ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.173
Committed: Tue Apr 16 05:53:51 2013 UTC (11 years, 1 month ago) by jsr166
Branch: MAIN
Changes since 1.172: +4 -4 lines
Log Message:
whitespace

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.lang.Thread.UncaughtExceptionHandler;
10 import java.util.ArrayList;
11 import java.util.Arrays;
12 import java.util.Collection;
13 import java.util.Collections;
14 import java.util.List;
15 import java.util.concurrent.AbstractExecutorService;
16 import java.util.concurrent.Callable;
17 import java.util.concurrent.ExecutorService;
18 import java.util.concurrent.Future;
19 import java.util.concurrent.RejectedExecutionException;
20 import java.util.concurrent.RunnableFuture;
21 import java.util.concurrent.TimeUnit;
22
23 /**
24 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
25 * A {@code ForkJoinPool} provides the entry point for submissions
26 * from non-{@code ForkJoinTask} clients, as well as management and
27 * monitoring operations.
28 *
29 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
30 * ExecutorService} mainly by virtue of employing
31 * <em>work-stealing</em>: all threads in the pool attempt to find and
32 * execute tasks submitted to the pool and/or created by other active
33 * tasks (eventually blocking waiting for work if none exist). This
34 * enables efficient processing when most tasks spawn other subtasks
35 * (as do most {@code ForkJoinTask}s), as well as when many small
36 * tasks are submitted to the pool from external clients. Especially
37 * when setting <em>asyncMode</em> to true in constructors, {@code
38 * ForkJoinPool}s may also be appropriate for use with event-style
39 * tasks that are never joined.
40 *
41 * <p>A static {@link #commonPool()} is available and appropriate for
42 * most applications. The common pool is used by any ForkJoinTask that
43 * is not explicitly submitted to a specified pool. Using the common
44 * pool normally reduces resource usage (its threads are slowly
45 * reclaimed during periods of non-use, and reinstated upon subsequent
46 * use).
47 *
48 * <p>For applications that require separate or custom pools, a {@code
49 * ForkJoinPool} may be constructed with a given target parallelism
50 * level; by default, equal to the number of available processors. The
51 * pool attempts to maintain enough active (or available) threads by
52 * dynamically adding, suspending, or resuming internal worker
53 * threads, even if some tasks are stalled waiting to join
54 * others. However, no such adjustments are guaranteed in the face of
55 * blocked I/O or other unmanaged synchronization. The nested {@link
56 * ManagedBlocker} interface enables extension of the kinds of
57 * synchronization accommodated.
58 *
59 * <p>In addition to execution and lifecycle control methods, this
60 * class provides status check methods (for example
61 * {@link #getStealCount}) that are intended to aid in developing,
62 * tuning, and monitoring fork/join applications. Also, method
63 * {@link #toString} returns indications of pool state in a
64 * convenient form for informal monitoring.
65 *
66 * <p>As is the case with other ExecutorServices, there are three
67 * main task execution methods summarized in the following table.
68 * These are designed to be used primarily by clients not already
69 * engaged in fork/join computations in the current pool. The main
70 * forms of these methods accept instances of {@code ForkJoinTask},
71 * but overloaded forms also allow mixed execution of plain {@code
72 * Runnable}- or {@code Callable}- based activities as well. However,
73 * tasks that are already executing in a pool should normally instead
74 * use the within-computation forms listed in the table unless using
75 * async event-style tasks that are not usually joined, in which case
76 * there is little difference among choice of methods.
77 *
78 * <table BORDER CELLPADDING=3 CELLSPACING=1>
79 * <caption>Summary of task execution methods</caption>
80 * <tr>
81 * <td></td>
82 * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
83 * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
84 * </tr>
85 * <tr>
86 * <td> <b>Arrange async execution</b></td>
87 * <td> {@link #execute(ForkJoinTask)}</td>
88 * <td> {@link ForkJoinTask#fork}</td>
89 * </tr>
90 * <tr>
91 * <td> <b>Await and obtain result</b></td>
92 * <td> {@link #invoke(ForkJoinTask)}</td>
93 * <td> {@link ForkJoinTask#invoke}</td>
94 * </tr>
95 * <tr>
96 * <td> <b>Arrange exec and obtain Future</b></td>
97 * <td> {@link #submit(ForkJoinTask)}</td>
98 * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
99 * </tr>
100 * </table>
101 *
102 * <p>The common pool is by default constructed with default
103 * parameters, but these may be controlled by setting three
104 * {@linkplain System#getProperty system properties}:
105 * <ul>
106 * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
107 * - the parallelism level, a non-negative integer
108 * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
109 * - the class name of a {@link ForkJoinWorkerThreadFactory}
110 * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
111 * - the class name of a {@link UncaughtExceptionHandler}
112 * </ul>
113 * The system class loader is used to load these classes.
114 * Upon any error in establishing these settings, default parameters
115 * are used. It is possible to disable or limit the use of threads in
116 * the common pool by setting the parallelism property to zero, and/or
117 * using a factory that may return {@code null}.
118 *
119 * <p><b>Implementation notes</b>: This implementation restricts the
120 * maximum number of running threads to 32767. Attempts to create
121 * pools with greater than the maximum number result in
122 * {@code IllegalArgumentException}.
123 *
124 * <p>This implementation rejects submitted tasks (that is, by throwing
125 * {@link RejectedExecutionException}) only when the pool is shut down
126 * or internal resources have been exhausted.
127 *
128 * @since 1.7
129 * @author Doug Lea
130 */
131 @sun.misc.Contended
132 public class ForkJoinPool extends AbstractExecutorService {
133
134 /*
135 * Implementation Overview
136 *
137 * This class and its nested classes provide the main
138 * functionality and control for a set of worker threads:
139 * Submissions from non-FJ threads enter into submission queues.
140 * Workers take these tasks and typically split them into subtasks
141 * that may be stolen by other workers. Preference rules give
142 * first priority to processing tasks from their own queues (LIFO
143 * or FIFO, depending on mode), then to randomized FIFO steals of
144 * tasks in other queues.
145 *
146 * WorkQueues
147 * ==========
148 *
149 * Most operations occur within work-stealing queues (in nested
150 * class WorkQueue). These are special forms of Deques that
151 * support only three of the four possible end-operations -- push,
152 * pop, and poll (aka steal), under the further constraints that
153 * push and pop are called only from the owning thread (or, as
154 * extended here, under a lock), while poll may be called from
155 * other threads. (If you are unfamiliar with them, you probably
156 * want to read Herlihy and Shavit's book "The Art of
157 * Multiprocessor programming", chapter 16 describing these in
158 * more detail before proceeding.) The main work-stealing queue
159 * design is roughly similar to those in the papers "Dynamic
160 * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
161 * (http://research.sun.com/scalable/pubs/index.html) and
162 * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
163 * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
164 * See also "Correct and Efficient Work-Stealing for Weak Memory
165 * Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
166 * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
167 * analysis of memory ordering (atomic, volatile etc) issues. The
168 * main differences ultimately stem from GC requirements that we
169 * null out taken slots as soon as we can, to maintain as small a
170 * footprint as possible even in programs generating huge numbers
171 * of tasks. To accomplish this, we shift the CAS arbitrating pop
172 * vs poll (steal) from being on the indices ("base" and "top") to
173 * the slots themselves. So, both a successful pop and poll
174 * mainly entail a CAS of a slot from non-null to null. Because
175 * we rely on CASes of references, we do not need tag bits on base
176 * or top. They are simple ints as used in any circular
177 * array-based queue (see for example ArrayDeque). Updates to the
178 * indices must still be ordered in a way that guarantees that top
179 * == base means the queue is empty, but otherwise may err on the
180 * side of possibly making the queue appear nonempty when a push,
181 * pop, or poll have not fully committed. Note that this means
182 * that the poll operation, considered individually, is not
183 * wait-free. One thief cannot successfully continue until another
184 * in-progress one (or, if previously empty, a push) completes.
185 * However, in the aggregate, we ensure at least probabilistic
186 * non-blockingness. If an attempted steal fails, a thief always
187 * chooses a different random victim target to try next. So, in
188 * order for one thief to progress, it suffices for any
189 * in-progress poll or new push on any empty queue to
190 * complete. (This is why we normally use method pollAt and its
191 * variants that try once at the apparent base index, else
192 * consider alternative actions, rather than method poll.)
193 *
194 * This approach also enables support of a user mode in which local
195 * task processing is in FIFO, not LIFO order, simply by using
196 * poll rather than pop. This can be useful in message-passing
197 * frameworks in which tasks are never joined. However neither
198 * mode considers affinities, loads, cache localities, etc, so
199 * rarely provide the best possible performance on a given
200 * machine, but portably provide good throughput by averaging over
201 * these factors. (Further, even if we did try to use such
202 * information, we do not usually have a basis for exploiting it.
203 * For example, some sets of tasks profit from cache affinities,
204 * but others are harmed by cache pollution effects.)
205 *
206 * WorkQueues are also used in a similar way for tasks submitted
207 * to the pool. We cannot mix these tasks in the same queues used
208 * for work-stealing (this would contaminate lifo/fifo
209 * processing). Instead, we randomly associate submission queues
210 * with submitting threads, using a form of hashing. The
211 * ThreadLocalRandom probe value serves as a hash code for
212 * choosing existing queues, and may be randomly repositioned upon
213 * contention with other submitters. In essence, submitters act
214 * like workers except that they are restricted to executing local
215 * tasks that they submitted (or in the case of CountedCompleters,
216 * others with the same root task). However, because most
217 * shared/external queue operations are more expensive than
218 * internal, and because, at steady state, external submitters
219 * will compete for CPU with workers, ForkJoinTask.join and
220 * related methods disable them from repeatedly helping to process
221 * tasks if all workers are active. Insertion of tasks in shared
222 * mode requires a lock (mainly to protect in the case of
223 * resizing) but we use only a simple spinlock (using bits in
224 * field qlock), because submitters encountering a busy queue move
225 * on to try or create other queues -- they block only when
226 * creating and registering new queues.
227 *
228 * Management
229 * ==========
230 *
231 * The main throughput advantages of work-stealing stem from
232 * decentralized control -- workers mostly take tasks from
233 * themselves or each other. We cannot negate this in the
234 * implementation of other management responsibilities. The main
235 * tactic for avoiding bottlenecks is packing nearly all
236 * essentially atomic control state into two volatile variables
237 * that are by far most often read (not written) as status and
238 * consistency checks.
239 *
240 * Field "ctl" contains 64 bits holding all the information needed
241 * to atomically decide to add, inactivate, enqueue (on an event
242 * queue), dequeue, and/or re-activate workers. To enable this
243 * packing, we restrict maximum parallelism to (1<<15)-1 (which is
244 * far in excess of normal operating range) to allow ids, counts,
245 * and their negations (used for thresholding) to fit into 16bit
246 * fields.
247 *
248 * Field "plock" is a form of sequence lock with a saturating
249 * shutdown bit (similarly for per-queue "qlocks"), mainly
250 * protecting updates to the workQueues array, as well as to
251 * enable shutdown. When used as a lock, it is normally only very
252 * briefly held, so is nearly always available after at most a
253 * brief spin, but we use a monitor-based backup strategy to
254 * block when needed.
255 *
256 * Recording WorkQueues. WorkQueues are recorded in the
257 * "workQueues" array that is created upon first use and expanded
258 * if necessary. Updates to the array while recording new workers
259 * and unrecording terminated ones are protected from each other
260 * by a lock but the array is otherwise concurrently readable, and
261 * accessed directly. To simplify index-based operations, the
262 * array size is always a power of two, and all readers must
263 * tolerate null slots. Worker queues are at odd indices. Shared
264 * (submission) queues are at even indices, up to a maximum of 64
265 * slots, to limit growth even if array needs to expand to add
266 * more workers. Grouping them together in this way simplifies and
267 * speeds up task scanning.
268 *
269 * All worker thread creation is on-demand, triggered by task
270 * submissions, replacement of terminated workers, and/or
271 * compensation for blocked workers. However, all other support
272 * code is set up to work with other policies. To ensure that we
273 * do not hold on to worker references that would prevent GC, ALL
274 * accesses to workQueues are via indices into the workQueues
275 * array (which is one source of some of the messy code
276 * constructions here). In essence, the workQueues array serves as
277 * a weak reference mechanism. Thus for example the wait queue
278 * field of ctl stores indices, not references. Access to the
279 * workQueues in associated methods (for example signalWork) must
280 * both index-check and null-check the IDs. All such accesses
281 * ignore bad IDs by returning out early from what they are doing,
282 * since this can only be associated with termination, in which
283 * case it is OK to give up. All uses of the workQueues array
284 * also check that it is non-null (even if previously
285 * non-null). This allows nulling during termination, which is
286 * currently not necessary, but remains an option for
287 * resource-revocation-based shutdown schemes. It also helps
288 * reduce JIT issuance of uncommon-trap code, which tends to
289 * unnecessarily complicate control flow in some methods.
290 *
291 * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
292 * let workers spin indefinitely scanning for tasks when none can
293 * be found immediately, and we cannot start/resume workers unless
294 * there appear to be tasks available. On the other hand, we must
295 * quickly prod them into action when new tasks are submitted or
296 * generated. In many usages, ramp-up time to activate workers is
297 * the main limiting factor in overall performance (this is
298 * compounded at program start-up by JIT compilation and
299 * allocation). So we try to streamline this as much as possible.
300 * We park/unpark workers after placing in an event wait queue
301 * when they cannot find work. This "queue" is actually a simple
302 * Treiber stack, headed by the "id" field of ctl, plus a 15bit
303 * counter value (that reflects the number of times a worker has
304 * been inactivated) to avoid ABA effects (we need only as many
305 * version numbers as worker threads). Successors are held in
306 * field WorkQueue.nextWait. Queuing deals with several intrinsic
307 * races, mainly that a task-producing thread can miss seeing (and
308 * signalling) another thread that gave up looking for work but
309 * has not yet entered the wait queue. We solve this by requiring
310 * a full sweep of all workers (via repeated calls to method
311 * scan()) both before and after a newly waiting worker is added
312 * to the wait queue. During a rescan, the worker might release
313 * some other queued worker rather than itself, which has the same
314 * net effect. Because enqueued workers may actually be rescanning
315 * rather than waiting, we set and clear the "parker" field of
316 * WorkQueues to reduce unnecessary calls to unpark. (This
317 * requires a secondary recheck to avoid missed signals.) Note
318 * the unusual conventions about Thread.interrupts surrounding
319 * parking and other blocking: Because interrupts are used solely
320 * to alert threads to check termination, which is checked anyway
321 * upon blocking, we clear status (using Thread.interrupted)
322 * before any call to park, so that park does not immediately
323 * return due to status being set via some other unrelated call to
324 * interrupt in user code.
325 *
326 * Signalling. We create or wake up workers only when there
327 * appears to be at least one task they might be able to find and
328 * execute.
329 *
330 * Trimming workers. To release resources after periods of lack of
331 * use, a worker starting to wait when the pool is quiescent will
332 * time out and terminate if the pool has remained quiescent for a
333 * given period -- a short period if there are more threads than
334 * parallelism, longer as the number of threads decreases. This
335 * will slowly propagate, eventually terminating all workers after
336 * periods of non-use.
337 *
338 * Shutdown and Termination. A call to shutdownNow atomically sets
339 * a plock bit and then (non-atomically) sets each worker's
340 * qlock status, cancels all unprocessed tasks, and wakes up
341 * all waiting workers. Detecting whether termination should
342 * commence after a non-abrupt shutdown() call requires more work
343 * and bookkeeping. We need consensus about quiescence (i.e., that
344 * there is no more work). The active count provides a primary
345 * indication but non-abrupt shutdown still requires a rechecking
346 * scan for any workers that are inactive but not queued.
347 *
348 * Joining Tasks
349 * =============
350 *
351 * Any of several actions may be taken when one worker is waiting
352 * to join a task stolen (or always held) by another. Because we
353 * are multiplexing many tasks on to a pool of workers, we can't
354 * just let them block (as in Thread.join). We also cannot just
355 * reassign the joiner's run-time stack with another and replace
356 * it later, which would be a form of "continuation", that even if
357 * possible is not necessarily a good idea since we sometimes need
358 * both an unblocked task and its continuation to progress.
359 * Instead we combine two tactics:
360 *
361 * Helping: Arranging for the joiner to execute some task that it
362 * would be running if the steal had not occurred.
363 *
364 * Compensating: Unless there are already enough live threads,
365 * method tryCompensate() may create or re-activate a spare
366 * thread to compensate for blocked joiners until they unblock.
367 *
368 * A third form (implemented in tryRemoveAndExec) amounts to
369 * helping a hypothetical compensator: If we can readily tell that
370 * a possible action of a compensator is to steal and execute the
371 * task being joined, the joining thread can do so directly,
372 * without the need for a compensation thread (although at the
373 * expense of larger run-time stacks, but the tradeoff is
374 * typically worthwhile).
375 *
376 * The ManagedBlocker extension API can't use helping so relies
377 * only on compensation in method awaitBlocker.
378 *
379 * The algorithm in tryHelpStealer entails a form of "linear"
380 * helping: Each worker records (in field currentSteal) the most
381 * recent task it stole from some other worker. Plus, it records
382 * (in field currentJoin) the task it is currently actively
383 * joining. Method tryHelpStealer uses these markers to try to
384 * find a worker to help (i.e., steal back a task from and execute
385 * it) that could hasten completion of the actively joined task.
386 * In essence, the joiner executes a task that would be on its own
387 * local deque had the to-be-joined task not been stolen. This may
388 * be seen as a conservative variant of the approach in Wagner &
389 * Calder "Leapfrogging: a portable technique for implementing
390 * efficient futures" SIGPLAN Notices, 1993
391 * (http://portal.acm.org/citation.cfm?id=155354). It differs in
392 * that: (1) We only maintain dependency links across workers upon
393 * steals, rather than use per-task bookkeeping. This sometimes
394 * requires a linear scan of workQueues array to locate stealers,
395 * but often doesn't because stealers leave hints (that may become
396 * stale/wrong) of where to locate them. It is only a hint
397 * because a worker might have had multiple steals and the hint
398 * records only one of them (usually the most current). Hinting
399 * isolates cost to when it is needed, rather than adding to
400 * per-task overhead. (2) It is "shallow", ignoring nesting and
401 * potentially cyclic mutual steals. (3) It is intentionally
402 * racy: field currentJoin is updated only while actively joining,
403 * which means that we miss links in the chain during long-lived
404 * tasks, GC stalls etc (which is OK since blocking in such cases
405 * is usually a good idea). (4) We bound the number of attempts
406 * to find work (see MAX_HELP) and fall back to suspending the
407 * worker and if necessary replacing it with another.
408 *
409 * Helping actions for CountedCompleters are much simpler: Method
410 * helpComplete can take and execute any task with the same root
411 * as the task being waited on. However, this still entails some
412 * traversal of completer chains, so is less efficient than using
413 * CountedCompleters without explicit joins.
414 *
415 * It is impossible to keep exactly the target parallelism number
416 * of threads running at any given time. Determining the
417 * existence of conservatively safe helping targets, the
418 * availability of already-created spares, and the apparent need
419 * to create new spares are all racy, so we rely on multiple
420 * retries of each. Compensation in the apparent absence of
421 * helping opportunities is challenging to control on JVMs, where
422 * GC and other activities can stall progress of tasks that in
423 * turn stall out many other dependent tasks, without us being
424 * able to determine whether they will ever require compensation.
425 * Even though work-stealing otherwise encounters little
426 * degradation in the presence of more threads than cores,
427 * aggressively adding new threads in such cases entails risk of
428 * unwanted positive feedback control loops in which more threads
429 * cause more dependent stalls (as well as delayed progress of
430 * unblocked threads to the point that we know they are available)
431 * leading to more situations requiring more threads, and so
432 * on. This aspect of control can be seen as an (analytically
433 * intractable) game with an opponent that may choose the worst
434 * (for us) active thread to stall at any time. We take several
435 * precautions to bound losses (and thus bound gains), mainly in
436 * methods tryCompensate and awaitJoin.
437 *
438 * Common Pool
439 * ===========
440 *
441 * The static common Pool always exists after static
442 * initialization. Since it (or any other created pool) need
443 * never be used, we minimize initial construction overhead and
444 * footprint to the setup of about a dozen fields, with no nested
445 * allocation. Most bootstrapping occurs within method
446 * fullExternalPush during the first submission to the pool.
447 *
448 * When external threads submit to the common pool, they can
449 * perform subtask processing (see externalHelpJoin and related
450 * methods). This caller-helps policymakes it sensible to set
451 * common pool parallelism level to one (or more) less than the
452 * total number of available cores, or even zero for pure
453 * caller-runs. We do not need to record whether external
454 * submissions are to the common pool -- if not, externalHelpJoin
455 * returns quickly (at the most helping to signal some common pool
456 * workers). These submitters would otherwise be blocked waiting
457 * for completion, so the extra effort (with liberally sprinkled
458 * task status checks) in inapplicable cases amounts to an odd
459 * form of limited spin-wait before blocking in ForkJoinTask.join.
460 *
461 * Style notes
462 * ===========
463 *
464 * There is a lot of representation-level coupling among classes
465 * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
466 * fields of WorkQueue maintain data structures managed by
467 * ForkJoinPool, so are directly accessed. There is little point
468 * trying to reduce this, since any associated future changes in
469 * representations will need to be accompanied by algorithmic
470 * changes anyway. Several methods intrinsically sprawl because
471 * they must accumulate sets of consistent reads of volatiles held
472 * in local variables. Methods signalWork() and scan() are the
473 * main bottlenecks, so are especially heavily
474 * micro-optimized/mangled. There are lots of inline assignments
475 * (of form "while ((local = field) != 0)") which are usually the
476 * simplest way to ensure the required read orderings (which are
477 * sometimes critical). This leads to a "C"-like style of listing
478 * declarations of these locals at the heads of methods or blocks.
479 * There are several occurrences of the unusual "do {} while
480 * (!cas...)" which is the simplest way to force an update of a
481 * CAS'ed variable. There are also other coding oddities (including
482 * several unnecessary-looking hoisted null checks) that help
483 * some methods perform reasonably even when interpreted (not
484 * compiled).
485 *
486 * The order of declarations in this file is:
487 * (1) Static utility functions
488 * (2) Nested (static) classes
489 * (3) Static fields
490 * (4) Fields, along with constants used when unpacking some of them
491 * (5) Internal control methods
492 * (6) Callbacks and other support for ForkJoinTask methods
493 * (7) Exported methods
494 * (8) Static block initializing statics in minimally dependent order
495 */
496
497 // Static utilities
498
499 /**
500 * If there is a security manager, makes sure caller has
501 * permission to modify threads.
502 */
503 private static void checkPermission() {
504 SecurityManager security = System.getSecurityManager();
505 if (security != null)
506 security.checkPermission(modifyThreadPermission);
507 }
508
509 // Nested classes
510
511 /**
512 * Factory for creating new {@link ForkJoinWorkerThread}s.
513 * A {@code ForkJoinWorkerThreadFactory} must be defined and used
514 * for {@code ForkJoinWorkerThread} subclasses that extend base
515 * functionality or initialize threads with different contexts.
516 */
517 public static interface ForkJoinWorkerThreadFactory {
518 /**
519 * Returns a new worker thread operating in the given pool.
520 *
521 * @param pool the pool this thread works in
522 * @throws NullPointerException if the pool is null
523 * @return the new worker thread
524 */
525 public ForkJoinWorkerThread newThread(ForkJoinPool pool);
526 }
527
528 /**
529 * Default ForkJoinWorkerThreadFactory implementation; creates a
530 * new ForkJoinWorkerThread.
531 */
532 static final class DefaultForkJoinWorkerThreadFactory
533 implements ForkJoinWorkerThreadFactory {
534 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
535 return new ForkJoinWorkerThread(pool);
536 }
537 }
538
539 /**
540 * Class for artificial tasks that are used to replace the target
541 * of local joins if they are removed from an interior queue slot
542 * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
543 * actually do anything beyond having a unique identity.
544 */
545 static final class EmptyTask extends ForkJoinTask<Void> {
546 private static final long serialVersionUID = -7721805057305804111L;
547 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
548 public final Void getRawResult() { return null; }
549 public final void setRawResult(Void x) {}
550 public final boolean exec() { return true; }
551 }
552
553 /**
554 * Queues supporting work-stealing as well as external task
555 * submission. See above for main rationale and algorithms.
556 * Implementation relies heavily on "Unsafe" intrinsics
557 * and selective use of "volatile":
558 *
559 * Field "base" is the index (mod array.length) of the least valid
560 * queue slot, which is always the next position to steal (poll)
561 * from if nonempty. Reads and writes require volatile orderings
562 * but not CAS, because updates are only performed after slot
563 * CASes.
564 *
565 * Field "top" is the index (mod array.length) of the next queue
566 * slot to push to or pop from. It is written only by owner thread
567 * for push, or under lock for external/shared push, and accessed
568 * by other threads only after reading (volatile) base. Both top
569 * and base are allowed to wrap around on overflow, but (top -
570 * base) (or more commonly -(base - top) to force volatile read of
571 * base before top) still estimates size. The lock ("qlock") is
572 * forced to -1 on termination, causing all further lock attempts
573 * to fail. (Note: we don't need CAS for termination state because
574 * upon pool shutdown, all shared-queues will stop being used
575 * anyway.) Nearly all lock bodies are set up so that exceptions
576 * within lock bodies are "impossible" (modulo JVM errors that
577 * would cause failure anyway.)
578 *
579 * The array slots are read and written using the emulation of
580 * volatiles/atomics provided by Unsafe. Insertions must in
581 * general use putOrderedObject as a form of releasing store to
582 * ensure that all writes to the task object are ordered before
583 * its publication in the queue. All removals entail a CAS to
584 * null. The array is always a power of two. To ensure safety of
585 * Unsafe array operations, all accesses perform explicit null
586 * checks and implicit bounds checks via power-of-two masking.
587 *
588 * In addition to basic queuing support, this class contains
589 * fields described elsewhere to control execution. It turns out
590 * to work better memory-layout-wise to include them in this class
591 * rather than a separate class.
592 *
593 * Performance on most platforms is very sensitive to placement of
594 * instances of both WorkQueues and their arrays -- we absolutely
595 * do not want multiple WorkQueue instances or multiple queue
596 * arrays sharing cache lines. (It would be best for queue objects
597 * and their arrays to share, but there is nothing available to
598 * help arrange that). The @Contended annotation alerts JVMs to
599 * try to keep instances apart.
600 */
601 @sun.misc.Contended
602 static final class WorkQueue {
603 /**
604 * Capacity of work-stealing queue array upon initialization.
605 * Must be a power of two; at least 4, but should be larger to
606 * reduce or eliminate cacheline sharing among queues.
607 * Currently, it is much larger, as a partial workaround for
608 * the fact that JVMs often place arrays in locations that
609 * share GC bookkeeping (especially cardmarks) such that
610 * per-write accesses encounter serious memory contention.
611 */
612 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
613
614 /**
615 * Maximum size for queue arrays. Must be a power of two less
616 * than or equal to 1 << (31 - width of array entry) to ensure
617 * lack of wraparound of index calculations, but defined to a
618 * value a bit less than this to help users trap runaway
619 * programs before saturating systems.
620 */
621 static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
622
623 int seed; // for random scanning; initialize nonzero
624 volatile int eventCount; // encoded inactivation count; < 0 if inactive
625 int nextWait; // encoded record of next event waiter
626 int hint; // steal or signal hint (index)
627 int poolIndex; // index of this queue in pool (or 0)
628 final int mode; // 0: lifo, > 0: fifo, < 0: shared
629 int nsteals; // number of steals
630 volatile int qlock; // 1: locked, -1: terminate; else 0
631 volatile int base; // index of next slot for poll
632 int top; // index of next slot for push
633 ForkJoinTask<?>[] array; // the elements (initially unallocated)
634 final ForkJoinPool pool; // the containing pool (may be null)
635 final ForkJoinWorkerThread owner; // owning thread or null if shared
636 volatile Thread parker; // == owner during call to park; else null
637 volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
638 ForkJoinTask<?> currentSteal; // current non-local task being executed
639
640 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
641 int seed) {
642 this.pool = pool;
643 this.owner = owner;
644 this.mode = mode;
645 this.seed = seed;
646 // Place indices in the center of array (that is not yet allocated)
647 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
648 }
649
650 /**
651 * Returns the approximate number of tasks in the queue.
652 */
653 final int queueSize() {
654 int n = base - top; // non-owner callers must read base first
655 return (n >= 0) ? 0 : -n; // ignore transient negative
656 }
657
658 /**
659 * Provides a more accurate estimate of whether this queue has
660 * any tasks than does queueSize, by checking whether a
661 * near-empty queue has at least one unclaimed task.
662 */
663 final boolean isEmpty() {
664 ForkJoinTask<?>[] a; int m, s;
665 int n = base - (s = top);
666 return (n >= 0 ||
667 (n == -1 &&
668 ((a = array) == null ||
669 (m = a.length - 1) < 0 ||
670 U.getObject
671 (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
672 }
673
674 /**
675 * Pushes a task. Call only by owner in unshared queues. (The
676 * shared-queue version is embedded in method externalPush.)
677 *
678 * @param task the task. Caller must ensure non-null.
679 * @throws RejectedExecutionException if array cannot be resized
680 */
681 final void push(ForkJoinTask<?> task) {
682 ForkJoinTask<?>[] a; ForkJoinPool p;
683 int s = top, m;
684 if ((a = array) != null) { // ignore if queue removed
685 int j = (((m = a.length - 1) & s) << ASHIFT) + ABASE;
686 U.putOrderedObject(a, j, task);
687 if ((top = s + 1) - base >= m)
688 growArray();
689 else if ((p = pool) != null)
690 p.signalWork(this);
691 }
692 }
693
694 /**
695 * Initializes or doubles the capacity of array. Call either
696 * by owner or with lock held -- it is OK for base, but not
697 * top, to move while resizings are in progress.
698 */
699 final ForkJoinTask<?>[] growArray() {
700 ForkJoinTask<?>[] oldA = array;
701 int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
702 if (size > MAXIMUM_QUEUE_CAPACITY)
703 throw new RejectedExecutionException("Queue capacity exceeded");
704 int oldMask, t, b;
705 ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
706 if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
707 (t = top) - (b = base) > 0) {
708 int mask = size - 1;
709 do {
710 ForkJoinTask<?> x;
711 int oldj = ((b & oldMask) << ASHIFT) + ABASE;
712 int j = ((b & mask) << ASHIFT) + ABASE;
713 x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
714 if (x != null &&
715 U.compareAndSwapObject(oldA, oldj, x, null))
716 U.putObjectVolatile(a, j, x);
717 } while (++b != t);
718 }
719 return a;
720 }
721
722 /**
723 * Takes next task, if one exists, in LIFO order. Call only
724 * by owner in unshared queues.
725 */
726 final ForkJoinTask<?> pop() {
727 ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
728 if ((a = array) != null && (m = a.length - 1) >= 0) {
729 for (int s; (s = top - 1) - base >= 0;) {
730 long j = ((m & s) << ASHIFT) + ABASE;
731 if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
732 break;
733 if (U.compareAndSwapObject(a, j, t, null)) {
734 top = s;
735 return t;
736 }
737 }
738 }
739 return null;
740 }
741
742 /**
743 * Takes a task in FIFO order if b is base of queue and a task
744 * can be claimed without contention. Specialized versions
745 * appear in ForkJoinPool methods scan and tryHelpStealer.
746 */
747 final ForkJoinTask<?> pollAt(int b) {
748 ForkJoinTask<?> t; ForkJoinTask<?>[] a;
749 if ((a = array) != null) {
750 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
751 if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
752 base == b &&
753 U.compareAndSwapObject(a, j, t, null)) {
754 U.putOrderedInt(this, QBASE, b + 1);
755 return t;
756 }
757 }
758 return null;
759 }
760
761 /**
762 * Takes next task, if one exists, in FIFO order.
763 */
764 final ForkJoinTask<?> poll() {
765 ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
766 while ((b = base) - top < 0 && (a = array) != null) {
767 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
768 t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
769 if (t != null) {
770 if (base == b &&
771 U.compareAndSwapObject(a, j, t, null)) {
772 U.putOrderedInt(this, QBASE, b + 1);
773 return t;
774 }
775 }
776 else if (base == b) {
777 if (b + 1 == top)
778 break;
779 Thread.yield(); // wait for lagging update (very rare)
780 }
781 }
782 return null;
783 }
784
785 /**
786 * Takes next task, if one exists, in order specified by mode.
787 */
788 final ForkJoinTask<?> nextLocalTask() {
789 return mode == 0 ? pop() : poll();
790 }
791
792 /**
793 * Returns next task, if one exists, in order specified by mode.
794 */
795 final ForkJoinTask<?> peek() {
796 ForkJoinTask<?>[] a = array; int m;
797 if (a == null || (m = a.length - 1) < 0)
798 return null;
799 int i = mode == 0 ? top - 1 : base;
800 int j = ((i & m) << ASHIFT) + ABASE;
801 return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
802 }
803
804 /**
805 * Pops the given task only if it is at the current top.
806 * (A shared version is available only via FJP.tryExternalUnpush)
807 */
808 final boolean tryUnpush(ForkJoinTask<?> t) {
809 ForkJoinTask<?>[] a; int s;
810 if ((a = array) != null && (s = top) != base &&
811 U.compareAndSwapObject
812 (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
813 top = s;
814 return true;
815 }
816 return false;
817 }
818
819 /**
820 * Removes and cancels all known tasks, ignoring any exceptions.
821 */
822 final void cancelAll() {
823 ForkJoinTask.cancelIgnoringExceptions(currentJoin);
824 ForkJoinTask.cancelIgnoringExceptions(currentSteal);
825 for (ForkJoinTask<?> t; (t = poll()) != null; )
826 ForkJoinTask.cancelIgnoringExceptions(t);
827 }
828
829 /**
830 * Computes next value for random probes. Scans don't require
831 * a very high quality generator, but also not a crummy one.
832 * Marsaglia xor-shift is cheap and works well enough. Note:
833 * This is manually inlined in its usages in ForkJoinPool to
834 * avoid writes inside busy scan loops.
835 */
836 final int nextSeed() {
837 int r = seed;
838 r ^= r << 13;
839 r ^= r >>> 17;
840 return seed = r ^= r << 5;
841 }
842
843 // Specialized execution methods
844
845 /**
846 * Pops and runs tasks until empty.
847 */
848 private void popAndExecAll() {
849 // A bit faster than repeated pop calls
850 ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
851 while ((a = array) != null && (m = a.length - 1) >= 0 &&
852 (s = top - 1) - base >= 0 &&
853 (t = ((ForkJoinTask<?>)
854 U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
855 != null) {
856 if (U.compareAndSwapObject(a, j, t, null)) {
857 top = s;
858 t.doExec();
859 }
860 }
861 }
862
863 /**
864 * Polls and runs tasks until empty.
865 */
866 private void pollAndExecAll() {
867 for (ForkJoinTask<?> t; (t = poll()) != null;)
868 t.doExec();
869 }
870
871 /**
872 * If present, removes from queue and executes the given task,
873 * or any other cancelled task. Returns (true) on any CAS
874 * or consistency check failure so caller can retry.
875 *
876 * @return false if no progress can be made, else true
877 */
878 final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
879 boolean stat = true, removed = false, empty = true;
880 ForkJoinTask<?>[] a; int m, s, b, n;
881 if ((a = array) != null && (m = a.length - 1) >= 0 &&
882 (n = (s = top) - (b = base)) > 0) {
883 for (ForkJoinTask<?> t;;) { // traverse from s to b
884 int j = ((--s & m) << ASHIFT) + ABASE;
885 t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
886 if (t == null) // inconsistent length
887 break;
888 else if (t == task) {
889 if (s + 1 == top) { // pop
890 if (!U.compareAndSwapObject(a, j, task, null))
891 break;
892 top = s;
893 removed = true;
894 }
895 else if (base == b) // replace with proxy
896 removed = U.compareAndSwapObject(a, j, task,
897 new EmptyTask());
898 break;
899 }
900 else if (t.status >= 0)
901 empty = false;
902 else if (s + 1 == top) { // pop and throw away
903 if (U.compareAndSwapObject(a, j, t, null))
904 top = s;
905 break;
906 }
907 if (--n == 0) {
908 if (!empty && base == b)
909 stat = false;
910 break;
911 }
912 }
913 }
914 if (removed)
915 task.doExec();
916 return stat;
917 }
918
919 /**
920 * Polls for and executes the given task or any other task in
921 * its CountedCompleter computation.
922 */
923 final boolean pollAndExecCC(ForkJoinTask<?> root) {
924 ForkJoinTask<?>[] a; int b; Object o;
925 outer: while (root.status >= 0 && (b = base) - top < 0 &&
926 (a = array) != null) {
927 long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
928 if ((o = U.getObject(a, j)) == null ||
929 !(o instanceof CountedCompleter))
930 break;
931 for (CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;;) {
932 if (r == root) {
933 if (base == b &&
934 U.compareAndSwapObject(a, j, t, null)) {
935 U.putOrderedInt(this, QBASE, b + 1);
936 t.doExec();
937 return true;
938 }
939 else
940 break; // restart
941 }
942 if ((r = r.completer) == null)
943 break outer; // not part of root computation
944 }
945 }
946 return false;
947 }
948
949 /**
950 * Executes a top-level task and any local tasks remaining
951 * after execution.
952 */
953 final void runTask(ForkJoinTask<?> t) {
954 if (t != null) {
955 (currentSteal = t).doExec();
956 currentSteal = null;
957 ++nsteals;
958 if (base - top < 0) { // process remaining local tasks
959 if (mode == 0)
960 popAndExecAll();
961 else
962 pollAndExecAll();
963 }
964 }
965 }
966
967 /**
968 * Executes a non-top-level (stolen) task.
969 */
970 final void runSubtask(ForkJoinTask<?> t) {
971 if (t != null) {
972 ForkJoinTask<?> ps = currentSteal;
973 (currentSteal = t).doExec();
974 currentSteal = ps;
975 }
976 }
977
978 /**
979 * Returns true if owned and not known to be blocked.
980 */
981 final boolean isApparentlyUnblocked() {
982 Thread wt; Thread.State s;
983 return (eventCount >= 0 &&
984 (wt = owner) != null &&
985 (s = wt.getState()) != Thread.State.BLOCKED &&
986 s != Thread.State.WAITING &&
987 s != Thread.State.TIMED_WAITING);
988 }
989
990 // Unsafe mechanics
991 private static final sun.misc.Unsafe U;
992 private static final long QBASE;
993 private static final long QLOCK;
994 private static final int ABASE;
995 private static final int ASHIFT;
996 static {
997 try {
998 U = sun.misc.Unsafe.getUnsafe();
999 Class<?> k = WorkQueue.class;
1000 Class<?> ak = ForkJoinTask[].class;
1001 QBASE = U.objectFieldOffset
1002 (k.getDeclaredField("base"));
1003 QLOCK = U.objectFieldOffset
1004 (k.getDeclaredField("qlock"));
1005 ABASE = U.arrayBaseOffset(ak);
1006 int scale = U.arrayIndexScale(ak);
1007 if ((scale & (scale - 1)) != 0)
1008 throw new Error("data type scale not a power of two");
1009 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1010 } catch (Exception e) {
1011 throw new Error(e);
1012 }
1013 }
1014 }
1015
1016 // static fields (initialized in static initializer below)
1017
1018 /**
1019 * Creates a new ForkJoinWorkerThread. This factory is used unless
1020 * overridden in ForkJoinPool constructors.
1021 */
1022 public static final ForkJoinWorkerThreadFactory
1023 defaultForkJoinWorkerThreadFactory;
1024
1025 /**
1026 * Permission required for callers of methods that may start or
1027 * kill threads.
1028 */
1029 private static final RuntimePermission modifyThreadPermission;
1030
1031 /**
1032 * Common (static) pool. Non-null for public use unless a static
1033 * construction exception, but internal usages null-check on use
1034 * to paranoically avoid potential initialization circularities
1035 * as well as to simplify generated code.
1036 */
1037 static final ForkJoinPool common;
1038
1039 /**
1040 * Common pool parallelism. To allow simpler use and management
1041 * when common pool threads are disabled, we allow the underlying
1042 * common.config field to be zero, but in that case still report
1043 * parallelism as 1 to reflect resulting caller-runs mechanics.
1044 */
1045 static final int commonParallelism;
1046
1047 /**
1048 * Sequence number for creating workerNamePrefix.
1049 */
1050 private static int poolNumberSequence;
1051
1052 /**
1053 * Returns the next sequence number. We don't expect this to
1054 * ever contend, so use simple builtin sync.
1055 */
1056 private static final synchronized int nextPoolId() {
1057 return ++poolNumberSequence;
1058 }
1059
1060 // static constants
1061
1062 /**
1063 * Initial timeout value (in nanoseconds) for the thread
1064 * triggering quiescence to park waiting for new work. On timeout,
1065 * the thread will instead try to shrink the number of
1066 * workers. The value should be large enough to avoid overly
1067 * aggressive shrinkage during most transient stalls (long GCs
1068 * etc).
1069 */
1070 private static final long IDLE_TIMEOUT = 2000L * 1000L * 1000L; // 2sec
1071
1072 /**
1073 * Timeout value when there are more threads than parallelism level
1074 */
1075 private static final long FAST_IDLE_TIMEOUT = 200L * 1000L * 1000L;
1076
1077 /**
1078 * Tolerance for idle timeouts, to cope with timer undershoots
1079 */
1080 private static final long TIMEOUT_SLOP = 2000000L;
1081
1082 /**
1083 * The maximum stolen->joining link depth allowed in method
1084 * tryHelpStealer. Must be a power of two. Depths for legitimate
1085 * chains are unbounded, but we use a fixed constant to avoid
1086 * (otherwise unchecked) cycles and to bound staleness of
1087 * traversal parameters at the expense of sometimes blocking when
1088 * we could be helping.
1089 */
1090 private static final int MAX_HELP = 64;
1091
1092 /**
1093 * Increment for seed generators. See class ThreadLocal for
1094 * explanation.
1095 */
1096 private static final int SEED_INCREMENT = 0x61c88647;
1097
1098 /*
1099 * Bits and masks for control variables
1100 *
1101 * Field ctl is a long packed with:
1102 * AC: Number of active running workers minus target parallelism (16 bits)
1103 * TC: Number of total workers minus target parallelism (16 bits)
1104 * ST: true if pool is terminating (1 bit)
1105 * EC: the wait count of top waiting thread (15 bits)
1106 * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1107 *
1108 * When convenient, we can extract the upper 32 bits of counts and
1109 * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1110 * (int)ctl. The ec field is never accessed alone, but always
1111 * together with id and st. The offsets of counts by the target
1112 * parallelism and the positionings of fields makes it possible to
1113 * perform the most common checks via sign tests of fields: When
1114 * ac is negative, there are not enough active workers, when tc is
1115 * negative, there are not enough total workers, and when e is
1116 * negative, the pool is terminating. To deal with these possibly
1117 * negative fields, we use casts in and out of "short" and/or
1118 * signed shifts to maintain signedness.
1119 *
1120 * When a thread is queued (inactivated), its eventCount field is
1121 * set negative, which is the only way to tell if a worker is
1122 * prevented from executing tasks, even though it must continue to
1123 * scan for them to avoid queuing races. Note however that
1124 * eventCount updates lag releases so usage requires care.
1125 *
1126 * Field plock is an int packed with:
1127 * SHUTDOWN: true if shutdown is enabled (1 bit)
1128 * SEQ: a sequence lock, with PL_LOCK bit set if locked (30 bits)
1129 * SIGNAL: set when threads may be waiting on the lock (1 bit)
1130 *
1131 * The sequence number enables simple consistency checks:
1132 * Staleness of read-only operations on the workQueues array can
1133 * be checked by comparing plock before vs after the reads.
1134 */
1135
1136 // bit positions/shifts for fields
1137 private static final int AC_SHIFT = 48;
1138 private static final int TC_SHIFT = 32;
1139 private static final int ST_SHIFT = 31;
1140 private static final int EC_SHIFT = 16;
1141
1142 // bounds
1143 private static final int SMASK = 0xffff; // short bits
1144 private static final int MAX_CAP = 0x7fff; // max #workers - 1
1145 private static final int EVENMASK = 0xfffe; // even short bits
1146 private static final int SQMASK = 0x007e; // max 64 (even) slots
1147 private static final int SHORT_SIGN = 1 << 15;
1148 private static final int INT_SIGN = 1 << 31;
1149
1150 // masks
1151 private static final long STOP_BIT = 0x0001L << ST_SHIFT;
1152 private static final long AC_MASK = ((long)SMASK) << AC_SHIFT;
1153 private static final long TC_MASK = ((long)SMASK) << TC_SHIFT;
1154
1155 // units for incrementing and decrementing
1156 private static final long TC_UNIT = 1L << TC_SHIFT;
1157 private static final long AC_UNIT = 1L << AC_SHIFT;
1158
1159 // masks and units for dealing with u = (int)(ctl >>> 32)
1160 private static final int UAC_SHIFT = AC_SHIFT - 32;
1161 private static final int UTC_SHIFT = TC_SHIFT - 32;
1162 private static final int UAC_MASK = SMASK << UAC_SHIFT;
1163 private static final int UTC_MASK = SMASK << UTC_SHIFT;
1164 private static final int UAC_UNIT = 1 << UAC_SHIFT;
1165 private static final int UTC_UNIT = 1 << UTC_SHIFT;
1166
1167 // masks and units for dealing with e = (int)ctl
1168 private static final int E_MASK = 0x7fffffff; // no STOP_BIT
1169 private static final int E_SEQ = 1 << EC_SHIFT;
1170
1171 // plock bits
1172 private static final int SHUTDOWN = 1 << 31;
1173 private static final int PL_LOCK = 2;
1174 private static final int PL_SIGNAL = 1;
1175 private static final int PL_SPINS = 1 << 8;
1176
1177 // access mode for WorkQueue
1178 static final int LIFO_QUEUE = 0;
1179 static final int FIFO_QUEUE = 1;
1180 static final int SHARED_QUEUE = -1;
1181
1182 // Mininum number of scans before blocking in scan() and related methods
1183 private static final int MIN_RESCANS = 0x0fff;
1184
1185 // Instance fields
1186 volatile long stealCount; // collects worker counts
1187 volatile long ctl; // main pool control
1188 volatile int plock; // shutdown status and seqLock
1189 volatile int indexSeed; // worker/submitter index seed
1190 final int config; // mode and parallelism level
1191 WorkQueue[] workQueues; // main registry
1192 final ForkJoinWorkerThreadFactory factory;
1193 final UncaughtExceptionHandler ueh; // per-worker UEH
1194 final String workerNamePrefix; // to create worker name string
1195
1196 /**
1197 * Acquires the plock lock to protect worker array and related
1198 * updates. This method is called only if an initial CAS on plock
1199 * fails. This acts as a spinlock for normal cases, but falls back
1200 * to builtin monitor to block when (rarely) needed. This would be
1201 * a terrible idea for a highly contended lock, but works fine as
1202 * a more conservative alternative to a pure spinlock.
1203 */
1204 private int acquirePlock() {
1205 int spins = PL_SPINS, ps, nps;
1206 for (;;) {
1207 if (((ps = plock) & PL_LOCK) == 0 &&
1208 U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1209 return nps;
1210 else if (spins >= 0) {
1211 if (ThreadLocalRandom.nextSecondarySeed() >= 0)
1212 --spins;
1213 }
1214 else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1215 synchronized (this) {
1216 if ((plock & PL_SIGNAL) != 0) {
1217 try {
1218 wait();
1219 } catch (InterruptedException ie) {
1220 try {
1221 Thread.currentThread().interrupt();
1222 } catch (SecurityException ignore) {
1223 }
1224 }
1225 }
1226 else
1227 notifyAll();
1228 }
1229 }
1230 }
1231 }
1232
1233 /**
1234 * Unlocks and signals any thread waiting for plock. Called only
1235 * when CAS of seq value for unlock fails.
1236 */
1237 private void releasePlock(int ps) {
1238 plock = ps;
1239 synchronized (this) { notifyAll(); }
1240 }
1241
1242 /**
1243 * Tries to create and start one worker if fewer than target
1244 * parallelism level exist. Adjusts counts etc on failure.
1245 */
1246 private void tryAddWorker() {
1247 long c; int u;
1248 while ((u = (int)((c = ctl) >>> 32)) < 0 &&
1249 (u & SHORT_SIGN) != 0 && (int)c == 0) {
1250 long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1251 ((u + UAC_UNIT) & UAC_MASK)) << 32;
1252 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1253 ForkJoinWorkerThreadFactory fac;
1254 Throwable ex = null;
1255 ForkJoinWorkerThread wt = null;
1256 try {
1257 if ((fac = factory) != null &&
1258 (wt = fac.newThread(this)) != null) {
1259 wt.start();
1260 break;
1261 }
1262 } catch (Throwable e) {
1263 ex = e;
1264 }
1265 deregisterWorker(wt, ex);
1266 break;
1267 }
1268 }
1269 }
1270
1271 // Registering and deregistering workers
1272
1273 /**
1274 * Callback from ForkJoinWorkerThread to establish and record its
1275 * WorkQueue. To avoid scanning bias due to packing entries in
1276 * front of the workQueues array, we treat the array as a simple
1277 * power-of-two hash table using per-thread seed as hash,
1278 * expanding as needed.
1279 *
1280 * @param wt the worker thread
1281 * @return the worker's queue
1282 */
1283 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1284 UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps;
1285 wt.setDaemon(true);
1286 if ((handler = ueh) != null)
1287 wt.setUncaughtExceptionHandler(handler);
1288 do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
1289 s += SEED_INCREMENT) ||
1290 s == 0); // skip 0
1291 WorkQueue w = new WorkQueue(this, wt, config >>> 16, s);
1292 if (((ps = plock) & PL_LOCK) != 0 ||
1293 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1294 ps = acquirePlock();
1295 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1296 try {
1297 if ((ws = workQueues) != null) { // skip if shutting down
1298 int n = ws.length, m = n - 1;
1299 int r = (s << 1) | 1; // use odd-numbered indices
1300 if (ws[r &= m] != null) { // collision
1301 int probes = 0; // step by approx half size
1302 int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1303 while (ws[r = (r + step) & m] != null) {
1304 if (++probes >= n) {
1305 workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1306 m = n - 1;
1307 probes = 0;
1308 }
1309 }
1310 }
1311 w.eventCount = w.poolIndex = r; // volatile write orders
1312 ws[r] = w;
1313 }
1314 } finally {
1315 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1316 releasePlock(nps);
1317 }
1318 wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex)));
1319 return w;
1320 }
1321
1322 /**
1323 * Final callback from terminating worker, as well as upon failure
1324 * to construct or start a worker. Removes record of worker from
1325 * array, and adjusts counts. If pool is shutting down, tries to
1326 * complete termination.
1327 *
1328 * @param wt the worker thread, or null if construction failed
1329 * @param ex the exception causing failure, or null if none
1330 */
1331 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1332 WorkQueue w = null;
1333 if (wt != null && (w = wt.workQueue) != null) {
1334 int ps;
1335 w.qlock = -1; // ensure set
1336 long ns = w.nsteals, sc; // collect steal count
1337 do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1338 sc = stealCount, sc + ns));
1339 if (((ps = plock) & PL_LOCK) != 0 ||
1340 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1341 ps = acquirePlock();
1342 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1343 try {
1344 int idx = w.poolIndex;
1345 WorkQueue[] ws = workQueues;
1346 if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1347 ws[idx] = null;
1348 } finally {
1349 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1350 releasePlock(nps);
1351 }
1352 }
1353
1354 long c; // adjust ctl counts
1355 do {} while (!U.compareAndSwapLong
1356 (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1357 ((c - TC_UNIT) & TC_MASK) |
1358 (c & ~(AC_MASK|TC_MASK)))));
1359
1360 if (!tryTerminate(false, false) && w != null && w.array != null) {
1361 w.cancelAll(); // cancel remaining tasks
1362 WorkQueue[] ws; WorkQueue v; Thread p; int u, i, e;
1363 while ((u = (int)((c = ctl) >>> 32)) < 0 && (e = (int)c) >= 0) {
1364 if (e > 0) { // activate or create replacement
1365 if ((ws = workQueues) == null ||
1366 (i = e & SMASK) >= ws.length ||
1367 (v = ws[i]) == null)
1368 break;
1369 long nc = (((long)(v.nextWait & E_MASK)) |
1370 ((long)(u + UAC_UNIT) << 32));
1371 if (v.eventCount != (e | INT_SIGN))
1372 break;
1373 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1374 v.eventCount = (e + E_SEQ) & E_MASK;
1375 if ((p = v.parker) != null)
1376 U.unpark(p);
1377 break;
1378 }
1379 }
1380 else {
1381 if ((short)u < 0)
1382 tryAddWorker();
1383 break;
1384 }
1385 }
1386 }
1387 if (ex == null) // help clean refs on way out
1388 ForkJoinTask.helpExpungeStaleExceptions();
1389 else // rethrow
1390 ForkJoinTask.rethrow(ex);
1391 }
1392
1393 // Submissions
1394
1395 /**
1396 * Unless shutting down, adds the given task to a submission queue
1397 * at submitter's current queue index (modulo submission
1398 * range). Only the most common path is directly handled in this
1399 * method. All others are relayed to fullExternalPush.
1400 *
1401 * @param task the task. Caller must ensure non-null.
1402 */
1403 final void externalPush(ForkJoinTask<?> task) {
1404 WorkQueue[] ws; WorkQueue q; int z, m; ForkJoinTask<?>[] a;
1405 if ((z = ThreadLocalRandom.getProbe()) != 0 && plock > 0 &&
1406 (ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
1407 (q = ws[m & z & SQMASK]) != null &&
1408 U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1409 int s = q.top, am;
1410 if ((a = q.array) != null && (am = a.length - 1) > s - q.base) {
1411 int j = ((am & s) << ASHIFT) + ABASE;
1412 U.putOrderedObject(a, j, task);
1413 q.top = s + 1; // push on to deque
1414 q.qlock = 0;
1415 signalWork(q);
1416 return;
1417 }
1418 q.qlock = 0;
1419 }
1420 fullExternalPush(task);
1421 }
1422
1423 /**
1424 * Full version of externalPush. This method is called, among
1425 * other times, upon the first submission of the first task to the
1426 * pool, so must perform secondary initialization. It also
1427 * detects first submission by an external thread by looking up
1428 * its ThreadLocal, and creates a new shared queue if the one at
1429 * index if empty or contended. The plock lock body must be
1430 * exception-free (so no try/finally) so we optimistically
1431 * allocate new queues outside the lock and throw them away if
1432 * (very rarely) not needed.
1433 *
1434 * Secondary initialization occurs when plock is zero, to create
1435 * workQueue array and set plock to a valid value. This lock body
1436 * must also be exception-free. Because the plock seq value can
1437 * eventually wrap around zero, this method harmlessly fails to
1438 * reinitialize if workQueues exists, while still advancing plock.
1439 */
1440 private void fullExternalPush(ForkJoinTask<?> task) {
1441 int r;
1442 if ((r = ThreadLocalRandom.getProbe()) == 0) {
1443 ThreadLocalRandom.localInit();
1444 r = ThreadLocalRandom.getProbe();
1445 }
1446 for (;;) {
1447 WorkQueue[] ws; WorkQueue q; int ps, m, k;
1448 boolean move = false;
1449 if ((ps = plock) < 0)
1450 throw new RejectedExecutionException();
1451 else if (ps == 0 || (ws = workQueues) == null ||
1452 (m = ws.length - 1) < 0) { // initialize workQueues
1453 int p = config & SMASK; // find power of two table size
1454 int n = (p > 1) ? p - 1 : 1; // ensure at least 2 slots
1455 n |= n >>> 1; n |= n >>> 2; n |= n >>> 4;
1456 n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1;
1457 WorkQueue[] nws = ((ws = workQueues) == null || ws.length == 0 ?
1458 new WorkQueue[n] : null);
1459 if (((ps = plock) & PL_LOCK) != 0 ||
1460 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1461 ps = acquirePlock();
1462 if (((ws = workQueues) == null || ws.length == 0) && nws != null)
1463 workQueues = nws;
1464 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1465 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1466 releasePlock(nps);
1467 }
1468 else if ((q = ws[k = r & m & SQMASK]) != null) {
1469 if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
1470 ForkJoinTask<?>[] a = q.array;
1471 int s = q.top;
1472 boolean submitted = false;
1473 try { // locked version of push
1474 if ((a != null && a.length > s + 1 - q.base) ||
1475 (a = q.growArray()) != null) { // must presize
1476 int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
1477 U.putOrderedObject(a, j, task);
1478 q.top = s + 1;
1479 submitted = true;
1480 }
1481 } finally {
1482 q.qlock = 0; // unlock
1483 }
1484 if (submitted) {
1485 signalWork(q);
1486 return;
1487 }
1488 }
1489 move = true; // move on failure
1490 }
1491 else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
1492 q = new WorkQueue(this, null, SHARED_QUEUE, r);
1493 if (((ps = plock) & PL_LOCK) != 0 ||
1494 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1495 ps = acquirePlock();
1496 if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
1497 ws[k] = q;
1498 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1499 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1500 releasePlock(nps);
1501 }
1502 else
1503 move = true; // move if busy
1504 if (move)
1505 r = ThreadLocalRandom.advanceProbe(r);
1506 }
1507 }
1508
1509 // Maintaining ctl counts
1510
1511 /**
1512 * Increments active count; mainly called upon return from blocking.
1513 */
1514 final void incrementActiveCount() {
1515 long c;
1516 do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1517 }
1518
1519 /**
1520 * Tries to create or activate a worker if too few are active.
1521 *
1522 * @param q if non-null, the queue holding tasks to be processed
1523 */
1524 final void signalWork(WorkQueue q) {
1525 long c; int e, u, i, n; WorkQueue[] ws; WorkQueue w; Thread p;
1526 if ((u = (int)((c = ctl) >>> 32)) < 0) {
1527 if ((e = (int)c) > 0) {
1528 if ((ws = workQueues) != null && ws.length > (i = e & SMASK) &&
1529 (w = ws[i]) != null) {
1530 long nc = (((long)(w.nextWait & E_MASK)) |
1531 ((long)(u + UAC_UNIT) << 32));
1532 if (w.eventCount == (e | INT_SIGN) &&
1533 U.compareAndSwapLong(this, CTL, c, nc)) {
1534 w.eventCount = (e + E_SEQ) & E_MASK;
1535 if ((p = w.parker) != null)
1536 U.unpark(p);
1537 }
1538 else
1539 retrySignalWork(q);
1540 }
1541 }
1542 else if ((short)u < 0)
1543 tryAddWorker();
1544 }
1545 }
1546
1547 /**
1548 * Fallback version of signalWork, triggered if release fails
1549 * and the calling queue is non-empty;
1550 */
1551 final void retrySignalWork(WorkQueue q) {
1552 long c; int e, u, i, n; WorkQueue[] ws; WorkQueue w; Thread p;
1553 while ((q != null && !q.isEmpty()) &&
1554 (u = (int)((c = ctl) >>> 32)) < 0) {
1555 if ((e = (int)c) > 0) {
1556 if ((ws = workQueues) != null && ws.length > (i = e & SMASK) &&
1557 (w = ws[i]) != null) {
1558 long nc = (((long)(w.nextWait & E_MASK)) |
1559 ((long)(u + UAC_UNIT) << 32));
1560 if (w.eventCount == (e | INT_SIGN) &&
1561 U.compareAndSwapLong(this, CTL, c, nc)) {
1562 w.eventCount = (e + E_SEQ) & E_MASK;
1563 if ((p = w.parker) != null)
1564 U.unpark(p);
1565 break;
1566 }
1567 }
1568 else
1569 break;
1570 }
1571 else {
1572 if ((short)u < 0)
1573 tryAddWorker();
1574 break;
1575 }
1576 }
1577 }
1578
1579 // Scanning for tasks
1580
1581 /**
1582 * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1583 */
1584 final void runWorker(WorkQueue w) {
1585 w.growArray(); // allocate queue
1586 do { w.runTask(scan(w)); } while (w.qlock >= 0);
1587 }
1588
1589 /**
1590 * Scans for and, if found, returns one task, else possibly
1591 * inactivates the worker. This method operates on single reads of
1592 * volatile state and is designed to be re-invoked continuously,
1593 * in part because it returns upon detecting inconsistencies,
1594 * contention, or state changes that indicate possible success on
1595 * re-invocation.
1596 *
1597 * The scan searches for tasks across queues (starting at a random
1598 * index, and relying on registerWorker to irregularly scatter
1599 * them within array to avoid bias), checking each at least twice.
1600 * The scan terminates upon either finding a non-empty queue, or
1601 * completing the sweep. If the worker is not inactivated, it
1602 * takes and returns a task from this queue. Otherwise, if not
1603 * activated, it signals workers (that may include itself) and
1604 * returns so caller can retry. Also returns for true if the
1605 * worker array may have changed during an empty scan. On failure
1606 * to find a task, we take one of the following actions, after
1607 * which the caller will retry calling this method unless
1608 * terminated.
1609 *
1610 * * If pool is terminating, terminate the worker.
1611 *
1612 * * If not already enqueued, try to inactivate and enqueue the
1613 * worker on wait queue. Or, if inactivating has caused the pool
1614 * to be quiescent, relay to idleAwaitWork to possibly shrink
1615 * pool.
1616 *
1617 * * If already enqueued and none of the above apply, possibly
1618 * park awaiting signal, else lingering to help scan and signal.
1619 *
1620 * * If a non-empty queue discovered or left as a hint,
1621 * help wake up other workers before return.
1622 *
1623 * @param w the worker (via its WorkQueue)
1624 * @return a task or null if none found
1625 */
1626 private final ForkJoinTask<?> scan(WorkQueue w) {
1627 WorkQueue[] ws; int m;
1628 int ps = plock; // read plock before ws
1629 if (w != null && (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1630 int ec = w.eventCount; // ec is negative if inactive
1631 int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1632 int j = (m << 1) | (ec < 0 ? MIN_RESCANS : 1);
1633 do {
1634 WorkQueue q; int b;
1635 if ((q = ws[(r - j) & m]) != null &&
1636 (b = q.base) - q.top < 0) { // probably nonempty
1637 ForkJoinTask<?>[] a = q.array;
1638 if ((ec >= 0 || (ec = w.eventCount) >= 0) && a != null) {
1639 long i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1640 ForkJoinTask<?> t =
1641 (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1642 if (q.base == b && t != null &&
1643 U.compareAndSwapObject(a, i, t, null)) {
1644 U.putOrderedInt(q, QBASE, b + 1);
1645 return t; // taken
1646 }
1647 }
1648 if (j < m) // must restart to revisit
1649 break;
1650 }
1651 } while (--j >= 0);
1652
1653 int e, ns; long c, sc;
1654 if (j >= 0 || plock != ps) { // incomplete scan
1655 if (w.eventCount < 0) // help activate for next time
1656 signalWork(null);
1657 }
1658 else if ((e = (int)(c = ctl)) < 0)
1659 w.qlock = -1; // pool is terminating
1660 else if (ec >= 0) { // try to enqueue/inactivate
1661 long nc = (((long)ec |
1662 ((c - AC_UNIT) & (AC_MASK|TC_MASK))));
1663 w.nextWait = e; // link and mark inactive
1664 w.eventCount = ec | INT_SIGN;
1665 if (!U.compareAndSwapLong(this, CTL, c, nc))
1666 w.eventCount = ec; // unmark on CAS failure
1667 else if ((int)(c >> AC_SHIFT) == 1 - (config & SMASK))
1668 idleAwaitWork(w, nc, c);
1669 }
1670 else if ((ns = w.nsteals) != 0) {
1671 if (U.compareAndSwapLong(this, STEALCOUNT,
1672 sc = stealCount, sc + ns))
1673 w.nsteals = 0; // collect steals and rescan
1674 }
1675 else if (w.eventCount < 0 && ctl == c) {
1676 Thread wt = Thread.currentThread();
1677 Thread.interrupted(); // clear status
1678 U.putObject(wt, PARKBLOCKER, this);
1679 w.parker = wt; // emulate LockSupport.park
1680 if (w.eventCount < 0 && ctl == c)// recheck
1681 U.park(false, 0L); // block
1682 w.parker = null;
1683 U.putObject(wt, PARKBLOCKER, null);
1684 }
1685 }
1686 return null;
1687 }
1688
1689 /**
1690 * If inactivating worker w has caused the pool to become
1691 * quiescent, checks for pool termination, and, so long as this is
1692 * not the only worker, waits for event for up to a given
1693 * duration. On timeout, if ctl has not changed, terminates the
1694 * worker, which will in turn wake up another worker to possibly
1695 * repeat this process.
1696 *
1697 * @param w the calling worker
1698 * @param currentCtl the ctl value triggering possible quiescence
1699 * @param prevCtl the ctl value to restore if thread is terminated
1700 */
1701 private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1702 if (w != null && w.eventCount < 0 && !tryTerminate(false, false) &&
1703 (int)prevCtl != 0 && ctl == currentCtl) {
1704 int ns = w.nsteals;
1705 if (ns != 0) {
1706 w.nsteals = 0;
1707 long sc;
1708 do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1709 sc = stealCount, sc + ns));
1710 }
1711 int dc = -(short)(currentCtl >>> TC_SHIFT);
1712 long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1713 long deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
1714 Thread wt = Thread.currentThread();
1715 int spins = MIN_RESCANS; // poll before blocking
1716 while (ctl == currentCtl) {
1717 if (spins >= 0) {
1718 if (w.nextSeed() < 0)
1719 --spins;
1720 }
1721 else {
1722 Thread.interrupted(); // timed variant of version in scan()
1723 U.putObject(wt, PARKBLOCKER, this);
1724 w.parker = wt;
1725 if (ctl == currentCtl)
1726 U.park(false, parkTime);
1727 w.parker = null;
1728 U.putObject(wt, PARKBLOCKER, null);
1729 if (ctl != currentCtl)
1730 break;
1731 if (deadline - System.nanoTime() <= 0L &&
1732 U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1733 w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1734 w.qlock = -1; // shrink
1735 break;
1736 }
1737 }
1738 }
1739 }
1740 }
1741
1742 /**
1743 * Tries to locate and execute tasks for a stealer of the given
1744 * task, or in turn one of its stealers, Traces currentSteal ->
1745 * currentJoin links looking for a thread working on a descendant
1746 * of the given task and with a non-empty queue to steal back and
1747 * execute tasks from. The first call to this method upon a
1748 * waiting join will often entail scanning/search, (which is OK
1749 * because the joiner has nothing better to do), but this method
1750 * leaves hints in workers to speed up subsequent calls. The
1751 * implementation is very branchy to cope with potential
1752 * inconsistencies or loops encountering chains that are stale,
1753 * unknown, or so long that they are likely cyclic.
1754 *
1755 * @param joiner the joining worker
1756 * @param task the task to join
1757 * @return 0 if no progress can be made, negative if task
1758 * known complete, else positive
1759 */
1760 private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1761 int stat = 0, steps = 0; // bound to avoid cycles
1762 if (joiner != null && task != null) { // hoist null checks
1763 restart: for (;;) {
1764 ForkJoinTask<?> subtask = task; // current target
1765 for (WorkQueue j = joiner, v;;) { // v is stealer of subtask
1766 WorkQueue[] ws; int m, s, h;
1767 if ((s = task.status) < 0) {
1768 stat = s;
1769 break restart;
1770 }
1771 if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1772 break restart; // shutting down
1773 if ((v = ws[h = (j.hint | 1) & m]) == null ||
1774 v.currentSteal != subtask) {
1775 for (int origin = h;;) { // find stealer
1776 if (((h = (h + 2) & m) & 15) == 1 &&
1777 (subtask.status < 0 || j.currentJoin != subtask))
1778 continue restart; // occasional staleness check
1779 if ((v = ws[h]) != null &&
1780 v.currentSteal == subtask) {
1781 j.hint = h; // save hint
1782 break;
1783 }
1784 if (h == origin)
1785 break restart; // cannot find stealer
1786 }
1787 }
1788 for (;;) { // help stealer or descend to its stealer
1789 ForkJoinTask[] a; int b;
1790 if (subtask.status < 0) // surround probes with
1791 continue restart; // consistency checks
1792 if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1793 int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1794 ForkJoinTask<?> t =
1795 (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1796 if (subtask.status < 0 || j.currentJoin != subtask ||
1797 v.currentSteal != subtask)
1798 continue restart; // stale
1799 stat = 1; // apparent progress
1800 if (t != null && v.base == b &&
1801 U.compareAndSwapObject(a, i, t, null)) {
1802 U.putOrderedInt(v, QBASE, b + 1);
1803 joiner.runSubtask(t);
1804 }
1805 else if (v.base == b && ++steps == MAX_HELP)
1806 break restart; // v apparently stalled
1807 }
1808 else { // empty -- try to descend
1809 ForkJoinTask<?> next = v.currentJoin;
1810 if (subtask.status < 0 || j.currentJoin != subtask ||
1811 v.currentSteal != subtask)
1812 continue restart; // stale
1813 else if (next == null || ++steps == MAX_HELP)
1814 break restart; // dead-end or maybe cyclic
1815 else {
1816 subtask = next;
1817 j = v;
1818 break;
1819 }
1820 }
1821 }
1822 }
1823 }
1824 }
1825 return stat;
1826 }
1827
1828 /**
1829 * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1830 * and run tasks within the target's computation.
1831 *
1832 * @param task the task to join
1833 */
1834 private int helpComplete(ForkJoinTask<?> task) {
1835 WorkQueue[] ws; int m;
1836 if (task != null && (ws = workQueues) != null &&
1837 (m = ws.length - 1) >= 0) {
1838 int scans = m | MIN_RESCANS;
1839 for (int j = 1, k = scans;;) {
1840 WorkQueue q; int s;
1841 if ((s = task.status) < 0)
1842 return s;
1843 if ((q = ws[j & m]) != null && q.pollAndExecCC(task))
1844 k = scans;
1845 else if (--k >= 0)
1846 j += 2;
1847 else
1848 break;
1849 }
1850 }
1851 return 0;
1852 }
1853
1854 /**
1855 * Tries to decrement active count (sometimes implicitly) and
1856 * possibly release or create a compensating worker in preparation
1857 * for blocking. Fails on contention or termination. Otherwise,
1858 * adds a new thread if no idle workers are available and pool
1859 * may become starved.
1860 */
1861 final boolean tryCompensate() {
1862 int pc = config & SMASK, e, i, tc; long c;
1863 WorkQueue[] ws; WorkQueue w; Thread p;
1864 if ((ws = workQueues) != null && (e = (int)(c = ctl)) >= 0) {
1865 if (e != 0 && (i = e & SMASK) < ws.length &&
1866 (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1867 long nc = ((long)(w.nextWait & E_MASK) |
1868 (c & (AC_MASK|TC_MASK)));
1869 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1870 w.eventCount = (e + E_SEQ) & E_MASK;
1871 if ((p = w.parker) != null)
1872 U.unpark(p);
1873 return true; // replace with idle worker
1874 }
1875 }
1876 else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
1877 (int)(c >> AC_SHIFT) + pc > 1) {
1878 long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1879 if (U.compareAndSwapLong(this, CTL, c, nc))
1880 return true; // no compensation
1881 }
1882 else if (tc + pc < MAX_CAP) {
1883 long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1884 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1885 ForkJoinWorkerThreadFactory fac;
1886 Throwable ex = null;
1887 ForkJoinWorkerThread wt = null;
1888 try {
1889 if ((fac = factory) != null &&
1890 (wt = fac.newThread(this)) != null) {
1891 wt.start();
1892 return true;
1893 }
1894 } catch (Throwable rex) {
1895 ex = rex;
1896 }
1897 deregisterWorker(wt, ex); // clean up and return false
1898 }
1899 }
1900 }
1901 return false;
1902 }
1903
1904 /**
1905 * Helps and/or blocks until the given task is done.
1906 *
1907 * @param joiner the joining worker
1908 * @param task the task
1909 * @return task status on exit
1910 */
1911 final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1912 int s = 0;
1913 if (joiner != null && task != null && (s = task.status) >= 0) {
1914 ForkJoinTask<?> prevJoin = joiner.currentJoin;
1915 joiner.currentJoin = task;
1916 do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
1917 joiner.tryRemoveAndExec(task)); // process local tasks
1918 if (s >= 0 && (s = task.status) >= 0 &&
1919 (task instanceof CountedCompleter))
1920 s = helpComplete(task);
1921 while (s >= 0 && (s = task.status) >= 0) {
1922 if ((!joiner.isEmpty() || // try helping
1923 (s = tryHelpStealer(joiner, task)) == 0) &&
1924 (s = task.status) >= 0) {
1925 if (tryCompensate()) {
1926 if (task.trySetSignal() && (s = task.status) >= 0) {
1927 synchronized (task) {
1928 if (task.status >= 0) {
1929 try { // see ForkJoinTask
1930 task.wait(); // for explanation
1931 } catch (InterruptedException ie) {
1932 }
1933 }
1934 else
1935 task.notifyAll();
1936 }
1937 }
1938 // reactivate
1939 if (false) { // possible hotspot bug?
1940 U.getAndAddLong(this, CTL, AC_UNIT);
1941 }
1942 else {
1943 long c;
1944 do {} while (!U.compareAndSwapLong
1945 (this, CTL, c = ctl, c + AC_UNIT));
1946 }
1947 }
1948 }
1949 }
1950 joiner.currentJoin = prevJoin;
1951 }
1952 return s;
1953 }
1954
1955 /**
1956 * Stripped-down variant of awaitJoin used by timed joins. Tries
1957 * to help join only while there is continuous progress. (Caller
1958 * will then enter a timed wait.)
1959 *
1960 * @param joiner the joining worker
1961 * @param task the task
1962 */
1963 final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
1964 int s;
1965 if (joiner != null && task != null && (s = task.status) >= 0) {
1966 ForkJoinTask<?> prevJoin = joiner.currentJoin;
1967 joiner.currentJoin = task;
1968 do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
1969 joiner.tryRemoveAndExec(task));
1970 if (s >= 0 && (s = task.status) >= 0 &&
1971 (task instanceof CountedCompleter))
1972 s = helpComplete(task);
1973 if (s >= 0 && joiner.isEmpty()) {
1974 do {} while (task.status >= 0 &&
1975 tryHelpStealer(joiner, task) > 0);
1976 }
1977 joiner.currentJoin = prevJoin;
1978 }
1979 }
1980
1981 /**
1982 * Returns a (probably) non-empty steal queue, if one is found
1983 * during a scan, else null. This method must be retried by
1984 * caller if, by the time it tries to use the queue, it is empty.
1985 * @param r a (random) seed for scanning
1986 */
1987 private WorkQueue findNonEmptyStealQueue(int r) {
1988 for (;;) {
1989 int ps = plock, m; WorkQueue[] ws; WorkQueue q;
1990 if ((ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1991 for (int j = (m + 1) << 2; j >= 0; --j) {
1992 if ((q = ws[(((r + j) << 1) | 1) & m]) != null &&
1993 q.base - q.top < 0)
1994 return q;
1995 }
1996 }
1997 if (plock == ps)
1998 return null;
1999 }
2000 }
2001
2002 /**
2003 * Runs tasks until {@code isQuiescent()}. We piggyback on
2004 * active count ctl maintenance, but rather than blocking
2005 * when tasks cannot be found, we rescan until all others cannot
2006 * find tasks either.
2007 */
2008 final void helpQuiescePool(WorkQueue w) {
2009 for (boolean active = true;;) {
2010 long c; WorkQueue q; ForkJoinTask<?> t; int b;
2011 while ((t = w.nextLocalTask()) != null)
2012 t.doExec();
2013 if ((q = findNonEmptyStealQueue(w.nextSeed())) != null) {
2014 if (!active) { // re-establish active count
2015 active = true;
2016 do {} while (!U.compareAndSwapLong
2017 (this, CTL, c = ctl, c + AC_UNIT));
2018 }
2019 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2020 w.runSubtask(t);
2021 }
2022 else if (active) { // decrement active count without queuing
2023 long nc = (c = ctl) - AC_UNIT;
2024 if ((int)(nc >> AC_SHIFT) + (config & SMASK) == 0)
2025 return; // bypass decrement-then-increment
2026 if (U.compareAndSwapLong(this, CTL, c, nc))
2027 active = false;
2028 }
2029 else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) == 0 &&
2030 U.compareAndSwapLong(this, CTL, c, c + AC_UNIT))
2031 return;
2032 }
2033 }
2034
2035 /**
2036 * Gets and removes a local or stolen task for the given worker.
2037 *
2038 * @return a task, if available
2039 */
2040 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2041 for (ForkJoinTask<?> t;;) {
2042 WorkQueue q; int b;
2043 if ((t = w.nextLocalTask()) != null)
2044 return t;
2045 if ((q = findNonEmptyStealQueue(w.nextSeed())) == null)
2046 return null;
2047 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2048 return t;
2049 }
2050 }
2051
2052 /**
2053 * Returns a cheap heuristic guide for task partitioning when
2054 * programmers, frameworks, tools, or languages have little or no
2055 * idea about task granularity. In essence by offering this
2056 * method, we ask users only about tradeoffs in overhead vs
2057 * expected throughput and its variance, rather than how finely to
2058 * partition tasks.
2059 *
2060 * In a steady state strict (tree-structured) computation, each
2061 * thread makes available for stealing enough tasks for other
2062 * threads to remain active. Inductively, if all threads play by
2063 * the same rules, each thread should make available only a
2064 * constant number of tasks.
2065 *
2066 * The minimum useful constant is just 1. But using a value of 1
2067 * would require immediate replenishment upon each steal to
2068 * maintain enough tasks, which is infeasible. Further,
2069 * partitionings/granularities of offered tasks should minimize
2070 * steal rates, which in general means that threads nearer the top
2071 * of computation tree should generate more than those nearer the
2072 * bottom. In perfect steady state, each thread is at
2073 * approximately the same level of computation tree. However,
2074 * producing extra tasks amortizes the uncertainty of progress and
2075 * diffusion assumptions.
2076 *
2077 * So, users will want to use values larger (but not much larger)
2078 * than 1 to both smooth over transient shortages and hedge
2079 * against uneven progress; as traded off against the cost of
2080 * extra task overhead. We leave the user to pick a threshold
2081 * value to compare with the results of this call to guide
2082 * decisions, but recommend values such as 3.
2083 *
2084 * When all threads are active, it is on average OK to estimate
2085 * surplus strictly locally. In steady-state, if one thread is
2086 * maintaining say 2 surplus tasks, then so are others. So we can
2087 * just use estimated queue length. However, this strategy alone
2088 * leads to serious mis-estimates in some non-steady-state
2089 * conditions (ramp-up, ramp-down, other stalls). We can detect
2090 * many of these by further considering the number of "idle"
2091 * threads, that are known to have zero queued tasks, so
2092 * compensate by a factor of (#idle/#active) threads.
2093 *
2094 * Note: The approximation of #busy workers as #active workers is
2095 * not very good under current signalling scheme, and should be
2096 * improved.
2097 */
2098 static int getSurplusQueuedTaskCount() {
2099 Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2100 if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2101 int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2102 int n = (q = wt.workQueue).top - q.base;
2103 int a = (int)(pool.ctl >> AC_SHIFT) + p;
2104 return n - (a > (p >>>= 1) ? 0 :
2105 a > (p >>>= 1) ? 1 :
2106 a > (p >>>= 1) ? 2 :
2107 a > (p >>>= 1) ? 4 :
2108 8);
2109 }
2110 return 0;
2111 }
2112
2113 // Termination
2114
2115 /**
2116 * Possibly initiates and/or completes termination. The caller
2117 * triggering termination runs three passes through workQueues:
2118 * (0) Setting termination status, followed by wakeups of queued
2119 * workers; (1) cancelling all tasks; (2) interrupting lagging
2120 * threads (likely in external tasks, but possibly also blocked in
2121 * joins). Each pass repeats previous steps because of potential
2122 * lagging thread creation.
2123 *
2124 * @param now if true, unconditionally terminate, else only
2125 * if no work and no active workers
2126 * @param enable if true, enable shutdown when next possible
2127 * @return true if now terminating or terminated
2128 */
2129 private boolean tryTerminate(boolean now, boolean enable) {
2130 int ps;
2131 if (this == common) // cannot shut down
2132 return false;
2133 if ((ps = plock) >= 0) { // enable by setting plock
2134 if (!enable)
2135 return false;
2136 if ((ps & PL_LOCK) != 0 ||
2137 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2138 ps = acquirePlock();
2139 int nps = ((ps + PL_LOCK) & ~SHUTDOWN) | SHUTDOWN;
2140 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2141 releasePlock(nps);
2142 }
2143 for (long c;;) {
2144 if (((c = ctl) & STOP_BIT) != 0) { // already terminating
2145 if ((short)(c >>> TC_SHIFT) == -(config & SMASK)) {
2146 synchronized (this) {
2147 notifyAll(); // signal when 0 workers
2148 }
2149 }
2150 return true;
2151 }
2152 if (!now) { // check if idle & no tasks
2153 WorkQueue[] ws; WorkQueue w;
2154 if ((int)(c >> AC_SHIFT) != -(config & SMASK))
2155 return false;
2156 if ((ws = workQueues) != null) {
2157 for (int i = 0; i < ws.length; ++i) {
2158 if ((w = ws[i]) != null) {
2159 if (!w.isEmpty()) { // signal unprocessed tasks
2160 signalWork(null);
2161 return false;
2162 }
2163 if ((i & 1) != 0 && w.eventCount >= 0)
2164 return false; // unqueued inactive worker
2165 }
2166 }
2167 }
2168 }
2169 if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2170 for (int pass = 0; pass < 3; ++pass) {
2171 WorkQueue[] ws; WorkQueue w; Thread wt;
2172 if ((ws = workQueues) != null) {
2173 int n = ws.length;
2174 for (int i = 0; i < n; ++i) {
2175 if ((w = ws[i]) != null) {
2176 w.qlock = -1;
2177 if (pass > 0) {
2178 w.cancelAll();
2179 if (pass > 1 && (wt = w.owner) != null) {
2180 if (!wt.isInterrupted()) {
2181 try {
2182 wt.interrupt();
2183 } catch (Throwable ignore) {
2184 }
2185 }
2186 U.unpark(wt);
2187 }
2188 }
2189 }
2190 }
2191 // Wake up workers parked on event queue
2192 int i, e; long cc; Thread p;
2193 while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2194 (i = e & SMASK) < n && i >= 0 &&
2195 (w = ws[i]) != null) {
2196 long nc = ((long)(w.nextWait & E_MASK) |
2197 ((cc + AC_UNIT) & AC_MASK) |
2198 (cc & (TC_MASK|STOP_BIT)));
2199 if (w.eventCount == (e | INT_SIGN) &&
2200 U.compareAndSwapLong(this, CTL, cc, nc)) {
2201 w.eventCount = (e + E_SEQ) & E_MASK;
2202 w.qlock = -1;
2203 if ((p = w.parker) != null)
2204 U.unpark(p);
2205 }
2206 }
2207 }
2208 }
2209 }
2210 }
2211 }
2212
2213 // external operations on common pool
2214
2215 /**
2216 * Returns common pool queue for a thread that has submitted at
2217 * least one task.
2218 */
2219 static WorkQueue commonSubmitterQueue() {
2220 ForkJoinPool p; WorkQueue[] ws; int m, z;
2221 return ((z = ThreadLocalRandom.getProbe()) != 0 &&
2222 (p = common) != null &&
2223 (ws = p.workQueues) != null &&
2224 (m = ws.length - 1) >= 0) ?
2225 ws[m & z & SQMASK] : null;
2226 }
2227
2228 /**
2229 * Tries to pop the given task from submitter's queue in common pool.
2230 */
2231 static boolean tryExternalUnpush(ForkJoinTask<?> t) {
2232 ForkJoinPool p; WorkQueue[] ws; WorkQueue q;
2233 ForkJoinTask<?>[] a; int m, s, z;
2234 if (t != null &&
2235 (z = ThreadLocalRandom.getProbe()) != 0 &&
2236 (p = common) != null &&
2237 (ws = p.workQueues) != null &&
2238 (m = ws.length - 1) >= 0 &&
2239 (q = ws[m & z & SQMASK]) != null &&
2240 (s = q.top) != q.base &&
2241 (a = q.array) != null) {
2242 long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
2243 if (U.getObject(a, j) == t &&
2244 U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2245 if (q.array == a && q.top == s && // recheck
2246 U.compareAndSwapObject(a, j, t, null)) {
2247 q.top = s - 1;
2248 q.qlock = 0;
2249 return true;
2250 }
2251 q.qlock = 0;
2252 }
2253 }
2254 return false;
2255 }
2256
2257 /**
2258 * Tries to pop and run local tasks within the same computation
2259 * as the given root. On failure, tries to help complete from
2260 * other queues via helpComplete.
2261 */
2262 private void externalHelpComplete(WorkQueue q, ForkJoinTask<?> root) {
2263 ForkJoinTask<?>[] a; int m; WorkQueue[] ws;
2264 if (root != null && q != null && (a = q.array) != null &&
2265 (m = (a.length - 1)) >= 0) {
2266 outer: for (;;) {
2267 int s, b, u; Object o;
2268 if (root.status < 0)
2269 return;
2270 if ((s = q.top) - q.base > 0) { // try pop
2271 long j = ((m & (s - 1)) << ASHIFT) + ABASE;
2272 if ((o = U.getObject(a, j)) != null &&
2273 (o instanceof CountedCompleter)) {
2274 CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2275 do {
2276 if (r == root) {
2277 if (U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2278 if (q.array == a && q.top == s &&
2279 U.compareAndSwapObject(a, j, t, null)) {
2280 q.top = s - 1;
2281 q.qlock = 0;
2282 t.doExec();
2283 }
2284 else
2285 q.qlock = 0;
2286 }
2287 continue outer;
2288 }
2289 } while ((r = r.completer) != null);
2290 }
2291 }
2292 if ((b = q.base) - q.top < 0) { // try poll
2293 if (root.status < 0)
2294 return;
2295 long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
2296 if ((o = U.getObject(a, j)) == null ||
2297 !(o instanceof CountedCompleter))
2298 break;
2299 CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2300 for (;;) {
2301 if (r == root) {
2302 if (q.base == b &&
2303 U.compareAndSwapObject(a, j, t, null)) {
2304 U.putOrderedInt(q, QBASE, b + 1);
2305 t.doExec();
2306 }
2307 break;
2308 }
2309 if ((r = r.completer) == null)
2310 break outer;
2311 }
2312 }
2313 else
2314 break;
2315 }
2316 if (root.status >= 0)
2317 helpComplete(root);
2318 }
2319 }
2320
2321 /**
2322 * Tries to help execute or signal availability of the given task
2323 * from submitter's queue in common pool.
2324 */
2325 static void externalHelpJoin(ForkJoinTask<?> t) {
2326 // Some hard-to-avoid overlap with tryExternalUnpush
2327 ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w;
2328 ForkJoinTask<?>[] a; int m, s, n, z;
2329 if (t != null &&
2330 (z = ThreadLocalRandom.getProbe()) != 0 &&
2331 (p = common) != null &&
2332 (ws = p.workQueues) != null &&
2333 (m = ws.length - 1) >= 0 &&
2334 (q = ws[m & z & SQMASK]) != null &&
2335 (a = q.array) != null) {
2336 int am = a.length - 1;
2337 if ((s = q.top) != q.base) {
2338 long j = ((am & (s - 1)) << ASHIFT) + ABASE;
2339 if (U.getObject(a, j) == t &&
2340 U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2341 if (q.array == a && q.top == s &&
2342 U.compareAndSwapObject(a, j, t, null)) {
2343 q.top = s - 1;
2344 q.qlock = 0;
2345 t.doExec();
2346 }
2347 else
2348 q.qlock = 0;
2349 }
2350 }
2351 if (t.status >= 0 && (t instanceof CountedCompleter))
2352 p.externalHelpComplete(q, t);
2353 }
2354 }
2355
2356 // Exported methods
2357
2358 // Constructors
2359
2360 /**
2361 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2362 * java.lang.Runtime#availableProcessors}, using the {@linkplain
2363 * #defaultForkJoinWorkerThreadFactory default thread factory},
2364 * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2365 *
2366 * @throws SecurityException if a security manager exists and
2367 * the caller is not permitted to modify threads
2368 * because it does not hold {@link
2369 * java.lang.RuntimePermission}{@code ("modifyThread")}
2370 */
2371 public ForkJoinPool() {
2372 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2373 defaultForkJoinWorkerThreadFactory, null, false);
2374 }
2375
2376 /**
2377 * Creates a {@code ForkJoinPool} with the indicated parallelism
2378 * level, the {@linkplain
2379 * #defaultForkJoinWorkerThreadFactory default thread factory},
2380 * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2381 *
2382 * @param parallelism the parallelism level
2383 * @throws IllegalArgumentException if parallelism less than or
2384 * equal to zero, or greater than implementation limit
2385 * @throws SecurityException if a security manager exists and
2386 * the caller is not permitted to modify threads
2387 * because it does not hold {@link
2388 * java.lang.RuntimePermission}{@code ("modifyThread")}
2389 */
2390 public ForkJoinPool(int parallelism) {
2391 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2392 }
2393
2394 /**
2395 * Creates a {@code ForkJoinPool} with the given parameters.
2396 *
2397 * @param parallelism the parallelism level. For default value,
2398 * use {@link java.lang.Runtime#availableProcessors}.
2399 * @param factory the factory for creating new threads. For default value,
2400 * use {@link #defaultForkJoinWorkerThreadFactory}.
2401 * @param handler the handler for internal worker threads that
2402 * terminate due to unrecoverable errors encountered while executing
2403 * tasks. For default value, use {@code null}.
2404 * @param asyncMode if true,
2405 * establishes local first-in-first-out scheduling mode for forked
2406 * tasks that are never joined. This mode may be more appropriate
2407 * than default locally stack-based mode in applications in which
2408 * worker threads only process event-style asynchronous tasks.
2409 * For default value, use {@code false}.
2410 * @throws IllegalArgumentException if parallelism less than or
2411 * equal to zero, or greater than implementation limit
2412 * @throws NullPointerException if the factory is null
2413 * @throws SecurityException if a security manager exists and
2414 * the caller is not permitted to modify threads
2415 * because it does not hold {@link
2416 * java.lang.RuntimePermission}{@code ("modifyThread")}
2417 */
2418 public ForkJoinPool(int parallelism,
2419 ForkJoinWorkerThreadFactory factory,
2420 UncaughtExceptionHandler handler,
2421 boolean asyncMode) {
2422 this(checkParallelism(parallelism),
2423 checkFactory(factory),
2424 handler,
2425 asyncMode,
2426 "ForkJoinPool-" + nextPoolId() + "-worker-");
2427 checkPermission();
2428 }
2429
2430 private static int checkParallelism(int parallelism) {
2431 if (parallelism <= 0 || parallelism > MAX_CAP)
2432 throw new IllegalArgumentException();
2433 return parallelism;
2434 }
2435
2436 private static ForkJoinWorkerThreadFactory checkFactory
2437 (ForkJoinWorkerThreadFactory factory) {
2438 if (factory == null)
2439 throw new NullPointerException();
2440 return factory;
2441 }
2442
2443 /**
2444 * Creates a {@code ForkJoinPool} with the given parameters, without
2445 * any security checks or parameter validation. Invoked directly by
2446 * makeCommonPool.
2447 */
2448 private ForkJoinPool(int parallelism,
2449 ForkJoinWorkerThreadFactory factory,
2450 UncaughtExceptionHandler handler,
2451 boolean asyncMode,
2452 String workerNamePrefix) {
2453 this.workerNamePrefix = workerNamePrefix;
2454 this.factory = factory;
2455 this.ueh = handler;
2456 this.config = parallelism | (asyncMode ? (FIFO_QUEUE << 16) : 0);
2457 long np = (long)(-parallelism); // offset ctl counts
2458 this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2459 }
2460
2461 /**
2462 * Returns the common pool instance. This pool is statically
2463 * constructed; its run state is unaffected by attempts to {@link
2464 * #shutdown} or {@link #shutdownNow}. However this pool and any
2465 * ongoing processing are automatically terminated upon program
2466 * {@link System#exit}. Any program that relies on asynchronous
2467 * task processing to complete before program termination should
2468 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2469 * before exit.
2470 *
2471 * @return the common pool instance
2472 * @since 1.8
2473 */
2474 public static ForkJoinPool commonPool() {
2475 // assert common != null : "static init error";
2476 return common;
2477 }
2478
2479 // Execution methods
2480
2481 /**
2482 * Performs the given task, returning its result upon completion.
2483 * If the computation encounters an unchecked Exception or Error,
2484 * it is rethrown as the outcome of this invocation. Rethrown
2485 * exceptions behave in the same way as regular exceptions, but,
2486 * when possible, contain stack traces (as displayed for example
2487 * using {@code ex.printStackTrace()}) of both the current thread
2488 * as well as the thread actually encountering the exception;
2489 * minimally only the latter.
2490 *
2491 * @param task the task
2492 * @return the task's result
2493 * @throws NullPointerException if the task is null
2494 * @throws RejectedExecutionException if the task cannot be
2495 * scheduled for execution
2496 */
2497 public <T> T invoke(ForkJoinTask<T> task) {
2498 if (task == null)
2499 throw new NullPointerException();
2500 externalPush(task);
2501 return task.join();
2502 }
2503
2504 /**
2505 * Arranges for (asynchronous) execution of the given task.
2506 *
2507 * @param task the task
2508 * @throws NullPointerException if the task is null
2509 * @throws RejectedExecutionException if the task cannot be
2510 * scheduled for execution
2511 */
2512 public void execute(ForkJoinTask<?> task) {
2513 if (task == null)
2514 throw new NullPointerException();
2515 externalPush(task);
2516 }
2517
2518 // AbstractExecutorService methods
2519
2520 /**
2521 * @throws NullPointerException if the task is null
2522 * @throws RejectedExecutionException if the task cannot be
2523 * scheduled for execution
2524 */
2525 public void execute(Runnable task) {
2526 if (task == null)
2527 throw new NullPointerException();
2528 ForkJoinTask<?> job;
2529 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2530 job = (ForkJoinTask<?>) task;
2531 else
2532 job = new ForkJoinTask.RunnableExecuteAction(task);
2533 externalPush(job);
2534 }
2535
2536 /**
2537 * Submits a ForkJoinTask for execution.
2538 *
2539 * @param task the task to submit
2540 * @return the task
2541 * @throws NullPointerException if the task is null
2542 * @throws RejectedExecutionException if the task cannot be
2543 * scheduled for execution
2544 */
2545 public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2546 if (task == null)
2547 throw new NullPointerException();
2548 externalPush(task);
2549 return task;
2550 }
2551
2552 /**
2553 * @throws NullPointerException if the task is null
2554 * @throws RejectedExecutionException if the task cannot be
2555 * scheduled for execution
2556 */
2557 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2558 ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2559 externalPush(job);
2560 return job;
2561 }
2562
2563 /**
2564 * @throws NullPointerException if the task is null
2565 * @throws RejectedExecutionException if the task cannot be
2566 * scheduled for execution
2567 */
2568 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2569 ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2570 externalPush(job);
2571 return job;
2572 }
2573
2574 /**
2575 * @throws NullPointerException if the task is null
2576 * @throws RejectedExecutionException if the task cannot be
2577 * scheduled for execution
2578 */
2579 public ForkJoinTask<?> submit(Runnable task) {
2580 if (task == null)
2581 throw new NullPointerException();
2582 ForkJoinTask<?> job;
2583 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2584 job = (ForkJoinTask<?>) task;
2585 else
2586 job = new ForkJoinTask.AdaptedRunnableAction(task);
2587 externalPush(job);
2588 return job;
2589 }
2590
2591 /**
2592 * @throws NullPointerException {@inheritDoc}
2593 * @throws RejectedExecutionException {@inheritDoc}
2594 */
2595 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2596 // In previous versions of this class, this method constructed
2597 // a task to run ForkJoinTask.invokeAll, but now external
2598 // invocation of multiple tasks is at least as efficient.
2599 ArrayList<Future<T>> futures = new ArrayList<Future<T>>(tasks.size());
2600
2601 boolean done = false;
2602 try {
2603 for (Callable<T> t : tasks) {
2604 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2605 futures.add(f);
2606 externalPush(f);
2607 }
2608 for (int i = 0, size = futures.size(); i < size; i++)
2609 ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2610 done = true;
2611 return futures;
2612 } finally {
2613 if (!done)
2614 for (int i = 0, size = futures.size(); i < size; i++)
2615 futures.get(i).cancel(false);
2616 }
2617 }
2618
2619 /**
2620 * Returns the factory used for constructing new workers.
2621 *
2622 * @return the factory used for constructing new workers
2623 */
2624 public ForkJoinWorkerThreadFactory getFactory() {
2625 return factory;
2626 }
2627
2628 /**
2629 * Returns the handler for internal worker threads that terminate
2630 * due to unrecoverable errors encountered while executing tasks.
2631 *
2632 * @return the handler, or {@code null} if none
2633 */
2634 public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2635 return ueh;
2636 }
2637
2638 /**
2639 * Returns the targeted parallelism level of this pool.
2640 *
2641 * @return the targeted parallelism level of this pool
2642 */
2643 public int getParallelism() {
2644 int par = (config & SMASK);
2645 return (par > 0) ? par : 1;
2646 }
2647
2648 /**
2649 * Returns the targeted parallelism level of the common pool.
2650 *
2651 * @return the targeted parallelism level of the common pool
2652 * @since 1.8
2653 */
2654 public static int getCommonPoolParallelism() {
2655 return commonParallelism;
2656 }
2657
2658 /**
2659 * Returns the number of worker threads that have started but not
2660 * yet terminated. The result returned by this method may differ
2661 * from {@link #getParallelism} when threads are created to
2662 * maintain parallelism when others are cooperatively blocked.
2663 *
2664 * @return the number of worker threads
2665 */
2666 public int getPoolSize() {
2667 return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2668 }
2669
2670 /**
2671 * Returns {@code true} if this pool uses local first-in-first-out
2672 * scheduling mode for forked tasks that are never joined.
2673 *
2674 * @return {@code true} if this pool uses async mode
2675 */
2676 public boolean getAsyncMode() {
2677 return (config >>> 16) == FIFO_QUEUE;
2678 }
2679
2680 /**
2681 * Returns an estimate of the number of worker threads that are
2682 * not blocked waiting to join tasks or for other managed
2683 * synchronization. This method may overestimate the
2684 * number of running threads.
2685 *
2686 * @return the number of worker threads
2687 */
2688 public int getRunningThreadCount() {
2689 int rc = 0;
2690 WorkQueue[] ws; WorkQueue w;
2691 if ((ws = workQueues) != null) {
2692 for (int i = 1; i < ws.length; i += 2) {
2693 if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2694 ++rc;
2695 }
2696 }
2697 return rc;
2698 }
2699
2700 /**
2701 * Returns an estimate of the number of threads that are currently
2702 * stealing or executing tasks. This method may overestimate the
2703 * number of active threads.
2704 *
2705 * @return the number of active threads
2706 */
2707 public int getActiveThreadCount() {
2708 int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2709 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2710 }
2711
2712 /**
2713 * Returns {@code true} if all worker threads are currently idle.
2714 * An idle worker is one that cannot obtain a task to execute
2715 * because none are available to steal from other threads, and
2716 * there are no pending submissions to the pool. This method is
2717 * conservative; it might not return {@code true} immediately upon
2718 * idleness of all threads, but will eventually become true if
2719 * threads remain inactive.
2720 *
2721 * @return {@code true} if all threads are currently idle
2722 */
2723 public boolean isQuiescent() {
2724 return (int)(ctl >> AC_SHIFT) + (config & SMASK) == 0;
2725 }
2726
2727 /**
2728 * Returns an estimate of the total number of tasks stolen from
2729 * one thread's work queue by another. The reported value
2730 * underestimates the actual total number of steals when the pool
2731 * is not quiescent. This value may be useful for monitoring and
2732 * tuning fork/join programs: in general, steal counts should be
2733 * high enough to keep threads busy, but low enough to avoid
2734 * overhead and contention across threads.
2735 *
2736 * @return the number of steals
2737 */
2738 public long getStealCount() {
2739 long count = stealCount;
2740 WorkQueue[] ws; WorkQueue w;
2741 if ((ws = workQueues) != null) {
2742 for (int i = 1; i < ws.length; i += 2) {
2743 if ((w = ws[i]) != null)
2744 count += w.nsteals;
2745 }
2746 }
2747 return count;
2748 }
2749
2750 /**
2751 * Returns an estimate of the total number of tasks currently held
2752 * in queues by worker threads (but not including tasks submitted
2753 * to the pool that have not begun executing). This value is only
2754 * an approximation, obtained by iterating across all threads in
2755 * the pool. This method may be useful for tuning task
2756 * granularities.
2757 *
2758 * @return the number of queued tasks
2759 */
2760 public long getQueuedTaskCount() {
2761 long count = 0;
2762 WorkQueue[] ws; WorkQueue w;
2763 if ((ws = workQueues) != null) {
2764 for (int i = 1; i < ws.length; i += 2) {
2765 if ((w = ws[i]) != null)
2766 count += w.queueSize();
2767 }
2768 }
2769 return count;
2770 }
2771
2772 /**
2773 * Returns an estimate of the number of tasks submitted to this
2774 * pool that have not yet begun executing. This method may take
2775 * time proportional to the number of submissions.
2776 *
2777 * @return the number of queued submissions
2778 */
2779 public int getQueuedSubmissionCount() {
2780 int count = 0;
2781 WorkQueue[] ws; WorkQueue w;
2782 if ((ws = workQueues) != null) {
2783 for (int i = 0; i < ws.length; i += 2) {
2784 if ((w = ws[i]) != null)
2785 count += w.queueSize();
2786 }
2787 }
2788 return count;
2789 }
2790
2791 /**
2792 * Returns {@code true} if there are any tasks submitted to this
2793 * pool that have not yet begun executing.
2794 *
2795 * @return {@code true} if there are any queued submissions
2796 */
2797 public boolean hasQueuedSubmissions() {
2798 WorkQueue[] ws; WorkQueue w;
2799 if ((ws = workQueues) != null) {
2800 for (int i = 0; i < ws.length; i += 2) {
2801 if ((w = ws[i]) != null && !w.isEmpty())
2802 return true;
2803 }
2804 }
2805 return false;
2806 }
2807
2808 /**
2809 * Removes and returns the next unexecuted submission if one is
2810 * available. This method may be useful in extensions to this
2811 * class that re-assign work in systems with multiple pools.
2812 *
2813 * @return the next submission, or {@code null} if none
2814 */
2815 protected ForkJoinTask<?> pollSubmission() {
2816 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2817 if ((ws = workQueues) != null) {
2818 for (int i = 0; i < ws.length; i += 2) {
2819 if ((w = ws[i]) != null && (t = w.poll()) != null)
2820 return t;
2821 }
2822 }
2823 return null;
2824 }
2825
2826 /**
2827 * Removes all available unexecuted submitted and forked tasks
2828 * from scheduling queues and adds them to the given collection,
2829 * without altering their execution status. These may include
2830 * artificially generated or wrapped tasks. This method is
2831 * designed to be invoked only when the pool is known to be
2832 * quiescent. Invocations at other times may not remove all
2833 * tasks. A failure encountered while attempting to add elements
2834 * to collection {@code c} may result in elements being in
2835 * neither, either or both collections when the associated
2836 * exception is thrown. The behavior of this operation is
2837 * undefined if the specified collection is modified while the
2838 * operation is in progress.
2839 *
2840 * @param c the collection to transfer elements into
2841 * @return the number of elements transferred
2842 */
2843 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2844 int count = 0;
2845 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2846 if ((ws = workQueues) != null) {
2847 for (int i = 0; i < ws.length; ++i) {
2848 if ((w = ws[i]) != null) {
2849 while ((t = w.poll()) != null) {
2850 c.add(t);
2851 ++count;
2852 }
2853 }
2854 }
2855 }
2856 return count;
2857 }
2858
2859 /**
2860 * Returns a string identifying this pool, as well as its state,
2861 * including indications of run state, parallelism level, and
2862 * worker and task counts.
2863 *
2864 * @return a string identifying this pool, as well as its state
2865 */
2866 public String toString() {
2867 // Use a single pass through workQueues to collect counts
2868 long qt = 0L, qs = 0L; int rc = 0;
2869 long st = stealCount;
2870 long c = ctl;
2871 WorkQueue[] ws; WorkQueue w;
2872 if ((ws = workQueues) != null) {
2873 for (int i = 0; i < ws.length; ++i) {
2874 if ((w = ws[i]) != null) {
2875 int size = w.queueSize();
2876 if ((i & 1) == 0)
2877 qs += size;
2878 else {
2879 qt += size;
2880 st += w.nsteals;
2881 if (w.isApparentlyUnblocked())
2882 ++rc;
2883 }
2884 }
2885 }
2886 }
2887 int pc = (config & SMASK);
2888 int tc = pc + (short)(c >>> TC_SHIFT);
2889 int ac = pc + (int)(c >> AC_SHIFT);
2890 if (ac < 0) // ignore transient negative
2891 ac = 0;
2892 String level;
2893 if ((c & STOP_BIT) != 0)
2894 level = (tc == 0) ? "Terminated" : "Terminating";
2895 else
2896 level = plock < 0 ? "Shutting down" : "Running";
2897 return super.toString() +
2898 "[" + level +
2899 ", parallelism = " + pc +
2900 ", size = " + tc +
2901 ", active = " + ac +
2902 ", running = " + rc +
2903 ", steals = " + st +
2904 ", tasks = " + qt +
2905 ", submissions = " + qs +
2906 "]";
2907 }
2908
2909 /**
2910 * Possibly initiates an orderly shutdown in which previously
2911 * submitted tasks are executed, but no new tasks will be
2912 * accepted. Invocation has no effect on execution state if this
2913 * is the {@link #commonPool()}, and no additional effect if
2914 * already shut down. Tasks that are in the process of being
2915 * submitted concurrently during the course of this method may or
2916 * may not be rejected.
2917 *
2918 * @throws SecurityException if a security manager exists and
2919 * the caller is not permitted to modify threads
2920 * because it does not hold {@link
2921 * java.lang.RuntimePermission}{@code ("modifyThread")}
2922 */
2923 public void shutdown() {
2924 checkPermission();
2925 tryTerminate(false, true);
2926 }
2927
2928 /**
2929 * Possibly attempts to cancel and/or stop all tasks, and reject
2930 * all subsequently submitted tasks. Invocation has no effect on
2931 * execution state if this is the {@link #commonPool()}, and no
2932 * additional effect if already shut down. Otherwise, tasks that
2933 * are in the process of being submitted or executed concurrently
2934 * during the course of this method may or may not be
2935 * rejected. This method cancels both existing and unexecuted
2936 * tasks, in order to permit termination in the presence of task
2937 * dependencies. So the method always returns an empty list
2938 * (unlike the case for some other Executors).
2939 *
2940 * @return an empty list
2941 * @throws SecurityException if a security manager exists and
2942 * the caller is not permitted to modify threads
2943 * because it does not hold {@link
2944 * java.lang.RuntimePermission}{@code ("modifyThread")}
2945 */
2946 public List<Runnable> shutdownNow() {
2947 checkPermission();
2948 tryTerminate(true, true);
2949 return Collections.emptyList();
2950 }
2951
2952 /**
2953 * Returns {@code true} if all tasks have completed following shut down.
2954 *
2955 * @return {@code true} if all tasks have completed following shut down
2956 */
2957 public boolean isTerminated() {
2958 long c = ctl;
2959 return ((c & STOP_BIT) != 0L &&
2960 (short)(c >>> TC_SHIFT) == -(config & SMASK));
2961 }
2962
2963 /**
2964 * Returns {@code true} if the process of termination has
2965 * commenced but not yet completed. This method may be useful for
2966 * debugging. A return of {@code true} reported a sufficient
2967 * period after shutdown may indicate that submitted tasks have
2968 * ignored or suppressed interruption, or are waiting for I/O,
2969 * causing this executor not to properly terminate. (See the
2970 * advisory notes for class {@link ForkJoinTask} stating that
2971 * tasks should not normally entail blocking operations. But if
2972 * they do, they must abort them on interrupt.)
2973 *
2974 * @return {@code true} if terminating but not yet terminated
2975 */
2976 public boolean isTerminating() {
2977 long c = ctl;
2978 return ((c & STOP_BIT) != 0L &&
2979 (short)(c >>> TC_SHIFT) != -(config & SMASK));
2980 }
2981
2982 /**
2983 * Returns {@code true} if this pool has been shut down.
2984 *
2985 * @return {@code true} if this pool has been shut down
2986 */
2987 public boolean isShutdown() {
2988 return plock < 0;
2989 }
2990
2991 /**
2992 * Blocks until all tasks have completed execution after a
2993 * shutdown request, or the timeout occurs, or the current thread
2994 * is interrupted, whichever happens first. Because the {@link
2995 * #commonPool()} never terminates until program shutdown, when
2996 * applied to the common pool, this method is equivalent to {@link
2997 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
2998 *
2999 * @param timeout the maximum time to wait
3000 * @param unit the time unit of the timeout argument
3001 * @return {@code true} if this executor terminated and
3002 * {@code false} if the timeout elapsed before termination
3003 * @throws InterruptedException if interrupted while waiting
3004 */
3005 public boolean awaitTermination(long timeout, TimeUnit unit)
3006 throws InterruptedException {
3007 if (Thread.interrupted())
3008 throw new InterruptedException();
3009 if (this == common) {
3010 awaitQuiescence(timeout, unit);
3011 return false;
3012 }
3013 long nanos = unit.toNanos(timeout);
3014 if (isTerminated())
3015 return true;
3016 long startTime = System.nanoTime();
3017 boolean terminated = false;
3018 synchronized (this) {
3019 for (long waitTime = nanos, millis = 0L;;) {
3020 if (terminated = isTerminated() ||
3021 waitTime <= 0L ||
3022 (millis = unit.toMillis(waitTime)) <= 0L)
3023 break;
3024 wait(millis);
3025 waitTime = nanos - (System.nanoTime() - startTime);
3026 }
3027 }
3028 return terminated;
3029 }
3030
3031 /**
3032 * If called by a ForkJoinTask operating in this pool, equivalent
3033 * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3034 * waits and/or attempts to assist performing tasks until this
3035 * pool {@link #isQuiescent} or the indicated timeout elapses.
3036 *
3037 * @param timeout the maximum time to wait
3038 * @param unit the time unit of the timeout argument
3039 * @return {@code true} if quiescent; {@code false} if the
3040 * timeout elapsed.
3041 */
3042 public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3043 long nanos = unit.toNanos(timeout);
3044 ForkJoinWorkerThread wt;
3045 Thread thread = Thread.currentThread();
3046 if ((thread instanceof ForkJoinWorkerThread) &&
3047 (wt = (ForkJoinWorkerThread)thread).pool == this) {
3048 helpQuiescePool(wt.workQueue);
3049 return true;
3050 }
3051 long startTime = System.nanoTime();
3052 WorkQueue[] ws;
3053 int r = 0, m;
3054 boolean found = true;
3055 while (!isQuiescent() && (ws = workQueues) != null &&
3056 (m = ws.length - 1) >= 0) {
3057 if (!found) {
3058 if ((System.nanoTime() - startTime) > nanos)
3059 return false;
3060 Thread.yield(); // cannot block
3061 }
3062 found = false;
3063 for (int j = (m + 1) << 2; j >= 0; --j) {
3064 ForkJoinTask<?> t; WorkQueue q; int b;
3065 if ((q = ws[r++ & m]) != null && (b = q.base) - q.top < 0) {
3066 found = true;
3067 if ((t = q.pollAt(b)) != null)
3068 t.doExec();
3069 break;
3070 }
3071 }
3072 }
3073 return true;
3074 }
3075
3076 /**
3077 * Waits and/or attempts to assist performing tasks indefinitely
3078 * until the {@link #commonPool()} {@link #isQuiescent}.
3079 */
3080 static void quiesceCommonPool() {
3081 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3082 }
3083
3084 /**
3085 * Interface for extending managed parallelism for tasks running
3086 * in {@link ForkJoinPool}s.
3087 *
3088 * <p>A {@code ManagedBlocker} provides two methods. Method
3089 * {@code isReleasable} must return {@code true} if blocking is
3090 * not necessary. Method {@code block} blocks the current thread
3091 * if necessary (perhaps internally invoking {@code isReleasable}
3092 * before actually blocking). These actions are performed by any
3093 * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
3094 * The unusual methods in this API accommodate synchronizers that
3095 * may, but don't usually, block for long periods. Similarly, they
3096 * allow more efficient internal handling of cases in which
3097 * additional workers may be, but usually are not, needed to
3098 * ensure sufficient parallelism. Toward this end,
3099 * implementations of method {@code isReleasable} must be amenable
3100 * to repeated invocation.
3101 *
3102 * <p>For example, here is a ManagedBlocker based on a
3103 * ReentrantLock:
3104 * <pre> {@code
3105 * class ManagedLocker implements ManagedBlocker {
3106 * final ReentrantLock lock;
3107 * boolean hasLock = false;
3108 * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3109 * public boolean block() {
3110 * if (!hasLock)
3111 * lock.lock();
3112 * return true;
3113 * }
3114 * public boolean isReleasable() {
3115 * return hasLock || (hasLock = lock.tryLock());
3116 * }
3117 * }}</pre>
3118 *
3119 * <p>Here is a class that possibly blocks waiting for an
3120 * item on a given queue:
3121 * <pre> {@code
3122 * class QueueTaker<E> implements ManagedBlocker {
3123 * final BlockingQueue<E> queue;
3124 * volatile E item = null;
3125 * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3126 * public boolean block() throws InterruptedException {
3127 * if (item == null)
3128 * item = queue.take();
3129 * return true;
3130 * }
3131 * public boolean isReleasable() {
3132 * return item != null || (item = queue.poll()) != null;
3133 * }
3134 * public E getItem() { // call after pool.managedBlock completes
3135 * return item;
3136 * }
3137 * }}</pre>
3138 */
3139 public static interface ManagedBlocker {
3140 /**
3141 * Possibly blocks the current thread, for example waiting for
3142 * a lock or condition.
3143 *
3144 * @return {@code true} if no additional blocking is necessary
3145 * (i.e., if isReleasable would return true)
3146 * @throws InterruptedException if interrupted while waiting
3147 * (the method is not required to do so, but is allowed to)
3148 */
3149 boolean block() throws InterruptedException;
3150
3151 /**
3152 * Returns {@code true} if blocking is unnecessary.
3153 * @return {@code true} if blocking is unnecessary
3154 */
3155 boolean isReleasable();
3156 }
3157
3158 /**
3159 * Blocks in accord with the given blocker. If the current thread
3160 * is a {@link ForkJoinWorkerThread}, this method possibly
3161 * arranges for a spare thread to be activated if necessary to
3162 * ensure sufficient parallelism while the current thread is blocked.
3163 *
3164 * <p>If the caller is not a {@link ForkJoinTask}, this method is
3165 * behaviorally equivalent to
3166 * <pre> {@code
3167 * while (!blocker.isReleasable())
3168 * if (blocker.block())
3169 * return;
3170 * }</pre>
3171 *
3172 * If the caller is a {@code ForkJoinTask}, then the pool may
3173 * first be expanded to ensure parallelism, and later adjusted.
3174 *
3175 * @param blocker the blocker
3176 * @throws InterruptedException if blocker.block did so
3177 */
3178 public static void managedBlock(ManagedBlocker blocker)
3179 throws InterruptedException {
3180 Thread t = Thread.currentThread();
3181 if (t instanceof ForkJoinWorkerThread) {
3182 ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3183 while (!blocker.isReleasable()) {
3184 if (p.tryCompensate()) {
3185 try {
3186 do {} while (!blocker.isReleasable() &&
3187 !blocker.block());
3188 } finally {
3189 p.incrementActiveCount();
3190 }
3191 break;
3192 }
3193 }
3194 }
3195 else {
3196 do {} while (!blocker.isReleasable() &&
3197 !blocker.block());
3198 }
3199 }
3200
3201 // AbstractExecutorService overrides. These rely on undocumented
3202 // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3203 // implement RunnableFuture.
3204
3205 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3206 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3207 }
3208
3209 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3210 return new ForkJoinTask.AdaptedCallable<T>(callable);
3211 }
3212
3213 // Unsafe mechanics
3214 private static final sun.misc.Unsafe U;
3215 private static final long CTL;
3216 private static final long PARKBLOCKER;
3217 private static final int ABASE;
3218 private static final int ASHIFT;
3219 private static final long STEALCOUNT;
3220 private static final long PLOCK;
3221 private static final long INDEXSEED;
3222 private static final long QBASE;
3223 private static final long QLOCK;
3224
3225 static {
3226 // initialize field offsets for CAS etc
3227 try {
3228 U = sun.misc.Unsafe.getUnsafe();
3229 Class<?> k = ForkJoinPool.class;
3230 CTL = U.objectFieldOffset
3231 (k.getDeclaredField("ctl"));
3232 STEALCOUNT = U.objectFieldOffset
3233 (k.getDeclaredField("stealCount"));
3234 PLOCK = U.objectFieldOffset
3235 (k.getDeclaredField("plock"));
3236 INDEXSEED = U.objectFieldOffset
3237 (k.getDeclaredField("indexSeed"));
3238 Class<?> tk = Thread.class;
3239 PARKBLOCKER = U.objectFieldOffset
3240 (tk.getDeclaredField("parkBlocker"));
3241 Class<?> wk = WorkQueue.class;
3242 QBASE = U.objectFieldOffset
3243 (wk.getDeclaredField("base"));
3244 QLOCK = U.objectFieldOffset
3245 (wk.getDeclaredField("qlock"));
3246 Class<?> ak = ForkJoinTask[].class;
3247 ABASE = U.arrayBaseOffset(ak);
3248 int scale = U.arrayIndexScale(ak);
3249 if ((scale & (scale - 1)) != 0)
3250 throw new Error("data type scale not a power of two");
3251 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3252 } catch (Exception e) {
3253 throw new Error(e);
3254 }
3255
3256 defaultForkJoinWorkerThreadFactory =
3257 new DefaultForkJoinWorkerThreadFactory();
3258 modifyThreadPermission = new RuntimePermission("modifyThread");
3259
3260 common = java.security.AccessController.doPrivileged
3261 (new java.security.PrivilegedAction<ForkJoinPool>() {
3262 public ForkJoinPool run() { return makeCommonPool(); }});
3263 int par = common.config; // report 1 even if threads disabled
3264 commonParallelism = par > 0 ? par : 1;
3265 }
3266
3267 /**
3268 * Creates and returns the common pool, respecting user settings
3269 * specified via system properties.
3270 */
3271 private static ForkJoinPool makeCommonPool() {
3272 int parallelism = -1;
3273 ForkJoinWorkerThreadFactory factory
3274 = defaultForkJoinWorkerThreadFactory;
3275 UncaughtExceptionHandler handler = null;
3276 try { // ignore exceptions in accesing/parsing properties
3277 String pp = System.getProperty
3278 ("java.util.concurrent.ForkJoinPool.common.parallelism");
3279 String fp = System.getProperty
3280 ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3281 String hp = System.getProperty
3282 ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3283 if (pp != null)
3284 parallelism = Integer.parseInt(pp);
3285 if (fp != null)
3286 factory = ((ForkJoinWorkerThreadFactory)ClassLoader.
3287 getSystemClassLoader().loadClass(fp).newInstance());
3288 if (hp != null)
3289 handler = ((UncaughtExceptionHandler)ClassLoader.
3290 getSystemClassLoader().loadClass(hp).newInstance());
3291 } catch (Exception ignore) {
3292 }
3293
3294 if (parallelism < 0 && // default 1 less than #cores
3295 (parallelism = Runtime.getRuntime().availableProcessors() - 1) < 0)
3296 parallelism = 0;
3297 if (parallelism > MAX_CAP)
3298 parallelism = MAX_CAP;
3299 return new ForkJoinPool(parallelism, factory, handler, false,
3300 "ForkJoinPool.commonPool-worker-");
3301 }
3302
3303 }