ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.175
Committed: Thu Apr 18 06:41:27 2013 UTC (11 years, 1 month ago) by jsr166
Branch: MAIN
Changes since 1.174: +2 -2 lines
Log Message:
typos

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.lang.Thread.UncaughtExceptionHandler;
10 import java.util.ArrayList;
11 import java.util.Arrays;
12 import java.util.Collection;
13 import java.util.Collections;
14 import java.util.List;
15 import java.util.concurrent.AbstractExecutorService;
16 import java.util.concurrent.Callable;
17 import java.util.concurrent.ExecutorService;
18 import java.util.concurrent.Future;
19 import java.util.concurrent.RejectedExecutionException;
20 import java.util.concurrent.RunnableFuture;
21 import java.util.concurrent.TimeUnit;
22
23 /**
24 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
25 * A {@code ForkJoinPool} provides the entry point for submissions
26 * from non-{@code ForkJoinTask} clients, as well as management and
27 * monitoring operations.
28 *
29 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
30 * ExecutorService} mainly by virtue of employing
31 * <em>work-stealing</em>: all threads in the pool attempt to find and
32 * execute tasks submitted to the pool and/or created by other active
33 * tasks (eventually blocking waiting for work if none exist). This
34 * enables efficient processing when most tasks spawn other subtasks
35 * (as do most {@code ForkJoinTask}s), as well as when many small
36 * tasks are submitted to the pool from external clients. Especially
37 * when setting <em>asyncMode</em> to true in constructors, {@code
38 * ForkJoinPool}s may also be appropriate for use with event-style
39 * tasks that are never joined.
40 *
41 * <p>A static {@link #commonPool()} is available and appropriate for
42 * most applications. The common pool is used by any ForkJoinTask that
43 * is not explicitly submitted to a specified pool. Using the common
44 * pool normally reduces resource usage (its threads are slowly
45 * reclaimed during periods of non-use, and reinstated upon subsequent
46 * use).
47 *
48 * <p>For applications that require separate or custom pools, a {@code
49 * ForkJoinPool} may be constructed with a given target parallelism
50 * level; by default, equal to the number of available processors. The
51 * pool attempts to maintain enough active (or available) threads by
52 * dynamically adding, suspending, or resuming internal worker
53 * threads, even if some tasks are stalled waiting to join
54 * others. However, no such adjustments are guaranteed in the face of
55 * blocked I/O or other unmanaged synchronization. The nested {@link
56 * ManagedBlocker} interface enables extension of the kinds of
57 * synchronization accommodated.
58 *
59 * <p>In addition to execution and lifecycle control methods, this
60 * class provides status check methods (for example
61 * {@link #getStealCount}) that are intended to aid in developing,
62 * tuning, and monitoring fork/join applications. Also, method
63 * {@link #toString} returns indications of pool state in a
64 * convenient form for informal monitoring.
65 *
66 * <p>As is the case with other ExecutorServices, there are three
67 * main task execution methods summarized in the following table.
68 * These are designed to be used primarily by clients not already
69 * engaged in fork/join computations in the current pool. The main
70 * forms of these methods accept instances of {@code ForkJoinTask},
71 * but overloaded forms also allow mixed execution of plain {@code
72 * Runnable}- or {@code Callable}- based activities as well. However,
73 * tasks that are already executing in a pool should normally instead
74 * use the within-computation forms listed in the table unless using
75 * async event-style tasks that are not usually joined, in which case
76 * there is little difference among choice of methods.
77 *
78 * <table BORDER CELLPADDING=3 CELLSPACING=1>
79 * <caption>Summary of task execution methods</caption>
80 * <tr>
81 * <td></td>
82 * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
83 * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
84 * </tr>
85 * <tr>
86 * <td> <b>Arrange async execution</b></td>
87 * <td> {@link #execute(ForkJoinTask)}</td>
88 * <td> {@link ForkJoinTask#fork}</td>
89 * </tr>
90 * <tr>
91 * <td> <b>Await and obtain result</b></td>
92 * <td> {@link #invoke(ForkJoinTask)}</td>
93 * <td> {@link ForkJoinTask#invoke}</td>
94 * </tr>
95 * <tr>
96 * <td> <b>Arrange exec and obtain Future</b></td>
97 * <td> {@link #submit(ForkJoinTask)}</td>
98 * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
99 * </tr>
100 * </table>
101 *
102 * <p>The common pool is by default constructed with default
103 * parameters, but these may be controlled by setting three
104 * {@linkplain System#getProperty system properties}:
105 * <ul>
106 * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
107 * - the parallelism level, a non-negative integer
108 * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
109 * - the class name of a {@link ForkJoinWorkerThreadFactory}
110 * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
111 * - the class name of a {@link UncaughtExceptionHandler}
112 * </ul>
113 * The system class loader is used to load these classes.
114 * Upon any error in establishing these settings, default parameters
115 * are used. It is possible to disable or limit the use of threads in
116 * the common pool by setting the parallelism property to zero, and/or
117 * using a factory that may return {@code null}.
118 *
119 * <p><b>Implementation notes</b>: This implementation restricts the
120 * maximum number of running threads to 32767. Attempts to create
121 * pools with greater than the maximum number result in
122 * {@code IllegalArgumentException}.
123 *
124 * <p>This implementation rejects submitted tasks (that is, by throwing
125 * {@link RejectedExecutionException}) only when the pool is shut down
126 * or internal resources have been exhausted.
127 *
128 * @since 1.7
129 * @author Doug Lea
130 */
131 @sun.misc.Contended
132 public class ForkJoinPool extends AbstractExecutorService {
133
134 /*
135 * Implementation Overview
136 *
137 * This class and its nested classes provide the main
138 * functionality and control for a set of worker threads:
139 * Submissions from non-FJ threads enter into submission queues.
140 * Workers take these tasks and typically split them into subtasks
141 * that may be stolen by other workers. Preference rules give
142 * first priority to processing tasks from their own queues (LIFO
143 * or FIFO, depending on mode), then to randomized FIFO steals of
144 * tasks in other queues.
145 *
146 * WorkQueues
147 * ==========
148 *
149 * Most operations occur within work-stealing queues (in nested
150 * class WorkQueue). These are special forms of Deques that
151 * support only three of the four possible end-operations -- push,
152 * pop, and poll (aka steal), under the further constraints that
153 * push and pop are called only from the owning thread (or, as
154 * extended here, under a lock), while poll may be called from
155 * other threads. (If you are unfamiliar with them, you probably
156 * want to read Herlihy and Shavit's book "The Art of
157 * Multiprocessor programming", chapter 16 describing these in
158 * more detail before proceeding.) The main work-stealing queue
159 * design is roughly similar to those in the papers "Dynamic
160 * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
161 * (http://research.sun.com/scalable/pubs/index.html) and
162 * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
163 * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
164 * See also "Correct and Efficient Work-Stealing for Weak Memory
165 * Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
166 * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
167 * analysis of memory ordering (atomic, volatile etc) issues. The
168 * main differences ultimately stem from GC requirements that we
169 * null out taken slots as soon as we can, to maintain as small a
170 * footprint as possible even in programs generating huge numbers
171 * of tasks. To accomplish this, we shift the CAS arbitrating pop
172 * vs poll (steal) from being on the indices ("base" and "top") to
173 * the slots themselves. So, both a successful pop and poll
174 * mainly entail a CAS of a slot from non-null to null. Because
175 * we rely on CASes of references, we do not need tag bits on base
176 * or top. They are simple ints as used in any circular
177 * array-based queue (see for example ArrayDeque). Updates to the
178 * indices must still be ordered in a way that guarantees that top
179 * == base means the queue is empty, but otherwise may err on the
180 * side of possibly making the queue appear nonempty when a push,
181 * pop, or poll have not fully committed. Note that this means
182 * that the poll operation, considered individually, is not
183 * wait-free. One thief cannot successfully continue until another
184 * in-progress one (or, if previously empty, a push) completes.
185 * However, in the aggregate, we ensure at least probabilistic
186 * non-blockingness. If an attempted steal fails, a thief always
187 * chooses a different random victim target to try next. So, in
188 * order for one thief to progress, it suffices for any
189 * in-progress poll or new push on any empty queue to
190 * complete. (This is why we normally use method pollAt and its
191 * variants that try once at the apparent base index, else
192 * consider alternative actions, rather than method poll.)
193 *
194 * This approach also enables support of a user mode in which local
195 * task processing is in FIFO, not LIFO order, simply by using
196 * poll rather than pop. This can be useful in message-passing
197 * frameworks in which tasks are never joined. However neither
198 * mode considers affinities, loads, cache localities, etc, so
199 * rarely provide the best possible performance on a given
200 * machine, but portably provide good throughput by averaging over
201 * these factors. (Further, even if we did try to use such
202 * information, we do not usually have a basis for exploiting it.
203 * For example, some sets of tasks profit from cache affinities,
204 * but others are harmed by cache pollution effects.)
205 *
206 * WorkQueues are also used in a similar way for tasks submitted
207 * to the pool. We cannot mix these tasks in the same queues used
208 * for work-stealing (this would contaminate lifo/fifo
209 * processing). Instead, we randomly associate submission queues
210 * with submitting threads, using a form of hashing. The
211 * ThreadLocalRandom probe value serves as a hash code for
212 * choosing existing queues, and may be randomly repositioned upon
213 * contention with other submitters. In essence, submitters act
214 * like workers except that they are restricted to executing local
215 * tasks that they submitted (or in the case of CountedCompleters,
216 * others with the same root task). However, because most
217 * shared/external queue operations are more expensive than
218 * internal, and because, at steady state, external submitters
219 * will compete for CPU with workers, ForkJoinTask.join and
220 * related methods disable them from repeatedly helping to process
221 * tasks if all workers are active. Insertion of tasks in shared
222 * mode requires a lock (mainly to protect in the case of
223 * resizing) but we use only a simple spinlock (using bits in
224 * field qlock), because submitters encountering a busy queue move
225 * on to try or create other queues -- they block only when
226 * creating and registering new queues.
227 *
228 * Management
229 * ==========
230 *
231 * The main throughput advantages of work-stealing stem from
232 * decentralized control -- workers mostly take tasks from
233 * themselves or each other. We cannot negate this in the
234 * implementation of other management responsibilities. The main
235 * tactic for avoiding bottlenecks is packing nearly all
236 * essentially atomic control state into two volatile variables
237 * that are by far most often read (not written) as status and
238 * consistency checks.
239 *
240 * Field "ctl" contains 64 bits holding all the information needed
241 * to atomically decide to add, inactivate, enqueue (on an event
242 * queue), dequeue, and/or re-activate workers. To enable this
243 * packing, we restrict maximum parallelism to (1<<15)-1 (which is
244 * far in excess of normal operating range) to allow ids, counts,
245 * and their negations (used for thresholding) to fit into 16bit
246 * fields.
247 *
248 * Field "plock" is a form of sequence lock with a saturating
249 * shutdown bit (similarly for per-queue "qlocks"), mainly
250 * protecting updates to the workQueues array, as well as to
251 * enable shutdown. When used as a lock, it is normally only very
252 * briefly held, so is nearly always available after at most a
253 * brief spin, but we use a monitor-based backup strategy to
254 * block when needed.
255 *
256 * Recording WorkQueues. WorkQueues are recorded in the
257 * "workQueues" array that is created upon first use and expanded
258 * if necessary. Updates to the array while recording new workers
259 * and unrecording terminated ones are protected from each other
260 * by a lock but the array is otherwise concurrently readable, and
261 * accessed directly. To simplify index-based operations, the
262 * array size is always a power of two, and all readers must
263 * tolerate null slots. Worker queues are at odd indices. Shared
264 * (submission) queues are at even indices, up to a maximum of 64
265 * slots, to limit growth even if array needs to expand to add
266 * more workers. Grouping them together in this way simplifies and
267 * speeds up task scanning.
268 *
269 * All worker thread creation is on-demand, triggered by task
270 * submissions, replacement of terminated workers, and/or
271 * compensation for blocked workers. However, all other support
272 * code is set up to work with other policies. To ensure that we
273 * do not hold on to worker references that would prevent GC, ALL
274 * accesses to workQueues are via indices into the workQueues
275 * array (which is one source of some of the messy code
276 * constructions here). In essence, the workQueues array serves as
277 * a weak reference mechanism. Thus for example the wait queue
278 * field of ctl stores indices, not references. Access to the
279 * workQueues in associated methods (for example signalWork) must
280 * both index-check and null-check the IDs. All such accesses
281 * ignore bad IDs by returning out early from what they are doing,
282 * since this can only be associated with termination, in which
283 * case it is OK to give up. All uses of the workQueues array
284 * also check that it is non-null (even if previously
285 * non-null). This allows nulling during termination, which is
286 * currently not necessary, but remains an option for
287 * resource-revocation-based shutdown schemes. It also helps
288 * reduce JIT issuance of uncommon-trap code, which tends to
289 * unnecessarily complicate control flow in some methods.
290 *
291 * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
292 * let workers spin indefinitely scanning for tasks when none can
293 * be found immediately, and we cannot start/resume workers unless
294 * there appear to be tasks available. On the other hand, we must
295 * quickly prod them into action when new tasks are submitted or
296 * generated. In many usages, ramp-up time to activate workers is
297 * the main limiting factor in overall performance (this is
298 * compounded at program start-up by JIT compilation and
299 * allocation). So we try to streamline this as much as possible.
300 * We park/unpark workers after placing in an event wait queue
301 * when they cannot find work. This "queue" is actually a simple
302 * Treiber stack, headed by the "id" field of ctl, plus a 15bit
303 * counter value (that reflects the number of times a worker has
304 * been inactivated) to avoid ABA effects (we need only as many
305 * version numbers as worker threads). Successors are held in
306 * field WorkQueue.nextWait. Queuing deals with several intrinsic
307 * races, mainly that a task-producing thread can miss seeing (and
308 * signalling) another thread that gave up looking for work but
309 * has not yet entered the wait queue. We solve this by requiring
310 * a full sweep of all workers (via repeated calls to method
311 * scan()) both before and after a newly waiting worker is added
312 * to the wait queue. Because enqueued workers may actually be
313 * rescanning rather than waiting, we set and clear the "parker"
314 * field of WorkQueues to reduce unnecessary calls to unpark.
315 * (This requires a secondary recheck to avoid missed signals.)
316 * Note the unusual conventions about Thread.interrupts
317 * surrounding parking and other blocking: Because interrupts are
318 * used solely to alert threads to check termination, which is
319 * checked anyway upon blocking, we clear status (using
320 * Thread.interrupted) before any call to park, so that park does
321 * not immediately return due to status being set via some other
322 * unrelated call to interrupt in user code.
323 *
324 * Signalling. We create or wake up workers only when there
325 * appears to be at least one task they might be able to find and
326 * execute. When a submission is added or another worker adds a
327 * task to a queue that has fewer than two tasks, they signal
328 * waiting workers (or trigger creation of new ones if fewer than
329 * the given parallelism level -- signalWork). These primary
330 * signals are buttressed by others whenever other threads remove
331 * a task from a queue a notice that there are other tasks there
332 * as well. So in general, pools will be over-signalled. On most
333 * platforms, signalling (unpark) overhead time is noticeably
334 * long, and the time between signalling a thread and it actually
335 * making progress can be very noticeably long, so it is worth
336 * offloading these delays from critical paths as much as
337 * possible.
338 *
339 * Trimming workers. To release resources after periods of lack of
340 * use, a worker starting to wait when the pool is quiescent will
341 * time out and terminate if the pool has remained quiescent for a
342 * given period -- a short period if there are more threads than
343 * parallelism, longer as the number of threads decreases. This
344 * will slowly propagate, eventually terminating all workers after
345 * periods of non-use.
346 *
347 * Shutdown and Termination. A call to shutdownNow atomically sets
348 * a plock bit and then (non-atomically) sets each worker's
349 * qlock status, cancels all unprocessed tasks, and wakes up
350 * all waiting workers. Detecting whether termination should
351 * commence after a non-abrupt shutdown() call requires more work
352 * and bookkeeping. We need consensus about quiescence (i.e., that
353 * there is no more work). The active count provides a primary
354 * indication but non-abrupt shutdown still requires a rechecking
355 * scan for any workers that are inactive but not queued.
356 *
357 * Joining Tasks
358 * =============
359 *
360 * Any of several actions may be taken when one worker is waiting
361 * to join a task stolen (or always held) by another. Because we
362 * are multiplexing many tasks on to a pool of workers, we can't
363 * just let them block (as in Thread.join). We also cannot just
364 * reassign the joiner's run-time stack with another and replace
365 * it later, which would be a form of "continuation", that even if
366 * possible is not necessarily a good idea since we sometimes need
367 * both an unblocked task and its continuation to progress.
368 * Instead we combine two tactics:
369 *
370 * Helping: Arranging for the joiner to execute some task that it
371 * would be running if the steal had not occurred.
372 *
373 * Compensating: Unless there are already enough live threads,
374 * method tryCompensate() may create or re-activate a spare
375 * thread to compensate for blocked joiners until they unblock.
376 *
377 * A third form (implemented in tryRemoveAndExec) amounts to
378 * helping a hypothetical compensator: If we can readily tell that
379 * a possible action of a compensator is to steal and execute the
380 * task being joined, the joining thread can do so directly,
381 * without the need for a compensation thread (although at the
382 * expense of larger run-time stacks, but the tradeoff is
383 * typically worthwhile).
384 *
385 * The ManagedBlocker extension API can't use helping so relies
386 * only on compensation in method awaitBlocker.
387 *
388 * The algorithm in tryHelpStealer entails a form of "linear"
389 * helping: Each worker records (in field currentSteal) the most
390 * recent task it stole from some other worker. Plus, it records
391 * (in field currentJoin) the task it is currently actively
392 * joining. Method tryHelpStealer uses these markers to try to
393 * find a worker to help (i.e., steal back a task from and execute
394 * it) that could hasten completion of the actively joined task.
395 * In essence, the joiner executes a task that would be on its own
396 * local deque had the to-be-joined task not been stolen. This may
397 * be seen as a conservative variant of the approach in Wagner &
398 * Calder "Leapfrogging: a portable technique for implementing
399 * efficient futures" SIGPLAN Notices, 1993
400 * (http://portal.acm.org/citation.cfm?id=155354). It differs in
401 * that: (1) We only maintain dependency links across workers upon
402 * steals, rather than use per-task bookkeeping. This sometimes
403 * requires a linear scan of workQueues array to locate stealers,
404 * but often doesn't because stealers leave hints (that may become
405 * stale/wrong) of where to locate them. It is only a hint
406 * because a worker might have had multiple steals and the hint
407 * records only one of them (usually the most current). Hinting
408 * isolates cost to when it is needed, rather than adding to
409 * per-task overhead. (2) It is "shallow", ignoring nesting and
410 * potentially cyclic mutual steals. (3) It is intentionally
411 * racy: field currentJoin is updated only while actively joining,
412 * which means that we miss links in the chain during long-lived
413 * tasks, GC stalls etc (which is OK since blocking in such cases
414 * is usually a good idea). (4) We bound the number of attempts
415 * to find work (see MAX_HELP) and fall back to suspending the
416 * worker and if necessary replacing it with another.
417 *
418 * Helping actions for CountedCompleters are much simpler: Method
419 * helpComplete can take and execute any task with the same root
420 * as the task being waited on. However, this still entails some
421 * traversal of completer chains, so is less efficient than using
422 * CountedCompleters without explicit joins.
423 *
424 * It is impossible to keep exactly the target parallelism number
425 * of threads running at any given time. Determining the
426 * existence of conservatively safe helping targets, the
427 * availability of already-created spares, and the apparent need
428 * to create new spares are all racy, so we rely on multiple
429 * retries of each. Compensation in the apparent absence of
430 * helping opportunities is challenging to control on JVMs, where
431 * GC and other activities can stall progress of tasks that in
432 * turn stall out many other dependent tasks, without us being
433 * able to determine whether they will ever require compensation.
434 * Even though work-stealing otherwise encounters little
435 * degradation in the presence of more threads than cores,
436 * aggressively adding new threads in such cases entails risk of
437 * unwanted positive feedback control loops in which more threads
438 * cause more dependent stalls (as well as delayed progress of
439 * unblocked threads to the point that we know they are available)
440 * leading to more situations requiring more threads, and so
441 * on. This aspect of control can be seen as an (analytically
442 * intractable) game with an opponent that may choose the worst
443 * (for us) active thread to stall at any time. We take several
444 * precautions to bound losses (and thus bound gains), mainly in
445 * methods tryCompensate and awaitJoin.
446 *
447 * Common Pool
448 * ===========
449 *
450 * The static common pool always exists after static
451 * initialization. Since it (or any other created pool) need
452 * never be used, we minimize initial construction overhead and
453 * footprint to the setup of about a dozen fields, with no nested
454 * allocation. Most bootstrapping occurs within method
455 * fullExternalPush during the first submission to the pool.
456 *
457 * When external threads submit to the common pool, they can
458 * perform subtask processing (see externalHelpJoin and related
459 * methods). This caller-helps policy makes it sensible to set
460 * common pool parallelism level to one (or more) less than the
461 * total number of available cores, or even zero for pure
462 * caller-runs. We do not need to record whether external
463 * submissions are to the common pool -- if not, externalHelpJoin
464 * returns quickly (at the most helping to signal some common pool
465 * workers). These submitters would otherwise be blocked waiting
466 * for completion, so the extra effort (with liberally sprinkled
467 * task status checks) in inapplicable cases amounts to an odd
468 * form of limited spin-wait before blocking in ForkJoinTask.join.
469 *
470 * Style notes
471 * ===========
472 *
473 * There is a lot of representation-level coupling among classes
474 * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
475 * fields of WorkQueue maintain data structures managed by
476 * ForkJoinPool, so are directly accessed. There is little point
477 * trying to reduce this, since any associated future changes in
478 * representations will need to be accompanied by algorithmic
479 * changes anyway. Several methods intrinsically sprawl because
480 * they must accumulate sets of consistent reads of volatiles held
481 * in local variables. Methods signalWork() and scan() are the
482 * main bottlenecks, so are especially heavily
483 * micro-optimized/mangled. There are lots of inline assignments
484 * (of form "while ((local = field) != 0)") which are usually the
485 * simplest way to ensure the required read orderings (which are
486 * sometimes critical). This leads to a "C"-like style of listing
487 * declarations of these locals at the heads of methods or blocks.
488 * There are several occurrences of the unusual "do {} while
489 * (!cas...)" which is the simplest way to force an update of a
490 * CAS'ed variable. There are also other coding oddities (including
491 * several unnecessary-looking hoisted null checks) that help
492 * some methods perform reasonably even when interpreted (not
493 * compiled).
494 *
495 * The order of declarations in this file is:
496 * (1) Static utility functions
497 * (2) Nested (static) classes
498 * (3) Static fields
499 * (4) Fields, along with constants used when unpacking some of them
500 * (5) Internal control methods
501 * (6) Callbacks and other support for ForkJoinTask methods
502 * (7) Exported methods
503 * (8) Static block initializing statics in minimally dependent order
504 */
505
506 // Static utilities
507
508 /**
509 * If there is a security manager, makes sure caller has
510 * permission to modify threads.
511 */
512 private static void checkPermission() {
513 SecurityManager security = System.getSecurityManager();
514 if (security != null)
515 security.checkPermission(modifyThreadPermission);
516 }
517
518 // Nested classes
519
520 /**
521 * Factory for creating new {@link ForkJoinWorkerThread}s.
522 * A {@code ForkJoinWorkerThreadFactory} must be defined and used
523 * for {@code ForkJoinWorkerThread} subclasses that extend base
524 * functionality or initialize threads with different contexts.
525 */
526 public static interface ForkJoinWorkerThreadFactory {
527 /**
528 * Returns a new worker thread operating in the given pool.
529 *
530 * @param pool the pool this thread works in
531 * @throws NullPointerException if the pool is null
532 * @return the new worker thread
533 */
534 public ForkJoinWorkerThread newThread(ForkJoinPool pool);
535 }
536
537 /**
538 * Default ForkJoinWorkerThreadFactory implementation; creates a
539 * new ForkJoinWorkerThread.
540 */
541 static final class DefaultForkJoinWorkerThreadFactory
542 implements ForkJoinWorkerThreadFactory {
543 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
544 return new ForkJoinWorkerThread(pool);
545 }
546 }
547
548 /**
549 * Class for artificial tasks that are used to replace the target
550 * of local joins if they are removed from an interior queue slot
551 * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
552 * actually do anything beyond having a unique identity.
553 */
554 static final class EmptyTask extends ForkJoinTask<Void> {
555 private static final long serialVersionUID = -7721805057305804111L;
556 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
557 public final Void getRawResult() { return null; }
558 public final void setRawResult(Void x) {}
559 public final boolean exec() { return true; }
560 }
561
562 /**
563 * Queues supporting work-stealing as well as external task
564 * submission. See above for main rationale and algorithms.
565 * Implementation relies heavily on "Unsafe" intrinsics
566 * and selective use of "volatile":
567 *
568 * Field "base" is the index (mod array.length) of the least valid
569 * queue slot, which is always the next position to steal (poll)
570 * from if nonempty. Reads and writes require volatile orderings
571 * but not CAS, because updates are only performed after slot
572 * CASes.
573 *
574 * Field "top" is the index (mod array.length) of the next queue
575 * slot to push to or pop from. It is written only by owner thread
576 * for push, or under lock for external/shared push, and accessed
577 * by other threads only after reading (volatile) base. Both top
578 * and base are allowed to wrap around on overflow, but (top -
579 * base) (or more commonly -(base - top) to force volatile read of
580 * base before top) still estimates size. The lock ("qlock") is
581 * forced to -1 on termination, causing all further lock attempts
582 * to fail. (Note: we don't need CAS for termination state because
583 * upon pool shutdown, all shared-queues will stop being used
584 * anyway.) Nearly all lock bodies are set up so that exceptions
585 * within lock bodies are "impossible" (modulo JVM errors that
586 * would cause failure anyway.)
587 *
588 * The array slots are read and written using the emulation of
589 * volatiles/atomics provided by Unsafe. Insertions must in
590 * general use putOrderedObject as a form of releasing store to
591 * ensure that all writes to the task object are ordered before
592 * its publication in the queue. All removals entail a CAS to
593 * null. The array is always a power of two. To ensure safety of
594 * Unsafe array operations, all accesses perform explicit null
595 * checks and implicit bounds checks via power-of-two masking.
596 *
597 * In addition to basic queuing support, this class contains
598 * fields described elsewhere to control execution. It turns out
599 * to work better memory-layout-wise to include them in this class
600 * rather than a separate class.
601 *
602 * Performance on most platforms is very sensitive to placement of
603 * instances of both WorkQueues and their arrays -- we absolutely
604 * do not want multiple WorkQueue instances or multiple queue
605 * arrays sharing cache lines. (It would be best for queue objects
606 * and their arrays to share, but there is nothing available to
607 * help arrange that). The @Contended annotation alerts JVMs to
608 * try to keep instances apart.
609 */
610 @sun.misc.Contended
611 static final class WorkQueue {
612 /**
613 * Capacity of work-stealing queue array upon initialization.
614 * Must be a power of two; at least 4, but should be larger to
615 * reduce or eliminate cacheline sharing among queues.
616 * Currently, it is much larger, as a partial workaround for
617 * the fact that JVMs often place arrays in locations that
618 * share GC bookkeeping (especially cardmarks) such that
619 * per-write accesses encounter serious memory contention.
620 */
621 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
622
623 /**
624 * Maximum size for queue arrays. Must be a power of two less
625 * than or equal to 1 << (31 - width of array entry) to ensure
626 * lack of wraparound of index calculations, but defined to a
627 * value a bit less than this to help users trap runaway
628 * programs before saturating systems.
629 */
630 static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
631
632 int seed; // for random scanning; initialize nonzero
633 volatile int eventCount; // encoded inactivation count; < 0 if inactive
634 int nextWait; // encoded record of next event waiter
635 int hint; // steal or signal hint (index)
636 int poolIndex; // index of this queue in pool (or 0)
637 final int mode; // 0: lifo, > 0: fifo, < 0: shared
638 int nsteals; // number of steals
639 volatile int qlock; // 1: locked, -1: terminate; else 0
640 volatile int base; // index of next slot for poll
641 int top; // index of next slot for push
642 ForkJoinTask<?>[] array; // the elements (initially unallocated)
643 final ForkJoinPool pool; // the containing pool (may be null)
644 final ForkJoinWorkerThread owner; // owning thread or null if shared
645 volatile Thread parker; // == owner during call to park; else null
646 volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
647 ForkJoinTask<?> currentSteal; // current non-local task being executed
648
649 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
650 int seed) {
651 this.pool = pool;
652 this.owner = owner;
653 this.mode = mode;
654 this.seed = seed;
655 // Place indices in the center of array (that is not yet allocated)
656 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
657 }
658
659 /**
660 * Returns the approximate number of tasks in the queue.
661 */
662 final int queueSize() {
663 int n = base - top; // non-owner callers must read base first
664 return (n >= 0) ? 0 : -n; // ignore transient negative
665 }
666
667 /**
668 * Provides a more accurate estimate of whether this queue has
669 * any tasks than does queueSize, by checking whether a
670 * near-empty queue has at least one unclaimed task.
671 */
672 final boolean isEmpty() {
673 ForkJoinTask<?>[] a; int m, s;
674 int n = base - (s = top);
675 return (n >= 0 ||
676 (n == -1 &&
677 ((a = array) == null ||
678 (m = a.length - 1) < 0 ||
679 U.getObject
680 (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
681 }
682
683 /**
684 * Pushes a task. Call only by owner in unshared queues. (The
685 * shared-queue version is embedded in method externalPush.)
686 *
687 * @param task the task. Caller must ensure non-null.
688 * @throws RejectedExecutionException if array cannot be resized
689 */
690 final void push(ForkJoinTask<?> task) {
691 ForkJoinTask<?>[] a; ForkJoinPool p;
692 int s = top, m, n;
693 if ((a = array) != null) { // ignore if queue removed
694 long j = (((m = a.length - 1) & s) << ASHIFT) + ABASE;
695 U.putOrderedObject(a, j, task);
696 if ((n = (top = s + 1) - base) <= 2) {
697 if ((p = pool) != null)
698 p.signalWork(this);
699 }
700 else if (n >= m)
701 growArray();
702 }
703 }
704
705 /**
706 * Initializes or doubles the capacity of array. Call either
707 * by owner or with lock held -- it is OK for base, but not
708 * top, to move while resizings are in progress.
709 */
710 final ForkJoinTask<?>[] growArray() {
711 ForkJoinTask<?>[] oldA = array;
712 int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
713 if (size > MAXIMUM_QUEUE_CAPACITY)
714 throw new RejectedExecutionException("Queue capacity exceeded");
715 int oldMask, t, b;
716 ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
717 if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
718 (t = top) - (b = base) > 0) {
719 int mask = size - 1;
720 do {
721 ForkJoinTask<?> x;
722 int oldj = ((b & oldMask) << ASHIFT) + ABASE;
723 int j = ((b & mask) << ASHIFT) + ABASE;
724 x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
725 if (x != null &&
726 U.compareAndSwapObject(oldA, oldj, x, null))
727 U.putObjectVolatile(a, j, x);
728 } while (++b != t);
729 }
730 return a;
731 }
732
733 /**
734 * Takes next task, if one exists, in LIFO order. Call only
735 * by owner in unshared queues.
736 */
737 final ForkJoinTask<?> pop() {
738 ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
739 if ((a = array) != null && (m = a.length - 1) >= 0) {
740 for (int s; (s = top - 1) - base >= 0;) {
741 long j = ((m & s) << ASHIFT) + ABASE;
742 if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
743 break;
744 if (U.compareAndSwapObject(a, j, t, null)) {
745 top = s;
746 return t;
747 }
748 }
749 }
750 return null;
751 }
752
753 /**
754 * Takes a task in FIFO order if b is base of queue and a task
755 * can be claimed without contention. Specialized versions
756 * appear in ForkJoinPool methods scan and tryHelpStealer.
757 */
758 final ForkJoinTask<?> pollAt(int b) {
759 ForkJoinTask<?> t; ForkJoinTask<?>[] a; ForkJoinPool p;
760 if ((a = array) != null) {
761 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
762 if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
763 base == b &&
764 U.compareAndSwapObject(a, j, t, null)) {
765 U.putOrderedInt(this, QBASE, b + 1);
766 if (top - b > 1 && (p = pool) != null)
767 p.signalWork(this);
768 return t;
769 }
770 }
771 return null;
772 }
773
774 /**
775 * Takes next task, if one exists, in FIFO order.
776 */
777 final ForkJoinTask<?> poll() {
778 ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t; ForkJoinPool p;
779 while ((b = base) - top < 0 && (a = array) != null) {
780 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
781 t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
782 if (t != null) {
783 if (base == b &&
784 U.compareAndSwapObject(a, j, t, null)) {
785 U.putOrderedInt(this, QBASE, b + 1);
786 if (top - b > 1 && (p = pool) != null)
787 p.signalWork(this);
788 return t;
789 }
790 }
791 else if (base == b) {
792 if (b + 1 == top)
793 break;
794 Thread.yield(); // wait for lagging update (very rare)
795 }
796 }
797 return null;
798 }
799
800 /**
801 * Takes next task, if one exists, in order specified by mode.
802 */
803 final ForkJoinTask<?> nextLocalTask() {
804 return mode == 0 ? pop() : poll();
805 }
806
807 /**
808 * Returns next task, if one exists, in order specified by mode.
809 */
810 final ForkJoinTask<?> peek() {
811 ForkJoinTask<?>[] a = array; int m;
812 if (a == null || (m = a.length - 1) < 0)
813 return null;
814 int i = mode == 0 ? top - 1 : base;
815 int j = ((i & m) << ASHIFT) + ABASE;
816 return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
817 }
818
819 /**
820 * Pops the given task only if it is at the current top.
821 * (A shared version is available only via FJP.tryExternalUnpush)
822 */
823 final boolean tryUnpush(ForkJoinTask<?> t) {
824 ForkJoinTask<?>[] a; int s;
825 if ((a = array) != null && (s = top) != base &&
826 U.compareAndSwapObject
827 (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
828 top = s;
829 return true;
830 }
831 return false;
832 }
833
834 /**
835 * Removes and cancels all known tasks, ignoring any exceptions.
836 */
837 final void cancelAll() {
838 ForkJoinTask.cancelIgnoringExceptions(currentJoin);
839 ForkJoinTask.cancelIgnoringExceptions(currentSteal);
840 for (ForkJoinTask<?> t; (t = poll()) != null; )
841 ForkJoinTask.cancelIgnoringExceptions(t);
842 }
843
844 /**
845 * Computes next value for random probes. Scans don't require
846 * a very high quality generator, but also not a crummy one.
847 * Marsaglia xor-shift is cheap and works well enough. Note:
848 * This is manually inlined in its usages in ForkJoinPool to
849 * avoid writes inside busy scan loops.
850 */
851 final int nextSeed() {
852 int r = seed;
853 r ^= r << 13;
854 r ^= r >>> 17;
855 return seed = r ^= r << 5;
856 }
857
858 // Specialized execution methods
859
860 /**
861 * Pops and runs tasks until empty.
862 */
863 private void popAndExecAll() {
864 // A bit faster than repeated pop calls
865 ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
866 while ((a = array) != null && (m = a.length - 1) >= 0 &&
867 (s = top - 1) - base >= 0 &&
868 (t = ((ForkJoinTask<?>)
869 U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
870 != null) {
871 if (U.compareAndSwapObject(a, j, t, null)) {
872 top = s;
873 t.doExec();
874 }
875 }
876 }
877
878 /**
879 * Polls and runs tasks until empty.
880 */
881 private void pollAndExecAll() {
882 for (ForkJoinTask<?> t; (t = poll()) != null;)
883 t.doExec();
884 }
885
886 /**
887 * If present, removes from queue and executes the given task,
888 * or any other cancelled task. Returns (true) on any CAS
889 * or consistency check failure so caller can retry.
890 *
891 * @return false if no progress can be made, else true
892 */
893 final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
894 boolean stat = true, removed = false, empty = true;
895 ForkJoinTask<?>[] a; int m, s, b, n;
896 if ((a = array) != null && (m = a.length - 1) >= 0 &&
897 (n = (s = top) - (b = base)) > 0) {
898 for (ForkJoinTask<?> t;;) { // traverse from s to b
899 int j = ((--s & m) << ASHIFT) + ABASE;
900 t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
901 if (t == null) // inconsistent length
902 break;
903 else if (t == task) {
904 if (s + 1 == top) { // pop
905 if (!U.compareAndSwapObject(a, j, task, null))
906 break;
907 top = s;
908 removed = true;
909 }
910 else if (base == b) // replace with proxy
911 removed = U.compareAndSwapObject(a, j, task,
912 new EmptyTask());
913 break;
914 }
915 else if (t.status >= 0)
916 empty = false;
917 else if (s + 1 == top) { // pop and throw away
918 if (U.compareAndSwapObject(a, j, t, null))
919 top = s;
920 break;
921 }
922 if (--n == 0) {
923 if (!empty && base == b)
924 stat = false;
925 break;
926 }
927 }
928 }
929 if (removed)
930 task.doExec();
931 return stat;
932 }
933
934 /**
935 * Polls for and executes the given task or any other task in
936 * its CountedCompleter computation.
937 */
938 final boolean pollAndExecCC(ForkJoinTask<?> root, ForkJoinPool spool) {
939 ForkJoinTask<?>[] a; int b; Object o;
940 outer: while (root.status >= 0 && (b = base) - top < 0 &&
941 (a = array) != null) {
942 long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
943 if ((o = U.getObject(a, j)) == null ||
944 !(o instanceof CountedCompleter))
945 break;
946 for (CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;;) {
947 if (r == root) {
948 if (base == b &&
949 U.compareAndSwapObject(a, j, t, null)) {
950 U.putOrderedInt(this, QBASE, b + 1);
951 if (spool != null && top - b > 1)
952 spool.signalWork(this);
953 t.doExec();
954 return true;
955 }
956 else
957 break; // restart
958 }
959 if ((r = r.completer) == null)
960 break outer; // not part of root computation
961 }
962 }
963 return false;
964 }
965
966 /**
967 * Executes a top-level task and any local tasks remaining
968 * after execution.
969 */
970 final void runTask(ForkJoinTask<?> t) {
971 if (t != null) {
972 (currentSteal = t).doExec();
973 currentSteal = null;
974 ++nsteals;
975 if (base - top < 0) { // process remaining local tasks
976 if (mode == 0)
977 popAndExecAll();
978 else
979 pollAndExecAll();
980 }
981 }
982 }
983
984 /**
985 * Executes a non-top-level (stolen) task.
986 */
987 final void runSubtask(ForkJoinTask<?> t) {
988 if (t != null) {
989 ForkJoinTask<?> ps = currentSteal;
990 (currentSteal = t).doExec();
991 currentSteal = ps;
992 }
993 }
994
995 /**
996 * Returns true if owned and not known to be blocked.
997 */
998 final boolean isApparentlyUnblocked() {
999 Thread wt; Thread.State s;
1000 return (eventCount >= 0 &&
1001 (wt = owner) != null &&
1002 (s = wt.getState()) != Thread.State.BLOCKED &&
1003 s != Thread.State.WAITING &&
1004 s != Thread.State.TIMED_WAITING);
1005 }
1006
1007 // Unsafe mechanics
1008 private static final sun.misc.Unsafe U;
1009 private static final long QBASE;
1010 private static final long QLOCK;
1011 private static final int ABASE;
1012 private static final int ASHIFT;
1013 static {
1014 try {
1015 U = sun.misc.Unsafe.getUnsafe();
1016 Class<?> k = WorkQueue.class;
1017 Class<?> ak = ForkJoinTask[].class;
1018 QBASE = U.objectFieldOffset
1019 (k.getDeclaredField("base"));
1020 QLOCK = U.objectFieldOffset
1021 (k.getDeclaredField("qlock"));
1022 ABASE = U.arrayBaseOffset(ak);
1023 int scale = U.arrayIndexScale(ak);
1024 if ((scale & (scale - 1)) != 0)
1025 throw new Error("data type scale not a power of two");
1026 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1027 } catch (Exception e) {
1028 throw new Error(e);
1029 }
1030 }
1031 }
1032
1033 // static fields (initialized in static initializer below)
1034
1035 /**
1036 * Creates a new ForkJoinWorkerThread. This factory is used unless
1037 * overridden in ForkJoinPool constructors.
1038 */
1039 public static final ForkJoinWorkerThreadFactory
1040 defaultForkJoinWorkerThreadFactory;
1041
1042 /**
1043 * Permission required for callers of methods that may start or
1044 * kill threads.
1045 */
1046 private static final RuntimePermission modifyThreadPermission;
1047
1048 /**
1049 * Common (static) pool. Non-null for public use unless a static
1050 * construction exception, but internal usages null-check on use
1051 * to paranoically avoid potential initialization circularities
1052 * as well as to simplify generated code.
1053 */
1054 static final ForkJoinPool common;
1055
1056 /**
1057 * Common pool parallelism. To allow simpler use and management
1058 * when common pool threads are disabled, we allow the underlying
1059 * common.config field to be zero, but in that case still report
1060 * parallelism as 1 to reflect resulting caller-runs mechanics.
1061 */
1062 static final int commonParallelism;
1063
1064 /**
1065 * Sequence number for creating workerNamePrefix.
1066 */
1067 private static int poolNumberSequence;
1068
1069 /**
1070 * Returns the next sequence number. We don't expect this to
1071 * ever contend, so use simple builtin sync.
1072 */
1073 private static final synchronized int nextPoolId() {
1074 return ++poolNumberSequence;
1075 }
1076
1077 // static constants
1078
1079 /**
1080 * Initial timeout value (in nanoseconds) for the thread
1081 * triggering quiescence to park waiting for new work. On timeout,
1082 * the thread will instead try to shrink the number of
1083 * workers. The value should be large enough to avoid overly
1084 * aggressive shrinkage during most transient stalls (long GCs
1085 * etc).
1086 */
1087 private static final long IDLE_TIMEOUT = 2000L * 1000L * 1000L; // 2sec
1088
1089 /**
1090 * Timeout value when there are more threads than parallelism level
1091 */
1092 private static final long FAST_IDLE_TIMEOUT = 200L * 1000L * 1000L;
1093
1094 /**
1095 * Tolerance for idle timeouts, to cope with timer undershoots
1096 */
1097 private static final long TIMEOUT_SLOP = 2000000L;
1098
1099 /**
1100 * The maximum stolen->joining link depth allowed in method
1101 * tryHelpStealer. Must be a power of two. Depths for legitimate
1102 * chains are unbounded, but we use a fixed constant to avoid
1103 * (otherwise unchecked) cycles and to bound staleness of
1104 * traversal parameters at the expense of sometimes blocking when
1105 * we could be helping.
1106 */
1107 private static final int MAX_HELP = 64;
1108
1109 /**
1110 * Increment for seed generators. See class ThreadLocal for
1111 * explanation.
1112 */
1113 private static final int SEED_INCREMENT = 0x61c88647;
1114
1115 /*
1116 * Bits and masks for control variables
1117 *
1118 * Field ctl is a long packed with:
1119 * AC: Number of active running workers minus target parallelism (16 bits)
1120 * TC: Number of total workers minus target parallelism (16 bits)
1121 * ST: true if pool is terminating (1 bit)
1122 * EC: the wait count of top waiting thread (15 bits)
1123 * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1124 *
1125 * When convenient, we can extract the upper 32 bits of counts and
1126 * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1127 * (int)ctl. The ec field is never accessed alone, but always
1128 * together with id and st. The offsets of counts by the target
1129 * parallelism and the positionings of fields makes it possible to
1130 * perform the most common checks via sign tests of fields: When
1131 * ac is negative, there are not enough active workers, when tc is
1132 * negative, there are not enough total workers, and when e is
1133 * negative, the pool is terminating. To deal with these possibly
1134 * negative fields, we use casts in and out of "short" and/or
1135 * signed shifts to maintain signedness.
1136 *
1137 * When a thread is queued (inactivated), its eventCount field is
1138 * set negative, which is the only way to tell if a worker is
1139 * prevented from executing tasks, even though it must continue to
1140 * scan for them to avoid queuing races. Note however that
1141 * eventCount updates lag releases so usage requires care.
1142 *
1143 * Field plock is an int packed with:
1144 * SHUTDOWN: true if shutdown is enabled (1 bit)
1145 * SEQ: a sequence lock, with PL_LOCK bit set if locked (30 bits)
1146 * SIGNAL: set when threads may be waiting on the lock (1 bit)
1147 *
1148 * The sequence number enables simple consistency checks:
1149 * Staleness of read-only operations on the workQueues array can
1150 * be checked by comparing plock before vs after the reads.
1151 */
1152
1153 // bit positions/shifts for fields
1154 private static final int AC_SHIFT = 48;
1155 private static final int TC_SHIFT = 32;
1156 private static final int ST_SHIFT = 31;
1157 private static final int EC_SHIFT = 16;
1158
1159 // bounds
1160 private static final int SMASK = 0xffff; // short bits
1161 private static final int MAX_CAP = 0x7fff; // max #workers - 1
1162 private static final int EVENMASK = 0xfffe; // even short bits
1163 private static final int SQMASK = 0x007e; // max 64 (even) slots
1164 private static final int SHORT_SIGN = 1 << 15;
1165 private static final int INT_SIGN = 1 << 31;
1166
1167 // masks
1168 private static final long STOP_BIT = 0x0001L << ST_SHIFT;
1169 private static final long AC_MASK = ((long)SMASK) << AC_SHIFT;
1170 private static final long TC_MASK = ((long)SMASK) << TC_SHIFT;
1171
1172 // units for incrementing and decrementing
1173 private static final long TC_UNIT = 1L << TC_SHIFT;
1174 private static final long AC_UNIT = 1L << AC_SHIFT;
1175
1176 // masks and units for dealing with u = (int)(ctl >>> 32)
1177 private static final int UAC_SHIFT = AC_SHIFT - 32;
1178 private static final int UTC_SHIFT = TC_SHIFT - 32;
1179 private static final int UAC_MASK = SMASK << UAC_SHIFT;
1180 private static final int UTC_MASK = SMASK << UTC_SHIFT;
1181 private static final int UAC_UNIT = 1 << UAC_SHIFT;
1182 private static final int UTC_UNIT = 1 << UTC_SHIFT;
1183
1184 // masks and units for dealing with e = (int)ctl
1185 private static final int E_MASK = 0x7fffffff; // no STOP_BIT
1186 private static final int E_SEQ = 1 << EC_SHIFT;
1187
1188 // plock bits
1189 private static final int SHUTDOWN = 1 << 31;
1190 private static final int PL_LOCK = 2;
1191 private static final int PL_SIGNAL = 1;
1192 private static final int PL_SPINS = 1 << 8;
1193
1194 // access mode for WorkQueue
1195 static final int LIFO_QUEUE = 0;
1196 static final int FIFO_QUEUE = 1;
1197 static final int SHARED_QUEUE = -1;
1198
1199 // Mininum number of scans before blocking in scan() and related methods
1200 private static final int MIN_RESCANS = 0x0fff;
1201
1202 // Instance fields
1203 volatile long stealCount; // collects worker counts
1204 volatile long ctl; // main pool control
1205 volatile int plock; // shutdown status and seqLock
1206 volatile int indexSeed; // worker/submitter index seed
1207 final int config; // mode and parallelism level
1208 WorkQueue[] workQueues; // main registry
1209 final ForkJoinWorkerThreadFactory factory;
1210 final UncaughtExceptionHandler ueh; // per-worker UEH
1211 final String workerNamePrefix; // to create worker name string
1212
1213 /**
1214 * Acquires the plock lock to protect worker array and related
1215 * updates. This method is called only if an initial CAS on plock
1216 * fails. This acts as a spinlock for normal cases, but falls back
1217 * to builtin monitor to block when (rarely) needed. This would be
1218 * a terrible idea for a highly contended lock, but works fine as
1219 * a more conservative alternative to a pure spinlock.
1220 */
1221 private int acquirePlock() {
1222 int spins = PL_SPINS, ps, nps;
1223 for (;;) {
1224 if (((ps = plock) & PL_LOCK) == 0 &&
1225 U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1226 return nps;
1227 else if (spins >= 0) {
1228 if (ThreadLocalRandom.nextSecondarySeed() >= 0)
1229 --spins;
1230 }
1231 else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1232 synchronized (this) {
1233 if ((plock & PL_SIGNAL) != 0) {
1234 try {
1235 wait();
1236 } catch (InterruptedException ie) {
1237 try {
1238 Thread.currentThread().interrupt();
1239 } catch (SecurityException ignore) {
1240 }
1241 }
1242 }
1243 else
1244 notifyAll();
1245 }
1246 }
1247 }
1248 }
1249
1250 /**
1251 * Unlocks and signals any thread waiting for plock. Called only
1252 * when CAS of seq value for unlock fails.
1253 */
1254 private void releasePlock(int ps) {
1255 plock = ps;
1256 synchronized (this) { notifyAll(); }
1257 }
1258
1259 /**
1260 * Tries to create and start one worker if fewer than target
1261 * parallelism level exist. Adjusts counts etc on failure.
1262 */
1263 private void tryAddWorker() {
1264 long c; int u;
1265 while ((u = (int)((c = ctl) >>> 32)) < 0 &&
1266 (u & SHORT_SIGN) != 0 && (int)c == 0) {
1267 long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1268 ((u + UAC_UNIT) & UAC_MASK)) << 32;
1269 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1270 ForkJoinWorkerThreadFactory fac;
1271 Throwable ex = null;
1272 ForkJoinWorkerThread wt = null;
1273 try {
1274 if ((fac = factory) != null &&
1275 (wt = fac.newThread(this)) != null) {
1276 wt.start();
1277 break;
1278 }
1279 } catch (Throwable e) {
1280 ex = e;
1281 }
1282 deregisterWorker(wt, ex);
1283 break;
1284 }
1285 }
1286 }
1287
1288 // Registering and deregistering workers
1289
1290 /**
1291 * Callback from ForkJoinWorkerThread to establish and record its
1292 * WorkQueue. To avoid scanning bias due to packing entries in
1293 * front of the workQueues array, we treat the array as a simple
1294 * power-of-two hash table using per-thread seed as hash,
1295 * expanding as needed.
1296 *
1297 * @param wt the worker thread
1298 * @return the worker's queue
1299 */
1300 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1301 UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps;
1302 wt.setDaemon(true);
1303 if ((handler = ueh) != null)
1304 wt.setUncaughtExceptionHandler(handler);
1305 do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
1306 s += SEED_INCREMENT) ||
1307 s == 0); // skip 0
1308 WorkQueue w = new WorkQueue(this, wt, config >>> 16, s);
1309 if (((ps = plock) & PL_LOCK) != 0 ||
1310 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1311 ps = acquirePlock();
1312 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1313 try {
1314 if ((ws = workQueues) != null) { // skip if shutting down
1315 int n = ws.length, m = n - 1;
1316 int r = (s << 1) | 1; // use odd-numbered indices
1317 if (ws[r &= m] != null) { // collision
1318 int probes = 0; // step by approx half size
1319 int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1320 while (ws[r = (r + step) & m] != null) {
1321 if (++probes >= n) {
1322 workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1323 m = n - 1;
1324 probes = 0;
1325 }
1326 }
1327 }
1328 w.eventCount = w.poolIndex = r; // volatile write orders
1329 ws[r] = w;
1330 }
1331 } finally {
1332 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1333 releasePlock(nps);
1334 }
1335 wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex)));
1336 return w;
1337 }
1338
1339 /**
1340 * Final callback from terminating worker, as well as upon failure
1341 * to construct or start a worker. Removes record of worker from
1342 * array, and adjusts counts. If pool is shutting down, tries to
1343 * complete termination.
1344 *
1345 * @param wt the worker thread, or null if construction failed
1346 * @param ex the exception causing failure, or null if none
1347 */
1348 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1349 WorkQueue w = null;
1350 if (wt != null && (w = wt.workQueue) != null) {
1351 int ps;
1352 w.qlock = -1; // ensure set
1353 long ns = w.nsteals, sc; // collect steal count
1354 do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1355 sc = stealCount, sc + ns));
1356 if (((ps = plock) & PL_LOCK) != 0 ||
1357 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1358 ps = acquirePlock();
1359 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1360 try {
1361 int idx = w.poolIndex;
1362 WorkQueue[] ws = workQueues;
1363 if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1364 ws[idx] = null;
1365 } finally {
1366 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1367 releasePlock(nps);
1368 }
1369 }
1370
1371 long c; // adjust ctl counts
1372 do {} while (!U.compareAndSwapLong
1373 (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1374 ((c - TC_UNIT) & TC_MASK) |
1375 (c & ~(AC_MASK|TC_MASK)))));
1376
1377 if (!tryTerminate(false, false) && w != null && w.array != null) {
1378 w.cancelAll(); // cancel remaining tasks
1379 WorkQueue[] ws; WorkQueue v; Thread p; int u, i, e;
1380 while ((u = (int)((c = ctl) >>> 32)) < 0 && (e = (int)c) >= 0) {
1381 if (e > 0) { // activate or create replacement
1382 if ((ws = workQueues) == null ||
1383 (i = e & SMASK) >= ws.length ||
1384 (v = ws[i]) == null)
1385 break;
1386 long nc = (((long)(v.nextWait & E_MASK)) |
1387 ((long)(u + UAC_UNIT) << 32));
1388 if (v.eventCount != (e | INT_SIGN))
1389 break;
1390 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1391 v.eventCount = (e + E_SEQ) & E_MASK;
1392 if ((p = v.parker) != null)
1393 U.unpark(p);
1394 break;
1395 }
1396 }
1397 else {
1398 if ((short)u < 0)
1399 tryAddWorker();
1400 break;
1401 }
1402 }
1403 }
1404 if (ex == null) // help clean refs on way out
1405 ForkJoinTask.helpExpungeStaleExceptions();
1406 else // rethrow
1407 ForkJoinTask.rethrow(ex);
1408 }
1409
1410 // Submissions
1411
1412 /**
1413 * Unless shutting down, adds the given task to a submission queue
1414 * at submitter's current queue index (modulo submission
1415 * range). Only the most common path is directly handled in this
1416 * method. All others are relayed to fullExternalPush.
1417 *
1418 * @param task the task. Caller must ensure non-null.
1419 */
1420 final void externalPush(ForkJoinTask<?> task) {
1421 WorkQueue[] ws; WorkQueue q; int z, m; ForkJoinTask<?>[] a;
1422 if ((z = ThreadLocalRandom.getProbe()) != 0 && plock > 0 &&
1423 (ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
1424 (q = ws[m & z & SQMASK]) != null &&
1425 U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1426 int s, am, n;
1427 if ((a = q.array) != null &&
1428 (am = a.length - 1) > (n = (s = q.top) - q.base)) {
1429 int j = ((am & s) << ASHIFT) + ABASE;
1430 U.putOrderedObject(a, j, task);
1431 q.top = s + 1; // push on to deque
1432 q.qlock = 0;
1433 if (n <= 1)
1434 signalWork(q);
1435 return;
1436 }
1437 q.qlock = 0;
1438 }
1439 fullExternalPush(task);
1440 }
1441
1442 /**
1443 * Full version of externalPush. This method is called, among
1444 * other times, upon the first submission of the first task to the
1445 * pool, so must perform secondary initialization. It also
1446 * detects first submission by an external thread by looking up
1447 * its ThreadLocal, and creates a new shared queue if the one at
1448 * index if empty or contended. The plock lock body must be
1449 * exception-free (so no try/finally) so we optimistically
1450 * allocate new queues outside the lock and throw them away if
1451 * (very rarely) not needed.
1452 *
1453 * Secondary initialization occurs when plock is zero, to create
1454 * workQueue array and set plock to a valid value. This lock body
1455 * must also be exception-free. Because the plock seq value can
1456 * eventually wrap around zero, this method harmlessly fails to
1457 * reinitialize if workQueues exists, while still advancing plock.
1458 */
1459 private void fullExternalPush(ForkJoinTask<?> task) {
1460 int r;
1461 if ((r = ThreadLocalRandom.getProbe()) == 0) {
1462 ThreadLocalRandom.localInit();
1463 r = ThreadLocalRandom.getProbe();
1464 }
1465 for (;;) {
1466 WorkQueue[] ws; WorkQueue q; int ps, m, k;
1467 boolean move = false;
1468 if ((ps = plock) < 0)
1469 throw new RejectedExecutionException();
1470 else if (ps == 0 || (ws = workQueues) == null ||
1471 (m = ws.length - 1) < 0) { // initialize workQueues
1472 int p = config & SMASK; // find power of two table size
1473 int n = (p > 1) ? p - 1 : 1; // ensure at least 2 slots
1474 n |= n >>> 1; n |= n >>> 2; n |= n >>> 4;
1475 n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1;
1476 WorkQueue[] nws = ((ws = workQueues) == null || ws.length == 0 ?
1477 new WorkQueue[n] : null);
1478 if (((ps = plock) & PL_LOCK) != 0 ||
1479 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1480 ps = acquirePlock();
1481 if (((ws = workQueues) == null || ws.length == 0) && nws != null)
1482 workQueues = nws;
1483 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1484 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1485 releasePlock(nps);
1486 }
1487 else if ((q = ws[k = r & m & SQMASK]) != null) {
1488 if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
1489 ForkJoinTask<?>[] a = q.array;
1490 int s = q.top;
1491 boolean submitted = false;
1492 try { // locked version of push
1493 if ((a != null && a.length > s + 1 - q.base) ||
1494 (a = q.growArray()) != null) { // must presize
1495 long j = (((a.length - 1) & s) << ASHIFT) + ABASE;
1496 U.putOrderedObject(a, j, task);
1497 q.top = s + 1;
1498 submitted = true;
1499 }
1500 } finally {
1501 q.qlock = 0; // unlock
1502 }
1503 if (submitted) {
1504 signalWork(q);
1505 return;
1506 }
1507 }
1508 move = true; // move on failure
1509 }
1510 else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
1511 q = new WorkQueue(this, null, SHARED_QUEUE, r);
1512 if (((ps = plock) & PL_LOCK) != 0 ||
1513 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1514 ps = acquirePlock();
1515 if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
1516 ws[k] = q;
1517 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1518 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1519 releasePlock(nps);
1520 }
1521 else
1522 move = true; // move if busy
1523 if (move)
1524 r = ThreadLocalRandom.advanceProbe(r);
1525 }
1526 }
1527
1528 // Maintaining ctl counts
1529
1530 /**
1531 * Increments active count; mainly called upon return from blocking.
1532 */
1533 final void incrementActiveCount() {
1534 long c;
1535 do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1536 }
1537
1538 /**
1539 * Tries to create or activate a worker if too few are active.
1540 *
1541 * @param q if non-null, the queue holding tasks to be processed
1542 */
1543 final void signalWork(WorkQueue q) {
1544 for (;;) {
1545 long c; int e, u, i; WorkQueue[] ws; WorkQueue w; Thread p;
1546 if ((u = (int)((c = ctl) >>> 32)) >= 0)
1547 break;
1548 if ((e = (int)c) <= 0) {
1549 if ((short)u < 0)
1550 tryAddWorker();
1551 break;
1552 }
1553 if ((ws = workQueues) == null || ws.length <= (i = e & SMASK) ||
1554 (w = ws[i]) == null)
1555 break;
1556 int wec = w.eventCount;
1557 long nc = (((long)(w.nextWait & E_MASK)) |
1558 ((long)(u + UAC_UNIT) << 32));
1559 if (wec == (e | INT_SIGN) &&
1560 U.compareAndSwapLong(this, CTL, c, nc)) {
1561 w.eventCount = (e + E_SEQ) & E_MASK;
1562 if ((p = w.parker) != null)
1563 U.unpark(p);
1564 break;
1565 }
1566 if (q == null || q.base - q.top >= 0) // quit if empty
1567 break;
1568 }
1569 }
1570
1571 // Scanning for tasks
1572
1573 /**
1574 * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1575 */
1576 final void runWorker(WorkQueue w) {
1577 w.growArray(); // allocate queue
1578 do { w.runTask(scan(w)); } while (w.qlock >= 0);
1579 }
1580
1581 /**
1582 * Scans for and, if found, returns one task, else possibly
1583 * inactivates the worker. This method operates on single reads of
1584 * volatile state and is designed to be re-invoked continuously,
1585 * in part because it returns upon detecting inconsistencies,
1586 * contention, or state changes that indicate possible success on
1587 * re-invocation.
1588 *
1589 * The scan searches for tasks across queues (starting at a random
1590 * index, and relying on registerWorker to irregularly scatter
1591 * them within array to avoid bias), checking each at least twice.
1592 * The scan terminates upon either finding a non-empty queue, or
1593 * completing the sweep. If the worker is not inactivated, it
1594 * takes and returns a task from this queue. Otherwise, if not
1595 * activated, it tries to activate itself or some other worker by
1596 * signalling. Also indicates retry if the worker array may have
1597 * changed during an empty scan. On failure to find a task, if
1598 * not already enqueued, tries to inactivate and enqueue the
1599 * worker on wait queue and then rescan. Otherwise relays to one
1600 * of the actions in onEmptyScan.
1601 *
1602 * @param w the worker (via its WorkQueue)
1603 * @return a task or null if none found
1604 */
1605 private final ForkJoinTask<?> scan(WorkQueue w) {
1606 WorkQueue[] ws; int m;
1607 int ps = plock; // read plock before ws
1608 if (w != null && (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1609 int ec = w.eventCount; // ec negative if inactive
1610 int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1611 for (int j = (m << 1) | (ec < 0 ? MIN_RESCANS : 1);;) {
1612 WorkQueue q; int b, s; ForkJoinTask<?>[] a;
1613 if ((q = ws[(r - j) & m]) != null && // probably nonempty
1614 (b = q.base) - (s = q.top) < 0 && (a = q.array) != null) {
1615 long i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1616 ForkJoinTask<?> t =
1617 (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1618 if ((ec >= 0 || (ec = w.eventCount) >= 0) &&
1619 q.base == b && t != null &&
1620 U.compareAndSwapObject(a, i, t, null)) {
1621 U.putOrderedInt(q, QBASE, b + 1);
1622 if (q.top - b > 1)
1623 signalWork(q);
1624 return t;
1625 }
1626 if (--j < m) { // restart to revisit
1627 if (ec < 0) // help activate
1628 signalWork(q);
1629 break;
1630 }
1631 }
1632 else if (--j < 0) {
1633 long c = ctl;
1634 long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1635 int e = (int)c;
1636 if (plock == ps) {
1637 if (e >= 0 && ec >= 0) {
1638 w.nextWait = e; // try to enqueue/inactivate
1639 w.eventCount = ec | INT_SIGN;
1640 if (!U.compareAndSwapLong(this, CTL, c, nc))
1641 w.eventCount = ec; // unmark on CAS failure
1642 }
1643 else
1644 onEmptyScan(w, c);
1645 }
1646 break;
1647 }
1648 }
1649 }
1650 return null;
1651 }
1652
1653 /**
1654 * A continuation of scan(), possibly blocking or terminating
1655 * worker w. ALso, if inactivating w has caused the pool to become
1656 * quiescent, checks for pool termination, and, so long as this is
1657 * not the only worker, waits for event for up to a given
1658 * duration. On timeout, if ctl has not changed, terminates the
1659 * worker, which will in turn wake up another worker to possibly
1660 * repeat this process.
1661 *
1662 * @param w the calling worker
1663 * @param c the ctl value triggering possible quiescence
1664 */
1665 private final void onEmptyScan(WorkQueue w, long c) {
1666 int ec, ns, e, d;
1667 if (w != null && ctl == c) {
1668 if ((e = (int)c) < 0)
1669 w.qlock = -1; // pool is terminating
1670 else if ((ec = w.eventCount) < 0 &&
1671 ((d = (int)(c >> AC_SHIFT) + (config & SMASK)) != 0 ||
1672 !tryTerminate(false, false))) {
1673 long pc = 0L, parkTime = 0L, deadline = 0L;
1674 if (d == 0 && ec == (e | INT_SIGN) &&
1675 (pc = (((long)(w.nextWait & E_MASK)) |
1676 ((long)(((int)(c >>> 32)) + UAC_UNIT) << 32))) != 0) {
1677 int dc = -(short)(c >>> TC_SHIFT);
1678 parkTime = (dc < 0 ? FAST_IDLE_TIMEOUT:
1679 (dc + 1) * IDLE_TIMEOUT);
1680 deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
1681 }
1682 if ((ns = w.nsteals) != 0) {
1683 long sc = stealCount;
1684 if (U.compareAndSwapLong(this, STEALCOUNT, sc, sc + ns))
1685 w.nsteals = 0; // collect and rescan
1686 }
1687 else if (w.eventCount < 0 && ctl == c) {
1688 Thread wt = Thread.currentThread();
1689 Thread.interrupted(); // clear status
1690 U.putObject(wt, PARKBLOCKER, this);
1691 w.parker = wt; // emulate LockSupport.park
1692 if (w.eventCount < 0 && ctl == c) // recheck
1693 U.park(false, parkTime); // block
1694 w.parker = null;
1695 U.putObject(wt, PARKBLOCKER, null);
1696 if (parkTime != 0L && w.eventCount < 0 && ctl == c &&
1697 deadline - System.nanoTime() <= 0L &&
1698 U.compareAndSwapLong(this, CTL, c, pc)) {
1699 w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1700 w.qlock = -1; // shrink
1701 }
1702 }
1703 }
1704 }
1705 }
1706
1707 /**
1708 * Tries to locate and execute tasks for a stealer of the given
1709 * task, or in turn one of its stealers, Traces currentSteal ->
1710 * currentJoin links looking for a thread working on a descendant
1711 * of the given task and with a non-empty queue to steal back and
1712 * execute tasks from. The first call to this method upon a
1713 * waiting join will often entail scanning/search, (which is OK
1714 * because the joiner has nothing better to do), but this method
1715 * leaves hints in workers to speed up subsequent calls. The
1716 * implementation is very branchy to cope with potential
1717 * inconsistencies or loops encountering chains that are stale,
1718 * unknown, or so long that they are likely cyclic.
1719 *
1720 * @param joiner the joining worker
1721 * @param task the task to join
1722 * @return 0 if no progress can be made, negative if task
1723 * known complete, else positive
1724 */
1725 private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1726 int stat = 0, steps = 0; // bound to avoid cycles
1727 if (joiner != null && task != null) { // hoist null checks
1728 restart: for (;;) {
1729 ForkJoinTask<?> subtask = task; // current target
1730 for (WorkQueue j = joiner, v;;) { // v is stealer of subtask
1731 WorkQueue[] ws; int m, s, h;
1732 if ((s = task.status) < 0) {
1733 stat = s;
1734 break restart;
1735 }
1736 if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1737 break restart; // shutting down
1738 if ((v = ws[h = (j.hint | 1) & m]) == null ||
1739 v.currentSteal != subtask) {
1740 for (int origin = h;;) { // find stealer
1741 if (((h = (h + 2) & m) & 15) == 1 &&
1742 (subtask.status < 0 || j.currentJoin != subtask))
1743 continue restart; // occasional staleness check
1744 if ((v = ws[h]) != null &&
1745 v.currentSteal == subtask) {
1746 j.hint = h; // save hint
1747 break;
1748 }
1749 if (h == origin)
1750 break restart; // cannot find stealer
1751 }
1752 }
1753 for (;;) { // help stealer or descend to its stealer
1754 ForkJoinTask[] a; int b;
1755 if (subtask.status < 0) // surround probes with
1756 continue restart; // consistency checks
1757 if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1758 int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1759 ForkJoinTask<?> t =
1760 (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1761 if (subtask.status < 0 || j.currentJoin != subtask ||
1762 v.currentSteal != subtask)
1763 continue restart; // stale
1764 stat = 1; // apparent progress
1765 if (t != null && v.base == b &&
1766 U.compareAndSwapObject(a, i, t, null)) {
1767 U.putOrderedInt(v, QBASE, b + 1);
1768 if (v.top - b > 1)
1769 signalWork(v);
1770 joiner.runSubtask(t);
1771 }
1772 else if (v.base == b && ++steps == MAX_HELP)
1773 break restart; // v apparently stalled
1774 }
1775 else { // empty -- try to descend
1776 ForkJoinTask<?> next = v.currentJoin;
1777 if (subtask.status < 0 || j.currentJoin != subtask ||
1778 v.currentSteal != subtask)
1779 continue restart; // stale
1780 else if (next == null || ++steps == MAX_HELP)
1781 break restart; // dead-end or maybe cyclic
1782 else {
1783 subtask = next;
1784 j = v;
1785 break;
1786 }
1787 }
1788 }
1789 }
1790 }
1791 }
1792 return stat;
1793 }
1794
1795 /**
1796 * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1797 * and run tasks within the target's computation.
1798 *
1799 * @param task the task to join
1800 */
1801 private int helpComplete(ForkJoinTask<?> task, ForkJoinPool spool) {
1802 WorkQueue[] ws; int m;
1803 if (task != null && (ws = workQueues) != null &&
1804 (m = ws.length - 1) >= 0) {
1805 for (int j = 1, k = m;;) {
1806 WorkQueue q; int s;
1807 if ((s = task.status) < 0)
1808 return s;
1809 if ((q = ws[j & m]) != null && q.pollAndExecCC(task, spool))
1810 k = m;
1811 else if (--k >= 0)
1812 j += 2;
1813 else
1814 break;
1815 }
1816 }
1817 return 0;
1818 }
1819
1820 /**
1821 * Tries to decrement active count (sometimes implicitly) and
1822 * possibly release or create a compensating worker in preparation
1823 * for blocking. Fails on contention or termination. Otherwise,
1824 * adds a new thread if no idle workers are available and pool
1825 * may become starved.
1826 */
1827 final boolean tryCompensate() {
1828 int pc = config & SMASK, e, i, tc; long c;
1829 WorkQueue[] ws; WorkQueue w; Thread p;
1830 if ((ws = workQueues) != null && (e = (int)(c = ctl)) >= 0) {
1831 if (e != 0 && (i = e & SMASK) < ws.length &&
1832 (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1833 long nc = ((long)(w.nextWait & E_MASK) |
1834 (c & (AC_MASK|TC_MASK)));
1835 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1836 w.eventCount = (e + E_SEQ) & E_MASK;
1837 if ((p = w.parker) != null)
1838 U.unpark(p);
1839 return true; // replace with idle worker
1840 }
1841 }
1842 else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
1843 (int)(c >> AC_SHIFT) + pc > 1) {
1844 long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1845 if (U.compareAndSwapLong(this, CTL, c, nc))
1846 return true; // no compensation
1847 }
1848 else if (tc + pc < MAX_CAP) {
1849 long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1850 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1851 ForkJoinWorkerThreadFactory fac;
1852 Throwable ex = null;
1853 ForkJoinWorkerThread wt = null;
1854 try {
1855 if ((fac = factory) != null &&
1856 (wt = fac.newThread(this)) != null) {
1857 wt.start();
1858 return true;
1859 }
1860 } catch (Throwable rex) {
1861 ex = rex;
1862 }
1863 deregisterWorker(wt, ex); // clean up and return false
1864 }
1865 }
1866 }
1867 return false;
1868 }
1869
1870 /**
1871 * Helps and/or blocks until the given task is done.
1872 *
1873 * @param joiner the joining worker
1874 * @param task the task
1875 * @return task status on exit
1876 */
1877 final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1878 int s = 0;
1879 if (joiner != null && task != null && (s = task.status) >= 0) {
1880 ForkJoinTask<?> prevJoin = joiner.currentJoin;
1881 joiner.currentJoin = task;
1882 do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
1883 joiner.tryRemoveAndExec(task)); // process local tasks
1884 if (s >= 0 && (s = task.status) >= 0 &&
1885 (task instanceof CountedCompleter))
1886 s = helpComplete(task, this);
1887 while (s >= 0 && (s = task.status) >= 0) {
1888 if ((!joiner.isEmpty() || // try helping
1889 (s = tryHelpStealer(joiner, task)) == 0) &&
1890 (s = task.status) >= 0) {
1891 if (tryCompensate()) {
1892 if (task.trySetSignal() && (s = task.status) >= 0) {
1893 synchronized (task) {
1894 if (task.status >= 0) {
1895 try { // see ForkJoinTask
1896 task.wait(); // for explanation
1897 } catch (InterruptedException ie) {
1898 }
1899 }
1900 else
1901 task.notifyAll();
1902 }
1903 }
1904 // reactivate
1905 long c;
1906 do {} while (!U.compareAndSwapLong
1907 (this, CTL, c = ctl, c + AC_UNIT));
1908 }
1909 }
1910 }
1911 joiner.currentJoin = prevJoin;
1912 }
1913 return s;
1914 }
1915
1916 /**
1917 * Stripped-down variant of awaitJoin used by timed joins. Tries
1918 * to help join only while there is continuous progress. (Caller
1919 * will then enter a timed wait.)
1920 *
1921 * @param joiner the joining worker
1922 * @param task the task
1923 */
1924 final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
1925 int s;
1926 if (joiner != null && task != null && (s = task.status) >= 0) {
1927 ForkJoinTask<?> prevJoin = joiner.currentJoin;
1928 joiner.currentJoin = task;
1929 do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
1930 joiner.tryRemoveAndExec(task));
1931 if (s >= 0 && (s = task.status) >= 0 &&
1932 (task instanceof CountedCompleter))
1933 s = helpComplete(task, this);
1934 if (s >= 0 && joiner.isEmpty()) {
1935 do {} while (task.status >= 0 &&
1936 tryHelpStealer(joiner, task) > 0);
1937 }
1938 joiner.currentJoin = prevJoin;
1939 }
1940 }
1941
1942 /**
1943 * Returns a (probably) non-empty steal queue, if one is found
1944 * during a scan, else null. This method must be retried by
1945 * caller if, by the time it tries to use the queue, it is empty.
1946 * @param r a (random) seed for scanning
1947 */
1948 private WorkQueue findNonEmptyStealQueue(int r) {
1949 for (;;) {
1950 int ps = plock, m; WorkQueue[] ws; WorkQueue q;
1951 if ((ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1952 for (int j = (m + 1) << 2; j >= 0; --j) {
1953 if ((q = ws[(((r + j) << 1) | 1) & m]) != null &&
1954 q.base - q.top < 0)
1955 return q;
1956 }
1957 }
1958 if (plock == ps)
1959 return null;
1960 }
1961 }
1962
1963 /**
1964 * Runs tasks until {@code isQuiescent()}. We piggyback on
1965 * active count ctl maintenance, but rather than blocking
1966 * when tasks cannot be found, we rescan until all others cannot
1967 * find tasks either.
1968 */
1969 final void helpQuiescePool(WorkQueue w) {
1970 for (boolean active = true;;) {
1971 long c; WorkQueue q; ForkJoinTask<?> t; int b;
1972 while ((t = w.nextLocalTask()) != null)
1973 t.doExec();
1974 if ((q = findNonEmptyStealQueue(w.nextSeed())) != null) {
1975 if (!active) { // re-establish active count
1976 active = true;
1977 do {} while (!U.compareAndSwapLong
1978 (this, CTL, c = ctl, c + AC_UNIT));
1979 }
1980 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
1981 w.runSubtask(t);
1982 }
1983 else if (active) { // decrement active count without queuing
1984 long nc = (c = ctl) - AC_UNIT;
1985 if ((int)(nc >> AC_SHIFT) + (config & SMASK) == 0)
1986 return; // bypass decrement-then-increment
1987 if (U.compareAndSwapLong(this, CTL, c, nc))
1988 active = false;
1989 }
1990 else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) == 0 &&
1991 U.compareAndSwapLong(this, CTL, c, c + AC_UNIT))
1992 return;
1993 }
1994 }
1995
1996 /**
1997 * Gets and removes a local or stolen task for the given worker.
1998 *
1999 * @return a task, if available
2000 */
2001 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2002 for (ForkJoinTask<?> t;;) {
2003 WorkQueue q; int b;
2004 if ((t = w.nextLocalTask()) != null)
2005 return t;
2006 if ((q = findNonEmptyStealQueue(w.nextSeed())) == null)
2007 return null;
2008 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2009 return t;
2010 }
2011 }
2012
2013 /**
2014 * Returns a cheap heuristic guide for task partitioning when
2015 * programmers, frameworks, tools, or languages have little or no
2016 * idea about task granularity. In essence by offering this
2017 * method, we ask users only about tradeoffs in overhead vs
2018 * expected throughput and its variance, rather than how finely to
2019 * partition tasks.
2020 *
2021 * In a steady state strict (tree-structured) computation, each
2022 * thread makes available for stealing enough tasks for other
2023 * threads to remain active. Inductively, if all threads play by
2024 * the same rules, each thread should make available only a
2025 * constant number of tasks.
2026 *
2027 * The minimum useful constant is just 1. But using a value of 1
2028 * would require immediate replenishment upon each steal to
2029 * maintain enough tasks, which is infeasible. Further,
2030 * partitionings/granularities of offered tasks should minimize
2031 * steal rates, which in general means that threads nearer the top
2032 * of computation tree should generate more than those nearer the
2033 * bottom. In perfect steady state, each thread is at
2034 * approximately the same level of computation tree. However,
2035 * producing extra tasks amortizes the uncertainty of progress and
2036 * diffusion assumptions.
2037 *
2038 * So, users will want to use values larger (but not much larger)
2039 * than 1 to both smooth over transient shortages and hedge
2040 * against uneven progress; as traded off against the cost of
2041 * extra task overhead. We leave the user to pick a threshold
2042 * value to compare with the results of this call to guide
2043 * decisions, but recommend values such as 3.
2044 *
2045 * When all threads are active, it is on average OK to estimate
2046 * surplus strictly locally. In steady-state, if one thread is
2047 * maintaining say 2 surplus tasks, then so are others. So we can
2048 * just use estimated queue length. However, this strategy alone
2049 * leads to serious mis-estimates in some non-steady-state
2050 * conditions (ramp-up, ramp-down, other stalls). We can detect
2051 * many of these by further considering the number of "idle"
2052 * threads, that are known to have zero queued tasks, so
2053 * compensate by a factor of (#idle/#active) threads.
2054 *
2055 * Note: The approximation of #busy workers as #active workers is
2056 * not very good under current signalling scheme, and should be
2057 * improved.
2058 */
2059 static int getSurplusQueuedTaskCount() {
2060 Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2061 if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2062 int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2063 int n = (q = wt.workQueue).top - q.base;
2064 int a = (int)(pool.ctl >> AC_SHIFT) + p;
2065 return n - (a > (p >>>= 1) ? 0 :
2066 a > (p >>>= 1) ? 1 :
2067 a > (p >>>= 1) ? 2 :
2068 a > (p >>>= 1) ? 4 :
2069 8);
2070 }
2071 return 0;
2072 }
2073
2074 // Termination
2075
2076 /**
2077 * Possibly initiates and/or completes termination. The caller
2078 * triggering termination runs three passes through workQueues:
2079 * (0) Setting termination status, followed by wakeups of queued
2080 * workers; (1) cancelling all tasks; (2) interrupting lagging
2081 * threads (likely in external tasks, but possibly also blocked in
2082 * joins). Each pass repeats previous steps because of potential
2083 * lagging thread creation.
2084 *
2085 * @param now if true, unconditionally terminate, else only
2086 * if no work and no active workers
2087 * @param enable if true, enable shutdown when next possible
2088 * @return true if now terminating or terminated
2089 */
2090 private boolean tryTerminate(boolean now, boolean enable) {
2091 int ps;
2092 if (this == common) // cannot shut down
2093 return false;
2094 if ((ps = plock) >= 0) { // enable by setting plock
2095 if (!enable)
2096 return false;
2097 if ((ps & PL_LOCK) != 0 ||
2098 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2099 ps = acquirePlock();
2100 int nps = ((ps + PL_LOCK) & ~SHUTDOWN) | SHUTDOWN;
2101 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2102 releasePlock(nps);
2103 }
2104 for (long c;;) {
2105 if (((c = ctl) & STOP_BIT) != 0) { // already terminating
2106 if ((short)(c >>> TC_SHIFT) == -(config & SMASK)) {
2107 synchronized (this) {
2108 notifyAll(); // signal when 0 workers
2109 }
2110 }
2111 return true;
2112 }
2113 if (!now) { // check if idle & no tasks
2114 WorkQueue[] ws; WorkQueue w;
2115 if ((int)(c >> AC_SHIFT) != -(config & SMASK))
2116 return false;
2117 if ((ws = workQueues) != null) {
2118 for (int i = 0; i < ws.length; ++i) {
2119 if ((w = ws[i]) != null) {
2120 if (!w.isEmpty()) { // signal unprocessed tasks
2121 signalWork(w);
2122 return false;
2123 }
2124 if ((i & 1) != 0 && w.eventCount >= 0)
2125 return false; // unqueued inactive worker
2126 }
2127 }
2128 }
2129 }
2130 if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2131 for (int pass = 0; pass < 3; ++pass) {
2132 WorkQueue[] ws; WorkQueue w; Thread wt;
2133 if ((ws = workQueues) != null) {
2134 int n = ws.length;
2135 for (int i = 0; i < n; ++i) {
2136 if ((w = ws[i]) != null) {
2137 w.qlock = -1;
2138 if (pass > 0) {
2139 w.cancelAll();
2140 if (pass > 1 && (wt = w.owner) != null) {
2141 if (!wt.isInterrupted()) {
2142 try {
2143 wt.interrupt();
2144 } catch (Throwable ignore) {
2145 }
2146 }
2147 U.unpark(wt);
2148 }
2149 }
2150 }
2151 }
2152 // Wake up workers parked on event queue
2153 int i, e; long cc; Thread p;
2154 while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2155 (i = e & SMASK) < n && i >= 0 &&
2156 (w = ws[i]) != null) {
2157 long nc = ((long)(w.nextWait & E_MASK) |
2158 ((cc + AC_UNIT) & AC_MASK) |
2159 (cc & (TC_MASK|STOP_BIT)));
2160 if (w.eventCount == (e | INT_SIGN) &&
2161 U.compareAndSwapLong(this, CTL, cc, nc)) {
2162 w.eventCount = (e + E_SEQ) & E_MASK;
2163 w.qlock = -1;
2164 if ((p = w.parker) != null)
2165 U.unpark(p);
2166 }
2167 }
2168 }
2169 }
2170 }
2171 }
2172 }
2173
2174 // external operations on common pool
2175
2176 /**
2177 * Returns common pool queue for a thread that has submitted at
2178 * least one task.
2179 */
2180 static WorkQueue commonSubmitterQueue() {
2181 ForkJoinPool p; WorkQueue[] ws; int m, z;
2182 return ((z = ThreadLocalRandom.getProbe()) != 0 &&
2183 (p = common) != null &&
2184 (ws = p.workQueues) != null &&
2185 (m = ws.length - 1) >= 0) ?
2186 ws[m & z & SQMASK] : null;
2187 }
2188
2189 /**
2190 * Tries to pop the given task from submitter's queue in common pool.
2191 */
2192 static boolean tryExternalUnpush(ForkJoinTask<?> t) {
2193 ForkJoinPool p; WorkQueue[] ws; WorkQueue q;
2194 ForkJoinTask<?>[] a; int m, s, z;
2195 if (t != null &&
2196 (z = ThreadLocalRandom.getProbe()) != 0 &&
2197 (p = common) != null &&
2198 (ws = p.workQueues) != null &&
2199 (m = ws.length - 1) >= 0 &&
2200 (q = ws[m & z & SQMASK]) != null &&
2201 (s = q.top) != q.base &&
2202 (a = q.array) != null) {
2203 long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
2204 if (U.getObject(a, j) == t &&
2205 U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2206 if (q.array == a && q.top == s && // recheck
2207 U.compareAndSwapObject(a, j, t, null)) {
2208 q.top = s - 1;
2209 q.qlock = 0;
2210 return true;
2211 }
2212 q.qlock = 0;
2213 }
2214 }
2215 return false;
2216 }
2217
2218 /**
2219 * Tries to pop and run local tasks within the same computation
2220 * as the given root. On failure, tries to help complete from
2221 * other queues via helpComplete.
2222 */
2223 private void externalHelpComplete(WorkQueue q, ForkJoinTask<?> root) {
2224 ForkJoinTask<?>[] a; int m; WorkQueue[] ws;
2225 if (root != null && q != null && (a = q.array) != null &&
2226 (m = (a.length - 1)) >= 0) {
2227 outer: for (;;) {
2228 int s, b, u; Object o;
2229 if (root.status < 0)
2230 return;
2231 if ((s = q.top) - q.base > 0) { // try pop
2232 long j = ((m & (s - 1)) << ASHIFT) + ABASE;
2233 if ((o = U.getObject(a, j)) != null &&
2234 (o instanceof CountedCompleter)) {
2235 CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2236 do {
2237 if (r == root) {
2238 if (U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2239 if (q.array == a && q.top == s &&
2240 U.compareAndSwapObject(a, j, t, null)) {
2241 q.top = s - 1;
2242 q.qlock = 0;
2243 t.doExec();
2244 }
2245 else
2246 q.qlock = 0;
2247 }
2248 continue outer;
2249 }
2250 } while ((r = r.completer) != null);
2251 }
2252 }
2253 if ((b = q.base) - q.top < 0) { // try poll
2254 if (root.status < 0)
2255 return;
2256 long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
2257 if ((o = U.getObject(a, j)) == null ||
2258 !(o instanceof CountedCompleter))
2259 break;
2260 CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2261 for (;;) {
2262 if (r == root) {
2263 if (q.base == b &&
2264 U.compareAndSwapObject(a, j, t, null)) {
2265 U.putOrderedInt(q, QBASE, b + 1);
2266 t.doExec();
2267 }
2268 break;
2269 }
2270 if ((r = r.completer) == null)
2271 break outer;
2272 }
2273 }
2274 else
2275 break;
2276 }
2277 if (root.status >= 0)
2278 helpComplete(root, null);
2279 }
2280 }
2281
2282 /**
2283 * Tries to help execute or signal availability of the given task
2284 * from submitter's queue in common pool.
2285 */
2286 static void externalHelpJoin(ForkJoinTask<?> t) {
2287 // Some hard-to-avoid overlap with tryExternalUnpush
2288 ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w;
2289 ForkJoinTask<?>[] a; int m, s, n, z;
2290 if (t != null &&
2291 (z = ThreadLocalRandom.getProbe()) != 0 &&
2292 (p = common) != null &&
2293 (ws = p.workQueues) != null &&
2294 (m = ws.length - 1) >= 0 &&
2295 (q = ws[m & z & SQMASK]) != null &&
2296 (a = q.array) != null) {
2297 int am = a.length - 1;
2298 if ((s = q.top) != q.base) {
2299 long j = ((am & (s - 1)) << ASHIFT) + ABASE;
2300 if (U.getObject(a, j) == t &&
2301 U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2302 if (q.array == a && q.top == s &&
2303 U.compareAndSwapObject(a, j, t, null)) {
2304 q.top = s - 1;
2305 q.qlock = 0;
2306 t.doExec();
2307 }
2308 else
2309 q.qlock = 0;
2310 }
2311 }
2312 if (t.status >= 0 && (t instanceof CountedCompleter))
2313 p.externalHelpComplete(q, t);
2314 }
2315 }
2316
2317 // Exported methods
2318
2319 // Constructors
2320
2321 /**
2322 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2323 * java.lang.Runtime#availableProcessors}, using the {@linkplain
2324 * #defaultForkJoinWorkerThreadFactory default thread factory},
2325 * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2326 *
2327 * @throws SecurityException if a security manager exists and
2328 * the caller is not permitted to modify threads
2329 * because it does not hold {@link
2330 * java.lang.RuntimePermission}{@code ("modifyThread")}
2331 */
2332 public ForkJoinPool() {
2333 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2334 defaultForkJoinWorkerThreadFactory, null, false);
2335 }
2336
2337 /**
2338 * Creates a {@code ForkJoinPool} with the indicated parallelism
2339 * level, the {@linkplain
2340 * #defaultForkJoinWorkerThreadFactory default thread factory},
2341 * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2342 *
2343 * @param parallelism the parallelism level
2344 * @throws IllegalArgumentException if parallelism less than or
2345 * equal to zero, or greater than implementation limit
2346 * @throws SecurityException if a security manager exists and
2347 * the caller is not permitted to modify threads
2348 * because it does not hold {@link
2349 * java.lang.RuntimePermission}{@code ("modifyThread")}
2350 */
2351 public ForkJoinPool(int parallelism) {
2352 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2353 }
2354
2355 /**
2356 * Creates a {@code ForkJoinPool} with the given parameters.
2357 *
2358 * @param parallelism the parallelism level. For default value,
2359 * use {@link java.lang.Runtime#availableProcessors}.
2360 * @param factory the factory for creating new threads. For default value,
2361 * use {@link #defaultForkJoinWorkerThreadFactory}.
2362 * @param handler the handler for internal worker threads that
2363 * terminate due to unrecoverable errors encountered while executing
2364 * tasks. For default value, use {@code null}.
2365 * @param asyncMode if true,
2366 * establishes local first-in-first-out scheduling mode for forked
2367 * tasks that are never joined. This mode may be more appropriate
2368 * than default locally stack-based mode in applications in which
2369 * worker threads only process event-style asynchronous tasks.
2370 * For default value, use {@code false}.
2371 * @throws IllegalArgumentException if parallelism less than or
2372 * equal to zero, or greater than implementation limit
2373 * @throws NullPointerException if the factory is null
2374 * @throws SecurityException if a security manager exists and
2375 * the caller is not permitted to modify threads
2376 * because it does not hold {@link
2377 * java.lang.RuntimePermission}{@code ("modifyThread")}
2378 */
2379 public ForkJoinPool(int parallelism,
2380 ForkJoinWorkerThreadFactory factory,
2381 UncaughtExceptionHandler handler,
2382 boolean asyncMode) {
2383 this(checkParallelism(parallelism),
2384 checkFactory(factory),
2385 handler,
2386 asyncMode,
2387 "ForkJoinPool-" + nextPoolId() + "-worker-");
2388 checkPermission();
2389 }
2390
2391 private static int checkParallelism(int parallelism) {
2392 if (parallelism <= 0 || parallelism > MAX_CAP)
2393 throw new IllegalArgumentException();
2394 return parallelism;
2395 }
2396
2397 private static ForkJoinWorkerThreadFactory checkFactory
2398 (ForkJoinWorkerThreadFactory factory) {
2399 if (factory == null)
2400 throw new NullPointerException();
2401 return factory;
2402 }
2403
2404 /**
2405 * Creates a {@code ForkJoinPool} with the given parameters, without
2406 * any security checks or parameter validation. Invoked directly by
2407 * makeCommonPool.
2408 */
2409 private ForkJoinPool(int parallelism,
2410 ForkJoinWorkerThreadFactory factory,
2411 UncaughtExceptionHandler handler,
2412 boolean asyncMode,
2413 String workerNamePrefix) {
2414 this.workerNamePrefix = workerNamePrefix;
2415 this.factory = factory;
2416 this.ueh = handler;
2417 this.config = parallelism | (asyncMode ? (FIFO_QUEUE << 16) : 0);
2418 long np = (long)(-parallelism); // offset ctl counts
2419 this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2420 }
2421
2422 /**
2423 * Returns the common pool instance. This pool is statically
2424 * constructed; its run state is unaffected by attempts to {@link
2425 * #shutdown} or {@link #shutdownNow}. However this pool and any
2426 * ongoing processing are automatically terminated upon program
2427 * {@link System#exit}. Any program that relies on asynchronous
2428 * task processing to complete before program termination should
2429 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2430 * before exit.
2431 *
2432 * @return the common pool instance
2433 * @since 1.8
2434 */
2435 public static ForkJoinPool commonPool() {
2436 // assert common != null : "static init error";
2437 return common;
2438 }
2439
2440 // Execution methods
2441
2442 /**
2443 * Performs the given task, returning its result upon completion.
2444 * If the computation encounters an unchecked Exception or Error,
2445 * it is rethrown as the outcome of this invocation. Rethrown
2446 * exceptions behave in the same way as regular exceptions, but,
2447 * when possible, contain stack traces (as displayed for example
2448 * using {@code ex.printStackTrace()}) of both the current thread
2449 * as well as the thread actually encountering the exception;
2450 * minimally only the latter.
2451 *
2452 * @param task the task
2453 * @return the task's result
2454 * @throws NullPointerException if the task is null
2455 * @throws RejectedExecutionException if the task cannot be
2456 * scheduled for execution
2457 */
2458 public <T> T invoke(ForkJoinTask<T> task) {
2459 if (task == null)
2460 throw new NullPointerException();
2461 externalPush(task);
2462 return task.join();
2463 }
2464
2465 /**
2466 * Arranges for (asynchronous) execution of the given task.
2467 *
2468 * @param task the task
2469 * @throws NullPointerException if the task is null
2470 * @throws RejectedExecutionException if the task cannot be
2471 * scheduled for execution
2472 */
2473 public void execute(ForkJoinTask<?> task) {
2474 if (task == null)
2475 throw new NullPointerException();
2476 externalPush(task);
2477 }
2478
2479 // AbstractExecutorService methods
2480
2481 /**
2482 * @throws NullPointerException if the task is null
2483 * @throws RejectedExecutionException if the task cannot be
2484 * scheduled for execution
2485 */
2486 public void execute(Runnable task) {
2487 if (task == null)
2488 throw new NullPointerException();
2489 ForkJoinTask<?> job;
2490 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2491 job = (ForkJoinTask<?>) task;
2492 else
2493 job = new ForkJoinTask.RunnableExecuteAction(task);
2494 externalPush(job);
2495 }
2496
2497 /**
2498 * Submits a ForkJoinTask for execution.
2499 *
2500 * @param task the task to submit
2501 * @return the task
2502 * @throws NullPointerException if the task is null
2503 * @throws RejectedExecutionException if the task cannot be
2504 * scheduled for execution
2505 */
2506 public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2507 if (task == null)
2508 throw new NullPointerException();
2509 externalPush(task);
2510 return task;
2511 }
2512
2513 /**
2514 * @throws NullPointerException if the task is null
2515 * @throws RejectedExecutionException if the task cannot be
2516 * scheduled for execution
2517 */
2518 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2519 ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2520 externalPush(job);
2521 return job;
2522 }
2523
2524 /**
2525 * @throws NullPointerException if the task is null
2526 * @throws RejectedExecutionException if the task cannot be
2527 * scheduled for execution
2528 */
2529 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2530 ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2531 externalPush(job);
2532 return job;
2533 }
2534
2535 /**
2536 * @throws NullPointerException if the task is null
2537 * @throws RejectedExecutionException if the task cannot be
2538 * scheduled for execution
2539 */
2540 public ForkJoinTask<?> submit(Runnable task) {
2541 if (task == null)
2542 throw new NullPointerException();
2543 ForkJoinTask<?> job;
2544 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2545 job = (ForkJoinTask<?>) task;
2546 else
2547 job = new ForkJoinTask.AdaptedRunnableAction(task);
2548 externalPush(job);
2549 return job;
2550 }
2551
2552 /**
2553 * @throws NullPointerException {@inheritDoc}
2554 * @throws RejectedExecutionException {@inheritDoc}
2555 */
2556 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2557 // In previous versions of this class, this method constructed
2558 // a task to run ForkJoinTask.invokeAll, but now external
2559 // invocation of multiple tasks is at least as efficient.
2560 ArrayList<Future<T>> futures = new ArrayList<Future<T>>(tasks.size());
2561
2562 boolean done = false;
2563 try {
2564 for (Callable<T> t : tasks) {
2565 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2566 futures.add(f);
2567 externalPush(f);
2568 }
2569 for (int i = 0, size = futures.size(); i < size; i++)
2570 ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2571 done = true;
2572 return futures;
2573 } finally {
2574 if (!done)
2575 for (int i = 0, size = futures.size(); i < size; i++)
2576 futures.get(i).cancel(false);
2577 }
2578 }
2579
2580 /**
2581 * Returns the factory used for constructing new workers.
2582 *
2583 * @return the factory used for constructing new workers
2584 */
2585 public ForkJoinWorkerThreadFactory getFactory() {
2586 return factory;
2587 }
2588
2589 /**
2590 * Returns the handler for internal worker threads that terminate
2591 * due to unrecoverable errors encountered while executing tasks.
2592 *
2593 * @return the handler, or {@code null} if none
2594 */
2595 public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2596 return ueh;
2597 }
2598
2599 /**
2600 * Returns the targeted parallelism level of this pool.
2601 *
2602 * @return the targeted parallelism level of this pool
2603 */
2604 public int getParallelism() {
2605 int par = (config & SMASK);
2606 return (par > 0) ? par : 1;
2607 }
2608
2609 /**
2610 * Returns the targeted parallelism level of the common pool.
2611 *
2612 * @return the targeted parallelism level of the common pool
2613 * @since 1.8
2614 */
2615 public static int getCommonPoolParallelism() {
2616 return commonParallelism;
2617 }
2618
2619 /**
2620 * Returns the number of worker threads that have started but not
2621 * yet terminated. The result returned by this method may differ
2622 * from {@link #getParallelism} when threads are created to
2623 * maintain parallelism when others are cooperatively blocked.
2624 *
2625 * @return the number of worker threads
2626 */
2627 public int getPoolSize() {
2628 return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2629 }
2630
2631 /**
2632 * Returns {@code true} if this pool uses local first-in-first-out
2633 * scheduling mode for forked tasks that are never joined.
2634 *
2635 * @return {@code true} if this pool uses async mode
2636 */
2637 public boolean getAsyncMode() {
2638 return (config >>> 16) == FIFO_QUEUE;
2639 }
2640
2641 /**
2642 * Returns an estimate of the number of worker threads that are
2643 * not blocked waiting to join tasks or for other managed
2644 * synchronization. This method may overestimate the
2645 * number of running threads.
2646 *
2647 * @return the number of worker threads
2648 */
2649 public int getRunningThreadCount() {
2650 int rc = 0;
2651 WorkQueue[] ws; WorkQueue w;
2652 if ((ws = workQueues) != null) {
2653 for (int i = 1; i < ws.length; i += 2) {
2654 if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2655 ++rc;
2656 }
2657 }
2658 return rc;
2659 }
2660
2661 /**
2662 * Returns an estimate of the number of threads that are currently
2663 * stealing or executing tasks. This method may overestimate the
2664 * number of active threads.
2665 *
2666 * @return the number of active threads
2667 */
2668 public int getActiveThreadCount() {
2669 int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2670 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2671 }
2672
2673 /**
2674 * Returns {@code true} if all worker threads are currently idle.
2675 * An idle worker is one that cannot obtain a task to execute
2676 * because none are available to steal from other threads, and
2677 * there are no pending submissions to the pool. This method is
2678 * conservative; it might not return {@code true} immediately upon
2679 * idleness of all threads, but will eventually become true if
2680 * threads remain inactive.
2681 *
2682 * @return {@code true} if all threads are currently idle
2683 */
2684 public boolean isQuiescent() {
2685 return (int)(ctl >> AC_SHIFT) + (config & SMASK) == 0;
2686 }
2687
2688 /**
2689 * Returns an estimate of the total number of tasks stolen from
2690 * one thread's work queue by another. The reported value
2691 * underestimates the actual total number of steals when the pool
2692 * is not quiescent. This value may be useful for monitoring and
2693 * tuning fork/join programs: in general, steal counts should be
2694 * high enough to keep threads busy, but low enough to avoid
2695 * overhead and contention across threads.
2696 *
2697 * @return the number of steals
2698 */
2699 public long getStealCount() {
2700 long count = stealCount;
2701 WorkQueue[] ws; WorkQueue w;
2702 if ((ws = workQueues) != null) {
2703 for (int i = 1; i < ws.length; i += 2) {
2704 if ((w = ws[i]) != null)
2705 count += w.nsteals;
2706 }
2707 }
2708 return count;
2709 }
2710
2711 /**
2712 * Returns an estimate of the total number of tasks currently held
2713 * in queues by worker threads (but not including tasks submitted
2714 * to the pool that have not begun executing). This value is only
2715 * an approximation, obtained by iterating across all threads in
2716 * the pool. This method may be useful for tuning task
2717 * granularities.
2718 *
2719 * @return the number of queued tasks
2720 */
2721 public long getQueuedTaskCount() {
2722 long count = 0;
2723 WorkQueue[] ws; WorkQueue w;
2724 if ((ws = workQueues) != null) {
2725 for (int i = 1; i < ws.length; i += 2) {
2726 if ((w = ws[i]) != null)
2727 count += w.queueSize();
2728 }
2729 }
2730 return count;
2731 }
2732
2733 /**
2734 * Returns an estimate of the number of tasks submitted to this
2735 * pool that have not yet begun executing. This method may take
2736 * time proportional to the number of submissions.
2737 *
2738 * @return the number of queued submissions
2739 */
2740 public int getQueuedSubmissionCount() {
2741 int count = 0;
2742 WorkQueue[] ws; WorkQueue w;
2743 if ((ws = workQueues) != null) {
2744 for (int i = 0; i < ws.length; i += 2) {
2745 if ((w = ws[i]) != null)
2746 count += w.queueSize();
2747 }
2748 }
2749 return count;
2750 }
2751
2752 /**
2753 * Returns {@code true} if there are any tasks submitted to this
2754 * pool that have not yet begun executing.
2755 *
2756 * @return {@code true} if there are any queued submissions
2757 */
2758 public boolean hasQueuedSubmissions() {
2759 WorkQueue[] ws; WorkQueue w;
2760 if ((ws = workQueues) != null) {
2761 for (int i = 0; i < ws.length; i += 2) {
2762 if ((w = ws[i]) != null && !w.isEmpty())
2763 return true;
2764 }
2765 }
2766 return false;
2767 }
2768
2769 /**
2770 * Removes and returns the next unexecuted submission if one is
2771 * available. This method may be useful in extensions to this
2772 * class that re-assign work in systems with multiple pools.
2773 *
2774 * @return the next submission, or {@code null} if none
2775 */
2776 protected ForkJoinTask<?> pollSubmission() {
2777 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2778 if ((ws = workQueues) != null) {
2779 for (int i = 0; i < ws.length; i += 2) {
2780 if ((w = ws[i]) != null && (t = w.poll()) != null)
2781 return t;
2782 }
2783 }
2784 return null;
2785 }
2786
2787 /**
2788 * Removes all available unexecuted submitted and forked tasks
2789 * from scheduling queues and adds them to the given collection,
2790 * without altering their execution status. These may include
2791 * artificially generated or wrapped tasks. This method is
2792 * designed to be invoked only when the pool is known to be
2793 * quiescent. Invocations at other times may not remove all
2794 * tasks. A failure encountered while attempting to add elements
2795 * to collection {@code c} may result in elements being in
2796 * neither, either or both collections when the associated
2797 * exception is thrown. The behavior of this operation is
2798 * undefined if the specified collection is modified while the
2799 * operation is in progress.
2800 *
2801 * @param c the collection to transfer elements into
2802 * @return the number of elements transferred
2803 */
2804 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2805 int count = 0;
2806 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2807 if ((ws = workQueues) != null) {
2808 for (int i = 0; i < ws.length; ++i) {
2809 if ((w = ws[i]) != null) {
2810 while ((t = w.poll()) != null) {
2811 c.add(t);
2812 ++count;
2813 }
2814 }
2815 }
2816 }
2817 return count;
2818 }
2819
2820 /**
2821 * Returns a string identifying this pool, as well as its state,
2822 * including indications of run state, parallelism level, and
2823 * worker and task counts.
2824 *
2825 * @return a string identifying this pool, as well as its state
2826 */
2827 public String toString() {
2828 // Use a single pass through workQueues to collect counts
2829 long qt = 0L, qs = 0L; int rc = 0;
2830 long st = stealCount;
2831 long c = ctl;
2832 WorkQueue[] ws; WorkQueue w;
2833 if ((ws = workQueues) != null) {
2834 for (int i = 0; i < ws.length; ++i) {
2835 if ((w = ws[i]) != null) {
2836 int size = w.queueSize();
2837 if ((i & 1) == 0)
2838 qs += size;
2839 else {
2840 qt += size;
2841 st += w.nsteals;
2842 if (w.isApparentlyUnblocked())
2843 ++rc;
2844 }
2845 }
2846 }
2847 }
2848 int pc = (config & SMASK);
2849 int tc = pc + (short)(c >>> TC_SHIFT);
2850 int ac = pc + (int)(c >> AC_SHIFT);
2851 if (ac < 0) // ignore transient negative
2852 ac = 0;
2853 String level;
2854 if ((c & STOP_BIT) != 0)
2855 level = (tc == 0) ? "Terminated" : "Terminating";
2856 else
2857 level = plock < 0 ? "Shutting down" : "Running";
2858 return super.toString() +
2859 "[" + level +
2860 ", parallelism = " + pc +
2861 ", size = " + tc +
2862 ", active = " + ac +
2863 ", running = " + rc +
2864 ", steals = " + st +
2865 ", tasks = " + qt +
2866 ", submissions = " + qs +
2867 "]";
2868 }
2869
2870 /**
2871 * Possibly initiates an orderly shutdown in which previously
2872 * submitted tasks are executed, but no new tasks will be
2873 * accepted. Invocation has no effect on execution state if this
2874 * is the {@link #commonPool()}, and no additional effect if
2875 * already shut down. Tasks that are in the process of being
2876 * submitted concurrently during the course of this method may or
2877 * may not be rejected.
2878 *
2879 * @throws SecurityException if a security manager exists and
2880 * the caller is not permitted to modify threads
2881 * because it does not hold {@link
2882 * java.lang.RuntimePermission}{@code ("modifyThread")}
2883 */
2884 public void shutdown() {
2885 checkPermission();
2886 tryTerminate(false, true);
2887 }
2888
2889 /**
2890 * Possibly attempts to cancel and/or stop all tasks, and reject
2891 * all subsequently submitted tasks. Invocation has no effect on
2892 * execution state if this is the {@link #commonPool()}, and no
2893 * additional effect if already shut down. Otherwise, tasks that
2894 * are in the process of being submitted or executed concurrently
2895 * during the course of this method may or may not be
2896 * rejected. This method cancels both existing and unexecuted
2897 * tasks, in order to permit termination in the presence of task
2898 * dependencies. So the method always returns an empty list
2899 * (unlike the case for some other Executors).
2900 *
2901 * @return an empty list
2902 * @throws SecurityException if a security manager exists and
2903 * the caller is not permitted to modify threads
2904 * because it does not hold {@link
2905 * java.lang.RuntimePermission}{@code ("modifyThread")}
2906 */
2907 public List<Runnable> shutdownNow() {
2908 checkPermission();
2909 tryTerminate(true, true);
2910 return Collections.emptyList();
2911 }
2912
2913 /**
2914 * Returns {@code true} if all tasks have completed following shut down.
2915 *
2916 * @return {@code true} if all tasks have completed following shut down
2917 */
2918 public boolean isTerminated() {
2919 long c = ctl;
2920 return ((c & STOP_BIT) != 0L &&
2921 (short)(c >>> TC_SHIFT) == -(config & SMASK));
2922 }
2923
2924 /**
2925 * Returns {@code true} if the process of termination has
2926 * commenced but not yet completed. This method may be useful for
2927 * debugging. A return of {@code true} reported a sufficient
2928 * period after shutdown may indicate that submitted tasks have
2929 * ignored or suppressed interruption, or are waiting for I/O,
2930 * causing this executor not to properly terminate. (See the
2931 * advisory notes for class {@link ForkJoinTask} stating that
2932 * tasks should not normally entail blocking operations. But if
2933 * they do, they must abort them on interrupt.)
2934 *
2935 * @return {@code true} if terminating but not yet terminated
2936 */
2937 public boolean isTerminating() {
2938 long c = ctl;
2939 return ((c & STOP_BIT) != 0L &&
2940 (short)(c >>> TC_SHIFT) != -(config & SMASK));
2941 }
2942
2943 /**
2944 * Returns {@code true} if this pool has been shut down.
2945 *
2946 * @return {@code true} if this pool has been shut down
2947 */
2948 public boolean isShutdown() {
2949 return plock < 0;
2950 }
2951
2952 /**
2953 * Blocks until all tasks have completed execution after a
2954 * shutdown request, or the timeout occurs, or the current thread
2955 * is interrupted, whichever happens first. Because the {@link
2956 * #commonPool()} never terminates until program shutdown, when
2957 * applied to the common pool, this method is equivalent to {@link
2958 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
2959 *
2960 * @param timeout the maximum time to wait
2961 * @param unit the time unit of the timeout argument
2962 * @return {@code true} if this executor terminated and
2963 * {@code false} if the timeout elapsed before termination
2964 * @throws InterruptedException if interrupted while waiting
2965 */
2966 public boolean awaitTermination(long timeout, TimeUnit unit)
2967 throws InterruptedException {
2968 if (Thread.interrupted())
2969 throw new InterruptedException();
2970 if (this == common) {
2971 awaitQuiescence(timeout, unit);
2972 return false;
2973 }
2974 long nanos = unit.toNanos(timeout);
2975 if (isTerminated())
2976 return true;
2977 long startTime = System.nanoTime();
2978 boolean terminated = false;
2979 synchronized (this) {
2980 for (long waitTime = nanos, millis = 0L;;) {
2981 if (terminated = isTerminated() ||
2982 waitTime <= 0L ||
2983 (millis = unit.toMillis(waitTime)) <= 0L)
2984 break;
2985 wait(millis);
2986 waitTime = nanos - (System.nanoTime() - startTime);
2987 }
2988 }
2989 return terminated;
2990 }
2991
2992 /**
2993 * If called by a ForkJoinTask operating in this pool, equivalent
2994 * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
2995 * waits and/or attempts to assist performing tasks until this
2996 * pool {@link #isQuiescent} or the indicated timeout elapses.
2997 *
2998 * @param timeout the maximum time to wait
2999 * @param unit the time unit of the timeout argument
3000 * @return {@code true} if quiescent; {@code false} if the
3001 * timeout elapsed.
3002 */
3003 public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3004 long nanos = unit.toNanos(timeout);
3005 ForkJoinWorkerThread wt;
3006 Thread thread = Thread.currentThread();
3007 if ((thread instanceof ForkJoinWorkerThread) &&
3008 (wt = (ForkJoinWorkerThread)thread).pool == this) {
3009 helpQuiescePool(wt.workQueue);
3010 return true;
3011 }
3012 long startTime = System.nanoTime();
3013 WorkQueue[] ws;
3014 int r = 0, m;
3015 boolean found = true;
3016 while (!isQuiescent() && (ws = workQueues) != null &&
3017 (m = ws.length - 1) >= 0) {
3018 if (!found) {
3019 if ((System.nanoTime() - startTime) > nanos)
3020 return false;
3021 Thread.yield(); // cannot block
3022 }
3023 found = false;
3024 for (int j = (m + 1) << 2; j >= 0; --j) {
3025 ForkJoinTask<?> t; WorkQueue q; int b;
3026 if ((q = ws[r++ & m]) != null && (b = q.base) - q.top < 0) {
3027 found = true;
3028 if ((t = q.pollAt(b)) != null)
3029 t.doExec();
3030 break;
3031 }
3032 }
3033 }
3034 return true;
3035 }
3036
3037 /**
3038 * Waits and/or attempts to assist performing tasks indefinitely
3039 * until the {@link #commonPool()} {@link #isQuiescent}.
3040 */
3041 static void quiesceCommonPool() {
3042 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3043 }
3044
3045 /**
3046 * Interface for extending managed parallelism for tasks running
3047 * in {@link ForkJoinPool}s.
3048 *
3049 * <p>A {@code ManagedBlocker} provides two methods. Method
3050 * {@code isReleasable} must return {@code true} if blocking is
3051 * not necessary. Method {@code block} blocks the current thread
3052 * if necessary (perhaps internally invoking {@code isReleasable}
3053 * before actually blocking). These actions are performed by any
3054 * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
3055 * The unusual methods in this API accommodate synchronizers that
3056 * may, but don't usually, block for long periods. Similarly, they
3057 * allow more efficient internal handling of cases in which
3058 * additional workers may be, but usually are not, needed to
3059 * ensure sufficient parallelism. Toward this end,
3060 * implementations of method {@code isReleasable} must be amenable
3061 * to repeated invocation.
3062 *
3063 * <p>For example, here is a ManagedBlocker based on a
3064 * ReentrantLock:
3065 * <pre> {@code
3066 * class ManagedLocker implements ManagedBlocker {
3067 * final ReentrantLock lock;
3068 * boolean hasLock = false;
3069 * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3070 * public boolean block() {
3071 * if (!hasLock)
3072 * lock.lock();
3073 * return true;
3074 * }
3075 * public boolean isReleasable() {
3076 * return hasLock || (hasLock = lock.tryLock());
3077 * }
3078 * }}</pre>
3079 *
3080 * <p>Here is a class that possibly blocks waiting for an
3081 * item on a given queue:
3082 * <pre> {@code
3083 * class QueueTaker<E> implements ManagedBlocker {
3084 * final BlockingQueue<E> queue;
3085 * volatile E item = null;
3086 * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3087 * public boolean block() throws InterruptedException {
3088 * if (item == null)
3089 * item = queue.take();
3090 * return true;
3091 * }
3092 * public boolean isReleasable() {
3093 * return item != null || (item = queue.poll()) != null;
3094 * }
3095 * public E getItem() { // call after pool.managedBlock completes
3096 * return item;
3097 * }
3098 * }}</pre>
3099 */
3100 public static interface ManagedBlocker {
3101 /**
3102 * Possibly blocks the current thread, for example waiting for
3103 * a lock or condition.
3104 *
3105 * @return {@code true} if no additional blocking is necessary
3106 * (i.e., if isReleasable would return true)
3107 * @throws InterruptedException if interrupted while waiting
3108 * (the method is not required to do so, but is allowed to)
3109 */
3110 boolean block() throws InterruptedException;
3111
3112 /**
3113 * Returns {@code true} if blocking is unnecessary.
3114 * @return {@code true} if blocking is unnecessary
3115 */
3116 boolean isReleasable();
3117 }
3118
3119 /**
3120 * Blocks in accord with the given blocker. If the current thread
3121 * is a {@link ForkJoinWorkerThread}, this method possibly
3122 * arranges for a spare thread to be activated if necessary to
3123 * ensure sufficient parallelism while the current thread is blocked.
3124 *
3125 * <p>If the caller is not a {@link ForkJoinTask}, this method is
3126 * behaviorally equivalent to
3127 * <pre> {@code
3128 * while (!blocker.isReleasable())
3129 * if (blocker.block())
3130 * return;
3131 * }</pre>
3132 *
3133 * If the caller is a {@code ForkJoinTask}, then the pool may
3134 * first be expanded to ensure parallelism, and later adjusted.
3135 *
3136 * @param blocker the blocker
3137 * @throws InterruptedException if blocker.block did so
3138 */
3139 public static void managedBlock(ManagedBlocker blocker)
3140 throws InterruptedException {
3141 Thread t = Thread.currentThread();
3142 if (t instanceof ForkJoinWorkerThread) {
3143 ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3144 while (!blocker.isReleasable()) {
3145 if (p.tryCompensate()) {
3146 try {
3147 do {} while (!blocker.isReleasable() &&
3148 !blocker.block());
3149 } finally {
3150 p.incrementActiveCount();
3151 }
3152 break;
3153 }
3154 }
3155 }
3156 else {
3157 do {} while (!blocker.isReleasable() &&
3158 !blocker.block());
3159 }
3160 }
3161
3162 // AbstractExecutorService overrides. These rely on undocumented
3163 // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3164 // implement RunnableFuture.
3165
3166 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3167 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3168 }
3169
3170 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3171 return new ForkJoinTask.AdaptedCallable<T>(callable);
3172 }
3173
3174 // Unsafe mechanics
3175 private static final sun.misc.Unsafe U;
3176 private static final long CTL;
3177 private static final long PARKBLOCKER;
3178 private static final int ABASE;
3179 private static final int ASHIFT;
3180 private static final long STEALCOUNT;
3181 private static final long PLOCK;
3182 private static final long INDEXSEED;
3183 private static final long QBASE;
3184 private static final long QLOCK;
3185
3186 static {
3187 // initialize field offsets for CAS etc
3188 try {
3189 U = sun.misc.Unsafe.getUnsafe();
3190 Class<?> k = ForkJoinPool.class;
3191 CTL = U.objectFieldOffset
3192 (k.getDeclaredField("ctl"));
3193 STEALCOUNT = U.objectFieldOffset
3194 (k.getDeclaredField("stealCount"));
3195 PLOCK = U.objectFieldOffset
3196 (k.getDeclaredField("plock"));
3197 INDEXSEED = U.objectFieldOffset
3198 (k.getDeclaredField("indexSeed"));
3199 Class<?> tk = Thread.class;
3200 PARKBLOCKER = U.objectFieldOffset
3201 (tk.getDeclaredField("parkBlocker"));
3202 Class<?> wk = WorkQueue.class;
3203 QBASE = U.objectFieldOffset
3204 (wk.getDeclaredField("base"));
3205 QLOCK = U.objectFieldOffset
3206 (wk.getDeclaredField("qlock"));
3207 Class<?> ak = ForkJoinTask[].class;
3208 ABASE = U.arrayBaseOffset(ak);
3209 int scale = U.arrayIndexScale(ak);
3210 if ((scale & (scale - 1)) != 0)
3211 throw new Error("data type scale not a power of two");
3212 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3213 } catch (Exception e) {
3214 throw new Error(e);
3215 }
3216
3217 defaultForkJoinWorkerThreadFactory =
3218 new DefaultForkJoinWorkerThreadFactory();
3219 modifyThreadPermission = new RuntimePermission("modifyThread");
3220
3221 common = java.security.AccessController.doPrivileged
3222 (new java.security.PrivilegedAction<ForkJoinPool>() {
3223 public ForkJoinPool run() { return makeCommonPool(); }});
3224 int par = common.config; // report 1 even if threads disabled
3225 commonParallelism = par > 0 ? par : 1;
3226 }
3227
3228 /**
3229 * Creates and returns the common pool, respecting user settings
3230 * specified via system properties.
3231 */
3232 private static ForkJoinPool makeCommonPool() {
3233 int parallelism = -1;
3234 ForkJoinWorkerThreadFactory factory
3235 = defaultForkJoinWorkerThreadFactory;
3236 UncaughtExceptionHandler handler = null;
3237 try { // ignore exceptions in accesing/parsing properties
3238 String pp = System.getProperty
3239 ("java.util.concurrent.ForkJoinPool.common.parallelism");
3240 String fp = System.getProperty
3241 ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3242 String hp = System.getProperty
3243 ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3244 if (pp != null)
3245 parallelism = Integer.parseInt(pp);
3246 if (fp != null)
3247 factory = ((ForkJoinWorkerThreadFactory)ClassLoader.
3248 getSystemClassLoader().loadClass(fp).newInstance());
3249 if (hp != null)
3250 handler = ((UncaughtExceptionHandler)ClassLoader.
3251 getSystemClassLoader().loadClass(hp).newInstance());
3252 } catch (Exception ignore) {
3253 }
3254
3255 if (parallelism < 0 && // default 1 less than #cores
3256 (parallelism = Runtime.getRuntime().availableProcessors() - 1) < 0)
3257 parallelism = 0;
3258 if (parallelism > MAX_CAP)
3259 parallelism = MAX_CAP;
3260 return new ForkJoinPool(parallelism, factory, handler, false,
3261 "ForkJoinPool.commonPool-worker-");
3262 }
3263
3264 }