ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.169
Committed: Wed Mar 13 12:39:02 2013 UTC (11 years, 2 months ago) by dl
Branch: MAIN
Changes since 1.168: +2 -2 lines
Log Message:
Synch with lambda Spliterator API

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.lang.Thread.UncaughtExceptionHandler;
10 import java.util.ArrayList;
11 import java.util.Arrays;
12 import java.util.Collection;
13 import java.util.Collections;
14 import java.util.List;
15 import java.util.concurrent.AbstractExecutorService;
16 import java.util.concurrent.Callable;
17 import java.util.concurrent.ExecutorService;
18 import java.util.concurrent.Future;
19 import java.util.concurrent.RejectedExecutionException;
20 import java.util.concurrent.RunnableFuture;
21 import java.util.concurrent.TimeUnit;
22
23 /**
24 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
25 * A {@code ForkJoinPool} provides the entry point for submissions
26 * from non-{@code ForkJoinTask} clients, as well as management and
27 * monitoring operations.
28 *
29 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
30 * ExecutorService} mainly by virtue of employing
31 * <em>work-stealing</em>: all threads in the pool attempt to find and
32 * execute tasks submitted to the pool and/or created by other active
33 * tasks (eventually blocking waiting for work if none exist). This
34 * enables efficient processing when most tasks spawn other subtasks
35 * (as do most {@code ForkJoinTask}s), as well as when many small
36 * tasks are submitted to the pool from external clients. Especially
37 * when setting <em>asyncMode</em> to true in constructors, {@code
38 * ForkJoinPool}s may also be appropriate for use with event-style
39 * tasks that are never joined.
40 *
41 * <p>A static {@link #commonPool()} is available and appropriate for
42 * most applications. The common pool is used by any ForkJoinTask that
43 * is not explicitly submitted to a specified pool. Using the common
44 * pool normally reduces resource usage (its threads are slowly
45 * reclaimed during periods of non-use, and reinstated upon subsequent
46 * use).
47 *
48 * <p>For applications that require separate or custom pools, a {@code
49 * ForkJoinPool} may be constructed with a given target parallelism
50 * level; by default, equal to the number of available processors. The
51 * pool attempts to maintain enough active (or available) threads by
52 * dynamically adding, suspending, or resuming internal worker
53 * threads, even if some tasks are stalled waiting to join
54 * others. However, no such adjustments are guaranteed in the face of
55 * blocked I/O or other unmanaged synchronization. The nested {@link
56 * ManagedBlocker} interface enables extension of the kinds of
57 * synchronization accommodated.
58 *
59 * <p>In addition to execution and lifecycle control methods, this
60 * class provides status check methods (for example
61 * {@link #getStealCount}) that are intended to aid in developing,
62 * tuning, and monitoring fork/join applications. Also, method
63 * {@link #toString} returns indications of pool state in a
64 * convenient form for informal monitoring.
65 *
66 * <p>As is the case with other ExecutorServices, there are three
67 * main task execution methods summarized in the following table.
68 * These are designed to be used primarily by clients not already
69 * engaged in fork/join computations in the current pool. The main
70 * forms of these methods accept instances of {@code ForkJoinTask},
71 * but overloaded forms also allow mixed execution of plain {@code
72 * Runnable}- or {@code Callable}- based activities as well. However,
73 * tasks that are already executing in a pool should normally instead
74 * use the within-computation forms listed in the table unless using
75 * async event-style tasks that are not usually joined, in which case
76 * there is little difference among choice of methods.
77 *
78 * <table BORDER CELLPADDING=3 CELLSPACING=1>
79 * <caption>Summary of task execution methods</caption>
80 * <tr>
81 * <td></td>
82 * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
83 * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
84 * </tr>
85 * <tr>
86 * <td> <b>Arrange async execution</b></td>
87 * <td> {@link #execute(ForkJoinTask)}</td>
88 * <td> {@link ForkJoinTask#fork}</td>
89 * </tr>
90 * <tr>
91 * <td> <b>Await and obtain result</b></td>
92 * <td> {@link #invoke(ForkJoinTask)}</td>
93 * <td> {@link ForkJoinTask#invoke}</td>
94 * </tr>
95 * <tr>
96 * <td> <b>Arrange exec and obtain Future</b></td>
97 * <td> {@link #submit(ForkJoinTask)}</td>
98 * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
99 * </tr>
100 * </table>
101 *
102 * <p>The common pool is by default constructed with default
103 * parameters, but these may be controlled by setting three
104 * {@linkplain System#getProperty system properties}:
105 * <ul>
106 * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
107 * - the parallelism level, a non-negative integer
108 * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
109 * - the class name of a {@link ForkJoinWorkerThreadFactory}
110 * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
111 * - the class name of a {@link UncaughtExceptionHandler}
112 * </ul>
113 * The system class loader is used to load these classes.
114 * Upon any error in establishing these settings, default parameters
115 * are used. It is possible to disable or limit the use of threads in
116 * the common pool by setting the parallelism property to zero, and/or
117 * using a factory that may return {@code null}.
118 *
119 * <p><b>Implementation notes</b>: This implementation restricts the
120 * maximum number of running threads to 32767. Attempts to create
121 * pools with greater than the maximum number result in
122 * {@code IllegalArgumentException}.
123 *
124 * <p>This implementation rejects submitted tasks (that is, by throwing
125 * {@link RejectedExecutionException}) only when the pool is shut down
126 * or internal resources have been exhausted.
127 *
128 * @since 1.7
129 * @author Doug Lea
130 */
131 @sun.misc.Contended // enable when @Contended is stable
132 public class ForkJoinPool extends AbstractExecutorService {
133
134 /*
135 * Implementation Overview
136 *
137 * This class and its nested classes provide the main
138 * functionality and control for a set of worker threads:
139 * Submissions from non-FJ threads enter into submission queues.
140 * Workers take these tasks and typically split them into subtasks
141 * that may be stolen by other workers. Preference rules give
142 * first priority to processing tasks from their own queues (LIFO
143 * or FIFO, depending on mode), then to randomized FIFO steals of
144 * tasks in other queues.
145 *
146 * WorkQueues
147 * ==========
148 *
149 * Most operations occur within work-stealing queues (in nested
150 * class WorkQueue). These are special forms of Deques that
151 * support only three of the four possible end-operations -- push,
152 * pop, and poll (aka steal), under the further constraints that
153 * push and pop are called only from the owning thread (or, as
154 * extended here, under a lock), while poll may be called from
155 * other threads. (If you are unfamiliar with them, you probably
156 * want to read Herlihy and Shavit's book "The Art of
157 * Multiprocessor programming", chapter 16 describing these in
158 * more detail before proceeding.) The main work-stealing queue
159 * design is roughly similar to those in the papers "Dynamic
160 * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
161 * (http://research.sun.com/scalable/pubs/index.html) and
162 * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
163 * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
164 * The main differences ultimately stem from GC requirements that
165 * we null out taken slots as soon as we can, to maintain as small
166 * a footprint as possible even in programs generating huge
167 * numbers of tasks. To accomplish this, we shift the CAS
168 * arbitrating pop vs poll (steal) from being on the indices
169 * ("base" and "top") to the slots themselves. So, both a
170 * successful pop and poll mainly entail a CAS of a slot from
171 * non-null to null. Because we rely on CASes of references, we
172 * do not need tag bits on base or top. They are simple ints as
173 * used in any circular array-based queue (see for example
174 * ArrayDeque). Updates to the indices must still be ordered in a
175 * way that guarantees that top == base means the queue is empty,
176 * but otherwise may err on the side of possibly making the queue
177 * appear nonempty when a push, pop, or poll have not fully
178 * committed. Note that this means that the poll operation,
179 * considered individually, is not wait-free. One thief cannot
180 * successfully continue until another in-progress one (or, if
181 * previously empty, a push) completes. However, in the
182 * aggregate, we ensure at least probabilistic non-blockingness.
183 * If an attempted steal fails, a thief always chooses a different
184 * random victim target to try next. So, in order for one thief to
185 * progress, it suffices for any in-progress poll or new push on
186 * any empty queue to complete. (This is why we normally use
187 * method pollAt and its variants that try once at the apparent
188 * base index, else consider alternative actions, rather than
189 * method poll.)
190 *
191 * This approach also enables support of a user mode in which local
192 * task processing is in FIFO, not LIFO order, simply by using
193 * poll rather than pop. This can be useful in message-passing
194 * frameworks in which tasks are never joined. However neither
195 * mode considers affinities, loads, cache localities, etc, so
196 * rarely provide the best possible performance on a given
197 * machine, but portably provide good throughput by averaging over
198 * these factors. (Further, even if we did try to use such
199 * information, we do not usually have a basis for exploiting it.
200 * For example, some sets of tasks profit from cache affinities,
201 * but others are harmed by cache pollution effects.)
202 *
203 * WorkQueues are also used in a similar way for tasks submitted
204 * to the pool. We cannot mix these tasks in the same queues used
205 * for work-stealing (this would contaminate lifo/fifo
206 * processing). Instead, we randomly associate submission queues
207 * with submitting threads, using a form of hashing. The
208 * ThreadLocalRandom probe value serves as a hash code for
209 * choosing existing queues, and may be randomly repositioned upon
210 * contention with other submitters. In essence, submitters act
211 * like workers except that they are restricted to executing local
212 * tasks that they submitted (or in the case of CountedCompleters,
213 * others with the same root task). However, because most
214 * shared/external queue operations are more expensive than
215 * internal, and because, at steady state, external submitters
216 * will compete for CPU with workers, ForkJoinTask.join and
217 * related methods disable them from repeatedly helping to process
218 * tasks if all workers are active. Insertion of tasks in shared
219 * mode requires a lock (mainly to protect in the case of
220 * resizing) but we use only a simple spinlock (using bits in
221 * field qlock), because submitters encountering a busy queue move
222 * on to try or create other queues -- they block only when
223 * creating and registering new queues.
224 *
225 * Management
226 * ==========
227 *
228 * The main throughput advantages of work-stealing stem from
229 * decentralized control -- workers mostly take tasks from
230 * themselves or each other. We cannot negate this in the
231 * implementation of other management responsibilities. The main
232 * tactic for avoiding bottlenecks is packing nearly all
233 * essentially atomic control state into two volatile variables
234 * that are by far most often read (not written) as status and
235 * consistency checks.
236 *
237 * Field "ctl" contains 64 bits holding all the information needed
238 * to atomically decide to add, inactivate, enqueue (on an event
239 * queue), dequeue, and/or re-activate workers. To enable this
240 * packing, we restrict maximum parallelism to (1<<15)-1 (which is
241 * far in excess of normal operating range) to allow ids, counts,
242 * and their negations (used for thresholding) to fit into 16bit
243 * fields.
244 *
245 * Field "plock" is a form of sequence lock with a saturating
246 * shutdown bit (similarly for per-queue "qlocks"), mainly
247 * protecting updates to the workQueues array, as well as to
248 * enable shutdown. When used as a lock, it is normally only very
249 * briefly held, so is nearly always available after at most a
250 * brief spin, but we use a monitor-based backup strategy to
251 * block when needed.
252 *
253 * Recording WorkQueues. WorkQueues are recorded in the
254 * "workQueues" array that is created upon first use and expanded
255 * if necessary. Updates to the array while recording new workers
256 * and unrecording terminated ones are protected from each other
257 * by a lock but the array is otherwise concurrently readable, and
258 * accessed directly. To simplify index-based operations, the
259 * array size is always a power of two, and all readers must
260 * tolerate null slots. Worker queues are at odd indices. Shared
261 * (submission) queues are at even indices, up to a maximum of 64
262 * slots, to limit growth even if array needs to expand to add
263 * more workers. Grouping them together in this way simplifies and
264 * speeds up task scanning.
265 *
266 * All worker thread creation is on-demand, triggered by task
267 * submissions, replacement of terminated workers, and/or
268 * compensation for blocked workers. However, all other support
269 * code is set up to work with other policies. To ensure that we
270 * do not hold on to worker references that would prevent GC, ALL
271 * accesses to workQueues are via indices into the workQueues
272 * array (which is one source of some of the messy code
273 * constructions here). In essence, the workQueues array serves as
274 * a weak reference mechanism. Thus for example the wait queue
275 * field of ctl stores indices, not references. Access to the
276 * workQueues in associated methods (for example signalWork) must
277 * both index-check and null-check the IDs. All such accesses
278 * ignore bad IDs by returning out early from what they are doing,
279 * since this can only be associated with termination, in which
280 * case it is OK to give up. All uses of the workQueues array
281 * also check that it is non-null (even if previously
282 * non-null). This allows nulling during termination, which is
283 * currently not necessary, but remains an option for
284 * resource-revocation-based shutdown schemes. It also helps
285 * reduce JIT issuance of uncommon-trap code, which tends to
286 * unnecessarily complicate control flow in some methods.
287 *
288 * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
289 * let workers spin indefinitely scanning for tasks when none can
290 * be found immediately, and we cannot start/resume workers unless
291 * there appear to be tasks available. On the other hand, we must
292 * quickly prod them into action when new tasks are submitted or
293 * generated. In many usages, ramp-up time to activate workers is
294 * the main limiting factor in overall performance (this is
295 * compounded at program start-up by JIT compilation and
296 * allocation). So we try to streamline this as much as possible.
297 * We park/unpark workers after placing in an event wait queue
298 * when they cannot find work. This "queue" is actually a simple
299 * Treiber stack, headed by the "id" field of ctl, plus a 15bit
300 * counter value (that reflects the number of times a worker has
301 * been inactivated) to avoid ABA effects (we need only as many
302 * version numbers as worker threads). Successors are held in
303 * field WorkQueue.nextWait. Queuing deals with several intrinsic
304 * races, mainly that a task-producing thread can miss seeing (and
305 * signalling) another thread that gave up looking for work but
306 * has not yet entered the wait queue. We solve this by requiring
307 * a full sweep of all workers (via repeated calls to method
308 * scan()) both before and after a newly waiting worker is added
309 * to the wait queue. During a rescan, the worker might release
310 * some other queued worker rather than itself, which has the same
311 * net effect. Because enqueued workers may actually be rescanning
312 * rather than waiting, we set and clear the "parker" field of
313 * WorkQueues to reduce unnecessary calls to unpark. (This
314 * requires a secondary recheck to avoid missed signals.) Note
315 * the unusual conventions about Thread.interrupts surrounding
316 * parking and other blocking: Because interrupts are used solely
317 * to alert threads to check termination, which is checked anyway
318 * upon blocking, we clear status (using Thread.interrupted)
319 * before any call to park, so that park does not immediately
320 * return due to status being set via some other unrelated call to
321 * interrupt in user code.
322 *
323 * Signalling. We create or wake up workers only when there
324 * appears to be at least one task they might be able to find and
325 * execute. However, many other threads may notice the same task
326 * and each signal to wake up a thread that might take it. So in
327 * general, pools will be over-signalled. When a submission is
328 * added or another worker adds a task to a queue that has fewer
329 * than two tasks, they signal waiting workers (or trigger
330 * creation of new ones if fewer than the given parallelism level
331 * -- signalWork), and may leave a hint to the unparked worker to
332 * help signal others upon wakeup). These primary signals are
333 * buttressed by others (see method helpSignal) whenever other
334 * threads scan for work or do not have a task to process. On
335 * most platforms, signalling (unpark) overhead time is noticeably
336 * long, and the time between signalling a thread and it actually
337 * making progress can be very noticeably long, so it is worth
338 * offloading these delays from critical paths as much as
339 * possible.
340 *
341 * Trimming workers. To release resources after periods of lack of
342 * use, a worker starting to wait when the pool is quiescent will
343 * time out and terminate if the pool has remained quiescent for a
344 * given period -- a short period if there are more threads than
345 * parallelism, longer as the number of threads decreases. This
346 * will slowly propagate, eventually terminating all workers after
347 * periods of non-use.
348 *
349 * Shutdown and Termination. A call to shutdownNow atomically sets
350 * a plock bit and then (non-atomically) sets each worker's
351 * qlock status, cancels all unprocessed tasks, and wakes up
352 * all waiting workers. Detecting whether termination should
353 * commence after a non-abrupt shutdown() call requires more work
354 * and bookkeeping. We need consensus about quiescence (i.e., that
355 * there is no more work). The active count provides a primary
356 * indication but non-abrupt shutdown still requires a rechecking
357 * scan for any workers that are inactive but not queued.
358 *
359 * Joining Tasks
360 * =============
361 *
362 * Any of several actions may be taken when one worker is waiting
363 * to join a task stolen (or always held) by another. Because we
364 * are multiplexing many tasks on to a pool of workers, we can't
365 * just let them block (as in Thread.join). We also cannot just
366 * reassign the joiner's run-time stack with another and replace
367 * it later, which would be a form of "continuation", that even if
368 * possible is not necessarily a good idea since we sometimes need
369 * both an unblocked task and its continuation to progress.
370 * Instead we combine two tactics:
371 *
372 * Helping: Arranging for the joiner to execute some task that it
373 * would be running if the steal had not occurred.
374 *
375 * Compensating: Unless there are already enough live threads,
376 * method tryCompensate() may create or re-activate a spare
377 * thread to compensate for blocked joiners until they unblock.
378 *
379 * A third form (implemented in tryRemoveAndExec) amounts to
380 * helping a hypothetical compensator: If we can readily tell that
381 * a possible action of a compensator is to steal and execute the
382 * task being joined, the joining thread can do so directly,
383 * without the need for a compensation thread (although at the
384 * expense of larger run-time stacks, but the tradeoff is
385 * typically worthwhile).
386 *
387 * The ManagedBlocker extension API can't use helping so relies
388 * only on compensation in method awaitBlocker.
389 *
390 * The algorithm in tryHelpStealer entails a form of "linear"
391 * helping: Each worker records (in field currentSteal) the most
392 * recent task it stole from some other worker. Plus, it records
393 * (in field currentJoin) the task it is currently actively
394 * joining. Method tryHelpStealer uses these markers to try to
395 * find a worker to help (i.e., steal back a task from and execute
396 * it) that could hasten completion of the actively joined task.
397 * In essence, the joiner executes a task that would be on its own
398 * local deque had the to-be-joined task not been stolen. This may
399 * be seen as a conservative variant of the approach in Wagner &
400 * Calder "Leapfrogging: a portable technique for implementing
401 * efficient futures" SIGPLAN Notices, 1993
402 * (http://portal.acm.org/citation.cfm?id=155354). It differs in
403 * that: (1) We only maintain dependency links across workers upon
404 * steals, rather than use per-task bookkeeping. This sometimes
405 * requires a linear scan of workQueues array to locate stealers,
406 * but often doesn't because stealers leave hints (that may become
407 * stale/wrong) of where to locate them. It is only a hint
408 * because a worker might have had multiple steals and the hint
409 * records only one of them (usually the most current). Hinting
410 * isolates cost to when it is needed, rather than adding to
411 * per-task overhead. (2) It is "shallow", ignoring nesting and
412 * potentially cyclic mutual steals. (3) It is intentionally
413 * racy: field currentJoin is updated only while actively joining,
414 * which means that we miss links in the chain during long-lived
415 * tasks, GC stalls etc (which is OK since blocking in such cases
416 * is usually a good idea). (4) We bound the number of attempts
417 * to find work (see MAX_HELP) and fall back to suspending the
418 * worker and if necessary replacing it with another.
419 *
420 * Helping actions for CountedCompleters are much simpler: Method
421 * helpComplete can take and execute any task with the same root
422 * as the task being waited on. However, this still entails some
423 * traversal of completer chains, so is less efficient than using
424 * CountedCompleters without explicit joins.
425 *
426 * It is impossible to keep exactly the target parallelism number
427 * of threads running at any given time. Determining the
428 * existence of conservatively safe helping targets, the
429 * availability of already-created spares, and the apparent need
430 * to create new spares are all racy, so we rely on multiple
431 * retries of each. Compensation in the apparent absence of
432 * helping opportunities is challenging to control on JVMs, where
433 * GC and other activities can stall progress of tasks that in
434 * turn stall out many other dependent tasks, without us being
435 * able to determine whether they will ever require compensation.
436 * Even though work-stealing otherwise encounters little
437 * degradation in the presence of more threads than cores,
438 * aggressively adding new threads in such cases entails risk of
439 * unwanted positive feedback control loops in which more threads
440 * cause more dependent stalls (as well as delayed progress of
441 * unblocked threads to the point that we know they are available)
442 * leading to more situations requiring more threads, and so
443 * on. This aspect of control can be seen as an (analytically
444 * intractable) game with an opponent that may choose the worst
445 * (for us) active thread to stall at any time. We take several
446 * precautions to bound losses (and thus bound gains), mainly in
447 * methods tryCompensate and awaitJoin.
448 *
449 * Common Pool
450 * ===========
451 *
452 * The static common Pool always exists after static
453 * initialization. Since it (or any other created pool) need
454 * never be used, we minimize initial construction overhead and
455 * footprint to the setup of about a dozen fields, with no nested
456 * allocation. Most bootstrapping occurs within method
457 * fullExternalPush during the first submission to the pool.
458 *
459 * When external threads submit to the common pool, they can
460 * perform subtask processing (see externalHelpJoin and related
461 * methods). This caller-helps policymakes it sensible to set
462 * common pool parallelism level to one (or more) less than the
463 * total number of available cores, or even zero for pure
464 * caller-runs. We do not need to record whether external
465 * submissions are to the common pool -- if not, externalHelpJoin
466 * returns quickly (at the most helping to signal some common pool
467 * workers). These submitters would otherwise be blocked waiting
468 * for completion, so the extra effort (with liberally sprinkled
469 * task status checks) in inapplicable cases amounts to an odd
470 * form of limited spin-wait before blocking in ForkJoinTask.join.
471 *
472 * Style notes
473 * ===========
474 *
475 * There is a lot of representation-level coupling among classes
476 * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
477 * fields of WorkQueue maintain data structures managed by
478 * ForkJoinPool, so are directly accessed. There is little point
479 * trying to reduce this, since any associated future changes in
480 * representations will need to be accompanied by algorithmic
481 * changes anyway. Several methods intrinsically sprawl because
482 * they must accumulate sets of consistent reads of volatiles held
483 * in local variables. Methods signalWork() and scan() are the
484 * main bottlenecks, so are especially heavily
485 * micro-optimized/mangled. There are lots of inline assignments
486 * (of form "while ((local = field) != 0)") which are usually the
487 * simplest way to ensure the required read orderings (which are
488 * sometimes critical). This leads to a "C"-like style of listing
489 * declarations of these locals at the heads of methods or blocks.
490 * There are several occurrences of the unusual "do {} while
491 * (!cas...)" which is the simplest way to force an update of a
492 * CAS'ed variable. There are also other coding oddities (including
493 * several unnecessary-looking hoisted null checks) that help
494 * some methods perform reasonably even when interpreted (not
495 * compiled).
496 *
497 * The order of declarations in this file is:
498 * (1) Static utility functions
499 * (2) Nested (static) classes
500 * (3) Static fields
501 * (4) Fields, along with constants used when unpacking some of them
502 * (5) Internal control methods
503 * (6) Callbacks and other support for ForkJoinTask methods
504 * (7) Exported methods
505 * (8) Static block initializing statics in minimally dependent order
506 */
507
508 // Static utilities
509
510 /**
511 * If there is a security manager, makes sure caller has
512 * permission to modify threads.
513 */
514 private static void checkPermission() {
515 SecurityManager security = System.getSecurityManager();
516 if (security != null)
517 security.checkPermission(modifyThreadPermission);
518 }
519
520 // Nested classes
521
522 /**
523 * Factory for creating new {@link ForkJoinWorkerThread}s.
524 * A {@code ForkJoinWorkerThreadFactory} must be defined and used
525 * for {@code ForkJoinWorkerThread} subclasses that extend base
526 * functionality or initialize threads with different contexts.
527 */
528 public static interface ForkJoinWorkerThreadFactory {
529 /**
530 * Returns a new worker thread operating in the given pool.
531 *
532 * @param pool the pool this thread works in
533 * @throws NullPointerException if the pool is null
534 * @return the new worker thread
535 */
536 public ForkJoinWorkerThread newThread(ForkJoinPool pool);
537 }
538
539 /**
540 * Default ForkJoinWorkerThreadFactory implementation; creates a
541 * new ForkJoinWorkerThread.
542 */
543 static final class DefaultForkJoinWorkerThreadFactory
544 implements ForkJoinWorkerThreadFactory {
545 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
546 return new ForkJoinWorkerThread(pool);
547 }
548 }
549
550 /**
551 * Class for artificial tasks that are used to replace the target
552 * of local joins if they are removed from an interior queue slot
553 * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
554 * actually do anything beyond having a unique identity.
555 */
556 static final class EmptyTask extends ForkJoinTask<Void> {
557 private static final long serialVersionUID = -7721805057305804111L;
558 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
559 public final Void getRawResult() { return null; }
560 public final void setRawResult(Void x) {}
561 public final boolean exec() { return true; }
562 }
563
564 /**
565 * Queues supporting work-stealing as well as external task
566 * submission. See above for main rationale and algorithms.
567 * Implementation relies heavily on "Unsafe" intrinsics
568 * and selective use of "volatile":
569 *
570 * Field "base" is the index (mod array.length) of the least valid
571 * queue slot, which is always the next position to steal (poll)
572 * from if nonempty. Reads and writes require volatile orderings
573 * but not CAS, because updates are only performed after slot
574 * CASes.
575 *
576 * Field "top" is the index (mod array.length) of the next queue
577 * slot to push to or pop from. It is written only by owner thread
578 * for push, or under lock for external/shared push, and accessed
579 * by other threads only after reading (volatile) base. Both top
580 * and base are allowed to wrap around on overflow, but (top -
581 * base) (or more commonly -(base - top) to force volatile read of
582 * base before top) still estimates size. The lock ("qlock") is
583 * forced to -1 on termination, causing all further lock attempts
584 * to fail. (Note: we don't need CAS for termination state because
585 * upon pool shutdown, all shared-queues will stop being used
586 * anyway.) Nearly all lock bodies are set up so that exceptions
587 * within lock bodies are "impossible" (modulo JVM errors that
588 * would cause failure anyway.)
589 *
590 * The array slots are read and written using the emulation of
591 * volatiles/atomics provided by Unsafe. Insertions must in
592 * general use putOrderedObject as a form of releasing store to
593 * ensure that all writes to the task object are ordered before
594 * its publication in the queue. All removals entail a CAS to
595 * null. The array is always a power of two. To ensure safety of
596 * Unsafe array operations, all accesses perform explicit null
597 * checks and implicit bounds checks via power-of-two masking.
598 *
599 * In addition to basic queuing support, this class contains
600 * fields described elsewhere to control execution. It turns out
601 * to work better memory-layout-wise to include them in this class
602 * rather than a separate class.
603 *
604 * Performance on most platforms is very sensitive to placement of
605 * instances of both WorkQueues and their arrays -- we absolutely
606 * do not want multiple WorkQueue instances or multiple queue
607 * arrays sharing cache lines. (It would be best for queue objects
608 * and their arrays to share, but there is nothing available to
609 * help arrange that). The @Contended annotation alerts JVMs to
610 * try to keep instances apart.
611 */
612 @sun.misc.Contended // enable when @Contended is stable
613 static final class WorkQueue {
614 /**
615 * Capacity of work-stealing queue array upon initialization.
616 * Must be a power of two; at least 4, but should be larger to
617 * reduce or eliminate cacheline sharing among queues.
618 * Currently, it is much larger, as a partial workaround for
619 * the fact that JVMs often place arrays in locations that
620 * share GC bookkeeping (especially cardmarks) such that
621 * per-write accesses encounter serious memory contention.
622 */
623 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
624
625 /**
626 * Maximum size for queue arrays. Must be a power of two less
627 * than or equal to 1 << (31 - width of array entry) to ensure
628 * lack of wraparound of index calculations, but defined to a
629 * value a bit less than this to help users trap runaway
630 * programs before saturating systems.
631 */
632 static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
633
634 int seed; // for random scanning; initialize nonzero
635 volatile int eventCount; // encoded inactivation count; < 0 if inactive
636 int nextWait; // encoded record of next event waiter
637 int hint; // steal or signal hint (index)
638 int poolIndex; // index of this queue in pool (or 0)
639 final int mode; // 0: lifo, > 0: fifo, < 0: shared
640 int nsteals; // number of steals
641 volatile int qlock; // 1: locked, -1: terminate; else 0
642 volatile int base; // index of next slot for poll
643 int top; // index of next slot for push
644 ForkJoinTask<?>[] array; // the elements (initially unallocated)
645 final ForkJoinPool pool; // the containing pool (may be null)
646 final ForkJoinWorkerThread owner; // owning thread or null if shared
647 volatile Thread parker; // == owner during call to park; else null
648 volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
649 ForkJoinTask<?> currentSteal; // current non-local task being executed
650
651 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
652 int seed) {
653 this.pool = pool;
654 this.owner = owner;
655 this.mode = mode;
656 this.seed = seed;
657 // Place indices in the center of array (that is not yet allocated)
658 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
659 }
660
661 /**
662 * Returns the approximate number of tasks in the queue.
663 */
664 final int queueSize() {
665 int n = base - top; // non-owner callers must read base first
666 return (n >= 0) ? 0 : -n; // ignore transient negative
667 }
668
669 /**
670 * Provides a more accurate estimate of whether this queue has
671 * any tasks than does queueSize, by checking whether a
672 * near-empty queue has at least one unclaimed task.
673 */
674 final boolean isEmpty() {
675 ForkJoinTask<?>[] a; int m, s;
676 int n = base - (s = top);
677 return (n >= 0 ||
678 (n == -1 &&
679 ((a = array) == null ||
680 (m = a.length - 1) < 0 ||
681 U.getObject
682 (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
683 }
684
685 /**
686 * Pushes a task. Call only by owner in unshared queues. (The
687 * shared-queue version is embedded in method externalPush.)
688 *
689 * @param task the task. Caller must ensure non-null.
690 * @throws RejectedExecutionException if array cannot be resized
691 */
692 final void push(ForkJoinTask<?> task) {
693 ForkJoinTask<?>[] a; ForkJoinPool p;
694 int s = top, m, n;
695 if ((a = array) != null) { // ignore if queue removed
696 int j = (((m = a.length - 1) & s) << ASHIFT) + ABASE;
697 U.putOrderedObject(a, j, task);
698 if ((n = (top = s + 1) - base) <= 2) {
699 if ((p = pool) != null)
700 p.signalWork(this);
701 }
702 else if (n >= m)
703 growArray();
704 }
705 }
706
707 /**
708 * Initializes or doubles the capacity of array. Call either
709 * by owner or with lock held -- it is OK for base, but not
710 * top, to move while resizings are in progress.
711 */
712 final ForkJoinTask<?>[] growArray() {
713 ForkJoinTask<?>[] oldA = array;
714 int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
715 if (size > MAXIMUM_QUEUE_CAPACITY)
716 throw new RejectedExecutionException("Queue capacity exceeded");
717 int oldMask, t, b;
718 ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
719 if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
720 (t = top) - (b = base) > 0) {
721 int mask = size - 1;
722 do {
723 ForkJoinTask<?> x;
724 int oldj = ((b & oldMask) << ASHIFT) + ABASE;
725 int j = ((b & mask) << ASHIFT) + ABASE;
726 x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
727 if (x != null &&
728 U.compareAndSwapObject(oldA, oldj, x, null))
729 U.putObjectVolatile(a, j, x);
730 } while (++b != t);
731 }
732 return a;
733 }
734
735 /**
736 * Takes next task, if one exists, in LIFO order. Call only
737 * by owner in unshared queues.
738 */
739 final ForkJoinTask<?> pop() {
740 ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
741 if ((a = array) != null && (m = a.length - 1) >= 0) {
742 for (int s; (s = top - 1) - base >= 0;) {
743 long j = ((m & s) << ASHIFT) + ABASE;
744 if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
745 break;
746 if (U.compareAndSwapObject(a, j, t, null)) {
747 top = s;
748 return t;
749 }
750 }
751 }
752 return null;
753 }
754
755 /**
756 * Takes a task in FIFO order if b is base of queue and a task
757 * can be claimed without contention. Specialized versions
758 * appear in ForkJoinPool methods scan and tryHelpStealer.
759 */
760 final ForkJoinTask<?> pollAt(int b) {
761 ForkJoinTask<?> t; ForkJoinTask<?>[] a;
762 if ((a = array) != null) {
763 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
764 if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
765 base == b &&
766 U.compareAndSwapObject(a, j, t, null)) {
767 base = b + 1;
768 return t;
769 }
770 }
771 return null;
772 }
773
774 /**
775 * Takes next task, if one exists, in FIFO order.
776 */
777 final ForkJoinTask<?> poll() {
778 ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
779 while ((b = base) - top < 0 && (a = array) != null) {
780 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
781 t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
782 if (t != null) {
783 if (base == b &&
784 U.compareAndSwapObject(a, j, t, null)) {
785 base = b + 1;
786 return t;
787 }
788 }
789 else if (base == b) {
790 if (b + 1 == top)
791 break;
792 Thread.yield(); // wait for lagging update (very rare)
793 }
794 }
795 return null;
796 }
797
798 /**
799 * Takes next task, if one exists, in order specified by mode.
800 */
801 final ForkJoinTask<?> nextLocalTask() {
802 return mode == 0 ? pop() : poll();
803 }
804
805 /**
806 * Returns next task, if one exists, in order specified by mode.
807 */
808 final ForkJoinTask<?> peek() {
809 ForkJoinTask<?>[] a = array; int m;
810 if (a == null || (m = a.length - 1) < 0)
811 return null;
812 int i = mode == 0 ? top - 1 : base;
813 int j = ((i & m) << ASHIFT) + ABASE;
814 return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
815 }
816
817 /**
818 * Pops the given task only if it is at the current top.
819 * (A shared version is available only via FJP.tryExternalUnpush)
820 */
821 final boolean tryUnpush(ForkJoinTask<?> t) {
822 ForkJoinTask<?>[] a; int s;
823 if ((a = array) != null && (s = top) != base &&
824 U.compareAndSwapObject
825 (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
826 top = s;
827 return true;
828 }
829 return false;
830 }
831
832 /**
833 * Removes and cancels all known tasks, ignoring any exceptions.
834 */
835 final void cancelAll() {
836 ForkJoinTask.cancelIgnoringExceptions(currentJoin);
837 ForkJoinTask.cancelIgnoringExceptions(currentSteal);
838 for (ForkJoinTask<?> t; (t = poll()) != null; )
839 ForkJoinTask.cancelIgnoringExceptions(t);
840 }
841
842 /**
843 * Computes next value for random probes. Scans don't require
844 * a very high quality generator, but also not a crummy one.
845 * Marsaglia xor-shift is cheap and works well enough. Note:
846 * This is manually inlined in its usages in ForkJoinPool to
847 * avoid writes inside busy scan loops.
848 */
849 final int nextSeed() {
850 int r = seed;
851 r ^= r << 13;
852 r ^= r >>> 17;
853 return seed = r ^= r << 5;
854 }
855
856 // Specialized execution methods
857
858 /**
859 * Pops and runs tasks until empty.
860 */
861 private void popAndExecAll() {
862 // A bit faster than repeated pop calls
863 ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
864 while ((a = array) != null && (m = a.length - 1) >= 0 &&
865 (s = top - 1) - base >= 0 &&
866 (t = ((ForkJoinTask<?>)
867 U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
868 != null) {
869 if (U.compareAndSwapObject(a, j, t, null)) {
870 top = s;
871 t.doExec();
872 }
873 }
874 }
875
876 /**
877 * Polls and runs tasks until empty.
878 */
879 private void pollAndExecAll() {
880 for (ForkJoinTask<?> t; (t = poll()) != null;)
881 t.doExec();
882 }
883
884 /**
885 * If present, removes from queue and executes the given task,
886 * or any other cancelled task. Returns (true) on any CAS
887 * or consistency check failure so caller can retry.
888 *
889 * @return false if no progress can be made, else true
890 */
891 final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
892 boolean stat = true, removed = false, empty = true;
893 ForkJoinTask<?>[] a; int m, s, b, n;
894 if ((a = array) != null && (m = a.length - 1) >= 0 &&
895 (n = (s = top) - (b = base)) > 0) {
896 for (ForkJoinTask<?> t;;) { // traverse from s to b
897 int j = ((--s & m) << ASHIFT) + ABASE;
898 t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
899 if (t == null) // inconsistent length
900 break;
901 else if (t == task) {
902 if (s + 1 == top) { // pop
903 if (!U.compareAndSwapObject(a, j, task, null))
904 break;
905 top = s;
906 removed = true;
907 }
908 else if (base == b) // replace with proxy
909 removed = U.compareAndSwapObject(a, j, task,
910 new EmptyTask());
911 break;
912 }
913 else if (t.status >= 0)
914 empty = false;
915 else if (s + 1 == top) { // pop and throw away
916 if (U.compareAndSwapObject(a, j, t, null))
917 top = s;
918 break;
919 }
920 if (--n == 0) {
921 if (!empty && base == b)
922 stat = false;
923 break;
924 }
925 }
926 }
927 if (removed)
928 task.doExec();
929 return stat;
930 }
931
932 /**
933 * Polls for and executes the given task or any other task in
934 * its CountedCompleter computation.
935 */
936 final boolean pollAndExecCC(ForkJoinTask<?> root) {
937 ForkJoinTask<?>[] a; int b; Object o;
938 outer: while (root.status >= 0 && (b = base) - top < 0 &&
939 (a = array) != null) {
940 long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
941 if ((o = U.getObject(a, j)) == null ||
942 !(o instanceof CountedCompleter))
943 break;
944 for (CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;;) {
945 if (r == root) {
946 if (base == b &&
947 U.compareAndSwapObject(a, j, t, null)) {
948 base = b + 1;
949 t.doExec();
950 return true;
951 }
952 else
953 break; // restart
954 }
955 if ((r = r.completer) == null)
956 break outer; // not part of root computation
957 }
958 }
959 return false;
960 }
961
962 /**
963 * Executes a top-level task and any local tasks remaining
964 * after execution.
965 */
966 final void runTask(ForkJoinTask<?> t) {
967 if (t != null) {
968 (currentSteal = t).doExec();
969 currentSteal = null;
970 ++nsteals;
971 if (base - top < 0) { // process remaining local tasks
972 if (mode == 0)
973 popAndExecAll();
974 else
975 pollAndExecAll();
976 }
977 }
978 }
979
980 /**
981 * Executes a non-top-level (stolen) task.
982 */
983 final void runSubtask(ForkJoinTask<?> t) {
984 if (t != null) {
985 ForkJoinTask<?> ps = currentSteal;
986 (currentSteal = t).doExec();
987 currentSteal = ps;
988 }
989 }
990
991 /**
992 * Returns true if owned and not known to be blocked.
993 */
994 final boolean isApparentlyUnblocked() {
995 Thread wt; Thread.State s;
996 return (eventCount >= 0 &&
997 (wt = owner) != null &&
998 (s = wt.getState()) != Thread.State.BLOCKED &&
999 s != Thread.State.WAITING &&
1000 s != Thread.State.TIMED_WAITING);
1001 }
1002
1003 // Unsafe mechanics
1004 private static final sun.misc.Unsafe U;
1005 private static final long QLOCK;
1006 private static final int ABASE;
1007 private static final int ASHIFT;
1008 static {
1009 try {
1010 U = sun.misc.Unsafe.getUnsafe();
1011 Class<?> k = WorkQueue.class;
1012 Class<?> ak = ForkJoinTask[].class;
1013 QLOCK = U.objectFieldOffset
1014 (k.getDeclaredField("qlock"));
1015 ABASE = U.arrayBaseOffset(ak);
1016 int scale = U.arrayIndexScale(ak);
1017 if ((scale & (scale - 1)) != 0)
1018 throw new Error("data type scale not a power of two");
1019 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1020 } catch (Exception e) {
1021 throw new Error(e);
1022 }
1023 }
1024 }
1025
1026 // static fields (initialized in static initializer below)
1027
1028 /**
1029 * Creates a new ForkJoinWorkerThread. This factory is used unless
1030 * overridden in ForkJoinPool constructors.
1031 */
1032 public static final ForkJoinWorkerThreadFactory
1033 defaultForkJoinWorkerThreadFactory;
1034
1035 /**
1036 * Permission required for callers of methods that may start or
1037 * kill threads.
1038 */
1039 private static final RuntimePermission modifyThreadPermission;
1040
1041 /**
1042 * Common (static) pool. Non-null for public use unless a static
1043 * construction exception, but internal usages null-check on use
1044 * to paranoically avoid potential initialization circularities
1045 * as well as to simplify generated code.
1046 */
1047 static final ForkJoinPool common;
1048
1049 /**
1050 * Common pool parallelism. To allow simpler use and management
1051 * when common pool threads are disabled, we allow the underlying
1052 * common.config field to be zero, but in that case still report
1053 * parallelism as 1 to reflect resulting caller-runs mechanics.
1054 */
1055 static final int commonParallelism;
1056
1057 /**
1058 * Sequence number for creating workerNamePrefix.
1059 */
1060 private static int poolNumberSequence;
1061
1062 /**
1063 * Returns the next sequence number. We don't expect this to
1064 * ever contend, so use simple builtin sync.
1065 */
1066 private static final synchronized int nextPoolId() {
1067 return ++poolNumberSequence;
1068 }
1069
1070 // static constants
1071
1072 /**
1073 * Initial timeout value (in nanoseconds) for the thread
1074 * triggering quiescence to park waiting for new work. On timeout,
1075 * the thread will instead try to shrink the number of
1076 * workers. The value should be large enough to avoid overly
1077 * aggressive shrinkage during most transient stalls (long GCs
1078 * etc).
1079 */
1080 private static final long IDLE_TIMEOUT = 2000L * 1000L * 1000L; // 2sec
1081
1082 /**
1083 * Timeout value when there are more threads than parallelism level
1084 */
1085 private static final long FAST_IDLE_TIMEOUT = 200L * 1000L * 1000L;
1086
1087 /**
1088 * Tolerance for idle timeouts, to cope with timer undershoots
1089 */
1090 private static final long TIMEOUT_SLOP = 2000000L;
1091
1092 /**
1093 * The maximum stolen->joining link depth allowed in method
1094 * tryHelpStealer. Must be a power of two. Depths for legitimate
1095 * chains are unbounded, but we use a fixed constant to avoid
1096 * (otherwise unchecked) cycles and to bound staleness of
1097 * traversal parameters at the expense of sometimes blocking when
1098 * we could be helping.
1099 */
1100 private static final int MAX_HELP = 64;
1101
1102 /**
1103 * Increment for seed generators. See class ThreadLocal for
1104 * explanation.
1105 */
1106 private static final int SEED_INCREMENT = 0x61c88647;
1107
1108 /*
1109 * Bits and masks for control variables
1110 *
1111 * Field ctl is a long packed with:
1112 * AC: Number of active running workers minus target parallelism (16 bits)
1113 * TC: Number of total workers minus target parallelism (16 bits)
1114 * ST: true if pool is terminating (1 bit)
1115 * EC: the wait count of top waiting thread (15 bits)
1116 * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1117 *
1118 * When convenient, we can extract the upper 32 bits of counts and
1119 * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1120 * (int)ctl. The ec field is never accessed alone, but always
1121 * together with id and st. The offsets of counts by the target
1122 * parallelism and the positionings of fields makes it possible to
1123 * perform the most common checks via sign tests of fields: When
1124 * ac is negative, there are not enough active workers, when tc is
1125 * negative, there are not enough total workers, and when e is
1126 * negative, the pool is terminating. To deal with these possibly
1127 * negative fields, we use casts in and out of "short" and/or
1128 * signed shifts to maintain signedness.
1129 *
1130 * When a thread is queued (inactivated), its eventCount field is
1131 * set negative, which is the only way to tell if a worker is
1132 * prevented from executing tasks, even though it must continue to
1133 * scan for them to avoid queuing races. Note however that
1134 * eventCount updates lag releases so usage requires care.
1135 *
1136 * Field plock is an int packed with:
1137 * SHUTDOWN: true if shutdown is enabled (1 bit)
1138 * SEQ: a sequence lock, with PL_LOCK bit set if locked (30 bits)
1139 * SIGNAL: set when threads may be waiting on the lock (1 bit)
1140 *
1141 * The sequence number enables simple consistency checks:
1142 * Staleness of read-only operations on the workQueues array can
1143 * be checked by comparing plock before vs after the reads.
1144 */
1145
1146 // bit positions/shifts for fields
1147 private static final int AC_SHIFT = 48;
1148 private static final int TC_SHIFT = 32;
1149 private static final int ST_SHIFT = 31;
1150 private static final int EC_SHIFT = 16;
1151
1152 // bounds
1153 private static final int SMASK = 0xffff; // short bits
1154 private static final int MAX_CAP = 0x7fff; // max #workers - 1
1155 private static final int EVENMASK = 0xfffe; // even short bits
1156 private static final int SQMASK = 0x007e; // max 64 (even) slots
1157 private static final int SHORT_SIGN = 1 << 15;
1158 private static final int INT_SIGN = 1 << 31;
1159
1160 // masks
1161 private static final long STOP_BIT = 0x0001L << ST_SHIFT;
1162 private static final long AC_MASK = ((long)SMASK) << AC_SHIFT;
1163 private static final long TC_MASK = ((long)SMASK) << TC_SHIFT;
1164
1165 // units for incrementing and decrementing
1166 private static final long TC_UNIT = 1L << TC_SHIFT;
1167 private static final long AC_UNIT = 1L << AC_SHIFT;
1168
1169 // masks and units for dealing with u = (int)(ctl >>> 32)
1170 private static final int UAC_SHIFT = AC_SHIFT - 32;
1171 private static final int UTC_SHIFT = TC_SHIFT - 32;
1172 private static final int UAC_MASK = SMASK << UAC_SHIFT;
1173 private static final int UTC_MASK = SMASK << UTC_SHIFT;
1174 private static final int UAC_UNIT = 1 << UAC_SHIFT;
1175 private static final int UTC_UNIT = 1 << UTC_SHIFT;
1176
1177 // masks and units for dealing with e = (int)ctl
1178 private static final int E_MASK = 0x7fffffff; // no STOP_BIT
1179 private static final int E_SEQ = 1 << EC_SHIFT;
1180
1181 // plock bits
1182 private static final int SHUTDOWN = 1 << 31;
1183 private static final int PL_LOCK = 2;
1184 private static final int PL_SIGNAL = 1;
1185 private static final int PL_SPINS = 1 << 8;
1186
1187 // access mode for WorkQueue
1188 static final int LIFO_QUEUE = 0;
1189 static final int FIFO_QUEUE = 1;
1190 static final int SHARED_QUEUE = -1;
1191
1192 // bounds for #steps in scan loop -- must be power 2 minus 1
1193 private static final int MIN_SCAN = 0x3ff; // cover estimation slop
1194 private static final int MAX_SCAN = 0x1ffff; // 4 * max workers
1195
1196 // Instance fields
1197 volatile long stealCount; // collects worker counts
1198 volatile long ctl; // main pool control
1199 volatile int plock; // shutdown status and seqLock
1200 volatile int indexSeed; // worker/submitter index seed
1201 final int config; // mode and parallelism level
1202 WorkQueue[] workQueues; // main registry
1203 final ForkJoinWorkerThreadFactory factory;
1204 final UncaughtExceptionHandler ueh; // per-worker UEH
1205 final String workerNamePrefix; // to create worker name string
1206
1207 /**
1208 * Acquires the plock lock to protect worker array and related
1209 * updates. This method is called only if an initial CAS on plock
1210 * fails. This acts as a spinlock for normal cases, but falls back
1211 * to builtin monitor to block when (rarely) needed. This would be
1212 * a terrible idea for a highly contended lock, but works fine as
1213 * a more conservative alternative to a pure spinlock.
1214 */
1215 private int acquirePlock() {
1216 int spins = PL_SPINS, ps, nps;
1217 for (;;) {
1218 if (((ps = plock) & PL_LOCK) == 0 &&
1219 U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1220 return nps;
1221 else if (spins >= 0) {
1222 if (ThreadLocalRandom.nextSecondarySeed() >= 0)
1223 --spins;
1224 }
1225 else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1226 synchronized (this) {
1227 if ((plock & PL_SIGNAL) != 0) {
1228 try {
1229 wait();
1230 } catch (InterruptedException ie) {
1231 try {
1232 Thread.currentThread().interrupt();
1233 } catch (SecurityException ignore) {
1234 }
1235 }
1236 }
1237 else
1238 notifyAll();
1239 }
1240 }
1241 }
1242 }
1243
1244 /**
1245 * Unlocks and signals any thread waiting for plock. Called only
1246 * when CAS of seq value for unlock fails.
1247 */
1248 private void releasePlock(int ps) {
1249 plock = ps;
1250 synchronized (this) { notifyAll(); }
1251 }
1252
1253 /**
1254 * Tries to create and start one worker if fewer than target
1255 * parallelism level exist. Adjusts counts etc on failure.
1256 */
1257 private void tryAddWorker() {
1258 long c; int u;
1259 while ((u = (int)((c = ctl) >>> 32)) < 0 &&
1260 (u & SHORT_SIGN) != 0 && (int)c == 0) {
1261 long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1262 ((u + UAC_UNIT) & UAC_MASK)) << 32;
1263 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1264 ForkJoinWorkerThreadFactory fac;
1265 Throwable ex = null;
1266 ForkJoinWorkerThread wt = null;
1267 try {
1268 if ((fac = factory) != null &&
1269 (wt = fac.newThread(this)) != null) {
1270 wt.start();
1271 break;
1272 }
1273 } catch (Throwable e) {
1274 ex = e;
1275 }
1276 deregisterWorker(wt, ex);
1277 break;
1278 }
1279 }
1280 }
1281
1282 // Registering and deregistering workers
1283
1284 /**
1285 * Callback from ForkJoinWorkerThread to establish and record its
1286 * WorkQueue. To avoid scanning bias due to packing entries in
1287 * front of the workQueues array, we treat the array as a simple
1288 * power-of-two hash table using per-thread seed as hash,
1289 * expanding as needed.
1290 *
1291 * @param wt the worker thread
1292 * @return the worker's queue
1293 */
1294 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1295 UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps;
1296 wt.setDaemon(true);
1297 if ((handler = ueh) != null)
1298 wt.setUncaughtExceptionHandler(handler);
1299 do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
1300 s += SEED_INCREMENT) ||
1301 s == 0); // skip 0
1302 WorkQueue w = new WorkQueue(this, wt, config >>> 16, s);
1303 if (((ps = plock) & PL_LOCK) != 0 ||
1304 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1305 ps = acquirePlock();
1306 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1307 try {
1308 if ((ws = workQueues) != null) { // skip if shutting down
1309 int n = ws.length, m = n - 1;
1310 int r = (s << 1) | 1; // use odd-numbered indices
1311 if (ws[r &= m] != null) { // collision
1312 int probes = 0; // step by approx half size
1313 int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1314 while (ws[r = (r + step) & m] != null) {
1315 if (++probes >= n) {
1316 workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1317 m = n - 1;
1318 probes = 0;
1319 }
1320 }
1321 }
1322 w.eventCount = w.poolIndex = r; // volatile write orders
1323 ws[r] = w;
1324 }
1325 } finally {
1326 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1327 releasePlock(nps);
1328 }
1329 wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex)));
1330 return w;
1331 }
1332
1333 /**
1334 * Final callback from terminating worker, as well as upon failure
1335 * to construct or start a worker. Removes record of worker from
1336 * array, and adjusts counts. If pool is shutting down, tries to
1337 * complete termination.
1338 *
1339 * @param wt the worker thread, or null if construction failed
1340 * @param ex the exception causing failure, or null if none
1341 */
1342 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1343 WorkQueue w = null;
1344 if (wt != null && (w = wt.workQueue) != null) {
1345 int ps;
1346 w.qlock = -1; // ensure set
1347 long ns = w.nsteals, sc; // collect steal count
1348 do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1349 sc = stealCount, sc + ns));
1350 if (((ps = plock) & PL_LOCK) != 0 ||
1351 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1352 ps = acquirePlock();
1353 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1354 try {
1355 int idx = w.poolIndex;
1356 WorkQueue[] ws = workQueues;
1357 if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1358 ws[idx] = null;
1359 } finally {
1360 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1361 releasePlock(nps);
1362 }
1363 }
1364
1365 long c; // adjust ctl counts
1366 do {} while (!U.compareAndSwapLong
1367 (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1368 ((c - TC_UNIT) & TC_MASK) |
1369 (c & ~(AC_MASK|TC_MASK)))));
1370
1371 if (!tryTerminate(false, false) && w != null && w.array != null) {
1372 w.cancelAll(); // cancel remaining tasks
1373 WorkQueue[] ws; WorkQueue v; Thread p; int u, i, e;
1374 while ((u = (int)((c = ctl) >>> 32)) < 0 && (e = (int)c) >= 0) {
1375 if (e > 0) { // activate or create replacement
1376 if ((ws = workQueues) == null ||
1377 (i = e & SMASK) >= ws.length ||
1378 (v = ws[i]) == null)
1379 break;
1380 long nc = (((long)(v.nextWait & E_MASK)) |
1381 ((long)(u + UAC_UNIT) << 32));
1382 if (v.eventCount != (e | INT_SIGN))
1383 break;
1384 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1385 v.eventCount = (e + E_SEQ) & E_MASK;
1386 if ((p = v.parker) != null)
1387 U.unpark(p);
1388 break;
1389 }
1390 }
1391 else {
1392 if ((short)u < 0)
1393 tryAddWorker();
1394 break;
1395 }
1396 }
1397 }
1398 if (ex == null) // help clean refs on way out
1399 ForkJoinTask.helpExpungeStaleExceptions();
1400 else // rethrow
1401 ForkJoinTask.rethrow(ex);
1402 }
1403
1404 // Submissions
1405
1406 /**
1407 * Unless shutting down, adds the given task to a submission queue
1408 * at submitter's current queue index (modulo submission
1409 * range). Only the most common path is directly handled in this
1410 * method. All others are relayed to fullExternalPush.
1411 *
1412 * @param task the task. Caller must ensure non-null.
1413 */
1414 final void externalPush(ForkJoinTask<?> task) {
1415 WorkQueue[] ws; WorkQueue q; int z, m; ForkJoinTask<?>[] a;
1416 if ((z = ThreadLocalRandom.getProbe()) != 0 && plock > 0 &&
1417 (ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
1418 (q = ws[m & z & SQMASK]) != null &&
1419 U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1420 int b = q.base, s = q.top, n, an;
1421 if ((a = q.array) != null && (an = a.length) > (n = s + 1 - b)) {
1422 int j = (((an - 1) & s) << ASHIFT) + ABASE;
1423 U.putOrderedObject(a, j, task);
1424 q.top = s + 1; // push on to deque
1425 q.qlock = 0;
1426 if (n <= 2)
1427 signalWork(q);
1428 return;
1429 }
1430 q.qlock = 0;
1431 }
1432 fullExternalPush(task);
1433 }
1434
1435 /**
1436 * Full version of externalPush. This method is called, among
1437 * other times, upon the first submission of the first task to the
1438 * pool, so must perform secondary initialization. It also
1439 * detects first submission by an external thread by looking up
1440 * its ThreadLocal, and creates a new shared queue if the one at
1441 * index if empty or contended. The plock lock body must be
1442 * exception-free (so no try/finally) so we optimistically
1443 * allocate new queues outside the lock and throw them away if
1444 * (very rarely) not needed.
1445 *
1446 * Secondary initialization occurs when plock is zero, to create
1447 * workQueue array and set plock to a valid value. This lock body
1448 * must also be exception-free. Because the plock seq value can
1449 * eventually wrap around zero, this method harmlessly fails to
1450 * reinitialize if workQueues exists, while still advancing plock.
1451 */
1452 private void fullExternalPush(ForkJoinTask<?> task) {
1453 int r;
1454 if ((r = ThreadLocalRandom.getProbe()) == 0) {
1455 ThreadLocalRandom.localInit();
1456 r = ThreadLocalRandom.getProbe();
1457 }
1458 for (;;) {
1459 WorkQueue[] ws; WorkQueue q; int ps, m, k;
1460 boolean move = false;
1461 if ((ps = plock) < 0)
1462 throw new RejectedExecutionException();
1463 else if (ps == 0 || (ws = workQueues) == null ||
1464 (m = ws.length - 1) < 0) { // initialize workQueues
1465 int p = config & SMASK; // find power of two table size
1466 int n = (p > 1) ? p - 1 : 1; // ensure at least 2 slots
1467 n |= n >>> 1; n |= n >>> 2; n |= n >>> 4;
1468 n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1;
1469 WorkQueue[] nws = ((ws = workQueues) == null || ws.length == 0 ?
1470 new WorkQueue[n] : null);
1471 if (((ps = plock) & PL_LOCK) != 0 ||
1472 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1473 ps = acquirePlock();
1474 if (((ws = workQueues) == null || ws.length == 0) && nws != null)
1475 workQueues = nws;
1476 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1477 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1478 releasePlock(nps);
1479 }
1480 else if ((q = ws[k = r & m & SQMASK]) != null) {
1481 if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
1482 ForkJoinTask<?>[] a = q.array;
1483 int s = q.top;
1484 boolean submitted = false;
1485 try { // locked version of push
1486 if ((a != null && a.length > s + 1 - q.base) ||
1487 (a = q.growArray()) != null) { // must presize
1488 int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
1489 U.putOrderedObject(a, j, task);
1490 q.top = s + 1;
1491 submitted = true;
1492 }
1493 } finally {
1494 q.qlock = 0; // unlock
1495 }
1496 if (submitted) {
1497 signalWork(q);
1498 return;
1499 }
1500 }
1501 move = true; // move on failure
1502 }
1503 else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
1504 q = new WorkQueue(this, null, SHARED_QUEUE, r);
1505 if (((ps = plock) & PL_LOCK) != 0 ||
1506 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1507 ps = acquirePlock();
1508 if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
1509 ws[k] = q;
1510 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1511 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1512 releasePlock(nps);
1513 }
1514 else
1515 move = true; // move if busy
1516 if (move)
1517 r = ThreadLocalRandom.advanceProbe(r);
1518 }
1519 }
1520
1521 // Maintaining ctl counts
1522
1523 /**
1524 * Increments active count; mainly called upon return from blocking.
1525 */
1526 final void incrementActiveCount() {
1527 long c;
1528 do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1529 }
1530
1531 /**
1532 * Tries to create or activate a worker if too few are active.
1533 *
1534 * @param q the (non-null) queue holding tasks to be signalled
1535 */
1536 final void signalWork(WorkQueue q) {
1537 int hint = q.poolIndex;
1538 long c; int e, u, i, n; WorkQueue[] ws; WorkQueue w; Thread p;
1539 while ((u = (int)((c = ctl) >>> 32)) < 0) {
1540 if ((e = (int)c) > 0) {
1541 if ((ws = workQueues) != null && ws.length > (i = e & SMASK) &&
1542 (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1543 long nc = (((long)(w.nextWait & E_MASK)) |
1544 ((long)(u + UAC_UNIT) << 32));
1545 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1546 w.hint = hint;
1547 w.eventCount = (e + E_SEQ) & E_MASK;
1548 if ((p = w.parker) != null)
1549 U.unpark(p);
1550 break;
1551 }
1552 if (q.top - q.base <= 0)
1553 break;
1554 }
1555 else
1556 break;
1557 }
1558 else {
1559 if ((short)u < 0)
1560 tryAddWorker();
1561 break;
1562 }
1563 }
1564 }
1565
1566 // Scanning for tasks
1567
1568 /**
1569 * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1570 */
1571 final void runWorker(WorkQueue w) {
1572 w.growArray(); // allocate queue
1573 do { w.runTask(scan(w)); } while (w.qlock >= 0);
1574 }
1575
1576 /**
1577 * Scans for and, if found, returns one task, else possibly
1578 * inactivates the worker. This method operates on single reads of
1579 * volatile state and is designed to be re-invoked continuously,
1580 * in part because it returns upon detecting inconsistencies,
1581 * contention, or state changes that indicate possible success on
1582 * re-invocation.
1583 *
1584 * The scan searches for tasks across queues (starting at a random
1585 * index, and relying on registerWorker to irregularly scatter
1586 * them within array to avoid bias), checking each at least twice.
1587 * The scan terminates upon either finding a non-empty queue, or
1588 * completing the sweep. If the worker is not inactivated, it
1589 * takes and returns a task from this queue. Otherwise, if not
1590 * activated, it signals workers (that may include itself) and
1591 * returns so caller can retry. Also returns for true if the
1592 * worker array may have changed during an empty scan. On failure
1593 * to find a task, we take one of the following actions, after
1594 * which the caller will retry calling this method unless
1595 * terminated.
1596 *
1597 * * If pool is terminating, terminate the worker.
1598 *
1599 * * If not already enqueued, try to inactivate and enqueue the
1600 * worker on wait queue. Or, if inactivating has caused the pool
1601 * to be quiescent, relay to idleAwaitWork to possibly shrink
1602 * pool.
1603 *
1604 * * If already enqueued and none of the above apply, possibly
1605 * park awaiting signal, else lingering to help scan and signal.
1606 *
1607 * * If a non-empty queue discovered or left as a hint,
1608 * help wake up other workers before return.
1609 *
1610 * @param w the worker (via its WorkQueue)
1611 * @return a task or null if none found
1612 */
1613 private final ForkJoinTask<?> scan(WorkQueue w) {
1614 WorkQueue[] ws; int m;
1615 int ps = plock; // read plock before ws
1616 if (w != null && (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1617 int ec = w.eventCount; // ec is negative if inactive
1618 int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1619 w.hint = -1; // update seed and clear hint
1620 int j = ((m + m + 1) | MIN_SCAN) & MAX_SCAN;
1621 do {
1622 WorkQueue q; ForkJoinTask<?>[] a; int b;
1623 if ((q = ws[(r + j) & m]) != null && (b = q.base) - q.top < 0 &&
1624 (a = q.array) != null) { // probably nonempty
1625 int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1626 ForkJoinTask<?> t = (ForkJoinTask<?>)
1627 U.getObjectVolatile(a, i);
1628 if (q.base == b && ec >= 0 && t != null &&
1629 U.compareAndSwapObject(a, i, t, null)) {
1630 if ((q.base = b + 1) - q.top < 0)
1631 signalWork(q);
1632 return t; // taken
1633 }
1634 else if ((ec < 0 || j < m) && (int)(ctl >> AC_SHIFT) <= 0) {
1635 w.hint = (r + j) & m; // help signal below
1636 break; // cannot take
1637 }
1638 }
1639 } while (--j >= 0);
1640
1641 int h, e, ns; long c, sc; WorkQueue q;
1642 if ((ns = w.nsteals) != 0) {
1643 if (U.compareAndSwapLong(this, STEALCOUNT,
1644 sc = stealCount, sc + ns))
1645 w.nsteals = 0; // collect steals and rescan
1646 }
1647 else if (plock != ps) // consistency check
1648 ; // skip
1649 else if ((e = (int)(c = ctl)) < 0)
1650 w.qlock = -1; // pool is terminating
1651 else {
1652 if ((h = w.hint) < 0) {
1653 if (ec >= 0) { // try to enqueue/inactivate
1654 long nc = (((long)ec |
1655 ((c - AC_UNIT) & (AC_MASK|TC_MASK))));
1656 w.nextWait = e; // link and mark inactive
1657 w.eventCount = ec | INT_SIGN;
1658 if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1659 w.eventCount = ec; // unmark on CAS failure
1660 else if ((int)(c >> AC_SHIFT) == 1 - (config & SMASK))
1661 idleAwaitWork(w, nc, c);
1662 }
1663 else if (w.eventCount < 0 && ctl == c) {
1664 Thread wt = Thread.currentThread();
1665 Thread.interrupted(); // clear status
1666 U.putObject(wt, PARKBLOCKER, this);
1667 w.parker = wt; // emulate LockSupport.park
1668 if (w.eventCount < 0) // recheck
1669 U.park(false, 0L); // block
1670 w.parker = null;
1671 U.putObject(wt, PARKBLOCKER, null);
1672 }
1673 }
1674 if ((h >= 0 || (h = w.hint) >= 0) &&
1675 (ws = workQueues) != null && h < ws.length &&
1676 (q = ws[h]) != null) { // signal others before retry
1677 WorkQueue v; Thread p; int u, i, s;
1678 for (int n = (config & SMASK) - 1;;) {
1679 int idleCount = (w.eventCount < 0) ? 0 : -1;
1680 if (((s = idleCount - q.base + q.top) <= n &&
1681 (n = s) <= 0) ||
1682 (u = (int)((c = ctl) >>> 32)) >= 0 ||
1683 (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1684 (v = ws[i]) == null)
1685 break;
1686 long nc = (((long)(v.nextWait & E_MASK)) |
1687 ((long)(u + UAC_UNIT) << 32));
1688 if (v.eventCount != (e | INT_SIGN) ||
1689 !U.compareAndSwapLong(this, CTL, c, nc))
1690 break;
1691 v.hint = h;
1692 v.eventCount = (e + E_SEQ) & E_MASK;
1693 if ((p = v.parker) != null)
1694 U.unpark(p);
1695 if (--n <= 0)
1696 break;
1697 }
1698 }
1699 }
1700 }
1701 return null;
1702 }
1703
1704 /**
1705 * If inactivating worker w has caused the pool to become
1706 * quiescent, checks for pool termination, and, so long as this is
1707 * not the only worker, waits for event for up to a given
1708 * duration. On timeout, if ctl has not changed, terminates the
1709 * worker, which will in turn wake up another worker to possibly
1710 * repeat this process.
1711 *
1712 * @param w the calling worker
1713 * @param currentCtl the ctl value triggering possible quiescence
1714 * @param prevCtl the ctl value to restore if thread is terminated
1715 */
1716 private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1717 if (w != null && w.eventCount < 0 &&
1718 !tryTerminate(false, false) && (int)prevCtl != 0 &&
1719 ctl == currentCtl) {
1720 int dc = -(short)(currentCtl >>> TC_SHIFT);
1721 long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1722 long deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
1723 Thread wt = Thread.currentThread();
1724 while (ctl == currentCtl) {
1725 Thread.interrupted(); // timed variant of version in scan()
1726 U.putObject(wt, PARKBLOCKER, this);
1727 w.parker = wt;
1728 if (ctl == currentCtl)
1729 U.park(false, parkTime);
1730 w.parker = null;
1731 U.putObject(wt, PARKBLOCKER, null);
1732 if (ctl != currentCtl)
1733 break;
1734 if (deadline - System.nanoTime() <= 0L &&
1735 U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1736 w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1737 w.hint = -1;
1738 w.qlock = -1; // shrink
1739 break;
1740 }
1741 }
1742 }
1743 }
1744
1745 /**
1746 * Scans through queues looking for work while joining a task; if
1747 * any present, signals. May return early if more signalling is
1748 * detectably unneeded.
1749 *
1750 * @param task return early if done
1751 * @param origin an index to start scan
1752 */
1753 private void helpSignal(ForkJoinTask<?> task, int origin) {
1754 WorkQueue[] ws; WorkQueue w; Thread p; long c; int m, u, e, i, s;
1755 if (task != null && task.status >= 0 &&
1756 (u = (int)(ctl >>> 32)) < 0 && (u >> UAC_SHIFT) < 0 &&
1757 (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1758 outer: for (int k = origin, j = m; j >= 0; --j) {
1759 WorkQueue q = ws[k++ & m];
1760 for (int n = m;;) { // limit to at most m signals
1761 if (task.status < 0)
1762 break outer;
1763 if (q == null ||
1764 ((s = -q.base + q.top) <= n && (n = s) <= 0))
1765 break;
1766 if ((u = (int)((c = ctl) >>> 32)) >= 0 ||
1767 (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1768 (w = ws[i]) == null)
1769 break outer;
1770 long nc = (((long)(w.nextWait & E_MASK)) |
1771 ((long)(u + UAC_UNIT) << 32));
1772 if (w.eventCount != (e | INT_SIGN))
1773 break outer;
1774 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1775 w.eventCount = (e + E_SEQ) & E_MASK;
1776 if ((p = w.parker) != null)
1777 U.unpark(p);
1778 if (--n <= 0)
1779 break;
1780 }
1781 }
1782 }
1783 }
1784 }
1785
1786 /**
1787 * Tries to locate and execute tasks for a stealer of the given
1788 * task, or in turn one of its stealers, Traces currentSteal ->
1789 * currentJoin links looking for a thread working on a descendant
1790 * of the given task and with a non-empty queue to steal back and
1791 * execute tasks from. The first call to this method upon a
1792 * waiting join will often entail scanning/search, (which is OK
1793 * because the joiner has nothing better to do), but this method
1794 * leaves hints in workers to speed up subsequent calls. The
1795 * implementation is very branchy to cope with potential
1796 * inconsistencies or loops encountering chains that are stale,
1797 * unknown, or so long that they are likely cyclic.
1798 *
1799 * @param joiner the joining worker
1800 * @param task the task to join
1801 * @return 0 if no progress can be made, negative if task
1802 * known complete, else positive
1803 */
1804 private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1805 int stat = 0, steps = 0; // bound to avoid cycles
1806 if (joiner != null && task != null) { // hoist null checks
1807 restart: for (;;) {
1808 ForkJoinTask<?> subtask = task; // current target
1809 for (WorkQueue j = joiner, v;;) { // v is stealer of subtask
1810 WorkQueue[] ws; int m, s, h;
1811 if ((s = task.status) < 0) {
1812 stat = s;
1813 break restart;
1814 }
1815 if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1816 break restart; // shutting down
1817 if ((v = ws[h = (j.hint | 1) & m]) == null ||
1818 v.currentSteal != subtask) {
1819 for (int origin = h;;) { // find stealer
1820 if (((h = (h + 2) & m) & 15) == 1 &&
1821 (subtask.status < 0 || j.currentJoin != subtask))
1822 continue restart; // occasional staleness check
1823 if ((v = ws[h]) != null &&
1824 v.currentSteal == subtask) {
1825 j.hint = h; // save hint
1826 break;
1827 }
1828 if (h == origin)
1829 break restart; // cannot find stealer
1830 }
1831 }
1832 for (;;) { // help stealer or descend to its stealer
1833 ForkJoinTask[] a; int b;
1834 if (subtask.status < 0) // surround probes with
1835 continue restart; // consistency checks
1836 if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1837 int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1838 ForkJoinTask<?> t =
1839 (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1840 if (subtask.status < 0 || j.currentJoin != subtask ||
1841 v.currentSteal != subtask)
1842 continue restart; // stale
1843 stat = 1; // apparent progress
1844 if (t != null && v.base == b &&
1845 U.compareAndSwapObject(a, i, t, null)) {
1846 v.base = b + 1; // help stealer
1847 joiner.runSubtask(t);
1848 }
1849 else if (v.base == b && ++steps == MAX_HELP)
1850 break restart; // v apparently stalled
1851 }
1852 else { // empty -- try to descend
1853 ForkJoinTask<?> next = v.currentJoin;
1854 if (subtask.status < 0 || j.currentJoin != subtask ||
1855 v.currentSteal != subtask)
1856 continue restart; // stale
1857 else if (next == null || ++steps == MAX_HELP)
1858 break restart; // dead-end or maybe cyclic
1859 else {
1860 subtask = next;
1861 j = v;
1862 break;
1863 }
1864 }
1865 }
1866 }
1867 }
1868 }
1869 return stat;
1870 }
1871
1872 /**
1873 * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1874 * and run tasks within the target's computation.
1875 *
1876 * @param task the task to join
1877 */
1878 private int helpComplete(ForkJoinTask<?> task) {
1879 WorkQueue[] ws; int m;
1880 if (task != null && (ws = workQueues) != null &&
1881 (m = ws.length - 1) >= 0) {
1882 for (int j = ((m + m + 1) | MIN_SCAN) & MAX_SCAN;;) {
1883 WorkQueue q; int s;
1884 if ((s = task.status) < 0)
1885 return s;
1886 if (((q = ws[j & m]) == null || !q.pollAndExecCC(task)) &&
1887 (j -= 2) <= 0)
1888 break;
1889 }
1890 }
1891 return 0;
1892 }
1893
1894 /**
1895 * Tries to decrement active count (sometimes implicitly) and
1896 * possibly release or create a compensating worker in preparation
1897 * for blocking. Fails on contention or termination. Otherwise,
1898 * adds a new thread if no idle workers are available and pool
1899 * may become starved.
1900 */
1901 final boolean tryCompensate() {
1902 int pc = config & SMASK, e, i, tc; long c;
1903 WorkQueue[] ws; WorkQueue w; Thread p;
1904 if ((ws = workQueues) != null && (e = (int)(c = ctl)) >= 0) {
1905 if (e != 0 && (i = e & SMASK) < ws.length &&
1906 (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1907 long nc = ((long)(w.nextWait & E_MASK) |
1908 (c & (AC_MASK|TC_MASK)));
1909 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1910 w.eventCount = (e + E_SEQ) & E_MASK;
1911 if ((p = w.parker) != null)
1912 U.unpark(p);
1913 return true; // replace with idle worker
1914 }
1915 }
1916 else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
1917 (int)(c >> AC_SHIFT) + pc > 1) {
1918 long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1919 if (U.compareAndSwapLong(this, CTL, c, nc))
1920 return true; // no compensation
1921 }
1922 else if (tc + pc < MAX_CAP) {
1923 long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1924 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1925 ForkJoinWorkerThreadFactory fac;
1926 Throwable ex = null;
1927 ForkJoinWorkerThread wt = null;
1928 try {
1929 if ((fac = factory) != null &&
1930 (wt = fac.newThread(this)) != null) {
1931 wt.start();
1932 return true;
1933 }
1934 } catch (Throwable rex) {
1935 ex = rex;
1936 }
1937 deregisterWorker(wt, ex); // clean up and return false
1938 }
1939 }
1940 }
1941 return false;
1942 }
1943
1944 /**
1945 * Helps and/or blocks until the given task is done.
1946 *
1947 * @param joiner the joining worker
1948 * @param task the task
1949 * @return task status on exit
1950 */
1951 final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1952 int s = 0;
1953 if (joiner != null && task != null && (s = task.status) >= 0) {
1954 ForkJoinTask<?> prevJoin = joiner.currentJoin;
1955 joiner.currentJoin = task;
1956 do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
1957 joiner.tryRemoveAndExec(task)); // process local tasks
1958 if (s >= 0 && (s = task.status) >= 0) {
1959 helpSignal(task, joiner.poolIndex);
1960 if ((s = task.status) >= 0 &&
1961 (task instanceof CountedCompleter))
1962 s = helpComplete(task);
1963 }
1964 while (s >= 0 && (s = task.status) >= 0) {
1965 if ((!joiner.isEmpty() || // try helping
1966 (s = tryHelpStealer(joiner, task)) == 0) &&
1967 (s = task.status) >= 0) {
1968 helpSignal(task, joiner.poolIndex);
1969 if ((s = task.status) >= 0 && tryCompensate()) {
1970 if (task.trySetSignal() && (s = task.status) >= 0) {
1971 synchronized (task) {
1972 if (task.status >= 0) {
1973 try { // see ForkJoinTask
1974 task.wait(); // for explanation
1975 } catch (InterruptedException ie) {
1976 }
1977 }
1978 else
1979 task.notifyAll();
1980 }
1981 }
1982 long c; // re-activate
1983 do {} while (!U.compareAndSwapLong
1984 (this, CTL, c = ctl, c + AC_UNIT));
1985 }
1986 }
1987 }
1988 joiner.currentJoin = prevJoin;
1989 }
1990 return s;
1991 }
1992
1993 /**
1994 * Stripped-down variant of awaitJoin used by timed joins. Tries
1995 * to help join only while there is continuous progress. (Caller
1996 * will then enter a timed wait.)
1997 *
1998 * @param joiner the joining worker
1999 * @param task the task
2000 */
2001 final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2002 int s;
2003 if (joiner != null && task != null && (s = task.status) >= 0) {
2004 ForkJoinTask<?> prevJoin = joiner.currentJoin;
2005 joiner.currentJoin = task;
2006 do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
2007 joiner.tryRemoveAndExec(task));
2008 if (s >= 0 && (s = task.status) >= 0) {
2009 helpSignal(task, joiner.poolIndex);
2010 if ((s = task.status) >= 0 &&
2011 (task instanceof CountedCompleter))
2012 s = helpComplete(task);
2013 }
2014 if (s >= 0 && joiner.isEmpty()) {
2015 do {} while (task.status >= 0 &&
2016 tryHelpStealer(joiner, task) > 0);
2017 }
2018 joiner.currentJoin = prevJoin;
2019 }
2020 }
2021
2022 /**
2023 * Returns a (probably) non-empty steal queue, if one is found
2024 * during a scan, else null. This method must be retried by
2025 * caller if, by the time it tries to use the queue, it is empty.
2026 * @param r a (random) seed for scanning
2027 */
2028 private WorkQueue findNonEmptyStealQueue(int r) {
2029 for (;;) {
2030 int ps = plock, m; WorkQueue[] ws; WorkQueue q;
2031 if ((ws = workQueues) != null && (m = ws.length - 1) >= 0) {
2032 for (int j = (m + 1) << 2; j >= 0; --j) {
2033 if ((q = ws[(((r + j) << 1) | 1) & m]) != null &&
2034 q.base - q.top < 0)
2035 return q;
2036 }
2037 }
2038 if (plock == ps)
2039 return null;
2040 }
2041 }
2042
2043 /**
2044 * Runs tasks until {@code isQuiescent()}. We piggyback on
2045 * active count ctl maintenance, but rather than blocking
2046 * when tasks cannot be found, we rescan until all others cannot
2047 * find tasks either.
2048 */
2049 final void helpQuiescePool(WorkQueue w) {
2050 for (boolean active = true;;) {
2051 long c; WorkQueue q; ForkJoinTask<?> t; int b;
2052 while ((t = w.nextLocalTask()) != null) {
2053 if (w.base - w.top < 0)
2054 signalWork(w);
2055 t.doExec();
2056 }
2057 if ((q = findNonEmptyStealQueue(w.nextSeed())) != null) {
2058 if (!active) { // re-establish active count
2059 active = true;
2060 do {} while (!U.compareAndSwapLong
2061 (this, CTL, c = ctl, c + AC_UNIT));
2062 }
2063 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2064 if (q.base - q.top < 0)
2065 signalWork(q);
2066 w.runSubtask(t);
2067 }
2068 }
2069 else if (active) { // decrement active count without queuing
2070 long nc = (c = ctl) - AC_UNIT;
2071 if ((int)(nc >> AC_SHIFT) + (config & SMASK) == 0)
2072 return; // bypass decrement-then-increment
2073 if (U.compareAndSwapLong(this, CTL, c, nc))
2074 active = false;
2075 }
2076 else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) == 0 &&
2077 U.compareAndSwapLong(this, CTL, c, c + AC_UNIT))
2078 return;
2079 }
2080 }
2081
2082 /**
2083 * Gets and removes a local or stolen task for the given worker.
2084 *
2085 * @return a task, if available
2086 */
2087 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2088 for (ForkJoinTask<?> t;;) {
2089 WorkQueue q; int b;
2090 if ((t = w.nextLocalTask()) != null)
2091 return t;
2092 if ((q = findNonEmptyStealQueue(w.nextSeed())) == null)
2093 return null;
2094 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2095 if (q.base - q.top < 0)
2096 signalWork(q);
2097 return t;
2098 }
2099 }
2100 }
2101
2102 /**
2103 * Returns a cheap heuristic guide for task partitioning when
2104 * programmers, frameworks, tools, or languages have little or no
2105 * idea about task granularity. In essence by offering this
2106 * method, we ask users only about tradeoffs in overhead vs
2107 * expected throughput and its variance, rather than how finely to
2108 * partition tasks.
2109 *
2110 * In a steady state strict (tree-structured) computation, each
2111 * thread makes available for stealing enough tasks for other
2112 * threads to remain active. Inductively, if all threads play by
2113 * the same rules, each thread should make available only a
2114 * constant number of tasks.
2115 *
2116 * The minimum useful constant is just 1. But using a value of 1
2117 * would require immediate replenishment upon each steal to
2118 * maintain enough tasks, which is infeasible. Further,
2119 * partitionings/granularities of offered tasks should minimize
2120 * steal rates, which in general means that threads nearer the top
2121 * of computation tree should generate more than those nearer the
2122 * bottom. In perfect steady state, each thread is at
2123 * approximately the same level of computation tree. However,
2124 * producing extra tasks amortizes the uncertainty of progress and
2125 * diffusion assumptions.
2126 *
2127 * So, users will want to use values larger (but not much larger)
2128 * than 1 to both smooth over transient shortages and hedge
2129 * against uneven progress; as traded off against the cost of
2130 * extra task overhead. We leave the user to pick a threshold
2131 * value to compare with the results of this call to guide
2132 * decisions, but recommend values such as 3.
2133 *
2134 * When all threads are active, it is on average OK to estimate
2135 * surplus strictly locally. In steady-state, if one thread is
2136 * maintaining say 2 surplus tasks, then so are others. So we can
2137 * just use estimated queue length. However, this strategy alone
2138 * leads to serious mis-estimates in some non-steady-state
2139 * conditions (ramp-up, ramp-down, other stalls). We can detect
2140 * many of these by further considering the number of "idle"
2141 * threads, that are known to have zero queued tasks, so
2142 * compensate by a factor of (#idle/#active) threads.
2143 *
2144 * Note: The approximation of #busy workers as #active workers is
2145 * not very good under current signalling scheme, and should be
2146 * improved.
2147 */
2148 static int getSurplusQueuedTaskCount() {
2149 Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2150 if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2151 int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2152 int n = (q = wt.workQueue).top - q.base;
2153 int a = (int)(pool.ctl >> AC_SHIFT) + p;
2154 return n - (a > (p >>>= 1) ? 0 :
2155 a > (p >>>= 1) ? 1 :
2156 a > (p >>>= 1) ? 2 :
2157 a > (p >>>= 1) ? 4 :
2158 8);
2159 }
2160 return 0;
2161 }
2162
2163 // Termination
2164
2165 /**
2166 * Possibly initiates and/or completes termination. The caller
2167 * triggering termination runs three passes through workQueues:
2168 * (0) Setting termination status, followed by wakeups of queued
2169 * workers; (1) cancelling all tasks; (2) interrupting lagging
2170 * threads (likely in external tasks, but possibly also blocked in
2171 * joins). Each pass repeats previous steps because of potential
2172 * lagging thread creation.
2173 *
2174 * @param now if true, unconditionally terminate, else only
2175 * if no work and no active workers
2176 * @param enable if true, enable shutdown when next possible
2177 * @return true if now terminating or terminated
2178 */
2179 private boolean tryTerminate(boolean now, boolean enable) {
2180 int ps;
2181 if (this == common) // cannot shut down
2182 return false;
2183 if ((ps = plock) >= 0) { // enable by setting plock
2184 if (!enable)
2185 return false;
2186 if ((ps & PL_LOCK) != 0 ||
2187 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2188 ps = acquirePlock();
2189 int nps = ((ps + PL_LOCK) & ~SHUTDOWN) | SHUTDOWN;
2190 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2191 releasePlock(nps);
2192 }
2193 for (long c;;) {
2194 if (((c = ctl) & STOP_BIT) != 0) { // already terminating
2195 if ((short)(c >>> TC_SHIFT) == -(config & SMASK)) {
2196 synchronized (this) {
2197 notifyAll(); // signal when 0 workers
2198 }
2199 }
2200 return true;
2201 }
2202 if (!now) { // check if idle & no tasks
2203 WorkQueue[] ws; WorkQueue w;
2204 if ((int)(c >> AC_SHIFT) != -(config & SMASK))
2205 return false;
2206 if ((ws = workQueues) != null) {
2207 for (int i = 0; i < ws.length; ++i) {
2208 if ((w = ws[i]) != null) {
2209 if (!w.isEmpty()) { // signal unprocessed tasks
2210 signalWork(w);
2211 return false;
2212 }
2213 if ((i & 1) != 0 && w.eventCount >= 0)
2214 return false; // unqueued inactive worker
2215 }
2216 }
2217 }
2218 }
2219 if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2220 for (int pass = 0; pass < 3; ++pass) {
2221 WorkQueue[] ws; WorkQueue w; Thread wt;
2222 if ((ws = workQueues) != null) {
2223 int n = ws.length;
2224 for (int i = 0; i < n; ++i) {
2225 if ((w = ws[i]) != null) {
2226 w.qlock = -1;
2227 if (pass > 0) {
2228 w.cancelAll();
2229 if (pass > 1 && (wt = w.owner) != null) {
2230 if (!wt.isInterrupted()) {
2231 try {
2232 wt.interrupt();
2233 } catch (Throwable ignore) {
2234 }
2235 }
2236 U.unpark(wt);
2237 }
2238 }
2239 }
2240 }
2241 // Wake up workers parked on event queue
2242 int i, e; long cc; Thread p;
2243 while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2244 (i = e & SMASK) < n && i >= 0 &&
2245 (w = ws[i]) != null) {
2246 long nc = ((long)(w.nextWait & E_MASK) |
2247 ((cc + AC_UNIT) & AC_MASK) |
2248 (cc & (TC_MASK|STOP_BIT)));
2249 if (w.eventCount == (e | INT_SIGN) &&
2250 U.compareAndSwapLong(this, CTL, cc, nc)) {
2251 w.eventCount = (e + E_SEQ) & E_MASK;
2252 w.qlock = -1;
2253 if ((p = w.parker) != null)
2254 U.unpark(p);
2255 }
2256 }
2257 }
2258 }
2259 }
2260 }
2261 }
2262
2263 // external operations on common pool
2264
2265 /**
2266 * Returns common pool queue for a thread that has submitted at
2267 * least one task.
2268 */
2269 static WorkQueue commonSubmitterQueue() {
2270 ForkJoinPool p; WorkQueue[] ws; int m, z;
2271 return ((z = ThreadLocalRandom.getProbe()) != 0 &&
2272 (p = common) != null &&
2273 (ws = p.workQueues) != null &&
2274 (m = ws.length - 1) >= 0) ?
2275 ws[m & z & SQMASK] : null;
2276 }
2277
2278 /**
2279 * Tries to pop the given task from submitter's queue in common pool.
2280 */
2281 static boolean tryExternalUnpush(ForkJoinTask<?> t) {
2282 ForkJoinPool p; WorkQueue[] ws; WorkQueue q;
2283 ForkJoinTask<?>[] a; int m, s, z;
2284 if (t != null &&
2285 (z = ThreadLocalRandom.getProbe()) != 0 &&
2286 (p = common) != null &&
2287 (ws = p.workQueues) != null &&
2288 (m = ws.length - 1) >= 0 &&
2289 (q = ws[m & z & SQMASK]) != null &&
2290 (s = q.top) != q.base &&
2291 (a = q.array) != null) {
2292 long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
2293 if (U.getObject(a, j) == t &&
2294 U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2295 if (q.array == a && q.top == s && // recheck
2296 U.compareAndSwapObject(a, j, t, null)) {
2297 q.top = s - 1;
2298 q.qlock = 0;
2299 return true;
2300 }
2301 q.qlock = 0;
2302 }
2303 }
2304 return false;
2305 }
2306
2307 /**
2308 * Tries to pop and run local tasks within the same computation
2309 * as the given root. On failure, tries to help complete from
2310 * other queues via helpComplete.
2311 */
2312 private void externalHelpComplete(WorkQueue q, ForkJoinTask<?> root) {
2313 ForkJoinTask<?>[] a; int m; WorkQueue[] ws;
2314 if (root != null && q != null && (a = q.array) != null &&
2315 (m = (a.length - 1)) >= 0) {
2316 outer: for (;;) {
2317 int s, b, u; Object o;
2318 if (root.status < 0)
2319 return;
2320 if ((s = q.top) - q.base > 0) { // try pop
2321 long j = ((m & (s - 1)) << ASHIFT) + ABASE;
2322 if ((o = U.getObject(a, j)) != null &&
2323 (o instanceof CountedCompleter)) {
2324 CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2325 do {
2326 if (r == root) {
2327 if (U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2328 if (q.array == a && q.top == s &&
2329 U.compareAndSwapObject(a, j, t, null)) {
2330 q.top = s - 1;
2331 q.qlock = 0;
2332 t.doExec();
2333 }
2334 else
2335 q.qlock = 0;
2336 }
2337 continue outer;
2338 }
2339 } while ((r = r.completer) != null);
2340 }
2341 }
2342 if ((b = q.base) - q.top < 0) { // try poll
2343 if (root.status < 0)
2344 return;
2345 long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
2346 if ((o = U.getObject(a, j)) == null ||
2347 !(o instanceof CountedCompleter))
2348 break;
2349 CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2350 for (;;) {
2351 if (r == root) {
2352 if (q.base == b &&
2353 U.compareAndSwapObject(a, j, t, null)) {
2354 q.base = b + 1;
2355 t.doExec();
2356 }
2357 break;
2358 }
2359 if ((r = r.completer) == null)
2360 break outer;
2361 }
2362 }
2363 else
2364 break;
2365 }
2366 helpComplete(root);
2367 }
2368 }
2369
2370 /**
2371 * Tries to help execute or signal availability of the given task
2372 * from submitter's queue in common pool.
2373 */
2374 static void externalHelpJoin(ForkJoinTask<?> t) {
2375 // Some hard-to-avoid overlap with tryExternalUnpush
2376 ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w;
2377 ForkJoinTask<?>[] a; int m, s, n, z;
2378 if (t != null &&
2379 (z = ThreadLocalRandom.getProbe()) != 0 &&
2380 (p = common) != null &&
2381 (ws = p.workQueues) != null &&
2382 (m = ws.length - 1) >= 0 &&
2383 (q = ws[m & z & SQMASK]) != null &&
2384 (a = q.array) != null) {
2385 int am = a.length - 1;
2386 if ((s = q.top) != q.base) {
2387 long j = ((am & (s - 1)) << ASHIFT) + ABASE;
2388 if (U.getObject(a, j) == t &&
2389 U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2390 if (q.array == a && q.top == s &&
2391 U.compareAndSwapObject(a, j, t, null)) {
2392 q.top = s - 1;
2393 q.qlock = 0;
2394 t.doExec();
2395 }
2396 else
2397 q.qlock = 0;
2398 }
2399 }
2400 if (t.status >= 0) {
2401 if (t instanceof CountedCompleter)
2402 p.externalHelpComplete(q, t);
2403 else
2404 p.helpSignal(t, q.poolIndex);
2405 }
2406 }
2407 }
2408
2409 // Exported methods
2410
2411 // Constructors
2412
2413 /**
2414 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2415 * java.lang.Runtime#availableProcessors}, using the {@linkplain
2416 * #defaultForkJoinWorkerThreadFactory default thread factory},
2417 * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2418 *
2419 * @throws SecurityException if a security manager exists and
2420 * the caller is not permitted to modify threads
2421 * because it does not hold {@link
2422 * java.lang.RuntimePermission}{@code ("modifyThread")}
2423 */
2424 public ForkJoinPool() {
2425 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2426 defaultForkJoinWorkerThreadFactory, null, false);
2427 }
2428
2429 /**
2430 * Creates a {@code ForkJoinPool} with the indicated parallelism
2431 * level, the {@linkplain
2432 * #defaultForkJoinWorkerThreadFactory default thread factory},
2433 * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2434 *
2435 * @param parallelism the parallelism level
2436 * @throws IllegalArgumentException if parallelism less than or
2437 * equal to zero, or greater than implementation limit
2438 * @throws SecurityException if a security manager exists and
2439 * the caller is not permitted to modify threads
2440 * because it does not hold {@link
2441 * java.lang.RuntimePermission}{@code ("modifyThread")}
2442 */
2443 public ForkJoinPool(int parallelism) {
2444 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2445 }
2446
2447 /**
2448 * Creates a {@code ForkJoinPool} with the given parameters.
2449 *
2450 * @param parallelism the parallelism level. For default value,
2451 * use {@link java.lang.Runtime#availableProcessors}.
2452 * @param factory the factory for creating new threads. For default value,
2453 * use {@link #defaultForkJoinWorkerThreadFactory}.
2454 * @param handler the handler for internal worker threads that
2455 * terminate due to unrecoverable errors encountered while executing
2456 * tasks. For default value, use {@code null}.
2457 * @param asyncMode if true,
2458 * establishes local first-in-first-out scheduling mode for forked
2459 * tasks that are never joined. This mode may be more appropriate
2460 * than default locally stack-based mode in applications in which
2461 * worker threads only process event-style asynchronous tasks.
2462 * For default value, use {@code false}.
2463 * @throws IllegalArgumentException if parallelism less than or
2464 * equal to zero, or greater than implementation limit
2465 * @throws NullPointerException if the factory is null
2466 * @throws SecurityException if a security manager exists and
2467 * the caller is not permitted to modify threads
2468 * because it does not hold {@link
2469 * java.lang.RuntimePermission}{@code ("modifyThread")}
2470 */
2471 public ForkJoinPool(int parallelism,
2472 ForkJoinWorkerThreadFactory factory,
2473 UncaughtExceptionHandler handler,
2474 boolean asyncMode) {
2475 this(checkParallelism(parallelism),
2476 checkFactory(factory),
2477 handler,
2478 asyncMode,
2479 "ForkJoinPool-" + nextPoolId() + "-worker-");
2480 checkPermission();
2481 }
2482
2483 private static int checkParallelism(int parallelism) {
2484 if (parallelism <= 0 || parallelism > MAX_CAP)
2485 throw new IllegalArgumentException();
2486 return parallelism;
2487 }
2488
2489 private static ForkJoinWorkerThreadFactory checkFactory
2490 (ForkJoinWorkerThreadFactory factory) {
2491 if (factory == null)
2492 throw new NullPointerException();
2493 return factory;
2494 }
2495
2496 /**
2497 * Creates a {@code ForkJoinPool} with the given parameters, without
2498 * any security checks or parameter validation. Invoked directly by
2499 * makeCommonPool.
2500 */
2501 private ForkJoinPool(int parallelism,
2502 ForkJoinWorkerThreadFactory factory,
2503 UncaughtExceptionHandler handler,
2504 boolean asyncMode,
2505 String workerNamePrefix) {
2506 this.workerNamePrefix = workerNamePrefix;
2507 this.factory = factory;
2508 this.ueh = handler;
2509 this.config = parallelism | (asyncMode ? (FIFO_QUEUE << 16) : 0);
2510 long np = (long)(-parallelism); // offset ctl counts
2511 this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2512 }
2513
2514 /**
2515 * Returns the common pool instance. This pool is statically
2516 * constructed; its run state is unaffected by attempts to {@link
2517 * #shutdown} or {@link #shutdownNow}. However this pool and any
2518 * ongoing processing are automatically terminated upon program
2519 * {@link System#exit}. Any program that relies on asynchronous
2520 * task processing to complete before program termination should
2521 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2522 * before exit.
2523 *
2524 * @return the common pool instance
2525 * @since 1.8
2526 */
2527 public static ForkJoinPool commonPool() {
2528 // assert common != null : "static init error";
2529 return common;
2530 }
2531
2532 // Execution methods
2533
2534 /**
2535 * Performs the given task, returning its result upon completion.
2536 * If the computation encounters an unchecked Exception or Error,
2537 * it is rethrown as the outcome of this invocation. Rethrown
2538 * exceptions behave in the same way as regular exceptions, but,
2539 * when possible, contain stack traces (as displayed for example
2540 * using {@code ex.printStackTrace()}) of both the current thread
2541 * as well as the thread actually encountering the exception;
2542 * minimally only the latter.
2543 *
2544 * @param task the task
2545 * @return the task's result
2546 * @throws NullPointerException if the task is null
2547 * @throws RejectedExecutionException if the task cannot be
2548 * scheduled for execution
2549 */
2550 public <T> T invoke(ForkJoinTask<T> task) {
2551 if (task == null)
2552 throw new NullPointerException();
2553 externalPush(task);
2554 return task.join();
2555 }
2556
2557 /**
2558 * Arranges for (asynchronous) execution of the given task.
2559 *
2560 * @param task the task
2561 * @throws NullPointerException if the task is null
2562 * @throws RejectedExecutionException if the task cannot be
2563 * scheduled for execution
2564 */
2565 public void execute(ForkJoinTask<?> task) {
2566 if (task == null)
2567 throw new NullPointerException();
2568 externalPush(task);
2569 }
2570
2571 // AbstractExecutorService methods
2572
2573 /**
2574 * @throws NullPointerException if the task is null
2575 * @throws RejectedExecutionException if the task cannot be
2576 * scheduled for execution
2577 */
2578 public void execute(Runnable task) {
2579 if (task == null)
2580 throw new NullPointerException();
2581 ForkJoinTask<?> job;
2582 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2583 job = (ForkJoinTask<?>) task;
2584 else
2585 job = new ForkJoinTask.RunnableExecuteAction(task);
2586 externalPush(job);
2587 }
2588
2589 /**
2590 * Submits a ForkJoinTask for execution.
2591 *
2592 * @param task the task to submit
2593 * @return the task
2594 * @throws NullPointerException if the task is null
2595 * @throws RejectedExecutionException if the task cannot be
2596 * scheduled for execution
2597 */
2598 public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2599 if (task == null)
2600 throw new NullPointerException();
2601 externalPush(task);
2602 return task;
2603 }
2604
2605 /**
2606 * @throws NullPointerException if the task is null
2607 * @throws RejectedExecutionException if the task cannot be
2608 * scheduled for execution
2609 */
2610 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2611 ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2612 externalPush(job);
2613 return job;
2614 }
2615
2616 /**
2617 * @throws NullPointerException if the task is null
2618 * @throws RejectedExecutionException if the task cannot be
2619 * scheduled for execution
2620 */
2621 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2622 ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2623 externalPush(job);
2624 return job;
2625 }
2626
2627 /**
2628 * @throws NullPointerException if the task is null
2629 * @throws RejectedExecutionException if the task cannot be
2630 * scheduled for execution
2631 */
2632 public ForkJoinTask<?> submit(Runnable task) {
2633 if (task == null)
2634 throw new NullPointerException();
2635 ForkJoinTask<?> job;
2636 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2637 job = (ForkJoinTask<?>) task;
2638 else
2639 job = new ForkJoinTask.AdaptedRunnableAction(task);
2640 externalPush(job);
2641 return job;
2642 }
2643
2644 /**
2645 * @throws NullPointerException {@inheritDoc}
2646 * @throws RejectedExecutionException {@inheritDoc}
2647 */
2648 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2649 // In previous versions of this class, this method constructed
2650 // a task to run ForkJoinTask.invokeAll, but now external
2651 // invocation of multiple tasks is at least as efficient.
2652 ArrayList<Future<T>> futures = new ArrayList<Future<T>>(tasks.size());
2653
2654 boolean done = false;
2655 try {
2656 for (Callable<T> t : tasks) {
2657 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2658 futures.add(f);
2659 externalPush(f);
2660 }
2661 for (int i = 0, size = futures.size(); i < size; i++)
2662 ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2663 done = true;
2664 return futures;
2665 } finally {
2666 if (!done)
2667 for (int i = 0, size = futures.size(); i < size; i++)
2668 futures.get(i).cancel(false);
2669 }
2670 }
2671
2672 /**
2673 * Returns the factory used for constructing new workers.
2674 *
2675 * @return the factory used for constructing new workers
2676 */
2677 public ForkJoinWorkerThreadFactory getFactory() {
2678 return factory;
2679 }
2680
2681 /**
2682 * Returns the handler for internal worker threads that terminate
2683 * due to unrecoverable errors encountered while executing tasks.
2684 *
2685 * @return the handler, or {@code null} if none
2686 */
2687 public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2688 return ueh;
2689 }
2690
2691 /**
2692 * Returns the targeted parallelism level of this pool.
2693 *
2694 * @return the targeted parallelism level of this pool
2695 */
2696 public int getParallelism() {
2697 int par = (config & SMASK);
2698 return (par > 0) ? par : 1;
2699 }
2700
2701 /**
2702 * Returns the targeted parallelism level of the common pool.
2703 *
2704 * @return the targeted parallelism level of the common pool
2705 * @since 1.8
2706 */
2707 public static int getCommonPoolParallelism() {
2708 return commonParallelism;
2709 }
2710
2711 /**
2712 * Returns the number of worker threads that have started but not
2713 * yet terminated. The result returned by this method may differ
2714 * from {@link #getParallelism} when threads are created to
2715 * maintain parallelism when others are cooperatively blocked.
2716 *
2717 * @return the number of worker threads
2718 */
2719 public int getPoolSize() {
2720 return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2721 }
2722
2723 /**
2724 * Returns {@code true} if this pool uses local first-in-first-out
2725 * scheduling mode for forked tasks that are never joined.
2726 *
2727 * @return {@code true} if this pool uses async mode
2728 */
2729 public boolean getAsyncMode() {
2730 return (config >>> 16) == FIFO_QUEUE;
2731 }
2732
2733 /**
2734 * Returns an estimate of the number of worker threads that are
2735 * not blocked waiting to join tasks or for other managed
2736 * synchronization. This method may overestimate the
2737 * number of running threads.
2738 *
2739 * @return the number of worker threads
2740 */
2741 public int getRunningThreadCount() {
2742 int rc = 0;
2743 WorkQueue[] ws; WorkQueue w;
2744 if ((ws = workQueues) != null) {
2745 for (int i = 1; i < ws.length; i += 2) {
2746 if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2747 ++rc;
2748 }
2749 }
2750 return rc;
2751 }
2752
2753 /**
2754 * Returns an estimate of the number of threads that are currently
2755 * stealing or executing tasks. This method may overestimate the
2756 * number of active threads.
2757 *
2758 * @return the number of active threads
2759 */
2760 public int getActiveThreadCount() {
2761 int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2762 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2763 }
2764
2765 /**
2766 * Returns {@code true} if all worker threads are currently idle.
2767 * An idle worker is one that cannot obtain a task to execute
2768 * because none are available to steal from other threads, and
2769 * there are no pending submissions to the pool. This method is
2770 * conservative; it might not return {@code true} immediately upon
2771 * idleness of all threads, but will eventually become true if
2772 * threads remain inactive.
2773 *
2774 * @return {@code true} if all threads are currently idle
2775 */
2776 public boolean isQuiescent() {
2777 return (int)(ctl >> AC_SHIFT) + (config & SMASK) == 0;
2778 }
2779
2780 /**
2781 * Returns an estimate of the total number of tasks stolen from
2782 * one thread's work queue by another. The reported value
2783 * underestimates the actual total number of steals when the pool
2784 * is not quiescent. This value may be useful for monitoring and
2785 * tuning fork/join programs: in general, steal counts should be
2786 * high enough to keep threads busy, but low enough to avoid
2787 * overhead and contention across threads.
2788 *
2789 * @return the number of steals
2790 */
2791 public long getStealCount() {
2792 long count = stealCount;
2793 WorkQueue[] ws; WorkQueue w;
2794 if ((ws = workQueues) != null) {
2795 for (int i = 1; i < ws.length; i += 2) {
2796 if ((w = ws[i]) != null)
2797 count += w.nsteals;
2798 }
2799 }
2800 return count;
2801 }
2802
2803 /**
2804 * Returns an estimate of the total number of tasks currently held
2805 * in queues by worker threads (but not including tasks submitted
2806 * to the pool that have not begun executing). This value is only
2807 * an approximation, obtained by iterating across all threads in
2808 * the pool. This method may be useful for tuning task
2809 * granularities.
2810 *
2811 * @return the number of queued tasks
2812 */
2813 public long getQueuedTaskCount() {
2814 long count = 0;
2815 WorkQueue[] ws; WorkQueue w;
2816 if ((ws = workQueues) != null) {
2817 for (int i = 1; i < ws.length; i += 2) {
2818 if ((w = ws[i]) != null)
2819 count += w.queueSize();
2820 }
2821 }
2822 return count;
2823 }
2824
2825 /**
2826 * Returns an estimate of the number of tasks submitted to this
2827 * pool that have not yet begun executing. This method may take
2828 * time proportional to the number of submissions.
2829 *
2830 * @return the number of queued submissions
2831 */
2832 public int getQueuedSubmissionCount() {
2833 int count = 0;
2834 WorkQueue[] ws; WorkQueue w;
2835 if ((ws = workQueues) != null) {
2836 for (int i = 0; i < ws.length; i += 2) {
2837 if ((w = ws[i]) != null)
2838 count += w.queueSize();
2839 }
2840 }
2841 return count;
2842 }
2843
2844 /**
2845 * Returns {@code true} if there are any tasks submitted to this
2846 * pool that have not yet begun executing.
2847 *
2848 * @return {@code true} if there are any queued submissions
2849 */
2850 public boolean hasQueuedSubmissions() {
2851 WorkQueue[] ws; WorkQueue w;
2852 if ((ws = workQueues) != null) {
2853 for (int i = 0; i < ws.length; i += 2) {
2854 if ((w = ws[i]) != null && !w.isEmpty())
2855 return true;
2856 }
2857 }
2858 return false;
2859 }
2860
2861 /**
2862 * Removes and returns the next unexecuted submission if one is
2863 * available. This method may be useful in extensions to this
2864 * class that re-assign work in systems with multiple pools.
2865 *
2866 * @return the next submission, or {@code null} if none
2867 */
2868 protected ForkJoinTask<?> pollSubmission() {
2869 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2870 if ((ws = workQueues) != null) {
2871 for (int i = 0; i < ws.length; i += 2) {
2872 if ((w = ws[i]) != null && (t = w.poll()) != null)
2873 return t;
2874 }
2875 }
2876 return null;
2877 }
2878
2879 /**
2880 * Removes all available unexecuted submitted and forked tasks
2881 * from scheduling queues and adds them to the given collection,
2882 * without altering their execution status. These may include
2883 * artificially generated or wrapped tasks. This method is
2884 * designed to be invoked only when the pool is known to be
2885 * quiescent. Invocations at other times may not remove all
2886 * tasks. A failure encountered while attempting to add elements
2887 * to collection {@code c} may result in elements being in
2888 * neither, either or both collections when the associated
2889 * exception is thrown. The behavior of this operation is
2890 * undefined if the specified collection is modified while the
2891 * operation is in progress.
2892 *
2893 * @param c the collection to transfer elements into
2894 * @return the number of elements transferred
2895 */
2896 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2897 int count = 0;
2898 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2899 if ((ws = workQueues) != null) {
2900 for (int i = 0; i < ws.length; ++i) {
2901 if ((w = ws[i]) != null) {
2902 while ((t = w.poll()) != null) {
2903 c.add(t);
2904 ++count;
2905 }
2906 }
2907 }
2908 }
2909 return count;
2910 }
2911
2912 /**
2913 * Returns a string identifying this pool, as well as its state,
2914 * including indications of run state, parallelism level, and
2915 * worker and task counts.
2916 *
2917 * @return a string identifying this pool, as well as its state
2918 */
2919 public String toString() {
2920 // Use a single pass through workQueues to collect counts
2921 long qt = 0L, qs = 0L; int rc = 0;
2922 long st = stealCount;
2923 long c = ctl;
2924 WorkQueue[] ws; WorkQueue w;
2925 if ((ws = workQueues) != null) {
2926 for (int i = 0; i < ws.length; ++i) {
2927 if ((w = ws[i]) != null) {
2928 int size = w.queueSize();
2929 if ((i & 1) == 0)
2930 qs += size;
2931 else {
2932 qt += size;
2933 st += w.nsteals;
2934 if (w.isApparentlyUnblocked())
2935 ++rc;
2936 }
2937 }
2938 }
2939 }
2940 int pc = (config & SMASK);
2941 int tc = pc + (short)(c >>> TC_SHIFT);
2942 int ac = pc + (int)(c >> AC_SHIFT);
2943 if (ac < 0) // ignore transient negative
2944 ac = 0;
2945 String level;
2946 if ((c & STOP_BIT) != 0)
2947 level = (tc == 0) ? "Terminated" : "Terminating";
2948 else
2949 level = plock < 0 ? "Shutting down" : "Running";
2950 return super.toString() +
2951 "[" + level +
2952 ", parallelism = " + pc +
2953 ", size = " + tc +
2954 ", active = " + ac +
2955 ", running = " + rc +
2956 ", steals = " + st +
2957 ", tasks = " + qt +
2958 ", submissions = " + qs +
2959 "]";
2960 }
2961
2962 /**
2963 * Possibly initiates an orderly shutdown in which previously
2964 * submitted tasks are executed, but no new tasks will be
2965 * accepted. Invocation has no effect on execution state if this
2966 * is the {@link #commonPool()}, and no additional effect if
2967 * already shut down. Tasks that are in the process of being
2968 * submitted concurrently during the course of this method may or
2969 * may not be rejected.
2970 *
2971 * @throws SecurityException if a security manager exists and
2972 * the caller is not permitted to modify threads
2973 * because it does not hold {@link
2974 * java.lang.RuntimePermission}{@code ("modifyThread")}
2975 */
2976 public void shutdown() {
2977 checkPermission();
2978 tryTerminate(false, true);
2979 }
2980
2981 /**
2982 * Possibly attempts to cancel and/or stop all tasks, and reject
2983 * all subsequently submitted tasks. Invocation has no effect on
2984 * execution state if this is the {@link #commonPool()}, and no
2985 * additional effect if already shut down. Otherwise, tasks that
2986 * are in the process of being submitted or executed concurrently
2987 * during the course of this method may or may not be
2988 * rejected. This method cancels both existing and unexecuted
2989 * tasks, in order to permit termination in the presence of task
2990 * dependencies. So the method always returns an empty list
2991 * (unlike the case for some other Executors).
2992 *
2993 * @return an empty list
2994 * @throws SecurityException if a security manager exists and
2995 * the caller is not permitted to modify threads
2996 * because it does not hold {@link
2997 * java.lang.RuntimePermission}{@code ("modifyThread")}
2998 */
2999 public List<Runnable> shutdownNow() {
3000 checkPermission();
3001 tryTerminate(true, true);
3002 return Collections.emptyList();
3003 }
3004
3005 /**
3006 * Returns {@code true} if all tasks have completed following shut down.
3007 *
3008 * @return {@code true} if all tasks have completed following shut down
3009 */
3010 public boolean isTerminated() {
3011 long c = ctl;
3012 return ((c & STOP_BIT) != 0L &&
3013 (short)(c >>> TC_SHIFT) == -(config & SMASK));
3014 }
3015
3016 /**
3017 * Returns {@code true} if the process of termination has
3018 * commenced but not yet completed. This method may be useful for
3019 * debugging. A return of {@code true} reported a sufficient
3020 * period after shutdown may indicate that submitted tasks have
3021 * ignored or suppressed interruption, or are waiting for I/O,
3022 * causing this executor not to properly terminate. (See the
3023 * advisory notes for class {@link ForkJoinTask} stating that
3024 * tasks should not normally entail blocking operations. But if
3025 * they do, they must abort them on interrupt.)
3026 *
3027 * @return {@code true} if terminating but not yet terminated
3028 */
3029 public boolean isTerminating() {
3030 long c = ctl;
3031 return ((c & STOP_BIT) != 0L &&
3032 (short)(c >>> TC_SHIFT) != -(config & SMASK));
3033 }
3034
3035 /**
3036 * Returns {@code true} if this pool has been shut down.
3037 *
3038 * @return {@code true} if this pool has been shut down
3039 */
3040 public boolean isShutdown() {
3041 return plock < 0;
3042 }
3043
3044 /**
3045 * Blocks until all tasks have completed execution after a
3046 * shutdown request, or the timeout occurs, or the current thread
3047 * is interrupted, whichever happens first. Because the {@link
3048 * #commonPool()} never terminates until program shutdown, when
3049 * applied to the common pool, this method is equivalent to {@link
3050 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
3051 *
3052 * @param timeout the maximum time to wait
3053 * @param unit the time unit of the timeout argument
3054 * @return {@code true} if this executor terminated and
3055 * {@code false} if the timeout elapsed before termination
3056 * @throws InterruptedException if interrupted while waiting
3057 */
3058 public boolean awaitTermination(long timeout, TimeUnit unit)
3059 throws InterruptedException {
3060 if (Thread.interrupted())
3061 throw new InterruptedException();
3062 if (this == common) {
3063 awaitQuiescence(timeout, unit);
3064 return false;
3065 }
3066 long nanos = unit.toNanos(timeout);
3067 if (isTerminated())
3068 return true;
3069 long startTime = System.nanoTime();
3070 boolean terminated = false;
3071 synchronized (this) {
3072 for (long waitTime = nanos, millis = 0L;;) {
3073 if (terminated = isTerminated() ||
3074 waitTime <= 0L ||
3075 (millis = unit.toMillis(waitTime)) <= 0L)
3076 break;
3077 wait(millis);
3078 waitTime = nanos - (System.nanoTime() - startTime);
3079 }
3080 }
3081 return terminated;
3082 }
3083
3084 /**
3085 * If called by a ForkJoinTask operating in this pool, equivalent
3086 * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3087 * waits and/or attempts to assist performing tasks until this
3088 * pool {@link #isQuiescent} or the indicated timeout elapses.
3089 *
3090 * @param timeout the maximum time to wait
3091 * @param unit the time unit of the timeout argument
3092 * @return {@code true} if quiescent; {@code false} if the
3093 * timeout elapsed.
3094 */
3095 public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3096 long nanos = unit.toNanos(timeout);
3097 ForkJoinWorkerThread wt;
3098 Thread thread = Thread.currentThread();
3099 if ((thread instanceof ForkJoinWorkerThread) &&
3100 (wt = (ForkJoinWorkerThread)thread).pool == this) {
3101 helpQuiescePool(wt.workQueue);
3102 return true;
3103 }
3104 long startTime = System.nanoTime();
3105 WorkQueue[] ws;
3106 int r = 0, m;
3107 boolean found = true;
3108 while (!isQuiescent() && (ws = workQueues) != null &&
3109 (m = ws.length - 1) >= 0) {
3110 if (!found) {
3111 if ((System.nanoTime() - startTime) > nanos)
3112 return false;
3113 Thread.yield(); // cannot block
3114 }
3115 found = false;
3116 for (int j = (m + 1) << 2; j >= 0; --j) {
3117 ForkJoinTask<?> t; WorkQueue q; int b;
3118 if ((q = ws[r++ & m]) != null && (b = q.base) - q.top < 0) {
3119 found = true;
3120 if ((t = q.pollAt(b)) != null) {
3121 if (q.base - q.top < 0)
3122 signalWork(q);
3123 t.doExec();
3124 }
3125 break;
3126 }
3127 }
3128 }
3129 return true;
3130 }
3131
3132 /**
3133 * Waits and/or attempts to assist performing tasks indefinitely
3134 * until the {@link #commonPool()} {@link #isQuiescent}.
3135 */
3136 static void quiesceCommonPool() {
3137 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3138 }
3139
3140 /**
3141 * Interface for extending managed parallelism for tasks running
3142 * in {@link ForkJoinPool}s.
3143 *
3144 * <p>A {@code ManagedBlocker} provides two methods. Method
3145 * {@code isReleasable} must return {@code true} if blocking is
3146 * not necessary. Method {@code block} blocks the current thread
3147 * if necessary (perhaps internally invoking {@code isReleasable}
3148 * before actually blocking). These actions are performed by any
3149 * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
3150 * The unusual methods in this API accommodate synchronizers that
3151 * may, but don't usually, block for long periods. Similarly, they
3152 * allow more efficient internal handling of cases in which
3153 * additional workers may be, but usually are not, needed to
3154 * ensure sufficient parallelism. Toward this end,
3155 * implementations of method {@code isReleasable} must be amenable
3156 * to repeated invocation.
3157 *
3158 * <p>For example, here is a ManagedBlocker based on a
3159 * ReentrantLock:
3160 * <pre> {@code
3161 * class ManagedLocker implements ManagedBlocker {
3162 * final ReentrantLock lock;
3163 * boolean hasLock = false;
3164 * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3165 * public boolean block() {
3166 * if (!hasLock)
3167 * lock.lock();
3168 * return true;
3169 * }
3170 * public boolean isReleasable() {
3171 * return hasLock || (hasLock = lock.tryLock());
3172 * }
3173 * }}</pre>
3174 *
3175 * <p>Here is a class that possibly blocks waiting for an
3176 * item on a given queue:
3177 * <pre> {@code
3178 * class QueueTaker<E> implements ManagedBlocker {
3179 * final BlockingQueue<E> queue;
3180 * volatile E item = null;
3181 * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3182 * public boolean block() throws InterruptedException {
3183 * if (item == null)
3184 * item = queue.take();
3185 * return true;
3186 * }
3187 * public boolean isReleasable() {
3188 * return item != null || (item = queue.poll()) != null;
3189 * }
3190 * public E getItem() { // call after pool.managedBlock completes
3191 * return item;
3192 * }
3193 * }}</pre>
3194 */
3195 public static interface ManagedBlocker {
3196 /**
3197 * Possibly blocks the current thread, for example waiting for
3198 * a lock or condition.
3199 *
3200 * @return {@code true} if no additional blocking is necessary
3201 * (i.e., if isReleasable would return true)
3202 * @throws InterruptedException if interrupted while waiting
3203 * (the method is not required to do so, but is allowed to)
3204 */
3205 boolean block() throws InterruptedException;
3206
3207 /**
3208 * Returns {@code true} if blocking is unnecessary.
3209 * @return {@code true} if blocking is unnecessary
3210 */
3211 boolean isReleasable();
3212 }
3213
3214 /**
3215 * Blocks in accord with the given blocker. If the current thread
3216 * is a {@link ForkJoinWorkerThread}, this method possibly
3217 * arranges for a spare thread to be activated if necessary to
3218 * ensure sufficient parallelism while the current thread is blocked.
3219 *
3220 * <p>If the caller is not a {@link ForkJoinTask}, this method is
3221 * behaviorally equivalent to
3222 * <pre> {@code
3223 * while (!blocker.isReleasable())
3224 * if (blocker.block())
3225 * return;
3226 * }</pre>
3227 *
3228 * If the caller is a {@code ForkJoinTask}, then the pool may
3229 * first be expanded to ensure parallelism, and later adjusted.
3230 *
3231 * @param blocker the blocker
3232 * @throws InterruptedException if blocker.block did so
3233 */
3234 public static void managedBlock(ManagedBlocker blocker)
3235 throws InterruptedException {
3236 Thread t = Thread.currentThread();
3237 if (t instanceof ForkJoinWorkerThread) {
3238 ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3239 while (!blocker.isReleasable()) { // variant of helpSignal
3240 WorkQueue[] ws; WorkQueue q; int m, u;
3241 if ((ws = p.workQueues) != null && (m = ws.length - 1) >= 0) {
3242 for (int i = 0; i <= m; ++i) {
3243 if (blocker.isReleasable())
3244 return;
3245 if ((q = ws[i]) != null && q.base - q.top < 0) {
3246 p.signalWork(q);
3247 if ((u = (int)(p.ctl >>> 32)) >= 0 ||
3248 (u >> UAC_SHIFT) >= 0)
3249 break;
3250 }
3251 }
3252 }
3253 if (p.tryCompensate()) {
3254 try {
3255 do {} while (!blocker.isReleasable() &&
3256 !blocker.block());
3257 } finally {
3258 p.incrementActiveCount();
3259 }
3260 break;
3261 }
3262 }
3263 }
3264 else {
3265 do {} while (!blocker.isReleasable() &&
3266 !blocker.block());
3267 }
3268 }
3269
3270 // AbstractExecutorService overrides. These rely on undocumented
3271 // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3272 // implement RunnableFuture.
3273
3274 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3275 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3276 }
3277
3278 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3279 return new ForkJoinTask.AdaptedCallable<T>(callable);
3280 }
3281
3282 // Unsafe mechanics
3283 private static final sun.misc.Unsafe U;
3284 private static final long CTL;
3285 private static final long PARKBLOCKER;
3286 private static final int ABASE;
3287 private static final int ASHIFT;
3288 private static final long STEALCOUNT;
3289 private static final long PLOCK;
3290 private static final long INDEXSEED;
3291 private static final long QLOCK;
3292
3293 static {
3294 // initialize field offsets for CAS etc
3295 try {
3296 U = sun.misc.Unsafe.getUnsafe();
3297 Class<?> k = ForkJoinPool.class;
3298 CTL = U.objectFieldOffset
3299 (k.getDeclaredField("ctl"));
3300 STEALCOUNT = U.objectFieldOffset
3301 (k.getDeclaredField("stealCount"));
3302 PLOCK = U.objectFieldOffset
3303 (k.getDeclaredField("plock"));
3304 INDEXSEED = U.objectFieldOffset
3305 (k.getDeclaredField("indexSeed"));
3306 Class<?> tk = Thread.class;
3307 PARKBLOCKER = U.objectFieldOffset
3308 (tk.getDeclaredField("parkBlocker"));
3309 Class<?> wk = WorkQueue.class;
3310 QLOCK = U.objectFieldOffset
3311 (wk.getDeclaredField("qlock"));
3312 Class<?> ak = ForkJoinTask[].class;
3313 ABASE = U.arrayBaseOffset(ak);
3314 int scale = U.arrayIndexScale(ak);
3315 if ((scale & (scale - 1)) != 0)
3316 throw new Error("data type scale not a power of two");
3317 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3318 } catch (Exception e) {
3319 throw new Error(e);
3320 }
3321
3322 defaultForkJoinWorkerThreadFactory =
3323 new DefaultForkJoinWorkerThreadFactory();
3324 modifyThreadPermission = new RuntimePermission("modifyThread");
3325
3326 common = java.security.AccessController.doPrivileged
3327 (new java.security.PrivilegedAction<ForkJoinPool>() {
3328 public ForkJoinPool run() { return makeCommonPool(); }});
3329 int par = common.config; // report 1 even if threads disabled
3330 commonParallelism = par > 0 ? par : 1;
3331 }
3332
3333 /**
3334 * Creates and returns the common pool, respecting user settings
3335 * specified via system properties.
3336 */
3337 private static ForkJoinPool makeCommonPool() {
3338 int parallelism = -1;
3339 ForkJoinWorkerThreadFactory factory
3340 = defaultForkJoinWorkerThreadFactory;
3341 UncaughtExceptionHandler handler = null;
3342 try { // ignore exceptions in accesing/parsing properties
3343 String pp = System.getProperty
3344 ("java.util.concurrent.ForkJoinPool.common.parallelism");
3345 String fp = System.getProperty
3346 ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3347 String hp = System.getProperty
3348 ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3349 if (pp != null)
3350 parallelism = Integer.parseInt(pp);
3351 if (fp != null)
3352 factory = ((ForkJoinWorkerThreadFactory)ClassLoader.
3353 getSystemClassLoader().loadClass(fp).newInstance());
3354 if (hp != null)
3355 handler = ((UncaughtExceptionHandler)ClassLoader.
3356 getSystemClassLoader().loadClass(hp).newInstance());
3357 } catch (Exception ignore) {
3358 }
3359
3360 if (parallelism < 0 && // default 1 less than #cores
3361 (parallelism = Runtime.getRuntime().availableProcessors() - 1) < 0)
3362 parallelism = 0;
3363 if (parallelism > MAX_CAP)
3364 parallelism = MAX_CAP;
3365 return new ForkJoinPool(parallelism, factory, handler, false,
3366 "ForkJoinPool.commonPool-worker-");
3367 }
3368
3369 }