ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.220
Committed: Fri Aug 29 02:24:32 2014 UTC (9 years, 9 months ago) by jsr166
Branch: MAIN
Changes since 1.219: +1 -1 lines
Log Message:
tidy javadoc

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.lang.Thread.UncaughtExceptionHandler;
10 import java.util.ArrayList;
11 import java.util.Arrays;
12 import java.util.Collection;
13 import java.util.Collections;
14 import java.util.List;
15 import java.util.concurrent.AbstractExecutorService;
16 import java.util.concurrent.Callable;
17 import java.util.concurrent.ExecutorService;
18 import java.util.concurrent.Future;
19 import java.util.concurrent.RejectedExecutionException;
20 import java.util.concurrent.RunnableFuture;
21 import java.util.concurrent.ThreadLocalRandom;
22 import java.util.concurrent.TimeUnit;
23 import java.util.concurrent.atomic.AtomicLong;
24 import java.security.AccessControlContext;
25 import java.security.ProtectionDomain;
26 import java.security.Permissions;
27
28 /**
29 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
30 * A {@code ForkJoinPool} provides the entry point for submissions
31 * from non-{@code ForkJoinTask} clients, as well as management and
32 * monitoring operations.
33 *
34 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
35 * ExecutorService} mainly by virtue of employing
36 * <em>work-stealing</em>: all threads in the pool attempt to find and
37 * execute tasks submitted to the pool and/or created by other active
38 * tasks (eventually blocking waiting for work if none exist). This
39 * enables efficient processing when most tasks spawn other subtasks
40 * (as do most {@code ForkJoinTask}s), as well as when many small
41 * tasks are submitted to the pool from external clients. Especially
42 * when setting <em>asyncMode</em> to true in constructors, {@code
43 * ForkJoinPool}s may also be appropriate for use with event-style
44 * tasks that are never joined.
45 *
46 * <p>A static {@link #commonPool()} is available and appropriate for
47 * most applications. The common pool is used by any ForkJoinTask that
48 * is not explicitly submitted to a specified pool. Using the common
49 * pool normally reduces resource usage (its threads are slowly
50 * reclaimed during periods of non-use, and reinstated upon subsequent
51 * use).
52 *
53 * <p>For applications that require separate or custom pools, a {@code
54 * ForkJoinPool} may be constructed with a given target parallelism
55 * level; by default, equal to the number of available processors.
56 * The pool attempts to maintain enough active (or available) threads
57 * by dynamically adding, suspending, or resuming internal worker
58 * threads, even if some tasks are stalled waiting to join others.
59 * However, no such adjustments are guaranteed in the face of blocked
60 * I/O or other unmanaged synchronization. The nested {@link
61 * ManagedBlocker} interface enables extension of the kinds of
62 * synchronization accommodated.
63 *
64 * <p>In addition to execution and lifecycle control methods, this
65 * class provides status check methods (for example
66 * {@link #getStealCount}) that are intended to aid in developing,
67 * tuning, and monitoring fork/join applications. Also, method
68 * {@link #toString} returns indications of pool state in a
69 * convenient form for informal monitoring.
70 *
71 * <p>As is the case with other ExecutorServices, there are three
72 * main task execution methods summarized in the following table.
73 * These are designed to be used primarily by clients not already
74 * engaged in fork/join computations in the current pool. The main
75 * forms of these methods accept instances of {@code ForkJoinTask},
76 * but overloaded forms also allow mixed execution of plain {@code
77 * Runnable}- or {@code Callable}- based activities as well. However,
78 * tasks that are already executing in a pool should normally instead
79 * use the within-computation forms listed in the table unless using
80 * async event-style tasks that are not usually joined, in which case
81 * there is little difference among choice of methods.
82 *
83 * <table BORDER CELLPADDING=3 CELLSPACING=1>
84 * <caption>Summary of task execution methods</caption>
85 * <tr>
86 * <td></td>
87 * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
88 * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
89 * </tr>
90 * <tr>
91 * <td> <b>Arrange async execution</b></td>
92 * <td> {@link #execute(ForkJoinTask)}</td>
93 * <td> {@link ForkJoinTask#fork}</td>
94 * </tr>
95 * <tr>
96 * <td> <b>Await and obtain result</b></td>
97 * <td> {@link #invoke(ForkJoinTask)}</td>
98 * <td> {@link ForkJoinTask#invoke}</td>
99 * </tr>
100 * <tr>
101 * <td> <b>Arrange exec and obtain Future</b></td>
102 * <td> {@link #submit(ForkJoinTask)}</td>
103 * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
104 * </tr>
105 * </table>
106 *
107 * <p>The common pool is by default constructed with default
108 * parameters, but these may be controlled by setting three
109 * {@linkplain System#getProperty system properties}:
110 * <ul>
111 * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
112 * - the parallelism level, a non-negative integer
113 * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
114 * - the class name of a {@link ForkJoinWorkerThreadFactory}
115 * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
116 * - the class name of a {@link UncaughtExceptionHandler}
117 * <li>{@code java.util.concurrent.ForkJoinPool.common.maximumSpares}
118 * - the maximum number of alloed extra threads to maintain target
119 * parallelism (default 256).
120 * </ul>
121 * If a {@link SecurityManager} is present and no factory is
122 * specified, then the default pool uses a factory supplying
123 * threads that have no {@link Permissions} enabled.
124 * The system class loader is used to load these classes.
125 * Upon any error in establishing these settings, default parameters
126 * are used. It is possible to disable or limit the use of threads in
127 * the common pool by setting the parallelism property to zero, and/or
128 * using a factory that may return {@code null}. However doing so may
129 * cause unjoined tasks to never be executed.
130 *
131 * <p><b>Implementation notes</b>: This implementation restricts the
132 * maximum number of running threads to 32767. Attempts to create
133 * pools with greater than the maximum number result in
134 * {@code IllegalArgumentException}.
135 *
136 * <p>This implementation rejects submitted tasks (that is, by throwing
137 * {@link RejectedExecutionException}) only when the pool is shut down
138 * or internal resources have been exhausted.
139 *
140 * @since 1.7
141 * @author Doug Lea
142 */
143 @sun.misc.Contended
144 public class ForkJoinPool extends AbstractExecutorService {
145
146 /*
147 * Implementation Overview
148 *
149 * This class and its nested classes provide the main
150 * functionality and control for a set of worker threads:
151 * Submissions from non-FJ threads enter into submission queues.
152 * Workers take these tasks and typically split them into subtasks
153 * that may be stolen by other workers. Preference rules give
154 * first priority to processing tasks from their own queues (LIFO
155 * or FIFO, depending on mode), then to randomized FIFO steals of
156 * tasks in other queues. This framework began as vehicle for
157 * supporting tree-structured parallelism using work-stealing.
158 * Over time, its scalability advantages led to extensions and
159 * changes to better support more diverse usage contexts. Because
160 * most internal methods and nested classes are interrelated,
161 * their main rationale and descriptions are presented here;
162 * individual methods and nested classes contain only brief
163 * comments about details.
164 *
165 * WorkQueues
166 * ==========
167 *
168 * Most operations occur within work-stealing queues (in nested
169 * class WorkQueue). These are special forms of Deques that
170 * support only three of the four possible end-operations -- push,
171 * pop, and poll (aka steal), under the further constraints that
172 * push and pop are called only from the owning thread (or, as
173 * extended here, under a lock), while poll may be called from
174 * other threads. (If you are unfamiliar with them, you probably
175 * want to read Herlihy and Shavit's book "The Art of
176 * Multiprocessor programming", chapter 16 describing these in
177 * more detail before proceeding.) The main work-stealing queue
178 * design is roughly similar to those in the papers "Dynamic
179 * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
180 * (http://research.sun.com/scalable/pubs/index.html) and
181 * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
182 * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
183 * The main differences ultimately stem from GC requirements that
184 * we null out taken slots as soon as we can, to maintain as small
185 * a footprint as possible even in programs generating huge
186 * numbers of tasks. To accomplish this, we shift the CAS
187 * arbitrating pop vs poll (steal) from being on the indices
188 * ("base" and "top") to the slots themselves.
189 *
190 * Adding tasks then takes the form of a classic array push(task):
191 * q.array[q.top] = task; ++q.top;
192 *
193 * (The actual code needs to null-check and size-check the array,
194 * properly fence the accesses, and possibly signal waiting
195 * workers to start scanning -- see below.) Both a successful pop
196 * and poll mainly entail a CAS of a slot from non-null to null.
197 *
198 * The pop operation (always performed by owner) is:
199 * if ((base != top) and
200 * (the task at top slot is not null) and
201 * (CAS slot to null))
202 * decrement top and return task;
203 *
204 * And the poll operation (usually by a stealer) is
205 * if ((base != top) and
206 * (the task at base slot is not null) and
207 * (base has not changed) and
208 * (CAS slot to null))
209 * increment base and return task;
210 *
211 * Because we rely on CASes of references, we do not need tag bits
212 * on base or top. They are simple ints as used in any circular
213 * array-based queue (see for example ArrayDeque). Updates to the
214 * indices guarantee that top == base means the queue is empty,
215 * but otherwise may err on the side of possibly making the queue
216 * appear nonempty when a push, pop, or poll have not fully
217 * committed. (Method isEmpty() checks the case of a partially
218 * completed removal of the last element.) Because of this, the
219 * poll operation, considered individually, is not wait-free. One
220 * thief cannot successfully continue until another in-progress
221 * one (or, if previously empty, a push) completes. However, in
222 * the aggregate, we ensure at least probabilistic
223 * non-blockingness. If an attempted steal fails, a thief always
224 * chooses a different random victim target to try next. So, in
225 * order for one thief to progress, it suffices for any
226 * in-progress poll or new push on any empty queue to
227 * complete. (This is why we normally use method pollAt and its
228 * variants that try once at the apparent base index, else
229 * consider alternative actions, rather than method poll, which
230 * retries.)
231 *
232 * This approach also enables support of a user mode in which
233 * local task processing is in FIFO, not LIFO order, simply by
234 * using poll rather than pop. This can be useful in
235 * message-passing frameworks in which tasks are never joined.
236 * However neither mode considers affinities, loads, cache
237 * localities, etc, so rarely provide the best possible
238 * performance on a given machine, but portably provide good
239 * throughput by averaging over these factors. Further, even if
240 * we did try to use such information, we do not usually have a
241 * basis for exploiting it. For example, some sets of tasks
242 * profit from cache affinities, but others are harmed by cache
243 * pollution effects. Additionally, even though it requires
244 * scanning, long-term throughput is often best using random
245 * selection rather than directed selection policies, so cheap
246 * randomization of sufficient quality is used whenever
247 * applicable. Various Marsaglia XorShifts (some with different
248 * shift constants) are inlined at use points.
249 *
250 * WorkQueues are also used in a similar way for tasks submitted
251 * to the pool. We cannot mix these tasks in the same queues used
252 * by workers. Instead, we randomly associate submission queues
253 * with submitting threads, using a form of hashing. The
254 * ThreadLocalRandom probe value serves as a hash code for
255 * choosing existing queues, and may be randomly repositioned upon
256 * contention with other submitters. In essence, submitters act
257 * like workers except that they are restricted to executing local
258 * tasks that they submitted (or in the case of CountedCompleters,
259 * others with the same root task). Insertion of tasks in shared
260 * mode requires a lock (mainly to protect in the case of
261 * resizing) but we use only a simple spinlock (using field
262 * qlock), because submitters encountering a busy queue move on to
263 * try or create other queues -- they block only when creating and
264 * registering new queues. Additionally, "qlock" saturates to an
265 * unlockable value (-1) at shutdown. Unlocking still can be and
266 * is performed by cheaper ordered writes of "qlock" in successful
267 * cases, but uses CAS in unsuccessful cases.
268 *
269 * Management
270 * ==========
271 *
272 * The main throughput advantages of work-stealing stem from
273 * decentralized control -- workers mostly take tasks from
274 * themselves or each other, at rates that can exceed a billion
275 * per second. The pool itself creates, activates (enables
276 * scanning for and running tasks), deactivates, blocks, and
277 * terminates threads, all with minimal central information.
278 * There are only a few properties that we can globally track or
279 * maintain, so we pack them into a small number of variables,
280 * often maintaining atomicity without blocking or locking.
281 * Nearly all essentially atomic control state is held in two
282 * volatile variables that are by far most often read (not
283 * written) as status and consistency checks. (Also, field
284 * "config" holds unchanging configuration state.)
285 *
286 * Field "ctl" contains 64 bits holding information needed to
287 * atomically decide to add, inactivate, enqueue (on an event
288 * queue), dequeue, and/or re-activate workers. To enable this
289 * packing, we restrict maximum parallelism to (1<<15)-1 (which is
290 * far in excess of normal operating range) to allow ids, counts,
291 * and their negations (used for thresholding) to fit into 16bit
292 * subfields.
293 *
294 * Field "runState" holds lockable state bits (STARTED, STOP, etc)
295 * also protecting updates to the workQueues array. When used as
296 * a lock, it is normally held only for a few instructions (the
297 * only exceptions are one-time array initialization and uncommon
298 * resizing), so is nearly always available after at most a brief
299 * spin. But to be extra-cautious, after spinning, method
300 * awaitRunStateLock (called only if an initial CAS fails), uses a
301 * wait/notify mechanics on a builtin monitor to block when
302 * (rarely) needed. This would be a terrible idea for a highly
303 * contended lock, but most pools run without the lock ever
304 * contending after the spin limit, so this works fine as a more
305 * conservative alternative. Because we don't otherwise have an
306 * internal Object to use as a monitor, the "stealCounter" (an
307 * AtomicLong) is used when available (it too must be lazily
308 * initialized; see externalSubmit).
309 *
310 * Usages of "runState" vs "ctl" interact in only one case:
311 * deciding to add a worker thread (see tryAddWorker), in which
312 * case the ctl CAS is performed while the lock is held.
313 *
314 * Recording WorkQueues. WorkQueues are recorded in the
315 * "workQueues" array. The array is created upon first use (see
316 * externalSubmit) and expanded if necessary. Updates to the
317 * array while recording new workers and unrecording terminated
318 * ones are protected from each other by the runState lock, but
319 * the array is otherwise concurrently readable, and accessed
320 * directly. We also ensure that reads of the array reference
321 * itself never become too stale. To simplify index-based
322 * operations, the array size is always a power of two, and all
323 * readers must tolerate null slots. Worker queues are at odd
324 * indices. Shared (submission) queues are at even indices, up to
325 * a maximum of 64 slots, to limit growth even if array needs to
326 * expand to add more workers. Grouping them together in this way
327 * simplifies and speeds up task scanning.
328 *
329 * All worker thread creation is on-demand, triggered by task
330 * submissions, replacement of terminated workers, and/or
331 * compensation for blocked workers. However, all other support
332 * code is set up to work with other policies. To ensure that we
333 * do not hold on to worker references that would prevent GC, All
334 * accesses to workQueues are via indices into the workQueues
335 * array (which is one source of some of the messy code
336 * constructions here). In essence, the workQueues array serves as
337 * a weak reference mechanism. Thus for example the stack top
338 * subfield of ctl stores indices, not references.
339 *
340 * Queuing Idle Workers. Unlike HPC work-stealing frameworks, we
341 * cannot let workers spin indefinitely scanning for tasks when
342 * none can be found immediately, and we cannot start/resume
343 * workers unless there appear to be tasks available. On the
344 * other hand, we must quickly prod them into action when new
345 * tasks are submitted or generated. In many usages, ramp-up time
346 * to activate workers is the main limiting factor in overall
347 * performance, which is compounded at program start-up by JIT
348 * compilation and allocation. So we streamline this as much as
349 * possible.
350 *
351 * The "ctl" field atomically maintains active and total worker
352 * counts as well as a queue to place waiting threads so they can
353 * be located for signalling. Active counts also play the role of
354 * quiescence indicators, so are decremented when workers believe
355 * that there are no more tasks to execute. The "queue" is
356 * actually a form of Treiber stack. A stack is ideal for
357 * activating threads in most-recently used order. This improves
358 * performance and locality, outweighing the disadvantages of
359 * being prone to contention and inability to release a worker
360 * unless it is topmost on stack. We park/unpark workers after
361 * pushing on the idle worker stack (represented by the lower
362 * 32bit subfield of ctl) when they cannot find work. The top
363 * stack state holds the value of the "scanState" field of the
364 * worker: its index and status, plus a version counter that, in
365 * addition to the count subfields (also serving as version
366 * stamps) provide protection against Treiber stack ABA effects.
367 *
368 * Field scanState is used by both workers and the pool to manage
369 * and track whether a worker is INACTIVE (possibly blocked
370 * waiting for a signal), or SCANNING for tasks (when neither hold
371 * it is busy running tasks). When a worker is inactivated, its
372 * scanState field is set, and is prevented from executing tasks,
373 * even though it must scan once for them to avoid queuing
374 * races. Note that scanState updates lag queue CAS releases so
375 * usage requires care. When queued, the lower 16 bits of
376 * scanState must hold its pool index. So we place the index there
377 * upon initialization (see registerWorker) and otherwise keep it
378 * there or restore it when necessary.
379 *
380 * Memory ordering. See "Correct and Efficient Work-Stealing for
381 * Weak Memory Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
382 * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
383 * analysis of memory ordering requirements in work-stealing
384 * algorithms similar to the one used here. We usually need
385 * stronger than minimal ordering because we must sometimes signal
386 * workers, requiring Dekker-like full-fences to avoid lost
387 * signals. Arranging for enough ordering without expensive
388 * over-fencing requires tradeoffs among the supported means of
389 * expressing access constraints. The most central operations,
390 * taking from queues and updating ctl state, require full-fence
391 * CAS. Array slots are read using the emulation of volatiles
392 * provided by Unsafe. Access from other threads to WorkQueue
393 * base, top, and array requires a volatile load of the first of
394 * any of these read. We use the convention of declaring the
395 * "base" index volatile, and always read it before other fields.
396 * The owner thread must ensure ordered updates, so writes use
397 * ordered intrinsics unless they can piggyback on those for other
398 * writes. Similar conventions and rationales hold for other
399 * WorkQueue fields (such as "currentSteal") that are only written
400 * by owners but observed by others.
401 *
402 * Creating workers. To create a worker, we pre-increment total
403 * count (serving as a reservation), and attempt to construct a
404 * ForkJoinWorkerThread via its factory. Upon construction, the
405 * new thread invokes registerWorker, where it constructs a
406 * WorkQueue and is assigned an index in the workQueues array
407 * (expanding the array if necessary). The thread is then
408 * started. Upon any exception across these steps, or null return
409 * from factory, deregisterWorker adjusts counts and records
410 * accordingly. If a null return, the pool continues running with
411 * fewer than the target number workers. If exceptional, the
412 * exception is propagated, generally to some external caller.
413 * Worker index assignment avoids the bias in scanning that would
414 * occur if entries were sequentially packed starting at the front
415 * of the workQueues array. We treat the array as a simple
416 * power-of-two hash table, expanding as needed. The seedIndex
417 * increment ensures no collisions until a resize is needed or a
418 * worker is deregistered and replaced, and thereafter keeps
419 * probability of collision low. We cannot use
420 * ThreadLocalRandom.getProbe() for similar purposes here because
421 * the thread has not started yet, but do so for creating
422 * submission queues for existing external threads.
423 *
424 * Deactivation and waiting. Queuing encounters several intrinsic
425 * races; most notably that a task-producing thread can miss
426 * seeing (and signalling) another thread that gave up looking for
427 * work but has not yet entered the wait queue. When a worker
428 * cannot find a task to steal, it deactivates and enqueues. Very
429 * often, the lack of tasks is transient due to GC or OS
430 * scheduling. To reduce false-alarm deactivation, scanners
431 * compute checksums of queue states during sweeps. (The
432 * stability checks used here and elsewhere are probabilistic
433 * variants of snapshot techniques -- see Herlihy & Shavit.)
434 * Workers give up and try to deactivate only after the sum is
435 * stable across scans. Further, to avoid missed signals, they
436 * repeat this scanning process after successful enqueuing until
437 * again stable. In this state, the worker cannot take/run a task
438 * it sees until it is released from the queue, so the worker
439 * itself eventually tries to release itself or any successor (see
440 * tryRelease). Otherwise, upon an empty scan, a deactivated
441 * worker uses an adaptive local spin construction (see awaitWork)
442 * before blocking (via park). Note the unusual conventions about
443 * Thread.interrupts surrounding parking and other blocking:
444 * Because interrupts are used solely to alert threads to check
445 * termination, which is checked anyway upon blocking, we clear
446 * status (using Thread.interrupted) before any call to park, so
447 * that park does not immediately return due to status being set
448 * via some other unrelated call to interrupt in user code.
449 *
450 * Signalling and activation. Workers are created or activated
451 * only when there appears to be at least one task they might be
452 * able to find and execute. Upon push (either by a worker or an
453 * external submission) to a previously (possibly) empty queue,
454 * workers are signalled if idle, or created if fewer exist than
455 * the given parallelism level. These primary signals are
456 * buttressed by others whenever other threads remove a task from
457 * a queue and notice that there are other tasks there as well.
458 * On most platforms, signalling (unpark) overhead time is
459 * noticeably long, and the time between signalling a thread and
460 * it actually making progress can be very noticeably long, so it
461 * is worth offloading these delays from critical paths as much as
462 * possible. Also, because inactive workers are often rescanning
463 * or spinning rather than blocking, we set and clear the "parker"
464 * field of WorkQueues to reduce unnecessary calls to unpark.
465 * (This requires a secondary recheck to avoid missed signals.)
466 *
467 * Trimming workers. To release resources after periods of lack of
468 * use, a worker starting to wait when the pool is quiescent will
469 * time out and terminate (see awaitWork) if the pool has remained
470 * quiescent for period IDLE_TIMEOUT, increasing the period as the
471 * number of threads decreases, eventually removing all workers.
472 * Also, when more than two spare threads exist, excess threads
473 * are immediately terminated at the next quiescent point.
474 * (Padding by two avoids hysteresis.)
475 *
476 * Shutdown and Termination. A call to shutdownNow invokes
477 * tryTerminate to atomically set a runState bit. The calling
478 * thread, as well as every other worker thereafter terminating,
479 * helps terminate others by setting their (qlock) status,
480 * cancelling their unprocessed tasks, and waking them up, doing
481 * so repeatedly until stable (but with a loop bounded by the
482 * number of workers). Calls to non-abrupt shutdown() preface
483 * this by checking whether termination should commence. This
484 * relies primarily on the active count bits of "ctl" maintaining
485 * consensus -- tryTerminate is called from awaitWork whenever
486 * quiescent. However, external submitters do not take part in
487 * this consensus. So, tryTerminate sweeps through queues (until
488 * stable) to ensure lack of in-flight submissions and workers
489 * about to process them before triggering the "STOP" phase of
490 * termination. (Note: there is an intrinsic conflict if
491 * helpQuiescePool is called when shutdown is enabled. Both wait
492 * for quiescence, but tryTerminate is biased to not trigger until
493 * helpQuiescePool completes.)
494 *
495 *
496 * Joining Tasks
497 * =============
498 *
499 * Any of several actions may be taken when one worker is waiting
500 * to join a task stolen (or always held) by another. Because we
501 * are multiplexing many tasks on to a pool of workers, we can't
502 * just let them block (as in Thread.join). We also cannot just
503 * reassign the joiner's run-time stack with another and replace
504 * it later, which would be a form of "continuation", that even if
505 * possible is not necessarily a good idea since we may need both
506 * an unblocked task and its continuation to progress. Instead we
507 * combine two tactics:
508 *
509 * Helping: Arranging for the joiner to execute some task that it
510 * would be running if the steal had not occurred.
511 *
512 * Compensating: Unless there are already enough live threads,
513 * method tryCompensate() may create or re-activate a spare
514 * thread to compensate for blocked joiners until they unblock.
515 *
516 * A third form (implemented in tryRemoveAndExec) amounts to
517 * helping a hypothetical compensator: If we can readily tell that
518 * a possible action of a compensator is to steal and execute the
519 * task being joined, the joining thread can do so directly,
520 * without the need for a compensation thread (although at the
521 * expense of larger run-time stacks, but the tradeoff is
522 * typically worthwhile).
523 *
524 * The ManagedBlocker extension API can't use helping so relies
525 * only on compensation in method awaitBlocker.
526 *
527 * The algorithm in helpStealer entails a form of "linear
528 * helping". Each worker records (in field currentSteal) the most
529 * recent task it stole from some other worker (or a submission).
530 * It also records (in field currentJoin) the task it is currently
531 * actively joining. Method helpStealer uses these markers to try
532 * to find a worker to help (i.e., steal back a task from and
533 * execute it) that could hasten completion of the actively joined
534 * task. Thus, the joiner executes a task that would be on its
535 * own local deque had the to-be-joined task not been stolen. This
536 * is a conservative variant of the approach described in Wagner &
537 * Calder "Leapfrogging: a portable technique for implementing
538 * efficient futures" SIGPLAN Notices, 1993
539 * (http://portal.acm.org/citation.cfm?id=155354). It differs in
540 * that: (1) We only maintain dependency links across workers upon
541 * steals, rather than use per-task bookkeeping. This sometimes
542 * requires a linear scan of workQueues array to locate stealers,
543 * but often doesn't because stealers leave hints (that may become
544 * stale/wrong) of where to locate them. It is only a hint
545 * because a worker might have had multiple steals and the hint
546 * records only one of them (usually the most current). Hinting
547 * isolates cost to when it is needed, rather than adding to
548 * per-task overhead. (2) It is "shallow", ignoring nesting and
549 * potentially cyclic mutual steals. (3) It is intentionally
550 * racy: field currentJoin is updated only while actively joining,
551 * which means that we miss links in the chain during long-lived
552 * tasks, GC stalls etc (which is OK since blocking in such cases
553 * is usually a good idea). (4) We bound the number of attempts
554 * to find work using checksums and fall back to suspending the
555 * worker and if necessary replacing it with another.
556 *
557 * Helping actions for CountedCompleters do not require tracking
558 * currentJoins: Method helpComplete takes and executes any task
559 * with the same root as the task being waited on (preferring
560 * local pops to non-local polls). However, this still entails
561 * some traversal of completer chains, so is less efficient than
562 * using CountedCompleters without explicit joins.
563 *
564 * Compensation does not aim to keep exactly the target
565 * parallelism number of unblocked threads running at any given
566 * time. Some previous versions of this class employed immediate
567 * compensations for any blocked join. However, in practice, the
568 * vast majority of blockages are transient byproducts of GC and
569 * other JVM or OS activities that are made worse by replacement.
570 * Currently, compensation is attempted only after validating that
571 * all purportedly active threads are processing tasks by checking
572 * field WorkQueue.scanState, which eliminates most false
573 * positives. Also, compensation is bypassed (tolerating fewer
574 * threads) in the most common case in which it is rarely
575 * beneficial: when a worker with an empty queue (thus no
576 * continuation tasks) blocks on a join and there still remain
577 * enough threads to ensure liveness.
578 *
579 * The compensation mechanism may be bounded. Bounds for the
580 * commonPool (see commonMaxSpares) better enable JVMs to cope
581 * with programming errors and abuse before running out of
582 * resources to do so. In other cases, users may supply factories
583 * that limit thread construction. The effects of bounding in this
584 * pool (like all others) is imprecise. Total worker counts are
585 * decremented when threads deregister, not when they exit and
586 * resources are reclaimed by the JVM and OS. So the number of
587 * simultaneously live threads may transiently exceed bounds.
588 *
589 * Common Pool
590 * ===========
591 *
592 * The static common pool always exists after static
593 * initialization. Since it (or any other created pool) need
594 * never be used, we minimize initial construction overhead and
595 * footprint to the setup of about a dozen fields, with no nested
596 * allocation. Most bootstrapping occurs within method
597 * externalSubmit during the first submission to the pool.
598 *
599 * When external threads submit to the common pool, they can
600 * perform subtask processing (see externalHelpComplete and
601 * related methods) upon joins. This caller-helps policy makes it
602 * sensible to set common pool parallelism level to one (or more)
603 * less than the total number of available cores, or even zero for
604 * pure caller-runs. We do not need to record whether external
605 * submissions are to the common pool -- if not, external help
606 * methods return quickly. These submitters would otherwise be
607 * blocked waiting for completion, so the extra effort (with
608 * liberally sprinkled task status checks) in inapplicable cases
609 * amounts to an odd form of limited spin-wait before blocking in
610 * ForkJoinTask.join.
611 *
612 * As a more appropriate default in managed environments, unless
613 * overridden by system properties, we use workers of subclass
614 * InnocuousForkJoinWorkerThread when there is a SecurityManager
615 * present. These workers have no permissions set, do not belong
616 * to any user-defined ThreadGroup, and erase all ThreadLocals
617 * after executing any top-level task (see WorkQueue.runTask).
618 * The associated mechanics (mainly in ForkJoinWorkerThread) may
619 * be JVM-dependent and must access particular Thread class fields
620 * to achieve this effect.
621 *
622 * Style notes
623 * ===========
624 *
625 * Memory ordering relies mainly on Unsafe intrinsics that carry
626 * the further responsibility of explicitly performing null- and
627 * bounds- checks otherwise carried out implicitly by JVMs. This
628 * can be awkward and ugly, but also reflects the need to control
629 * outcomes across the unusual cases that arise in very racy code
630 * with very few invariants. So these explicit checks would exist
631 * in some form anyway. All fields are read into locals before
632 * use, and null-checked if they are references. This is usually
633 * done in a "C"-like style of listing declarations at the heads
634 * of methods or blocks, and using inline assignments on first
635 * encounter. Array bounds-checks are usually performed by
636 * masking with array.length-1, which relies on the invariant that
637 * these arrays are created with positive lengths, which is itself
638 * paranoically checked. Nearly all explicit checks lead to
639 * bypass/return, not exception throws, because they may
640 * legitimately arise due to cancellation/revocation during
641 * shutdown.
642 *
643 * There is a lot of representation-level coupling among classes
644 * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
645 * fields of WorkQueue maintain data structures managed by
646 * ForkJoinPool, so are directly accessed. There is little point
647 * trying to reduce this, since any associated future changes in
648 * representations will need to be accompanied by algorithmic
649 * changes anyway. Several methods intrinsically sprawl because
650 * they must accumulate sets of consistent reads of fields held in
651 * local variables. There are also other coding oddities
652 * (including several unnecessary-looking hoisted null checks)
653 * that help some methods perform reasonably even when interpreted
654 * (not compiled).
655 *
656 * The order of declarations in this file is (with a few exceptions):
657 * (1) Static utility functions
658 * (2) Nested (static) classes
659 * (3) Static fields
660 * (4) Fields, along with constants used when unpacking some of them
661 * (5) Internal control methods
662 * (6) Callbacks and other support for ForkJoinTask methods
663 * (7) Exported methods
664 * (8) Static block initializing statics in minimally dependent order
665 */
666
667 // Static utilities
668
669 /**
670 * If there is a security manager, makes sure caller has
671 * permission to modify threads.
672 */
673 private static void checkPermission() {
674 SecurityManager security = System.getSecurityManager();
675 if (security != null)
676 security.checkPermission(modifyThreadPermission);
677 }
678
679 // Nested classes
680
681 /**
682 * Factory for creating new {@link ForkJoinWorkerThread}s.
683 * A {@code ForkJoinWorkerThreadFactory} must be defined and used
684 * for {@code ForkJoinWorkerThread} subclasses that extend base
685 * functionality or initialize threads with different contexts.
686 */
687 public static interface ForkJoinWorkerThreadFactory {
688 /**
689 * Returns a new worker thread operating in the given pool.
690 *
691 * @param pool the pool this thread works in
692 * @return the new worker thread
693 * @throws NullPointerException if the pool is null
694 */
695 public ForkJoinWorkerThread newThread(ForkJoinPool pool);
696 }
697
698 /**
699 * Default ForkJoinWorkerThreadFactory implementation; creates a
700 * new ForkJoinWorkerThread.
701 */
702 static final class DefaultForkJoinWorkerThreadFactory
703 implements ForkJoinWorkerThreadFactory {
704 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
705 return new ForkJoinWorkerThread(pool);
706 }
707 }
708
709 /**
710 * Class for artificial tasks that are used to replace the target
711 * of local joins if they are removed from an interior queue slot
712 * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
713 * actually do anything beyond having a unique identity.
714 */
715 static final class EmptyTask extends ForkJoinTask<Void> {
716 private static final long serialVersionUID = -7721805057305804111L;
717 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
718 public final Void getRawResult() { return null; }
719 public final void setRawResult(Void x) {}
720 public final boolean exec() { return true; }
721 }
722
723 // Constants shared across ForkJoinPool and WorkQueue
724
725 // Bounds
726 static final int SMASK = 0xffff; // short bits == max index
727 static final int MAX_CAP = 0x7fff; // max #workers - 1
728 static final int EVENMASK = 0xfffe; // even short bits
729 static final int SQMASK = 0x007e; // max 64 (even) slots
730
731 // Masks and units for WorkQueue.scanState and ctl sp subfield
732 static final int SCANNING = 1; // false when running tasks
733 static final int INACTIVE = 1 << 31; // must be negative
734 static final int SS_SEQ = 1 << 16; // version count
735
736 // Mode bits for ForkJoinPool.config and WorkQueue.config
737 static final int MODE_MASK = 0xffff << 16; // top half of int
738 static final int LIFO_QUEUE = 0;
739 static final int FIFO_QUEUE = 1 << 16;
740 static final int SHARED_QUEUE = 1 << 31; // must be negative
741
742 /**
743 * Queues supporting work-stealing as well as external task
744 * submission. See above for descriptions and algorithms.
745 * Performance on most platforms is very sensitive to placement of
746 * instances of both WorkQueues and their arrays -- we absolutely
747 * do not want multiple WorkQueue instances or multiple queue
748 * arrays sharing cache lines. The @Contended annotation alerts
749 * JVMs to try to keep instances apart.
750 */
751 @sun.misc.Contended
752 static final class WorkQueue {
753
754 /**
755 * Capacity of work-stealing queue array upon initialization.
756 * Must be a power of two; at least 4, but should be larger to
757 * reduce or eliminate cacheline sharing among queues.
758 * Currently, it is much larger, as a partial workaround for
759 * the fact that JVMs often place arrays in locations that
760 * share GC bookkeeping (especially cardmarks) such that
761 * per-write accesses encounter serious memory contention.
762 */
763 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
764
765 /**
766 * Maximum size for queue arrays. Must be a power of two less
767 * than or equal to 1 << (31 - width of array entry) to ensure
768 * lack of wraparound of index calculations, but defined to a
769 * value a bit less than this to help users trap runaway
770 * programs before saturating systems.
771 */
772 static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
773
774 // Instance fields
775 volatile int scanState; // versioned, <0: inactive; odd:scanning
776 int stackPred; // pool stack (ctl) predecessor
777 int nsteals; // number of steals
778 int hint; // randomization and stealer index hint
779 int config; // pool index and mode
780 volatile int qlock; // 1: locked, < 0: terminate; else 0
781 volatile int base; // index of next slot for poll
782 int top; // index of next slot for push
783 ForkJoinTask<?>[] array; // the elements (initially unallocated)
784 final ForkJoinPool pool; // the containing pool (may be null)
785 final ForkJoinWorkerThread owner; // owning thread or null if shared
786 volatile Thread parker; // == owner during call to park; else null
787 volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
788 volatile ForkJoinTask<?> currentSteal; // mainly used by helpStealer
789
790 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner) {
791 this.pool = pool;
792 this.owner = owner;
793 // Place indices in the center of array (that is not yet allocated)
794 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
795 }
796
797 /**
798 * Returns an exportable index (used by ForkJoinWorkerThread).
799 */
800 final int getPoolIndex() {
801 return (config & 0xffff) >>> 1; // ignore odd/even tag bit
802 }
803
804 /**
805 * Returns the approximate number of tasks in the queue.
806 */
807 final int queueSize() {
808 int n = base - top; // non-owner callers must read base first
809 return (n >= 0) ? 0 : -n; // ignore transient negative
810 }
811
812 /**
813 * Provides a more accurate estimate of whether this queue has
814 * any tasks than does queueSize, by checking whether a
815 * near-empty queue has at least one unclaimed task.
816 */
817 final boolean isEmpty() {
818 ForkJoinTask<?>[] a; int n, m, s;
819 return ((n = base - (s = top)) >= 0 ||
820 (n == -1 && // possibly one task
821 ((a = array) == null || (m = a.length - 1) < 0 ||
822 U.getObject
823 (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
824 }
825
826 /**
827 * Pushes a task. Call only by owner in unshared queues. (The
828 * shared-queue version is embedded in method externalPush.)
829 *
830 * @param task the task. Caller must ensure non-null.
831 * @throws RejectedExecutionException if array cannot be resized
832 */
833 final void push(ForkJoinTask<?> task) {
834 ForkJoinTask<?>[] a; ForkJoinPool p;
835 int b = base, s = top, n;
836 if ((a = array) != null) { // ignore if queue removed
837 int m = a.length - 1; // fenced write for task visibility
838 U.putOrderedObject(a, ((m & s) << ASHIFT) + ABASE, task);
839 U.putOrderedInt(this, QTOP, s + 1);
840 if ((n = s - b) <= 1) {
841 if ((p = pool) != null)
842 p.signalWork(p.workQueues, this);
843 }
844 else if (n >= m)
845 growArray();
846 }
847 }
848
849 /**
850 * Initializes or doubles the capacity of array. Call either
851 * by owner or with lock held -- it is OK for base, but not
852 * top, to move while resizings are in progress.
853 */
854 final ForkJoinTask<?>[] growArray() {
855 ForkJoinTask<?>[] oldA = array;
856 int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
857 if (size > MAXIMUM_QUEUE_CAPACITY)
858 throw new RejectedExecutionException("Queue capacity exceeded");
859 int oldMask, t, b;
860 ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
861 if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
862 (t = top) - (b = base) > 0) {
863 int mask = size - 1;
864 do { // emulate poll from old array, push to new array
865 ForkJoinTask<?> x;
866 int oldj = ((b & oldMask) << ASHIFT) + ABASE;
867 int j = ((b & mask) << ASHIFT) + ABASE;
868 x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
869 if (x != null &&
870 U.compareAndSwapObject(oldA, oldj, x, null))
871 U.putObjectVolatile(a, j, x);
872 } while (++b != t);
873 }
874 return a;
875 }
876
877 /**
878 * Takes next task, if one exists, in LIFO order. Call only
879 * by owner in unshared queues.
880 */
881 final ForkJoinTask<?> pop() {
882 ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
883 if ((a = array) != null && (m = a.length - 1) >= 0) {
884 for (int s; (s = top - 1) - base >= 0;) {
885 long j = ((m & s) << ASHIFT) + ABASE;
886 if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
887 break;
888 if (U.compareAndSwapObject(a, j, t, null)) {
889 U.putOrderedInt(this, QTOP, s);
890 return t;
891 }
892 }
893 }
894 return null;
895 }
896
897 /**
898 * Takes a task in FIFO order if b is base of queue and a task
899 * can be claimed without contention. Specialized versions
900 * appear in ForkJoinPool methods scan and helpStealer.
901 */
902 final ForkJoinTask<?> pollAt(int b) {
903 ForkJoinTask<?> t; ForkJoinTask<?>[] a;
904 if ((a = array) != null) {
905 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
906 if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
907 base == b && U.compareAndSwapObject(a, j, t, null)) {
908 base = b + 1;
909 return t;
910 }
911 }
912 return null;
913 }
914
915 /**
916 * Takes next task, if one exists, in FIFO order.
917 */
918 final ForkJoinTask<?> poll() {
919 ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
920 while ((b = base) - top < 0 && (a = array) != null) {
921 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
922 t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
923 if (base == b) {
924 if (t != null) {
925 if (U.compareAndSwapObject(a, j, t, null)) {
926 base = b + 1;
927 return t;
928 }
929 }
930 else if (b + 1 == top) // now empty
931 break;
932 }
933 }
934 return null;
935 }
936
937 /**
938 * Takes next task, if one exists, in order specified by mode.
939 */
940 final ForkJoinTask<?> nextLocalTask() {
941 return (config & FIFO_QUEUE) == 0 ? pop() : poll();
942 }
943
944 /**
945 * Returns next task, if one exists, in order specified by mode.
946 */
947 final ForkJoinTask<?> peek() {
948 ForkJoinTask<?>[] a = array; int m;
949 if (a == null || (m = a.length - 1) < 0)
950 return null;
951 int i = (config & FIFO_QUEUE) == 0 ? top - 1 : base;
952 int j = ((i & m) << ASHIFT) + ABASE;
953 return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
954 }
955
956 /**
957 * Pops the given task only if it is at the current top.
958 * (A shared version is available only via FJP.tryExternalUnpush)
959 */
960 final boolean tryUnpush(ForkJoinTask<?> t) {
961 ForkJoinTask<?>[] a; int s;
962 if ((a = array) != null && (s = top) != base &&
963 U.compareAndSwapObject
964 (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
965 U.putOrderedInt(this, QTOP, s);
966 return true;
967 }
968 return false;
969 }
970
971 /**
972 * Removes and cancels all known tasks, ignoring any exceptions.
973 */
974 final void cancelAll() {
975 ForkJoinTask<?> t;
976 if ((t = currentJoin) != null) {
977 currentJoin = null;
978 ForkJoinTask.cancelIgnoringExceptions(t);
979 }
980 if ((t = currentSteal) != null) {
981 currentSteal = null;
982 ForkJoinTask.cancelIgnoringExceptions(t);
983 }
984 while ((t = poll()) != null)
985 ForkJoinTask.cancelIgnoringExceptions(t);
986 }
987
988 // Specialized execution methods
989
990 /**
991 * Polls and runs tasks until empty.
992 */
993 final void pollAndExecAll() {
994 for (ForkJoinTask<?> t; (t = poll()) != null;)
995 t.doExec();
996 }
997
998 /**
999 * Removes and executes all local tasks. If LIFO, invokes
1000 * pollAndExecAll. Otherwise implements a specialized pop loop
1001 * to exec until empty.
1002 */
1003 final void execLocalTasks() {
1004 int b = base, m, s;
1005 ForkJoinTask<?>[] a = array;
1006 if (b - (s = top - 1) <= 0 && a != null &&
1007 (m = a.length - 1) >= 0) {
1008 if ((config & FIFO_QUEUE) == 0) {
1009 for (ForkJoinTask<?> t;;) {
1010 if ((t = (ForkJoinTask<?>)U.getAndSetObject
1011 (a, ((m & s) << ASHIFT) + ABASE, null)) == null)
1012 break;
1013 U.putOrderedInt(this, QTOP, s);
1014 t.doExec();
1015 if (base - (s = top - 1) > 0)
1016 break;
1017 }
1018 }
1019 else
1020 pollAndExecAll();
1021 }
1022 }
1023
1024 /**
1025 * Executes the given task and any remaining local tasks.
1026 */
1027 final void runTask(ForkJoinTask<?> task) {
1028 if (task != null) {
1029 scanState &= ~SCANNING; // mark as busy
1030 (currentSteal = task).doExec();
1031 U.putOrderedObject(this, QCURRENTSTEAL, null); // release for GC
1032 execLocalTasks();
1033 ForkJoinWorkerThread thread = owner;
1034 if (++nsteals < 0) // collect on overflow
1035 transferStealCount(pool);
1036 scanState |= SCANNING;
1037 if (thread != null)
1038 thread.afterTopLevelExec();
1039 }
1040 }
1041
1042 /**
1043 * Adds steal count to pool stealCounter if it exists, and resets.
1044 */
1045 final void transferStealCount(ForkJoinPool p) {
1046 AtomicLong sc;
1047 if (p != null && (sc = p.stealCounter) != null) {
1048 int s = nsteals;
1049 nsteals = 0; // if negative, correct for overflow
1050 sc.getAndAdd((long)(s < 0 ? Integer.MAX_VALUE : s));
1051 }
1052 }
1053
1054 /**
1055 * If present, removes from queue and executes the given task,
1056 * or any other cancelled task. Used only by awaitJoin.
1057 *
1058 * @return true if queue empty and task not known to be done
1059 */
1060 final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
1061 ForkJoinTask<?>[] a; int m, s, b, n;
1062 if ((a = array) != null && (m = a.length - 1) >= 0 &&
1063 task != null) {
1064 while ((n = (s = top) - (b = base)) > 0) {
1065 for (ForkJoinTask<?> t;;) { // traverse from s to b
1066 long j = ((--s & m) << ASHIFT) + ABASE;
1067 if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
1068 return s + 1 == top; // shorter than expected
1069 else if (t == task) {
1070 boolean removed = false;
1071 if (s + 1 == top) { // pop
1072 if (U.compareAndSwapObject(a, j, task, null)) {
1073 U.putOrderedInt(this, QTOP, s);
1074 removed = true;
1075 }
1076 }
1077 else if (base == b) // replace with proxy
1078 removed = U.compareAndSwapObject(
1079 a, j, task, new EmptyTask());
1080 if (removed)
1081 task.doExec();
1082 break;
1083 }
1084 else if (t.status < 0 && s + 1 == top) {
1085 if (U.compareAndSwapObject(a, j, t, null))
1086 U.putOrderedInt(this, QTOP, s);
1087 break; // was cancelled
1088 }
1089 if (--n == 0)
1090 return false;
1091 }
1092 if (task.status < 0)
1093 return false;
1094 }
1095 }
1096 return true;
1097 }
1098
1099 /**
1100 * Pops task if in the same CC computation as the given task,
1101 * in either shared or owned mode. Used only by helpComplete.
1102 */
1103 final CountedCompleter<?> popCC(CountedCompleter<?> task, int mode) {
1104 int s; ForkJoinTask<?>[] a; Object o;
1105 if (base - (s = top) < 0 && (a = array) != null) {
1106 long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
1107 if ((o = U.getObjectVolatile(a, j)) != null &&
1108 (o instanceof CountedCompleter)) {
1109 CountedCompleter<?> t = (CountedCompleter<?>)o;
1110 for (CountedCompleter<?> r = t;;) {
1111 if (r == task) {
1112 if (mode < 0) { // must lock
1113 if (U.compareAndSwapInt(this, QLOCK, 0, 1)) {
1114 if (top == s && array == a &&
1115 U.compareAndSwapObject(a, j, t, null)) {
1116 U.putOrderedInt(this, QTOP, s - 1);
1117 U.putOrderedInt(this, QLOCK, 0);
1118 return t;
1119 }
1120 U.compareAndSwapInt(this, QLOCK, 1, 0);
1121 }
1122 }
1123 else if (U.compareAndSwapObject(a, j, t, null)) {
1124 U.putOrderedInt(this, QTOP, s - 1);
1125 return t;
1126 }
1127 break;
1128 }
1129 else if ((r = r.completer) == null) // try parent
1130 break;
1131 }
1132 }
1133 }
1134 return null;
1135 }
1136
1137 /**
1138 * Steals and runs a task in the same CC computation as the
1139 * given task if one exists and can be taken without
1140 * contention. Otherwise returns a checksum/control value for
1141 * use by method helpComplete.
1142 *
1143 * @return 1 if successful, 2 if retryable (lost to another
1144 * stealer), -1 if non-empty but no matching task found, else
1145 * the base index, forced negative.
1146 */
1147 final int pollAndExecCC(CountedCompleter<?> task) {
1148 int b, h; ForkJoinTask<?>[] a; Object o;
1149 if ((b = base) - top >= 0 || (a = array) == null)
1150 h = b | Integer.MIN_VALUE; // to sense movement on re-poll
1151 else {
1152 long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
1153 if ((o = U.getObjectVolatile(a, j)) == null)
1154 h = 2; // retryable
1155 else if (!(o instanceof CountedCompleter))
1156 h = -1; // unmatchable
1157 else {
1158 CountedCompleter<?> t = (CountedCompleter<?>)o;
1159 for (CountedCompleter<?> r = t;;) {
1160 if (r == task) {
1161 if (base == b &&
1162 U.compareAndSwapObject(a, j, t, null)) {
1163 base = b + 1;
1164 t.doExec();
1165 h = 1; // success
1166 }
1167 else
1168 h = 2; // lost CAS
1169 break;
1170 }
1171 else if ((r = r.completer) == null) {
1172 h = -1; // unmatched
1173 break;
1174 }
1175 }
1176 }
1177 }
1178 return h;
1179 }
1180
1181 /**
1182 * Returns true if owned and not known to be blocked.
1183 */
1184 final boolean isApparentlyUnblocked() {
1185 Thread wt; Thread.State s;
1186 return (scanState >= 0 &&
1187 (wt = owner) != null &&
1188 (s = wt.getState()) != Thread.State.BLOCKED &&
1189 s != Thread.State.WAITING &&
1190 s != Thread.State.TIMED_WAITING);
1191 }
1192
1193 // Unsafe mechanics. Note that some are (and must be) the same as in FJP
1194 private static final sun.misc.Unsafe U;
1195 private static final int ABASE;
1196 private static final int ASHIFT;
1197 private static final long QTOP;
1198 private static final long QLOCK;
1199 private static final long QCURRENTSTEAL;
1200 static {
1201 try {
1202 U = sun.misc.Unsafe.getUnsafe();
1203 Class<?> wk = WorkQueue.class;
1204 Class<?> ak = ForkJoinTask[].class;
1205 QTOP = U.objectFieldOffset
1206 (wk.getDeclaredField("top"));
1207 QLOCK = U.objectFieldOffset
1208 (wk.getDeclaredField("qlock"));
1209 QCURRENTSTEAL = U.objectFieldOffset
1210 (wk.getDeclaredField("currentSteal"));
1211 ABASE = U.arrayBaseOffset(ak);
1212 int scale = U.arrayIndexScale(ak);
1213 if ((scale & (scale - 1)) != 0)
1214 throw new Error("data type scale not a power of two");
1215 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1216 } catch (Exception e) {
1217 throw new Error(e);
1218 }
1219 }
1220 }
1221
1222 // static fields (initialized in static initializer below)
1223
1224 /**
1225 * Creates a new ForkJoinWorkerThread. This factory is used unless
1226 * overridden in ForkJoinPool constructors.
1227 */
1228 public static final ForkJoinWorkerThreadFactory
1229 defaultForkJoinWorkerThreadFactory;
1230
1231 /**
1232 * Permission required for callers of methods that may start or
1233 * kill threads.
1234 */
1235 private static final RuntimePermission modifyThreadPermission;
1236
1237 /**
1238 * Common (static) pool. Non-null for public use unless a static
1239 * construction exception, but internal usages null-check on use
1240 * to paranoically avoid potential initialization circularities
1241 * as well as to simplify generated code.
1242 */
1243 static final ForkJoinPool common;
1244
1245 /**
1246 * Common pool parallelism. To allow simpler use and management
1247 * when common pool threads are disabled, we allow the underlying
1248 * common.parallelism field to be zero, but in that case still report
1249 * parallelism as 1 to reflect resulting caller-runs mechanics.
1250 */
1251 static final int commonParallelism;
1252
1253 /**
1254 * Limit on spare thread construction in tryCompensate.
1255 */
1256 private static int commonMaxSpares;
1257
1258 /**
1259 * Sequence number for creating workerNamePrefix.
1260 */
1261 private static int poolNumberSequence;
1262
1263 /**
1264 * Returns the next sequence number. We don't expect this to
1265 * ever contend, so use simple builtin sync.
1266 */
1267 private static final synchronized int nextPoolId() {
1268 return ++poolNumberSequence;
1269 }
1270
1271 // static configuration constants
1272
1273 /**
1274 * Initial timeout value (in nanoseconds) for the thread
1275 * triggering quiescence to park waiting for new work. On timeout,
1276 * the thread will instead try to shrink the number of
1277 * workers. The value should be large enough to avoid overly
1278 * aggressive shrinkage during most transient stalls (long GCs
1279 * etc).
1280 */
1281 private static final long IDLE_TIMEOUT = 2000L * 1000L * 1000L; // 2sec
1282
1283 /**
1284 * Tolerance for idle timeouts, to cope with timer undershoots
1285 */
1286 private static final long TIMEOUT_SLOP = 20L * 1000L * 1000L; // 20ms
1287
1288 /**
1289 * The initial value for commonMaxSpares during static
1290 * initialization unless overridden using System property
1291 * "java.util.concurrent.ForkJoinPool.common.maximumSpares". The
1292 * default value is far in excess of normal requirements, but also
1293 * far short of MAX_CAP and typical OS thread limits, so allows
1294 * JVMs to catch misuse/abuse before running out of resources
1295 * needed to do so.
1296 */
1297 private static final int DEFAULT_COMMON_MAX_SPARES = 256;
1298
1299 /**
1300 * Number of times to spin-wait before blocking. The spins (in
1301 * awaitRunStateLock and awaitWork) currently use randomized
1302 * spins. If/when MWAIT-like intrinsics becomes available, they
1303 * may allow quieter spinning. The value of SPINS must be a power
1304 * of two, at least 4. The current value causes spinning for a
1305 * small fraction of typical context-switch times, well worthwhile
1306 * given the typical likelihoods that blocking is not necessary.
1307 */
1308 private static final int SPINS = 1 << 11;
1309
1310 /**
1311 * Increment for seed generators. See class ThreadLocal for
1312 * explanation.
1313 */
1314 private static final int SEED_INCREMENT = 0x9e3779b9;
1315
1316 /*
1317 * Bits and masks for field ctl, packed with 4 16 bit subfields:
1318 * AC: Number of active running workers minus target parallelism
1319 * TC: Number of total workers minus target parallelism
1320 * SS: version count and status of top waiting thread
1321 * ID: poolIndex of top of Treiber stack of waiters
1322 *
1323 * When convenient, we can extract the lower 32 stack top bits
1324 * (including version bits) as sp=(int)ctl. The offsets of counts
1325 * by the target parallelism and the positionings of fields makes
1326 * it possible to perform the most common checks via sign tests of
1327 * fields: When ac is negative, there are not enough active
1328 * workers, when tc is negative, there are not enough total
1329 * workers. When sp is non-zero, there are waiting workers. To
1330 * deal with possibly negative fields, we use casts in and out of
1331 * "short" and/or signed shifts to maintain signedness.
1332 *
1333 * Because it occupies uppermost bits, we can add one active count
1334 * using getAndAddLong of AC_UNIT, rather than CAS, when returning
1335 * from a blocked join. Other updates entail multiple subfields
1336 * and masking, requiring CAS.
1337 */
1338
1339 // Lower and upper word masks
1340 private static final long SP_MASK = 0xffffffffL;
1341 private static final long UC_MASK = ~SP_MASK;
1342
1343 // Active counts
1344 private static final int AC_SHIFT = 48;
1345 private static final long AC_UNIT = 0x0001L << AC_SHIFT;
1346 private static final long AC_MASK = 0xffffL << AC_SHIFT;
1347
1348 // Total counts
1349 private static final int TC_SHIFT = 32;
1350 private static final long TC_UNIT = 0x0001L << TC_SHIFT;
1351 private static final long TC_MASK = 0xffffL << TC_SHIFT;
1352 private static final long ADD_WORKER = 0x0001L << (TC_SHIFT + 15); // sign
1353
1354 // runState bits: SHUTDOWN must be negative, others arbitrary powers of two
1355 private static final int RSLOCK = 1;
1356 private static final int RSIGNAL = 1 << 1;
1357 private static final int STARTED = 1 << 2;
1358 private static final int STOP = 1 << 29;
1359 private static final int TERMINATED = 1 << 30;
1360 private static final int SHUTDOWN = 1 << 31;
1361
1362 // Instance fields
1363 volatile long ctl; // main pool control
1364 volatile int runState; // lockable status
1365 final int config; // parallelism, mode
1366 int indexSeed; // to generate worker index
1367 volatile WorkQueue[] workQueues; // main registry
1368 final ForkJoinWorkerThreadFactory factory;
1369 final UncaughtExceptionHandler ueh; // per-worker UEH
1370 final String workerNamePrefix; // to create worker name string
1371 volatile AtomicLong stealCounter; // also used as sync monitor
1372
1373 /**
1374 * Acquires the runState lock; returns current (locked) runState.
1375 */
1376 private int lockRunState() {
1377 int rs;
1378 return ((((rs = runState) & RSLOCK) != 0 ||
1379 !U.compareAndSwapInt(this, RUNSTATE, rs, rs |= RSLOCK)) ?
1380 awaitRunStateLock() : rs);
1381 }
1382
1383 /**
1384 * Spins and/or blocks until runstate lock is available. See
1385 * above for explanation.
1386 */
1387 private int awaitRunStateLock() {
1388 Object lock;
1389 boolean wasInterrupted = false;
1390 for (int spins = SPINS, r = 0, rs, ns;;) {
1391 if (((rs = runState) & RSLOCK) == 0) {
1392 if (U.compareAndSwapInt(this, RUNSTATE, rs, ns = rs | RSLOCK)) {
1393 if (wasInterrupted) {
1394 try {
1395 Thread.currentThread().interrupt();
1396 } catch (SecurityException ignore) {
1397 }
1398 }
1399 return ns;
1400 }
1401 }
1402 else if (r == 0)
1403 r = ThreadLocalRandom.nextSecondarySeed();
1404 else if (spins > 0) {
1405 r ^= r << 6; r ^= r >>> 21; r ^= r << 7; // xorshift
1406 if (r >= 0)
1407 --spins;
1408 }
1409 else if ((rs & STARTED) == 0 || (lock = stealCounter) == null)
1410 Thread.yield(); // initialization race
1411 else if (U.compareAndSwapInt(this, RUNSTATE, rs, rs | RSIGNAL)) {
1412 synchronized (lock) {
1413 if ((runState & RSIGNAL) != 0) {
1414 try {
1415 lock.wait();
1416 } catch (InterruptedException ie) {
1417 if (!(Thread.currentThread() instanceof
1418 ForkJoinWorkerThread))
1419 wasInterrupted = true;
1420 }
1421 }
1422 else
1423 lock.notifyAll();
1424 }
1425 }
1426 }
1427 }
1428
1429 /**
1430 * Unlocks and sets runState to newRunState.
1431 *
1432 * @param oldRunState a value returned from lockRunState
1433 * @param newRunState the next value (must have lock bit clear).
1434 */
1435 private void unlockRunState(int oldRunState, int newRunState) {
1436 if (!U.compareAndSwapInt(this, RUNSTATE, oldRunState, newRunState)) {
1437 Object lock = stealCounter;
1438 runState = newRunState; // clears RSIGNAL bit
1439 if (lock != null)
1440 synchronized (lock) { lock.notifyAll(); }
1441 }
1442 }
1443
1444 // Creating, registering and deregistering workers
1445
1446 /**
1447 * Tries to construct and start one worker. Assumes that total
1448 * count has already been incremented as a reservation. Invokes
1449 * deregisterWorker on any failure.
1450 *
1451 * @return true if successful
1452 */
1453 private boolean createWorker() {
1454 ForkJoinWorkerThreadFactory fac = factory;
1455 Throwable ex = null;
1456 ForkJoinWorkerThread wt = null;
1457 try {
1458 if (fac != null && (wt = fac.newThread(this)) != null) {
1459 wt.start();
1460 return true;
1461 }
1462 } catch (Throwable rex) {
1463 ex = rex;
1464 }
1465 deregisterWorker(wt, ex);
1466 return false;
1467 }
1468
1469 /**
1470 * Tries to add one worker, incrementing ctl counts before doing
1471 * so, relying on createWorker to back out on failure.
1472 *
1473 * @param c incoming ctl value, with total count negative and no
1474 * idle workers. On CAS failure, c is refreshed and retried if
1475 * this holds (otherwise, a new worker is not needed).
1476 */
1477 private void tryAddWorker(long c) {
1478 boolean add = false;
1479 do {
1480 long nc = ((AC_MASK & (c + AC_UNIT)) |
1481 (TC_MASK & (c + TC_UNIT)));
1482 if (ctl == c) {
1483 int rs, stop; // check if terminating
1484 if ((stop = (rs = lockRunState()) & STOP) == 0)
1485 add = U.compareAndSwapLong(this, CTL, c, nc);
1486 unlockRunState(rs, rs & ~RSLOCK);
1487 if (stop != 0)
1488 break;
1489 if (add) {
1490 createWorker();
1491 break;
1492 }
1493 }
1494 } while (((c = ctl) & ADD_WORKER) != 0L && (int)c == 0);
1495 }
1496
1497 /**
1498 * Callback from ForkJoinWorkerThread constructor to establish and
1499 * record its WorkQueue.
1500 *
1501 * @param wt the worker thread
1502 * @return the worker's queue
1503 */
1504 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1505 UncaughtExceptionHandler handler;
1506 wt.setDaemon(true); // configure thread
1507 if ((handler = ueh) != null)
1508 wt.setUncaughtExceptionHandler(handler);
1509 WorkQueue w = new WorkQueue(this, wt);
1510 int i = 0; // assign a pool index
1511 int mode = config & MODE_MASK;
1512 int rs = lockRunState();
1513 try {
1514 WorkQueue[] ws; int n; // skip if no array
1515 if ((ws = workQueues) != null && (n = ws.length) > 0) {
1516 int s = indexSeed += SEED_INCREMENT; // unlikely to collide
1517 int m = n - 1;
1518 i = ((s << 1) | 1) & m; // odd-numbered indices
1519 if (ws[i] != null) { // collision
1520 int probes = 0; // step by approx half n
1521 int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1522 while (ws[i = (i + step) & m] != null) {
1523 if (++probes >= n) {
1524 workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1525 m = n - 1;
1526 probes = 0;
1527 }
1528 }
1529 }
1530 w.hint = s; // use as random seed
1531 w.config = i | mode;
1532 w.scanState = i; // publication fence
1533 ws[i] = w;
1534 }
1535 } finally {
1536 unlockRunState(rs, rs & ~RSLOCK);
1537 }
1538 wt.setName(workerNamePrefix.concat(Integer.toString(i >>> 1)));
1539 return w;
1540 }
1541
1542 /**
1543 * Final callback from terminating worker, as well as upon failure
1544 * to construct or start a worker. Removes record of worker from
1545 * array, and adjusts counts. If pool is shutting down, tries to
1546 * complete termination.
1547 *
1548 * @param wt the worker thread, or null if construction failed
1549 * @param ex the exception causing failure, or null if none
1550 */
1551 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1552 WorkQueue w = null;
1553 if (wt != null && (w = wt.workQueue) != null) {
1554 WorkQueue[] ws; // remove index from array
1555 int idx = w.config & SMASK;
1556 int rs = lockRunState();
1557 if ((ws = workQueues) != null && ws.length > idx && ws[idx] == w)
1558 ws[idx] = null;
1559 unlockRunState(rs, rs & ~RSLOCK);
1560 }
1561 long c; // decrement counts
1562 do {} while (!U.compareAndSwapLong
1563 (this, CTL, c = ctl, ((AC_MASK & (c - AC_UNIT)) |
1564 (TC_MASK & (c - TC_UNIT)) |
1565 (SP_MASK & c))));
1566 if (w != null) {
1567 w.qlock = -1; // ensure set
1568 w.transferStealCount(this);
1569 w.cancelAll(); // cancel remaining tasks
1570 }
1571 for (;;) { // possibly replace
1572 WorkQueue[] ws; int m, sp;
1573 if (tryTerminate(false, false) || w == null || w.array == null ||
1574 (runState & STOP) != 0 || (ws = workQueues) == null ||
1575 (m = ws.length - 1) < 0) // already terminating
1576 break;
1577 if ((sp = (int)(c = ctl)) != 0) { // wake up replacement
1578 if (tryRelease(c, ws[sp & m], AC_UNIT))
1579 break;
1580 }
1581 else if (ex != null && (c & ADD_WORKER) != 0L) {
1582 tryAddWorker(c); // create replacement
1583 break;
1584 }
1585 else // don't need replacement
1586 break;
1587 }
1588 if (ex == null) // help clean on way out
1589 ForkJoinTask.helpExpungeStaleExceptions();
1590 else // rethrow
1591 ForkJoinTask.rethrow(ex);
1592 }
1593
1594 // Signalling
1595
1596 /**
1597 * Tries to create or activate a worker if too few are active.
1598 *
1599 * @param ws the worker array to use to find signallees
1600 * @param q a WorkQueue --if non-null, don't retry if now empty
1601 */
1602 final void signalWork(WorkQueue[] ws, WorkQueue q) {
1603 long c; int sp, i; WorkQueue v; Thread p;
1604 while ((c = ctl) < 0L) { // too few active
1605 if ((sp = (int)c) == 0) { // no idle workers
1606 if ((c & ADD_WORKER) != 0L) // too few workers
1607 tryAddWorker(c);
1608 break;
1609 }
1610 if (ws == null) // unstarted/terminated
1611 break;
1612 if (ws.length <= (i = sp & SMASK)) // terminated
1613 break;
1614 if ((v = ws[i]) == null) // terminating
1615 break;
1616 int vs = (sp + SS_SEQ) & ~INACTIVE; // next scanState
1617 int d = sp - v.scanState; // screen CAS
1618 long nc = (UC_MASK & (c + AC_UNIT)) | (SP_MASK & v.stackPred);
1619 if (d == 0 && U.compareAndSwapLong(this, CTL, c, nc)) {
1620 v.scanState = vs; // activate v
1621 if ((p = v.parker) != null)
1622 U.unpark(p);
1623 break;
1624 }
1625 if (q != null && q.base == q.top) // no more work
1626 break;
1627 }
1628 }
1629
1630 /**
1631 * Signals and releases worker v if it is top of idle worker
1632 * stack. This performs a one-shot version of signalWork only if
1633 * there is (apparently) at least one idle worker.
1634 *
1635 * @param c incoming ctl value
1636 * @param v if non-null, a worker
1637 * @param inc the increment to active count (zero when compensating)
1638 * @return true if successful
1639 */
1640 private boolean tryRelease(long c, WorkQueue v, long inc) {
1641 int sp = (int)c, vs = (sp + SS_SEQ) & ~INACTIVE; Thread p;
1642 if (v != null && v.scanState == sp) { // v is at top of stack
1643 long nc = (UC_MASK & (c + inc)) | (SP_MASK & v.stackPred);
1644 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1645 v.scanState = vs;
1646 if ((p = v.parker) != null)
1647 U.unpark(p);
1648 return true;
1649 }
1650 }
1651 return false;
1652 }
1653
1654 // Scanning for tasks
1655
1656 /**
1657 * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1658 */
1659 final void runWorker(WorkQueue w) {
1660 w.growArray(); // allocate queue
1661 int seed = w.hint; // initially holds randomization hint
1662 int r = (seed == 0) ? 1 : seed; // avoid 0 for xorShift
1663 for (ForkJoinTask<?> t;;) {
1664 if ((t = scan(w, r)) != null)
1665 w.runTask(t);
1666 else if (!awaitWork(w, r))
1667 break;
1668 r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
1669 }
1670 }
1671
1672 /**
1673 * Scans for and tries to steal a top-level task. Scans start at a
1674 * random location, randomly moving on apparent contention,
1675 * otherwise continuing linearly until reaching two consecutive
1676 * empty passes over all queues with the same checksum (summing
1677 * each base index of each queue, that moves on each steal), at
1678 * which point the worker tries to inactivate and then re-scans,
1679 * attempting to re-activate (itself or some other worker) if
1680 * finding a task; otherwise returning null to await work. Scans
1681 * otherwise touch as little memory as possible, to reduce
1682 * disruption on other scanning threads.
1683 *
1684 * @param w the worker (via its WorkQueue)
1685 * @param r a random seed
1686 * @return a task, or null if none found
1687 */
1688 private ForkJoinTask<?> scan(WorkQueue w, int r) {
1689 WorkQueue[] ws; int m;
1690 if ((ws = workQueues) != null && (m = ws.length - 1) > 0 && w != null) {
1691 int ss = w.scanState; // initially non-negative
1692 for (int origin = r & m, k = origin, oldSum = 0, checkSum = 0;;) {
1693 WorkQueue q; ForkJoinTask<?>[] a; ForkJoinTask<?> t;
1694 int b, n; long c;
1695 if ((q = ws[k]) != null) {
1696 if ((n = (b = q.base) - q.top) < 0 &&
1697 (a = q.array) != null) { // non-empty
1698 long i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1699 if ((t = ((ForkJoinTask<?>)
1700 U.getObjectVolatile(a, i))) != null &&
1701 q.base == b) {
1702 if (ss >= 0) {
1703 if (U.compareAndSwapObject(a, i, t, null)) {
1704 q.base = b + 1;
1705 if (n < -1) // signal others
1706 signalWork(ws, q);
1707 return t;
1708 }
1709 }
1710 else if (oldSum == 0 && // try to activate
1711 w.scanState < 0)
1712 tryRelease(c = ctl, ws[m & (int)c], AC_UNIT);
1713 }
1714 if (ss < 0) // refresh
1715 ss = w.scanState;
1716 r ^= r << 1; r ^= r >>> 3; r ^= r << 10;
1717 origin = k = r & m; // move and rescan
1718 oldSum = checkSum = 0;
1719 continue;
1720 }
1721 checkSum += b;
1722 }
1723 if ((k = (k + 1) & m) == origin) { // continue until stable
1724 if ((ss >= 0 || (ss == (ss = w.scanState))) &&
1725 oldSum == (oldSum = checkSum)) {
1726 if (ss < 0 || w.qlock < 0) // already inactive
1727 break;
1728 int ns = ss | INACTIVE; // try to inactivate
1729 long nc = ((SP_MASK & ns) |
1730 (UC_MASK & ((c = ctl) - AC_UNIT)));
1731 w.stackPred = (int)c; // hold prev stack top
1732 U.putInt(w, QSCANSTATE, ns);
1733 if (U.compareAndSwapLong(this, CTL, c, nc))
1734 ss = ns;
1735 else
1736 w.scanState = ss; // back out
1737 }
1738 checkSum = 0;
1739 }
1740 }
1741 }
1742 return null;
1743 }
1744
1745 /**
1746 * Possibly blocks worker w waiting for a task to steal, or
1747 * returns false if the worker should terminate. If inactivating
1748 * w has caused the pool to become quiescent, checks for pool
1749 * termination, and, so long as this is not the only worker, waits
1750 * for up to a given duration. On timeout, if ctl has not
1751 * changed, terminates the worker, which will in turn wake up
1752 * another worker to possibly repeat this process.
1753 *
1754 * @param w the calling worker
1755 * param r a random seed (for spins)
1756 * @return false if the worker should terminate
1757 */
1758 private boolean awaitWork(WorkQueue w, int r) {
1759 if (w == null || w.qlock < 0) // w is terminating
1760 return false;
1761 for (int pred = w.stackPred, spins = SPINS, ss;;) {
1762 if ((ss = w.scanState) >= 0)
1763 break;
1764 else if (spins > 0) {
1765 r ^= r << 6; r ^= r >>> 21; r ^= r << 7;
1766 if (r >= 0 && --spins == 0) { // randomize spins
1767 WorkQueue v; WorkQueue[] ws; int s, j; AtomicLong sc;
1768 if (pred != 0 && (ws = workQueues) != null &&
1769 (j = pred & SMASK) < ws.length &&
1770 (v = ws[j]) != null && // see if pred parking
1771 (v.parker == null || v.scanState >= 0))
1772 spins = SPINS; // continue spinning
1773 }
1774 }
1775 else if (w.qlock < 0) // recheck after spins
1776 return false;
1777 else if (!Thread.interrupted()) {
1778 long c, prevctl, parkTime, deadline;
1779 int ac = (int)((c = ctl) >> AC_SHIFT) + (config & SMASK);
1780 if ((ac <= 0 && tryTerminate(false, false)) ||
1781 (runState & STOP) != 0) // pool terminating
1782 return false;
1783 if (ac <= 0 && ss == (int)c) { // is last waiter
1784 prevctl = (UC_MASK & (c + AC_UNIT)) | (SP_MASK & pred);
1785 int t = (short)(c >>> TC_SHIFT); // shrink excess spares
1786 if (t > 2 && U.compareAndSwapLong(this, CTL, c, prevctl))
1787 return false; // else use timed wait
1788 parkTime = IDLE_TIMEOUT * ((t >= 0) ? 1 : 1 - t);
1789 deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
1790 }
1791 else
1792 prevctl = parkTime = deadline = 0L;
1793 Thread wt = Thread.currentThread();
1794 U.putObject(wt, PARKBLOCKER, this); // emulate LockSupport
1795 w.parker = wt;
1796 if (w.scanState < 0 && ctl == c) // recheck before park
1797 U.park(false, parkTime);
1798 U.putOrderedObject(w, QPARKER, null);
1799 U.putObject(wt, PARKBLOCKER, null);
1800 if (w.scanState >= 0)
1801 break;
1802 if (parkTime != 0L && ctl == c &&
1803 deadline - System.nanoTime() <= 0L &&
1804 U.compareAndSwapLong(this, CTL, c, prevctl))
1805 return false; // shrink pool
1806 }
1807 }
1808 return true;
1809 }
1810
1811 // Joining tasks
1812
1813 /**
1814 * Tries to steal and run tasks within the target's computation.
1815 * Uses a variant of the top-level algorithm, restricted to tasks
1816 * with the given task as ancestor: It prefers taking and running
1817 * eligible tasks popped from the worker's own queue (via
1818 * popCC). Otherwise it scans others, randomly moving on
1819 * contention or execution, deciding to give up based on a
1820 * checksum (via return codes frob pollAndExecCC). The maxTasks
1821 * argument supports external usages; internal calls use zero,
1822 * allowing unbounded steps (external calls trap non-positive
1823 * values).
1824 *
1825 * @param w caller
1826 * @param maxTasks if non-zero, the maximum number of other tasks to run
1827 * @return task status on exit
1828 */
1829 final int helpComplete(WorkQueue w, CountedCompleter<?> task,
1830 int maxTasks) {
1831 WorkQueue[] ws; int s = 0, m;
1832 if ((ws = workQueues) != null && (m = ws.length - 1) >= 0 &&
1833 task != null && w != null) {
1834 int mode = w.config; // for popCC
1835 int r = w.hint ^ w.top; // arbitrary seed for origin
1836 int origin = r & m; // first queue to scan
1837 int h = 1; // 1:ran, >1:contended, <0:hash
1838 for (int k = origin, oldSum = 0, checkSum = 0;;) {
1839 CountedCompleter<?> p; WorkQueue q;
1840 if ((s = task.status) < 0)
1841 break;
1842 if (h == 1 && (p = w.popCC(task, mode)) != null) {
1843 p.doExec(); // run local task
1844 if (maxTasks != 0 && --maxTasks == 0)
1845 break;
1846 origin = k; // reset
1847 oldSum = checkSum = 0;
1848 }
1849 else { // poll other queues
1850 if ((q = ws[k]) == null)
1851 h = 0;
1852 else if ((h = q.pollAndExecCC(task)) < 0)
1853 checkSum += h;
1854 if (h > 0) {
1855 if (h == 1 && maxTasks != 0 && --maxTasks == 0)
1856 break;
1857 r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
1858 origin = k = r & m; // move and restart
1859 oldSum = checkSum = 0;
1860 }
1861 else if ((k = (k + 1) & m) == origin) {
1862 if (oldSum == (oldSum = checkSum))
1863 break;
1864 checkSum = 0;
1865 }
1866 }
1867 }
1868 }
1869 return s;
1870 }
1871
1872 /**
1873 * Tries to locate and execute tasks for a stealer of the given
1874 * task, or in turn one of its stealers, Traces currentSteal ->
1875 * currentJoin links looking for a thread working on a descendant
1876 * of the given task and with a non-empty queue to steal back and
1877 * execute tasks from. The first call to this method upon a
1878 * waiting join will often entail scanning/search, (which is OK
1879 * because the joiner has nothing better to do), but this method
1880 * leaves hints in workers to speed up subsequent calls.
1881 *
1882 * @param w caller
1883 * @param task the task to join
1884 */
1885 private void helpStealer(WorkQueue w, ForkJoinTask<?> task) {
1886 WorkQueue[] ws = workQueues;
1887 int oldSum = 0, checkSum, m;
1888 if (ws != null && (m = ws.length - 1) >= 0 && w != null &&
1889 task != null) {
1890 do { // restart point
1891 checkSum = 0; // for stability check
1892 ForkJoinTask<?> subtask;
1893 WorkQueue j = w, v; // v is subtask stealer
1894 descent: for (subtask = task; subtask.status >= 0; ) {
1895 for (int h = j.hint | 1, k = 0, i; ; k += 2) {
1896 if (k > m) // can't find stealer
1897 break descent;
1898 if ((v = ws[i = (h + k) & m]) != null) {
1899 if (v.currentSteal == subtask) {
1900 j.hint = i;
1901 break;
1902 }
1903 checkSum += v.base;
1904 }
1905 }
1906 for (;;) { // help v or descend
1907 ForkJoinTask<?>[] a; int b;
1908 checkSum += (b = v.base);
1909 ForkJoinTask<?> next = v.currentJoin;
1910 if (subtask.status < 0 || j.currentJoin != subtask ||
1911 v.currentSteal != subtask) // stale
1912 break descent;
1913 if (b - v.top >= 0 || (a = v.array) == null) {
1914 if ((subtask = next) == null)
1915 break descent;
1916 j = v;
1917 break;
1918 }
1919 int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1920 ForkJoinTask<?> t = ((ForkJoinTask<?>)
1921 U.getObjectVolatile(a, i));
1922 if (v.base == b) {
1923 if (t == null) // stale
1924 break descent;
1925 if (U.compareAndSwapObject(a, i, t, null)) {
1926 v.base = b + 1;
1927 ForkJoinTask<?> ps = w.currentSteal;
1928 int top = w.top;
1929 do {
1930 U.putOrderedObject(w, QCURRENTSTEAL, t);
1931 t.doExec(); // clear local tasks too
1932 } while (task.status >= 0 &&
1933 w.top != top &&
1934 (t = w.pop()) != null);
1935 U.putOrderedObject(w, QCURRENTSTEAL, ps);
1936 if (w.base != w.top)
1937 return; // can't further help
1938 }
1939 }
1940 }
1941 }
1942 } while (task.status >= 0 && oldSum != (oldSum = checkSum));
1943 }
1944 }
1945
1946 /**
1947 * Tries to decrement active count (sometimes implicitly) and
1948 * possibly release or create a compensating worker in preparation
1949 * for blocking. Returns false (retryable by caller), on
1950 * contention, detected staleness, instability, or termination.
1951 *
1952 * @param w caller
1953 */
1954 private boolean tryCompensate(WorkQueue w) {
1955 boolean canBlock;
1956 WorkQueue[] ws; long c; int m, pc, sp;
1957 if (w == null || w.qlock < 0 || // caller terminating
1958 (ws = workQueues) == null || (m = ws.length - 1) <= 0 ||
1959 (pc = config & SMASK) == 0) // parallelism disabled
1960 canBlock = false;
1961 else if ((sp = (int)(c = ctl)) != 0) // release idle worker
1962 canBlock = tryRelease(c, ws[sp & m], 0L);
1963 else {
1964 int ac = (int)(c >> AC_SHIFT) + pc;
1965 int tc = (short)(c >> TC_SHIFT) + pc;
1966 int nbusy = 0; // validate saturation
1967 for (int i = 0; i <= m; ++i) { // two passes of odd indices
1968 WorkQueue v;
1969 if ((v = ws[((i << 1) | 1) & m]) != null) {
1970 if ((v.scanState & SCANNING) != 0)
1971 break;
1972 ++nbusy;
1973 }
1974 }
1975 if (nbusy != (tc << 1) || ctl != c)
1976 canBlock = false; // unstable or stale
1977 else if (tc >= pc && ac > 1 && w.isEmpty()) {
1978 long nc = ((AC_MASK & (c - AC_UNIT)) |
1979 (~AC_MASK & c)); // uncompensated
1980 canBlock = U.compareAndSwapLong(this, CTL, c, nc);
1981 }
1982 else if (tc >= MAX_CAP ||
1983 (this == common && tc >= pc + commonMaxSpares))
1984 throw new RejectedExecutionException(
1985 "Thread limit exceeded replacing blocked worker");
1986 else { // similar to tryAddWorker
1987 boolean add = false; int rs; // CAS within lock
1988 long nc = ((AC_MASK & c) |
1989 (TC_MASK & (c + TC_UNIT)));
1990 if (((rs = lockRunState()) & STOP) == 0)
1991 add = U.compareAndSwapLong(this, CTL, c, nc);
1992 unlockRunState(rs, rs & ~RSLOCK);
1993 canBlock = add && createWorker(); // throws on exception
1994 }
1995 }
1996 return canBlock;
1997 }
1998
1999 /**
2000 * Helps and/or blocks until the given task is done or timeout.
2001 *
2002 * @param w caller
2003 * @param task the task
2004 * @param deadline for timed waits, if nonzero
2005 * @return task status on exit
2006 */
2007 final int awaitJoin(WorkQueue w, ForkJoinTask<?> task, long deadline) {
2008 int s = 0;
2009 if (task != null && w != null) {
2010 ForkJoinTask<?> prevJoin = w.currentJoin;
2011 U.putOrderedObject(w, QCURRENTJOIN, task);
2012 CountedCompleter<?> cc = (task instanceof CountedCompleter) ?
2013 (CountedCompleter<?>)task : null;
2014 for (;;) {
2015 if ((s = task.status) < 0)
2016 break;
2017 if (cc != null)
2018 helpComplete(w, cc, 0);
2019 else if (w.base == w.top || w.tryRemoveAndExec(task))
2020 helpStealer(w, task);
2021 if ((s = task.status) < 0)
2022 break;
2023 long ms, ns;
2024 if (deadline == 0L)
2025 ms = 0L;
2026 else if ((ns = deadline - System.nanoTime()) <= 0L)
2027 break;
2028 else if ((ms = TimeUnit.NANOSECONDS.toMillis(ns)) <= 0L)
2029 ms = 1L;
2030 if (tryCompensate(w)) {
2031 task.internalWait(ms);
2032 U.getAndAddLong(this, CTL, AC_UNIT);
2033 }
2034 }
2035 U.putOrderedObject(w, QCURRENTJOIN, prevJoin);
2036 }
2037 return s;
2038 }
2039
2040 // Specialized scanning
2041
2042 /**
2043 * Returns a (probably) non-empty steal queue, if one is found
2044 * during a scan, else null. This method must be retried by
2045 * caller if, by the time it tries to use the queue, it is empty.
2046 */
2047 private WorkQueue findNonEmptyStealQueue() {
2048 WorkQueue[] ws; int m; // one-shot version of scan loop
2049 int r = ThreadLocalRandom.nextSecondarySeed();
2050 if ((ws = workQueues) != null && (m = ws.length - 1) >= 0) {
2051 for (int origin = r & m, k = origin, oldSum = 0, checkSum = 0;;) {
2052 WorkQueue q; int b;
2053 if ((q = ws[k]) != null) {
2054 if ((b = q.base) - q.top < 0)
2055 return q;
2056 checkSum += b;
2057 }
2058 if ((k = (k + 1) & m) == origin) {
2059 if (oldSum == (oldSum = checkSum))
2060 break;
2061 checkSum = 0;
2062 }
2063 }
2064 }
2065 return null;
2066 }
2067
2068 /**
2069 * Runs tasks until {@code isQuiescent()}. We piggyback on
2070 * active count ctl maintenance, but rather than blocking
2071 * when tasks cannot be found, we rescan until all others cannot
2072 * find tasks either.
2073 */
2074 final void helpQuiescePool(WorkQueue w) {
2075 ForkJoinTask<?> ps = w.currentSteal; // save context
2076 for (boolean active = true;;) {
2077 long c; WorkQueue q; ForkJoinTask<?> t; int b;
2078 w.execLocalTasks(); // run locals before each scan
2079 if ((q = findNonEmptyStealQueue()) != null) {
2080 if (!active) { // re-establish active count
2081 active = true;
2082 U.getAndAddLong(this, CTL, AC_UNIT);
2083 }
2084 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2085 U.putOrderedObject(w, QCURRENTSTEAL, t);
2086 t.doExec();
2087 if (++w.nsteals < 0)
2088 w.transferStealCount(this);
2089 }
2090 }
2091 else if (active) { // decrement active count without queuing
2092 long nc = (AC_MASK & ((c = ctl) - AC_UNIT)) | (~AC_MASK & c);
2093 if ((int)(nc >> AC_SHIFT) + (config & SMASK) <= 0)
2094 break; // bypass decrement-then-increment
2095 if (U.compareAndSwapLong(this, CTL, c, nc))
2096 active = false;
2097 }
2098 else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) <= 0 &&
2099 U.compareAndSwapLong(this, CTL, c, c + AC_UNIT))
2100 break;
2101 }
2102 U.putOrderedObject(w, QCURRENTSTEAL, ps);
2103 }
2104
2105 /**
2106 * Gets and removes a local or stolen task for the given worker.
2107 *
2108 * @return a task, if available
2109 */
2110 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2111 for (ForkJoinTask<?> t;;) {
2112 WorkQueue q; int b;
2113 if ((t = w.nextLocalTask()) != null)
2114 return t;
2115 if ((q = findNonEmptyStealQueue()) == null)
2116 return null;
2117 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2118 return t;
2119 }
2120 }
2121
2122 /**
2123 * Returns a cheap heuristic guide for task partitioning when
2124 * programmers, frameworks, tools, or languages have little or no
2125 * idea about task granularity. In essence by offering this
2126 * method, we ask users only about tradeoffs in overhead vs
2127 * expected throughput and its variance, rather than how finely to
2128 * partition tasks.
2129 *
2130 * In a steady state strict (tree-structured) computation, each
2131 * thread makes available for stealing enough tasks for other
2132 * threads to remain active. Inductively, if all threads play by
2133 * the same rules, each thread should make available only a
2134 * constant number of tasks.
2135 *
2136 * The minimum useful constant is just 1. But using a value of 1
2137 * would require immediate replenishment upon each steal to
2138 * maintain enough tasks, which is infeasible. Further,
2139 * partitionings/granularities of offered tasks should minimize
2140 * steal rates, which in general means that threads nearer the top
2141 * of computation tree should generate more than those nearer the
2142 * bottom. In perfect steady state, each thread is at
2143 * approximately the same level of computation tree. However,
2144 * producing extra tasks amortizes the uncertainty of progress and
2145 * diffusion assumptions.
2146 *
2147 * So, users will want to use values larger (but not much larger)
2148 * than 1 to both smooth over transient shortages and hedge
2149 * against uneven progress; as traded off against the cost of
2150 * extra task overhead. We leave the user to pick a threshold
2151 * value to compare with the results of this call to guide
2152 * decisions, but recommend values such as 3.
2153 *
2154 * When all threads are active, it is on average OK to estimate
2155 * surplus strictly locally. In steady-state, if one thread is
2156 * maintaining say 2 surplus tasks, then so are others. So we can
2157 * just use estimated queue length. However, this strategy alone
2158 * leads to serious mis-estimates in some non-steady-state
2159 * conditions (ramp-up, ramp-down, other stalls). We can detect
2160 * many of these by further considering the number of "idle"
2161 * threads, that are known to have zero queued tasks, so
2162 * compensate by a factor of (#idle/#active) threads.
2163 */
2164 static int getSurplusQueuedTaskCount() {
2165 Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2166 if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2167 int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).
2168 config & SMASK;
2169 int n = (q = wt.workQueue).top - q.base;
2170 int a = (int)(pool.ctl >> AC_SHIFT) + p;
2171 return n - (a > (p >>>= 1) ? 0 :
2172 a > (p >>>= 1) ? 1 :
2173 a > (p >>>= 1) ? 2 :
2174 a > (p >>>= 1) ? 4 :
2175 8);
2176 }
2177 return 0;
2178 }
2179
2180 // Termination
2181
2182 /**
2183 * Possibly initiates and/or completes termination.
2184 *
2185 * @param now if true, unconditionally terminate, else only
2186 * if no work and no active workers
2187 * @param enable if true, enable shutdown when next possible
2188 * @return true if now terminating or terminated
2189 */
2190 private boolean tryTerminate(boolean now, boolean enable) {
2191 int rs;
2192 if (this == common) // cannot shut down
2193 return false;
2194 if ((rs = runState) >= 0) {
2195 if (!enable)
2196 return false;
2197 rs = lockRunState(); // enter SHUTDOWN phase
2198 unlockRunState(rs, (rs & ~RSLOCK) | SHUTDOWN);
2199 }
2200
2201 if ((rs & STOP) == 0) {
2202 if (!now) { // check quiescence
2203 for (long oldSum = 0L;;) { // repeat until stable
2204 WorkQueue[] ws; WorkQueue w; int m, b; long c;
2205 long checkSum = ctl;
2206 if ((int)(checkSum >> AC_SHIFT) + (config & SMASK) > 0)
2207 return false; // still active workers
2208 if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
2209 break; // check queues
2210 for (int i = 0; i <= m; ++i) {
2211 if ((w = ws[i]) != null) {
2212 if ((b = w.base) != w.top || w.scanState >= 0 ||
2213 w.currentSteal != null) {
2214 tryRelease(c = ctl, ws[m & (int)c], AC_UNIT);
2215 return false; // arrange for recheck
2216 }
2217 checkSum += b;
2218 if ((i & 1) == 0)
2219 w.qlock = -1; // try to disable external
2220 }
2221 }
2222 if (oldSum == (oldSum = checkSum))
2223 break;
2224 }
2225 }
2226 if ((runState & STOP) == 0) {
2227 rs = lockRunState(); // enter STOP phase
2228 unlockRunState(rs, (rs & ~RSLOCK) | STOP);
2229 }
2230 }
2231
2232 int pass = 0; // 3 passes to help terminate
2233 for (long oldSum = 0L;;) { // or until done or stable
2234 WorkQueue[] ws; WorkQueue w; ForkJoinWorkerThread wt; int m;
2235 long checkSum = ctl;
2236 if ((short)(checkSum >>> TC_SHIFT) + (config & SMASK) <= 0 ||
2237 (ws = workQueues) == null || (m = ws.length - 1) <= 0) {
2238 if ((runState & TERMINATED) == 0) {
2239 rs = lockRunState(); // done
2240 unlockRunState(rs, (rs & ~RSLOCK) | TERMINATED);
2241 synchronized (this) { notifyAll(); } // for awaitTermination
2242 }
2243 break;
2244 }
2245 for (int i = 0; i <= m; ++i) {
2246 if ((w = ws[i]) != null) {
2247 checkSum += w.base;
2248 w.qlock = -1; // try to disable
2249 if (pass > 0) {
2250 w.cancelAll(); // clear queue
2251 if (pass > 1 && (wt = w.owner) != null) {
2252 if (!wt.isInterrupted()) {
2253 try { // unblock join
2254 wt.interrupt();
2255 } catch (Throwable ignore) {
2256 }
2257 }
2258 if (w.scanState < 0)
2259 U.unpark(wt); // wake up
2260 }
2261 }
2262 }
2263 }
2264 if (checkSum != oldSum) { // unstable
2265 oldSum = checkSum;
2266 pass = 0;
2267 }
2268 else if (pass > 3 && pass > m) // can't further help
2269 break;
2270 else if (++pass > 1) { // try to dequeue
2271 long c; int j = 0, sp; // bound attempts
2272 while (j++ <= m && (sp = (int)(c = ctl)) != 0)
2273 tryRelease(c, ws[sp & m], AC_UNIT);
2274 }
2275 }
2276 return true;
2277 }
2278
2279 // External operations
2280
2281 /**
2282 * Full version of externalPush, handling uncommon cases, as well
2283 * as performing secondary initialization upon the first
2284 * submission of the first task to the pool. It also detects
2285 * first submission by an external thread and creates a new shared
2286 * queue if the one at index if empty or contended.
2287 *
2288 * @param task the task. Caller must ensure non-null.
2289 */
2290 private void externalSubmit(ForkJoinTask<?> task) {
2291 int r; // initialize caller's probe
2292 if ((r = ThreadLocalRandom.getProbe()) == 0) {
2293 ThreadLocalRandom.localInit();
2294 r = ThreadLocalRandom.getProbe();
2295 }
2296 for (;;) {
2297 WorkQueue[] ws; WorkQueue q; int rs, m, k;
2298 boolean move = false;
2299 if ((rs = runState) < 0) {
2300 tryTerminate(false, false); // help terminate
2301 throw new RejectedExecutionException();
2302 }
2303 else if ((rs & STARTED) == 0 || // initialize
2304 ((ws = workQueues) == null || (m = ws.length - 1) < 0)) {
2305 int ns = 0;
2306 rs = lockRunState();
2307 try {
2308 if ((rs & STARTED) == 0) {
2309 U.compareAndSwapObject(this, STEALCOUNTER, null,
2310 new AtomicLong());
2311 // create workQueues array with size a power of two
2312 int p = config & SMASK; // ensure at least 2 slots
2313 int n = (p > 1) ? p - 1 : 1;
2314 n |= n >>> 1; n |= n >>> 2; n |= n >>> 4;
2315 n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1;
2316 workQueues = new WorkQueue[n];
2317 ns = STARTED;
2318 }
2319 } finally {
2320 unlockRunState(rs, (rs & ~RSLOCK) | ns);
2321 }
2322 }
2323 else if ((q = ws[k = r & m & SQMASK]) != null) {
2324 if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2325 ForkJoinTask<?>[] a = q.array;
2326 int s = q.top;
2327 boolean submitted = false; // initial submission or resizing
2328 try { // locked version of push
2329 if ((a != null && a.length > s + 1 - q.base) ||
2330 (a = q.growArray()) != null) {
2331 int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
2332 U.putOrderedObject(a, j, task);
2333 U.putOrderedInt(q, QTOP, s + 1);
2334 submitted = true;
2335 }
2336 } finally {
2337 U.compareAndSwapInt(q, QLOCK, 1, 0);
2338 }
2339 if (submitted) {
2340 signalWork(ws, q);
2341 return;
2342 }
2343 }
2344 move = true; // move on failure
2345 }
2346 else if (((rs = runState) & RSLOCK) == 0) { // create new queue
2347 q = new WorkQueue(this, null);
2348 q.hint = r;
2349 q.config = k | SHARED_QUEUE;
2350 q.scanState = INACTIVE;
2351 rs = lockRunState(); // publish index
2352 if (rs > 0 && (ws = workQueues) != null &&
2353 k < ws.length && ws[k] == null)
2354 ws[k] = q; // else terminated
2355 unlockRunState(rs, rs & ~RSLOCK);
2356 }
2357 else
2358 move = true; // move if busy
2359 if (move)
2360 r = ThreadLocalRandom.advanceProbe(r);
2361 }
2362 }
2363
2364 /**
2365 * Tries to add the given task to a submission queue at
2366 * submitter's current queue. Only the (vastly) most common path
2367 * is directly handled in this method, while screening for need
2368 * for externalSubmit.
2369 *
2370 * @param task the task. Caller must ensure non-null.
2371 */
2372 final void externalPush(ForkJoinTask<?> task) {
2373 WorkQueue[] ws; WorkQueue q; int m;
2374 int r = ThreadLocalRandom.getProbe();
2375 int rs = runState;
2376 if ((ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
2377 (q = ws[m & r & SQMASK]) != null && r != 0 && rs > 0 &&
2378 U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2379 ForkJoinTask<?>[] a; int am, n, s;
2380 if ((a = q.array) != null &&
2381 (am = a.length - 1) > (n = (s = q.top) - q.base)) {
2382 int j = ((am & s) << ASHIFT) + ABASE;
2383 U.putOrderedObject(a, j, task);
2384 U.putOrderedInt(q, QTOP, s + 1);
2385 U.putOrderedInt(q, QLOCK, 0);
2386 if (n <= 1)
2387 signalWork(ws, q);
2388 return;
2389 }
2390 U.compareAndSwapInt(q, QLOCK, 1, 0);
2391 }
2392 externalSubmit(task);
2393 }
2394
2395 /**
2396 * Returns common pool queue for an external thread.
2397 */
2398 static WorkQueue commonSubmitterQueue() {
2399 ForkJoinPool p = common;
2400 int r = ThreadLocalRandom.getProbe();
2401 WorkQueue[] ws; int m;
2402 return (p != null && (ws = p.workQueues) != null &&
2403 (m = ws.length - 1) >= 0) ?
2404 ws[m & r & SQMASK] : null;
2405 }
2406
2407 /**
2408 * Performs tryUnpush for an external submitter: Finds queue,
2409 * locks if apparently non-empty, validates upon locking, and
2410 * adjusts top. Each check can fail but rarely does.
2411 */
2412 final boolean tryExternalUnpush(ForkJoinTask<?> task) {
2413 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?>[] a; int m, s;
2414 int r = ThreadLocalRandom.getProbe();
2415 if ((ws = workQueues) != null && (m = ws.length - 1) >= 0 &&
2416 (w = ws[m & r & SQMASK]) != null &&
2417 (a = w.array) != null && (s = w.top) != w.base) {
2418 long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
2419 if (U.compareAndSwapInt(w, QLOCK, 0, 1)) {
2420 if (w.top == s && w.array == a &&
2421 U.getObject(a, j) == task &&
2422 U.compareAndSwapObject(a, j, task, null)) {
2423 U.putOrderedInt(w, QTOP, s - 1);
2424 U.putOrderedInt(w, QLOCK, 0);
2425 return true;
2426 }
2427 U.compareAndSwapInt(w, QLOCK, 1, 0);
2428 }
2429 }
2430 return false;
2431 }
2432
2433 /**
2434 * Performs helpComplete for an external submitter.
2435 */
2436 final int externalHelpComplete(CountedCompleter<?> task, int maxTasks) {
2437 WorkQueue[] ws; int n;
2438 int r = ThreadLocalRandom.getProbe();
2439 return ((ws = workQueues) == null || (n = ws.length) == 0) ? 0 :
2440 helpComplete(ws[(n - 1) & r & SQMASK], task, maxTasks);
2441 }
2442
2443 // Exported methods
2444
2445 // Constructors
2446
2447 /**
2448 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2449 * java.lang.Runtime#availableProcessors}, using the {@linkplain
2450 * #defaultForkJoinWorkerThreadFactory default thread factory},
2451 * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2452 *
2453 * @throws SecurityException if a security manager exists and
2454 * the caller is not permitted to modify threads
2455 * because it does not hold {@link
2456 * java.lang.RuntimePermission}{@code ("modifyThread")}
2457 */
2458 public ForkJoinPool() {
2459 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2460 defaultForkJoinWorkerThreadFactory, null, false);
2461 }
2462
2463 /**
2464 * Creates a {@code ForkJoinPool} with the indicated parallelism
2465 * level, the {@linkplain
2466 * #defaultForkJoinWorkerThreadFactory default thread factory},
2467 * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2468 *
2469 * @param parallelism the parallelism level
2470 * @throws IllegalArgumentException if parallelism less than or
2471 * equal to zero, or greater than implementation limit
2472 * @throws SecurityException if a security manager exists and
2473 * the caller is not permitted to modify threads
2474 * because it does not hold {@link
2475 * java.lang.RuntimePermission}{@code ("modifyThread")}
2476 */
2477 public ForkJoinPool(int parallelism) {
2478 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2479 }
2480
2481 /**
2482 * Creates a {@code ForkJoinPool} with the given parameters.
2483 *
2484 * @param parallelism the parallelism level. For default value,
2485 * use {@link java.lang.Runtime#availableProcessors}.
2486 * @param factory the factory for creating new threads. For default value,
2487 * use {@link #defaultForkJoinWorkerThreadFactory}.
2488 * @param handler the handler for internal worker threads that
2489 * terminate due to unrecoverable errors encountered while executing
2490 * tasks. For default value, use {@code null}.
2491 * @param asyncMode if true,
2492 * establishes local first-in-first-out scheduling mode for forked
2493 * tasks that are never joined. This mode may be more appropriate
2494 * than default locally stack-based mode in applications in which
2495 * worker threads only process event-style asynchronous tasks.
2496 * For default value, use {@code false}.
2497 * @throws IllegalArgumentException if parallelism less than or
2498 * equal to zero, or greater than implementation limit
2499 * @throws NullPointerException if the factory is null
2500 * @throws SecurityException if a security manager exists and
2501 * the caller is not permitted to modify threads
2502 * because it does not hold {@link
2503 * java.lang.RuntimePermission}{@code ("modifyThread")}
2504 */
2505 public ForkJoinPool(int parallelism,
2506 ForkJoinWorkerThreadFactory factory,
2507 UncaughtExceptionHandler handler,
2508 boolean asyncMode) {
2509 this(checkParallelism(parallelism),
2510 checkFactory(factory),
2511 handler,
2512 asyncMode ? FIFO_QUEUE : LIFO_QUEUE,
2513 "ForkJoinPool-" + nextPoolId() + "-worker-");
2514 checkPermission();
2515 }
2516
2517 private static int checkParallelism(int parallelism) {
2518 if (parallelism <= 0 || parallelism > MAX_CAP)
2519 throw new IllegalArgumentException();
2520 return parallelism;
2521 }
2522
2523 private static ForkJoinWorkerThreadFactory checkFactory
2524 (ForkJoinWorkerThreadFactory factory) {
2525 if (factory == null)
2526 throw new NullPointerException();
2527 return factory;
2528 }
2529
2530 /**
2531 * Creates a {@code ForkJoinPool} with the given parameters, without
2532 * any security checks or parameter validation. Invoked directly by
2533 * makeCommonPool.
2534 */
2535 private ForkJoinPool(int parallelism,
2536 ForkJoinWorkerThreadFactory factory,
2537 UncaughtExceptionHandler handler,
2538 int mode,
2539 String workerNamePrefix) {
2540 this.workerNamePrefix = workerNamePrefix;
2541 this.factory = factory;
2542 this.ueh = handler;
2543 this.config = (parallelism & SMASK) | mode;
2544 long np = (long)(-parallelism); // offset ctl counts
2545 this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2546 }
2547
2548 /**
2549 * Returns the common pool instance. This pool is statically
2550 * constructed; its run state is unaffected by attempts to {@link
2551 * #shutdown} or {@link #shutdownNow}. However this pool and any
2552 * ongoing processing are automatically terminated upon program
2553 * {@link System#exit}. Any program that relies on asynchronous
2554 * task processing to complete before program termination should
2555 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2556 * before exit.
2557 *
2558 * @return the common pool instance
2559 * @since 1.8
2560 */
2561 public static ForkJoinPool commonPool() {
2562 // assert common != null : "static init error";
2563 return common;
2564 }
2565
2566 // Execution methods
2567
2568 /**
2569 * Performs the given task, returning its result upon completion.
2570 * If the computation encounters an unchecked Exception or Error,
2571 * it is rethrown as the outcome of this invocation. Rethrown
2572 * exceptions behave in the same way as regular exceptions, but,
2573 * when possible, contain stack traces (as displayed for example
2574 * using {@code ex.printStackTrace()}) of both the current thread
2575 * as well as the thread actually encountering the exception;
2576 * minimally only the latter.
2577 *
2578 * @param task the task
2579 * @param <T> the type of the task's result
2580 * @return the task's result
2581 * @throws NullPointerException if the task is null
2582 * @throws RejectedExecutionException if the task cannot be
2583 * scheduled for execution
2584 */
2585 public <T> T invoke(ForkJoinTask<T> task) {
2586 if (task == null)
2587 throw new NullPointerException();
2588 externalPush(task);
2589 return task.join();
2590 }
2591
2592 /**
2593 * Arranges for (asynchronous) execution of the given task.
2594 *
2595 * @param task the task
2596 * @throws NullPointerException if the task is null
2597 * @throws RejectedExecutionException if the task cannot be
2598 * scheduled for execution
2599 */
2600 public void execute(ForkJoinTask<?> task) {
2601 if (task == null)
2602 throw new NullPointerException();
2603 externalPush(task);
2604 }
2605
2606 // AbstractExecutorService methods
2607
2608 /**
2609 * @throws NullPointerException if the task is null
2610 * @throws RejectedExecutionException if the task cannot be
2611 * scheduled for execution
2612 */
2613 public void execute(Runnable task) {
2614 if (task == null)
2615 throw new NullPointerException();
2616 ForkJoinTask<?> job;
2617 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2618 job = (ForkJoinTask<?>) task;
2619 else
2620 job = new ForkJoinTask.RunnableExecuteAction(task);
2621 externalPush(job);
2622 }
2623
2624 /**
2625 * Submits a ForkJoinTask for execution.
2626 *
2627 * @param task the task to submit
2628 * @param <T> the type of the task's result
2629 * @return the task
2630 * @throws NullPointerException if the task is null
2631 * @throws RejectedExecutionException if the task cannot be
2632 * scheduled for execution
2633 */
2634 public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2635 if (task == null)
2636 throw new NullPointerException();
2637 externalPush(task);
2638 return task;
2639 }
2640
2641 /**
2642 * @throws NullPointerException if the task is null
2643 * @throws RejectedExecutionException if the task cannot be
2644 * scheduled for execution
2645 */
2646 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2647 ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2648 externalPush(job);
2649 return job;
2650 }
2651
2652 /**
2653 * @throws NullPointerException if the task is null
2654 * @throws RejectedExecutionException if the task cannot be
2655 * scheduled for execution
2656 */
2657 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2658 ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2659 externalPush(job);
2660 return job;
2661 }
2662
2663 /**
2664 * @throws NullPointerException if the task is null
2665 * @throws RejectedExecutionException if the task cannot be
2666 * scheduled for execution
2667 */
2668 public ForkJoinTask<?> submit(Runnable task) {
2669 if (task == null)
2670 throw new NullPointerException();
2671 ForkJoinTask<?> job;
2672 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2673 job = (ForkJoinTask<?>) task;
2674 else
2675 job = new ForkJoinTask.AdaptedRunnableAction(task);
2676 externalPush(job);
2677 return job;
2678 }
2679
2680 /**
2681 * @throws NullPointerException {@inheritDoc}
2682 * @throws RejectedExecutionException {@inheritDoc}
2683 */
2684 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2685 // In previous versions of this class, this method constructed
2686 // a task to run ForkJoinTask.invokeAll, but now external
2687 // invocation of multiple tasks is at least as efficient.
2688 ArrayList<Future<T>> futures = new ArrayList<>(tasks.size());
2689
2690 boolean done = false;
2691 try {
2692 for (Callable<T> t : tasks) {
2693 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2694 futures.add(f);
2695 externalPush(f);
2696 }
2697 for (int i = 0, size = futures.size(); i < size; i++)
2698 ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2699 done = true;
2700 return futures;
2701 } finally {
2702 if (!done)
2703 for (int i = 0, size = futures.size(); i < size; i++)
2704 futures.get(i).cancel(false);
2705 }
2706 }
2707
2708 /**
2709 * Returns the factory used for constructing new workers.
2710 *
2711 * @return the factory used for constructing new workers
2712 */
2713 public ForkJoinWorkerThreadFactory getFactory() {
2714 return factory;
2715 }
2716
2717 /**
2718 * Returns the handler for internal worker threads that terminate
2719 * due to unrecoverable errors encountered while executing tasks.
2720 *
2721 * @return the handler, or {@code null} if none
2722 */
2723 public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2724 return ueh;
2725 }
2726
2727 /**
2728 * Returns the targeted parallelism level of this pool.
2729 *
2730 * @return the targeted parallelism level of this pool
2731 */
2732 public int getParallelism() {
2733 int par;
2734 return ((par = config & SMASK) > 0) ? par : 1;
2735 }
2736
2737 /**
2738 * Returns the targeted parallelism level of the common pool.
2739 *
2740 * @return the targeted parallelism level of the common pool
2741 * @since 1.8
2742 */
2743 public static int getCommonPoolParallelism() {
2744 return commonParallelism;
2745 }
2746
2747 /**
2748 * Returns the number of worker threads that have started but not
2749 * yet terminated. The result returned by this method may differ
2750 * from {@link #getParallelism} when threads are created to
2751 * maintain parallelism when others are cooperatively blocked.
2752 *
2753 * @return the number of worker threads
2754 */
2755 public int getPoolSize() {
2756 return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2757 }
2758
2759 /**
2760 * Returns {@code true} if this pool uses local first-in-first-out
2761 * scheduling mode for forked tasks that are never joined.
2762 *
2763 * @return {@code true} if this pool uses async mode
2764 */
2765 public boolean getAsyncMode() {
2766 return (config & FIFO_QUEUE) != 0;
2767 }
2768
2769 /**
2770 * Returns an estimate of the number of worker threads that are
2771 * not blocked waiting to join tasks or for other managed
2772 * synchronization. This method may overestimate the
2773 * number of running threads.
2774 *
2775 * @return the number of worker threads
2776 */
2777 public int getRunningThreadCount() {
2778 int rc = 0;
2779 WorkQueue[] ws; WorkQueue w;
2780 if ((ws = workQueues) != null) {
2781 for (int i = 1; i < ws.length; i += 2) {
2782 if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2783 ++rc;
2784 }
2785 }
2786 return rc;
2787 }
2788
2789 /**
2790 * Returns an estimate of the number of threads that are currently
2791 * stealing or executing tasks. This method may overestimate the
2792 * number of active threads.
2793 *
2794 * @return the number of active threads
2795 */
2796 public int getActiveThreadCount() {
2797 int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2798 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2799 }
2800
2801 /**
2802 * Returns {@code true} if all worker threads are currently idle.
2803 * An idle worker is one that cannot obtain a task to execute
2804 * because none are available to steal from other threads, and
2805 * there are no pending submissions to the pool. This method is
2806 * conservative; it might not return {@code true} immediately upon
2807 * idleness of all threads, but will eventually become true if
2808 * threads remain inactive.
2809 *
2810 * @return {@code true} if all threads are currently idle
2811 */
2812 public boolean isQuiescent() {
2813 return (config & SMASK) + (int)(ctl >> AC_SHIFT) <= 0;
2814 }
2815
2816 /**
2817 * Returns an estimate of the total number of tasks stolen from
2818 * one thread's work queue by another. The reported value
2819 * underestimates the actual total number of steals when the pool
2820 * is not quiescent. This value may be useful for monitoring and
2821 * tuning fork/join programs: in general, steal counts should be
2822 * high enough to keep threads busy, but low enough to avoid
2823 * overhead and contention across threads.
2824 *
2825 * @return the number of steals
2826 */
2827 public long getStealCount() {
2828 AtomicLong sc = stealCounter;
2829 long count = (sc == null) ? 0L : sc.get();
2830 WorkQueue[] ws; WorkQueue w;
2831 if ((ws = workQueues) != null) {
2832 for (int i = 1; i < ws.length; i += 2) {
2833 if ((w = ws[i]) != null)
2834 count += w.nsteals;
2835 }
2836 }
2837 return count;
2838 }
2839
2840 /**
2841 * Returns an estimate of the total number of tasks currently held
2842 * in queues by worker threads (but not including tasks submitted
2843 * to the pool that have not begun executing). This value is only
2844 * an approximation, obtained by iterating across all threads in
2845 * the pool. This method may be useful for tuning task
2846 * granularities.
2847 *
2848 * @return the number of queued tasks
2849 */
2850 public long getQueuedTaskCount() {
2851 long count = 0;
2852 WorkQueue[] ws; WorkQueue w;
2853 if ((ws = workQueues) != null) {
2854 for (int i = 1; i < ws.length; i += 2) {
2855 if ((w = ws[i]) != null)
2856 count += w.queueSize();
2857 }
2858 }
2859 return count;
2860 }
2861
2862 /**
2863 * Returns an estimate of the number of tasks submitted to this
2864 * pool that have not yet begun executing. This method may take
2865 * time proportional to the number of submissions.
2866 *
2867 * @return the number of queued submissions
2868 */
2869 public int getQueuedSubmissionCount() {
2870 int count = 0;
2871 WorkQueue[] ws; WorkQueue w;
2872 if ((ws = workQueues) != null) {
2873 for (int i = 0; i < ws.length; i += 2) {
2874 if ((w = ws[i]) != null)
2875 count += w.queueSize();
2876 }
2877 }
2878 return count;
2879 }
2880
2881 /**
2882 * Returns {@code true} if there are any tasks submitted to this
2883 * pool that have not yet begun executing.
2884 *
2885 * @return {@code true} if there are any queued submissions
2886 */
2887 public boolean hasQueuedSubmissions() {
2888 WorkQueue[] ws; WorkQueue w;
2889 if ((ws = workQueues) != null) {
2890 for (int i = 0; i < ws.length; i += 2) {
2891 if ((w = ws[i]) != null && !w.isEmpty())
2892 return true;
2893 }
2894 }
2895 return false;
2896 }
2897
2898 /**
2899 * Removes and returns the next unexecuted submission if one is
2900 * available. This method may be useful in extensions to this
2901 * class that re-assign work in systems with multiple pools.
2902 *
2903 * @return the next submission, or {@code null} if none
2904 */
2905 protected ForkJoinTask<?> pollSubmission() {
2906 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2907 if ((ws = workQueues) != null) {
2908 for (int i = 0; i < ws.length; i += 2) {
2909 if ((w = ws[i]) != null && (t = w.poll()) != null)
2910 return t;
2911 }
2912 }
2913 return null;
2914 }
2915
2916 /**
2917 * Removes all available unexecuted submitted and forked tasks
2918 * from scheduling queues and adds them to the given collection,
2919 * without altering their execution status. These may include
2920 * artificially generated or wrapped tasks. This method is
2921 * designed to be invoked only when the pool is known to be
2922 * quiescent. Invocations at other times may not remove all
2923 * tasks. A failure encountered while attempting to add elements
2924 * to collection {@code c} may result in elements being in
2925 * neither, either or both collections when the associated
2926 * exception is thrown. The behavior of this operation is
2927 * undefined if the specified collection is modified while the
2928 * operation is in progress.
2929 *
2930 * @param c the collection to transfer elements into
2931 * @return the number of elements transferred
2932 */
2933 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2934 int count = 0;
2935 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2936 if ((ws = workQueues) != null) {
2937 for (int i = 0; i < ws.length; ++i) {
2938 if ((w = ws[i]) != null) {
2939 while ((t = w.poll()) != null) {
2940 c.add(t);
2941 ++count;
2942 }
2943 }
2944 }
2945 }
2946 return count;
2947 }
2948
2949 /**
2950 * Returns a string identifying this pool, as well as its state,
2951 * including indications of run state, parallelism level, and
2952 * worker and task counts.
2953 *
2954 * @return a string identifying this pool, as well as its state
2955 */
2956 public String toString() {
2957 // Use a single pass through workQueues to collect counts
2958 long qt = 0L, qs = 0L; int rc = 0;
2959 AtomicLong sc = stealCounter;
2960 long st = (sc == null) ? 0L : sc.get();
2961 long c = ctl;
2962 WorkQueue[] ws; WorkQueue w;
2963 if ((ws = workQueues) != null) {
2964 for (int i = 0; i < ws.length; ++i) {
2965 if ((w = ws[i]) != null) {
2966 int size = w.queueSize();
2967 if ((i & 1) == 0)
2968 qs += size;
2969 else {
2970 qt += size;
2971 st += w.nsteals;
2972 if (w.isApparentlyUnblocked())
2973 ++rc;
2974 }
2975 }
2976 }
2977 }
2978 int pc = (config & SMASK);
2979 int tc = pc + (short)(c >>> TC_SHIFT);
2980 int ac = pc + (int)(c >> AC_SHIFT);
2981 if (ac < 0) // ignore transient negative
2982 ac = 0;
2983 int rs = runState;
2984 String level = ((rs & TERMINATED) != 0 ? "Terminated" :
2985 (rs & STOP) != 0 ? "Terminating" :
2986 (rs & SHUTDOWN) != 0 ? "Shutting down" :
2987 "Running");
2988 return super.toString() +
2989 "[" + level +
2990 ", parallelism = " + pc +
2991 ", size = " + tc +
2992 ", active = " + ac +
2993 ", running = " + rc +
2994 ", steals = " + st +
2995 ", tasks = " + qt +
2996 ", submissions = " + qs +
2997 "]";
2998 }
2999
3000 /**
3001 * Possibly initiates an orderly shutdown in which previously
3002 * submitted tasks are executed, but no new tasks will be
3003 * accepted. Invocation has no effect on execution state if this
3004 * is the {@link #commonPool()}, and no additional effect if
3005 * already shut down. Tasks that are in the process of being
3006 * submitted concurrently during the course of this method may or
3007 * may not be rejected.
3008 *
3009 * @throws SecurityException if a security manager exists and
3010 * the caller is not permitted to modify threads
3011 * because it does not hold {@link
3012 * java.lang.RuntimePermission}{@code ("modifyThread")}
3013 */
3014 public void shutdown() {
3015 checkPermission();
3016 tryTerminate(false, true);
3017 }
3018
3019 /**
3020 * Possibly attempts to cancel and/or stop all tasks, and reject
3021 * all subsequently submitted tasks. Invocation has no effect on
3022 * execution state if this is the {@link #commonPool()}, and no
3023 * additional effect if already shut down. Otherwise, tasks that
3024 * are in the process of being submitted or executed concurrently
3025 * during the course of this method may or may not be
3026 * rejected. This method cancels both existing and unexecuted
3027 * tasks, in order to permit termination in the presence of task
3028 * dependencies. So the method always returns an empty list
3029 * (unlike the case for some other Executors).
3030 *
3031 * @return an empty list
3032 * @throws SecurityException if a security manager exists and
3033 * the caller is not permitted to modify threads
3034 * because it does not hold {@link
3035 * java.lang.RuntimePermission}{@code ("modifyThread")}
3036 */
3037 public List<Runnable> shutdownNow() {
3038 checkPermission();
3039 tryTerminate(true, true);
3040 return Collections.emptyList();
3041 }
3042
3043 /**
3044 * Returns {@code true} if all tasks have completed following shut down.
3045 *
3046 * @return {@code true} if all tasks have completed following shut down
3047 */
3048 public boolean isTerminated() {
3049 return (runState & TERMINATED) != 0;
3050 }
3051
3052 /**
3053 * Returns {@code true} if the process of termination has
3054 * commenced but not yet completed. This method may be useful for
3055 * debugging. A return of {@code true} reported a sufficient
3056 * period after shutdown may indicate that submitted tasks have
3057 * ignored or suppressed interruption, or are waiting for I/O,
3058 * causing this executor not to properly terminate. (See the
3059 * advisory notes for class {@link ForkJoinTask} stating that
3060 * tasks should not normally entail blocking operations. But if
3061 * they do, they must abort them on interrupt.)
3062 *
3063 * @return {@code true} if terminating but not yet terminated
3064 */
3065 public boolean isTerminating() {
3066 int rs = runState;
3067 return (rs & STOP) != 0 && (rs & TERMINATED) == 0;
3068 }
3069
3070 /**
3071 * Returns {@code true} if this pool has been shut down.
3072 *
3073 * @return {@code true} if this pool has been shut down
3074 */
3075 public boolean isShutdown() {
3076 return (runState & SHUTDOWN) != 0;
3077 }
3078
3079 /**
3080 * Blocks until all tasks have completed execution after a
3081 * shutdown request, or the timeout occurs, or the current thread
3082 * is interrupted, whichever happens first. Because the {@link
3083 * #commonPool()} never terminates until program shutdown, when
3084 * applied to the common pool, this method is equivalent to {@link
3085 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
3086 *
3087 * @param timeout the maximum time to wait
3088 * @param unit the time unit of the timeout argument
3089 * @return {@code true} if this executor terminated and
3090 * {@code false} if the timeout elapsed before termination
3091 * @throws InterruptedException if interrupted while waiting
3092 */
3093 public boolean awaitTermination(long timeout, TimeUnit unit)
3094 throws InterruptedException {
3095 if (Thread.interrupted())
3096 throw new InterruptedException();
3097 if (this == common) {
3098 awaitQuiescence(timeout, unit);
3099 return false;
3100 }
3101 long nanos = unit.toNanos(timeout);
3102 if (isTerminated())
3103 return true;
3104 if (nanos <= 0L)
3105 return false;
3106 long deadline = System.nanoTime() + nanos;
3107 synchronized (this) {
3108 for (;;) {
3109 if (isTerminated())
3110 return true;
3111 if (nanos <= 0L)
3112 return false;
3113 long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
3114 wait(millis > 0L ? millis : 1L);
3115 nanos = deadline - System.nanoTime();
3116 }
3117 }
3118 }
3119
3120 /**
3121 * If called by a ForkJoinTask operating in this pool, equivalent
3122 * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3123 * waits and/or attempts to assist performing tasks until this
3124 * pool {@link #isQuiescent} or the indicated timeout elapses.
3125 *
3126 * @param timeout the maximum time to wait
3127 * @param unit the time unit of the timeout argument
3128 * @return {@code true} if quiescent; {@code false} if the
3129 * timeout elapsed.
3130 */
3131 public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3132 long nanos = unit.toNanos(timeout);
3133 ForkJoinWorkerThread wt;
3134 Thread thread = Thread.currentThread();
3135 if ((thread instanceof ForkJoinWorkerThread) &&
3136 (wt = (ForkJoinWorkerThread)thread).pool == this) {
3137 helpQuiescePool(wt.workQueue);
3138 return true;
3139 }
3140 long startTime = System.nanoTime();
3141 WorkQueue[] ws;
3142 int r = 0, m;
3143 boolean found = true;
3144 while (!isQuiescent() && (ws = workQueues) != null &&
3145 (m = ws.length - 1) >= 0) {
3146 if (!found) {
3147 if ((System.nanoTime() - startTime) > nanos)
3148 return false;
3149 Thread.yield(); // cannot block
3150 }
3151 found = false;
3152 for (int j = (m + 1) << 2; j >= 0; --j) {
3153 ForkJoinTask<?> t; WorkQueue q; int b, k;
3154 if ((k = r++ & m) <= m && k >= 0 && (q = ws[k]) != null &&
3155 (b = q.base) - q.top < 0) {
3156 found = true;
3157 if ((t = q.pollAt(b)) != null)
3158 t.doExec();
3159 break;
3160 }
3161 }
3162 }
3163 return true;
3164 }
3165
3166 /**
3167 * Waits and/or attempts to assist performing tasks indefinitely
3168 * until the {@link #commonPool()} {@link #isQuiescent}.
3169 */
3170 static void quiesceCommonPool() {
3171 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3172 }
3173
3174 /**
3175 * Interface for extending managed parallelism for tasks running
3176 * in {@link ForkJoinPool}s.
3177 *
3178 * <p>A {@code ManagedBlocker} provides two methods. Method
3179 * {@link #isReleasable} must return {@code true} if blocking is
3180 * not necessary. Method {@link #block} blocks the current thread
3181 * if necessary (perhaps internally invoking {@code isReleasable}
3182 * before actually blocking). These actions are performed by any
3183 * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
3184 * The unusual methods in this API accommodate synchronizers that
3185 * may, but don't usually, block for long periods. Similarly, they
3186 * allow more efficient internal handling of cases in which
3187 * additional workers may be, but usually are not, needed to
3188 * ensure sufficient parallelism. Toward this end,
3189 * implementations of method {@code isReleasable} must be amenable
3190 * to repeated invocation.
3191 *
3192 * <p>For example, here is a ManagedBlocker based on a
3193 * ReentrantLock:
3194 * <pre> {@code
3195 * class ManagedLocker implements ManagedBlocker {
3196 * final ReentrantLock lock;
3197 * boolean hasLock = false;
3198 * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3199 * public boolean block() {
3200 * if (!hasLock)
3201 * lock.lock();
3202 * return true;
3203 * }
3204 * public boolean isReleasable() {
3205 * return hasLock || (hasLock = lock.tryLock());
3206 * }
3207 * }}</pre>
3208 *
3209 * <p>Here is a class that possibly blocks waiting for an
3210 * item on a given queue:
3211 * <pre> {@code
3212 * class QueueTaker<E> implements ManagedBlocker {
3213 * final BlockingQueue<E> queue;
3214 * volatile E item = null;
3215 * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3216 * public boolean block() throws InterruptedException {
3217 * if (item == null)
3218 * item = queue.take();
3219 * return true;
3220 * }
3221 * public boolean isReleasable() {
3222 * return item != null || (item = queue.poll()) != null;
3223 * }
3224 * public E getItem() { // call after pool.managedBlock completes
3225 * return item;
3226 * }
3227 * }}</pre>
3228 */
3229 public static interface ManagedBlocker {
3230 /**
3231 * Possibly blocks the current thread, for example waiting for
3232 * a lock or condition.
3233 *
3234 * @return {@code true} if no additional blocking is necessary
3235 * (i.e., if isReleasable would return true)
3236 * @throws InterruptedException if interrupted while waiting
3237 * (the method is not required to do so, but is allowed to)
3238 */
3239 boolean block() throws InterruptedException;
3240
3241 /**
3242 * Returns {@code true} if blocking is unnecessary.
3243 * @return {@code true} if blocking is unnecessary
3244 */
3245 boolean isReleasable();
3246 }
3247
3248 /**
3249 * Runs the given possibly blocking task. When {@linkplain
3250 * ForkJoinTask#inForkJoinPool() running in a ForkJoinPool}, this
3251 * method possibly arranges for a spare thread to be activated if
3252 * necessary to ensure sufficient parallelism while the current
3253 * thread is blocked in {@link ManagedBlocker#block blocker.block()}.
3254 *
3255 * <p>This method repeatedly calls {@code blocker.isReleasable()} and
3256 * {@code blocker.block()} until either method returns {@code true}.
3257 * Every call to {@code blocker.block()} is preceded by a call to
3258 * {@code blocker.isReleasable()} that returned {@code false}.
3259 *
3260 * <p>If not running in a ForkJoinPool, this method is
3261 * behaviorally equivalent to
3262 * <pre> {@code
3263 * while (!blocker.isReleasable())
3264 * if (blocker.block())
3265 * break;}</pre>
3266 *
3267 * If running in a ForkJoinPool, the pool may first be expanded to
3268 * ensure sufficient parallelism available during the call to
3269 * {@code blocker.block()}.
3270 *
3271 * @param blocker the blocker task
3272 * @throws InterruptedException if {@code blocker.block()} did so
3273 */
3274 public static void managedBlock(ManagedBlocker blocker)
3275 throws InterruptedException {
3276 ForkJoinPool p;
3277 ForkJoinWorkerThread wt;
3278 Thread t = Thread.currentThread();
3279 if ((t instanceof ForkJoinWorkerThread) &&
3280 (p = (wt = (ForkJoinWorkerThread)t).pool) != null) {
3281 WorkQueue w = wt.workQueue;
3282 while (!blocker.isReleasable()) {
3283 if (p.tryCompensate(w)) {
3284 try {
3285 do {} while (!blocker.isReleasable() &&
3286 !blocker.block());
3287 } finally {
3288 U.getAndAddLong(p, CTL, AC_UNIT);
3289 }
3290 break;
3291 }
3292 }
3293 }
3294 else {
3295 do {} while (!blocker.isReleasable() &&
3296 !blocker.block());
3297 }
3298 }
3299
3300 // AbstractExecutorService overrides. These rely on undocumented
3301 // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3302 // implement RunnableFuture.
3303
3304 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3305 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3306 }
3307
3308 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3309 return new ForkJoinTask.AdaptedCallable<T>(callable);
3310 }
3311
3312 // Unsafe mechanics
3313 private static final sun.misc.Unsafe U;
3314 private static final int ABASE;
3315 private static final int ASHIFT;
3316 private static final long CTL;
3317 private static final long RUNSTATE;
3318 private static final long STEALCOUNTER;
3319 private static final long PARKBLOCKER;
3320 private static final long QTOP;
3321 private static final long QLOCK;
3322 private static final long QSCANSTATE;
3323 private static final long QPARKER;
3324 private static final long QCURRENTSTEAL;
3325 private static final long QCURRENTJOIN;
3326
3327 static {
3328 // initialize field offsets for CAS etc
3329 try {
3330 U = sun.misc.Unsafe.getUnsafe();
3331 Class<?> k = ForkJoinPool.class;
3332 CTL = U.objectFieldOffset
3333 (k.getDeclaredField("ctl"));
3334 RUNSTATE = U.objectFieldOffset
3335 (k.getDeclaredField("runState"));
3336 STEALCOUNTER = U.objectFieldOffset
3337 (k.getDeclaredField("stealCounter"));
3338 Class<?> tk = Thread.class;
3339 PARKBLOCKER = U.objectFieldOffset
3340 (tk.getDeclaredField("parkBlocker"));
3341 Class<?> wk = WorkQueue.class;
3342 QTOP = U.objectFieldOffset
3343 (wk.getDeclaredField("top"));
3344 QLOCK = U.objectFieldOffset
3345 (wk.getDeclaredField("qlock"));
3346 QSCANSTATE = U.objectFieldOffset
3347 (wk.getDeclaredField("scanState"));
3348 QPARKER = U.objectFieldOffset
3349 (wk.getDeclaredField("parker"));
3350 QCURRENTSTEAL = U.objectFieldOffset
3351 (wk.getDeclaredField("currentSteal"));
3352 QCURRENTJOIN = U.objectFieldOffset
3353 (wk.getDeclaredField("currentJoin"));
3354 Class<?> ak = ForkJoinTask[].class;
3355 ABASE = U.arrayBaseOffset(ak);
3356 int scale = U.arrayIndexScale(ak);
3357 if ((scale & (scale - 1)) != 0)
3358 throw new Error("data type scale not a power of two");
3359 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3360 } catch (Exception e) {
3361 throw new Error(e);
3362 }
3363
3364 commonMaxSpares = DEFAULT_COMMON_MAX_SPARES;
3365 defaultForkJoinWorkerThreadFactory =
3366 new DefaultForkJoinWorkerThreadFactory();
3367 modifyThreadPermission = new RuntimePermission("modifyThread");
3368
3369 common = java.security.AccessController.doPrivileged
3370 (new java.security.PrivilegedAction<ForkJoinPool>() {
3371 public ForkJoinPool run() { return makeCommonPool(); }});
3372 int par = common.config & SMASK; // report 1 even if threads disabled
3373 commonParallelism = par > 0 ? par : 1;
3374 }
3375
3376 /**
3377 * Creates and returns the common pool, respecting user settings
3378 * specified via system properties.
3379 */
3380 private static ForkJoinPool makeCommonPool() {
3381 int parallelism = -1;
3382 ForkJoinWorkerThreadFactory factory = null;
3383 UncaughtExceptionHandler handler = null;
3384 try { // ignore exceptions in accessing/parsing properties
3385 String pp = System.getProperty
3386 ("java.util.concurrent.ForkJoinPool.common.parallelism");
3387 String fp = System.getProperty
3388 ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3389 String hp = System.getProperty
3390 ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3391 String mp = System.getProperty
3392 ("java.util.concurrent.ForkJoinPool.common.maximumSpares");
3393 if (pp != null)
3394 parallelism = Integer.parseInt(pp);
3395 if (fp != null)
3396 factory = ((ForkJoinWorkerThreadFactory)ClassLoader.
3397 getSystemClassLoader().loadClass(fp).newInstance());
3398 if (hp != null)
3399 handler = ((UncaughtExceptionHandler)ClassLoader.
3400 getSystemClassLoader().loadClass(hp).newInstance());
3401 if (mp != null)
3402 commonMaxSpares = Integer.parseInt(mp);
3403 } catch (Exception ignore) {
3404 }
3405 if (factory == null) {
3406 if (System.getSecurityManager() == null)
3407 factory = defaultForkJoinWorkerThreadFactory;
3408 else // use security-managed default
3409 factory = new InnocuousForkJoinWorkerThreadFactory();
3410 }
3411 if (parallelism < 0 && // default 1 less than #cores
3412 (parallelism = Runtime.getRuntime().availableProcessors() - 1) <= 0)
3413 parallelism = 1;
3414 if (parallelism > MAX_CAP)
3415 parallelism = MAX_CAP;
3416 return new ForkJoinPool(parallelism, factory, handler, LIFO_QUEUE,
3417 "ForkJoinPool.commonPool-worker-");
3418 }
3419
3420 /**
3421 * Factory for innocuous worker threads
3422 */
3423 static final class InnocuousForkJoinWorkerThreadFactory
3424 implements ForkJoinWorkerThreadFactory {
3425
3426 /**
3427 * An ACC to restrict permissions for the factory itself.
3428 * The constructed workers have no permissions set.
3429 */
3430 private static final AccessControlContext innocuousAcc;
3431 static {
3432 Permissions innocuousPerms = new Permissions();
3433 innocuousPerms.add(modifyThreadPermission);
3434 innocuousPerms.add(new RuntimePermission(
3435 "enableContextClassLoaderOverride"));
3436 innocuousPerms.add(new RuntimePermission(
3437 "modifyThreadGroup"));
3438 innocuousAcc = new AccessControlContext(new ProtectionDomain[] {
3439 new ProtectionDomain(null, innocuousPerms)
3440 });
3441 }
3442
3443 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
3444 return (ForkJoinWorkerThread.InnocuousForkJoinWorkerThread)
3445 java.security.AccessController.doPrivileged(
3446 new java.security.PrivilegedAction<ForkJoinWorkerThread>() {
3447 public ForkJoinWorkerThread run() {
3448 return new ForkJoinWorkerThread.
3449 InnocuousForkJoinWorkerThread(pool);
3450 }}, innocuousAcc);
3451 }
3452 }
3453
3454 }