ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.190
Committed: Thu Jun 20 15:06:50 2013 UTC (10 years, 11 months ago) by dl
Branch: MAIN
Changes since 1.189: +30 -8 lines
Log Message:
Add CC.helpComplete

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.lang.Thread.UncaughtExceptionHandler;
10 import java.util.ArrayList;
11 import java.util.Arrays;
12 import java.util.Collection;
13 import java.util.Collections;
14 import java.util.List;
15 import java.util.concurrent.AbstractExecutorService;
16 import java.util.concurrent.Callable;
17 import java.util.concurrent.ExecutorService;
18 import java.util.concurrent.Future;
19 import java.util.concurrent.RejectedExecutionException;
20 import java.util.concurrent.RunnableFuture;
21 import java.util.concurrent.ThreadLocalRandom;
22 import java.util.concurrent.TimeUnit;
23
24 /**
25 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
26 * A {@code ForkJoinPool} provides the entry point for submissions
27 * from non-{@code ForkJoinTask} clients, as well as management and
28 * monitoring operations.
29 *
30 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
31 * ExecutorService} mainly by virtue of employing
32 * <em>work-stealing</em>: all threads in the pool attempt to find and
33 * execute tasks submitted to the pool and/or created by other active
34 * tasks (eventually blocking waiting for work if none exist). This
35 * enables efficient processing when most tasks spawn other subtasks
36 * (as do most {@code ForkJoinTask}s), as well as when many small
37 * tasks are submitted to the pool from external clients. Especially
38 * when setting <em>asyncMode</em> to true in constructors, {@code
39 * ForkJoinPool}s may also be appropriate for use with event-style
40 * tasks that are never joined.
41 *
42 * <p>A static {@link #commonPool()} is available and appropriate for
43 * most applications. The common pool is used by any ForkJoinTask that
44 * is not explicitly submitted to a specified pool. Using the common
45 * pool normally reduces resource usage (its threads are slowly
46 * reclaimed during periods of non-use, and reinstated upon subsequent
47 * use).
48 *
49 * <p>For applications that require separate or custom pools, a {@code
50 * ForkJoinPool} may be constructed with a given target parallelism
51 * level; by default, equal to the number of available processors. The
52 * pool attempts to maintain enough active (or available) threads by
53 * dynamically adding, suspending, or resuming internal worker
54 * threads, even if some tasks are stalled waiting to join others.
55 * However, no such adjustments are guaranteed in the face of blocked
56 * I/O or other unmanaged synchronization. The nested {@link
57 * ManagedBlocker} interface enables extension of the kinds of
58 * synchronization accommodated.
59 *
60 * <p>In addition to execution and lifecycle control methods, this
61 * class provides status check methods (for example
62 * {@link #getStealCount}) that are intended to aid in developing,
63 * tuning, and monitoring fork/join applications. Also, method
64 * {@link #toString} returns indications of pool state in a
65 * convenient form for informal monitoring.
66 *
67 * <p>As is the case with other ExecutorServices, there are three
68 * main task execution methods summarized in the following table.
69 * These are designed to be used primarily by clients not already
70 * engaged in fork/join computations in the current pool. The main
71 * forms of these methods accept instances of {@code ForkJoinTask},
72 * but overloaded forms also allow mixed execution of plain {@code
73 * Runnable}- or {@code Callable}- based activities as well. However,
74 * tasks that are already executing in a pool should normally instead
75 * use the within-computation forms listed in the table unless using
76 * async event-style tasks that are not usually joined, in which case
77 * there is little difference among choice of methods.
78 *
79 * <table BORDER CELLPADDING=3 CELLSPACING=1>
80 * <caption>Summary of task execution methods</caption>
81 * <tr>
82 * <td></td>
83 * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
84 * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
85 * </tr>
86 * <tr>
87 * <td> <b>Arrange async execution</b></td>
88 * <td> {@link #execute(ForkJoinTask)}</td>
89 * <td> {@link ForkJoinTask#fork}</td>
90 * </tr>
91 * <tr>
92 * <td> <b>Await and obtain result</b></td>
93 * <td> {@link #invoke(ForkJoinTask)}</td>
94 * <td> {@link ForkJoinTask#invoke}</td>
95 * </tr>
96 * <tr>
97 * <td> <b>Arrange exec and obtain Future</b></td>
98 * <td> {@link #submit(ForkJoinTask)}</td>
99 * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
100 * </tr>
101 * </table>
102 *
103 * <p>The common pool is by default constructed with default
104 * parameters, but these may be controlled by setting three
105 * {@linkplain System#getProperty system properties}:
106 * <ul>
107 * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
108 * - the parallelism level, a non-negative integer
109 * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
110 * - the class name of a {@link ForkJoinWorkerThreadFactory}
111 * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
112 * - the class name of a {@link UncaughtExceptionHandler}
113 * </ul>
114 * The system class loader is used to load these classes.
115 * Upon any error in establishing these settings, default parameters
116 * are used. It is possible to disable or limit the use of threads in
117 * the common pool by setting the parallelism property to zero, and/or
118 * using a factory that may return {@code null}.
119 *
120 * <p><b>Implementation notes</b>: This implementation restricts the
121 * maximum number of running threads to 32767. Attempts to create
122 * pools with greater than the maximum number result in
123 * {@code IllegalArgumentException}.
124 *
125 * <p>This implementation rejects submitted tasks (that is, by throwing
126 * {@link RejectedExecutionException}) only when the pool is shut down
127 * or internal resources have been exhausted.
128 *
129 * @since 1.7
130 * @author Doug Lea
131 */
132 @sun.misc.Contended
133 public class ForkJoinPool extends AbstractExecutorService {
134
135 /*
136 * Implementation Overview
137 *
138 * This class and its nested classes provide the main
139 * functionality and control for a set of worker threads:
140 * Submissions from non-FJ threads enter into submission queues.
141 * Workers take these tasks and typically split them into subtasks
142 * that may be stolen by other workers. Preference rules give
143 * first priority to processing tasks from their own queues (LIFO
144 * or FIFO, depending on mode), then to randomized FIFO steals of
145 * tasks in other queues.
146 *
147 * WorkQueues
148 * ==========
149 *
150 * Most operations occur within work-stealing queues (in nested
151 * class WorkQueue). These are special forms of Deques that
152 * support only three of the four possible end-operations -- push,
153 * pop, and poll (aka steal), under the further constraints that
154 * push and pop are called only from the owning thread (or, as
155 * extended here, under a lock), while poll may be called from
156 * other threads. (If you are unfamiliar with them, you probably
157 * want to read Herlihy and Shavit's book "The Art of
158 * Multiprocessor programming", chapter 16 describing these in
159 * more detail before proceeding.) The main work-stealing queue
160 * design is roughly similar to those in the papers "Dynamic
161 * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
162 * (http://research.sun.com/scalable/pubs/index.html) and
163 * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
164 * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
165 * See also "Correct and Efficient Work-Stealing for Weak Memory
166 * Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
167 * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
168 * analysis of memory ordering (atomic, volatile etc) issues. The
169 * main differences ultimately stem from GC requirements that we
170 * null out taken slots as soon as we can, to maintain as small a
171 * footprint as possible even in programs generating huge numbers
172 * of tasks. To accomplish this, we shift the CAS arbitrating pop
173 * vs poll (steal) from being on the indices ("base" and "top") to
174 * the slots themselves. So, both a successful pop and poll
175 * mainly entail a CAS of a slot from non-null to null. Because
176 * we rely on CASes of references, we do not need tag bits on base
177 * or top. They are simple ints as used in any circular
178 * array-based queue (see for example ArrayDeque). Updates to the
179 * indices must still be ordered in a way that guarantees that top
180 * == base means the queue is empty, but otherwise may err on the
181 * side of possibly making the queue appear nonempty when a push,
182 * pop, or poll have not fully committed. Note that this means
183 * that the poll operation, considered individually, is not
184 * wait-free. One thief cannot successfully continue until another
185 * in-progress one (or, if previously empty, a push) completes.
186 * However, in the aggregate, we ensure at least probabilistic
187 * non-blockingness. If an attempted steal fails, a thief always
188 * chooses a different random victim target to try next. So, in
189 * order for one thief to progress, it suffices for any
190 * in-progress poll or new push on any empty queue to
191 * complete. (This is why we normally use method pollAt and its
192 * variants that try once at the apparent base index, else
193 * consider alternative actions, rather than method poll.)
194 *
195 * This approach also enables support of a user mode in which local
196 * task processing is in FIFO, not LIFO order, simply by using
197 * poll rather than pop. This can be useful in message-passing
198 * frameworks in which tasks are never joined. However neither
199 * mode considers affinities, loads, cache localities, etc, so
200 * rarely provide the best possible performance on a given
201 * machine, but portably provide good throughput by averaging over
202 * these factors. (Further, even if we did try to use such
203 * information, we do not usually have a basis for exploiting it.
204 * For example, some sets of tasks profit from cache affinities,
205 * but others are harmed by cache pollution effects.)
206 *
207 * WorkQueues are also used in a similar way for tasks submitted
208 * to the pool. We cannot mix these tasks in the same queues used
209 * for work-stealing (this would contaminate lifo/fifo
210 * processing). Instead, we randomly associate submission queues
211 * with submitting threads, using a form of hashing. The
212 * ThreadLocalRandom probe value serves as a hash code for
213 * choosing existing queues, and may be randomly repositioned upon
214 * contention with other submitters. In essence, submitters act
215 * like workers except that they are restricted to executing local
216 * tasks that they submitted (or in the case of CountedCompleters,
217 * others with the same root task). However, because most
218 * shared/external queue operations are more expensive than
219 * internal, and because, at steady state, external submitters
220 * will compete for CPU with workers, ForkJoinTask.join and
221 * related methods disable them from repeatedly helping to process
222 * tasks if all workers are active. Insertion of tasks in shared
223 * mode requires a lock (mainly to protect in the case of
224 * resizing) but we use only a simple spinlock (using bits in
225 * field qlock), because submitters encountering a busy queue move
226 * on to try or create other queues -- they block only when
227 * creating and registering new queues.
228 *
229 * Management
230 * ==========
231 *
232 * The main throughput advantages of work-stealing stem from
233 * decentralized control -- workers mostly take tasks from
234 * themselves or each other. We cannot negate this in the
235 * implementation of other management responsibilities. The main
236 * tactic for avoiding bottlenecks is packing nearly all
237 * essentially atomic control state into two volatile variables
238 * that are by far most often read (not written) as status and
239 * consistency checks.
240 *
241 * Field "ctl" contains 64 bits holding all the information needed
242 * to atomically decide to add, inactivate, enqueue (on an event
243 * queue), dequeue, and/or re-activate workers. To enable this
244 * packing, we restrict maximum parallelism to (1<<15)-1 (which is
245 * far in excess of normal operating range) to allow ids, counts,
246 * and their negations (used for thresholding) to fit into 16bit
247 * fields.
248 *
249 * Field "plock" is a form of sequence lock with a saturating
250 * shutdown bit (similarly for per-queue "qlocks"), mainly
251 * protecting updates to the workQueues array, as well as to
252 * enable shutdown. When used as a lock, it is normally only very
253 * briefly held, so is nearly always available after at most a
254 * brief spin, but we use a monitor-based backup strategy to
255 * block when needed.
256 *
257 * Recording WorkQueues. WorkQueues are recorded in the
258 * "workQueues" array that is created upon first use and expanded
259 * if necessary. Updates to the array while recording new workers
260 * and unrecording terminated ones are protected from each other
261 * by a lock but the array is otherwise concurrently readable, and
262 * accessed directly. To simplify index-based operations, the
263 * array size is always a power of two, and all readers must
264 * tolerate null slots. Worker queues are at odd indices. Shared
265 * (submission) queues are at even indices, up to a maximum of 64
266 * slots, to limit growth even if array needs to expand to add
267 * more workers. Grouping them together in this way simplifies and
268 * speeds up task scanning.
269 *
270 * All worker thread creation is on-demand, triggered by task
271 * submissions, replacement of terminated workers, and/or
272 * compensation for blocked workers. However, all other support
273 * code is set up to work with other policies. To ensure that we
274 * do not hold on to worker references that would prevent GC, ALL
275 * accesses to workQueues are via indices into the workQueues
276 * array (which is one source of some of the messy code
277 * constructions here). In essence, the workQueues array serves as
278 * a weak reference mechanism. Thus for example the wait queue
279 * field of ctl stores indices, not references. Access to the
280 * workQueues in associated methods (for example signalWork) must
281 * both index-check and null-check the IDs. All such accesses
282 * ignore bad IDs by returning out early from what they are doing,
283 * since this can only be associated with termination, in which
284 * case it is OK to give up. All uses of the workQueues array
285 * also check that it is non-null (even if previously
286 * non-null). This allows nulling during termination, which is
287 * currently not necessary, but remains an option for
288 * resource-revocation-based shutdown schemes. It also helps
289 * reduce JIT issuance of uncommon-trap code, which tends to
290 * unnecessarily complicate control flow in some methods.
291 *
292 * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
293 * let workers spin indefinitely scanning for tasks when none can
294 * be found immediately, and we cannot start/resume workers unless
295 * there appear to be tasks available. On the other hand, we must
296 * quickly prod them into action when new tasks are submitted or
297 * generated. In many usages, ramp-up time to activate workers is
298 * the main limiting factor in overall performance (this is
299 * compounded at program start-up by JIT compilation and
300 * allocation). So we try to streamline this as much as possible.
301 * We park/unpark workers after placing in an event wait queue
302 * when they cannot find work. This "queue" is actually a simple
303 * Treiber stack, headed by the "id" field of ctl, plus a 15bit
304 * counter value (that reflects the number of times a worker has
305 * been inactivated) to avoid ABA effects (we need only as many
306 * version numbers as worker threads). Successors are held in
307 * field WorkQueue.nextWait. Queuing deals with several intrinsic
308 * races, mainly that a task-producing thread can miss seeing (and
309 * signalling) another thread that gave up looking for work but
310 * has not yet entered the wait queue. We solve this by requiring
311 * a full sweep of all workers (via repeated calls to method
312 * scan()) both before and after a newly waiting worker is added
313 * to the wait queue. Because enqueued workers may actually be
314 * rescanning rather than waiting, we set and clear the "parker"
315 * field of WorkQueues to reduce unnecessary calls to unpark.
316 * (This requires a secondary recheck to avoid missed signals.)
317 * Note the unusual conventions about Thread.interrupts
318 * surrounding parking and other blocking: Because interrupts are
319 * used solely to alert threads to check termination, which is
320 * checked anyway upon blocking, we clear status (using
321 * Thread.interrupted) before any call to park, so that park does
322 * not immediately return due to status being set via some other
323 * unrelated call to interrupt in user code.
324 *
325 * Signalling. We create or wake up workers only when there
326 * appears to be at least one task they might be able to find and
327 * execute. When a submission is added or another worker adds a
328 * task to a queue that has fewer than two tasks, they signal
329 * waiting workers (or trigger creation of new ones if fewer than
330 * the given parallelism level -- signalWork). These primary
331 * signals are buttressed by others whenever other threads remove
332 * a task from a queue and notice that there are other tasks there
333 * as well. So in general, pools will be over-signalled. On most
334 * platforms, signalling (unpark) overhead time is noticeably
335 * long, and the time between signalling a thread and it actually
336 * making progress can be very noticeably long, so it is worth
337 * offloading these delays from critical paths as much as
338 * possible. Additionally, workers spin-down gradually, by staying
339 * alive so long as they see the ctl state changing. Similar
340 * stability-sensing techniques are also used before blocking in
341 * awaitJoin and helpComplete.
342 *
343 * Trimming workers. To release resources after periods of lack of
344 * use, a worker starting to wait when the pool is quiescent will
345 * time out and terminate if the pool has remained quiescent for a
346 * given period -- a short period if there are more threads than
347 * parallelism, longer as the number of threads decreases. This
348 * will slowly propagate, eventually terminating all workers after
349 * periods of non-use.
350 *
351 * Shutdown and Termination. A call to shutdownNow atomically sets
352 * a plock bit and then (non-atomically) sets each worker's
353 * qlock status, cancels all unprocessed tasks, and wakes up
354 * all waiting workers. Detecting whether termination should
355 * commence after a non-abrupt shutdown() call requires more work
356 * and bookkeeping. We need consensus about quiescence (i.e., that
357 * there is no more work). The active count provides a primary
358 * indication but non-abrupt shutdown still requires a rechecking
359 * scan for any workers that are inactive but not queued.
360 *
361 * Joining Tasks
362 * =============
363 *
364 * Any of several actions may be taken when one worker is waiting
365 * to join a task stolen (or always held) by another. Because we
366 * are multiplexing many tasks on to a pool of workers, we can't
367 * just let them block (as in Thread.join). We also cannot just
368 * reassign the joiner's run-time stack with another and replace
369 * it later, which would be a form of "continuation", that even if
370 * possible is not necessarily a good idea since we sometimes need
371 * both an unblocked task and its continuation to progress.
372 * Instead we combine two tactics:
373 *
374 * Helping: Arranging for the joiner to execute some task that it
375 * would be running if the steal had not occurred.
376 *
377 * Compensating: Unless there are already enough live threads,
378 * method tryCompensate() may create or re-activate a spare
379 * thread to compensate for blocked joiners until they unblock.
380 *
381 * A third form (implemented in tryRemoveAndExec) amounts to
382 * helping a hypothetical compensator: If we can readily tell that
383 * a possible action of a compensator is to steal and execute the
384 * task being joined, the joining thread can do so directly,
385 * without the need for a compensation thread (although at the
386 * expense of larger run-time stacks, but the tradeoff is
387 * typically worthwhile).
388 *
389 * The ManagedBlocker extension API can't use helping so relies
390 * only on compensation in method awaitBlocker.
391 *
392 * The algorithm in tryHelpStealer entails a form of "linear"
393 * helping: Each worker records (in field currentSteal) the most
394 * recent task it stole from some other worker. Plus, it records
395 * (in field currentJoin) the task it is currently actively
396 * joining. Method tryHelpStealer uses these markers to try to
397 * find a worker to help (i.e., steal back a task from and execute
398 * it) that could hasten completion of the actively joined task.
399 * In essence, the joiner executes a task that would be on its own
400 * local deque had the to-be-joined task not been stolen. This may
401 * be seen as a conservative variant of the approach in Wagner &
402 * Calder "Leapfrogging: a portable technique for implementing
403 * efficient futures" SIGPLAN Notices, 1993
404 * (http://portal.acm.org/citation.cfm?id=155354). It differs in
405 * that: (1) We only maintain dependency links across workers upon
406 * steals, rather than use per-task bookkeeping. This sometimes
407 * requires a linear scan of workQueues array to locate stealers,
408 * but often doesn't because stealers leave hints (that may become
409 * stale/wrong) of where to locate them. It is only a hint
410 * because a worker might have had multiple steals and the hint
411 * records only one of them (usually the most current). Hinting
412 * isolates cost to when it is needed, rather than adding to
413 * per-task overhead. (2) It is "shallow", ignoring nesting and
414 * potentially cyclic mutual steals. (3) It is intentionally
415 * racy: field currentJoin is updated only while actively joining,
416 * which means that we miss links in the chain during long-lived
417 * tasks, GC stalls etc (which is OK since blocking in such cases
418 * is usually a good idea). (4) We bound the number of attempts
419 * to find work (see MAX_HELP) and fall back to suspending the
420 * worker and if necessary replacing it with another.
421 *
422 * Helping actions for CountedCompleters are much simpler: Method
423 * helpComplete can take and execute any task with the same root
424 * as the task being waited on. However, this still entails some
425 * traversal of completer chains, so is less efficient than using
426 * CountedCompleters without explicit joins.
427 *
428 * It is impossible to keep exactly the target parallelism number
429 * of threads running at any given time. Determining the
430 * existence of conservatively safe helping targets, the
431 * availability of already-created spares, and the apparent need
432 * to create new spares are all racy, so we rely on multiple
433 * retries of each. Compensation in the apparent absence of
434 * helping opportunities is challenging to control on JVMs, where
435 * GC and other activities can stall progress of tasks that in
436 * turn stall out many other dependent tasks, without us being
437 * able to determine whether they will ever require compensation.
438 * Even though work-stealing otherwise encounters little
439 * degradation in the presence of more threads than cores,
440 * aggressively adding new threads in such cases entails risk of
441 * unwanted positive feedback control loops in which more threads
442 * cause more dependent stalls (as well as delayed progress of
443 * unblocked threads to the point that we know they are available)
444 * leading to more situations requiring more threads, and so
445 * on. This aspect of control can be seen as an (analytically
446 * intractable) game with an opponent that may choose the worst
447 * (for us) active thread to stall at any time. We take several
448 * precautions to bound losses (and thus bound gains), mainly in
449 * methods tryCompensate and awaitJoin.
450 *
451 * Common Pool
452 * ===========
453 *
454 * The static common pool always exists after static
455 * initialization. Since it (or any other created pool) need
456 * never be used, we minimize initial construction overhead and
457 * footprint to the setup of about a dozen fields, with no nested
458 * allocation. Most bootstrapping occurs within method
459 * fullExternalPush during the first submission to the pool.
460 *
461 * When external threads submit to the common pool, they can
462 * perform subtask processing (see externalHelpJoin and related
463 * methods). This caller-helps policy makes it sensible to set
464 * common pool parallelism level to one (or more) less than the
465 * total number of available cores, or even zero for pure
466 * caller-runs. We do not need to record whether external
467 * submissions are to the common pool -- if not, externalHelpJoin
468 * returns quickly (at the most helping to signal some common pool
469 * workers). These submitters would otherwise be blocked waiting
470 * for completion, so the extra effort (with liberally sprinkled
471 * task status checks) in inapplicable cases amounts to an odd
472 * form of limited spin-wait before blocking in ForkJoinTask.join.
473 *
474 * Style notes
475 * ===========
476 *
477 * There is a lot of representation-level coupling among classes
478 * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
479 * fields of WorkQueue maintain data structures managed by
480 * ForkJoinPool, so are directly accessed. There is little point
481 * trying to reduce this, since any associated future changes in
482 * representations will need to be accompanied by algorithmic
483 * changes anyway. Several methods intrinsically sprawl because
484 * they must accumulate sets of consistent reads of volatiles held
485 * in local variables. Methods signalWork() and scan() are the
486 * main bottlenecks, so are especially heavily
487 * micro-optimized/mangled. There are lots of inline assignments
488 * (of form "while ((local = field) != 0)") which are usually the
489 * simplest way to ensure the required read orderings (which are
490 * sometimes critical). This leads to a "C"-like style of listing
491 * declarations of these locals at the heads of methods or blocks.
492 * There are several occurrences of the unusual "do {} while
493 * (!cas...)" which is the simplest way to force an update of a
494 * CAS'ed variable. There are also other coding oddities (including
495 * several unnecessary-looking hoisted null checks) that help
496 * some methods perform reasonably even when interpreted (not
497 * compiled).
498 *
499 * The order of declarations in this file is:
500 * (1) Static utility functions
501 * (2) Nested (static) classes
502 * (3) Static fields
503 * (4) Fields, along with constants used when unpacking some of them
504 * (5) Internal control methods
505 * (6) Callbacks and other support for ForkJoinTask methods
506 * (7) Exported methods
507 * (8) Static block initializing statics in minimally dependent order
508 */
509
510 // Static utilities
511
512 /**
513 * If there is a security manager, makes sure caller has
514 * permission to modify threads.
515 */
516 private static void checkPermission() {
517 SecurityManager security = System.getSecurityManager();
518 if (security != null)
519 security.checkPermission(modifyThreadPermission);
520 }
521
522 // Nested classes
523
524 /**
525 * Factory for creating new {@link ForkJoinWorkerThread}s.
526 * A {@code ForkJoinWorkerThreadFactory} must be defined and used
527 * for {@code ForkJoinWorkerThread} subclasses that extend base
528 * functionality or initialize threads with different contexts.
529 */
530 public static interface ForkJoinWorkerThreadFactory {
531 /**
532 * Returns a new worker thread operating in the given pool.
533 *
534 * @param pool the pool this thread works in
535 * @throws NullPointerException if the pool is null
536 * @return the new worker thread
537 */
538 public ForkJoinWorkerThread newThread(ForkJoinPool pool);
539 }
540
541 /**
542 * Default ForkJoinWorkerThreadFactory implementation; creates a
543 * new ForkJoinWorkerThread.
544 */
545 static final class DefaultForkJoinWorkerThreadFactory
546 implements ForkJoinWorkerThreadFactory {
547 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
548 return new ForkJoinWorkerThread(pool);
549 }
550 }
551
552 /**
553 * Class for artificial tasks that are used to replace the target
554 * of local joins if they are removed from an interior queue slot
555 * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
556 * actually do anything beyond having a unique identity.
557 */
558 static final class EmptyTask extends ForkJoinTask<Void> {
559 private static final long serialVersionUID = -7721805057305804111L;
560 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
561 public final Void getRawResult() { return null; }
562 public final void setRawResult(Void x) {}
563 public final boolean exec() { return true; }
564 }
565
566 /**
567 * Queues supporting work-stealing as well as external task
568 * submission. See above for main rationale and algorithms.
569 * Implementation relies heavily on "Unsafe" intrinsics
570 * and selective use of "volatile":
571 *
572 * Field "base" is the index (mod array.length) of the least valid
573 * queue slot, which is always the next position to steal (poll)
574 * from if nonempty. Reads and writes require volatile orderings
575 * but not CAS, because updates are only performed after slot
576 * CASes.
577 *
578 * Field "top" is the index (mod array.length) of the next queue
579 * slot to push to or pop from. It is written only by owner thread
580 * for push, or under lock for external/shared push, and accessed
581 * by other threads only after reading (volatile) base. Both top
582 * and base are allowed to wrap around on overflow, but (top -
583 * base) (or more commonly -(base - top) to force volatile read of
584 * base before top) still estimates size. The lock ("qlock") is
585 * forced to -1 on termination, causing all further lock attempts
586 * to fail. (Note: we don't need CAS for termination state because
587 * upon pool shutdown, all shared-queues will stop being used
588 * anyway.) Nearly all lock bodies are set up so that exceptions
589 * within lock bodies are "impossible" (modulo JVM errors that
590 * would cause failure anyway.)
591 *
592 * The array slots are read and written using the emulation of
593 * volatiles/atomics provided by Unsafe. Insertions must in
594 * general use putOrderedObject as a form of releasing store to
595 * ensure that all writes to the task object are ordered before
596 * its publication in the queue. All removals entail a CAS to
597 * null. The array is always a power of two. To ensure safety of
598 * Unsafe array operations, all accesses perform explicit null
599 * checks and implicit bounds checks via power-of-two masking.
600 *
601 * In addition to basic queuing support, this class contains
602 * fields described elsewhere to control execution. It turns out
603 * to work better memory-layout-wise to include them in this class
604 * rather than a separate class.
605 *
606 * Performance on most platforms is very sensitive to placement of
607 * instances of both WorkQueues and their arrays -- we absolutely
608 * do not want multiple WorkQueue instances or multiple queue
609 * arrays sharing cache lines. (It would be best for queue objects
610 * and their arrays to share, but there is nothing available to
611 * help arrange that). The @Contended annotation alerts JVMs to
612 * try to keep instances apart.
613 */
614 @sun.misc.Contended
615 static final class WorkQueue {
616 /**
617 * Capacity of work-stealing queue array upon initialization.
618 * Must be a power of two; at least 4, but should be larger to
619 * reduce or eliminate cacheline sharing among queues.
620 * Currently, it is much larger, as a partial workaround for
621 * the fact that JVMs often place arrays in locations that
622 * share GC bookkeeping (especially cardmarks) such that
623 * per-write accesses encounter serious memory contention.
624 */
625 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
626
627 /**
628 * Maximum size for queue arrays. Must be a power of two less
629 * than or equal to 1 << (31 - width of array entry) to ensure
630 * lack of wraparound of index calculations, but defined to a
631 * value a bit less than this to help users trap runaway
632 * programs before saturating systems.
633 */
634 static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
635
636 volatile int eventCount; // encoded inactivation count; < 0 if inactive
637 int nextWait; // encoded record of next event waiter
638 int nsteals; // number of steals
639 int hint; // steal index hint
640 short poolIndex; // index of this queue in pool
641 final short mode; // 0: lifo, > 0: fifo, < 0: shared
642 volatile int qlock; // 1: locked, -1: terminate; else 0
643 volatile int base; // index of next slot for poll
644 int top; // index of next slot for push
645 ForkJoinTask<?>[] array; // the elements (initially unallocated)
646 final ForkJoinPool pool; // the containing pool (may be null)
647 final ForkJoinWorkerThread owner; // owning thread or null if shared
648 volatile Thread parker; // == owner during call to park; else null
649 volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
650 ForkJoinTask<?> currentSteal; // current non-local task being executed
651
652 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
653 int seed) {
654 this.pool = pool;
655 this.owner = owner;
656 this.mode = (short)mode;
657 this.hint = seed; // store initial seed for runWorker
658 // Place indices in the center of array (that is not yet allocated)
659 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
660 }
661
662 /**
663 * Returns the approximate number of tasks in the queue.
664 */
665 final int queueSize() {
666 int n = base - top; // non-owner callers must read base first
667 return (n >= 0) ? 0 : -n; // ignore transient negative
668 }
669
670 /**
671 * Provides a more accurate estimate of whether this queue has
672 * any tasks than does queueSize, by checking whether a
673 * near-empty queue has at least one unclaimed task.
674 */
675 final boolean isEmpty() {
676 ForkJoinTask<?>[] a; int m, s;
677 int n = base - (s = top);
678 return (n >= 0 ||
679 (n == -1 &&
680 ((a = array) == null ||
681 (m = a.length - 1) < 0 ||
682 U.getObject
683 (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
684 }
685
686 /**
687 * Pushes a task. Call only by owner in unshared queues. (The
688 * shared-queue version is embedded in method externalPush.)
689 *
690 * @param task the task. Caller must ensure non-null.
691 * @throws RejectedExecutionException if array cannot be resized
692 */
693 final void push(ForkJoinTask<?> task) {
694 ForkJoinTask<?>[] a; ForkJoinPool p;
695 int s = top, n;
696 if ((a = array) != null) { // ignore if queue removed
697 int m = a.length - 1;
698 U.putOrderedObject(a, ((m & s) << ASHIFT) + ABASE, task);
699 if ((n = (top = s + 1) - base) <= 2)
700 (p = pool).signalWork(p.workQueues, this);
701 else if (n >= m)
702 growArray();
703 }
704 }
705
706 /**
707 * Initializes or doubles the capacity of array. Call either
708 * by owner or with lock held -- it is OK for base, but not
709 * top, to move while resizings are in progress.
710 */
711 final ForkJoinTask<?>[] growArray() {
712 ForkJoinTask<?>[] oldA = array;
713 int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
714 if (size > MAXIMUM_QUEUE_CAPACITY)
715 throw new RejectedExecutionException("Queue capacity exceeded");
716 int oldMask, t, b;
717 ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
718 if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
719 (t = top) - (b = base) > 0) {
720 int mask = size - 1;
721 do {
722 ForkJoinTask<?> x;
723 int oldj = ((b & oldMask) << ASHIFT) + ABASE;
724 int j = ((b & mask) << ASHIFT) + ABASE;
725 x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
726 if (x != null &&
727 U.compareAndSwapObject(oldA, oldj, x, null))
728 U.putObjectVolatile(a, j, x);
729 } while (++b != t);
730 }
731 return a;
732 }
733
734 /**
735 * Takes next task, if one exists, in LIFO order. Call only
736 * by owner in unshared queues.
737 */
738 final ForkJoinTask<?> pop() {
739 ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
740 if ((a = array) != null && (m = a.length - 1) >= 0) {
741 for (int s; (s = top - 1) - base >= 0;) {
742 long j = ((m & s) << ASHIFT) + ABASE;
743 if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
744 break;
745 if (U.compareAndSwapObject(a, j, t, null)) {
746 top = s;
747 return t;
748 }
749 }
750 }
751 return null;
752 }
753
754 /**
755 * Takes a task in FIFO order if b is base of queue and a task
756 * can be claimed without contention. Specialized versions
757 * appear in ForkJoinPool methods scan and tryHelpStealer.
758 */
759 final ForkJoinTask<?> pollAt(int b) {
760 ForkJoinTask<?> t; ForkJoinTask<?>[] a;
761 if ((a = array) != null) {
762 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
763 if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
764 base == b && U.compareAndSwapObject(a, j, t, null)) {
765 U.putOrderedInt(this, QBASE, b + 1);
766 return t;
767 }
768 }
769 return null;
770 }
771
772 /**
773 * Takes next task, if one exists, in FIFO order.
774 */
775 final ForkJoinTask<?> poll() {
776 ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
777 while ((b = base) - top < 0 && (a = array) != null) {
778 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
779 t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
780 if (t != null) {
781 if (U.compareAndSwapObject(a, j, t, null)) {
782 U.putOrderedInt(this, QBASE, b + 1);
783 return t;
784 }
785 }
786 else if (base == b) {
787 if (b + 1 == top)
788 break;
789 Thread.yield(); // wait for lagging update (very rare)
790 }
791 }
792 return null;
793 }
794
795 /**
796 * Takes next task, if one exists, in order specified by mode.
797 */
798 final ForkJoinTask<?> nextLocalTask() {
799 return mode == 0 ? pop() : poll();
800 }
801
802 /**
803 * Returns next task, if one exists, in order specified by mode.
804 */
805 final ForkJoinTask<?> peek() {
806 ForkJoinTask<?>[] a = array; int m;
807 if (a == null || (m = a.length - 1) < 0)
808 return null;
809 int i = mode == 0 ? top - 1 : base;
810 int j = ((i & m) << ASHIFT) + ABASE;
811 return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
812 }
813
814 /**
815 * Pops the given task only if it is at the current top.
816 * (A shared version is available only via FJP.tryExternalUnpush)
817 */
818 final boolean tryUnpush(ForkJoinTask<?> t) {
819 ForkJoinTask<?>[] a; int s;
820 if ((a = array) != null && (s = top) != base &&
821 U.compareAndSwapObject
822 (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
823 top = s;
824 return true;
825 }
826 return false;
827 }
828
829 /**
830 * Removes and cancels all known tasks, ignoring any exceptions.
831 */
832 final void cancelAll() {
833 ForkJoinTask.cancelIgnoringExceptions(currentJoin);
834 ForkJoinTask.cancelIgnoringExceptions(currentSteal);
835 for (ForkJoinTask<?> t; (t = poll()) != null; )
836 ForkJoinTask.cancelIgnoringExceptions(t);
837 }
838
839 // Specialized execution methods
840
841 /**
842 * Polls and runs tasks until empty.
843 */
844 final void pollAndExecAll() {
845 for (ForkJoinTask<?> t; (t = poll()) != null;)
846 t.doExec();
847 }
848
849 /**
850 * Executes a top-level task and any local tasks remaining
851 * after execution.
852 */
853 final void runTask(ForkJoinTask<?> task) {
854 if ((currentSteal = task) != null) {
855 task.doExec();
856 ForkJoinTask<?>[] a = array;
857 int md = mode;
858 ++nsteals;
859 currentSteal = null;
860 if (md != 0)
861 pollAndExecAll();
862 else if (a != null) {
863 int s, m = a.length - 1;
864 ForkJoinTask<?> t;
865 while ((s = top - 1) - base >= 0 &&
866 (t = (ForkJoinTask<?>)U.getAndSetObject
867 (a, ((m & s) << ASHIFT) + ABASE, null)) != null) {
868 top = s;
869 t.doExec();
870 }
871 }
872 }
873 }
874
875 /**
876 * If present, removes from queue and executes the given task,
877 * or any other cancelled task. Returns (true) on any CAS
878 * or consistency check failure so caller can retry.
879 *
880 * @return false if no progress can be made, else true
881 */
882 final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
883 boolean stat;
884 ForkJoinTask<?>[] a; int m, s, b, n;
885 if (task != null && (a = array) != null && (m = a.length - 1) >= 0 &&
886 (n = (s = top) - (b = base)) > 0) {
887 boolean removed = false, empty = true;
888 stat = true;
889 for (ForkJoinTask<?> t;;) { // traverse from s to b
890 long j = ((--s & m) << ASHIFT) + ABASE;
891 t = (ForkJoinTask<?>)U.getObject(a, j);
892 if (t == null) // inconsistent length
893 break;
894 else if (t == task) {
895 if (s + 1 == top) { // pop
896 if (!U.compareAndSwapObject(a, j, task, null))
897 break;
898 top = s;
899 removed = true;
900 }
901 else if (base == b) // replace with proxy
902 removed = U.compareAndSwapObject(a, j, task,
903 new EmptyTask());
904 break;
905 }
906 else if (t.status >= 0)
907 empty = false;
908 else if (s + 1 == top) { // pop and throw away
909 if (U.compareAndSwapObject(a, j, t, null))
910 top = s;
911 break;
912 }
913 if (--n == 0) {
914 if (!empty && base == b)
915 stat = false;
916 break;
917 }
918 }
919 if (removed)
920 task.doExec();
921 }
922 else
923 stat = false;
924 return stat;
925 }
926
927 /**
928 * Tries to poll for and execute the given task or any other
929 * task in its CountedCompleter computation.
930 */
931 final boolean pollAndExecCC(CountedCompleter<?> root) {
932 ForkJoinTask<?>[] a; int b; Object o; CountedCompleter<?> t, r;
933 if ((b = base) - top < 0 && (a = array) != null) {
934 long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
935 if ((o = U.getObjectVolatile(a, j)) == null)
936 return true; // retry
937 if (o instanceof CountedCompleter) {
938 for (t = (CountedCompleter<?>)o, r = t;;) {
939 if (r == root) {
940 if (base == b &&
941 U.compareAndSwapObject(a, j, t, null)) {
942 U.putOrderedInt(this, QBASE, b + 1);
943 t.doExec();
944 }
945 return true;
946 }
947 else if ((r = r.completer) == null)
948 break; // not part of root computation
949 }
950 }
951 }
952 return false;
953 }
954
955 /**
956 * Tries to pop and execute the given task or any other task
957 * in its CountedCompleter computation.
958 */
959 final boolean externalPopAndExecCC(CountedCompleter<?> root) {
960 ForkJoinTask<?>[] a; int s; Object o; CountedCompleter<?> t, r;
961 if (base - (s = top) < 0 && (a = array) != null) {
962 long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
963 if ((o = U.getObject(a, j)) instanceof CountedCompleter) {
964 for (t = (CountedCompleter<?>)o, r = t;;) {
965 if (r == root) {
966 if (U.compareAndSwapInt(this, QLOCK, 0, 1)) {
967 if (top == s && array == a &&
968 U.compareAndSwapObject(a, j, t, null)) {
969 top = s - 1;
970 qlock = 0;
971 t.doExec();
972 }
973 else
974 qlock = 0;
975 }
976 return true;
977 }
978 else if ((r = r.completer) == null)
979 break;
980 }
981 }
982 }
983 return false;
984 }
985
986 /**
987 * Internal version
988 */
989 final boolean internalPopAndExecCC(CountedCompleter<?> root) {
990 ForkJoinTask<?>[] a; int s; Object o; CountedCompleter<?> t, r;
991 if (base - (s = top) < 0 && (a = array) != null) {
992 long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
993 if ((o = U.getObject(a, j)) instanceof CountedCompleter) {
994 for (t = (CountedCompleter<?>)o, r = t;;) {
995 if (r == root) {
996 if (U.compareAndSwapObject(a, j, t, null)) {
997 top = s - 1;
998 t.doExec();
999 }
1000 return true;
1001 }
1002 else if ((r = r.completer) == null)
1003 break;
1004 }
1005 }
1006 }
1007 return false;
1008 }
1009
1010 /**
1011 * Returns true if owned and not known to be blocked.
1012 */
1013 final boolean isApparentlyUnblocked() {
1014 Thread wt; Thread.State s;
1015 return (eventCount >= 0 &&
1016 (wt = owner) != null &&
1017 (s = wt.getState()) != Thread.State.BLOCKED &&
1018 s != Thread.State.WAITING &&
1019 s != Thread.State.TIMED_WAITING);
1020 }
1021
1022 // Unsafe mechanics
1023 private static final sun.misc.Unsafe U;
1024 private static final long QBASE;
1025 private static final long QLOCK;
1026 private static final int ABASE;
1027 private static final int ASHIFT;
1028 static {
1029 try {
1030 U = sun.misc.Unsafe.getUnsafe();
1031 Class<?> k = WorkQueue.class;
1032 Class<?> ak = ForkJoinTask[].class;
1033 QBASE = U.objectFieldOffset
1034 (k.getDeclaredField("base"));
1035 QLOCK = U.objectFieldOffset
1036 (k.getDeclaredField("qlock"));
1037 ABASE = U.arrayBaseOffset(ak);
1038 int scale = U.arrayIndexScale(ak);
1039 if ((scale & (scale - 1)) != 0)
1040 throw new Error("data type scale not a power of two");
1041 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1042 } catch (Exception e) {
1043 throw new Error(e);
1044 }
1045 }
1046 }
1047
1048 // static fields (initialized in static initializer below)
1049
1050 /**
1051 * Creates a new ForkJoinWorkerThread. This factory is used unless
1052 * overridden in ForkJoinPool constructors.
1053 */
1054 public static final ForkJoinWorkerThreadFactory
1055 defaultForkJoinWorkerThreadFactory;
1056
1057 /**
1058 * Permission required for callers of methods that may start or
1059 * kill threads.
1060 */
1061 private static final RuntimePermission modifyThreadPermission;
1062
1063 /**
1064 * Common (static) pool. Non-null for public use unless a static
1065 * construction exception, but internal usages null-check on use
1066 * to paranoically avoid potential initialization circularities
1067 * as well as to simplify generated code.
1068 */
1069 static final ForkJoinPool common;
1070
1071 /**
1072 * Common pool parallelism. To allow simpler use and management
1073 * when common pool threads are disabled, we allow the underlying
1074 * common.parallelism field to be zero, but in that case still report
1075 * parallelism as 1 to reflect resulting caller-runs mechanics.
1076 */
1077 static final int commonParallelism;
1078
1079 /**
1080 * Sequence number for creating workerNamePrefix.
1081 */
1082 private static int poolNumberSequence;
1083
1084 /**
1085 * Returns the next sequence number. We don't expect this to
1086 * ever contend, so use simple builtin sync.
1087 */
1088 private static final synchronized int nextPoolId() {
1089 return ++poolNumberSequence;
1090 }
1091
1092 // static constants
1093
1094 /**
1095 * Initial timeout value (in nanoseconds) for the thread
1096 * triggering quiescence to park waiting for new work. On timeout,
1097 * the thread will instead try to shrink the number of
1098 * workers. The value should be large enough to avoid overly
1099 * aggressive shrinkage during most transient stalls (long GCs
1100 * etc).
1101 */
1102 private static final long IDLE_TIMEOUT = 2000L * 1000L * 1000L; // 2sec
1103
1104 /**
1105 * Timeout value when there are more threads than parallelism level
1106 */
1107 private static final long FAST_IDLE_TIMEOUT = 200L * 1000L * 1000L;
1108
1109 /**
1110 * Tolerance for idle timeouts, to cope with timer undershoots
1111 */
1112 private static final long TIMEOUT_SLOP = 2000000L;
1113
1114 /**
1115 * The maximum stolen->joining link depth allowed in method
1116 * tryHelpStealer. Must be a power of two. Depths for legitimate
1117 * chains are unbounded, but we use a fixed constant to avoid
1118 * (otherwise unchecked) cycles and to bound staleness of
1119 * traversal parameters at the expense of sometimes blocking when
1120 * we could be helping.
1121 */
1122 private static final int MAX_HELP = 64;
1123
1124 /**
1125 * Increment for seed generators. See class ThreadLocal for
1126 * explanation.
1127 */
1128 private static final int SEED_INCREMENT = 0x61c88647;
1129
1130 /*
1131 * Bits and masks for control variables
1132 *
1133 * Field ctl is a long packed with:
1134 * AC: Number of active running workers minus target parallelism (16 bits)
1135 * TC: Number of total workers minus target parallelism (16 bits)
1136 * ST: true if pool is terminating (1 bit)
1137 * EC: the wait count of top waiting thread (15 bits)
1138 * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1139 *
1140 * When convenient, we can extract the upper 32 bits of counts and
1141 * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1142 * (int)ctl. The ec field is never accessed alone, but always
1143 * together with id and st. The offsets of counts by the target
1144 * parallelism and the positionings of fields makes it possible to
1145 * perform the most common checks via sign tests of fields: When
1146 * ac is negative, there are not enough active workers, when tc is
1147 * negative, there are not enough total workers, and when e is
1148 * negative, the pool is terminating. To deal with these possibly
1149 * negative fields, we use casts in and out of "short" and/or
1150 * signed shifts to maintain signedness.
1151 *
1152 * When a thread is queued (inactivated), its eventCount field is
1153 * set negative, which is the only way to tell if a worker is
1154 * prevented from executing tasks, even though it must continue to
1155 * scan for them to avoid queuing races. Note however that
1156 * eventCount updates lag releases so usage requires care.
1157 *
1158 * Field plock is an int packed with:
1159 * SHUTDOWN: true if shutdown is enabled (1 bit)
1160 * SEQ: a sequence lock, with PL_LOCK bit set if locked (30 bits)
1161 * SIGNAL: set when threads may be waiting on the lock (1 bit)
1162 *
1163 * The sequence number enables simple consistency checks:
1164 * Staleness of read-only operations on the workQueues array can
1165 * be checked by comparing plock before vs after the reads.
1166 */
1167
1168 // bit positions/shifts for fields
1169 private static final int AC_SHIFT = 48;
1170 private static final int TC_SHIFT = 32;
1171 private static final int ST_SHIFT = 31;
1172 private static final int EC_SHIFT = 16;
1173
1174 // bounds
1175 private static final int SMASK = 0xffff; // short bits
1176 private static final int MAX_CAP = 0x7fff; // max #workers - 1
1177 private static final int EVENMASK = 0xfffe; // even short bits
1178 private static final int SQMASK = 0x007e; // max 64 (even) slots
1179 private static final int SHORT_SIGN = 1 << 15;
1180 private static final int INT_SIGN = 1 << 31;
1181
1182 // masks
1183 private static final long STOP_BIT = 0x0001L << ST_SHIFT;
1184 private static final long AC_MASK = ((long)SMASK) << AC_SHIFT;
1185 private static final long TC_MASK = ((long)SMASK) << TC_SHIFT;
1186
1187 // units for incrementing and decrementing
1188 private static final long TC_UNIT = 1L << TC_SHIFT;
1189 private static final long AC_UNIT = 1L << AC_SHIFT;
1190
1191 // masks and units for dealing with u = (int)(ctl >>> 32)
1192 private static final int UAC_SHIFT = AC_SHIFT - 32;
1193 private static final int UTC_SHIFT = TC_SHIFT - 32;
1194 private static final int UAC_MASK = SMASK << UAC_SHIFT;
1195 private static final int UTC_MASK = SMASK << UTC_SHIFT;
1196 private static final int UAC_UNIT = 1 << UAC_SHIFT;
1197 private static final int UTC_UNIT = 1 << UTC_SHIFT;
1198
1199 // masks and units for dealing with e = (int)ctl
1200 private static final int E_MASK = 0x7fffffff; // no STOP_BIT
1201 private static final int E_SEQ = 1 << EC_SHIFT;
1202
1203 // plock bits
1204 private static final int SHUTDOWN = 1 << 31;
1205 private static final int PL_LOCK = 2;
1206 private static final int PL_SIGNAL = 1;
1207 private static final int PL_SPINS = 1 << 8;
1208
1209 // access mode for WorkQueue
1210 static final int LIFO_QUEUE = 0;
1211 static final int FIFO_QUEUE = 1;
1212 static final int SHARED_QUEUE = -1;
1213
1214 // Instance fields
1215 volatile long stealCount; // collects worker counts
1216 volatile long ctl; // main pool control
1217 volatile int plock; // shutdown status and seqLock
1218 volatile int indexSeed; // worker/submitter index seed
1219 final short parallelism; // parallelism level
1220 final short mode; // LIFO/FIFO
1221 WorkQueue[] workQueues; // main registry
1222 final ForkJoinWorkerThreadFactory factory;
1223 final UncaughtExceptionHandler ueh; // per-worker UEH
1224 final String workerNamePrefix; // to create worker name string
1225
1226 /**
1227 * Acquires the plock lock to protect worker array and related
1228 * updates. This method is called only if an initial CAS on plock
1229 * fails. This acts as a spinlock for normal cases, but falls back
1230 * to builtin monitor to block when (rarely) needed. This would be
1231 * a terrible idea for a highly contended lock, but works fine as
1232 * a more conservative alternative to a pure spinlock.
1233 */
1234 private int acquirePlock() {
1235 int spins = PL_SPINS, ps, nps;
1236 for (;;) {
1237 if (((ps = plock) & PL_LOCK) == 0 &&
1238 U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1239 return nps;
1240 else if (spins >= 0) {
1241 if (ThreadLocalRandom.nextSecondarySeed() >= 0)
1242 --spins;
1243 }
1244 else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1245 synchronized (this) {
1246 if ((plock & PL_SIGNAL) != 0) {
1247 try {
1248 wait();
1249 } catch (InterruptedException ie) {
1250 try {
1251 Thread.currentThread().interrupt();
1252 } catch (SecurityException ignore) {
1253 }
1254 }
1255 }
1256 else
1257 notifyAll();
1258 }
1259 }
1260 }
1261 }
1262
1263 /**
1264 * Unlocks and signals any thread waiting for plock. Called only
1265 * when CAS of seq value for unlock fails.
1266 */
1267 private void releasePlock(int ps) {
1268 plock = ps;
1269 synchronized (this) { notifyAll(); }
1270 }
1271
1272 /**
1273 * Tries to create and start one worker if fewer than target
1274 * parallelism level exist. Adjusts counts etc on failure.
1275 */
1276 private void tryAddWorker() {
1277 long c; int u, e;
1278 while ((u = (int)((c = ctl) >>> 32)) < 0 &&
1279 (u & SHORT_SIGN) != 0 && (e = (int)c) >= 0) {
1280 long nc = ((long)(((u + UTC_UNIT) & UTC_MASK) |
1281 ((u + UAC_UNIT) & UAC_MASK)) << 32) | (long)e;
1282 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1283 ForkJoinWorkerThreadFactory fac;
1284 Throwable ex = null;
1285 ForkJoinWorkerThread wt = null;
1286 try {
1287 if ((fac = factory) != null &&
1288 (wt = fac.newThread(this)) != null) {
1289 wt.start();
1290 break;
1291 }
1292 } catch (Throwable rex) {
1293 ex = rex;
1294 }
1295 deregisterWorker(wt, ex);
1296 break;
1297 }
1298 }
1299 }
1300
1301 // Registering and deregistering workers
1302
1303 /**
1304 * Callback from ForkJoinWorkerThread to establish and record its
1305 * WorkQueue. To avoid scanning bias due to packing entries in
1306 * front of the workQueues array, we treat the array as a simple
1307 * power-of-two hash table using per-thread seed as hash,
1308 * expanding as needed.
1309 *
1310 * @param wt the worker thread
1311 * @return the worker's queue
1312 */
1313 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1314 UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps;
1315 wt.setDaemon(true);
1316 if ((handler = ueh) != null)
1317 wt.setUncaughtExceptionHandler(handler);
1318 do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
1319 s += SEED_INCREMENT) ||
1320 s == 0); // skip 0
1321 WorkQueue w = new WorkQueue(this, wt, mode, s);
1322 if (((ps = plock) & PL_LOCK) != 0 ||
1323 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1324 ps = acquirePlock();
1325 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1326 try {
1327 if ((ws = workQueues) != null) { // skip if shutting down
1328 int n = ws.length, m = n - 1;
1329 int r = (s << 1) | 1; // use odd-numbered indices
1330 if (ws[r &= m] != null) { // collision
1331 int probes = 0; // step by approx half size
1332 int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1333 while (ws[r = (r + step) & m] != null) {
1334 if (++probes >= n) {
1335 workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1336 m = n - 1;
1337 probes = 0;
1338 }
1339 }
1340 }
1341 w.poolIndex = (short)r;
1342 w.eventCount = r; // volatile write orders
1343 ws[r] = w;
1344 }
1345 } finally {
1346 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1347 releasePlock(nps);
1348 }
1349 wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex >>> 1)));
1350 return w;
1351 }
1352
1353 /**
1354 * Final callback from terminating worker, as well as upon failure
1355 * to construct or start a worker. Removes record of worker from
1356 * array, and adjusts counts. If pool is shutting down, tries to
1357 * complete termination.
1358 *
1359 * @param wt the worker thread, or null if construction failed
1360 * @param ex the exception causing failure, or null if none
1361 */
1362 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1363 WorkQueue w = null;
1364 if (wt != null && (w = wt.workQueue) != null) {
1365 int ps;
1366 w.qlock = -1; // ensure set
1367 U.getAndAddLong(this, STEALCOUNT, w.nsteals); // collect steals
1368 if (((ps = plock) & PL_LOCK) != 0 ||
1369 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1370 ps = acquirePlock();
1371 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1372 try {
1373 int idx = w.poolIndex;
1374 WorkQueue[] ws = workQueues;
1375 if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1376 ws[idx] = null;
1377 } finally {
1378 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1379 releasePlock(nps);
1380 }
1381 }
1382
1383 long c; // adjust ctl counts
1384 do {} while (!U.compareAndSwapLong
1385 (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1386 ((c - TC_UNIT) & TC_MASK) |
1387 (c & ~(AC_MASK|TC_MASK)))));
1388
1389 if (!tryTerminate(false, false) && w != null && w.array != null) {
1390 w.cancelAll(); // cancel remaining tasks
1391 WorkQueue[] ws; WorkQueue v; Thread p; int u, i, e;
1392 while ((u = (int)((c = ctl) >>> 32)) < 0 && (e = (int)c) >= 0) {
1393 if (e > 0) { // activate or create replacement
1394 if ((ws = workQueues) == null ||
1395 (i = e & SMASK) >= ws.length ||
1396 (v = ws[i]) == null)
1397 break;
1398 long nc = (((long)(v.nextWait & E_MASK)) |
1399 ((long)(u + UAC_UNIT) << 32));
1400 if (v.eventCount != (e | INT_SIGN))
1401 break;
1402 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1403 v.eventCount = (e + E_SEQ) & E_MASK;
1404 if ((p = v.parker) != null)
1405 U.unpark(p);
1406 break;
1407 }
1408 }
1409 else {
1410 if ((short)u < 0)
1411 tryAddWorker();
1412 break;
1413 }
1414 }
1415 }
1416 if (ex == null) // help clean refs on way out
1417 ForkJoinTask.helpExpungeStaleExceptions();
1418 else // rethrow
1419 ForkJoinTask.rethrow(ex);
1420 }
1421
1422 // Submissions
1423
1424 /**
1425 * Unless shutting down, adds the given task to a submission queue
1426 * at submitter's current queue index (modulo submission
1427 * range). Only the most common path is directly handled in this
1428 * method. All others are relayed to fullExternalPush.
1429 *
1430 * @param task the task. Caller must ensure non-null.
1431 */
1432 final void externalPush(ForkJoinTask<?> task) {
1433 WorkQueue q; int m, s, n, am; ForkJoinTask<?>[] a;
1434 int r = ThreadLocalRandom.getProbe();
1435 int ps = plock;
1436 WorkQueue[] ws = workQueues;
1437 if (ps > 0 && ws != null && (m = (ws.length - 1)) >= 0 &&
1438 (q = ws[m & r & SQMASK]) != null && r != 0 &&
1439 U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1440 if ((a = q.array) != null &&
1441 (am = a.length - 1) > (n = (s = q.top) - q.base)) {
1442 int j = ((am & s) << ASHIFT) + ABASE;
1443 U.putOrderedObject(a, j, task);
1444 q.top = s + 1; // push on to deque
1445 q.qlock = 0;
1446 if (n <= 1)
1447 signalWork(ws, q);
1448 return;
1449 }
1450 q.qlock = 0;
1451 }
1452 fullExternalPush(task);
1453 }
1454
1455 /**
1456 * Full version of externalPush. This method is called, among
1457 * other times, upon the first submission of the first task to the
1458 * pool, so must perform secondary initialization. It also
1459 * detects first submission by an external thread by looking up
1460 * its ThreadLocal, and creates a new shared queue if the one at
1461 * index if empty or contended. The plock lock body must be
1462 * exception-free (so no try/finally) so we optimistically
1463 * allocate new queues outside the lock and throw them away if
1464 * (very rarely) not needed.
1465 *
1466 * Secondary initialization occurs when plock is zero, to create
1467 * workQueue array and set plock to a valid value. This lock body
1468 * must also be exception-free. Because the plock seq value can
1469 * eventually wrap around zero, this method harmlessly fails to
1470 * reinitialize if workQueues exists, while still advancing plock.
1471 */
1472 private void fullExternalPush(ForkJoinTask<?> task) {
1473 int r;
1474 if ((r = ThreadLocalRandom.getProbe()) == 0) {
1475 ThreadLocalRandom.localInit();
1476 r = ThreadLocalRandom.getProbe();
1477 }
1478 for (;;) {
1479 WorkQueue[] ws; WorkQueue q; int ps, m, k;
1480 boolean move = false;
1481 if ((ps = plock) < 0)
1482 throw new RejectedExecutionException();
1483 else if (ps == 0 || (ws = workQueues) == null ||
1484 (m = ws.length - 1) < 0) { // initialize workQueues
1485 int p = parallelism; // find power of two table size
1486 int n = (p > 1) ? p - 1 : 1; // ensure at least 2 slots
1487 n |= n >>> 1; n |= n >>> 2; n |= n >>> 4;
1488 n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1;
1489 WorkQueue[] nws = ((ws = workQueues) == null || ws.length == 0 ?
1490 new WorkQueue[n] : null);
1491 if (((ps = plock) & PL_LOCK) != 0 ||
1492 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1493 ps = acquirePlock();
1494 if (((ws = workQueues) == null || ws.length == 0) && nws != null)
1495 workQueues = nws;
1496 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1497 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1498 releasePlock(nps);
1499 }
1500 else if ((q = ws[k = r & m & SQMASK]) != null) {
1501 if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
1502 ForkJoinTask<?>[] a = q.array;
1503 int s = q.top;
1504 boolean submitted = false;
1505 try { // locked version of push
1506 if ((a != null && a.length > s + 1 - q.base) ||
1507 (a = q.growArray()) != null) { // must presize
1508 int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
1509 U.putOrderedObject(a, j, task);
1510 q.top = s + 1;
1511 submitted = true;
1512 }
1513 } finally {
1514 q.qlock = 0; // unlock
1515 }
1516 if (submitted) {
1517 signalWork(ws, q);
1518 return;
1519 }
1520 }
1521 move = true; // move on failure
1522 }
1523 else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
1524 q = new WorkQueue(this, null, SHARED_QUEUE, r);
1525 q.poolIndex = (short)k;
1526 if (((ps = plock) & PL_LOCK) != 0 ||
1527 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1528 ps = acquirePlock();
1529 if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
1530 ws[k] = q;
1531 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1532 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1533 releasePlock(nps);
1534 }
1535 else
1536 move = true; // move if busy
1537 if (move)
1538 r = ThreadLocalRandom.advanceProbe(r);
1539 }
1540 }
1541
1542 // Maintaining ctl counts
1543
1544 /**
1545 * Increments active count; mainly called upon return from blocking.
1546 */
1547 final void incrementActiveCount() {
1548 long c;
1549 do {} while (!U.compareAndSwapLong
1550 (this, CTL, c = ctl, ((c & ~AC_MASK) |
1551 ((c & AC_MASK) + AC_UNIT))));
1552 }
1553
1554 /**
1555 * Tries to create or activate a worker if too few are active.
1556 *
1557 * @param ws the worker array to use to find signallees
1558 * @param q if non-null, the queue holding tasks to be processed
1559 */
1560 final void signalWork(WorkQueue[] ws, WorkQueue q) {
1561 for (;;) {
1562 long c; int e, u, i; WorkQueue w; Thread p;
1563 if ((u = (int)((c = ctl) >>> 32)) >= 0)
1564 break;
1565 if ((e = (int)c) <= 0) {
1566 if ((short)u < 0)
1567 tryAddWorker();
1568 break;
1569 }
1570 if (ws == null || ws.length <= (i = e & SMASK) ||
1571 (w = ws[i]) == null)
1572 break;
1573 long nc = (((long)(w.nextWait & E_MASK)) |
1574 ((long)(u + UAC_UNIT)) << 32);
1575 int ne = (e + E_SEQ) & E_MASK;
1576 if (w.eventCount == (e | INT_SIGN) &&
1577 U.compareAndSwapLong(this, CTL, c, nc)) {
1578 w.eventCount = ne;
1579 if ((p = w.parker) != null)
1580 U.unpark(p);
1581 break;
1582 }
1583 if (q != null && q.base >= q.top)
1584 break;
1585 }
1586 }
1587
1588 // Scanning for tasks
1589
1590 /**
1591 * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1592 */
1593 final void runWorker(WorkQueue w) {
1594 w.growArray(); // allocate queue
1595 for (int r = w.hint; scan(w, r) == 0; ) {
1596 r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
1597 }
1598 }
1599
1600 /**
1601 * Scans for and, if found, runs one task, else possibly
1602 * inactivates the worker. This method operates on single reads of
1603 * volatile state and is designed to be re-invoked continuously,
1604 * in part because it returns upon detecting inconsistencies,
1605 * contention, or state changes that indicate possible success on
1606 * re-invocation.
1607 *
1608 * The scan searches for tasks across queues starting at a random
1609 * index, checking each at least twice. The scan terminates upon
1610 * either finding a non-empty queue, or completing the sweep. If
1611 * the worker is not inactivated, it takes and runs a task from
1612 * this queue. Otherwise, if not activated, it tries to activate
1613 * itself or some other worker by signalling. On failure to find a
1614 * task, returns (for retry) if pool state may have changed during
1615 * an empty scan, or tries to inactivate if active, else possibly
1616 * blocks or terminates via method awaitWork.
1617 *
1618 * @param w the worker (via its WorkQueue)
1619 * @param r a random seed
1620 * @return worker qlock status if would have waited, else 0
1621 */
1622 private final int scan(WorkQueue w, int r) {
1623 WorkQueue[] ws; int m;
1624 long c = ctl; // for consistency check
1625 if ((ws = workQueues) != null && (m = ws.length - 1) >= 0 && w != null) {
1626 for (int j = m + m + 1, ec = w.eventCount;;) {
1627 WorkQueue q; int b, e; ForkJoinTask<?>[] a; ForkJoinTask<?> t;
1628 if ((q = ws[(r - j) & m]) != null &&
1629 (b = q.base) - q.top < 0 && (a = q.array) != null) {
1630 long i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1631 if ((t = ((ForkJoinTask<?>)
1632 U.getObjectVolatile(a, i))) != null) {
1633 if (ec < 0)
1634 helpRelease(c, ws, w, q, b);
1635 else if (q.base == b &&
1636 U.compareAndSwapObject(a, i, t, null)) {
1637 U.putOrderedInt(q, QBASE, b + 1);
1638 if ((b + 1) - q.top < 0)
1639 signalWork(ws, q);
1640 w.runTask(t);
1641 }
1642 }
1643 break;
1644 }
1645 else if (--j < 0) {
1646 if ((ec | (e = (int)c)) < 0) // inactive or terminating
1647 return awaitWork(w, c, ec);
1648 else if (ctl == c) { // try to inactivate and enqueue
1649 long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1650 w.nextWait = e;
1651 w.eventCount = ec | INT_SIGN;
1652 if (!U.compareAndSwapLong(this, CTL, c, nc))
1653 w.eventCount = ec; // back out
1654 }
1655 break;
1656 }
1657 }
1658 }
1659 return 0;
1660 }
1661
1662 /**
1663 * A continuation of scan(), possibly blocking or terminating
1664 * worker w. Returns without blocking if pool state has apparently
1665 * changed since last invocation. Also, if inactivating w has
1666 * caused the pool to become quiescent, checks for pool
1667 * termination, and, so long as this is not the only worker, waits
1668 * for event for up to a given duration. On timeout, if ctl has
1669 * not changed, terminates the worker, which will in turn wake up
1670 * another worker to possibly repeat this process.
1671 *
1672 * @param w the calling worker
1673 * @param c the ctl value on entry to scan
1674 * @param ec the worker's eventCount on entry to scan
1675 */
1676 private final int awaitWork(WorkQueue w, long c, int ec) {
1677 int stat, ns; long parkTime, deadline;
1678 if ((stat = w.qlock) >= 0 && w.eventCount == ec && ctl == c &&
1679 !Thread.interrupted()) {
1680 int e = (int)c;
1681 int u = (int)(c >>> 32);
1682 int d = (u >> UAC_SHIFT) + parallelism; // active count
1683
1684 if (e < 0 || (d <= 0 && tryTerminate(false, false)))
1685 stat = w.qlock = -1; // pool is terminating
1686 else if ((ns = w.nsteals) != 0) { // collect steals and retry
1687 w.nsteals = 0;
1688 U.getAndAddLong(this, STEALCOUNT, (long)ns);
1689 }
1690 else {
1691 long pc = ((d > 0 || ec != (e | INT_SIGN)) ? 0L :
1692 ((long)(w.nextWait & E_MASK)) | // ctl to restore
1693 ((long)(u + UAC_UNIT)) << 32);
1694 if (pc != 0L) { // timed wait if last waiter
1695 int dc = -(short)(c >>> TC_SHIFT);
1696 parkTime = (dc < 0 ? FAST_IDLE_TIMEOUT:
1697 (dc + 1) * IDLE_TIMEOUT);
1698 deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
1699 }
1700 else
1701 parkTime = deadline = 0L;
1702 if (w.eventCount == ec && ctl == c) {
1703 Thread wt = Thread.currentThread();
1704 U.putObject(wt, PARKBLOCKER, this);
1705 w.parker = wt; // emulate LockSupport.park
1706 if (w.eventCount == ec && ctl == c)
1707 U.park(false, parkTime); // must recheck before park
1708 w.parker = null;
1709 U.putObject(wt, PARKBLOCKER, null);
1710 if (parkTime != 0L && ctl == c &&
1711 deadline - System.nanoTime() <= 0L &&
1712 U.compareAndSwapLong(this, CTL, c, pc))
1713 stat = w.qlock = -1; // shrink pool
1714 }
1715 }
1716 }
1717 return stat;
1718 }
1719
1720 /**
1721 * Possibly releases (signals) a worker. Called only from scan()
1722 * when a worker with apparently inactive status finds a non-empty
1723 * queue. This requires revalidating all of the associated state
1724 * from caller.
1725 */
1726 private final void helpRelease(long c, WorkQueue[] ws, WorkQueue w,
1727 WorkQueue q, int b) {
1728 WorkQueue v; int e, i; Thread p;
1729 if (w != null && w.eventCount < 0 && (e = (int)c) > 0 &&
1730 ws != null && ws.length > (i = e & SMASK) &&
1731 (v = ws[i]) != null && ctl == c) {
1732 long nc = (((long)(v.nextWait & E_MASK)) |
1733 ((long)((int)(c >>> 32) + UAC_UNIT)) << 32);
1734 int ne = (e + E_SEQ) & E_MASK;
1735 if (q != null && q.base == b && w.eventCount < 0 &&
1736 v.eventCount == (e | INT_SIGN) &&
1737 U.compareAndSwapLong(this, CTL, c, nc)) {
1738 v.eventCount = ne;
1739 if ((p = v.parker) != null)
1740 U.unpark(p);
1741 }
1742 }
1743 }
1744
1745 /**
1746 * Tries to locate and execute tasks for a stealer of the given
1747 * task, or in turn one of its stealers, Traces currentSteal ->
1748 * currentJoin links looking for a thread working on a descendant
1749 * of the given task and with a non-empty queue to steal back and
1750 * execute tasks from. The first call to this method upon a
1751 * waiting join will often entail scanning/search, (which is OK
1752 * because the joiner has nothing better to do), but this method
1753 * leaves hints in workers to speed up subsequent calls. The
1754 * implementation is very branchy to cope with potential
1755 * inconsistencies or loops encountering chains that are stale,
1756 * unknown, or so long that they are likely cyclic.
1757 *
1758 * @param joiner the joining worker
1759 * @param task the task to join
1760 * @return 0 if no progress can be made, negative if task
1761 * known complete, else positive
1762 */
1763 private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1764 int stat = 0, steps = 0; // bound to avoid cycles
1765 if (task != null && joiner != null &&
1766 joiner.base - joiner.top >= 0) { // hoist checks
1767 restart: for (;;) {
1768 ForkJoinTask<?> subtask = task; // current target
1769 for (WorkQueue j = joiner, v;;) { // v is stealer of subtask
1770 WorkQueue[] ws; int m, s, h;
1771 if ((s = task.status) < 0) {
1772 stat = s;
1773 break restart;
1774 }
1775 if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1776 break restart; // shutting down
1777 if ((v = ws[h = (j.hint | 1) & m]) == null ||
1778 v.currentSteal != subtask) {
1779 for (int origin = h;;) { // find stealer
1780 if (((h = (h + 2) & m) & 15) == 1 &&
1781 (subtask.status < 0 || j.currentJoin != subtask))
1782 continue restart; // occasional staleness check
1783 if ((v = ws[h]) != null &&
1784 v.currentSteal == subtask) {
1785 j.hint = h; // save hint
1786 break;
1787 }
1788 if (h == origin)
1789 break restart; // cannot find stealer
1790 }
1791 }
1792 for (;;) { // help stealer or descend to its stealer
1793 ForkJoinTask[] a; int b;
1794 if (subtask.status < 0) // surround probes with
1795 continue restart; // consistency checks
1796 if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1797 int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1798 ForkJoinTask<?> t =
1799 (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1800 if (subtask.status < 0 || j.currentJoin != subtask ||
1801 v.currentSteal != subtask)
1802 continue restart; // stale
1803 stat = 1; // apparent progress
1804 if (v.base == b) {
1805 if (t == null)
1806 break restart;
1807 if (U.compareAndSwapObject(a, i, t, null)) {
1808 U.putOrderedInt(v, QBASE, b + 1);
1809 ForkJoinTask<?> ps = joiner.currentSteal;
1810 int jt = joiner.top;
1811 do {
1812 joiner.currentSteal = t;
1813 t.doExec(); // clear local tasks too
1814 } while (task.status >= 0 &&
1815 joiner.top != jt &&
1816 (t = joiner.pop()) != null);
1817 joiner.currentSteal = ps;
1818 break restart;
1819 }
1820 }
1821 }
1822 else { // empty -- try to descend
1823 ForkJoinTask<?> next = v.currentJoin;
1824 if (subtask.status < 0 || j.currentJoin != subtask ||
1825 v.currentSteal != subtask)
1826 continue restart; // stale
1827 else if (next == null || ++steps == MAX_HELP)
1828 break restart; // dead-end or maybe cyclic
1829 else {
1830 subtask = next;
1831 j = v;
1832 break;
1833 }
1834 }
1835 }
1836 }
1837 }
1838 }
1839 return stat;
1840 }
1841
1842 /**
1843 * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1844 * and run tasks within the target's computation.
1845 *
1846 * @param task the task to join
1847 * @param maxTasks the maximum number of other tasks to run
1848 */
1849 final int helpComplete(WorkQueue joiner, CountedCompleter<?> task,
1850 int maxTasks) {
1851 WorkQueue[] ws; int m;
1852 int s = 0;
1853 if ((ws = workQueues) != null && (m = ws.length - 1) >= 0 &&
1854 joiner != null && task != null) {
1855 int j = joiner.poolIndex;
1856 int scans = m + m + 1;
1857 long c = 0L; // for stability check
1858 for (int k = scans; ; j += 2) {
1859 WorkQueue q;
1860 if ((s = task.status) < 0)
1861 break;
1862 else if (joiner.internalPopAndExecCC(task)) {
1863 if (--maxTasks <= 0) {
1864 s = task.status;
1865 break;
1866 }
1867 k = scans;
1868 }
1869 else if ((s = task.status) < 0)
1870 break;
1871 else if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) {
1872 if (--maxTasks <= 0) {
1873 s = task.status;
1874 break;
1875 }
1876 k = scans;
1877 }
1878 else if (--k < 0) {
1879 if (c == (c = ctl))
1880 break;
1881 k = scans;
1882 }
1883 }
1884 }
1885 return s;
1886 }
1887
1888 /**
1889 * Tries to decrement active count (sometimes implicitly) and
1890 * possibly release or create a compensating worker in preparation
1891 * for blocking. Fails on contention or termination. Otherwise,
1892 * adds a new thread if no idle workers are available and pool
1893 * may become starved.
1894 *
1895 * @param c the assumed ctl value
1896 */
1897 final boolean tryCompensate(long c) {
1898 WorkQueue[] ws = workQueues;
1899 int pc = parallelism, e = (int)c, m, tc;
1900 if (ws != null && (m = ws.length - 1) >= 0 && e >= 0 && ctl == c) {
1901 WorkQueue w = ws[e & m];
1902 if (e != 0 && w != null) {
1903 Thread p;
1904 long nc = ((long)(w.nextWait & E_MASK) |
1905 (c & (AC_MASK|TC_MASK)));
1906 int ne = (e + E_SEQ) & E_MASK;
1907 if (w.eventCount == (e | INT_SIGN) &&
1908 U.compareAndSwapLong(this, CTL, c, nc)) {
1909 w.eventCount = ne;
1910 if ((p = w.parker) != null)
1911 U.unpark(p);
1912 return true; // replace with idle worker
1913 }
1914 }
1915 else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
1916 (int)(c >> AC_SHIFT) + pc > 1) {
1917 long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1918 if (U.compareAndSwapLong(this, CTL, c, nc))
1919 return true; // no compensation
1920 }
1921 else if (tc + pc < MAX_CAP) {
1922 long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1923 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1924 ForkJoinWorkerThreadFactory fac;
1925 Throwable ex = null;
1926 ForkJoinWorkerThread wt = null;
1927 try {
1928 if ((fac = factory) != null &&
1929 (wt = fac.newThread(this)) != null) {
1930 wt.start();
1931 return true;
1932 }
1933 } catch (Throwable rex) {
1934 ex = rex;
1935 }
1936 deregisterWorker(wt, ex); // clean up and return false
1937 }
1938 }
1939 }
1940 return false;
1941 }
1942
1943 /**
1944 * Helps and/or blocks until the given task is done.
1945 *
1946 * @param joiner the joining worker
1947 * @param task the task
1948 * @return task status on exit
1949 */
1950 final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1951 int s = 0;
1952 if (task != null && (s = task.status) >= 0 && joiner != null) {
1953 ForkJoinTask<?> prevJoin = joiner.currentJoin;
1954 joiner.currentJoin = task;
1955 do {} while (joiner.tryRemoveAndExec(task) && // process local tasks
1956 (s = task.status) >= 0);
1957 if (s >= 0 && (task instanceof CountedCompleter))
1958 s = helpComplete(joiner, (CountedCompleter<?>)task, Integer.MAX_VALUE);
1959 long cc = 0; // for stability checks
1960 while (s >= 0 && (s = task.status) >= 0) {
1961 if ((s = tryHelpStealer(joiner, task)) == 0 &&
1962 (s = task.status) >= 0) {
1963 if (!tryCompensate(cc))
1964 cc = ctl;
1965 else {
1966 if (task.trySetSignal() && (s = task.status) >= 0) {
1967 synchronized (task) {
1968 if (task.status >= 0) {
1969 try { // see ForkJoinTask
1970 task.wait(); // for explanation
1971 } catch (InterruptedException ie) {
1972 }
1973 }
1974 else
1975 task.notifyAll();
1976 }
1977 }
1978 long c; // reactivate
1979 do {} while (!U.compareAndSwapLong
1980 (this, CTL, c = ctl,
1981 ((c & ~AC_MASK) |
1982 ((c & AC_MASK) + AC_UNIT))));
1983 }
1984 }
1985 }
1986 joiner.currentJoin = prevJoin;
1987 }
1988 return s;
1989 }
1990
1991 /**
1992 * Stripped-down variant of awaitJoin used by timed joins. Tries
1993 * to help join only while there is continuous progress. (Caller
1994 * will then enter a timed wait.)
1995 *
1996 * @param joiner the joining worker
1997 * @param task the task
1998 */
1999 final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2000 int s;
2001 if (joiner != null && task != null && (s = task.status) >= 0) {
2002 ForkJoinTask<?> prevJoin = joiner.currentJoin;
2003 joiner.currentJoin = task;
2004 do {} while (joiner.tryRemoveAndExec(task) && // process local tasks
2005 (s = task.status) >= 0);
2006 if (s >= 0) {
2007 if (task instanceof CountedCompleter)
2008 helpComplete(joiner, (CountedCompleter<?>)task, Integer.MAX_VALUE);
2009 do {} while (task.status >= 0 &&
2010 tryHelpStealer(joiner, task) > 0);
2011 }
2012 joiner.currentJoin = prevJoin;
2013 }
2014 }
2015
2016 /**
2017 * Returns a (probably) non-empty steal queue, if one is found
2018 * during a scan, else null. This method must be retried by
2019 * caller if, by the time it tries to use the queue, it is empty.
2020 */
2021 private WorkQueue findNonEmptyStealQueue() {
2022 int r = ThreadLocalRandom.nextSecondarySeed();
2023 for (;;) {
2024 int ps = plock, m; WorkQueue[] ws; WorkQueue q;
2025 if ((ws = workQueues) != null && (m = ws.length - 1) >= 0) {
2026 for (int j = (m + 1) << 2; j >= 0; --j) {
2027 if ((q = ws[(((r - j) << 1) | 1) & m]) != null &&
2028 q.base - q.top < 0)
2029 return q;
2030 }
2031 }
2032 if (plock == ps)
2033 return null;
2034 }
2035 }
2036
2037 /**
2038 * Runs tasks until {@code isQuiescent()}. We piggyback on
2039 * active count ctl maintenance, but rather than blocking
2040 * when tasks cannot be found, we rescan until all others cannot
2041 * find tasks either.
2042 */
2043 final void helpQuiescePool(WorkQueue w) {
2044 ForkJoinTask<?> ps = w.currentSteal;
2045 for (boolean active = true;;) {
2046 long c; WorkQueue q; ForkJoinTask<?> t; int b;
2047 while ((t = w.nextLocalTask()) != null)
2048 t.doExec();
2049 if ((q = findNonEmptyStealQueue()) != null) {
2050 if (!active) { // re-establish active count
2051 active = true;
2052 do {} while (!U.compareAndSwapLong
2053 (this, CTL, c = ctl,
2054 ((c & ~AC_MASK) |
2055 ((c & AC_MASK) + AC_UNIT))));
2056 }
2057 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2058 (w.currentSteal = t).doExec();
2059 w.currentSteal = ps;
2060 }
2061 }
2062 else if (active) { // decrement active count without queuing
2063 long nc = ((c = ctl) & ~AC_MASK) | ((c & AC_MASK) - AC_UNIT);
2064 if ((int)(nc >> AC_SHIFT) + parallelism == 0)
2065 break; // bypass decrement-then-increment
2066 if (U.compareAndSwapLong(this, CTL, c, nc))
2067 active = false;
2068 }
2069 else if ((int)((c = ctl) >> AC_SHIFT) + parallelism <= 0 &&
2070 U.compareAndSwapLong
2071 (this, CTL, c, ((c & ~AC_MASK) |
2072 ((c & AC_MASK) + AC_UNIT))))
2073 break;
2074 }
2075 }
2076
2077 /**
2078 * Gets and removes a local or stolen task for the given worker.
2079 *
2080 * @return a task, if available
2081 */
2082 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2083 for (ForkJoinTask<?> t;;) {
2084 WorkQueue q; int b;
2085 if ((t = w.nextLocalTask()) != null)
2086 return t;
2087 if ((q = findNonEmptyStealQueue()) == null)
2088 return null;
2089 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2090 return t;
2091 }
2092 }
2093
2094 /**
2095 * Returns a cheap heuristic guide for task partitioning when
2096 * programmers, frameworks, tools, or languages have little or no
2097 * idea about task granularity. In essence by offering this
2098 * method, we ask users only about tradeoffs in overhead vs
2099 * expected throughput and its variance, rather than how finely to
2100 * partition tasks.
2101 *
2102 * In a steady state strict (tree-structured) computation, each
2103 * thread makes available for stealing enough tasks for other
2104 * threads to remain active. Inductively, if all threads play by
2105 * the same rules, each thread should make available only a
2106 * constant number of tasks.
2107 *
2108 * The minimum useful constant is just 1. But using a value of 1
2109 * would require immediate replenishment upon each steal to
2110 * maintain enough tasks, which is infeasible. Further,
2111 * partitionings/granularities of offered tasks should minimize
2112 * steal rates, which in general means that threads nearer the top
2113 * of computation tree should generate more than those nearer the
2114 * bottom. In perfect steady state, each thread is at
2115 * approximately the same level of computation tree. However,
2116 * producing extra tasks amortizes the uncertainty of progress and
2117 * diffusion assumptions.
2118 *
2119 * So, users will want to use values larger (but not much larger)
2120 * than 1 to both smooth over transient shortages and hedge
2121 * against uneven progress; as traded off against the cost of
2122 * extra task overhead. We leave the user to pick a threshold
2123 * value to compare with the results of this call to guide
2124 * decisions, but recommend values such as 3.
2125 *
2126 * When all threads are active, it is on average OK to estimate
2127 * surplus strictly locally. In steady-state, if one thread is
2128 * maintaining say 2 surplus tasks, then so are others. So we can
2129 * just use estimated queue length. However, this strategy alone
2130 * leads to serious mis-estimates in some non-steady-state
2131 * conditions (ramp-up, ramp-down, other stalls). We can detect
2132 * many of these by further considering the number of "idle"
2133 * threads, that are known to have zero queued tasks, so
2134 * compensate by a factor of (#idle/#active) threads.
2135 *
2136 * Note: The approximation of #busy workers as #active workers is
2137 * not very good under current signalling scheme, and should be
2138 * improved.
2139 */
2140 static int getSurplusQueuedTaskCount() {
2141 Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2142 if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2143 int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).parallelism;
2144 int n = (q = wt.workQueue).top - q.base;
2145 int a = (int)(pool.ctl >> AC_SHIFT) + p;
2146 return n - (a > (p >>>= 1) ? 0 :
2147 a > (p >>>= 1) ? 1 :
2148 a > (p >>>= 1) ? 2 :
2149 a > (p >>>= 1) ? 4 :
2150 8);
2151 }
2152 return 0;
2153 }
2154
2155 // Termination
2156
2157 /**
2158 * Possibly initiates and/or completes termination. The caller
2159 * triggering termination runs three passes through workQueues:
2160 * (0) Setting termination status, followed by wakeups of queued
2161 * workers; (1) cancelling all tasks; (2) interrupting lagging
2162 * threads (likely in external tasks, but possibly also blocked in
2163 * joins). Each pass repeats previous steps because of potential
2164 * lagging thread creation.
2165 *
2166 * @param now if true, unconditionally terminate, else only
2167 * if no work and no active workers
2168 * @param enable if true, enable shutdown when next possible
2169 * @return true if now terminating or terminated
2170 */
2171 private boolean tryTerminate(boolean now, boolean enable) {
2172 int ps;
2173 if (this == common) // cannot shut down
2174 return false;
2175 if ((ps = plock) >= 0) { // enable by setting plock
2176 if (!enable)
2177 return false;
2178 if ((ps & PL_LOCK) != 0 ||
2179 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2180 ps = acquirePlock();
2181 int nps = ((ps + PL_LOCK) & ~SHUTDOWN) | SHUTDOWN;
2182 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2183 releasePlock(nps);
2184 }
2185 for (long c;;) {
2186 if (((c = ctl) & STOP_BIT) != 0) { // already terminating
2187 if ((short)(c >>> TC_SHIFT) + parallelism <= 0) {
2188 synchronized (this) {
2189 notifyAll(); // signal when 0 workers
2190 }
2191 }
2192 return true;
2193 }
2194 if (!now) { // check if idle & no tasks
2195 WorkQueue[] ws; WorkQueue w;
2196 if ((int)(c >> AC_SHIFT) + parallelism > 0)
2197 return false;
2198 if ((ws = workQueues) != null) {
2199 for (int i = 0; i < ws.length; ++i) {
2200 if ((w = ws[i]) != null &&
2201 (!w.isEmpty() ||
2202 ((i & 1) != 0 && w.eventCount >= 0))) {
2203 signalWork(ws, w);
2204 return false;
2205 }
2206 }
2207 }
2208 }
2209 if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2210 for (int pass = 0; pass < 3; ++pass) {
2211 WorkQueue[] ws; WorkQueue w; Thread wt;
2212 if ((ws = workQueues) != null) {
2213 int n = ws.length;
2214 for (int i = 0; i < n; ++i) {
2215 if ((w = ws[i]) != null) {
2216 w.qlock = -1;
2217 if (pass > 0) {
2218 w.cancelAll();
2219 if (pass > 1 && (wt = w.owner) != null) {
2220 if (!wt.isInterrupted()) {
2221 try {
2222 wt.interrupt();
2223 } catch (Throwable ignore) {
2224 }
2225 }
2226 U.unpark(wt);
2227 }
2228 }
2229 }
2230 }
2231 // Wake up workers parked on event queue
2232 int i, e; long cc; Thread p;
2233 while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2234 (i = e & SMASK) < n && i >= 0 &&
2235 (w = ws[i]) != null) {
2236 long nc = ((long)(w.nextWait & E_MASK) |
2237 ((cc + AC_UNIT) & AC_MASK) |
2238 (cc & (TC_MASK|STOP_BIT)));
2239 if (w.eventCount == (e | INT_SIGN) &&
2240 U.compareAndSwapLong(this, CTL, cc, nc)) {
2241 w.eventCount = (e + E_SEQ) & E_MASK;
2242 w.qlock = -1;
2243 if ((p = w.parker) != null)
2244 U.unpark(p);
2245 }
2246 }
2247 }
2248 }
2249 }
2250 }
2251 }
2252
2253 // external operations on common pool
2254
2255 /**
2256 * Returns common pool queue for a thread that has submitted at
2257 * least one task.
2258 */
2259 static WorkQueue commonSubmitterQueue() {
2260 ForkJoinPool p; WorkQueue[] ws; int m, z;
2261 return ((z = ThreadLocalRandom.getProbe()) != 0 &&
2262 (p = common) != null &&
2263 (ws = p.workQueues) != null &&
2264 (m = ws.length - 1) >= 0) ?
2265 ws[m & z & SQMASK] : null;
2266 }
2267
2268 /**
2269 * Tries to pop the given task from submitter's queue in common pool.
2270 */
2271 final boolean tryExternalUnpush(ForkJoinTask<?> task) {
2272 WorkQueue joiner; ForkJoinTask<?>[] a; int m, s;
2273 WorkQueue[] ws = workQueues;
2274 int z = ThreadLocalRandom.getProbe();
2275 boolean popped = false;
2276 if (ws != null && (m = ws.length - 1) >= 0 &&
2277 (joiner = ws[z & m & SQMASK]) != null &&
2278 joiner.base != (s = joiner.top) &&
2279 (a = joiner.array) != null) {
2280 long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
2281 if (U.getObject(a, j) == task &&
2282 U.compareAndSwapInt(joiner, QLOCK, 0, 1)) {
2283 if (joiner.top == s && joiner.array == a &&
2284 U.compareAndSwapObject(a, j, task, null)) {
2285 joiner.top = s - 1;
2286 popped = true;
2287 }
2288 joiner.qlock = 0;
2289 }
2290 }
2291 return popped;
2292 }
2293
2294 final int externalHelpComplete(CountedCompleter<?> task, int maxTasks) {
2295 WorkQueue joiner; int m;
2296 WorkQueue[] ws = workQueues;
2297 int j = ThreadLocalRandom.getProbe();
2298 int s = 0;
2299 if (ws != null && (m = ws.length - 1) >= 0 &&
2300 (joiner = ws[j & m & SQMASK]) != null && task != null) {
2301 int scans = m + m + 1;
2302 long c = 0L; // for stability check
2303 j |= 1; // poll odd queues
2304 for (int k = scans; ; j += 2) {
2305 WorkQueue q;
2306 if ((s = task.status) < 0)
2307 break;
2308 else if (joiner.externalPopAndExecCC(task)) {
2309 if (--maxTasks <= 0) {
2310 s = task.status;
2311 break;
2312 }
2313 k = scans;
2314 }
2315 else if ((s = task.status) < 0)
2316 break;
2317 else if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) {
2318 if (--maxTasks <= 0) {
2319 s = task.status;
2320 break;
2321 }
2322 k = scans;
2323 }
2324 else if (--k < 0) {
2325 if (c == (c = ctl))
2326 break;
2327 k = scans;
2328 }
2329 }
2330 }
2331 return s;
2332 }
2333
2334 // Exported methods
2335
2336 // Constructors
2337
2338 /**
2339 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2340 * java.lang.Runtime#availableProcessors}, using the {@linkplain
2341 * #defaultForkJoinWorkerThreadFactory default thread factory},
2342 * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2343 *
2344 * @throws SecurityException if a security manager exists and
2345 * the caller is not permitted to modify threads
2346 * because it does not hold {@link
2347 * java.lang.RuntimePermission}{@code ("modifyThread")}
2348 */
2349 public ForkJoinPool() {
2350 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2351 defaultForkJoinWorkerThreadFactory, null, false);
2352 }
2353
2354 /**
2355 * Creates a {@code ForkJoinPool} with the indicated parallelism
2356 * level, the {@linkplain
2357 * #defaultForkJoinWorkerThreadFactory default thread factory},
2358 * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2359 *
2360 * @param parallelism the parallelism level
2361 * @throws IllegalArgumentException if parallelism less than or
2362 * equal to zero, or greater than implementation limit
2363 * @throws SecurityException if a security manager exists and
2364 * the caller is not permitted to modify threads
2365 * because it does not hold {@link
2366 * java.lang.RuntimePermission}{@code ("modifyThread")}
2367 */
2368 public ForkJoinPool(int parallelism) {
2369 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2370 }
2371
2372 /**
2373 * Creates a {@code ForkJoinPool} with the given parameters.
2374 *
2375 * @param parallelism the parallelism level. For default value,
2376 * use {@link java.lang.Runtime#availableProcessors}.
2377 * @param factory the factory for creating new threads. For default value,
2378 * use {@link #defaultForkJoinWorkerThreadFactory}.
2379 * @param handler the handler for internal worker threads that
2380 * terminate due to unrecoverable errors encountered while executing
2381 * tasks. For default value, use {@code null}.
2382 * @param asyncMode if true,
2383 * establishes local first-in-first-out scheduling mode for forked
2384 * tasks that are never joined. This mode may be more appropriate
2385 * than default locally stack-based mode in applications in which
2386 * worker threads only process event-style asynchronous tasks.
2387 * For default value, use {@code false}.
2388 * @throws IllegalArgumentException if parallelism less than or
2389 * equal to zero, or greater than implementation limit
2390 * @throws NullPointerException if the factory is null
2391 * @throws SecurityException if a security manager exists and
2392 * the caller is not permitted to modify threads
2393 * because it does not hold {@link
2394 * java.lang.RuntimePermission}{@code ("modifyThread")}
2395 */
2396 public ForkJoinPool(int parallelism,
2397 ForkJoinWorkerThreadFactory factory,
2398 UncaughtExceptionHandler handler,
2399 boolean asyncMode) {
2400 this(checkParallelism(parallelism),
2401 checkFactory(factory),
2402 handler,
2403 (asyncMode ? FIFO_QUEUE : LIFO_QUEUE),
2404 "ForkJoinPool-" + nextPoolId() + "-worker-");
2405 checkPermission();
2406 }
2407
2408 private static int checkParallelism(int parallelism) {
2409 if (parallelism <= 0 || parallelism > MAX_CAP)
2410 throw new IllegalArgumentException();
2411 return parallelism;
2412 }
2413
2414 private static ForkJoinWorkerThreadFactory checkFactory
2415 (ForkJoinWorkerThreadFactory factory) {
2416 if (factory == null)
2417 throw new NullPointerException();
2418 return factory;
2419 }
2420
2421 /**
2422 * Creates a {@code ForkJoinPool} with the given parameters, without
2423 * any security checks or parameter validation. Invoked directly by
2424 * makeCommonPool.
2425 */
2426 private ForkJoinPool(int parallelism,
2427 ForkJoinWorkerThreadFactory factory,
2428 UncaughtExceptionHandler handler,
2429 int mode,
2430 String workerNamePrefix) {
2431 this.workerNamePrefix = workerNamePrefix;
2432 this.factory = factory;
2433 this.ueh = handler;
2434 this.mode = (short)mode;
2435 this.parallelism = (short)parallelism;
2436 long np = (long)(-parallelism); // offset ctl counts
2437 this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2438 }
2439
2440 /**
2441 * Returns the common pool instance. This pool is statically
2442 * constructed; its run state is unaffected by attempts to {@link
2443 * #shutdown} or {@link #shutdownNow}. However this pool and any
2444 * ongoing processing are automatically terminated upon program
2445 * {@link System#exit}. Any program that relies on asynchronous
2446 * task processing to complete before program termination should
2447 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2448 * before exit.
2449 *
2450 * @return the common pool instance
2451 * @since 1.8
2452 */
2453 public static ForkJoinPool commonPool() {
2454 // assert common != null : "static init error";
2455 return common;
2456 }
2457
2458 // Execution methods
2459
2460 /**
2461 * Performs the given task, returning its result upon completion.
2462 * If the computation encounters an unchecked Exception or Error,
2463 * it is rethrown as the outcome of this invocation. Rethrown
2464 * exceptions behave in the same way as regular exceptions, but,
2465 * when possible, contain stack traces (as displayed for example
2466 * using {@code ex.printStackTrace()}) of both the current thread
2467 * as well as the thread actually encountering the exception;
2468 * minimally only the latter.
2469 *
2470 * @param task the task
2471 * @return the task's result
2472 * @throws NullPointerException if the task is null
2473 * @throws RejectedExecutionException if the task cannot be
2474 * scheduled for execution
2475 */
2476 public <T> T invoke(ForkJoinTask<T> task) {
2477 if (task == null)
2478 throw new NullPointerException();
2479 externalPush(task);
2480 return task.join();
2481 }
2482
2483 /**
2484 * Arranges for (asynchronous) execution of the given task.
2485 *
2486 * @param task the task
2487 * @throws NullPointerException if the task is null
2488 * @throws RejectedExecutionException if the task cannot be
2489 * scheduled for execution
2490 */
2491 public void execute(ForkJoinTask<?> task) {
2492 if (task == null)
2493 throw new NullPointerException();
2494 externalPush(task);
2495 }
2496
2497 // AbstractExecutorService methods
2498
2499 /**
2500 * @throws NullPointerException if the task is null
2501 * @throws RejectedExecutionException if the task cannot be
2502 * scheduled for execution
2503 */
2504 public void execute(Runnable task) {
2505 if (task == null)
2506 throw new NullPointerException();
2507 ForkJoinTask<?> job;
2508 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2509 job = (ForkJoinTask<?>) task;
2510 else
2511 job = new ForkJoinTask.RunnableExecuteAction(task);
2512 externalPush(job);
2513 }
2514
2515 /**
2516 * Submits a ForkJoinTask for execution.
2517 *
2518 * @param task the task to submit
2519 * @return the task
2520 * @throws NullPointerException if the task is null
2521 * @throws RejectedExecutionException if the task cannot be
2522 * scheduled for execution
2523 */
2524 public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2525 if (task == null)
2526 throw new NullPointerException();
2527 externalPush(task);
2528 return task;
2529 }
2530
2531 /**
2532 * @throws NullPointerException if the task is null
2533 * @throws RejectedExecutionException if the task cannot be
2534 * scheduled for execution
2535 */
2536 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2537 ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2538 externalPush(job);
2539 return job;
2540 }
2541
2542 /**
2543 * @throws NullPointerException if the task is null
2544 * @throws RejectedExecutionException if the task cannot be
2545 * scheduled for execution
2546 */
2547 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2548 ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2549 externalPush(job);
2550 return job;
2551 }
2552
2553 /**
2554 * @throws NullPointerException if the task is null
2555 * @throws RejectedExecutionException if the task cannot be
2556 * scheduled for execution
2557 */
2558 public ForkJoinTask<?> submit(Runnable task) {
2559 if (task == null)
2560 throw new NullPointerException();
2561 ForkJoinTask<?> job;
2562 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2563 job = (ForkJoinTask<?>) task;
2564 else
2565 job = new ForkJoinTask.AdaptedRunnableAction(task);
2566 externalPush(job);
2567 return job;
2568 }
2569
2570 /**
2571 * @throws NullPointerException {@inheritDoc}
2572 * @throws RejectedExecutionException {@inheritDoc}
2573 */
2574 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2575 // In previous versions of this class, this method constructed
2576 // a task to run ForkJoinTask.invokeAll, but now external
2577 // invocation of multiple tasks is at least as efficient.
2578 ArrayList<Future<T>> futures = new ArrayList<Future<T>>(tasks.size());
2579
2580 boolean done = false;
2581 try {
2582 for (Callable<T> t : tasks) {
2583 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2584 futures.add(f);
2585 externalPush(f);
2586 }
2587 for (int i = 0, size = futures.size(); i < size; i++)
2588 ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2589 done = true;
2590 return futures;
2591 } finally {
2592 if (!done)
2593 for (int i = 0, size = futures.size(); i < size; i++)
2594 futures.get(i).cancel(false);
2595 }
2596 }
2597
2598 /**
2599 * Returns the factory used for constructing new workers.
2600 *
2601 * @return the factory used for constructing new workers
2602 */
2603 public ForkJoinWorkerThreadFactory getFactory() {
2604 return factory;
2605 }
2606
2607 /**
2608 * Returns the handler for internal worker threads that terminate
2609 * due to unrecoverable errors encountered while executing tasks.
2610 *
2611 * @return the handler, or {@code null} if none
2612 */
2613 public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2614 return ueh;
2615 }
2616
2617 /**
2618 * Returns the targeted parallelism level of this pool.
2619 *
2620 * @return the targeted parallelism level of this pool
2621 */
2622 public int getParallelism() {
2623 int par;
2624 return ((par = parallelism) > 0) ? par : 1;
2625 }
2626
2627 /**
2628 * Returns the targeted parallelism level of the common pool.
2629 *
2630 * @return the targeted parallelism level of the common pool
2631 * @since 1.8
2632 */
2633 public static int getCommonPoolParallelism() {
2634 return commonParallelism;
2635 }
2636
2637 /**
2638 * Returns the number of worker threads that have started but not
2639 * yet terminated. The result returned by this method may differ
2640 * from {@link #getParallelism} when threads are created to
2641 * maintain parallelism when others are cooperatively blocked.
2642 *
2643 * @return the number of worker threads
2644 */
2645 public int getPoolSize() {
2646 return parallelism + (short)(ctl >>> TC_SHIFT);
2647 }
2648
2649 /**
2650 * Returns {@code true} if this pool uses local first-in-first-out
2651 * scheduling mode for forked tasks that are never joined.
2652 *
2653 * @return {@code true} if this pool uses async mode
2654 */
2655 public boolean getAsyncMode() {
2656 return mode == FIFO_QUEUE;
2657 }
2658
2659 /**
2660 * Returns an estimate of the number of worker threads that are
2661 * not blocked waiting to join tasks or for other managed
2662 * synchronization. This method may overestimate the
2663 * number of running threads.
2664 *
2665 * @return the number of worker threads
2666 */
2667 public int getRunningThreadCount() {
2668 int rc = 0;
2669 WorkQueue[] ws; WorkQueue w;
2670 if ((ws = workQueues) != null) {
2671 for (int i = 1; i < ws.length; i += 2) {
2672 if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2673 ++rc;
2674 }
2675 }
2676 return rc;
2677 }
2678
2679 /**
2680 * Returns an estimate of the number of threads that are currently
2681 * stealing or executing tasks. This method may overestimate the
2682 * number of active threads.
2683 *
2684 * @return the number of active threads
2685 */
2686 public int getActiveThreadCount() {
2687 int r = parallelism + (int)(ctl >> AC_SHIFT);
2688 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2689 }
2690
2691 /**
2692 * Returns {@code true} if all worker threads are currently idle.
2693 * An idle worker is one that cannot obtain a task to execute
2694 * because none are available to steal from other threads, and
2695 * there are no pending submissions to the pool. This method is
2696 * conservative; it might not return {@code true} immediately upon
2697 * idleness of all threads, but will eventually become true if
2698 * threads remain inactive.
2699 *
2700 * @return {@code true} if all threads are currently idle
2701 */
2702 public boolean isQuiescent() {
2703 return parallelism + (int)(ctl >> AC_SHIFT) <= 0;
2704 }
2705
2706 /**
2707 * Returns an estimate of the total number of tasks stolen from
2708 * one thread's work queue by another. The reported value
2709 * underestimates the actual total number of steals when the pool
2710 * is not quiescent. This value may be useful for monitoring and
2711 * tuning fork/join programs: in general, steal counts should be
2712 * high enough to keep threads busy, but low enough to avoid
2713 * overhead and contention across threads.
2714 *
2715 * @return the number of steals
2716 */
2717 public long getStealCount() {
2718 long count = stealCount;
2719 WorkQueue[] ws; WorkQueue w;
2720 if ((ws = workQueues) != null) {
2721 for (int i = 1; i < ws.length; i += 2) {
2722 if ((w = ws[i]) != null)
2723 count += w.nsteals;
2724 }
2725 }
2726 return count;
2727 }
2728
2729 /**
2730 * Returns an estimate of the total number of tasks currently held
2731 * in queues by worker threads (but not including tasks submitted
2732 * to the pool that have not begun executing). This value is only
2733 * an approximation, obtained by iterating across all threads in
2734 * the pool. This method may be useful for tuning task
2735 * granularities.
2736 *
2737 * @return the number of queued tasks
2738 */
2739 public long getQueuedTaskCount() {
2740 long count = 0;
2741 WorkQueue[] ws; WorkQueue w;
2742 if ((ws = workQueues) != null) {
2743 for (int i = 1; i < ws.length; i += 2) {
2744 if ((w = ws[i]) != null)
2745 count += w.queueSize();
2746 }
2747 }
2748 return count;
2749 }
2750
2751 /**
2752 * Returns an estimate of the number of tasks submitted to this
2753 * pool that have not yet begun executing. This method may take
2754 * time proportional to the number of submissions.
2755 *
2756 * @return the number of queued submissions
2757 */
2758 public int getQueuedSubmissionCount() {
2759 int count = 0;
2760 WorkQueue[] ws; WorkQueue w;
2761 if ((ws = workQueues) != null) {
2762 for (int i = 0; i < ws.length; i += 2) {
2763 if ((w = ws[i]) != null)
2764 count += w.queueSize();
2765 }
2766 }
2767 return count;
2768 }
2769
2770 /**
2771 * Returns {@code true} if there are any tasks submitted to this
2772 * pool that have not yet begun executing.
2773 *
2774 * @return {@code true} if there are any queued submissions
2775 */
2776 public boolean hasQueuedSubmissions() {
2777 WorkQueue[] ws; WorkQueue w;
2778 if ((ws = workQueues) != null) {
2779 for (int i = 0; i < ws.length; i += 2) {
2780 if ((w = ws[i]) != null && !w.isEmpty())
2781 return true;
2782 }
2783 }
2784 return false;
2785 }
2786
2787 /**
2788 * Removes and returns the next unexecuted submission if one is
2789 * available. This method may be useful in extensions to this
2790 * class that re-assign work in systems with multiple pools.
2791 *
2792 * @return the next submission, or {@code null} if none
2793 */
2794 protected ForkJoinTask<?> pollSubmission() {
2795 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2796 if ((ws = workQueues) != null) {
2797 for (int i = 0; i < ws.length; i += 2) {
2798 if ((w = ws[i]) != null && (t = w.poll()) != null)
2799 return t;
2800 }
2801 }
2802 return null;
2803 }
2804
2805 /**
2806 * Removes all available unexecuted submitted and forked tasks
2807 * from scheduling queues and adds them to the given collection,
2808 * without altering their execution status. These may include
2809 * artificially generated or wrapped tasks. This method is
2810 * designed to be invoked only when the pool is known to be
2811 * quiescent. Invocations at other times may not remove all
2812 * tasks. A failure encountered while attempting to add elements
2813 * to collection {@code c} may result in elements being in
2814 * neither, either or both collections when the associated
2815 * exception is thrown. The behavior of this operation is
2816 * undefined if the specified collection is modified while the
2817 * operation is in progress.
2818 *
2819 * @param c the collection to transfer elements into
2820 * @return the number of elements transferred
2821 */
2822 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2823 int count = 0;
2824 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2825 if ((ws = workQueues) != null) {
2826 for (int i = 0; i < ws.length; ++i) {
2827 if ((w = ws[i]) != null) {
2828 while ((t = w.poll()) != null) {
2829 c.add(t);
2830 ++count;
2831 }
2832 }
2833 }
2834 }
2835 return count;
2836 }
2837
2838 /**
2839 * Returns a string identifying this pool, as well as its state,
2840 * including indications of run state, parallelism level, and
2841 * worker and task counts.
2842 *
2843 * @return a string identifying this pool, as well as its state
2844 */
2845 public String toString() {
2846 // Use a single pass through workQueues to collect counts
2847 long qt = 0L, qs = 0L; int rc = 0;
2848 long st = stealCount;
2849 long c = ctl;
2850 WorkQueue[] ws; WorkQueue w;
2851 if ((ws = workQueues) != null) {
2852 for (int i = 0; i < ws.length; ++i) {
2853 if ((w = ws[i]) != null) {
2854 int size = w.queueSize();
2855 if ((i & 1) == 0)
2856 qs += size;
2857 else {
2858 qt += size;
2859 st += w.nsteals;
2860 if (w.isApparentlyUnblocked())
2861 ++rc;
2862 }
2863 }
2864 }
2865 }
2866 int pc = parallelism;
2867 int tc = pc + (short)(c >>> TC_SHIFT);
2868 int ac = pc + (int)(c >> AC_SHIFT);
2869 if (ac < 0) // ignore transient negative
2870 ac = 0;
2871 String level;
2872 if ((c & STOP_BIT) != 0)
2873 level = (tc == 0) ? "Terminated" : "Terminating";
2874 else
2875 level = plock < 0 ? "Shutting down" : "Running";
2876 return super.toString() +
2877 "[" + level +
2878 ", parallelism = " + pc +
2879 ", size = " + tc +
2880 ", active = " + ac +
2881 ", running = " + rc +
2882 ", steals = " + st +
2883 ", tasks = " + qt +
2884 ", submissions = " + qs +
2885 "]";
2886 }
2887
2888 /**
2889 * Possibly initiates an orderly shutdown in which previously
2890 * submitted tasks are executed, but no new tasks will be
2891 * accepted. Invocation has no effect on execution state if this
2892 * is the {@link #commonPool()}, and no additional effect if
2893 * already shut down. Tasks that are in the process of being
2894 * submitted concurrently during the course of this method may or
2895 * may not be rejected.
2896 *
2897 * @throws SecurityException if a security manager exists and
2898 * the caller is not permitted to modify threads
2899 * because it does not hold {@link
2900 * java.lang.RuntimePermission}{@code ("modifyThread")}
2901 */
2902 public void shutdown() {
2903 checkPermission();
2904 tryTerminate(false, true);
2905 }
2906
2907 /**
2908 * Possibly attempts to cancel and/or stop all tasks, and reject
2909 * all subsequently submitted tasks. Invocation has no effect on
2910 * execution state if this is the {@link #commonPool()}, and no
2911 * additional effect if already shut down. Otherwise, tasks that
2912 * are in the process of being submitted or executed concurrently
2913 * during the course of this method may or may not be
2914 * rejected. This method cancels both existing and unexecuted
2915 * tasks, in order to permit termination in the presence of task
2916 * dependencies. So the method always returns an empty list
2917 * (unlike the case for some other Executors).
2918 *
2919 * @return an empty list
2920 * @throws SecurityException if a security manager exists and
2921 * the caller is not permitted to modify threads
2922 * because it does not hold {@link
2923 * java.lang.RuntimePermission}{@code ("modifyThread")}
2924 */
2925 public List<Runnable> shutdownNow() {
2926 checkPermission();
2927 tryTerminate(true, true);
2928 return Collections.emptyList();
2929 }
2930
2931 /**
2932 * Returns {@code true} if all tasks have completed following shut down.
2933 *
2934 * @return {@code true} if all tasks have completed following shut down
2935 */
2936 public boolean isTerminated() {
2937 long c = ctl;
2938 return ((c & STOP_BIT) != 0L &&
2939 (short)(c >>> TC_SHIFT) + parallelism <= 0);
2940 }
2941
2942 /**
2943 * Returns {@code true} if the process of termination has
2944 * commenced but not yet completed. This method may be useful for
2945 * debugging. A return of {@code true} reported a sufficient
2946 * period after shutdown may indicate that submitted tasks have
2947 * ignored or suppressed interruption, or are waiting for I/O,
2948 * causing this executor not to properly terminate. (See the
2949 * advisory notes for class {@link ForkJoinTask} stating that
2950 * tasks should not normally entail blocking operations. But if
2951 * they do, they must abort them on interrupt.)
2952 *
2953 * @return {@code true} if terminating but not yet terminated
2954 */
2955 public boolean isTerminating() {
2956 long c = ctl;
2957 return ((c & STOP_BIT) != 0L &&
2958 (short)(c >>> TC_SHIFT) + parallelism > 0);
2959 }
2960
2961 /**
2962 * Returns {@code true} if this pool has been shut down.
2963 *
2964 * @return {@code true} if this pool has been shut down
2965 */
2966 public boolean isShutdown() {
2967 return plock < 0;
2968 }
2969
2970 /**
2971 * Blocks until all tasks have completed execution after a
2972 * shutdown request, or the timeout occurs, or the current thread
2973 * is interrupted, whichever happens first. Because the {@link
2974 * #commonPool()} never terminates until program shutdown, when
2975 * applied to the common pool, this method is equivalent to {@link
2976 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
2977 *
2978 * @param timeout the maximum time to wait
2979 * @param unit the time unit of the timeout argument
2980 * @return {@code true} if this executor terminated and
2981 * {@code false} if the timeout elapsed before termination
2982 * @throws InterruptedException if interrupted while waiting
2983 */
2984 public boolean awaitTermination(long timeout, TimeUnit unit)
2985 throws InterruptedException {
2986 if (Thread.interrupted())
2987 throw new InterruptedException();
2988 if (this == common) {
2989 awaitQuiescence(timeout, unit);
2990 return false;
2991 }
2992 long nanos = unit.toNanos(timeout);
2993 if (isTerminated())
2994 return true;
2995 if (nanos <= 0L)
2996 return false;
2997 long deadline = System.nanoTime() + nanos;
2998 synchronized (this) {
2999 for (;;) {
3000 if (isTerminated())
3001 return true;
3002 if (nanos <= 0L)
3003 return false;
3004 long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
3005 wait(millis > 0L ? millis : 1L);
3006 nanos = deadline - System.nanoTime();
3007 }
3008 }
3009 }
3010
3011 /**
3012 * If called by a ForkJoinTask operating in this pool, equivalent
3013 * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3014 * waits and/or attempts to assist performing tasks until this
3015 * pool {@link #isQuiescent} or the indicated timeout elapses.
3016 *
3017 * @param timeout the maximum time to wait
3018 * @param unit the time unit of the timeout argument
3019 * @return {@code true} if quiescent; {@code false} if the
3020 * timeout elapsed.
3021 */
3022 public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3023 long nanos = unit.toNanos(timeout);
3024 ForkJoinWorkerThread wt;
3025 Thread thread = Thread.currentThread();
3026 if ((thread instanceof ForkJoinWorkerThread) &&
3027 (wt = (ForkJoinWorkerThread)thread).pool == this) {
3028 helpQuiescePool(wt.workQueue);
3029 return true;
3030 }
3031 long startTime = System.nanoTime();
3032 WorkQueue[] ws;
3033 int r = 0, m;
3034 boolean found = true;
3035 while (!isQuiescent() && (ws = workQueues) != null &&
3036 (m = ws.length - 1) >= 0) {
3037 if (!found) {
3038 if ((System.nanoTime() - startTime) > nanos)
3039 return false;
3040 Thread.yield(); // cannot block
3041 }
3042 found = false;
3043 for (int j = (m + 1) << 2; j >= 0; --j) {
3044 ForkJoinTask<?> t; WorkQueue q; int b;
3045 if ((q = ws[r++ & m]) != null && (b = q.base) - q.top < 0) {
3046 found = true;
3047 if ((t = q.pollAt(b)) != null)
3048 t.doExec();
3049 break;
3050 }
3051 }
3052 }
3053 return true;
3054 }
3055
3056 /**
3057 * Waits and/or attempts to assist performing tasks indefinitely
3058 * until the {@link #commonPool()} {@link #isQuiescent}.
3059 */
3060 static void quiesceCommonPool() {
3061 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3062 }
3063
3064 /**
3065 * Interface for extending managed parallelism for tasks running
3066 * in {@link ForkJoinPool}s.
3067 *
3068 * <p>A {@code ManagedBlocker} provides two methods. Method
3069 * {@code isReleasable} must return {@code true} if blocking is
3070 * not necessary. Method {@code block} blocks the current thread
3071 * if necessary (perhaps internally invoking {@code isReleasable}
3072 * before actually blocking). These actions are performed by any
3073 * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
3074 * The unusual methods in this API accommodate synchronizers that
3075 * may, but don't usually, block for long periods. Similarly, they
3076 * allow more efficient internal handling of cases in which
3077 * additional workers may be, but usually are not, needed to
3078 * ensure sufficient parallelism. Toward this end,
3079 * implementations of method {@code isReleasable} must be amenable
3080 * to repeated invocation.
3081 *
3082 * <p>For example, here is a ManagedBlocker based on a
3083 * ReentrantLock:
3084 * <pre> {@code
3085 * class ManagedLocker implements ManagedBlocker {
3086 * final ReentrantLock lock;
3087 * boolean hasLock = false;
3088 * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3089 * public boolean block() {
3090 * if (!hasLock)
3091 * lock.lock();
3092 * return true;
3093 * }
3094 * public boolean isReleasable() {
3095 * return hasLock || (hasLock = lock.tryLock());
3096 * }
3097 * }}</pre>
3098 *
3099 * <p>Here is a class that possibly blocks waiting for an
3100 * item on a given queue:
3101 * <pre> {@code
3102 * class QueueTaker<E> implements ManagedBlocker {
3103 * final BlockingQueue<E> queue;
3104 * volatile E item = null;
3105 * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3106 * public boolean block() throws InterruptedException {
3107 * if (item == null)
3108 * item = queue.take();
3109 * return true;
3110 * }
3111 * public boolean isReleasable() {
3112 * return item != null || (item = queue.poll()) != null;
3113 * }
3114 * public E getItem() { // call after pool.managedBlock completes
3115 * return item;
3116 * }
3117 * }}</pre>
3118 */
3119 public static interface ManagedBlocker {
3120 /**
3121 * Possibly blocks the current thread, for example waiting for
3122 * a lock or condition.
3123 *
3124 * @return {@code true} if no additional blocking is necessary
3125 * (i.e., if isReleasable would return true)
3126 * @throws InterruptedException if interrupted while waiting
3127 * (the method is not required to do so, but is allowed to)
3128 */
3129 boolean block() throws InterruptedException;
3130
3131 /**
3132 * Returns {@code true} if blocking is unnecessary.
3133 * @return {@code true} if blocking is unnecessary
3134 */
3135 boolean isReleasable();
3136 }
3137
3138 /**
3139 * Blocks in accord with the given blocker. If the current thread
3140 * is a {@link ForkJoinWorkerThread}, this method possibly
3141 * arranges for a spare thread to be activated if necessary to
3142 * ensure sufficient parallelism while the current thread is blocked.
3143 *
3144 * <p>If the caller is not a {@link ForkJoinTask}, this method is
3145 * behaviorally equivalent to
3146 * <pre> {@code
3147 * while (!blocker.isReleasable())
3148 * if (blocker.block())
3149 * return;
3150 * }</pre>
3151 *
3152 * If the caller is a {@code ForkJoinTask}, then the pool may
3153 * first be expanded to ensure parallelism, and later adjusted.
3154 *
3155 * @param blocker the blocker
3156 * @throws InterruptedException if blocker.block did so
3157 */
3158 public static void managedBlock(ManagedBlocker blocker)
3159 throws InterruptedException {
3160 Thread t = Thread.currentThread();
3161 if (t instanceof ForkJoinWorkerThread) {
3162 ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3163 while (!blocker.isReleasable()) {
3164 if (p.tryCompensate(p.ctl)) {
3165 try {
3166 do {} while (!blocker.isReleasable() &&
3167 !blocker.block());
3168 } finally {
3169 p.incrementActiveCount();
3170 }
3171 break;
3172 }
3173 }
3174 }
3175 else {
3176 do {} while (!blocker.isReleasable() &&
3177 !blocker.block());
3178 }
3179 }
3180
3181 // AbstractExecutorService overrides. These rely on undocumented
3182 // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3183 // implement RunnableFuture.
3184
3185 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3186 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3187 }
3188
3189 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3190 return new ForkJoinTask.AdaptedCallable<T>(callable);
3191 }
3192
3193 // Unsafe mechanics
3194 private static final sun.misc.Unsafe U;
3195 private static final long CTL;
3196 private static final long PARKBLOCKER;
3197 private static final int ABASE;
3198 private static final int ASHIFT;
3199 private static final long STEALCOUNT;
3200 private static final long PLOCK;
3201 private static final long INDEXSEED;
3202 private static final long QBASE;
3203 private static final long QLOCK;
3204
3205 static {
3206 // initialize field offsets for CAS etc
3207 try {
3208 U = sun.misc.Unsafe.getUnsafe();
3209 Class<?> k = ForkJoinPool.class;
3210 CTL = U.objectFieldOffset
3211 (k.getDeclaredField("ctl"));
3212 STEALCOUNT = U.objectFieldOffset
3213 (k.getDeclaredField("stealCount"));
3214 PLOCK = U.objectFieldOffset
3215 (k.getDeclaredField("plock"));
3216 INDEXSEED = U.objectFieldOffset
3217 (k.getDeclaredField("indexSeed"));
3218 Class<?> tk = Thread.class;
3219 PARKBLOCKER = U.objectFieldOffset
3220 (tk.getDeclaredField("parkBlocker"));
3221 Class<?> wk = WorkQueue.class;
3222 QBASE = U.objectFieldOffset
3223 (wk.getDeclaredField("base"));
3224 QLOCK = U.objectFieldOffset
3225 (wk.getDeclaredField("qlock"));
3226 Class<?> ak = ForkJoinTask[].class;
3227 ABASE = U.arrayBaseOffset(ak);
3228 int scale = U.arrayIndexScale(ak);
3229 if ((scale & (scale - 1)) != 0)
3230 throw new Error("data type scale not a power of two");
3231 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3232 } catch (Exception e) {
3233 throw new Error(e);
3234 }
3235
3236 defaultForkJoinWorkerThreadFactory =
3237 new DefaultForkJoinWorkerThreadFactory();
3238 modifyThreadPermission = new RuntimePermission("modifyThread");
3239
3240 common = java.security.AccessController.doPrivileged
3241 (new java.security.PrivilegedAction<ForkJoinPool>() {
3242 public ForkJoinPool run() { return makeCommonPool(); }});
3243 int par = common.parallelism; // report 1 even if threads disabled
3244 commonParallelism = par > 0 ? par : 1;
3245 }
3246
3247 /**
3248 * Creates and returns the common pool, respecting user settings
3249 * specified via system properties.
3250 */
3251 private static ForkJoinPool makeCommonPool() {
3252 int parallelism = -1;
3253 ForkJoinWorkerThreadFactory factory
3254 = defaultForkJoinWorkerThreadFactory;
3255 UncaughtExceptionHandler handler = null;
3256 try { // ignore exceptions in accessing/parsing properties
3257 String pp = System.getProperty
3258 ("java.util.concurrent.ForkJoinPool.common.parallelism");
3259 String fp = System.getProperty
3260 ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3261 String hp = System.getProperty
3262 ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3263 if (pp != null)
3264 parallelism = Integer.parseInt(pp);
3265 if (fp != null)
3266 factory = ((ForkJoinWorkerThreadFactory)ClassLoader.
3267 getSystemClassLoader().loadClass(fp).newInstance());
3268 if (hp != null)
3269 handler = ((UncaughtExceptionHandler)ClassLoader.
3270 getSystemClassLoader().loadClass(hp).newInstance());
3271 } catch (Exception ignore) {
3272 }
3273
3274 if (parallelism < 0 && // default 1 less than #cores
3275 (parallelism = Runtime.getRuntime().availableProcessors() - 1) < 0)
3276 parallelism = 0;
3277 if (parallelism > MAX_CAP)
3278 parallelism = MAX_CAP;
3279 return new ForkJoinPool(parallelism, factory, handler, LIFO_QUEUE,
3280 "ForkJoinPool.commonPool-worker-");
3281 }
3282
3283 }