078 while ((t = w.nextLocalTask()) != null) {
2079 if (w.base - w.top < 0)
2080 signalWork(w);
2081 t.doExec();
2082 }
2083 if ((q = findNonEmptyStealQueue(w.nextSeed())) != null) {
2084 if (!active) { // re-establish active count
2085 active = true;
2086 do {} while (!U.compareAndSwapLong
2087 (this, CTL, c = ctl, c + AC_UNIT));
2088 }
2089 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2090 if (q.base - q.top < 0)
2091 signalWork(q);
2092 w.runSubtask(t);
2093 }
2094 }
2095 else if (active) { // decrement active count without queuing
2096 long nc = (c = ctl) - AC_UNIT;
2097 if ((int)(nc >> AC_SHIFT) + (config & SMASK) == 0)
2098 return; // bypass decrement-then-increment
2099 if (U.compareAndSwapLong(this, CTL, c, nc))
2100 active = false;
2101 }
2102 else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) == 0 &&
2103 U.compareAndSwapLong(this, CTL, c, c + AC_UNIT))
2104 return;
2105 }
2106 }
2107
2108 /**
2109 * Gets and removes a local or stolen task for the given worker.
2110 *
2111 * @return a task, if available
2112 */
2113 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2114 for (ForkJoinTask<?> t;;) {
2115 WorkQueue q; int b;
2116 if ((t = w.nextLocalTask()) != null)
2117 return t;
2118 if ((q = findNonEmptyStealQueue(w.nextSeed())) == null)
2119 return null;
2120 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2121 if (q.base - q.top < 0)
2122 signalWork(q);
2123 return t;
2124 }
2125 }
2126 }
2127
2128 /**
2129 * Returns a cheap heuristic guide for task partitioning when
2130 * programmers, frameworks, tools, or languages have little or no
2131 * idea about task granularity. In essence by offering this
2132 * method, we ask users only about tradeoffs in overhead vs
2133 * expected throughput and its variance, rather than how finely to
2134 * partition tasks.
2135 *
2136 * In a steady state strict (tree-structured) computation, each
2137 * thread makes available for stealing enough tasks for other
2138 * threads to remain active. Inductively, if all threads play by
2139 * the same rules, each thread should make available only a
2140 * constant number of tasks.
2141 *
2142 * The minimum useful constant is just 1. But using a value of 1
2143 * would require immediate replenishment upon each steal to
2144 * maintain enough tasks, which is infeasible. Further,
2145 * partitionings/granularities of offered tasks should minimize
2146 * steal rates, which in general means that threads nearer the top
2147 * of computation tree should generate more than those nearer the
2148 * bottom. In perfect steady state, each thread is at
2149 * approximately the same level of computation tree. However,
2150 * producing extra tasks amortizes the uncertainty of progress and
2151 * diffusion assumptions.
2152 *
2153 * So, users will want to use values larger (but not much larger)
2154 * than 1 to both smooth over transient shortages and hedge
2155 * against uneven progress; as traded off against the cost of
2156 * extra task overhead. We leave the user to pick a threshold
2157 * value to compare with the results of this call to guide
2158 * decisions, but recommend values such as 3.
2159 *
2160 * When all threads are active, it is on average OK to estimate
2161 * surplus strictly locally. In steady-state, if one thread is
2162 * maintaining say 2 surplus tasks, then so are others. So we can
2163 * just use estimated queue length. However, this strategy alone
2164 * leads to serious mis-estimates in some non-steady-state
2165 * conditions (ramp-up, ramp-down, other stalls). We can detect
2166 * many of these by further considering the number of "idle"
2167 * threads, that are known to have zero queued tasks, so
2168 * compensate by a factor of (#idle/#active) threads.
2169 *
2170 * Note: The approximation of #busy workers as #active workers is
2171 * not very good under current signalling scheme, and should be
2172 * improved.
2173 */
2174 static int getSurplusQueuedTaskCount() {
2175 Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2176 if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2177 int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2178 int n = (q = wt.workQueue).top - q.base;
2179 int a = (int)(pool.ctl >> AC_SHIFT) + p;
2180 return n - (a > (p >>>= 1) ? 0 :
2181 a > (p >>>= 1) ? 1 :
2182 a > (p >>>= 1) ? 2 :
2183 a > (p >>>= 1) ? 4 :
2184 8);
2185 }
2186 return 0;
2187 }
2188
2189 // Termination
2190
2191 /**
2192 * Possibly initiates and/or completes termination. The caller
2193 * triggering termination runs three passes through workQueues:
2194 * (0) Setting termination status, followed by wakeups of queued
2195 * workers; (1) cancelling all tasks; (2) interrupting lagging
2196 * threads (likely in external tasks, but possibly also blocked in
2197 * joins). Each pass repeats previous steps because of potential
2198 * lagging thread creation.
2199 *
2200 * @param now if true, unconditionally terminate, else only
2201 * if no work and no active workers
2202 * @param enable if true, enable shutdown when next possible
2203 * @return true if now terminating or terminated
2204 */
2205 private boolean tryTerminate(boolean now, boolean enable) {
2206 int ps;
2207 if (this == common) // cannot shut down
2208 return false;
2209 if ((ps = plock) >= 0) { // enable by setting plock
2210 if (!enable)
2211 return false;
2212 if ((ps & PL_LOCK) != 0 ||
2213 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2214 ps = acquirePlock();
2215 int nps = ((ps + PL_LOCK) & ~SHUTDOWN) | SHUTDOWN;
2216 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2217 releasePlock(nps);
2218 }
2219 for (long c;;) {
2220 if (((c = ctl) & STOP_BIT) != 0) { // already terminating
2221 if ((short)(c >>> TC_SHIFT) == -(config & SMASK)) {
2222 synchronized (this) {
2223 notifyAll(); // signal when 0 workers
2224 }
2225 }
2226 return true;
2227 }
2228 if (!now) { // check if idle & no tasks
2229 WorkQueue[] ws; WorkQueue w;
2230 if ((int)(c >> AC_SHIFT) != -(config & SMASK))
2231 return false;
2232 if ((ws = workQueues) != null) {
2233 for (int i = 0; i < ws.length; ++i) {
2234 if ((w = ws[i]) != null) {
2235 if (!w.isEmpty()) { // signal unprocessed tasks
2236 signalWork(w);
2237 return false;
2238 }
2239 if ((i & 1) != 0 && w.eventCount >= 0)
2240 return false; // unqueued inactive worker
2241 }
2242 }
2243 }
2244 }
2245 if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2246 for (int pass = 0; pass < 3; ++pass) {
2247 WorkQueue[] ws; WorkQueue w; Thread wt;
2248 if ((ws = workQueues) != null) {
2249 int n = ws.length;
2250 for (int i = 0; i < n; ++i) {
2251 if ((w = ws[i]) != null) {
2252 w.qlock = -1;
2253 if (pass > 0) {
2254 w.cancelAll();
2255 if (pass > 1 && (wt = w.owner) != null) {
2256 if (!wt.isInterrupted()) {
2257 try {
2258 wt.interrupt();
2259 } catch (Throwable ignore) {
2260 }
2261 }
2262 U.unpark(wt);
2263 }
2264 }
2265 }
2266 }
2267 // Wake up workers parked on event queue
2268 int i, e; long cc; Thread p;
2269 while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2270 (i = e & SMASK) < n && i >= 0 &&
2271 (w = ws[i]) != null) {
2272 long nc = ((long)(w.nextWait & E_MASK) |
2273 ((cc + AC_UNIT) & AC_MASK) |
2274 (cc & (TC_MASK|STOP_BIT)));
2275 if (w.eventCount == (e | INT_SIGN) &&
2276 U.compareAndSwapLong(this, CTL, cc, nc)) {
2277 w.eventCount = (e + E_SEQ) & E_MASK;
2278 w.qlock = -1;
2279 if ((p = w.parker) != null)
2280 U.unpark(p);
2281 }
2282 }
2283 }
2284 }
2285 }
2286 }
2287 }
2288
2289 // external operations on common pool
2290
2291 /**
2292 * Returns common pool queue for a thread that has submitted at
2293 * least one task.
2294 */
2295 static WorkQueue commonSubmitterQueue() {
2296 ForkJoinPool p; WorkQueue[] ws; int m, z;
2297 return ((z = ThreadLocalRandom.getProbe()) != 0 &&
2298 (p = common) != null &&
2299 (ws = p.workQueues) != null &&
2300 (m = ws.length - 1) >= 0) ?
2301 ws[m & z & SQMASK] : null;
2302 }
2303
2304 /**
2305 * Tries to pop the given task from submitter's queue in common pool.
2306 */
2307 static boolean tryExternalUnpush(ForkJoinTask<?> t) {
2308 ForkJoinPool p; WorkQueue[] ws; WorkQueue q;
2309 ForkJoinTask<?>[] a; int m, s, z;
2310 if (t != null &&
2311 (z = ThreadLocalRandom.getProbe()) != 0 &&
2312 (p = common) != null &&
2313 (ws = p.workQueues) != null &&
2314 (m = ws.length - 1) >= 0 &&
2315 (q = ws[m & z & SQMASK]) != null &&
2316 (s = q.top) != q.base &&
2317 (a = q.array) != null) {
2318 long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
2319 if (U.getObject(a, j) == t &&
2320 U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2321 if (q.array == a && q.top == s && // recheck
2322 U.compareAndSwapObject(a, j, t, null)) {
2323 q.top = s - 1;
2324 q.qlock = 0;
2325 return true;
2326 }
2327 q.qlock = 0;
2328 }
2329 }
2330 return false;
2331 }
2332
2333 /**
2334 * Tries to pop and run local tasks within the same computation
2335 * as the given root. On failure, tries to help complete from
2336 * other queues via helpComplete.
2337 */
2338 private void externalHelpComplete(WorkQueue q, ForkJoinTask<?> root) {
2339 ForkJoinTask<?>[] a; int m;
2340 if (root != null && q != null && (a = q.array) != null &&
2341 (m = (a.length - 1)) >= 0) {
2342 outer: for (;;) {
2343 int s, b, u; Object o;
2344 if (root.status < 0)
2345 return;
2346 if ((s = q.top) - q.base > 0) { // try pop
2347 long j = ((m & (s - 1)) << ASHIFT) + ABASE;
2348 if ((o = U.getObject(a, j)) != null &&
2349 (o instanceof CountedCompleter)) {
2350 CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2351 do {
2352 if (r == root) {
2353 if (U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2354 if (q.array == a && q.top == s &&
2355 U.compareAndSwapObject(a, j, t, null)) {
2356 q.top = s - 1;
2357 q.qlock = 0;
2358 t.doExec();
2359 }
2360 else
2361 q.qlock = 0;
2362 }
2363 continue outer;
2364 }
2365 } while ((r = r.completer) != null);
2366 }
2367 }
2368 if ((b = q.base) - q.top < 0) { // try poll
2369 if (root.status < 0)
2370 return;
2371 long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
2372 if ((o = U.getObject(a, j)) == null ||
2373 !(o instanceof CountedCompleter))
2374 break;
2375 CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2376 for (;;) {
2377 if (r == root) {
2378 if (q.base == b &&
2379 U.compareAndSwapObject(a, j, t, null)) {
2380 q.base = b + 1;
2381 t.doExec();
2382 }
2383 break;
2384 }
2385 if ((r = r.completer) == null)
2386 break outer;
2387 }
2388 }
2389 else
2390 break;
2391 }
2392 helpComplete(root);
2393 }
2394 }
2395
2396 /**
2397 * Tries to help execute or signal availability of the given task
2398 * from submitter's queue in common pool.
2399 */
2400 static void externalHelpJoin(ForkJoinTask<?> t) {
2401 // Some hard-to-avoid overlap with tryExternalUnpush
2402 ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w;
2403 ForkJoinTask<?>[] a; int m, s, n, z;
2404 if (t != null &&
2405 (z = ThreadLocalRandom.getProbe()) != 0 &&
2406 (p = common) != null &&
2407 (ws = p.workQueues) != null &&
2408 (m = ws.length - 1) >= 0 &&
2409 (q = ws[m & z & SQMASK]) != null &&
2410 (a = q.array) != null) {
2411 int am = a.length - 1;
2412 if ((s = q.top) != q.base) {
2413 long j = ((am & (s - 1)) << ASHIFT) + ABASE;
2414 if (U.getObject(a, j) == t &&
2415 U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2416 if (q.array == a && q.top == s &&
2417 U.compareAndSwapObject(a, j, t, null)) {
2418 q.top = s - 1;
2419 q.qlock = 0;
2420 t.doExec();
2421 }
2422 else
2423 q.qlock = 0;
2424 }
2425 }
2426 if (t.status >= 0) {
2427 if (t instanceof CountedCompleter)
2428 p.externalHelpComplete(q, t);
2429 else
2430 p.helpSignal(t, q.poolIndex);
2431 }
2432 }
2433 }
2434
2435 // Exported methods
2436
2437 // Constructors
2438
2439 /**
2440 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2441 * java.lang.Runtime#availableProcessors}, using the {@linkplain
2442 * #defaultForkJoinWorkerThreadFactory default thread factory},
2443 * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2444 *
2445 * @throws SecurityException if a security manager exists and
2446 * the caller is not permitted to modify threads
2447 * because it does not hold {@link
2448 * java.lang.RuntimePermission}{@code ("modifyThread")}
2449 */
2450 public ForkJoinPool() {
2451 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2452 defaultForkJoinWorkerThreadFactory, null, false);
2453 }
2454
2455 /**
2456 * Creates a {@code ForkJoinPool} with the indicated parallelism
2457 * level, the {@linkplain
2458 * #defaultForkJoinWorkerThreadFactory default thread factory},
2459 * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2460 *
2461 * @param parallelism the parallelism level
2462 * @throws IllegalArgumentException if parallelism less than or
2463 * equal to zero, or greater than implementation limit
2464 * @throws SecurityException if a security manager exists and
2465 * the caller is not permitted to modify threads
2466 * because it does not hold {@link
2467 * java.lang.RuntimePermission}{@code ("modifyThread")}
2468 */
2469 public ForkJoinPool(int parallelism) {
2470 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2471 }
2472
2473 /**
2474 * Creates a {@code ForkJoinPool} with the given parameters.
2475 *
2476 * @param parallelism the parallelism level. For default value,
2477 * use {@link java.lang.Runtime#availableProcessors}.
2478 * @param factory the factory for creating new threads. For default value,
2479 * use {@link #defaultForkJoinWorkerThreadFactory}.
2480 * @param handler the handler for internal worker threads that
2481 * terminate due to unrecoverable errors encountered while executing
2482 * tasks. For default value, use {@code null}.
2483 * @param asyncMode if true,
2484 * establishes local first-in-first-out scheduling mode for forked
2485 * tasks that are never joined. This mode may be more appropriate
2486 * than default locally stack-based mode in applications in which
2487 * worker threads only process event-style asynchronous tasks.
2488 * For default value, use {@code false}.
2489 * @throws IllegalArgumentException if parallelism less than or
2490 * equal to zero, or greater than implementation limit
2491 * @throws NullPointerException if the factory is null
2492 * @throws SecurityException if a security manager exists and
2493 * the caller is not permitted to modify threads
2494 * because it does not hold {@link
2495 * java.lang.RuntimePermission}{@code ("modifyThread")}
2496 */
2497 public ForkJoinPool(int parallelism,
2498 ForkJoinWorkerThreadFactory factory,
2499 UncaughtExceptionHandler handler,
2500 boolean asyncMode) {
2501 this(checkParallelism(parallelism),
2502 checkFactory(factory),
2503 handler,
2504 asyncMode,
2505 "ForkJoinPool-" + nextPoolId() + "-worker-");
2506 checkPermission();
2507 }
2508
2509 private static int checkParallelism(int parallelism) {
2510 if (parallelism <= 0 || parallelism > MAX_CAP)
2511 throw new IllegalArgumentException();
2512 return parallelism;
2513 }
2514
2515 private static ForkJoinWorkerThreadFactory checkFactory
2516 (ForkJoinWorkerThreadFactory factory) {
2517 if (factory == null)
2518 throw new NullPointerException();
2519 return factory;
2520 }
2521
2522 /**
2523 * Creates a {@code ForkJoinPool} with the given parameters, without
2524 * any security checks or parameter validation. Invoked directly by
2525 * makeCommonPool.
2526 */
2527 private ForkJoinPool(int parallelism,
2528 ForkJoinWorkerThreadFactory factory,
2529 UncaughtExceptionHandler handler,
2530 boolean asyncMode,
2531 String workerNamePrefix) {
2532 this.workerNamePrefix = workerNamePrefix;
2533 this.factory = factory;
2534 this.ueh = handler;
2535 this.config = parallelism | (asyncMode ? (FIFO_QUEUE << 16) : 0);
2536 long np = (long)(-parallelism); // offset ctl counts
2537 this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2538 }
2539
2540 /**
2541 * Returns the common pool instance. This pool is statically
2542 * constructed; its run state is unaffected by attempts to {@link
2543 * #shutdown} or {@link #shutdownNow}. However this pool and any
2544 * ongoing processing are automatically terminated upon program
2545 * {@link System#exit}. Any program that relies on asynchronous
2546 * task processing to complete before program termination should
2547 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2548 * before exit.
2549 *
2550 * @return the common pool instance
2551 * @since 1.8
2552 */
2553 public static ForkJoinPool commonPool() {
2554 // assert common != null : "static init error";
2555 return common;
2556 }
2557
2558 // Execution methods
2559
2560 /**
2561 * Performs the given task, returning its result upon completion.
2562 * If the computation encounters an unchecked Exception or Error,
2563 * it is rethrown as the outcome of this invocation. Rethrown
2564 * exceptions behave in the same way as regular exceptions, but,
2565 * when possible, contain stack traces (as displayed for example
2566 * using {@code ex.printStackTrace()}) of both the current thread
2567 * as well as the thread actually encountering the exception;
2568 * minimally only the latter.
2569 *
2570 * @param task the task
2571 * @return the task's result
2572 * @throws NullPointerException if the task is null
2573 * @throws RejectedExecutionException if the task cannot be
2574 * scheduled for execution
2575 */
2576 public <T> T invoke(ForkJoinTask<T> task) {
2577 if (task == null)
2578 throw new NullPointerException();
2579 externalPush(task);
2580 return task.join();
2581 }
2582
2583 /**
2584 * Arranges for (asynchronous) execution of the given task.
2585 *
2586 * @param task the task
2587 * @throws NullPointerException if the task is null
2588 * @throws RejectedExecutionException if the task cannot be
2589 * scheduled for execution
2590 */
2591 public void execute(ForkJoinTask<?> task) {
2592 if (task == null)
2593 throw new NullPointerException();
2594 externalPush(task);
2595 }
2596
2597 // AbstractExecutorService methods
2598
2599 /**
2600 * @throws NullPointerException if the task is null
2601 * @throws RejectedExecutionException if the task cannot be
2602 * scheduled for execution
2603 */
2604 public void execute(Runnable task) {
2605 if (task == null)
2606 throw new NullPointerException();
2607 ForkJoinTask<?> job;
2608 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2609 job = (ForkJoinTask<?>) task;
2610 else
2611 job = new ForkJoinTask.RunnableExecuteAction(task);
2612 externalPush(job);
2613 }
2614
2615 /**
2616 * Submits a ForkJoinTask for execution.
2617 *
2618 * @param task the task to submit
2619 * @return the task
2620 * @throws NullPointerException if the task is null
2621 * @throws RejectedExecutionException if the task cannot be
2622 * scheduled for execution
2623 */
2624 public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2625 if (task == null)
2626 throw new NullPointerException();
2627 externalPush(task);
2628 return task;
2629 }
2630
2631 /**
2632 * @throws NullPointerException if the task is null
2633 * @throws RejectedExecutionException if the task cannot be
2634 * scheduled for execution
2635 */
2636 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2637 ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2638 externalPush(job);
2639 return job;
2640 }
2641
2642 /**
2643 * @throws NullPointerException if the task is null
2644 * @throws RejectedExecutionException if the task cannot be
2645 * scheduled for execution
2646 */
2647 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2648 ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2649 externalPush(job);
2650 return job;
2651 }
2652
2653 /**
2654 * @throws NullPointerException if the task is null
2655 * @throws RejectedExecutionException if the task cannot be
2656 * scheduled for execution
2657 */
2658 public ForkJoinTask<?> submit(Runnable task) {
2659 if (task == null)
2660 throw new NullPointerException();
2661 ForkJoinTask<?> job;
2662 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2663 job = (ForkJoinTask<?>) task;
2664 else
2665 job = new ForkJoinTask.AdaptedRunnableAction(task);
2666 externalPush(job);
2667 return job;
2668 }
2669
2670 /**
2671 * @throws NullPointerException {@inheritDoc}
2672 * @throws RejectedExecutionException {@inheritDoc}
2673 */
2674 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2675 // In previous versions of this class, this method constructed
2676 // a task to run ForkJoinTask.invokeAll, but now external
2677 // invocation of multiple tasks is at least as efficient.
2678 ArrayList<Future<T>> futures = new ArrayList<Future<T>>(tasks.size());
2679
2680 boolean done = false;
2681 try {
2682 for (Callable<T> t : tasks) {
2683 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2684 futures.add(f);
2685 externalPush(f);
2686 }
2687 for (int i = 0, size = futures.size(); i < size; i++)
2688 ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2689 done = true;
2690 return futures;
2691 } finally {
2692 if (!done)
2693 for (int i = 0, size = futures.size(); i < size; i++)
2694 futures.get(i).cancel(false);
2695 }
2696 }
2697
2698 /**
2699 * Returns the factory used for constructing new workers.
2700 *
2701 * @return the factory used for constructing new workers
2702 */
2703 public ForkJoinWorkerThreadFactory getFactory() {
2704 return factory;
2705 }
2706
2707 /**
2708 * Returns the handler for internal worker threads that terminate
2709 * due to unrecoverable errors encountered while executing tasks.
2710 *
2711 * @return the handler, or {@code null} if none
2712 */
2713 public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2714 return ueh;
2715 }
2716
2717 /**
2718 * Returns the targeted parallelism level of this pool.
2719 *
2720 * @return the targeted parallelism level of this pool
2721 */
2722 public int getParallelism() {
2723 int par = (config & SMASK);
2724 return (par > 0) ? par : 1;
2725 }
2726
2727 /**
2728 * Returns the targeted parallelism level of the common pool.
2729 *
2730 * @return the targeted parallelism level of the common pool
2731 * @since 1.8
2732 */
2733 public static int getCommonPoolParallelism() {
2734 return commonParallelism;
2735 }
2736
2737 /**
2738 * Returns the number of worker threads that have started but not
2739 * yet terminated. The result returned by this method may differ
2740 * from {@link #getParallelism} when threads are created to
2741 * maintain parallelism when others are cooperatively blocked.
2742 *
2743 * @return the number of worker threads
2744 */
2745 public int getPoolSize() {
2746 return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2747 }
2748
2749 /**
2750 * Returns {@code true} if this pool uses local first-in-first-out
2751 * scheduling mode for forked tasks that are never joined.
2752 *
2753 * @return {@code true} if this pool uses async mode
2754 */
2755 public boolean getAsyncMode() {
2756 return (config >>> 16) == FIFO_QUEUE;
2757 }
2758
2759 /**
2760 * Returns an estimate of the number of worker threads that are
2761 * not blocked waiting to join tasks or for other managed
2762 * synchronization. This method may overestimate the
2763 * number of running threads.
2764 *
2765 * @return the number of worker threads
2766 */
2767 public int getRunningThreadCount() {
2768 int rc = 0;
2769 WorkQueue[] ws; WorkQueue w;
2770 if ((ws = workQueues) != null) {
2771 for (int i = 1; i < ws.length; i += 2) {
2772 if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2773 ++rc;
2774 }
2775 }
2776 return rc;
2777 }
2778
2779 /**
2780 * Returns an estimate of the number of threads that are currently
2781 * stealing or executing tasks. This method may overestimate the
2782 * number of active threads.
2783 *
2784 * @return the number of active threads
2785 */
2786 public int getActiveThreadCount() {
2787 int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2788 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2789 }
2790
2791 /**
2792 * Returns {@code true} if all worker threads are currently idle.
2793 * An idle worker is one that cannot obtain a task to execute
2794 * because none are available to steal from other threads, and
2795 * there are no pending submissions to the pool. This method is
2796 * conservative; it might not return {@code true} immediately upon
2797 * idleness of all threads, but will eventually become true if
2798 * threads remain inactive.
2799 *
2800 * @return {@code true} if all threads are currently idle
2801 */
2802 public boolean isQuiescent() {
2803 return (int)(ctl >> AC_SHIFT) + (config & SMASK) == 0;
2804 }
2805
2806 /**
2807 * Returns an estimate of the total number of tasks stolen from
2808 * one thread's work queue by another. The reported value
2809 * underestimates the actual total number of steals when the pool
2810 * is not quiescent. This value may be useful for monitoring and
2811 * tuning fork/join programs: in general, steal counts should be
2812 * high enough to keep threads busy, but low enough to avoid
2813 * overhead and contention across threads.
2814 *
2815 * @return the number of steals
2816 */
2817 public long getStealCount() {
2818 long count = stealCount;
2819 WorkQueue[] ws; WorkQueue w;
2820 if ((ws = workQueues) != null) {
2821 for (int i = 1; i < ws.length; i += 2) {
2822 if ((w = ws[i]) != null)
2823 count += w.nsteals;
2824 }
2825 }
2826 return count;
2827 }
2828
2829 /**
2830 * Returns an estimate of the total number of tasks currently held
2831 * in queues by worker threads (but not including tasks submitted
2832 * to the pool that have not begun executing). This value is only
2833 * an approximation, obtained by iterating across all threads in
2834 * the pool. This method may be useful for tuning task
2835 * granularities.
2836 *
2837 * @return the number of queued tasks
2838 */
2839 public long getQueuedTaskCount() {
2840 long count = 0;
2841 WorkQueue[] ws; WorkQueue w;
2842 if ((ws = workQueues) != null) {
2843 for (int i = 1; i < ws.length; i += 2) {
2844 if ((w = ws[i]) != null)
2845 count += w.queueSize();
2846 }
2847 }
2848 return count;
2849 }
2850
2851 /**
2852 * Returns an estimate of the number of tasks submitted to this
2853 * pool that have not yet begun executing. This method may take
2854 * time proportional to the number of submissions.
2855 *
2856 * @return the number of queued submissions
2857 */
2858 public int getQueuedSubmissionCount() {
2859 int count = 0;
2860 WorkQueue[] ws; WorkQueue w;
2861 if ((ws = workQueues) != null) {
2862 for (int i = 0; i < ws.length; i += 2) {
2863 if ((w = ws[i]) != null)
2864 count += w.queueSize();
2865 }
2866 }
2867 return count;
2868 }
2869
2870 /**
2871 * Returns {@code true} if there are any tasks submitted to this
2872 * pool that have not yet begun executing.
2873 *
2874 * @return {@code true} if there are any queued submissions
2875 */
2876 public boolean hasQueuedSubmissions() {
2877 WorkQueue[] ws; WorkQueue w;
2878 if ((ws = workQueues) != null) {
2879 for (int i = 0; i < ws.length; i += 2) {
2880 if ((w = ws[i]) != null && !w.isEmpty())
2881 return true;
2882 }
2883 }
2884 return false;
2885 }
2886
2887 /**
2888 * Removes and returns the next unexecuted submission if one is
2889 * available. This method may be useful in extensions to this
2890 * class that re-assign work in systems with multiple pools.
2891 *
2892 * @return the next submission, or {@code null} if none
2893 */
2894 protected ForkJoinTask<?> pollSubmission() {
2895 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2896 if ((ws = workQueues) != null) {
2897 for (int i = 0; i < ws.length; i += 2) {
2898 if ((w = ws[i]) != null && (t = w.poll()) != null)
2899 return t;
2900 }
2901 }
2902 return null;
2903 }
2904
2905 /**
2906 * Removes all available unexecuted submitted and forked tasks
2907 * from scheduling queues and adds them to the given collection,
2908 * without altering their execution status. These may include
2909 * artificially generated or wrapped tasks. This method is
2910 * designed to be invoked only when the pool is known to be
2911 * quiescent. Invocations at other times may not remove all
2912 * tasks. A failure encountered while attempting to add elements
2913 * to collection {@code c} may result in elements being in
2914 * neither, either or both collections when the associated
2915 * exception is thrown. The behavior of this operation is
2916 * undefined if the specified collection is modified while the
2917 * operation is in progress.
2918 *
2919 * @param c the collection to transfer elements into
2920 * @return the number of elements transferred
2921 */
2922 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2923 int count = 0;
2924 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2925 if ((ws = workQueues) != null) {
2926 for (int i = 0; i < ws.length; ++i) {
2927 if ((w = ws[i]) != null) {
2928 while ((t = w.poll()) != null) {
2929 c.add(t);
2930 ++count;
2931 }
2932 }
2933 }
2934 }
2935 return count;
2936 }
2937
2938 /**
2939 * Returns a string identifying this pool, as well as its state,
2940 * including indications of run state, parallelism level, and
2941 * worker and task counts.
2942 *
2943 * @return a string identifying this pool, as well as its state
2944 */
2945 public String toString() {
2946 // Use a single pass through workQueues to collect counts
2947 long qt = 0L, qs = 0L; int rc = 0;
2948 long st = stealCount;
2949 long c = ctl;
2950 WorkQueue[] ws; WorkQueue w;
2951 if ((ws = workQueues) != null) {
2952 for (int i = 0; i < ws.length; ++i) {
2953 if ((w = ws[i]) != null) {
2954 int size = w.queueSize();
2955 if ((i & 1) == 0)
2956 qs += size;
2957 else {
2958 qt += size;
2959 st += w.nsteals;
2960 if (w.isApparentlyUnblocked())
2961 ++rc;
2962 }
2963 }
2964 }
2965 }
2966 int pc = (config & SMASK);
2967 int tc = pc + (short)(c >>> TC_SHIFT);
2968 int ac = pc + (int)(c >> AC_SHIFT);
2969 if (ac < 0) // ignore transient negative
2970 ac = 0;
2971 String level;
2972 if ((c & STOP_BIT) != 0)
2973 level = (tc == 0) ? "Terminated" : "Terminating";
2974 else
2975 level = plock < 0 ? "Shutting down" : "Running";
2976 return super.toString() +
2977 "[" + level +
2978 ", parallelism = " + pc +
2979 ", size = " + tc +
2980 ", active = " + ac +
2981 ", running = " + rc +
2982 ", steals = " + st +
2983 ", tasks = " + qt +
2984 ", submissions = " + qs +
2985 "]";
2986 }
2987
2988 /**
2989 * Possibly initiates an orderly shutdown in which previously
2990 * submitted tasks are executed, but no new tasks will be
2991 * accepted. Invocation has no effect on execution state if this
2992 * is the {@link #commonPool()}, and no additional effect if
2993 * already shut down. Tasks that are in the process of being
2994 * submitted concurrently during the course of this method may or
2995 * may not be rejected.
2996 *
2997 * @throws SecurityException if a security manager exists and
2998 * the caller is not permitted to modify threads
2999 * because it does not hold {@link
3000 * java.lang.RuntimePermission}{@code ("modifyThread")}
3001 */
3002 public void shutdown() {
3003 checkPermission();
3004 tryTerminate(false, true);
3005 }
3006
3007 /**
3008 * Possibly attempts to cancel and/or stop all tasks, and reject
3009 * all subsequently submitted tasks. Invocation has no effect on
3010 * execution state if this is the {@link #commonPool()}, and no
3011 * additional effect if already shut down. Otherwise, tasks that
3012 * are in the process of being submitted or executed concurrently
3013 * during the course of this method may or may not be
3014 * rejected. This method cancels both existing and unexecuted
3015 * tasks, in order to permit termination in the presence of task
3016 * dependencies. So the method always returns an empty list
3017 * (unlike the case for some other Executors).
3018 *
3019 * @return an empty list
3020 * @throws SecurityException if a security manager exists and
3021 * the caller is not permitted to modify threads
3022 * because it does not hold {@link
3023 * java.lang.RuntimePermission}{@code ("modifyThread")}
3024 */
3025 public List<Runnable> shutdownNow() {
3026 checkPermission();
3027 tryTerminate(true, true);
3028 return Collections.emptyList();
3029 }
3030
3031 /**
3032 * Returns {@code true} if all tasks have completed following shut down.
3033 *
3034 * @return {@code true} if all tasks have completed following shut down
3035 */
3036 public boolean isTerminated() {
3037 long c = ctl;
3038 return ((c & STOP_BIT) != 0L &&
3039 (short)(c >>> TC_SHIFT) == -(config & SMASK));
3040 }
3041
3042 /**
3043 * Returns {@code true} if the process of termination has
3044 * commenced but not yet completed. This method may be useful for
3045 * debugging. A return of {@code true} reported a sufficient
3046 * period after shutdown may indicate that submitted tasks have
3047 * ignored or suppressed interruption, or are waiting for I/O,
3048 * causing this executor not to properly terminate. (See the
3049 * advisory notes for class {@link ForkJoinTask} stating that
3050 * tasks should not normally entail blocking operations. But if
3051 * they do, they must abort them on interrupt.)
3052 *
3053 * @return {@code true} if terminating but not yet terminated
3054 */
3055 public boolean isTerminating() {
3056 long c = ctl;
3057 return ((c & STOP_BIT) != 0L &&
3058 (short)(c >>> TC_SHIFT) != -(config & SMASK));
3059 }
3060
3061 /**
3062 * Returns {@code true} if this pool has been shut down.
3063 *
3064 * @return {@code true} if this pool has been shut down
3065 */
3066 public boolean isShutdown() {
3067 return plock < 0;
3068 }
3069
3070 /**
3071 * Blocks until all tasks have completed execution after a
3072 * shutdown request, or the timeout occurs, or the current thread
3073 * is interrupted, whichever happens first. Because the {@link
3074 * #commonPool()} never terminates until program shutdown, when
3075 * applied to the common pool, this method is equivalent to {@link
3076 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
3077 *
3078 * @param timeout the maximum time to wait
3079 * @param unit the time unit of the timeout argument
3080 * @return {@code true} if this executor terminated and
3081 * {@code false} if the timeout elapsed before termination
3082 * @throws InterruptedException if interrupted while waiting
3083 */
3084 public boolean awaitTermination(long timeout, TimeUnit unit)
3085 throws InterruptedException {
3086 if (Thread.interrupted())
3087 throw new InterruptedException();
3088 if (this == common) {
3089 awaitQuiescence(timeout, unit);
3090 return false;
3091 }
3092 long nanos = unit.toNanos(timeout);
3093 if (isTerminated())
3094 return true;
3095 long startTime = System.nanoTime();
3096 boolean terminated = false;
3097 synchronized (this) {
3098 for (long waitTime = nanos, millis = 0L;;) {
3099 if (terminated = isTerminated() ||
3100 waitTime <= 0L ||
3101 (millis = unit.toMillis(waitTime)) <= 0L)
3102 break;
3103 wait(millis);
3104 waitTime = nanos - (System.nanoTime() - startTime);
3105 }
3106 }
3107 return terminated;
3108 }
3109
3110 /**
3111 * If called by a ForkJoinTask operating in this pool, equivalent
3112 * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3113 * waits and/or attempts to assist performing tasks until this
3114 * pool {@link #isQuiescent} or the indicated timeout elapses.
3115 *
3116 * @param timeout the maximum time to wait
3117 * @param unit the time unit of the timeout argument
3118 * @return {@code true} if quiescent; {@code false} if the
3119 * timeout elapsed.
3120 */
3121 public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3122 long nanos = unit.toNanos(timeout);
3123 ForkJoinWorkerThread wt;
3124 Thread thread = Thread.currentThread();
3125 if ((thread instanceof ForkJoinWorkerThread) &&
3126 (wt = (ForkJoinWorkerThread)thread).pool == this) {
3127 helpQuiescePool(wt.workQueue);
3128 return true;
3129 }
3130 long startTime = System.nanoTime();
3131 WorkQueue[] ws;
3132 int r = 0, m;
3133 boolean found = true;
3134 while (!isQuiescent() && (ws = workQueues) != null &&
3135 (m = ws.length - 1) >= 0) {
3136 if (!found) {
3137 if ((System.nanoTime() - startTime) > nanos)
3138 return false;
3139 Thread.yield(); // cannot block
3140 }
3141 found = false;
3142 for (int j = (m + 1) << 2; j >= 0; --j) {
3143 ForkJoinTask<?> t; WorkQueue q; int b;
3144 if ((q = ws[r++ & m]) != null && (b = q.base) - q.top < 0) {
3145 found = true;
3146 if ((t = q.pollAt(b)) != null) {
3147 if (q.base - q.top < 0)
3148 signalWork(q);
3149 t.doExec();
3150 }
3151 break;
3152 }
3153 }
3154 }
3155 return true;
3156 }
3157
3158 /**
3159 * Waits and/or attempts to assist performing tasks indefinitely
3160 * until the {@link #commonPool()} {@link #isQuiescent}.
3161 */
3162 static void quiesceCommonPool() {
3163 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3164 }
3165
3166 /**
3167 * Interface for extending managed parallelism for tasks running
3168 * in {@link ForkJoinPool}s.
3169 *
3170 * <p>A {@code ManagedBlocker} provides two methods. Method
3171 * {@code isReleasable} must return {@code true} if blocking is
3172 * not necessary. Method {@code block} blocks the current thread
3173 * if necessary (perhaps internally invoking {@code isReleasable}
3174 * before actually blocking). These actions are performed by any
3175 * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
3176 * The unusual methods in this API accommodate synchronizers that
3177 * may, but don't usually, block for long periods. Similarly, they
3178 * allow more efficient internal handling of cases in which
3179 * additional workers may be, but usually are not, needed to
3180 * ensure sufficient parallelism. Toward this end,
3181 * implementations of method {@code isReleasable} must be amenable
3182 * to repeated invocation.
3183 *
3184 * <p>For example, here is a ManagedBlocker based on a
3185 * ReentrantLock:
3186 * <pre> {@code
3187 * class ManagedLocker implements ManagedBlocker {
3188 * final ReentrantLock lock;
3189 * boolean hasLock = false;
3190 * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3191 * public boolean block() {
3192 * if (!hasLock)
3193 * lock.lock();
3194 * return true;
3195 * }
3196 * public boolean isReleasable() {
3197 * return hasLock || (hasLock = lock.tryLock());
3198 * }
3199 * }}</pre>
3200 *
3201 * <p>Here is a class that possibly blocks waiting for an
3202 * item on a given queue:
3203 * <pre> {@code
3204 * class QueueTaker<E> implements ManagedBlocker {
3205 * final BlockingQueue<E> queue;
3206 * volatile E item = null;
3207 * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3208 * public boolean block() throws InterruptedException {
3209 * if (item == null)
3210 * item = queue.take();
3211 * return true;
3212 * }
3213 * public boolean isReleasable() {
3214 * return item != null || (item = queue.poll()) != null;
3215 * }
3216 * public E getItem() { // call after pool.managedBlock completes
3217 * return item;
3218 * }
3219 * }}</pre>
3220 */
3221 public static interface ManagedBlocker {
3222 /**
3223 * Possibly blocks the current thread, for example waiting for
3224 * a lock or condition.
3225 *
3226 * @return {@code true} if no additional blocking is necessary
3227 * (i.e., if isReleasable would return true)
3228 * @throws InterruptedException if interrupted while waiting
3229 * (the method is not required to do so, but is allowed to)
3230 */
3231 boolean block() throws InterruptedException;
3232
3233 /**
3234 * Returns {@code true} if blocking is unnecessary.
3235 * @return {@code true} if blocking is unnecessary
3236 */
3237 boolean isReleasable();
3238 }
3239
3240 /**
3241 * Blocks in accord with the given blocker. If the current thread
3242 * is a {@link ForkJoinWorkerThread}, this method possibly
3243 * arranges for a spare thread to be activated if necessary to
3244 * ensure sufficient parallelism while the current thread is blocked.
3245 *
3246 * <p>If the caller is not a {@link ForkJoinTask}, this method is
3247 * behaviorally equivalent to
3248 * <pre> {@code
3249 * while (!blocker.isReleasable())
3250 * if (blocker.block())
3251 * return;
3252 * }</pre>
3253 *
3254 * If the caller is a {@code ForkJoinTask}, then the pool may
3255 * first be expanded to ensure parallelism, and later adjusted.
3256 *
3257 * @param blocker the blocker
3258 * @throws InterruptedException if blocker.block did so
3259 */
3260 public static void managedBlock(ManagedBlocker blocker)
3261 throws InterruptedException {
3262 Thread t = Thread.currentThread();
3263 if (t instanceof ForkJoinWorkerThread) {
3264 ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3265 while (!blocker.isReleasable()) { // variant of helpSignal
3266 WorkQueue[] ws; WorkQueue q; int m, u;
3267 if ((ws = p.workQueues) != null && (m = ws.length - 1) >= 0) {
3268 for (int i = 0; i <= m; ++i) {
3269 if (blocker.isReleasable())
3270 return;
3271 if ((q = ws[i]) != null && q.base - q.top < 0) {
3272 p.signalWork(q);
3273 if ((u = (int)(p.ctl >>> 32)) >= 0 ||
3274 (u >> UAC_SHIFT) >= 0)
3275 break;
3276 }
3277 }
3278 }
3279 if (p.tryCompensate()) {
3280 try {
3281 do {} while (!blocker.isReleasable() &&
3282 !blocker.block());
3283 } finally {
3284 p.incrementActiveCount();
3285 }
3286 break;
3287 }
3288 }
3289 }
3290 else {
3291 do {} while (!blocker.isReleasable() &&
3292 !blocker.block());
3293 }
3294 }
3295
3296 // AbstractExecutorService overrides. These rely on undocumented
3297 // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3298 // implement RunnableFuture.
3299
3300 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3301 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3302 }
3303
3304 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3305 return new ForkJoinTask.AdaptedCallable<T>(callable);
3306 }
3307
3308 // Unsafe mechanics
3309 private static final sun.misc.Unsafe U;
3310 private static final long CTL;
3311 private static final long PARKBLOCKER;
3312 private static final int ABASE;
3313 private static final int ASHIFT;
3314 private static final long STEALCOUNT;
3315 private static final long PLOCK;
3316 private static final long INDEXSEED;
3317 private static final long QLOCK;
3318
3319 static {
3320 // initialize field offsets for CAS etc
3321 try {
3322 U = sun.misc.Unsafe.getUnsafe();
3323 Class<?> k = ForkJoinPool.class;
3324 CTL = U.objectFieldOffset
3325 (k.getDeclaredField("ctl"));
3326 STEALCOUNT = U.objectFieldOffset
3327 (k.getDeclaredField("stealCount"));
3328 PLOCK = U.objectFieldOffset
3329 (k.getDeclaredField("plock"));
3330 INDEXSEED = U.objectFieldOffset
3331 (k.getDeclaredField("indexSeed"));
3332 Class<?> tk = Thread.class;
3333 PARKBLOCKER = U.objectFieldOffset
3334 (tk.getDeclaredField("parkBlocker"));
3335 Class<?> wk = WorkQueue.class;
3336 QLOCK = U.objectFieldOffset
3337 (wk.getDeclaredField("qlock"));
3338 Class<?> ak = ForkJoinTask[].class;
3339 ABASE = U.arrayBaseOffset(ak);
3340 int scale = U.arrayIndexScale(ak);
3341 if ((scale & (scale - 1)) != 0)
3342 throw new Error("data type scale not a power of two");
3343 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3344 } catch (Exception e) {
3345 throw new Error(e);
3346 }
3347
3348 defaultForkJoinWorkerThreadFactory =
3349 new DefaultForkJoinWorkerThreadFactory();
3350 modifyThreadPermission = new RuntimePermission("modifyThread");
3351
3352 common = java.security.AccessController.doPrivileged
3353 (new java.security.PrivilegedAction<ForkJoinPool>() {
3354 public ForkJoinPool run() { return makeCommonPool(); }});
3355 int par = common.config; // report 1 even if threads disabled
3356 commonParallelism = par > 0 ? par : 1;
3357 }
3358
3359 /**
3360 * Creates and returns the common pool, respecting user settings
3361 * specified via system properties.
3362 */
3363 private static ForkJoinPool makeCommonPool() {
3364 int parallelism = -1;
3365 ForkJoinWorkerThreadFactory factory
3366 = defaultForkJoinWorkerThreadFactory;
3367 UncaughtExceptionHandler handler = null;
3368 try { // ignore exceptions in accesing/parsing properties
3369 String pp = System.getProperty
3370 ("java.util.concurrent.ForkJoinPool.common.parallelism");
3371 String fp = System.getProperty
3372 ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3373 String hp = System.getProperty
3374 ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3375 if (pp != null)
3376 parallelism = Integer.parseInt(pp);
3377 if (fp != null)
3378 factory = ((ForkJoinWorkerThreadFactory)ClassLoader.
3379 getSystemClassLoader().loadClass(fp).newInstance());
3380 if (hp != null)
3381 handler = ((UncaughtExceptionHandler)ClassLoader.
3382 getSystemClassLoader().loadClass(hp).newInstance());
3383 } catch (Exception ignore) {
3384 }
3385
3386 if (parallelism < 0)
3387 parallelism = Runtime.getRuntime().availableProcessors() - 1;
3388 if (parallelism > MAX_CAP)
3389 parallelism = MAX_CAP;
3390 return new ForkJoinPool(parallelism, factory, handler, false,
3391 "ForkJoinPool.commonPool-worker-");
3392 }
3393
3394 }