ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.240
Committed: Mon Feb 23 20:54:08 2015 UTC (9 years, 3 months ago) by jsr166
Branch: MAIN
Changes since 1.239: +1 -1 lines
Log Message:
delete unused locals

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.lang.Thread.UncaughtExceptionHandler;
10 import java.security.AccessControlContext;
11 import java.security.Permissions;
12 import java.security.ProtectionDomain;
13 import java.util.ArrayList;
14 import java.util.Arrays;
15 import java.util.Collection;
16 import java.util.Collections;
17 import java.util.List;
18 import java.util.concurrent.atomic.AtomicLong;
19
20 /**
21 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
22 * A {@code ForkJoinPool} provides the entry point for submissions
23 * from non-{@code ForkJoinTask} clients, as well as management and
24 * monitoring operations.
25 *
26 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
27 * ExecutorService} mainly by virtue of employing
28 * <em>work-stealing</em>: all threads in the pool attempt to find and
29 * execute tasks submitted to the pool and/or created by other active
30 * tasks (eventually blocking waiting for work if none exist). This
31 * enables efficient processing when most tasks spawn other subtasks
32 * (as do most {@code ForkJoinTask}s), as well as when many small
33 * tasks are submitted to the pool from external clients. Especially
34 * when setting <em>asyncMode</em> to true in constructors, {@code
35 * ForkJoinPool}s may also be appropriate for use with event-style
36 * tasks that are never joined.
37 *
38 * <p>A static {@link #commonPool()} is available and appropriate for
39 * most applications. The common pool is used by any ForkJoinTask that
40 * is not explicitly submitted to a specified pool. Using the common
41 * pool normally reduces resource usage (its threads are slowly
42 * reclaimed during periods of non-use, and reinstated upon subsequent
43 * use).
44 *
45 * <p>For applications that require separate or custom pools, a {@code
46 * ForkJoinPool} may be constructed with a given target parallelism
47 * level; by default, equal to the number of available processors.
48 * The pool attempts to maintain enough active (or available) threads
49 * by dynamically adding, suspending, or resuming internal worker
50 * threads, even if some tasks are stalled waiting to join others.
51 * However, no such adjustments are guaranteed in the face of blocked
52 * I/O or other unmanaged synchronization. The nested {@link
53 * ManagedBlocker} interface enables extension of the kinds of
54 * synchronization accommodated.
55 *
56 * <p>In addition to execution and lifecycle control methods, this
57 * class provides status check methods (for example
58 * {@link #getStealCount}) that are intended to aid in developing,
59 * tuning, and monitoring fork/join applications. Also, method
60 * {@link #toString} returns indications of pool state in a
61 * convenient form for informal monitoring.
62 *
63 * <p>As is the case with other ExecutorServices, there are three
64 * main task execution methods summarized in the following table.
65 * These are designed to be used primarily by clients not already
66 * engaged in fork/join computations in the current pool. The main
67 * forms of these methods accept instances of {@code ForkJoinTask},
68 * but overloaded forms also allow mixed execution of plain {@code
69 * Runnable}- or {@code Callable}- based activities as well. However,
70 * tasks that are already executing in a pool should normally instead
71 * use the within-computation forms listed in the table unless using
72 * async event-style tasks that are not usually joined, in which case
73 * there is little difference among choice of methods.
74 *
75 * <table BORDER CELLPADDING=3 CELLSPACING=1>
76 * <caption>Summary of task execution methods</caption>
77 * <tr>
78 * <td></td>
79 * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
80 * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
81 * </tr>
82 * <tr>
83 * <td> <b>Arrange async execution</b></td>
84 * <td> {@link #execute(ForkJoinTask)}</td>
85 * <td> {@link ForkJoinTask#fork}</td>
86 * </tr>
87 * <tr>
88 * <td> <b>Await and obtain result</b></td>
89 * <td> {@link #invoke(ForkJoinTask)}</td>
90 * <td> {@link ForkJoinTask#invoke}</td>
91 * </tr>
92 * <tr>
93 * <td> <b>Arrange exec and obtain Future</b></td>
94 * <td> {@link #submit(ForkJoinTask)}</td>
95 * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
96 * </tr>
97 * </table>
98 *
99 * <p>The common pool is by default constructed with default
100 * parameters, but these may be controlled by setting three
101 * {@linkplain System#getProperty system properties}:
102 * <ul>
103 * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
104 * - the parallelism level, a non-negative integer
105 * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
106 * - the class name of a {@link ForkJoinWorkerThreadFactory}
107 * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
108 * - the class name of a {@link UncaughtExceptionHandler}
109 * <li>{@code java.util.concurrent.ForkJoinPool.common.maximumSpares}
110 * - the maximum number of allowed extra threads to maintain target
111 * parallelism (default 256).
112 * </ul>
113 * If a {@link SecurityManager} is present and no factory is
114 * specified, then the default pool uses a factory supplying
115 * threads that have no {@link Permissions} enabled.
116 * The system class loader is used to load these classes.
117 * Upon any error in establishing these settings, default parameters
118 * are used. It is possible to disable or limit the use of threads in
119 * the common pool by setting the parallelism property to zero, and/or
120 * using a factory that may return {@code null}. However doing so may
121 * cause unjoined tasks to never be executed.
122 *
123 * <p><b>Implementation notes</b>: This implementation restricts the
124 * maximum number of running threads to 32767. Attempts to create
125 * pools with greater than the maximum number result in
126 * {@code IllegalArgumentException}.
127 *
128 * <p>This implementation rejects submitted tasks (that is, by throwing
129 * {@link RejectedExecutionException}) only when the pool is shut down
130 * or internal resources have been exhausted.
131 *
132 * @since 1.7
133 * @author Doug Lea
134 */
135 @sun.misc.Contended
136 public class ForkJoinPool extends AbstractExecutorService {
137
138 /*
139 * Implementation Overview
140 *
141 * This class and its nested classes provide the main
142 * functionality and control for a set of worker threads:
143 * Submissions from non-FJ threads enter into submission queues.
144 * Workers take these tasks and typically split them into subtasks
145 * that may be stolen by other workers. Preference rules give
146 * first priority to processing tasks from their own queues (LIFO
147 * or FIFO, depending on mode), then to randomized FIFO steals of
148 * tasks in other queues. This framework began as vehicle for
149 * supporting tree-structured parallelism using work-stealing.
150 * Over time, its scalability advantages led to extensions and
151 * changes to better support more diverse usage contexts. Because
152 * most internal methods and nested classes are interrelated,
153 * their main rationale and descriptions are presented here;
154 * individual methods and nested classes contain only brief
155 * comments about details.
156 *
157 * WorkQueues
158 * ==========
159 *
160 * Most operations occur within work-stealing queues (in nested
161 * class WorkQueue). These are special forms of Deques that
162 * support only three of the four possible end-operations -- push,
163 * pop, and poll (aka steal), under the further constraints that
164 * push and pop are called only from the owning thread (or, as
165 * extended here, under a lock), while poll may be called from
166 * other threads. (If you are unfamiliar with them, you probably
167 * want to read Herlihy and Shavit's book "The Art of
168 * Multiprocessor programming", chapter 16 describing these in
169 * more detail before proceeding.) The main work-stealing queue
170 * design is roughly similar to those in the papers "Dynamic
171 * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
172 * (http://research.sun.com/scalable/pubs/index.html) and
173 * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
174 * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
175 * The main differences ultimately stem from GC requirements that
176 * we null out taken slots as soon as we can, to maintain as small
177 * a footprint as possible even in programs generating huge
178 * numbers of tasks. To accomplish this, we shift the CAS
179 * arbitrating pop vs poll (steal) from being on the indices
180 * ("base" and "top") to the slots themselves.
181 *
182 * Adding tasks then takes the form of a classic array push(task):
183 * q.array[q.top] = task; ++q.top;
184 *
185 * (The actual code needs to null-check and size-check the array,
186 * properly fence the accesses, and possibly signal waiting
187 * workers to start scanning -- see below.) Both a successful pop
188 * and poll mainly entail a CAS of a slot from non-null to null.
189 *
190 * The pop operation (always performed by owner) is:
191 * if ((base != top) and
192 * (the task at top slot is not null) and
193 * (CAS slot to null))
194 * decrement top and return task;
195 *
196 * And the poll operation (usually by a stealer) is
197 * if ((base != top) and
198 * (the task at base slot is not null) and
199 * (base has not changed) and
200 * (CAS slot to null))
201 * increment base and return task;
202 *
203 * Because we rely on CASes of references, we do not need tag bits
204 * on base or top. They are simple ints as used in any circular
205 * array-based queue (see for example ArrayDeque). Updates to the
206 * indices guarantee that top == base means the queue is empty,
207 * but otherwise may err on the side of possibly making the queue
208 * appear nonempty when a push, pop, or poll have not fully
209 * committed. (Method isEmpty() checks the case of a partially
210 * completed removal of the last element.) Because of this, the
211 * poll operation, considered individually, is not wait-free. One
212 * thief cannot successfully continue until another in-progress
213 * one (or, if previously empty, a push) completes. However, in
214 * the aggregate, we ensure at least probabilistic
215 * non-blockingness. If an attempted steal fails, a thief always
216 * chooses a different random victim target to try next. So, in
217 * order for one thief to progress, it suffices for any
218 * in-progress poll or new push on any empty queue to
219 * complete. (This is why we normally use method pollAt and its
220 * variants that try once at the apparent base index, else
221 * consider alternative actions, rather than method poll, which
222 * retries.)
223 *
224 * This approach also enables support of a user mode in which
225 * local task processing is in FIFO, not LIFO order, simply by
226 * using poll rather than pop. This can be useful in
227 * message-passing frameworks in which tasks are never joined.
228 * However neither mode considers affinities, loads, cache
229 * localities, etc, so rarely provide the best possible
230 * performance on a given machine, but portably provide good
231 * throughput by averaging over these factors. Further, even if
232 * we did try to use such information, we do not usually have a
233 * basis for exploiting it. For example, some sets of tasks
234 * profit from cache affinities, but others are harmed by cache
235 * pollution effects. Additionally, even though it requires
236 * scanning, long-term throughput is often best using random
237 * selection rather than directed selection policies, so cheap
238 * randomization of sufficient quality is used whenever
239 * applicable. Various Marsaglia XorShifts (some with different
240 * shift constants) are inlined at use points.
241 *
242 * WorkQueues are also used in a similar way for tasks submitted
243 * to the pool. We cannot mix these tasks in the same queues used
244 * by workers. Instead, we randomly associate submission queues
245 * with submitting threads, using a form of hashing. The
246 * ThreadLocalRandom probe value serves as a hash code for
247 * choosing existing queues, and may be randomly repositioned upon
248 * contention with other submitters. In essence, submitters act
249 * like workers except that they are restricted to executing local
250 * tasks that they submitted (or in the case of CountedCompleters,
251 * others with the same root task). Insertion of tasks in shared
252 * mode requires a lock (mainly to protect in the case of
253 * resizing) but we use only a simple spinlock (using field
254 * qlock), because submitters encountering a busy queue move on to
255 * try or create other queues -- they block only when creating and
256 * registering new queues. Additionally, "qlock" saturates to an
257 * unlockable value (-1) at shutdown. Unlocking still can be and
258 * is performed by cheaper ordered writes of "qlock" in successful
259 * cases, but uses CAS in unsuccessful cases.
260 *
261 * Management
262 * ==========
263 *
264 * The main throughput advantages of work-stealing stem from
265 * decentralized control -- workers mostly take tasks from
266 * themselves or each other, at rates that can exceed a billion
267 * per second. The pool itself creates, activates (enables
268 * scanning for and running tasks), deactivates, blocks, and
269 * terminates threads, all with minimal central information.
270 * There are only a few properties that we can globally track or
271 * maintain, so we pack them into a small number of variables,
272 * often maintaining atomicity without blocking or locking.
273 * Nearly all essentially atomic control state is held in two
274 * volatile variables that are by far most often read (not
275 * written) as status and consistency checks. (Also, field
276 * "config" holds unchanging configuration state.)
277 *
278 * Field "ctl" contains 64 bits holding information needed to
279 * atomically decide to add, inactivate, enqueue (on an event
280 * queue), dequeue, and/or re-activate workers. To enable this
281 * packing, we restrict maximum parallelism to (1<<15)-1 (which is
282 * far in excess of normal operating range) to allow ids, counts,
283 * and their negations (used for thresholding) to fit into 16bit
284 * subfields.
285 *
286 * Field "runState" holds lockable state bits (STARTED, STOP, etc)
287 * also protecting updates to the workQueues array. When used as
288 * a lock, it is normally held only for a few instructions (the
289 * only exceptions are one-time array initialization and uncommon
290 * resizing), so is nearly always available after at most a brief
291 * spin. But to be extra-cautious, after spinning, method
292 * awaitRunStateLock (called only if an initial CAS fails), uses a
293 * wait/notify mechanics on a builtin monitor to block when
294 * (rarely) needed. This would be a terrible idea for a highly
295 * contended lock, but most pools run without the lock ever
296 * contending after the spin limit, so this works fine as a more
297 * conservative alternative. Because we don't otherwise have an
298 * internal Object to use as a monitor, the "stealCounter" (an
299 * AtomicLong) is used when available (it too must be lazily
300 * initialized; see externalSubmit).
301 *
302 * Usages of "runState" vs "ctl" interact in only one case:
303 * deciding to add a worker thread (see tryAddWorker), in which
304 * case the ctl CAS is performed while the lock is held.
305 *
306 * Recording WorkQueues. WorkQueues are recorded in the
307 * "workQueues" array. The array is created upon first use (see
308 * externalSubmit) and expanded if necessary. Updates to the
309 * array while recording new workers and unrecording terminated
310 * ones are protected from each other by the runState lock, but
311 * the array is otherwise concurrently readable, and accessed
312 * directly. We also ensure that reads of the array reference
313 * itself never become too stale. To simplify index-based
314 * operations, the array size is always a power of two, and all
315 * readers must tolerate null slots. Worker queues are at odd
316 * indices. Shared (submission) queues are at even indices, up to
317 * a maximum of 64 slots, to limit growth even if array needs to
318 * expand to add more workers. Grouping them together in this way
319 * simplifies and speeds up task scanning.
320 *
321 * All worker thread creation is on-demand, triggered by task
322 * submissions, replacement of terminated workers, and/or
323 * compensation for blocked workers. However, all other support
324 * code is set up to work with other policies. To ensure that we
325 * do not hold on to worker references that would prevent GC, All
326 * accesses to workQueues are via indices into the workQueues
327 * array (which is one source of some of the messy code
328 * constructions here). In essence, the workQueues array serves as
329 * a weak reference mechanism. Thus for example the stack top
330 * subfield of ctl stores indices, not references.
331 *
332 * Queuing Idle Workers. Unlike HPC work-stealing frameworks, we
333 * cannot let workers spin indefinitely scanning for tasks when
334 * none can be found immediately, and we cannot start/resume
335 * workers unless there appear to be tasks available. On the
336 * other hand, we must quickly prod them into action when new
337 * tasks are submitted or generated. In many usages, ramp-up time
338 * to activate workers is the main limiting factor in overall
339 * performance, which is compounded at program start-up by JIT
340 * compilation and allocation. So we streamline this as much as
341 * possible.
342 *
343 * The "ctl" field atomically maintains active and total worker
344 * counts as well as a queue to place waiting threads so they can
345 * be located for signalling. Active counts also play the role of
346 * quiescence indicators, so are decremented when workers believe
347 * that there are no more tasks to execute. The "queue" is
348 * actually a form of Treiber stack. A stack is ideal for
349 * activating threads in most-recently used order. This improves
350 * performance and locality, outweighing the disadvantages of
351 * being prone to contention and inability to release a worker
352 * unless it is topmost on stack. We park/unpark workers after
353 * pushing on the idle worker stack (represented by the lower
354 * 32bit subfield of ctl) when they cannot find work. The top
355 * stack state holds the value of the "scanState" field of the
356 * worker: its index and status, plus a version counter that, in
357 * addition to the count subfields (also serving as version
358 * stamps) provide protection against Treiber stack ABA effects.
359 *
360 * Field scanState is used by both workers and the pool to manage
361 * and track whether a worker is INACTIVE (possibly blocked
362 * waiting for a signal), or SCANNING for tasks (when neither hold
363 * it is busy running tasks). When a worker is inactivated, its
364 * scanState field is set, and is prevented from executing tasks,
365 * even though it must scan once for them to avoid queuing
366 * races. Note that scanState updates lag queue CAS releases so
367 * usage requires care. When queued, the lower 16 bits of
368 * scanState must hold its pool index. So we place the index there
369 * upon initialization (see registerWorker) and otherwise keep it
370 * there or restore it when necessary.
371 *
372 * Memory ordering. See "Correct and Efficient Work-Stealing for
373 * Weak Memory Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
374 * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
375 * analysis of memory ordering requirements in work-stealing
376 * algorithms similar to the one used here. We usually need
377 * stronger than minimal ordering because we must sometimes signal
378 * workers, requiring Dekker-like full-fences to avoid lost
379 * signals. Arranging for enough ordering without expensive
380 * over-fencing requires tradeoffs among the supported means of
381 * expressing access constraints. The most central operations,
382 * taking from queues and updating ctl state, require full-fence
383 * CAS. Array slots are read using the emulation of volatiles
384 * provided by Unsafe. Access from other threads to WorkQueue
385 * base, top, and array requires a volatile load of the first of
386 * any of these read. We use the convention of declaring the
387 * "base" index volatile, and always read it before other fields.
388 * The owner thread must ensure ordered updates, so writes use
389 * ordered intrinsics unless they can piggyback on those for other
390 * writes. Similar conventions and rationales hold for other
391 * WorkQueue fields (such as "currentSteal") that are only written
392 * by owners but observed by others.
393 *
394 * Creating workers. To create a worker, we pre-increment total
395 * count (serving as a reservation), and attempt to construct a
396 * ForkJoinWorkerThread via its factory. Upon construction, the
397 * new thread invokes registerWorker, where it constructs a
398 * WorkQueue and is assigned an index in the workQueues array
399 * (expanding the array if necessary). The thread is then
400 * started. Upon any exception across these steps, or null return
401 * from factory, deregisterWorker adjusts counts and records
402 * accordingly. If a null return, the pool continues running with
403 * fewer than the target number workers. If exceptional, the
404 * exception is propagated, generally to some external caller.
405 * Worker index assignment avoids the bias in scanning that would
406 * occur if entries were sequentially packed starting at the front
407 * of the workQueues array. We treat the array as a simple
408 * power-of-two hash table, expanding as needed. The seedIndex
409 * increment ensures no collisions until a resize is needed or a
410 * worker is deregistered and replaced, and thereafter keeps
411 * probability of collision low. We cannot use
412 * ThreadLocalRandom.getProbe() for similar purposes here because
413 * the thread has not started yet, but do so for creating
414 * submission queues for existing external threads.
415 *
416 * Deactivation and waiting. Queuing encounters several intrinsic
417 * races; most notably that a task-producing thread can miss
418 * seeing (and signalling) another thread that gave up looking for
419 * work but has not yet entered the wait queue. When a worker
420 * cannot find a task to steal, it deactivates and enqueues. Very
421 * often, the lack of tasks is transient due to GC or OS
422 * scheduling. To reduce false-alarm deactivation, scanners
423 * compute checksums of queue states during sweeps. (The
424 * stability checks used here and elsewhere are probabilistic
425 * variants of snapshot techniques -- see Herlihy & Shavit.)
426 * Workers give up and try to deactivate only after the sum is
427 * stable across scans. Further, to avoid missed signals, they
428 * repeat this scanning process after successful enqueuing until
429 * again stable. In this state, the worker cannot take/run a task
430 * it sees until it is released from the queue, so the worker
431 * itself eventually tries to release itself or any successor (see
432 * tryRelease). Otherwise, upon an empty scan, a deactivated
433 * worker uses an adaptive local spin construction (see awaitWork)
434 * before blocking (via park). Note the unusual conventions about
435 * Thread.interrupts surrounding parking and other blocking:
436 * Because interrupts are used solely to alert threads to check
437 * termination, which is checked anyway upon blocking, we clear
438 * status (using Thread.interrupted) before any call to park, so
439 * that park does not immediately return due to status being set
440 * via some other unrelated call to interrupt in user code.
441 *
442 * Signalling and activation. Workers are created or activated
443 * only when there appears to be at least one task they might be
444 * able to find and execute. Upon push (either by a worker or an
445 * external submission) to a previously (possibly) empty queue,
446 * workers are signalled if idle, or created if fewer exist than
447 * the given parallelism level. These primary signals are
448 * buttressed by others whenever other threads remove a task from
449 * a queue and notice that there are other tasks there as well.
450 * On most platforms, signalling (unpark) overhead time is
451 * noticeably long, and the time between signalling a thread and
452 * it actually making progress can be very noticeably long, so it
453 * is worth offloading these delays from critical paths as much as
454 * possible. Also, because inactive workers are often rescanning
455 * or spinning rather than blocking, we set and clear the "parker"
456 * field of WorkQueues to reduce unnecessary calls to unpark.
457 * (This requires a secondary recheck to avoid missed signals.)
458 *
459 * Trimming workers. To release resources after periods of lack of
460 * use, a worker starting to wait when the pool is quiescent will
461 * time out and terminate (see awaitWork) if the pool has remained
462 * quiescent for period IDLE_TIMEOUT, increasing the period as the
463 * number of threads decreases, eventually removing all workers.
464 * Also, when more than two spare threads exist, excess threads
465 * are immediately terminated at the next quiescent point.
466 * (Padding by two avoids hysteresis.)
467 *
468 * Shutdown and Termination. A call to shutdownNow invokes
469 * tryTerminate to atomically set a runState bit. The calling
470 * thread, as well as every other worker thereafter terminating,
471 * helps terminate others by setting their (qlock) status,
472 * cancelling their unprocessed tasks, and waking them up, doing
473 * so repeatedly until stable (but with a loop bounded by the
474 * number of workers). Calls to non-abrupt shutdown() preface
475 * this by checking whether termination should commence. This
476 * relies primarily on the active count bits of "ctl" maintaining
477 * consensus -- tryTerminate is called from awaitWork whenever
478 * quiescent. However, external submitters do not take part in
479 * this consensus. So, tryTerminate sweeps through queues (until
480 * stable) to ensure lack of in-flight submissions and workers
481 * about to process them before triggering the "STOP" phase of
482 * termination. (Note: there is an intrinsic conflict if
483 * helpQuiescePool is called when shutdown is enabled. Both wait
484 * for quiescence, but tryTerminate is biased to not trigger until
485 * helpQuiescePool completes.)
486 *
487 *
488 * Joining Tasks
489 * =============
490 *
491 * Any of several actions may be taken when one worker is waiting
492 * to join a task stolen (or always held) by another. Because we
493 * are multiplexing many tasks on to a pool of workers, we can't
494 * just let them block (as in Thread.join). We also cannot just
495 * reassign the joiner's run-time stack with another and replace
496 * it later, which would be a form of "continuation", that even if
497 * possible is not necessarily a good idea since we may need both
498 * an unblocked task and its continuation to progress. Instead we
499 * combine two tactics:
500 *
501 * Helping: Arranging for the joiner to execute some task that it
502 * would be running if the steal had not occurred.
503 *
504 * Compensating: Unless there are already enough live threads,
505 * method tryCompensate() may create or re-activate a spare
506 * thread to compensate for blocked joiners until they unblock.
507 *
508 * A third form (implemented in tryRemoveAndExec) amounts to
509 * helping a hypothetical compensator: If we can readily tell that
510 * a possible action of a compensator is to steal and execute the
511 * task being joined, the joining thread can do so directly,
512 * without the need for a compensation thread (although at the
513 * expense of larger run-time stacks, but the tradeoff is
514 * typically worthwhile).
515 *
516 * The ManagedBlocker extension API can't use helping so relies
517 * only on compensation in method awaitBlocker.
518 *
519 * The algorithm in helpStealer entails a form of "linear
520 * helping". Each worker records (in field currentSteal) the most
521 * recent task it stole from some other worker (or a submission).
522 * It also records (in field currentJoin) the task it is currently
523 * actively joining. Method helpStealer uses these markers to try
524 * to find a worker to help (i.e., steal back a task from and
525 * execute it) that could hasten completion of the actively joined
526 * task. Thus, the joiner executes a task that would be on its
527 * own local deque had the to-be-joined task not been stolen. This
528 * is a conservative variant of the approach described in Wagner &
529 * Calder "Leapfrogging: a portable technique for implementing
530 * efficient futures" SIGPLAN Notices, 1993
531 * (http://portal.acm.org/citation.cfm?id=155354). It differs in
532 * that: (1) We only maintain dependency links across workers upon
533 * steals, rather than use per-task bookkeeping. This sometimes
534 * requires a linear scan of workQueues array to locate stealers,
535 * but often doesn't because stealers leave hints (that may become
536 * stale/wrong) of where to locate them. It is only a hint
537 * because a worker might have had multiple steals and the hint
538 * records only one of them (usually the most current). Hinting
539 * isolates cost to when it is needed, rather than adding to
540 * per-task overhead. (2) It is "shallow", ignoring nesting and
541 * potentially cyclic mutual steals. (3) It is intentionally
542 * racy: field currentJoin is updated only while actively joining,
543 * which means that we miss links in the chain during long-lived
544 * tasks, GC stalls etc (which is OK since blocking in such cases
545 * is usually a good idea). (4) We bound the number of attempts
546 * to find work using checksums and fall back to suspending the
547 * worker and if necessary replacing it with another.
548 *
549 * Helping actions for CountedCompleters do not require tracking
550 * currentJoins: Method helpComplete takes and executes any task
551 * with the same root as the task being waited on (preferring
552 * local pops to non-local polls). However, this still entails
553 * some traversal of completer chains, so is less efficient than
554 * using CountedCompleters without explicit joins.
555 *
556 * Compensation does not aim to keep exactly the target
557 * parallelism number of unblocked threads running at any given
558 * time. Some previous versions of this class employed immediate
559 * compensations for any blocked join. However, in practice, the
560 * vast majority of blockages are transient byproducts of GC and
561 * other JVM or OS activities that are made worse by replacement.
562 * Currently, compensation is attempted only after validating that
563 * all purportedly active threads are processing tasks by checking
564 * field WorkQueue.scanState, which eliminates most false
565 * positives. Also, compensation is bypassed (tolerating fewer
566 * threads) in the most common case in which it is rarely
567 * beneficial: when a worker with an empty queue (thus no
568 * continuation tasks) blocks on a join and there still remain
569 * enough threads to ensure liveness.
570 *
571 * The compensation mechanism may be bounded. Bounds for the
572 * commonPool (see commonMaxSpares) better enable JVMs to cope
573 * with programming errors and abuse before running out of
574 * resources to do so. In other cases, users may supply factories
575 * that limit thread construction. The effects of bounding in this
576 * pool (like all others) is imprecise. Total worker counts are
577 * decremented when threads deregister, not when they exit and
578 * resources are reclaimed by the JVM and OS. So the number of
579 * simultaneously live threads may transiently exceed bounds.
580 *
581 * Common Pool
582 * ===========
583 *
584 * The static common pool always exists after static
585 * initialization. Since it (or any other created pool) need
586 * never be used, we minimize initial construction overhead and
587 * footprint to the setup of about a dozen fields, with no nested
588 * allocation. Most bootstrapping occurs within method
589 * externalSubmit during the first submission to the pool.
590 *
591 * When external threads submit to the common pool, they can
592 * perform subtask processing (see externalHelpComplete and
593 * related methods) upon joins. This caller-helps policy makes it
594 * sensible to set common pool parallelism level to one (or more)
595 * less than the total number of available cores, or even zero for
596 * pure caller-runs. We do not need to record whether external
597 * submissions are to the common pool -- if not, external help
598 * methods return quickly. These submitters would otherwise be
599 * blocked waiting for completion, so the extra effort (with
600 * liberally sprinkled task status checks) in inapplicable cases
601 * amounts to an odd form of limited spin-wait before blocking in
602 * ForkJoinTask.join.
603 *
604 * As a more appropriate default in managed environments, unless
605 * overridden by system properties, we use workers of subclass
606 * InnocuousForkJoinWorkerThread when there is a SecurityManager
607 * present. These workers have no permissions set, do not belong
608 * to any user-defined ThreadGroup, and erase all ThreadLocals
609 * after executing any top-level task (see WorkQueue.runTask).
610 * The associated mechanics (mainly in ForkJoinWorkerThread) may
611 * be JVM-dependent and must access particular Thread class fields
612 * to achieve this effect.
613 *
614 * Style notes
615 * ===========
616 *
617 * Memory ordering relies mainly on Unsafe intrinsics that carry
618 * the further responsibility of explicitly performing null- and
619 * bounds- checks otherwise carried out implicitly by JVMs. This
620 * can be awkward and ugly, but also reflects the need to control
621 * outcomes across the unusual cases that arise in very racy code
622 * with very few invariants. So these explicit checks would exist
623 * in some form anyway. All fields are read into locals before
624 * use, and null-checked if they are references. This is usually
625 * done in a "C"-like style of listing declarations at the heads
626 * of methods or blocks, and using inline assignments on first
627 * encounter. Array bounds-checks are usually performed by
628 * masking with array.length-1, which relies on the invariant that
629 * these arrays are created with positive lengths, which is itself
630 * paranoically checked. Nearly all explicit checks lead to
631 * bypass/return, not exception throws, because they may
632 * legitimately arise due to cancellation/revocation during
633 * shutdown.
634 *
635 * There is a lot of representation-level coupling among classes
636 * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
637 * fields of WorkQueue maintain data structures managed by
638 * ForkJoinPool, so are directly accessed. There is little point
639 * trying to reduce this, since any associated future changes in
640 * representations will need to be accompanied by algorithmic
641 * changes anyway. Several methods intrinsically sprawl because
642 * they must accumulate sets of consistent reads of fields held in
643 * local variables. There are also other coding oddities
644 * (including several unnecessary-looking hoisted null checks)
645 * that help some methods perform reasonably even when interpreted
646 * (not compiled).
647 *
648 * The order of declarations in this file is (with a few exceptions):
649 * (1) Static utility functions
650 * (2) Nested (static) classes
651 * (3) Static fields
652 * (4) Fields, along with constants used when unpacking some of them
653 * (5) Internal control methods
654 * (6) Callbacks and other support for ForkJoinTask methods
655 * (7) Exported methods
656 * (8) Static block initializing statics in minimally dependent order
657 */
658
659 // Static utilities
660
661 /**
662 * If there is a security manager, makes sure caller has
663 * permission to modify threads.
664 */
665 private static void checkPermission() {
666 SecurityManager security = System.getSecurityManager();
667 if (security != null)
668 security.checkPermission(modifyThreadPermission);
669 }
670
671 // Nested classes
672
673 /**
674 * Factory for creating new {@link ForkJoinWorkerThread}s.
675 * A {@code ForkJoinWorkerThreadFactory} must be defined and used
676 * for {@code ForkJoinWorkerThread} subclasses that extend base
677 * functionality or initialize threads with different contexts.
678 */
679 public static interface ForkJoinWorkerThreadFactory {
680 /**
681 * Returns a new worker thread operating in the given pool.
682 *
683 * @param pool the pool this thread works in
684 * @return the new worker thread
685 * @throws NullPointerException if the pool is null
686 */
687 public ForkJoinWorkerThread newThread(ForkJoinPool pool);
688 }
689
690 /**
691 * Default ForkJoinWorkerThreadFactory implementation; creates a
692 * new ForkJoinWorkerThread.
693 */
694 static final class DefaultForkJoinWorkerThreadFactory
695 implements ForkJoinWorkerThreadFactory {
696 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
697 return new ForkJoinWorkerThread(pool);
698 }
699 }
700
701 /**
702 * Class for artificial tasks that are used to replace the target
703 * of local joins if they are removed from an interior queue slot
704 * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
705 * actually do anything beyond having a unique identity.
706 */
707 static final class EmptyTask extends ForkJoinTask<Void> {
708 private static final long serialVersionUID = -7721805057305804111L;
709 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
710 public final Void getRawResult() { return null; }
711 public final void setRawResult(Void x) {}
712 public final boolean exec() { return true; }
713 }
714
715 // Constants shared across ForkJoinPool and WorkQueue
716
717 // Bounds
718 static final int SMASK = 0xffff; // short bits == max index
719 static final int MAX_CAP = 0x7fff; // max #workers - 1
720 static final int EVENMASK = 0xfffe; // even short bits
721 static final int SQMASK = 0x007e; // max 64 (even) slots
722
723 // Masks and units for WorkQueue.scanState and ctl sp subfield
724 static final int SCANNING = 1; // false when running tasks
725 static final int INACTIVE = 1 << 31; // must be negative
726 static final int SS_SEQ = 1 << 16; // version count
727
728 // Mode bits for ForkJoinPool.config and WorkQueue.config
729 static final int MODE_MASK = 0xffff << 16; // top half of int
730 static final int LIFO_QUEUE = 0;
731 static final int FIFO_QUEUE = 1 << 16;
732 static final int SHARED_QUEUE = 1 << 31; // must be negative
733
734 // This version uses array access methods in anticipation of JDK9 support
735 // that should eliminate their need
736
737 static final ForkJoinTask<?> getAt(ForkJoinTask<?>[] a, int i) {
738 return (ForkJoinTask<?>)U.getObjectVolatile(
739 a, (long)((i << ASHIFT) + ABASE));
740 }
741
742 static final void setAt(ForkJoinTask<?>[] a, int i, ForkJoinTask<?> x) {
743 U.putOrderedObject(a, (long)((i << ASHIFT) + ABASE), x);
744 }
745
746 static final boolean casAt(ForkJoinTask<?>[] a, int i,
747 ForkJoinTask<?> c, ForkJoinTask<?> v) {
748 return U.compareAndSwapObject(
749 a, (long)((i << ASHIFT) + ABASE), c, v);
750 }
751
752 static final ForkJoinTask<?> xchgAt(ForkJoinTask<?>[] a, int i,
753 ForkJoinTask<?> x) {
754 return (ForkJoinTask<?>)U.getAndSetObject(
755 a, (long)((i << ASHIFT) + ABASE), x);
756 }
757
758 /**
759 * Queues supporting work-stealing as well as external task
760 * submission. See above for descriptions and algorithms.
761 * Performance on most platforms is very sensitive to placement of
762 * instances of both WorkQueues and their arrays -- we absolutely
763 * do not want multiple WorkQueue instances or multiple queue
764 * arrays sharing cache lines. The @Contended annotation alerts
765 * JVMs to try to keep instances apart.
766 */
767 @sun.misc.Contended
768 static final class WorkQueue {
769
770 /**
771 * Capacity of work-stealing queue array upon initialization.
772 * Must be a power of two; at least 4, but should be larger to
773 * reduce or eliminate cacheline sharing among queues.
774 * Currently, it is much larger, as a partial workaround for
775 * the fact that JVMs often place arrays in locations that
776 * share GC bookkeeping (especially cardmarks) such that
777 * per-write accesses encounter serious memory contention.
778 */
779 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
780
781 /**
782 * Maximum size for queue arrays. Must be a power of two less
783 * than or equal to 1 << (31 - width of array entry) to ensure
784 * lack of wraparound of index calculations, but defined to a
785 * value a bit less than this to help users trap runaway
786 * programs before saturating systems.
787 */
788 static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
789
790 // Instance fields
791 volatile int scanState; // versioned, <0: inactive; odd:scanning
792 int stackPred; // pool stack (ctl) predecessor
793 int nsteals; // number of steals
794 int hint; // randomization and stealer index hint
795 int config; // pool index and mode
796 volatile int qlock; // 1: locked, < 0: terminate; else 0
797 volatile int base; // index of next slot for poll
798 int top; // index of next slot for push
799 ForkJoinTask<?>[] array; // the elements (initially unallocated)
800 final ForkJoinPool pool; // the containing pool (may be null)
801 final ForkJoinWorkerThread owner; // owning thread or null if shared
802 volatile Thread parker; // == owner during call to park; else null
803 volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
804 volatile ForkJoinTask<?> currentSteal; // mainly used by helpStealer
805
806 // Temporary repeats of array access methods
807
808 static final ForkJoinTask<?> getAt(ForkJoinTask<?>[] a, int i) {
809 return (ForkJoinTask<?>)U.getObjectVolatile(
810 a, (long)((i << ASHIFT) + ABASE));
811 }
812
813 static final void setAt(ForkJoinTask<?>[] a, int i, ForkJoinTask<?> x) {
814 U.putOrderedObject(a, (long)((i << ASHIFT) + ABASE), x);
815 }
816
817 static final boolean casAt(ForkJoinTask<?>[] a, int i,
818 ForkJoinTask<?> c, ForkJoinTask<?> v) {
819 return U.compareAndSwapObject(
820 a, (long)((i << ASHIFT) + ABASE), c, v);
821 }
822
823 static final ForkJoinTask<?> xchgAt(ForkJoinTask<?>[] a, int i,
824 ForkJoinTask<?> x) {
825 return (ForkJoinTask<?>)U.getAndSetObject(
826 a, (long)((i << ASHIFT) + ABASE), x);
827 }
828
829 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner) {
830 this.pool = pool;
831 this.owner = owner;
832 // Place indices in the center of array (that is not yet allocated)
833 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
834 }
835
836 /**
837 * Returns an exportable index (used by ForkJoinWorkerThread).
838 */
839 final int getPoolIndex() {
840 return (config & 0xffff) >>> 1; // ignore odd/even tag bit
841 }
842
843 /**
844 * Returns the approximate number of tasks in the queue.
845 */
846 final int queueSize() {
847 int n = base - top; // non-owner callers must read base first
848 return (n >= 0) ? 0 : -n; // ignore transient negative
849 }
850
851 /**
852 * Provides a more accurate estimate of whether this queue has
853 * any tasks than does queueSize, by checking whether a
854 * near-empty queue has at least one unclaimed task.
855 */
856 final boolean isEmpty() {
857 ForkJoinTask<?>[] a; int n, al, s;
858 return ((n = base - (s = top)) >= 0 ||
859 (n == -1 && // possibly one task
860 ((a = array) == null || (al = a.length) == 0 ||
861 getAt(a, (al - 1) & (s - 1)) == null)));
862 }
863
864 /**
865 * Pushes a task. Call only by owner in unshared queues. (The
866 * shared-queue version is embedded in method externalPush.)
867 *
868 * @param task the task. Caller must ensure non-null.
869 * @throws RejectedExecutionException if array cannot be resized
870 */
871 final void push(ForkJoinTask<?> task) {
872 ForkJoinTask<?>[] a; ForkJoinPool p;
873 if ((a = array) != null) { // ignore if queue removed
874 int b = base, m = a.length - 1, s = top, n;
875 if (m > 0) { // always true, but check required
876 setAt(a, m & s, task);
877 U.putOrderedInt(this, QTOP, s + 1);
878 if ((n = s - b) <= 1) {
879 if ((p = pool) != null)
880 p.signalWork(p.workQueues, this);
881 }
882 else if (n >= m)
883 growArray();
884 }
885 }
886 }
887
888 /**
889 * Initializes or doubles the capacity of array. Call either
890 * by owner or with lock held -- it is OK for base, but not
891 * top, to move while resizings are in progress.
892 */
893 final ForkJoinTask<?>[] growArray() {
894 ForkJoinTask<?>[] oldA = array;
895 int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
896 if (size < INITIAL_QUEUE_CAPACITY || size > MAXIMUM_QUEUE_CAPACITY)
897 throw new RejectedExecutionException("Queue capacity exceeded");
898 int oldMask, t, b;
899 ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
900 if (oldA != null && (oldMask = oldA.length - 1) > 0 &&
901 (t = top) - (b = base) > 0) {
902 int mask = size - 1;
903 do { // emulate poll from old array, push to new array
904 ForkJoinTask<?> x;
905 int oldj = b & oldMask, j = b & mask;
906 if ((x = getAt(oldA, oldj)) != null &&
907 casAt(oldA, oldj, x, null))
908 setAt(a, j, x);
909 } while (++b != t);
910 }
911 return a;
912 }
913
914 /**
915 * Takes next task, if one exists, in LIFO order. Call only
916 * by owner in unshared queues.
917 */
918 final ForkJoinTask<?> pop() {
919 ForkJoinTask<?>[] a; ForkJoinTask<?> t; int al;
920 if ((a = array) != null && (al = a.length) > 0) {
921 for (int s; (s = top - 1) - base >= 0;) {
922 int j = (al - 1) & s;
923 if ((t = getAt(a, j)) == null)
924 break;
925 if (casAt(a, j, t, null)) {
926 U.putOrderedInt(this, QTOP, s);
927 return t;
928 }
929 }
930 }
931 return null;
932 }
933
934 /**
935 * Takes a task in FIFO order if b is base of queue and a task
936 * can be claimed without contention. Specialized versions
937 * appear in ForkJoinPool methods scan and helpStealer.
938 */
939 final ForkJoinTask<?> pollAt(int b) {
940 ForkJoinTask<?> t; ForkJoinTask<?>[] a;
941 if ((a = array) != null) {
942 int al = a.length, j = (al - 1) & b;
943 if (al > 0 && (t = getAt(a, j)) != null &&
944 base == b && casAt(a, j, t, null)) {
945 base = b + 1;
946 return t;
947 }
948 }
949 return null;
950 }
951
952 /**
953 * Takes next task, if one exists, in FIFO order.
954 */
955 final ForkJoinTask<?> poll() {
956 ForkJoinTask<?>[] a; int b, al, j;
957 while ((b = base) - top < 0 && (a = array) != null &&
958 (al = a.length) > 0) {
959 ForkJoinTask<?> t = getAt(a, j = (al - 1) & b);
960 if (base == b) {
961 if (t != null) {
962 if (casAt(a, j, t, null)) {
963 base = b + 1;
964 return t;
965 }
966 }
967 else if (b + 1 == top) // now empty
968 break;
969 }
970 }
971 return null;
972 }
973
974 /**
975 * Takes next task, if one exists, in order specified by mode.
976 */
977 final ForkJoinTask<?> nextLocalTask() {
978 return (config & FIFO_QUEUE) == 0 ? pop() : poll();
979 }
980
981 /**
982 * Returns next task, if one exists, in order specified by mode.
983 */
984 final ForkJoinTask<?> peek() {
985 ForkJoinTask<?>[] a = array; int al;
986 if (a != null && (al = a.length) > 0) {
987 int i = (config & FIFO_QUEUE) == 0 ? top - 1 : base;
988 return getAt(a, (al - 1) & i);
989 }
990 return null;
991 }
992
993 /**
994 * Pops the given task only if it is at the current top.
995 * (A shared version is available only via FJP.tryExternalUnpush)
996 */
997 final boolean tryUnpush(ForkJoinTask<?> t) {
998 ForkJoinTask<?>[] a;
999 if ((a = array) != null) {
1000 int b = base, al = a.length, s = top;
1001 if (s != b && al > 0 &&
1002 casAt(a, (al - 1) & (s - 1), t, null)) {
1003 U.putOrderedInt(this, QTOP, s - 1);
1004 return true;
1005 }
1006 }
1007 return false;
1008 }
1009
1010 /**
1011 * Removes and cancels all known tasks, ignoring any exceptions.
1012 */
1013 final void cancelAll() {
1014 ForkJoinTask<?> t;
1015 if ((t = currentJoin) != null) {
1016 currentJoin = null;
1017 ForkJoinTask.cancelIgnoringExceptions(t);
1018 }
1019 if ((t = currentSteal) != null) {
1020 currentSteal = null;
1021 ForkJoinTask.cancelIgnoringExceptions(t);
1022 }
1023 while ((t = poll()) != null)
1024 ForkJoinTask.cancelIgnoringExceptions(t);
1025 }
1026
1027 // Specialized execution methods
1028
1029 /**
1030 * Polls and runs tasks until empty.
1031 */
1032 final void pollAndExecAll() {
1033 for (ForkJoinTask<?> t; (t = poll()) != null;)
1034 t.doExec();
1035 }
1036
1037 /**
1038 * Pops and runs tasks until empty.
1039 */
1040 final void popAndExecAll() {
1041 ForkJoinTask<?>[] a; ForkJoinTask<?> t;
1042 while ((a = array) != null) {
1043 int b = base, al = a.length, s = top, i = (al - 1) & (s - 1);
1044 if (b != s && al > 0 &&
1045 (t = xchgAt(a, i, null)) != null) {
1046 U.putOrderedInt(this, QTOP, s - 1);
1047 t.doExec();
1048 }
1049 else
1050 break;
1051 }
1052 }
1053
1054 /**
1055 * Executes the given task and any remaining local tasks.
1056 */
1057 final void runTask(ForkJoinTask<?> task) {
1058 if (task != null) {
1059 scanState &= ~SCANNING; // mark as busy
1060 (currentSteal = task).doExec();
1061 U.putOrderedObject(this, QCURRENTSTEAL, null); // release for GC
1062 if ((config & FIFO_QUEUE) != 0)
1063 pollAndExecAll();
1064 else
1065 popAndExecAll();
1066 ForkJoinWorkerThread thread = owner;
1067 if (++nsteals < 0) // collect on overflow
1068 transferStealCount(pool);
1069 scanState |= SCANNING;
1070 if (thread != null)
1071 thread.afterTopLevelExec();
1072 }
1073 }
1074
1075 /**
1076 * Adds steal count to pool stealCounter if it exists, and resets.
1077 */
1078 final void transferStealCount(ForkJoinPool p) {
1079 AtomicLong sc;
1080 if (p != null && (sc = p.stealCounter) != null) {
1081 int s = nsteals;
1082 nsteals = 0; // if negative, correct for overflow
1083 sc.getAndAdd((long)(s < 0 ? Integer.MAX_VALUE : s));
1084 }
1085 }
1086
1087 /**
1088 * If present, removes from queue and executes the given task,
1089 * or any other cancelled task. Used only by awaitJoin.
1090 *
1091 * @return true if queue empty and task not known to be done
1092 */
1093 final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
1094 ForkJoinTask<?>[] a; int al, s, b, n;
1095 if ((a = array) != null && (al = a.length) > 0 && task != null) {
1096 while ((n = (s = top) - (b = base)) > 0) {
1097 for (ForkJoinTask<?> t;;) { // traverse from s to b
1098 int j = --s & (al - 1);
1099 if ((t = getAt(a, j)) == null)
1100 return s + 1 == top; // shorter than expected
1101 else if (t == task) {
1102 boolean removed = false;
1103 if (s + 1 == top) { // pop
1104 if (casAt(a, j, task, null)) {
1105 U.putOrderedInt(this, QTOP, s);
1106 removed = true;
1107 }
1108 }
1109 else if (base == b) // replace with proxy
1110 removed = casAt(a, j, task, new EmptyTask());
1111 if (removed)
1112 task.doExec();
1113 break;
1114 }
1115 else if (t.status < 0 && s + 1 == top) {
1116 if (casAt(a, j, t, null))
1117 U.putOrderedInt(this, QTOP, s);
1118 break; // was cancelled
1119 }
1120 if (--n == 0)
1121 return false;
1122 }
1123 if (task.status < 0)
1124 return false;
1125 }
1126 }
1127 return true;
1128 }
1129
1130 /**
1131 * Pops task if in the same CC computation as the given task,
1132 * in either shared or owned mode. Used only by helpComplete.
1133 */
1134 final CountedCompleter<?> popCC(CountedCompleter<?> task, int mode) {
1135 ForkJoinTask<?>[] a; ForkJoinTask<?> o;
1136 if ((a = array) != null) {
1137 int b = base, al = a.length, s = top, i = (al - 1) & (s - 1);
1138 if (b != s && al > 0 &&
1139 ((o = a[i]) instanceof CountedCompleter)) {
1140 CountedCompleter<?> t = (CountedCompleter<?>)o;
1141 for (CountedCompleter<?> r = t;;) {
1142 if (r == task) {
1143 if (mode < 0) { // must lock
1144 if (U.compareAndSwapInt(this, QLOCK, 0, 1)) {
1145 if (top == s && array == a &&
1146 casAt(a, i, t, null)) {
1147 U.putOrderedInt(this, QTOP, s - 1);
1148 U.putOrderedInt(this, QLOCK, 0);
1149 return t;
1150 }
1151 U.compareAndSwapInt(this, QLOCK, 1, 0);
1152 }
1153 }
1154 else if (casAt(a, i, t, null)) {
1155 U.putOrderedInt(this, QTOP, s - 1);
1156 return t;
1157 }
1158 break;
1159 }
1160 else if ((r = r.completer) == null) // try parent
1161 break;
1162 }
1163 }
1164 }
1165 return null;
1166 }
1167
1168 /**
1169 * Steals and runs a task in the same CC computation as the
1170 * given task if one exists and can be taken without
1171 * contention. Otherwise returns a checksum/control value for
1172 * use by method helpComplete.
1173 *
1174 * @return 1 if successful, 2 if retryable (lost to another
1175 * stealer), -1 if non-empty but no matching task found, else
1176 * the base index, forced negative.
1177 */
1178 final int pollAndExecCC(CountedCompleter<?> task) {
1179 int b, h, j, al; ForkJoinTask<?>[] a; Object o;
1180 if ((b = base) - top >= 0 || (a = array) == null ||
1181 (al = a.length) <= 0)
1182 h = b | Integer.MIN_VALUE; // to sense movement on re-poll
1183 else if ((o = getAt(a, j = (al - 1) & b)) == null)
1184 h = 2; // retryable
1185 else if (!(o instanceof CountedCompleter))
1186 h = -1; // unmatchable
1187 else {
1188 CountedCompleter<?> t = (CountedCompleter<?>)o;
1189 for (CountedCompleter<?> r = t;;) {
1190 if (r == task) {
1191 if (base == b && casAt(a, j, t, null)) {
1192 base = b + 1;
1193 t.doExec();
1194 h = 1; // success
1195 }
1196 else
1197 h = 2; // lost CAS
1198 break;
1199 }
1200 else if ((r = r.completer) == null) {
1201 h = -1; // unmatched
1202 break;
1203 }
1204 }
1205 }
1206 return h;
1207 }
1208
1209 /**
1210 * Returns true if owned and not known to be blocked.
1211 */
1212 final boolean isApparentlyUnblocked() {
1213 Thread wt; Thread.State s;
1214 return (scanState >= 0 &&
1215 (wt = owner) != null &&
1216 (s = wt.getState()) != Thread.State.BLOCKED &&
1217 s != Thread.State.WAITING &&
1218 s != Thread.State.TIMED_WAITING);
1219 }
1220
1221 // Unsafe mechanics. Note that some are (and must be) the same as in FJP
1222 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
1223 private static final int ABASE;
1224 private static final int ASHIFT;
1225 private static final long QTOP;
1226 private static final long QLOCK;
1227 private static final long QCURRENTSTEAL;
1228 static {
1229 try {
1230 QTOP = U.objectFieldOffset
1231 (WorkQueue.class.getDeclaredField("top"));
1232 QLOCK = U.objectFieldOffset
1233 (WorkQueue.class.getDeclaredField("qlock"));
1234 QCURRENTSTEAL = U.objectFieldOffset
1235 (WorkQueue.class.getDeclaredField("currentSteal"));
1236
1237 ABASE = U.arrayBaseOffset(ForkJoinTask[].class);
1238 int scale = U.arrayIndexScale(ForkJoinTask[].class);
1239 if ((scale & (scale - 1)) != 0)
1240 throw new Error("array index scale not a power of two");
1241 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1242 } catch (ReflectiveOperationException e) {
1243 throw new Error(e);
1244 }
1245 }
1246 }
1247
1248 // static fields (initialized in static initializer below)
1249
1250 /**
1251 * Creates a new ForkJoinWorkerThread. This factory is used unless
1252 * overridden in ForkJoinPool constructors.
1253 */
1254 public static final ForkJoinWorkerThreadFactory
1255 defaultForkJoinWorkerThreadFactory;
1256
1257 /**
1258 * Permission required for callers of methods that may start or
1259 * kill threads.
1260 */
1261 private static final RuntimePermission modifyThreadPermission;
1262
1263 /**
1264 * Common (static) pool. Non-null for public use unless a static
1265 * construction exception, but internal usages null-check on use
1266 * to paranoically avoid potential initialization circularities
1267 * as well as to simplify generated code.
1268 */
1269 static final ForkJoinPool common;
1270
1271 /**
1272 * Common pool parallelism. To allow simpler use and management
1273 * when common pool threads are disabled, we allow the underlying
1274 * common.parallelism field to be zero, but in that case still report
1275 * parallelism as 1 to reflect resulting caller-runs mechanics.
1276 */
1277 static final int commonParallelism;
1278
1279 /**
1280 * Limit on spare thread construction in tryCompensate.
1281 */
1282 private static int commonMaxSpares;
1283
1284 /**
1285 * Sequence number for creating workerNamePrefix.
1286 */
1287 private static int poolNumberSequence;
1288
1289 /**
1290 * Returns the next sequence number. We don't expect this to
1291 * ever contend, so use simple builtin sync.
1292 */
1293 private static final synchronized int nextPoolId() {
1294 return ++poolNumberSequence;
1295 }
1296
1297 // static configuration constants
1298
1299 /**
1300 * Initial timeout value (in nanoseconds) for the thread
1301 * triggering quiescence to park waiting for new work. On timeout,
1302 * the thread will instead try to shrink the number of
1303 * workers. The value should be large enough to avoid overly
1304 * aggressive shrinkage during most transient stalls (long GCs
1305 * etc).
1306 */
1307 private static final long IDLE_TIMEOUT = 2000L * 1000L * 1000L; // 2sec
1308
1309 /**
1310 * Tolerance for idle timeouts, to cope with timer undershoots
1311 */
1312 private static final long TIMEOUT_SLOP = 20L * 1000L * 1000L; // 20ms
1313
1314 /**
1315 * The initial value for commonMaxSpares during static
1316 * initialization unless overridden using System property
1317 * "java.util.concurrent.ForkJoinPool.common.maximumSpares". The
1318 * default value is far in excess of normal requirements, but also
1319 * far short of MAX_CAP and typical OS thread limits, so allows
1320 * JVMs to catch misuse/abuse before running out of resources
1321 * needed to do so.
1322 */
1323 private static final int DEFAULT_COMMON_MAX_SPARES = 256;
1324
1325 /**
1326 * Number of times to spin-wait before blocking. The spins (in
1327 * awaitRunStateLock and awaitWork) currently use randomized
1328 * spins. If/when MWAIT-like intrinsics becomes available, they
1329 * may allow quieter spinning. The value of SPINS must be a power
1330 * of two, at least 4. The current value causes spinning for a
1331 * small fraction of typical context-switch times, well worthwhile
1332 * given the typical likelihoods that blocking is not necessary.
1333 */
1334 private static final int SPINS = 1 << 11;
1335
1336 /**
1337 * Increment for seed generators. See class ThreadLocal for
1338 * explanation.
1339 */
1340 private static final int SEED_INCREMENT = 0x9e3779b9;
1341
1342 /*
1343 * Bits and masks for field ctl, packed with 4 16 bit subfields:
1344 * AC: Number of active running workers minus target parallelism
1345 * TC: Number of total workers minus target parallelism
1346 * SS: version count and status of top waiting thread
1347 * ID: poolIndex of top of Treiber stack of waiters
1348 *
1349 * When convenient, we can extract the lower 32 stack top bits
1350 * (including version bits) as sp=(int)ctl. The offsets of counts
1351 * by the target parallelism and the positionings of fields makes
1352 * it possible to perform the most common checks via sign tests of
1353 * fields: When ac is negative, there are not enough active
1354 * workers, when tc is negative, there are not enough total
1355 * workers. When sp is non-zero, there are waiting workers. To
1356 * deal with possibly negative fields, we use casts in and out of
1357 * "short" and/or signed shifts to maintain signedness.
1358 *
1359 * Because it occupies uppermost bits, we can add one active count
1360 * using getAndAddLong of AC_UNIT, rather than CAS, when returning
1361 * from a blocked join. Other updates entail multiple subfields
1362 * and masking, requiring CAS.
1363 */
1364
1365 // Lower and upper word masks
1366 private static final long SP_MASK = 0xffffffffL;
1367 private static final long UC_MASK = ~SP_MASK;
1368
1369 // Active counts
1370 private static final int AC_SHIFT = 48;
1371 private static final long AC_UNIT = 0x0001L << AC_SHIFT;
1372 private static final long AC_MASK = 0xffffL << AC_SHIFT;
1373
1374 // Total counts
1375 private static final int TC_SHIFT = 32;
1376 private static final long TC_UNIT = 0x0001L << TC_SHIFT;
1377 private static final long TC_MASK = 0xffffL << TC_SHIFT;
1378 private static final long ADD_WORKER = 0x0001L << (TC_SHIFT + 15); // sign
1379
1380 // runState bits: SHUTDOWN must be negative, others arbitrary powers of two
1381 private static final int RSLOCK = 1;
1382 private static final int RSIGNAL = 1 << 1;
1383 private static final int STARTED = 1 << 2;
1384 private static final int STOP = 1 << 29;
1385 private static final int TERMINATED = 1 << 30;
1386 private static final int SHUTDOWN = 1 << 31;
1387
1388 // Instance fields
1389 volatile long ctl; // main pool control
1390 volatile int runState; // lockable status
1391 final int config; // parallelism, mode
1392 int indexSeed; // to generate worker index
1393 volatile WorkQueue[] workQueues; // main registry
1394 final ForkJoinWorkerThreadFactory factory;
1395 final UncaughtExceptionHandler ueh; // per-worker UEH
1396 final String workerNamePrefix; // to create worker name string
1397 volatile AtomicLong stealCounter; // also used as sync monitor
1398
1399 /**
1400 * Acquires the runState lock; returns current (locked) runState.
1401 */
1402 private int lockRunState() {
1403 int rs;
1404 return ((((rs = runState) & RSLOCK) != 0 ||
1405 !U.compareAndSwapInt(this, RUNSTATE, rs, rs |= RSLOCK)) ?
1406 awaitRunStateLock() : rs);
1407 }
1408
1409 /**
1410 * Spins and/or blocks until runstate lock is available. See
1411 * above for explanation.
1412 */
1413 private int awaitRunStateLock() {
1414 Object lock;
1415 boolean wasInterrupted = false;
1416 for (int spins = SPINS, r = 0, rs, ns;;) {
1417 if (((rs = runState) & RSLOCK) == 0) {
1418 if (U.compareAndSwapInt(this, RUNSTATE, rs, ns = rs | RSLOCK)) {
1419 if (wasInterrupted) {
1420 try {
1421 Thread.currentThread().interrupt();
1422 } catch (SecurityException ignore) {
1423 }
1424 }
1425 return ns;
1426 }
1427 }
1428 else if (r == 0)
1429 r = ThreadLocalRandom.nextSecondarySeed();
1430 else if (spins > 0) {
1431 r ^= r << 6; r ^= r >>> 21; r ^= r << 7; // xorshift
1432 if (r >= 0)
1433 --spins;
1434 }
1435 else if ((rs & STARTED) == 0 || (lock = stealCounter) == null)
1436 Thread.yield(); // initialization race
1437 else if (U.compareAndSwapInt(this, RUNSTATE, rs, rs | RSIGNAL)) {
1438 synchronized (lock) {
1439 if ((runState & RSIGNAL) != 0) {
1440 try {
1441 lock.wait();
1442 } catch (InterruptedException ie) {
1443 if (!(Thread.currentThread() instanceof
1444 ForkJoinWorkerThread))
1445 wasInterrupted = true;
1446 }
1447 }
1448 else
1449 lock.notifyAll();
1450 }
1451 }
1452 }
1453 }
1454
1455 /**
1456 * Unlocks and sets runState to newRunState.
1457 *
1458 * @param oldRunState a value returned from lockRunState
1459 * @param newRunState the next value (must have lock bit clear).
1460 */
1461 private void unlockRunState(int oldRunState, int newRunState) {
1462 if (!U.compareAndSwapInt(this, RUNSTATE, oldRunState, newRunState)) {
1463 Object lock = stealCounter;
1464 runState = newRunState; // clears RSIGNAL bit
1465 if (lock != null)
1466 synchronized (lock) { lock.notifyAll(); }
1467 }
1468 }
1469
1470 // Creating, registering and deregistering workers
1471
1472 /**
1473 * Tries to construct and start one worker. Assumes that total
1474 * count has already been incremented as a reservation. Invokes
1475 * deregisterWorker on any failure.
1476 *
1477 * @return true if successful
1478 */
1479 private boolean createWorker() {
1480 ForkJoinWorkerThreadFactory fac = factory;
1481 Throwable ex = null;
1482 ForkJoinWorkerThread wt = null;
1483 try {
1484 if (fac != null && (wt = fac.newThread(this)) != null) {
1485 wt.start();
1486 return true;
1487 }
1488 } catch (Throwable rex) {
1489 ex = rex;
1490 }
1491 deregisterWorker(wt, ex);
1492 return false;
1493 }
1494
1495 /**
1496 * Tries to add one worker, incrementing ctl counts before doing
1497 * so, relying on createWorker to back out on failure.
1498 *
1499 * @param c incoming ctl value, with total count negative and no
1500 * idle workers. On CAS failure, c is refreshed and retried if
1501 * this holds (otherwise, a new worker is not needed).
1502 */
1503 private void tryAddWorker(long c) {
1504 boolean add = false;
1505 do {
1506 long nc = ((AC_MASK & (c + AC_UNIT)) |
1507 (TC_MASK & (c + TC_UNIT)));
1508 if (ctl == c) {
1509 int rs, stop; // check if terminating
1510 if ((stop = (rs = lockRunState()) & STOP) == 0)
1511 add = U.compareAndSwapLong(this, CTL, c, nc);
1512 unlockRunState(rs, rs & ~RSLOCK);
1513 if (stop != 0)
1514 break;
1515 if (add) {
1516 createWorker();
1517 break;
1518 }
1519 }
1520 } while (((c = ctl) & ADD_WORKER) != 0L && (int)c == 0);
1521 }
1522
1523 /**
1524 * Callback from ForkJoinWorkerThread constructor to establish and
1525 * record its WorkQueue.
1526 *
1527 * @param wt the worker thread
1528 * @return the worker's queue
1529 */
1530 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1531 UncaughtExceptionHandler handler;
1532 wt.setDaemon(true); // configure thread
1533 if ((handler = ueh) != null)
1534 wt.setUncaughtExceptionHandler(handler);
1535 WorkQueue w = new WorkQueue(this, wt);
1536 int i = 0; // assign a pool index
1537 int mode = config & MODE_MASK;
1538 int rs = lockRunState();
1539 try {
1540 WorkQueue[] ws; int n; // skip if no array
1541 if ((ws = workQueues) != null && (n = ws.length) > 0) {
1542 int s = indexSeed += SEED_INCREMENT; // unlikely to collide
1543 int m = n - 1;
1544 i = ((s << 1) | 1) & m; // odd-numbered indices
1545 if (ws[i] != null) { // collision
1546 int probes = 0; // step by approx half n
1547 int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1548 while (ws[i = (i + step) & m] != null) {
1549 if (++probes >= n) {
1550 workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1551 m = n - 1;
1552 probes = 0;
1553 }
1554 }
1555 }
1556 w.hint = s; // use as random seed
1557 w.config = i | mode;
1558 w.scanState = i; // publication fence
1559 ws[i] = w;
1560 }
1561 } finally {
1562 unlockRunState(rs, rs & ~RSLOCK);
1563 }
1564 wt.setName(workerNamePrefix.concat(Integer.toString(i >>> 1)));
1565 return w;
1566 }
1567
1568 /**
1569 * Final callback from terminating worker, as well as upon failure
1570 * to construct or start a worker. Removes record of worker from
1571 * array, and adjusts counts. If pool is shutting down, tries to
1572 * complete termination.
1573 *
1574 * @param wt the worker thread, or null if construction failed
1575 * @param ex the exception causing failure, or null if none
1576 */
1577 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1578 WorkQueue w = null;
1579 if (wt != null && (w = wt.workQueue) != null) {
1580 WorkQueue[] ws; // remove index from array
1581 int idx = w.config & SMASK;
1582 int rs = lockRunState();
1583 if ((ws = workQueues) != null && ws.length > idx && ws[idx] == w)
1584 ws[idx] = null;
1585 unlockRunState(rs, rs & ~RSLOCK);
1586 }
1587 long c; // decrement counts
1588 do {} while (!U.compareAndSwapLong
1589 (this, CTL, c = ctl, ((AC_MASK & (c - AC_UNIT)) |
1590 (TC_MASK & (c - TC_UNIT)) |
1591 (SP_MASK & c))));
1592 if (w != null) {
1593 w.qlock = -1; // ensure set
1594 w.transferStealCount(this);
1595 w.cancelAll(); // cancel remaining tasks
1596 }
1597 for (;;) { // possibly replace
1598 WorkQueue[] ws; int m, sp;
1599 if (tryTerminate(false, false) || w == null || w.array == null ||
1600 (runState & STOP) != 0 || (ws = workQueues) == null ||
1601 (m = ws.length - 1) < 0) // already terminating
1602 break;
1603 if ((sp = (int)(c = ctl)) != 0) { // wake up replacement
1604 if (tryRelease(c, ws[sp & m], AC_UNIT))
1605 break;
1606 }
1607 else if (ex != null && (c & ADD_WORKER) != 0L) {
1608 tryAddWorker(c); // create replacement
1609 break;
1610 }
1611 else // don't need replacement
1612 break;
1613 }
1614 if (ex == null) // help clean on way out
1615 ForkJoinTask.helpExpungeStaleExceptions();
1616 else // rethrow
1617 ForkJoinTask.rethrow(ex);
1618 }
1619
1620 // Signalling
1621
1622 /**
1623 * Tries to create or activate a worker if too few are active.
1624 *
1625 * @param ws the worker array to use to find signallees
1626 * @param q a WorkQueue --if non-null, don't retry if now empty
1627 */
1628 final void signalWork(WorkQueue[] ws, WorkQueue q) {
1629 long c; int sp, i; WorkQueue v; Thread p;
1630 while ((c = ctl) < 0L) { // too few active
1631 if ((sp = (int)c) == 0) { // no idle workers
1632 if ((c & ADD_WORKER) != 0L) // too few workers
1633 tryAddWorker(c);
1634 break;
1635 }
1636 if (ws == null) // unstarted/terminated
1637 break;
1638 if (ws.length <= (i = sp & SMASK)) // terminated
1639 break;
1640 if ((v = ws[i]) == null) // terminating
1641 break;
1642 int vs = (sp + SS_SEQ) & ~INACTIVE; // next scanState
1643 int d = sp - v.scanState; // screen CAS
1644 long nc = (UC_MASK & (c + AC_UNIT)) | (SP_MASK & v.stackPred);
1645 if (d == 0 && U.compareAndSwapLong(this, CTL, c, nc)) {
1646 v.scanState = vs; // activate v
1647 if ((p = v.parker) != null)
1648 U.unpark(p);
1649 break;
1650 }
1651 if (q != null && q.base == q.top) // no more work
1652 break;
1653 }
1654 }
1655
1656 /**
1657 * Signals and releases worker v if it is top of idle worker
1658 * stack. This performs a one-shot version of signalWork only if
1659 * there is (apparently) at least one idle worker.
1660 *
1661 * @param c incoming ctl value
1662 * @param v if non-null, a worker
1663 * @param inc the increment to active count (zero when compensating)
1664 * @return true if successful
1665 */
1666 private boolean tryRelease(long c, WorkQueue v, long inc) {
1667 int sp = (int)c, vs = (sp + SS_SEQ) & ~INACTIVE; Thread p;
1668 if (v != null && v.scanState == sp) { // v is at top of stack
1669 long nc = (UC_MASK & (c + inc)) | (SP_MASK & v.stackPred);
1670 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1671 v.scanState = vs;
1672 if ((p = v.parker) != null)
1673 U.unpark(p);
1674 return true;
1675 }
1676 }
1677 return false;
1678 }
1679
1680 // Scanning for tasks
1681
1682 /**
1683 * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1684 */
1685 final void runWorker(WorkQueue w) {
1686 w.growArray(); // allocate queue
1687 int seed = w.hint; // initially holds randomization hint
1688 int r = (seed == 0) ? 1 : seed; // avoid 0 for xorShift
1689 for (ForkJoinTask<?> t;;) {
1690 if ((t = scan(w, r)) != null)
1691 w.runTask(t);
1692 else if (!awaitWork(w, r))
1693 break;
1694 r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
1695 }
1696 }
1697
1698 /**
1699 * Scans for and tries to steal a top-level task. Scans start at a
1700 * random location, randomly moving on apparent contention,
1701 * otherwise continuing linearly until reaching two consecutive
1702 * empty passes over all queues with the same checksum (summing
1703 * each base index of each queue, that moves on each steal), at
1704 * which point the worker tries to inactivate and then re-scans,
1705 * attempting to re-activate (itself or some other worker) if
1706 * finding a task; otherwise returning null to await work. Scans
1707 * otherwise touch as little memory as possible, to reduce
1708 * disruption on other scanning threads.
1709 *
1710 * @param w the worker (via its WorkQueue)
1711 * @param r a random seed
1712 * @return a task, or null if none found
1713 */
1714 private ForkJoinTask<?> scan(WorkQueue w, int r) {
1715 WorkQueue[] ws; int m;
1716 if ((ws = workQueues) != null && (m = ws.length - 1) > 0 && w != null) {
1717 int ss = w.scanState; // initially non-negative
1718 for (int origin = r & m, k = origin, oldSum = 0, checkSum = 0;;) {
1719 WorkQueue q; ForkJoinTask<?> t; int al, i, n; long c;
1720 if ((q = ws[k]) != null) {
1721 int b = q.base; ForkJoinTask<?>[] a = q.array;
1722 if ((n = b - q.top) < 0 && a != null &&
1723 (al = a.length) > 0) { // non-empty
1724 if ((t = getAt(a, i = (al - 1) & b)) != null &&
1725 q.base == b) {
1726 if (ss >= 0) {
1727 if (casAt(a, i, t, null)) {
1728 q.base = b + 1;
1729 if (n < -1) // signal others
1730 signalWork(ws, q);
1731 return t;
1732 }
1733 }
1734 else if (oldSum == 0 && // try to activate
1735 w.scanState < 0)
1736 tryRelease(c = ctl, ws[m & (int)c], AC_UNIT);
1737 }
1738 if (ss < 0) // refresh
1739 ss = w.scanState;
1740 r ^= r << 1; r ^= r >>> 3; r ^= r << 10;
1741 origin = k = r & m; // move and rescan
1742 oldSum = checkSum = 0;
1743 continue;
1744 }
1745 checkSum += b;
1746 }
1747 if ((k = (k + 1) & m) == origin) { // continue until stable
1748 if ((ss >= 0 || (ss == (ss = w.scanState))) &&
1749 oldSum == (oldSum = checkSum)) {
1750 if (ss < 0 || w.qlock < 0) // already inactive
1751 break;
1752 int ns = ss | INACTIVE; // try to inactivate
1753 long nc = ((SP_MASK & ns) |
1754 (UC_MASK & ((c = ctl) - AC_UNIT)));
1755 w.stackPred = (int)c; // hold prev stack top
1756 U.putInt(w, QSCANSTATE, ns);
1757 if (U.compareAndSwapLong(this, CTL, c, nc))
1758 ss = ns;
1759 else
1760 w.scanState = ss; // back out
1761 }
1762 checkSum = 0;
1763 }
1764 }
1765 }
1766 return null;
1767 }
1768
1769 /**
1770 * Possibly blocks worker w waiting for a task to steal, or
1771 * returns false if the worker should terminate. If inactivating
1772 * w has caused the pool to become quiescent, checks for pool
1773 * termination, and, so long as this is not the only worker, waits
1774 * for up to a given duration. On timeout, if ctl has not
1775 * changed, terminates the worker, which will in turn wake up
1776 * another worker to possibly repeat this process.
1777 *
1778 * @param w the calling worker
1779 * @param r a random seed (for spins)
1780 * @return false if the worker should terminate
1781 */
1782 private boolean awaitWork(WorkQueue w, int r) {
1783 if (w == null || w.qlock < 0) // w is terminating
1784 return false;
1785 for (int pred = w.stackPred, spins = SPINS, ss;;) {
1786 if ((ss = w.scanState) >= 0)
1787 break;
1788 else if (spins > 0) {
1789 r ^= r << 6; r ^= r >>> 21; r ^= r << 7;
1790 if (r >= 0 && --spins == 0) { // randomize spins
1791 WorkQueue v; WorkQueue[] ws; int j;
1792 if (pred != 0 && (ws = workQueues) != null &&
1793 (j = pred & SMASK) < ws.length &&
1794 (v = ws[j]) != null && // see if pred parking
1795 (v.parker == null || v.scanState >= 0))
1796 spins = SPINS; // continue spinning
1797 }
1798 }
1799 else if (w.qlock < 0) // recheck after spins
1800 return false;
1801 else if (!Thread.interrupted()) {
1802 long c, prevctl, parkTime, deadline;
1803 int ac = (int)((c = ctl) >> AC_SHIFT) + (config & SMASK);
1804 if ((ac <= 0 && tryTerminate(false, false)) ||
1805 (runState & STOP) != 0) // pool terminating
1806 return false;
1807 if (ac <= 0 && ss == (int)c) { // is last waiter
1808 prevctl = (UC_MASK & (c + AC_UNIT)) | (SP_MASK & pred);
1809 int t = (short)(c >>> TC_SHIFT); // shrink excess spares
1810 if (t > 2 && U.compareAndSwapLong(this, CTL, c, prevctl))
1811 return false; // else use timed wait
1812 parkTime = IDLE_TIMEOUT * ((t >= 0) ? 1 : 1 - t);
1813 deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
1814 }
1815 else
1816 prevctl = parkTime = deadline = 0L;
1817 Thread wt = Thread.currentThread();
1818 U.putObject(wt, PARKBLOCKER, this); // emulate LockSupport
1819 w.parker = wt;
1820 if (w.scanState < 0 && ctl == c) // recheck before park
1821 U.park(false, parkTime);
1822 U.putOrderedObject(w, QPARKER, null);
1823 U.putObject(wt, PARKBLOCKER, null);
1824 if (w.scanState >= 0)
1825 break;
1826 if (parkTime != 0L && ctl == c &&
1827 deadline - System.nanoTime() <= 0L &&
1828 U.compareAndSwapLong(this, CTL, c, prevctl))
1829 return false; // shrink pool
1830 }
1831 }
1832 return true;
1833 }
1834
1835 // Joining tasks
1836
1837 /**
1838 * Tries to steal and run tasks within the target's computation.
1839 * Uses a variant of the top-level algorithm, restricted to tasks
1840 * with the given task as ancestor: It prefers taking and running
1841 * eligible tasks popped from the worker's own queue (via
1842 * popCC). Otherwise it scans others, randomly moving on
1843 * contention or execution, deciding to give up based on a
1844 * checksum (via return codes frob pollAndExecCC). The maxTasks
1845 * argument supports external usages; internal calls use zero,
1846 * allowing unbounded steps (external calls trap non-positive
1847 * values).
1848 *
1849 * @param w caller
1850 * @param maxTasks if non-zero, the maximum number of other tasks to run
1851 * @return task status on exit
1852 */
1853 final int helpComplete(WorkQueue w, CountedCompleter<?> task,
1854 int maxTasks) {
1855 WorkQueue[] ws; int s = 0, m;
1856 if ((ws = workQueues) != null && (m = ws.length - 1) > 0 &&
1857 task != null && w != null) {
1858 int mode = w.config; // for popCC
1859 int r = w.hint ^ w.top; // arbitrary seed for origin
1860 int origin = r & m; // first queue to scan
1861 int h = 1; // 1:ran, >1:contended, <0:hash
1862 for (int k = origin, oldSum = 0, checkSum = 0;;) {
1863 CountedCompleter<?> p; WorkQueue q;
1864 if ((s = task.status) < 0)
1865 break;
1866 if (h == 1 && (p = w.popCC(task, mode)) != null) {
1867 p.doExec(); // run local task
1868 if (maxTasks != 0 && --maxTasks == 0)
1869 break;
1870 origin = k; // reset
1871 oldSum = checkSum = 0;
1872 }
1873 else { // poll other queues
1874 if ((q = ws[k]) == null)
1875 h = 0;
1876 else if ((h = q.pollAndExecCC(task)) < 0)
1877 checkSum += h;
1878 if (h > 0) {
1879 if (h == 1 && maxTasks != 0 && --maxTasks == 0)
1880 break;
1881 r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
1882 origin = k = r & m; // move and restart
1883 oldSum = checkSum = 0;
1884 }
1885 else if ((k = (k + 1) & m) == origin) {
1886 if (oldSum == (oldSum = checkSum))
1887 break;
1888 checkSum = 0;
1889 }
1890 }
1891 }
1892 }
1893 return s;
1894 }
1895
1896 /**
1897 * Tries to locate and execute tasks for a stealer of the given
1898 * task, or in turn one of its stealers, Traces currentSteal ->
1899 * currentJoin links looking for a thread working on a descendant
1900 * of the given task and with a non-empty queue to steal back and
1901 * execute tasks from. The first call to this method upon a
1902 * waiting join will often entail scanning/search, (which is OK
1903 * because the joiner has nothing better to do), but this method
1904 * leaves hints in workers to speed up subsequent calls.
1905 *
1906 * @param w caller
1907 * @param task the task to join
1908 */
1909 private void helpStealer(WorkQueue w, ForkJoinTask<?> task) {
1910 WorkQueue[] ws = workQueues;
1911 int oldSum = 0, checkSum, m;
1912 if (ws != null && (m = ws.length - 1) > 0 && w != null &&
1913 task != null) {
1914 do { // restart point
1915 checkSum = 0; // for stability check
1916 ForkJoinTask<?> subtask;
1917 WorkQueue j = w, v; // v is subtask stealer
1918 descent: for (subtask = task; subtask.status >= 0; ) {
1919 for (int h = j.hint | 1, k = 0, i; ; k += 2) {
1920 if (k > m) // can't find stealer
1921 break descent;
1922 if ((v = ws[i = (h + k) & m]) != null) {
1923 if (v.currentSteal == subtask) {
1924 j.hint = i;
1925 break;
1926 }
1927 checkSum += v.base;
1928 }
1929 }
1930 for (;;) { // help v or descend
1931 ForkJoinTask<?>[] a; int b, al, i;
1932 checkSum += (b = v.base);
1933 ForkJoinTask<?> next = v.currentJoin;
1934 if (subtask.status < 0 || j.currentJoin != subtask ||
1935 v.currentSteal != subtask) // stale
1936 break descent;
1937 if (b - v.top >= 0 || (a = v.array) == null ||
1938 (al = a.length) <= 0) {
1939 if ((subtask = next) == null)
1940 break descent;
1941 j = v;
1942 break;
1943 }
1944 ForkJoinTask<?> t = getAt(a, i = (al - 1) & b);
1945 if (v.base == b) {
1946 if (t == null) // stale
1947 break descent;
1948 if (casAt(a, i, t, null)) {
1949 v.base = b + 1;
1950 ForkJoinTask<?> ps = w.currentSteal;
1951 int top = w.top;
1952 do {
1953 U.putOrderedObject(w, QCURRENTSTEAL, t);
1954 t.doExec(); // clear local tasks too
1955 } while (task.status >= 0 &&
1956 w.top != top &&
1957 (t = w.pop()) != null);
1958 U.putOrderedObject(w, QCURRENTSTEAL, ps);
1959 if (w.base != w.top)
1960 return; // can't further help
1961 }
1962 }
1963 }
1964 }
1965 } while (task.status >= 0 && oldSum != (oldSum = checkSum));
1966 }
1967 }
1968
1969 /**
1970 * Tries to decrement active count (sometimes implicitly) and
1971 * possibly release or create a compensating worker in preparation
1972 * for blocking. Returns false (retryable by caller), on
1973 * contention, detected staleness, instability, or termination.
1974 *
1975 * @param w caller
1976 */
1977 private boolean tryCompensate(WorkQueue w) {
1978 boolean canBlock;
1979 WorkQueue[] ws; long c; int m, pc, sp;
1980 if (w == null || w.qlock < 0 || // caller terminating
1981 (ws = workQueues) == null || (m = ws.length - 1) <= 0 ||
1982 (pc = config & SMASK) == 0) // parallelism disabled
1983 canBlock = false;
1984 else if ((sp = (int)(c = ctl)) != 0) // release idle worker
1985 canBlock = tryRelease(c, ws[sp & m], 0L);
1986 else {
1987 int ac = (int)(c >> AC_SHIFT) + pc;
1988 int tc = (short)(c >> TC_SHIFT) + pc;
1989 int nbusy = 0; // validate saturation
1990 for (int i = 0; i <= m; ++i) { // two passes of odd indices
1991 WorkQueue v;
1992 if ((v = ws[((i << 1) | 1) & m]) != null) {
1993 if ((v.scanState & SCANNING) != 0)
1994 break;
1995 ++nbusy;
1996 }
1997 }
1998 if (nbusy != (tc << 1) || ctl != c)
1999 canBlock = false; // unstable or stale
2000 else if (tc >= pc && ac > 1 && w.isEmpty()) {
2001 long nc = ((AC_MASK & (c - AC_UNIT)) |
2002 (~AC_MASK & c)); // uncompensated
2003 canBlock = U.compareAndSwapLong(this, CTL, c, nc);
2004 }
2005 else if (tc >= MAX_CAP ||
2006 (this == common && tc >= pc + commonMaxSpares))
2007 throw new RejectedExecutionException(
2008 "Thread limit exceeded replacing blocked worker");
2009 else { // similar to tryAddWorker
2010 boolean add = false; int rs; // CAS within lock
2011 long nc = ((AC_MASK & c) |
2012 (TC_MASK & (c + TC_UNIT)));
2013 if (((rs = lockRunState()) & STOP) == 0)
2014 add = U.compareAndSwapLong(this, CTL, c, nc);
2015 unlockRunState(rs, rs & ~RSLOCK);
2016 canBlock = add && createWorker(); // throws on exception
2017 }
2018 }
2019 return canBlock;
2020 }
2021
2022 /**
2023 * Helps and/or blocks until the given task is done or timeout.
2024 *
2025 * @param w caller
2026 * @param task the task
2027 * @param deadline for timed waits, if nonzero
2028 * @return task status on exit
2029 */
2030 final int awaitJoin(WorkQueue w, ForkJoinTask<?> task, long deadline) {
2031 int s = 0;
2032 if (task != null && w != null) {
2033 ForkJoinTask<?> prevJoin = w.currentJoin;
2034 U.putOrderedObject(w, QCURRENTJOIN, task);
2035 CountedCompleter<?> cc = (task instanceof CountedCompleter) ?
2036 (CountedCompleter<?>)task : null;
2037 for (;;) {
2038 if ((s = task.status) < 0)
2039 break;
2040 if (cc != null)
2041 helpComplete(w, cc, 0);
2042 else if (w.base == w.top || w.tryRemoveAndExec(task))
2043 helpStealer(w, task);
2044 if ((s = task.status) < 0)
2045 break;
2046 long ms, ns;
2047 if (deadline == 0L)
2048 ms = 0L;
2049 else if ((ns = deadline - System.nanoTime()) <= 0L)
2050 break;
2051 else if ((ms = TimeUnit.NANOSECONDS.toMillis(ns)) <= 0L)
2052 ms = 1L;
2053 if (tryCompensate(w)) {
2054 task.internalWait(ms);
2055 U.getAndAddLong(this, CTL, AC_UNIT);
2056 }
2057 }
2058 U.putOrderedObject(w, QCURRENTJOIN, prevJoin);
2059 }
2060 return s;
2061 }
2062
2063 // Specialized scanning
2064
2065 /**
2066 * Returns a (probably) non-empty steal queue, if one is found
2067 * during a scan, else null. This method must be retried by
2068 * caller if, by the time it tries to use the queue, it is empty.
2069 */
2070 private WorkQueue findNonEmptyStealQueue() {
2071 WorkQueue[] ws; int m; // one-shot version of scan loop
2072 int r = ThreadLocalRandom.nextSecondarySeed();
2073 if ((ws = workQueues) != null && (m = ws.length - 1) > 0) {
2074 for (int origin = r & m, k = origin, oldSum = 0, checkSum = 0;;) {
2075 WorkQueue q; int b;
2076 if ((q = ws[k]) != null) {
2077 if ((b = q.base) - q.top < 0)
2078 return q;
2079 checkSum += b;
2080 }
2081 if ((k = (k + 1) & m) == origin) {
2082 if (oldSum == (oldSum = checkSum))
2083 break;
2084 checkSum = 0;
2085 }
2086 }
2087 }
2088 return null;
2089 }
2090
2091 /**
2092 * Runs tasks until {@code isQuiescent()}. We piggyback on
2093 * active count ctl maintenance, but rather than blocking
2094 * when tasks cannot be found, we rescan until all others cannot
2095 * find tasks either.
2096 */
2097 final void helpQuiescePool(WorkQueue w) {
2098 ForkJoinTask<?> ps = w.currentSteal; // save context
2099 for (boolean active = true;;) {
2100 long c; WorkQueue q; ForkJoinTask<?> t; int b;
2101 if ((w.config & FIFO_QUEUE) != 0)
2102 w.pollAndExecAll(); // run locals before each scan
2103 else
2104 w.popAndExecAll();
2105 if ((q = findNonEmptyStealQueue()) != null) {
2106 if (!active) { // re-establish active count
2107 active = true;
2108 U.getAndAddLong(this, CTL, AC_UNIT);
2109 }
2110 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2111 U.putOrderedObject(w, QCURRENTSTEAL, t);
2112 t.doExec();
2113 if (++w.nsteals < 0)
2114 w.transferStealCount(this);
2115 }
2116 }
2117 else if (active) { // decrement active count without queuing
2118 long nc = (AC_MASK & ((c = ctl) - AC_UNIT)) | (~AC_MASK & c);
2119 if ((int)(nc >> AC_SHIFT) + (config & SMASK) <= 0)
2120 break; // bypass decrement-then-increment
2121 if (U.compareAndSwapLong(this, CTL, c, nc))
2122 active = false;
2123 }
2124 else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) <= 0 &&
2125 U.compareAndSwapLong(this, CTL, c, c + AC_UNIT))
2126 break;
2127 }
2128 U.putOrderedObject(w, QCURRENTSTEAL, ps);
2129 }
2130
2131 /**
2132 * Gets and removes a local or stolen task for the given worker.
2133 *
2134 * @return a task, if available
2135 */
2136 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2137 for (ForkJoinTask<?> t;;) {
2138 WorkQueue q; int b;
2139 if ((t = w.nextLocalTask()) != null)
2140 return t;
2141 if ((q = findNonEmptyStealQueue()) == null)
2142 return null;
2143 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2144 return t;
2145 }
2146 }
2147
2148 /**
2149 * Returns a cheap heuristic guide for task partitioning when
2150 * programmers, frameworks, tools, or languages have little or no
2151 * idea about task granularity. In essence, by offering this
2152 * method, we ask users only about tradeoffs in overhead vs
2153 * expected throughput and its variance, rather than how finely to
2154 * partition tasks.
2155 *
2156 * In a steady state strict (tree-structured) computation, each
2157 * thread makes available for stealing enough tasks for other
2158 * threads to remain active. Inductively, if all threads play by
2159 * the same rules, each thread should make available only a
2160 * constant number of tasks.
2161 *
2162 * The minimum useful constant is just 1. But using a value of 1
2163 * would require immediate replenishment upon each steal to
2164 * maintain enough tasks, which is infeasible. Further,
2165 * partitionings/granularities of offered tasks should minimize
2166 * steal rates, which in general means that threads nearer the top
2167 * of computation tree should generate more than those nearer the
2168 * bottom. In perfect steady state, each thread is at
2169 * approximately the same level of computation tree. However,
2170 * producing extra tasks amortizes the uncertainty of progress and
2171 * diffusion assumptions.
2172 *
2173 * So, users will want to use values larger (but not much larger)
2174 * than 1 to both smooth over transient shortages and hedge
2175 * against uneven progress; as traded off against the cost of
2176 * extra task overhead. We leave the user to pick a threshold
2177 * value to compare with the results of this call to guide
2178 * decisions, but recommend values such as 3.
2179 *
2180 * When all threads are active, it is on average OK to estimate
2181 * surplus strictly locally. In steady-state, if one thread is
2182 * maintaining say 2 surplus tasks, then so are others. So we can
2183 * just use estimated queue length. However, this strategy alone
2184 * leads to serious mis-estimates in some non-steady-state
2185 * conditions (ramp-up, ramp-down, other stalls). We can detect
2186 * many of these by further considering the number of "idle"
2187 * threads, that are known to have zero queued tasks, so
2188 * compensate by a factor of (#idle/#active) threads.
2189 */
2190 static int getSurplusQueuedTaskCount() {
2191 Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2192 if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) {
2193 int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).
2194 config & SMASK;
2195 int n = (q = wt.workQueue).top - q.base;
2196 int a = (int)(pool.ctl >> AC_SHIFT) + p;
2197 return n - (a > (p >>>= 1) ? 0 :
2198 a > (p >>>= 1) ? 1 :
2199 a > (p >>>= 1) ? 2 :
2200 a > (p >>>= 1) ? 4 :
2201 8);
2202 }
2203 return 0;
2204 }
2205
2206 // Termination
2207
2208 /**
2209 * Possibly initiates and/or completes termination.
2210 *
2211 * @param now if true, unconditionally terminate, else only
2212 * if no work and no active workers
2213 * @param enable if true, enable shutdown when next possible
2214 * @return true if now terminating or terminated
2215 */
2216 private boolean tryTerminate(boolean now, boolean enable) {
2217 int rs;
2218 if (this == common) // cannot shut down
2219 return false;
2220 if ((rs = runState) >= 0) {
2221 if (!enable)
2222 return false;
2223 rs = lockRunState(); // enter SHUTDOWN phase
2224 unlockRunState(rs, (rs & ~RSLOCK) | SHUTDOWN);
2225 }
2226
2227 if ((rs & STOP) == 0) {
2228 if (!now) { // check quiescence
2229 for (long oldSum = 0L;;) { // repeat until stable
2230 WorkQueue[] ws; WorkQueue w; int m, b; long c;
2231 long checkSum = ctl;
2232 if ((int)(checkSum >> AC_SHIFT) + (config & SMASK) > 0)
2233 return false; // still active workers
2234 if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
2235 break; // check queues
2236 for (int i = 0; i <= m; ++i) {
2237 if ((w = ws[i]) != null) {
2238 if ((b = w.base) != w.top || w.scanState >= 0 ||
2239 w.currentSteal != null) {
2240 tryRelease(c = ctl, ws[m & (int)c], AC_UNIT);
2241 return false; // arrange for recheck
2242 }
2243 checkSum += b;
2244 if ((i & 1) == 0)
2245 w.qlock = -1; // try to disable external
2246 }
2247 }
2248 if (oldSum == (oldSum = checkSum))
2249 break;
2250 }
2251 }
2252 if ((runState & STOP) == 0) {
2253 rs = lockRunState(); // enter STOP phase
2254 unlockRunState(rs, (rs & ~RSLOCK) | STOP);
2255 }
2256 }
2257
2258 int pass = 0; // 3 passes to help terminate
2259 for (long oldSum = 0L;;) { // or until done or stable
2260 WorkQueue[] ws; WorkQueue w; ForkJoinWorkerThread wt; int m;
2261 long checkSum = ctl;
2262 if ((short)(checkSum >>> TC_SHIFT) + (config & SMASK) <= 0 ||
2263 (ws = workQueues) == null || (m = ws.length - 1) <= 0) {
2264 if ((runState & TERMINATED) == 0) {
2265 rs = lockRunState(); // done
2266 unlockRunState(rs, (rs & ~RSLOCK) | TERMINATED);
2267 synchronized (this) { notifyAll(); } // for awaitTermination
2268 }
2269 break;
2270 }
2271 for (int i = 0; i <= m; ++i) {
2272 if ((w = ws[i]) != null) {
2273 checkSum += w.base;
2274 w.qlock = -1; // try to disable
2275 if (pass > 0) {
2276 w.cancelAll(); // clear queue
2277 if (pass > 1 && (wt = w.owner) != null) {
2278 if (!wt.isInterrupted()) {
2279 try { // unblock join
2280 wt.interrupt();
2281 } catch (Throwable ignore) {
2282 }
2283 }
2284 if (w.scanState < 0)
2285 U.unpark(wt); // wake up
2286 }
2287 }
2288 }
2289 }
2290 if (checkSum != oldSum) { // unstable
2291 oldSum = checkSum;
2292 pass = 0;
2293 }
2294 else if (pass > 3 && pass > m) // can't further help
2295 break;
2296 else if (++pass > 1) { // try to dequeue
2297 long c; int j = 0, sp; // bound attempts
2298 while (j++ <= m && (sp = (int)(c = ctl)) != 0)
2299 tryRelease(c, ws[sp & m], AC_UNIT);
2300 }
2301 }
2302 return true;
2303 }
2304
2305 // External operations
2306
2307 /**
2308 * Full version of externalPush, handling uncommon cases, as well
2309 * as performing secondary initialization upon the first
2310 * submission of the first task to the pool. It also detects
2311 * first submission by an external thread and creates a new shared
2312 * queue if the one at index if empty or contended.
2313 *
2314 * @param task the task. Caller must ensure non-null.
2315 */
2316 private void externalSubmit(ForkJoinTask<?> task) {
2317 int r; // initialize caller's probe
2318 if ((r = ThreadLocalRandom.getProbe()) == 0) {
2319 ThreadLocalRandom.localInit();
2320 r = ThreadLocalRandom.getProbe();
2321 }
2322 for (;;) {
2323 WorkQueue[] ws; WorkQueue q; int rs, m, k;
2324 boolean move = false;
2325 if ((rs = runState) < 0) {
2326 tryTerminate(false, false); // help terminate
2327 throw new RejectedExecutionException();
2328 }
2329 else if ((rs & STARTED) == 0 || // initialize
2330 ((ws = workQueues) == null || (m = ws.length - 1) <= 0)) {
2331 int ns = 0;
2332 rs = lockRunState();
2333 try {
2334 if ((rs & STARTED) == 0) {
2335 U.compareAndSwapObject(this, STEALCOUNTER, null,
2336 new AtomicLong());
2337 // create workQueues array with size a power of two
2338 int p = config & SMASK; // ensure at least 2 slots
2339 int n = (p > 1) ? p - 1 : 1;
2340 n |= n >>> 1; n |= n >>> 2; n |= n >>> 4;
2341 n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1;
2342 workQueues = new WorkQueue[n];
2343 ns = STARTED;
2344 }
2345 } finally {
2346 unlockRunState(rs, (rs & ~RSLOCK) | ns);
2347 }
2348 }
2349 else if ((q = ws[k = r & m & SQMASK]) != null) {
2350 if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2351 ForkJoinTask<?>[] a = q.array;
2352 int s = q.top;
2353 boolean submitted = false; // initial submission or resizing
2354 try { // locked version of push
2355 if ((a != null && a.length > s + 1 - q.base) ||
2356 (a = q.growArray()) != null) {
2357 int al = a.length, j = (al - 1) & s;
2358 if (al > 0) {
2359 setAt(a, j, task);
2360 U.putOrderedInt(q, QTOP, s + 1);
2361 submitted = true;
2362 }
2363 }
2364 } finally {
2365 U.compareAndSwapInt(q, QLOCK, 1, 0);
2366 }
2367 if (submitted) {
2368 signalWork(ws, q);
2369 return;
2370 }
2371 }
2372 move = true; // move on failure
2373 }
2374 else if (((rs = runState) & RSLOCK) == 0) { // create new queue
2375 q = new WorkQueue(this, null);
2376 q.hint = r;
2377 q.config = k | SHARED_QUEUE;
2378 q.scanState = INACTIVE;
2379 rs = lockRunState(); // publish index
2380 if (rs > 0 && (ws = workQueues) != null &&
2381 k < ws.length && ws[k] == null)
2382 ws[k] = q; // else terminated
2383 unlockRunState(rs, rs & ~RSLOCK);
2384 }
2385 else
2386 move = true; // move if busy
2387 if (move)
2388 r = ThreadLocalRandom.advanceProbe(r);
2389 }
2390 }
2391
2392 /**
2393 * Tries to add the given task to a submission queue at
2394 * submitter's current queue. Only the (vastly) most common path
2395 * is directly handled in this method, while screening for need
2396 * for externalSubmit.
2397 *
2398 * @param task the task. Caller must ensure non-null.
2399 */
2400 final void externalPush(ForkJoinTask<?> task) {
2401 WorkQueue[] ws; WorkQueue q; int m;
2402 int r = ThreadLocalRandom.getProbe();
2403 int rs = runState;
2404 if ((ws = workQueues) != null && (m = (ws.length - 1)) > 0 &&
2405 (q = ws[m & r & SQMASK]) != null && r != 0 && rs > 0 &&
2406 U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2407 ForkJoinTask<?>[] a;
2408 if ((a = q.array) != null) {
2409 int b = q.base, al = a.length, s = q.top;
2410 if (al > 0) {
2411 int am = al - 1, j = am & s, n;
2412 if ((n = s - b) < am) {
2413 setAt(a, j, task);
2414 U.putOrderedInt(q, QTOP, s + 1);
2415 U.putOrderedInt(q, QLOCK, 0);
2416 if (n <= 1)
2417 signalWork(ws, q);
2418 return;
2419 }
2420 }
2421 }
2422 U.compareAndSwapInt(q, QLOCK, 1, 0);
2423 }
2424 externalSubmit(task);
2425 }
2426
2427 /**
2428 * Pushes a possibly-external submission.
2429 */
2430 final <T> ForkJoinTask<T> doSubmit(ForkJoinTask<T> task) {
2431 Thread t; ForkJoinWorkerThread w;
2432 if (task == null)
2433 throw new NullPointerException();
2434 if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) &&
2435 (w = (ForkJoinWorkerThread)t).pool == this)
2436 w.workQueue.push(task);
2437 else
2438 externalPush(task);
2439 return task;
2440 }
2441
2442 /**
2443 * Returns common pool queue for an external thread.
2444 */
2445 static WorkQueue commonSubmitterQueue() {
2446 ForkJoinPool p = common;
2447 int r = ThreadLocalRandom.getProbe();
2448 WorkQueue[] ws; int m;
2449 return (p != null && (ws = p.workQueues) != null &&
2450 (m = ws.length - 1) > 0) ?
2451 ws[m & r & SQMASK] : null;
2452 }
2453
2454 /**
2455 * Performs tryUnpush for an external submitter: Finds queue,
2456 * locks if apparently non-empty, validates upon locking, and
2457 * adjusts top. Each check can fail but rarely does.
2458 */
2459 final boolean tryExternalUnpush(ForkJoinTask<?> task) {
2460 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?>[] a; int m;
2461 int r = ThreadLocalRandom.getProbe();
2462 if ((ws = workQueues) != null && (m = ws.length - 1) > 0 &&
2463 (w = ws[m & r & SQMASK]) != null &&
2464 (a = w.array) != null) {
2465 int b = w.base, al = a.length, s = w.top;
2466 if (s != b && al > 0 &&
2467 U.compareAndSwapInt(w, QLOCK, 0, 1)) {
2468 int i = (al - 1) & (s - 1);
2469 if (w.top == s && w.array == a && casAt(a, i, task, null)) {
2470 U.putOrderedInt(w, QTOP, s - 1);
2471 U.putOrderedInt(w, QLOCK, 0);
2472 return true;
2473 }
2474 U.compareAndSwapInt(w, QLOCK, 1, 0);
2475 }
2476 }
2477 return false;
2478 }
2479
2480 /**
2481 * Performs helpComplete for an external submitter.
2482 */
2483 final int externalHelpComplete(CountedCompleter<?> task, int maxTasks) {
2484 WorkQueue[] ws; int n;
2485 int r = ThreadLocalRandom.getProbe();
2486 return ((ws = workQueues) == null || (n = ws.length) == 0) ? 0 :
2487 helpComplete(ws[(n - 1) & r & SQMASK], task, maxTasks);
2488 }
2489
2490 // Exported methods
2491
2492 // Constructors
2493
2494 /**
2495 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2496 * java.lang.Runtime#availableProcessors}, using the {@linkplain
2497 * #defaultForkJoinWorkerThreadFactory default thread factory},
2498 * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2499 *
2500 * @throws SecurityException if a security manager exists and
2501 * the caller is not permitted to modify threads
2502 * because it does not hold {@link
2503 * java.lang.RuntimePermission}{@code ("modifyThread")}
2504 */
2505 public ForkJoinPool() {
2506 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2507 defaultForkJoinWorkerThreadFactory, null, false);
2508 }
2509
2510 /**
2511 * Creates a {@code ForkJoinPool} with the indicated parallelism
2512 * level, the {@linkplain
2513 * #defaultForkJoinWorkerThreadFactory default thread factory},
2514 * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2515 *
2516 * @param parallelism the parallelism level
2517 * @throws IllegalArgumentException if parallelism less than or
2518 * equal to zero, or greater than implementation limit
2519 * @throws SecurityException if a security manager exists and
2520 * the caller is not permitted to modify threads
2521 * because it does not hold {@link
2522 * java.lang.RuntimePermission}{@code ("modifyThread")}
2523 */
2524 public ForkJoinPool(int parallelism) {
2525 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2526 }
2527
2528 /**
2529 * Creates a {@code ForkJoinPool} with the given parameters.
2530 *
2531 * @param parallelism the parallelism level. For default value,
2532 * use {@link java.lang.Runtime#availableProcessors}.
2533 * @param factory the factory for creating new threads. For default value,
2534 * use {@link #defaultForkJoinWorkerThreadFactory}.
2535 * @param handler the handler for internal worker threads that
2536 * terminate due to unrecoverable errors encountered while executing
2537 * tasks. For default value, use {@code null}.
2538 * @param asyncMode if true,
2539 * establishes local first-in-first-out scheduling mode for forked
2540 * tasks that are never joined. This mode may be more appropriate
2541 * than default locally stack-based mode in applications in which
2542 * worker threads only process event-style asynchronous tasks.
2543 * For default value, use {@code false}.
2544 * @throws IllegalArgumentException if parallelism less than or
2545 * equal to zero, or greater than implementation limit
2546 * @throws NullPointerException if the factory is null
2547 * @throws SecurityException if a security manager exists and
2548 * the caller is not permitted to modify threads
2549 * because it does not hold {@link
2550 * java.lang.RuntimePermission}{@code ("modifyThread")}
2551 */
2552 public ForkJoinPool(int parallelism,
2553 ForkJoinWorkerThreadFactory factory,
2554 UncaughtExceptionHandler handler,
2555 boolean asyncMode) {
2556 this(checkParallelism(parallelism),
2557 checkFactory(factory),
2558 handler,
2559 asyncMode ? FIFO_QUEUE : LIFO_QUEUE,
2560 "ForkJoinPool-" + nextPoolId() + "-worker-");
2561 checkPermission();
2562 }
2563
2564 private static int checkParallelism(int parallelism) {
2565 if (parallelism <= 0 || parallelism > MAX_CAP)
2566 throw new IllegalArgumentException();
2567 return parallelism;
2568 }
2569
2570 private static ForkJoinWorkerThreadFactory checkFactory
2571 (ForkJoinWorkerThreadFactory factory) {
2572 if (factory == null)
2573 throw new NullPointerException();
2574 return factory;
2575 }
2576
2577 /**
2578 * Creates a {@code ForkJoinPool} with the given parameters, without
2579 * any security checks or parameter validation. Invoked directly by
2580 * makeCommonPool.
2581 */
2582 private ForkJoinPool(int parallelism,
2583 ForkJoinWorkerThreadFactory factory,
2584 UncaughtExceptionHandler handler,
2585 int mode,
2586 String workerNamePrefix) {
2587 this.workerNamePrefix = workerNamePrefix;
2588 this.factory = factory;
2589 this.ueh = handler;
2590 this.config = (parallelism & SMASK) | mode;
2591 long np = (long)(-parallelism); // offset ctl counts
2592 this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2593 }
2594
2595 /**
2596 * Returns the common pool instance. This pool is statically
2597 * constructed; its run state is unaffected by attempts to {@link
2598 * #shutdown} or {@link #shutdownNow}. However this pool and any
2599 * ongoing processing are automatically terminated upon program
2600 * {@link System#exit}. Any program that relies on asynchronous
2601 * task processing to complete before program termination should
2602 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2603 * before exit.
2604 *
2605 * @return the common pool instance
2606 * @since 1.8
2607 */
2608 public static ForkJoinPool commonPool() {
2609 // assert common != null : "static init error";
2610 return common;
2611 }
2612
2613 // Execution methods
2614
2615 /**
2616 * Performs the given task, returning its result upon completion.
2617 * If the computation encounters an unchecked Exception or Error,
2618 * it is rethrown as the outcome of this invocation. Rethrown
2619 * exceptions behave in the same way as regular exceptions, but,
2620 * when possible, contain stack traces (as displayed for example
2621 * using {@code ex.printStackTrace()}) of both the current thread
2622 * as well as the thread actually encountering the exception;
2623 * minimally only the latter.
2624 *
2625 * @param task the task
2626 * @param <T> the type of the task's result
2627 * @return the task's result
2628 * @throws NullPointerException if the task is null
2629 * @throws RejectedExecutionException if the task cannot be
2630 * scheduled for execution
2631 */
2632 public <T> T invoke(ForkJoinTask<T> task) {
2633 if (task == null)
2634 throw new NullPointerException();
2635 doSubmit(task);
2636 return task.join();
2637 }
2638
2639 /**
2640 * Arranges for (asynchronous) execution of the given task.
2641 *
2642 * @param task the task
2643 * @throws NullPointerException if the task is null
2644 * @throws RejectedExecutionException if the task cannot be
2645 * scheduled for execution
2646 */
2647 public void execute(ForkJoinTask<?> task) {
2648 doSubmit(task);
2649 }
2650
2651 // AbstractExecutorService methods
2652
2653 /**
2654 * @throws NullPointerException if the task is null
2655 * @throws RejectedExecutionException if the task cannot be
2656 * scheduled for execution
2657 */
2658 public void execute(Runnable task) {
2659 if (task == null)
2660 throw new NullPointerException();
2661 ForkJoinTask<?> job;
2662 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2663 job = (ForkJoinTask<?>) task;
2664 else
2665 job = new ForkJoinTask.RunnableExecuteAction(task);
2666 doSubmit(job);
2667 }
2668
2669 /**
2670 * Submits a ForkJoinTask for execution.
2671 *
2672 * @param task the task to submit
2673 * @param <T> the type of the task's result
2674 * @return the task
2675 * @throws NullPointerException if the task is null
2676 * @throws RejectedExecutionException if the task cannot be
2677 * scheduled for execution
2678 */
2679 public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2680 return doSubmit(task);
2681 }
2682
2683 /**
2684 * @throws NullPointerException if the task is null
2685 * @throws RejectedExecutionException if the task cannot be
2686 * scheduled for execution
2687 */
2688 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2689 return doSubmit(new ForkJoinTask.AdaptedCallable<T>(task));
2690 }
2691
2692 /**
2693 * @throws NullPointerException if the task is null
2694 * @throws RejectedExecutionException if the task cannot be
2695 * scheduled for execution
2696 */
2697 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2698 return doSubmit(new ForkJoinTask.AdaptedRunnable<T>(task, result));
2699 }
2700
2701 /**
2702 * @throws NullPointerException if the task is null
2703 * @throws RejectedExecutionException if the task cannot be
2704 * scheduled for execution
2705 */
2706 public ForkJoinTask<?> submit(Runnable task) {
2707 if (task == null)
2708 throw new NullPointerException();
2709 ForkJoinTask<?> job;
2710 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2711 job = (ForkJoinTask<?>) task;
2712 else
2713 job = new ForkJoinTask.AdaptedRunnableAction(task);
2714 return doSubmit(job);
2715 }
2716
2717 /**
2718 * @throws NullPointerException {@inheritDoc}
2719 * @throws RejectedExecutionException {@inheritDoc}
2720 */
2721 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2722 // In previous versions of this class, this method constructed
2723 // a task to run ForkJoinTask.invokeAll, but now external
2724 // invocation of multiple tasks is at least as efficient.
2725 ArrayList<Future<T>> futures = new ArrayList<>(tasks.size());
2726
2727 try {
2728 for (Callable<T> t : tasks) {
2729 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2730 futures.add(f);
2731 doSubmit(f);
2732 }
2733 for (int i = 0, size = futures.size(); i < size; i++)
2734 ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2735 return futures;
2736 } catch (Throwable t) {
2737 for (int i = 0, size = futures.size(); i < size; i++)
2738 futures.get(i).cancel(false);
2739 throw t;
2740 }
2741 }
2742
2743 /**
2744 * Returns the factory used for constructing new workers.
2745 *
2746 * @return the factory used for constructing new workers
2747 */
2748 public ForkJoinWorkerThreadFactory getFactory() {
2749 return factory;
2750 }
2751
2752 /**
2753 * Returns the handler for internal worker threads that terminate
2754 * due to unrecoverable errors encountered while executing tasks.
2755 *
2756 * @return the handler, or {@code null} if none
2757 */
2758 public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2759 return ueh;
2760 }
2761
2762 /**
2763 * Returns the targeted parallelism level of this pool.
2764 *
2765 * @return the targeted parallelism level of this pool
2766 */
2767 public int getParallelism() {
2768 int par;
2769 return ((par = config & SMASK) > 0) ? par : 1;
2770 }
2771
2772 /**
2773 * Returns the targeted parallelism level of the common pool.
2774 *
2775 * @return the targeted parallelism level of the common pool
2776 * @since 1.8
2777 */
2778 public static int getCommonPoolParallelism() {
2779 return commonParallelism;
2780 }
2781
2782 /**
2783 * Returns the number of worker threads that have started but not
2784 * yet terminated. The result returned by this method may differ
2785 * from {@link #getParallelism} when threads are created to
2786 * maintain parallelism when others are cooperatively blocked.
2787 *
2788 * @return the number of worker threads
2789 */
2790 public int getPoolSize() {
2791 return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2792 }
2793
2794 /**
2795 * Returns {@code true} if this pool uses local first-in-first-out
2796 * scheduling mode for forked tasks that are never joined.
2797 *
2798 * @return {@code true} if this pool uses async mode
2799 */
2800 public boolean getAsyncMode() {
2801 return (config & FIFO_QUEUE) != 0;
2802 }
2803
2804 /**
2805 * Returns an estimate of the number of worker threads that are
2806 * not blocked waiting to join tasks or for other managed
2807 * synchronization. This method may overestimate the
2808 * number of running threads.
2809 *
2810 * @return the number of worker threads
2811 */
2812 public int getRunningThreadCount() {
2813 int rc = 0;
2814 WorkQueue[] ws; WorkQueue w;
2815 if ((ws = workQueues) != null) {
2816 for (int i = 1; i < ws.length; i += 2) {
2817 if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2818 ++rc;
2819 }
2820 }
2821 return rc;
2822 }
2823
2824 /**
2825 * Returns an estimate of the number of threads that are currently
2826 * stealing or executing tasks. This method may overestimate the
2827 * number of active threads.
2828 *
2829 * @return the number of active threads
2830 */
2831 public int getActiveThreadCount() {
2832 int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2833 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2834 }
2835
2836 /**
2837 * Returns {@code true} if all worker threads are currently idle.
2838 * An idle worker is one that cannot obtain a task to execute
2839 * because none are available to steal from other threads, and
2840 * there are no pending submissions to the pool. This method is
2841 * conservative; it might not return {@code true} immediately upon
2842 * idleness of all threads, but will eventually become true if
2843 * threads remain inactive.
2844 *
2845 * @return {@code true} if all threads are currently idle
2846 */
2847 public boolean isQuiescent() {
2848 return (config & SMASK) + (int)(ctl >> AC_SHIFT) <= 0;
2849 }
2850
2851 /**
2852 * Returns an estimate of the total number of tasks stolen from
2853 * one thread's work queue by another. The reported value
2854 * underestimates the actual total number of steals when the pool
2855 * is not quiescent. This value may be useful for monitoring and
2856 * tuning fork/join programs: in general, steal counts should be
2857 * high enough to keep threads busy, but low enough to avoid
2858 * overhead and contention across threads.
2859 *
2860 * @return the number of steals
2861 */
2862 public long getStealCount() {
2863 AtomicLong sc = stealCounter;
2864 long count = (sc == null) ? 0L : sc.get();
2865 WorkQueue[] ws; WorkQueue w;
2866 if ((ws = workQueues) != null) {
2867 for (int i = 1; i < ws.length; i += 2) {
2868 if ((w = ws[i]) != null)
2869 count += w.nsteals;
2870 }
2871 }
2872 return count;
2873 }
2874
2875 /**
2876 * Returns an estimate of the total number of tasks currently held
2877 * in queues by worker threads (but not including tasks submitted
2878 * to the pool that have not begun executing). This value is only
2879 * an approximation, obtained by iterating across all threads in
2880 * the pool. This method may be useful for tuning task
2881 * granularities.
2882 *
2883 * @return the number of queued tasks
2884 */
2885 public long getQueuedTaskCount() {
2886 long count = 0;
2887 WorkQueue[] ws; WorkQueue w;
2888 if ((ws = workQueues) != null) {
2889 for (int i = 1; i < ws.length; i += 2) {
2890 if ((w = ws[i]) != null)
2891 count += w.queueSize();
2892 }
2893 }
2894 return count;
2895 }
2896
2897 /**
2898 * Returns an estimate of the number of tasks submitted to this
2899 * pool that have not yet begun executing. This method may take
2900 * time proportional to the number of submissions.
2901 *
2902 * @return the number of queued submissions
2903 */
2904 public int getQueuedSubmissionCount() {
2905 int count = 0;
2906 WorkQueue[] ws; WorkQueue w;
2907 if ((ws = workQueues) != null) {
2908 for (int i = 0; i < ws.length; i += 2) {
2909 if ((w = ws[i]) != null)
2910 count += w.queueSize();
2911 }
2912 }
2913 return count;
2914 }
2915
2916 /**
2917 * Returns {@code true} if there are any tasks submitted to this
2918 * pool that have not yet begun executing.
2919 *
2920 * @return {@code true} if there are any queued submissions
2921 */
2922 public boolean hasQueuedSubmissions() {
2923 WorkQueue[] ws; WorkQueue w;
2924 if ((ws = workQueues) != null) {
2925 for (int i = 0; i < ws.length; i += 2) {
2926 if ((w = ws[i]) != null && !w.isEmpty())
2927 return true;
2928 }
2929 }
2930 return false;
2931 }
2932
2933 /**
2934 * Removes and returns the next unexecuted submission if one is
2935 * available. This method may be useful in extensions to this
2936 * class that re-assign work in systems with multiple pools.
2937 *
2938 * @return the next submission, or {@code null} if none
2939 */
2940 protected ForkJoinTask<?> pollSubmission() {
2941 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2942 if ((ws = workQueues) != null) {
2943 for (int i = 0; i < ws.length; i += 2) {
2944 if ((w = ws[i]) != null && (t = w.poll()) != null)
2945 return t;
2946 }
2947 }
2948 return null;
2949 }
2950
2951 /**
2952 * Removes all available unexecuted submitted and forked tasks
2953 * from scheduling queues and adds them to the given collection,
2954 * without altering their execution status. These may include
2955 * artificially generated or wrapped tasks. This method is
2956 * designed to be invoked only when the pool is known to be
2957 * quiescent. Invocations at other times may not remove all
2958 * tasks. A failure encountered while attempting to add elements
2959 * to collection {@code c} may result in elements being in
2960 * neither, either or both collections when the associated
2961 * exception is thrown. The behavior of this operation is
2962 * undefined if the specified collection is modified while the
2963 * operation is in progress.
2964 *
2965 * @param c the collection to transfer elements into
2966 * @return the number of elements transferred
2967 */
2968 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2969 int count = 0;
2970 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2971 if ((ws = workQueues) != null) {
2972 for (int i = 0; i < ws.length; ++i) {
2973 if ((w = ws[i]) != null) {
2974 while ((t = w.poll()) != null) {
2975 c.add(t);
2976 ++count;
2977 }
2978 }
2979 }
2980 }
2981 return count;
2982 }
2983
2984 /**
2985 * Returns a string identifying this pool, as well as its state,
2986 * including indications of run state, parallelism level, and
2987 * worker and task counts.
2988 *
2989 * @return a string identifying this pool, as well as its state
2990 */
2991 public String toString() {
2992 // Use a single pass through workQueues to collect counts
2993 long qt = 0L, qs = 0L; int rc = 0;
2994 AtomicLong sc = stealCounter;
2995 long st = (sc == null) ? 0L : sc.get();
2996 long c = ctl;
2997 WorkQueue[] ws; WorkQueue w;
2998 if ((ws = workQueues) != null) {
2999 for (int i = 0; i < ws.length; ++i) {
3000 if ((w = ws[i]) != null) {
3001 int size = w.queueSize();
3002 if ((i & 1) == 0)
3003 qs += size;
3004 else {
3005 qt += size;
3006 st += w.nsteals;
3007 if (w.isApparentlyUnblocked())
3008 ++rc;
3009 }
3010 }
3011 }
3012 }
3013 int pc = (config & SMASK);
3014 int tc = pc + (short)(c >>> TC_SHIFT);
3015 int ac = pc + (int)(c >> AC_SHIFT);
3016 if (ac < 0) // ignore transient negative
3017 ac = 0;
3018 int rs = runState;
3019 String level = ((rs & TERMINATED) != 0 ? "Terminated" :
3020 (rs & STOP) != 0 ? "Terminating" :
3021 (rs & SHUTDOWN) != 0 ? "Shutting down" :
3022 "Running");
3023 return super.toString() +
3024 "[" + level +
3025 ", parallelism = " + pc +
3026 ", size = " + tc +
3027 ", active = " + ac +
3028 ", running = " + rc +
3029 ", steals = " + st +
3030 ", tasks = " + qt +
3031 ", submissions = " + qs +
3032 "]";
3033 }
3034
3035 /**
3036 * Possibly initiates an orderly shutdown in which previously
3037 * submitted tasks are executed, but no new tasks will be
3038 * accepted. Invocation has no effect on execution state if this
3039 * is the {@link #commonPool()}, and no additional effect if
3040 * already shut down. Tasks that are in the process of being
3041 * submitted concurrently during the course of this method may or
3042 * may not be rejected.
3043 *
3044 * @throws SecurityException if a security manager exists and
3045 * the caller is not permitted to modify threads
3046 * because it does not hold {@link
3047 * java.lang.RuntimePermission}{@code ("modifyThread")}
3048 */
3049 public void shutdown() {
3050 checkPermission();
3051 tryTerminate(false, true);
3052 }
3053
3054 /**
3055 * Possibly attempts to cancel and/or stop all tasks, and reject
3056 * all subsequently submitted tasks. Invocation has no effect on
3057 * execution state if this is the {@link #commonPool()}, and no
3058 * additional effect if already shut down. Otherwise, tasks that
3059 * are in the process of being submitted or executed concurrently
3060 * during the course of this method may or may not be
3061 * rejected. This method cancels both existing and unexecuted
3062 * tasks, in order to permit termination in the presence of task
3063 * dependencies. So the method always returns an empty list
3064 * (unlike the case for some other Executors).
3065 *
3066 * @return an empty list
3067 * @throws SecurityException if a security manager exists and
3068 * the caller is not permitted to modify threads
3069 * because it does not hold {@link
3070 * java.lang.RuntimePermission}{@code ("modifyThread")}
3071 */
3072 public List<Runnable> shutdownNow() {
3073 checkPermission();
3074 tryTerminate(true, true);
3075 return Collections.emptyList();
3076 }
3077
3078 /**
3079 * Returns {@code true} if all tasks have completed following shut down.
3080 *
3081 * @return {@code true} if all tasks have completed following shut down
3082 */
3083 public boolean isTerminated() {
3084 return (runState & TERMINATED) != 0;
3085 }
3086
3087 /**
3088 * Returns {@code true} if the process of termination has
3089 * commenced but not yet completed. This method may be useful for
3090 * debugging. A return of {@code true} reported a sufficient
3091 * period after shutdown may indicate that submitted tasks have
3092 * ignored or suppressed interruption, or are waiting for I/O,
3093 * causing this executor not to properly terminate. (See the
3094 * advisory notes for class {@link ForkJoinTask} stating that
3095 * tasks should not normally entail blocking operations. But if
3096 * they do, they must abort them on interrupt.)
3097 *
3098 * @return {@code true} if terminating but not yet terminated
3099 */
3100 public boolean isTerminating() {
3101 int rs = runState;
3102 return (rs & STOP) != 0 && (rs & TERMINATED) == 0;
3103 }
3104
3105 /**
3106 * Returns {@code true} if this pool has been shut down.
3107 *
3108 * @return {@code true} if this pool has been shut down
3109 */
3110 public boolean isShutdown() {
3111 return (runState & SHUTDOWN) != 0;
3112 }
3113
3114 /**
3115 * Blocks until all tasks have completed execution after a
3116 * shutdown request, or the timeout occurs, or the current thread
3117 * is interrupted, whichever happens first. Because the {@link
3118 * #commonPool()} never terminates until program shutdown, when
3119 * applied to the common pool, this method is equivalent to {@link
3120 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
3121 *
3122 * @param timeout the maximum time to wait
3123 * @param unit the time unit of the timeout argument
3124 * @return {@code true} if this executor terminated and
3125 * {@code false} if the timeout elapsed before termination
3126 * @throws InterruptedException if interrupted while waiting
3127 */
3128 public boolean awaitTermination(long timeout, TimeUnit unit)
3129 throws InterruptedException {
3130 if (Thread.interrupted())
3131 throw new InterruptedException();
3132 if (this == common) {
3133 awaitQuiescence(timeout, unit);
3134 return false;
3135 }
3136 long nanos = unit.toNanos(timeout);
3137 if (isTerminated())
3138 return true;
3139 if (nanos <= 0L)
3140 return false;
3141 long deadline = System.nanoTime() + nanos;
3142 synchronized (this) {
3143 for (;;) {
3144 if (isTerminated())
3145 return true;
3146 if (nanos <= 0L)
3147 return false;
3148 long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
3149 wait(millis > 0L ? millis : 1L);
3150 nanos = deadline - System.nanoTime();
3151 }
3152 }
3153 }
3154
3155 /**
3156 * If called by a ForkJoinTask operating in this pool, equivalent
3157 * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3158 * waits and/or attempts to assist performing tasks until this
3159 * pool {@link #isQuiescent} or the indicated timeout elapses.
3160 *
3161 * @param timeout the maximum time to wait
3162 * @param unit the time unit of the timeout argument
3163 * @return {@code true} if quiescent; {@code false} if the
3164 * timeout elapsed.
3165 */
3166 public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3167 long nanos = unit.toNanos(timeout);
3168 ForkJoinWorkerThread wt;
3169 Thread thread = Thread.currentThread();
3170 if ((thread instanceof ForkJoinWorkerThread) &&
3171 (wt = (ForkJoinWorkerThread)thread).pool == this) {
3172 helpQuiescePool(wt.workQueue);
3173 return true;
3174 }
3175 long startTime = System.nanoTime();
3176 WorkQueue[] ws;
3177 int r = 0, m;
3178 boolean found = true;
3179 while (!isQuiescent() && (ws = workQueues) != null &&
3180 (m = ws.length - 1) > 0) {
3181 if (!found) {
3182 if ((System.nanoTime() - startTime) > nanos)
3183 return false;
3184 Thread.yield(); // cannot block
3185 }
3186 found = false;
3187 for (int j = (m + 1) << 2; j >= 0; --j) {
3188 ForkJoinTask<?> t; WorkQueue q; int b, k;
3189 if ((k = r++ & m) <= m && k >= 0 && (q = ws[k]) != null &&
3190 (b = q.base) - q.top < 0) {
3191 found = true;
3192 if ((t = q.pollAt(b)) != null)
3193 t.doExec();
3194 break;
3195 }
3196 }
3197 }
3198 return true;
3199 }
3200
3201 /**
3202 * Waits and/or attempts to assist performing tasks indefinitely
3203 * until the {@link #commonPool()} {@link #isQuiescent}.
3204 */
3205 static void quiesceCommonPool() {
3206 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3207 }
3208
3209 /**
3210 * Interface for extending managed parallelism for tasks running
3211 * in {@link ForkJoinPool}s.
3212 *
3213 * <p>A {@code ManagedBlocker} provides two methods. Method
3214 * {@link #isReleasable} must return {@code true} if blocking is
3215 * not necessary. Method {@link #block} blocks the current thread
3216 * if necessary (perhaps internally invoking {@code isReleasable}
3217 * before actually blocking). These actions are performed by any
3218 * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
3219 * The unusual methods in this API accommodate synchronizers that
3220 * may, but don't usually, block for long periods. Similarly, they
3221 * allow more efficient internal handling of cases in which
3222 * additional workers may be, but usually are not, needed to
3223 * ensure sufficient parallelism. Toward this end,
3224 * implementations of method {@code isReleasable} must be amenable
3225 * to repeated invocation.
3226 *
3227 * <p>For example, here is a ManagedBlocker based on a
3228 * ReentrantLock:
3229 * <pre> {@code
3230 * class ManagedLocker implements ManagedBlocker {
3231 * final ReentrantLock lock;
3232 * boolean hasLock = false;
3233 * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3234 * public boolean block() {
3235 * if (!hasLock)
3236 * lock.lock();
3237 * return true;
3238 * }
3239 * public boolean isReleasable() {
3240 * return hasLock || (hasLock = lock.tryLock());
3241 * }
3242 * }}</pre>
3243 *
3244 * <p>Here is a class that possibly blocks waiting for an
3245 * item on a given queue:
3246 * <pre> {@code
3247 * class QueueTaker<E> implements ManagedBlocker {
3248 * final BlockingQueue<E> queue;
3249 * volatile E item = null;
3250 * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3251 * public boolean block() throws InterruptedException {
3252 * if (item == null)
3253 * item = queue.take();
3254 * return true;
3255 * }
3256 * public boolean isReleasable() {
3257 * return item != null || (item = queue.poll()) != null;
3258 * }
3259 * public E getItem() { // call after pool.managedBlock completes
3260 * return item;
3261 * }
3262 * }}</pre>
3263 */
3264 public static interface ManagedBlocker {
3265 /**
3266 * Possibly blocks the current thread, for example waiting for
3267 * a lock or condition.
3268 *
3269 * @return {@code true} if no additional blocking is necessary
3270 * (i.e., if isReleasable would return true)
3271 * @throws InterruptedException if interrupted while waiting
3272 * (the method is not required to do so, but is allowed to)
3273 */
3274 boolean block() throws InterruptedException;
3275
3276 /**
3277 * Returns {@code true} if blocking is unnecessary.
3278 * @return {@code true} if blocking is unnecessary
3279 */
3280 boolean isReleasable();
3281 }
3282
3283 /**
3284 * Runs the given possibly blocking task. When {@linkplain
3285 * ForkJoinTask#inForkJoinPool() running in a ForkJoinPool}, this
3286 * method possibly arranges for a spare thread to be activated if
3287 * necessary to ensure sufficient parallelism while the current
3288 * thread is blocked in {@link ManagedBlocker#block blocker.block()}.
3289 *
3290 * <p>This method repeatedly calls {@code blocker.isReleasable()} and
3291 * {@code blocker.block()} until either method returns {@code true}.
3292 * Every call to {@code blocker.block()} is preceded by a call to
3293 * {@code blocker.isReleasable()} that returned {@code false}.
3294 *
3295 * <p>If not running in a ForkJoinPool, this method is
3296 * behaviorally equivalent to
3297 * <pre> {@code
3298 * while (!blocker.isReleasable())
3299 * if (blocker.block())
3300 * break;}</pre>
3301 *
3302 * If running in a ForkJoinPool, the pool may first be expanded to
3303 * ensure sufficient parallelism available during the call to
3304 * {@code blocker.block()}.
3305 *
3306 * @param blocker the blocker task
3307 * @throws InterruptedException if {@code blocker.block()} did so
3308 */
3309 public static void managedBlock(ManagedBlocker blocker)
3310 throws InterruptedException {
3311 ForkJoinPool p;
3312 ForkJoinWorkerThread wt;
3313 Thread t = Thread.currentThread();
3314 if ((t instanceof ForkJoinWorkerThread) &&
3315 (p = (wt = (ForkJoinWorkerThread)t).pool) != null) {
3316 WorkQueue w = wt.workQueue;
3317 while (!blocker.isReleasable()) {
3318 if (p.tryCompensate(w)) {
3319 try {
3320 do {} while (!blocker.isReleasable() &&
3321 !blocker.block());
3322 } finally {
3323 U.getAndAddLong(p, CTL, AC_UNIT);
3324 }
3325 break;
3326 }
3327 }
3328 }
3329 else {
3330 do {} while (!blocker.isReleasable() &&
3331 !blocker.block());
3332 }
3333 }
3334
3335 // AbstractExecutorService overrides. These rely on undocumented
3336 // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3337 // implement RunnableFuture.
3338
3339 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3340 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3341 }
3342
3343 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3344 return new ForkJoinTask.AdaptedCallable<T>(callable);
3345 }
3346
3347 // Unsafe mechanics
3348 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
3349 private static final int ABASE;
3350 private static final int ASHIFT;
3351 private static final long CTL;
3352 private static final long RUNSTATE;
3353 private static final long STEALCOUNTER;
3354 private static final long PARKBLOCKER;
3355 private static final long QTOP;
3356 private static final long QLOCK;
3357 private static final long QSCANSTATE;
3358 private static final long QPARKER;
3359 private static final long QCURRENTSTEAL;
3360 private static final long QCURRENTJOIN;
3361
3362 static {
3363 try {
3364 CTL = U.objectFieldOffset
3365 (ForkJoinPool.class.getDeclaredField("ctl"));
3366 RUNSTATE = U.objectFieldOffset
3367 (ForkJoinPool.class.getDeclaredField("runState"));
3368 STEALCOUNTER = U.objectFieldOffset
3369 (ForkJoinPool.class.getDeclaredField("stealCounter"));
3370
3371 PARKBLOCKER = U.objectFieldOffset
3372 (Thread.class.getDeclaredField("parkBlocker"));
3373
3374 QTOP = U.objectFieldOffset
3375 (WorkQueue.class.getDeclaredField("top"));
3376 QLOCK = U.objectFieldOffset
3377 (WorkQueue.class.getDeclaredField("qlock"));
3378 QSCANSTATE = U.objectFieldOffset
3379 (WorkQueue.class.getDeclaredField("scanState"));
3380 QPARKER = U.objectFieldOffset
3381 (WorkQueue.class.getDeclaredField("parker"));
3382 QCURRENTSTEAL = U.objectFieldOffset
3383 (WorkQueue.class.getDeclaredField("currentSteal"));
3384 QCURRENTJOIN = U.objectFieldOffset
3385 (WorkQueue.class.getDeclaredField("currentJoin"));
3386
3387 ABASE = U.arrayBaseOffset(ForkJoinTask[].class);
3388 int scale = U.arrayIndexScale(ForkJoinTask[].class);
3389 if ((scale & (scale - 1)) != 0)
3390 throw new Error("array index scale not a power of two");
3391 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3392 } catch (ReflectiveOperationException e) {
3393 throw new Error(e);
3394 }
3395
3396 commonMaxSpares = DEFAULT_COMMON_MAX_SPARES;
3397 defaultForkJoinWorkerThreadFactory =
3398 new DefaultForkJoinWorkerThreadFactory();
3399 modifyThreadPermission = new RuntimePermission("modifyThread");
3400
3401 common = java.security.AccessController.doPrivileged
3402 (new java.security.PrivilegedAction<ForkJoinPool>() {
3403 public ForkJoinPool run() { return makeCommonPool(); }});
3404 int par = common.config & SMASK; // report 1 even if threads disabled
3405 commonParallelism = par > 0 ? par : 1;
3406 }
3407
3408 /**
3409 * Creates and returns the common pool, respecting user settings
3410 * specified via system properties.
3411 */
3412 private static ForkJoinPool makeCommonPool() {
3413 int parallelism = -1;
3414 ForkJoinWorkerThreadFactory factory = null;
3415 UncaughtExceptionHandler handler = null;
3416 try { // ignore exceptions in accessing/parsing properties
3417 String pp = System.getProperty
3418 ("java.util.concurrent.ForkJoinPool.common.parallelism");
3419 String fp = System.getProperty
3420 ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3421 String hp = System.getProperty
3422 ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3423 String mp = System.getProperty
3424 ("java.util.concurrent.ForkJoinPool.common.maximumSpares");
3425 if (pp != null)
3426 parallelism = Integer.parseInt(pp);
3427 if (fp != null)
3428 factory = ((ForkJoinWorkerThreadFactory)ClassLoader.
3429 getSystemClassLoader().loadClass(fp).newInstance());
3430 if (hp != null)
3431 handler = ((UncaughtExceptionHandler)ClassLoader.
3432 getSystemClassLoader().loadClass(hp).newInstance());
3433 if (mp != null)
3434 commonMaxSpares = Integer.parseInt(mp);
3435 } catch (Exception ignore) {
3436 }
3437 if (factory == null) {
3438 if (System.getSecurityManager() == null)
3439 factory = defaultForkJoinWorkerThreadFactory;
3440 else // use security-managed default
3441 factory = new InnocuousForkJoinWorkerThreadFactory();
3442 }
3443 if (parallelism < 0 && // default 1 less than #cores
3444 (parallelism = Runtime.getRuntime().availableProcessors() - 1) <= 0)
3445 parallelism = 1;
3446 if (parallelism > MAX_CAP)
3447 parallelism = MAX_CAP;
3448 return new ForkJoinPool(parallelism, factory, handler, LIFO_QUEUE,
3449 "ForkJoinPool.commonPool-worker-");
3450 }
3451
3452 /**
3453 * Factory for innocuous worker threads
3454 */
3455 static final class InnocuousForkJoinWorkerThreadFactory
3456 implements ForkJoinWorkerThreadFactory {
3457
3458 /**
3459 * An ACC to restrict permissions for the factory itself.
3460 * The constructed workers have no permissions set.
3461 */
3462 private static final AccessControlContext innocuousAcc;
3463 static {
3464 Permissions innocuousPerms = new Permissions();
3465 innocuousPerms.add(modifyThreadPermission);
3466 innocuousPerms.add(new RuntimePermission(
3467 "enableContextClassLoaderOverride"));
3468 innocuousPerms.add(new RuntimePermission(
3469 "modifyThreadGroup"));
3470 innocuousAcc = new AccessControlContext(new ProtectionDomain[] {
3471 new ProtectionDomain(null, innocuousPerms)
3472 });
3473 }
3474
3475 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
3476 return java.security.AccessController.doPrivileged(
3477 new java.security.PrivilegedAction<ForkJoinWorkerThread>() {
3478 public ForkJoinWorkerThread run() {
3479 return new ForkJoinWorkerThread.
3480 InnocuousForkJoinWorkerThread(pool);
3481 }}, innocuousAcc);
3482 }
3483 }
3484
3485 }