ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.241
Committed: Mon Apr 20 10:49:01 2015 UTC (9 years, 1 month ago) by dl
Branch: MAIN
Changes since 1.240: +6 -3 lines
Log Message:
Strengthen ordering pending further diagnosis of putOrderedInt

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.lang.Thread.UncaughtExceptionHandler;
10 import java.security.AccessControlContext;
11 import java.security.Permissions;
12 import java.security.ProtectionDomain;
13 import java.util.ArrayList;
14 import java.util.Arrays;
15 import java.util.Collection;
16 import java.util.Collections;
17 import java.util.List;
18 import java.util.concurrent.atomic.AtomicLong;
19
20 /**
21 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
22 * A {@code ForkJoinPool} provides the entry point for submissions
23 * from non-{@code ForkJoinTask} clients, as well as management and
24 * monitoring operations.
25 *
26 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
27 * ExecutorService} mainly by virtue of employing
28 * <em>work-stealing</em>: all threads in the pool attempt to find and
29 * execute tasks submitted to the pool and/or created by other active
30 * tasks (eventually blocking waiting for work if none exist). This
31 * enables efficient processing when most tasks spawn other subtasks
32 * (as do most {@code ForkJoinTask}s), as well as when many small
33 * tasks are submitted to the pool from external clients. Especially
34 * when setting <em>asyncMode</em> to true in constructors, {@code
35 * ForkJoinPool}s may also be appropriate for use with event-style
36 * tasks that are never joined.
37 *
38 * <p>A static {@link #commonPool()} is available and appropriate for
39 * most applications. The common pool is used by any ForkJoinTask that
40 * is not explicitly submitted to a specified pool. Using the common
41 * pool normally reduces resource usage (its threads are slowly
42 * reclaimed during periods of non-use, and reinstated upon subsequent
43 * use).
44 *
45 * <p>For applications that require separate or custom pools, a {@code
46 * ForkJoinPool} may be constructed with a given target parallelism
47 * level; by default, equal to the number of available processors.
48 * The pool attempts to maintain enough active (or available) threads
49 * by dynamically adding, suspending, or resuming internal worker
50 * threads, even if some tasks are stalled waiting to join others.
51 * However, no such adjustments are guaranteed in the face of blocked
52 * I/O or other unmanaged synchronization. The nested {@link
53 * ManagedBlocker} interface enables extension of the kinds of
54 * synchronization accommodated.
55 *
56 * <p>In addition to execution and lifecycle control methods, this
57 * class provides status check methods (for example
58 * {@link #getStealCount}) that are intended to aid in developing,
59 * tuning, and monitoring fork/join applications. Also, method
60 * {@link #toString} returns indications of pool state in a
61 * convenient form for informal monitoring.
62 *
63 * <p>As is the case with other ExecutorServices, there are three
64 * main task execution methods summarized in the following table.
65 * These are designed to be used primarily by clients not already
66 * engaged in fork/join computations in the current pool. The main
67 * forms of these methods accept instances of {@code ForkJoinTask},
68 * but overloaded forms also allow mixed execution of plain {@code
69 * Runnable}- or {@code Callable}- based activities as well. However,
70 * tasks that are already executing in a pool should normally instead
71 * use the within-computation forms listed in the table unless using
72 * async event-style tasks that are not usually joined, in which case
73 * there is little difference among choice of methods.
74 *
75 * <table BORDER CELLPADDING=3 CELLSPACING=1>
76 * <caption>Summary of task execution methods</caption>
77 * <tr>
78 * <td></td>
79 * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
80 * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
81 * </tr>
82 * <tr>
83 * <td> <b>Arrange async execution</b></td>
84 * <td> {@link #execute(ForkJoinTask)}</td>
85 * <td> {@link ForkJoinTask#fork}</td>
86 * </tr>
87 * <tr>
88 * <td> <b>Await and obtain result</b></td>
89 * <td> {@link #invoke(ForkJoinTask)}</td>
90 * <td> {@link ForkJoinTask#invoke}</td>
91 * </tr>
92 * <tr>
93 * <td> <b>Arrange exec and obtain Future</b></td>
94 * <td> {@link #submit(ForkJoinTask)}</td>
95 * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
96 * </tr>
97 * </table>
98 *
99 * <p>The common pool is by default constructed with default
100 * parameters, but these may be controlled by setting three
101 * {@linkplain System#getProperty system properties}:
102 * <ul>
103 * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
104 * - the parallelism level, a non-negative integer
105 * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
106 * - the class name of a {@link ForkJoinWorkerThreadFactory}
107 * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
108 * - the class name of a {@link UncaughtExceptionHandler}
109 * <li>{@code java.util.concurrent.ForkJoinPool.common.maximumSpares}
110 * - the maximum number of allowed extra threads to maintain target
111 * parallelism (default 256).
112 * </ul>
113 * If a {@link SecurityManager} is present and no factory is
114 * specified, then the default pool uses a factory supplying
115 * threads that have no {@link Permissions} enabled.
116 * The system class loader is used to load these classes.
117 * Upon any error in establishing these settings, default parameters
118 * are used. It is possible to disable or limit the use of threads in
119 * the common pool by setting the parallelism property to zero, and/or
120 * using a factory that may return {@code null}. However doing so may
121 * cause unjoined tasks to never be executed.
122 *
123 * <p><b>Implementation notes</b>: This implementation restricts the
124 * maximum number of running threads to 32767. Attempts to create
125 * pools with greater than the maximum number result in
126 * {@code IllegalArgumentException}.
127 *
128 * <p>This implementation rejects submitted tasks (that is, by throwing
129 * {@link RejectedExecutionException}) only when the pool is shut down
130 * or internal resources have been exhausted.
131 *
132 * @since 1.7
133 * @author Doug Lea
134 */
135 @sun.misc.Contended
136 public class ForkJoinPool extends AbstractExecutorService {
137
138 /*
139 * Implementation Overview
140 *
141 * This class and its nested classes provide the main
142 * functionality and control for a set of worker threads:
143 * Submissions from non-FJ threads enter into submission queues.
144 * Workers take these tasks and typically split them into subtasks
145 * that may be stolen by other workers. Preference rules give
146 * first priority to processing tasks from their own queues (LIFO
147 * or FIFO, depending on mode), then to randomized FIFO steals of
148 * tasks in other queues. This framework began as vehicle for
149 * supporting tree-structured parallelism using work-stealing.
150 * Over time, its scalability advantages led to extensions and
151 * changes to better support more diverse usage contexts. Because
152 * most internal methods and nested classes are interrelated,
153 * their main rationale and descriptions are presented here;
154 * individual methods and nested classes contain only brief
155 * comments about details.
156 *
157 * WorkQueues
158 * ==========
159 *
160 * Most operations occur within work-stealing queues (in nested
161 * class WorkQueue). These are special forms of Deques that
162 * support only three of the four possible end-operations -- push,
163 * pop, and poll (aka steal), under the further constraints that
164 * push and pop are called only from the owning thread (or, as
165 * extended here, under a lock), while poll may be called from
166 * other threads. (If you are unfamiliar with them, you probably
167 * want to read Herlihy and Shavit's book "The Art of
168 * Multiprocessor programming", chapter 16 describing these in
169 * more detail before proceeding.) The main work-stealing queue
170 * design is roughly similar to those in the papers "Dynamic
171 * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
172 * (http://research.sun.com/scalable/pubs/index.html) and
173 * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
174 * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
175 * The main differences ultimately stem from GC requirements that
176 * we null out taken slots as soon as we can, to maintain as small
177 * a footprint as possible even in programs generating huge
178 * numbers of tasks. To accomplish this, we shift the CAS
179 * arbitrating pop vs poll (steal) from being on the indices
180 * ("base" and "top") to the slots themselves.
181 *
182 * Adding tasks then takes the form of a classic array push(task):
183 * q.array[q.top] = task; ++q.top;
184 *
185 * (The actual code needs to null-check and size-check the array,
186 * properly fence the accesses, and possibly signal waiting
187 * workers to start scanning -- see below.) Both a successful pop
188 * and poll mainly entail a CAS of a slot from non-null to null.
189 *
190 * The pop operation (always performed by owner) is:
191 * if ((base != top) and
192 * (the task at top slot is not null) and
193 * (CAS slot to null))
194 * decrement top and return task;
195 *
196 * And the poll operation (usually by a stealer) is
197 * if ((base != top) and
198 * (the task at base slot is not null) and
199 * (base has not changed) and
200 * (CAS slot to null))
201 * increment base and return task;
202 *
203 * Because we rely on CASes of references, we do not need tag bits
204 * on base or top. They are simple ints as used in any circular
205 * array-based queue (see for example ArrayDeque). Updates to the
206 * indices guarantee that top == base means the queue is empty,
207 * but otherwise may err on the side of possibly making the queue
208 * appear nonempty when a push, pop, or poll have not fully
209 * committed. (Method isEmpty() checks the case of a partially
210 * completed removal of the last element.) Because of this, the
211 * poll operation, considered individually, is not wait-free. One
212 * thief cannot successfully continue until another in-progress
213 * one (or, if previously empty, a push) completes. However, in
214 * the aggregate, we ensure at least probabilistic
215 * non-blockingness. If an attempted steal fails, a thief always
216 * chooses a different random victim target to try next. So, in
217 * order for one thief to progress, it suffices for any
218 * in-progress poll or new push on any empty queue to
219 * complete. (This is why we normally use method pollAt and its
220 * variants that try once at the apparent base index, else
221 * consider alternative actions, rather than method poll, which
222 * retries.)
223 *
224 * This approach also enables support of a user mode in which
225 * local task processing is in FIFO, not LIFO order, simply by
226 * using poll rather than pop. This can be useful in
227 * message-passing frameworks in which tasks are never joined.
228 * However neither mode considers affinities, loads, cache
229 * localities, etc, so rarely provide the best possible
230 * performance on a given machine, but portably provide good
231 * throughput by averaging over these factors. Further, even if
232 * we did try to use such information, we do not usually have a
233 * basis for exploiting it. For example, some sets of tasks
234 * profit from cache affinities, but others are harmed by cache
235 * pollution effects. Additionally, even though it requires
236 * scanning, long-term throughput is often best using random
237 * selection rather than directed selection policies, so cheap
238 * randomization of sufficient quality is used whenever
239 * applicable. Various Marsaglia XorShifts (some with different
240 * shift constants) are inlined at use points.
241 *
242 * WorkQueues are also used in a similar way for tasks submitted
243 * to the pool. We cannot mix these tasks in the same queues used
244 * by workers. Instead, we randomly associate submission queues
245 * with submitting threads, using a form of hashing. The
246 * ThreadLocalRandom probe value serves as a hash code for
247 * choosing existing queues, and may be randomly repositioned upon
248 * contention with other submitters. In essence, submitters act
249 * like workers except that they are restricted to executing local
250 * tasks that they submitted (or in the case of CountedCompleters,
251 * others with the same root task). Insertion of tasks in shared
252 * mode requires a lock (mainly to protect in the case of
253 * resizing) but we use only a simple spinlock (using field
254 * qlock), because submitters encountering a busy queue move on to
255 * try or create other queues -- they block only when creating and
256 * registering new queues. Additionally, "qlock" saturates to an
257 * unlockable value (-1) at shutdown. Unlocking still can be and
258 * is performed by cheaper ordered writes of "qlock" in successful
259 * cases, but uses CAS in unsuccessful cases.
260 *
261 * Management
262 * ==========
263 *
264 * The main throughput advantages of work-stealing stem from
265 * decentralized control -- workers mostly take tasks from
266 * themselves or each other, at rates that can exceed a billion
267 * per second. The pool itself creates, activates (enables
268 * scanning for and running tasks), deactivates, blocks, and
269 * terminates threads, all with minimal central information.
270 * There are only a few properties that we can globally track or
271 * maintain, so we pack them into a small number of variables,
272 * often maintaining atomicity without blocking or locking.
273 * Nearly all essentially atomic control state is held in two
274 * volatile variables that are by far most often read (not
275 * written) as status and consistency checks. (Also, field
276 * "config" holds unchanging configuration state.)
277 *
278 * Field "ctl" contains 64 bits holding information needed to
279 * atomically decide to add, inactivate, enqueue (on an event
280 * queue), dequeue, and/or re-activate workers. To enable this
281 * packing, we restrict maximum parallelism to (1<<15)-1 (which is
282 * far in excess of normal operating range) to allow ids, counts,
283 * and their negations (used for thresholding) to fit into 16bit
284 * subfields.
285 *
286 * Field "runState" holds lockable state bits (STARTED, STOP, etc)
287 * also protecting updates to the workQueues array. When used as
288 * a lock, it is normally held only for a few instructions (the
289 * only exceptions are one-time array initialization and uncommon
290 * resizing), so is nearly always available after at most a brief
291 * spin. But to be extra-cautious, after spinning, method
292 * awaitRunStateLock (called only if an initial CAS fails), uses a
293 * wait/notify mechanics on a builtin monitor to block when
294 * (rarely) needed. This would be a terrible idea for a highly
295 * contended lock, but most pools run without the lock ever
296 * contending after the spin limit, so this works fine as a more
297 * conservative alternative. Because we don't otherwise have an
298 * internal Object to use as a monitor, the "stealCounter" (an
299 * AtomicLong) is used when available (it too must be lazily
300 * initialized; see externalSubmit).
301 *
302 * Usages of "runState" vs "ctl" interact in only one case:
303 * deciding to add a worker thread (see tryAddWorker), in which
304 * case the ctl CAS is performed while the lock is held.
305 *
306 * Recording WorkQueues. WorkQueues are recorded in the
307 * "workQueues" array. The array is created upon first use (see
308 * externalSubmit) and expanded if necessary. Updates to the
309 * array while recording new workers and unrecording terminated
310 * ones are protected from each other by the runState lock, but
311 * the array is otherwise concurrently readable, and accessed
312 * directly. We also ensure that reads of the array reference
313 * itself never become too stale. To simplify index-based
314 * operations, the array size is always a power of two, and all
315 * readers must tolerate null slots. Worker queues are at odd
316 * indices. Shared (submission) queues are at even indices, up to
317 * a maximum of 64 slots, to limit growth even if array needs to
318 * expand to add more workers. Grouping them together in this way
319 * simplifies and speeds up task scanning.
320 *
321 * All worker thread creation is on-demand, triggered by task
322 * submissions, replacement of terminated workers, and/or
323 * compensation for blocked workers. However, all other support
324 * code is set up to work with other policies. To ensure that we
325 * do not hold on to worker references that would prevent GC, All
326 * accesses to workQueues are via indices into the workQueues
327 * array (which is one source of some of the messy code
328 * constructions here). In essence, the workQueues array serves as
329 * a weak reference mechanism. Thus for example the stack top
330 * subfield of ctl stores indices, not references.
331 *
332 * Queuing Idle Workers. Unlike HPC work-stealing frameworks, we
333 * cannot let workers spin indefinitely scanning for tasks when
334 * none can be found immediately, and we cannot start/resume
335 * workers unless there appear to be tasks available. On the
336 * other hand, we must quickly prod them into action when new
337 * tasks are submitted or generated. In many usages, ramp-up time
338 * to activate workers is the main limiting factor in overall
339 * performance, which is compounded at program start-up by JIT
340 * compilation and allocation. So we streamline this as much as
341 * possible.
342 *
343 * The "ctl" field atomically maintains active and total worker
344 * counts as well as a queue to place waiting threads so they can
345 * be located for signalling. Active counts also play the role of
346 * quiescence indicators, so are decremented when workers believe
347 * that there are no more tasks to execute. The "queue" is
348 * actually a form of Treiber stack. A stack is ideal for
349 * activating threads in most-recently used order. This improves
350 * performance and locality, outweighing the disadvantages of
351 * being prone to contention and inability to release a worker
352 * unless it is topmost on stack. We park/unpark workers after
353 * pushing on the idle worker stack (represented by the lower
354 * 32bit subfield of ctl) when they cannot find work. The top
355 * stack state holds the value of the "scanState" field of the
356 * worker: its index and status, plus a version counter that, in
357 * addition to the count subfields (also serving as version
358 * stamps) provide protection against Treiber stack ABA effects.
359 *
360 * Field scanState is used by both workers and the pool to manage
361 * and track whether a worker is INACTIVE (possibly blocked
362 * waiting for a signal), or SCANNING for tasks (when neither hold
363 * it is busy running tasks). When a worker is inactivated, its
364 * scanState field is set, and is prevented from executing tasks,
365 * even though it must scan once for them to avoid queuing
366 * races. Note that scanState updates lag queue CAS releases so
367 * usage requires care. When queued, the lower 16 bits of
368 * scanState must hold its pool index. So we place the index there
369 * upon initialization (see registerWorker) and otherwise keep it
370 * there or restore it when necessary.
371 *
372 * Memory ordering. See "Correct and Efficient Work-Stealing for
373 * Weak Memory Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
374 * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
375 * analysis of memory ordering requirements in work-stealing
376 * algorithms similar to the one used here. We usually need
377 * stronger than minimal ordering because we must sometimes signal
378 * workers, requiring Dekker-like full-fences to avoid lost
379 * signals. Arranging for enough ordering without expensive
380 * over-fencing requires tradeoffs among the supported means of
381 * expressing access constraints. The most central operations,
382 * taking from queues and updating ctl state, require full-fence
383 * CAS. Array slots are read using the emulation of volatiles
384 * provided by Unsafe. Access from other threads to WorkQueue
385 * base, top, and array requires a volatile load of the first of
386 * any of these read. We use the convention of declaring the
387 * "base" index volatile, and always read it before other fields.
388 * The owner thread must ensure ordered updates, so writes use
389 * ordered intrinsics unless they can piggyback on those for other
390 * writes. Similar conventions and rationales hold for other
391 * WorkQueue fields (such as "currentSteal") that are only written
392 * by owners but observed by others.
393 *
394 * Creating workers. To create a worker, we pre-increment total
395 * count (serving as a reservation), and attempt to construct a
396 * ForkJoinWorkerThread via its factory. Upon construction, the
397 * new thread invokes registerWorker, where it constructs a
398 * WorkQueue and is assigned an index in the workQueues array
399 * (expanding the array if necessary). The thread is then
400 * started. Upon any exception across these steps, or null return
401 * from factory, deregisterWorker adjusts counts and records
402 * accordingly. If a null return, the pool continues running with
403 * fewer than the target number workers. If exceptional, the
404 * exception is propagated, generally to some external caller.
405 * Worker index assignment avoids the bias in scanning that would
406 * occur if entries were sequentially packed starting at the front
407 * of the workQueues array. We treat the array as a simple
408 * power-of-two hash table, expanding as needed. The seedIndex
409 * increment ensures no collisions until a resize is needed or a
410 * worker is deregistered and replaced, and thereafter keeps
411 * probability of collision low. We cannot use
412 * ThreadLocalRandom.getProbe() for similar purposes here because
413 * the thread has not started yet, but do so for creating
414 * submission queues for existing external threads.
415 *
416 * Deactivation and waiting. Queuing encounters several intrinsic
417 * races; most notably that a task-producing thread can miss
418 * seeing (and signalling) another thread that gave up looking for
419 * work but has not yet entered the wait queue. When a worker
420 * cannot find a task to steal, it deactivates and enqueues. Very
421 * often, the lack of tasks is transient due to GC or OS
422 * scheduling. To reduce false-alarm deactivation, scanners
423 * compute checksums of queue states during sweeps. (The
424 * stability checks used here and elsewhere are probabilistic
425 * variants of snapshot techniques -- see Herlihy & Shavit.)
426 * Workers give up and try to deactivate only after the sum is
427 * stable across scans. Further, to avoid missed signals, they
428 * repeat this scanning process after successful enqueuing until
429 * again stable. In this state, the worker cannot take/run a task
430 * it sees until it is released from the queue, so the worker
431 * itself eventually tries to release itself or any successor (see
432 * tryRelease). Otherwise, upon an empty scan, a deactivated
433 * worker uses an adaptive local spin construction (see awaitWork)
434 * before blocking (via park). Note the unusual conventions about
435 * Thread.interrupts surrounding parking and other blocking:
436 * Because interrupts are used solely to alert threads to check
437 * termination, which is checked anyway upon blocking, we clear
438 * status (using Thread.interrupted) before any call to park, so
439 * that park does not immediately return due to status being set
440 * via some other unrelated call to interrupt in user code.
441 *
442 * Signalling and activation. Workers are created or activated
443 * only when there appears to be at least one task they might be
444 * able to find and execute. Upon push (either by a worker or an
445 * external submission) to a previously (possibly) empty queue,
446 * workers are signalled if idle, or created if fewer exist than
447 * the given parallelism level. These primary signals are
448 * buttressed by others whenever other threads remove a task from
449 * a queue and notice that there are other tasks there as well.
450 * On most platforms, signalling (unpark) overhead time is
451 * noticeably long, and the time between signalling a thread and
452 * it actually making progress can be very noticeably long, so it
453 * is worth offloading these delays from critical paths as much as
454 * possible. Also, because inactive workers are often rescanning
455 * or spinning rather than blocking, we set and clear the "parker"
456 * field of WorkQueues to reduce unnecessary calls to unpark.
457 * (This requires a secondary recheck to avoid missed signals.)
458 *
459 * Trimming workers. To release resources after periods of lack of
460 * use, a worker starting to wait when the pool is quiescent will
461 * time out and terminate (see awaitWork) if the pool has remained
462 * quiescent for period IDLE_TIMEOUT, increasing the period as the
463 * number of threads decreases, eventually removing all workers.
464 * Also, when more than two spare threads exist, excess threads
465 * are immediately terminated at the next quiescent point.
466 * (Padding by two avoids hysteresis.)
467 *
468 * Shutdown and Termination. A call to shutdownNow invokes
469 * tryTerminate to atomically set a runState bit. The calling
470 * thread, as well as every other worker thereafter terminating,
471 * helps terminate others by setting their (qlock) status,
472 * cancelling their unprocessed tasks, and waking them up, doing
473 * so repeatedly until stable (but with a loop bounded by the
474 * number of workers). Calls to non-abrupt shutdown() preface
475 * this by checking whether termination should commence. This
476 * relies primarily on the active count bits of "ctl" maintaining
477 * consensus -- tryTerminate is called from awaitWork whenever
478 * quiescent. However, external submitters do not take part in
479 * this consensus. So, tryTerminate sweeps through queues (until
480 * stable) to ensure lack of in-flight submissions and workers
481 * about to process them before triggering the "STOP" phase of
482 * termination. (Note: there is an intrinsic conflict if
483 * helpQuiescePool is called when shutdown is enabled. Both wait
484 * for quiescence, but tryTerminate is biased to not trigger until
485 * helpQuiescePool completes.)
486 *
487 *
488 * Joining Tasks
489 * =============
490 *
491 * Any of several actions may be taken when one worker is waiting
492 * to join a task stolen (or always held) by another. Because we
493 * are multiplexing many tasks on to a pool of workers, we can't
494 * just let them block (as in Thread.join). We also cannot just
495 * reassign the joiner's run-time stack with another and replace
496 * it later, which would be a form of "continuation", that even if
497 * possible is not necessarily a good idea since we may need both
498 * an unblocked task and its continuation to progress. Instead we
499 * combine two tactics:
500 *
501 * Helping: Arranging for the joiner to execute some task that it
502 * would be running if the steal had not occurred.
503 *
504 * Compensating: Unless there are already enough live threads,
505 * method tryCompensate() may create or re-activate a spare
506 * thread to compensate for blocked joiners until they unblock.
507 *
508 * A third form (implemented in tryRemoveAndExec) amounts to
509 * helping a hypothetical compensator: If we can readily tell that
510 * a possible action of a compensator is to steal and execute the
511 * task being joined, the joining thread can do so directly,
512 * without the need for a compensation thread (although at the
513 * expense of larger run-time stacks, but the tradeoff is
514 * typically worthwhile).
515 *
516 * The ManagedBlocker extension API can't use helping so relies
517 * only on compensation in method awaitBlocker.
518 *
519 * The algorithm in helpStealer entails a form of "linear
520 * helping". Each worker records (in field currentSteal) the most
521 * recent task it stole from some other worker (or a submission).
522 * It also records (in field currentJoin) the task it is currently
523 * actively joining. Method helpStealer uses these markers to try
524 * to find a worker to help (i.e., steal back a task from and
525 * execute it) that could hasten completion of the actively joined
526 * task. Thus, the joiner executes a task that would be on its
527 * own local deque had the to-be-joined task not been stolen. This
528 * is a conservative variant of the approach described in Wagner &
529 * Calder "Leapfrogging: a portable technique for implementing
530 * efficient futures" SIGPLAN Notices, 1993
531 * (http://portal.acm.org/citation.cfm?id=155354). It differs in
532 * that: (1) We only maintain dependency links across workers upon
533 * steals, rather than use per-task bookkeeping. This sometimes
534 * requires a linear scan of workQueues array to locate stealers,
535 * but often doesn't because stealers leave hints (that may become
536 * stale/wrong) of where to locate them. It is only a hint
537 * because a worker might have had multiple steals and the hint
538 * records only one of them (usually the most current). Hinting
539 * isolates cost to when it is needed, rather than adding to
540 * per-task overhead. (2) It is "shallow", ignoring nesting and
541 * potentially cyclic mutual steals. (3) It is intentionally
542 * racy: field currentJoin is updated only while actively joining,
543 * which means that we miss links in the chain during long-lived
544 * tasks, GC stalls etc (which is OK since blocking in such cases
545 * is usually a good idea). (4) We bound the number of attempts
546 * to find work using checksums and fall back to suspending the
547 * worker and if necessary replacing it with another.
548 *
549 * Helping actions for CountedCompleters do not require tracking
550 * currentJoins: Method helpComplete takes and executes any task
551 * with the same root as the task being waited on (preferring
552 * local pops to non-local polls). However, this still entails
553 * some traversal of completer chains, so is less efficient than
554 * using CountedCompleters without explicit joins.
555 *
556 * Compensation does not aim to keep exactly the target
557 * parallelism number of unblocked threads running at any given
558 * time. Some previous versions of this class employed immediate
559 * compensations for any blocked join. However, in practice, the
560 * vast majority of blockages are transient byproducts of GC and
561 * other JVM or OS activities that are made worse by replacement.
562 * Currently, compensation is attempted only after validating that
563 * all purportedly active threads are processing tasks by checking
564 * field WorkQueue.scanState, which eliminates most false
565 * positives. Also, compensation is bypassed (tolerating fewer
566 * threads) in the most common case in which it is rarely
567 * beneficial: when a worker with an empty queue (thus no
568 * continuation tasks) blocks on a join and there still remain
569 * enough threads to ensure liveness.
570 *
571 * The compensation mechanism may be bounded. Bounds for the
572 * commonPool (see commonMaxSpares) better enable JVMs to cope
573 * with programming errors and abuse before running out of
574 * resources to do so. In other cases, users may supply factories
575 * that limit thread construction. The effects of bounding in this
576 * pool (like all others) is imprecise. Total worker counts are
577 * decremented when threads deregister, not when they exit and
578 * resources are reclaimed by the JVM and OS. So the number of
579 * simultaneously live threads may transiently exceed bounds.
580 *
581 * Common Pool
582 * ===========
583 *
584 * The static common pool always exists after static
585 * initialization. Since it (or any other created pool) need
586 * never be used, we minimize initial construction overhead and
587 * footprint to the setup of about a dozen fields, with no nested
588 * allocation. Most bootstrapping occurs within method
589 * externalSubmit during the first submission to the pool.
590 *
591 * When external threads submit to the common pool, they can
592 * perform subtask processing (see externalHelpComplete and
593 * related methods) upon joins. This caller-helps policy makes it
594 * sensible to set common pool parallelism level to one (or more)
595 * less than the total number of available cores, or even zero for
596 * pure caller-runs. We do not need to record whether external
597 * submissions are to the common pool -- if not, external help
598 * methods return quickly. These submitters would otherwise be
599 * blocked waiting for completion, so the extra effort (with
600 * liberally sprinkled task status checks) in inapplicable cases
601 * amounts to an odd form of limited spin-wait before blocking in
602 * ForkJoinTask.join.
603 *
604 * As a more appropriate default in managed environments, unless
605 * overridden by system properties, we use workers of subclass
606 * InnocuousForkJoinWorkerThread when there is a SecurityManager
607 * present. These workers have no permissions set, do not belong
608 * to any user-defined ThreadGroup, and erase all ThreadLocals
609 * after executing any top-level task (see WorkQueue.runTask).
610 * The associated mechanics (mainly in ForkJoinWorkerThread) may
611 * be JVM-dependent and must access particular Thread class fields
612 * to achieve this effect.
613 *
614 * Style notes
615 * ===========
616 *
617 * Memory ordering relies mainly on Unsafe intrinsics that carry
618 * the further responsibility of explicitly performing null- and
619 * bounds- checks otherwise carried out implicitly by JVMs. This
620 * can be awkward and ugly, but also reflects the need to control
621 * outcomes across the unusual cases that arise in very racy code
622 * with very few invariants. So these explicit checks would exist
623 * in some form anyway. All fields are read into locals before
624 * use, and null-checked if they are references. This is usually
625 * done in a "C"-like style of listing declarations at the heads
626 * of methods or blocks, and using inline assignments on first
627 * encounter. Array bounds-checks are usually performed by
628 * masking with array.length-1, which relies on the invariant that
629 * these arrays are created with positive lengths, which is itself
630 * paranoically checked. Nearly all explicit checks lead to
631 * bypass/return, not exception throws, because they may
632 * legitimately arise due to cancellation/revocation during
633 * shutdown.
634 *
635 * There is a lot of representation-level coupling among classes
636 * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
637 * fields of WorkQueue maintain data structures managed by
638 * ForkJoinPool, so are directly accessed. There is little point
639 * trying to reduce this, since any associated future changes in
640 * representations will need to be accompanied by algorithmic
641 * changes anyway. Several methods intrinsically sprawl because
642 * they must accumulate sets of consistent reads of fields held in
643 * local variables. There are also other coding oddities
644 * (including several unnecessary-looking hoisted null checks)
645 * that help some methods perform reasonably even when interpreted
646 * (not compiled).
647 *
648 * The order of declarations in this file is (with a few exceptions):
649 * (1) Static utility functions
650 * (2) Nested (static) classes
651 * (3) Static fields
652 * (4) Fields, along with constants used when unpacking some of them
653 * (5) Internal control methods
654 * (6) Callbacks and other support for ForkJoinTask methods
655 * (7) Exported methods
656 * (8) Static block initializing statics in minimally dependent order
657 */
658
659 // Static utilities
660
661 /**
662 * If there is a security manager, makes sure caller has
663 * permission to modify threads.
664 */
665 private static void checkPermission() {
666 SecurityManager security = System.getSecurityManager();
667 if (security != null)
668 security.checkPermission(modifyThreadPermission);
669 }
670
671 // Nested classes
672
673 /**
674 * Factory for creating new {@link ForkJoinWorkerThread}s.
675 * A {@code ForkJoinWorkerThreadFactory} must be defined and used
676 * for {@code ForkJoinWorkerThread} subclasses that extend base
677 * functionality or initialize threads with different contexts.
678 */
679 public static interface ForkJoinWorkerThreadFactory {
680 /**
681 * Returns a new worker thread operating in the given pool.
682 *
683 * @param pool the pool this thread works in
684 * @return the new worker thread
685 * @throws NullPointerException if the pool is null
686 */
687 public ForkJoinWorkerThread newThread(ForkJoinPool pool);
688 }
689
690 /**
691 * Default ForkJoinWorkerThreadFactory implementation; creates a
692 * new ForkJoinWorkerThread.
693 */
694 static final class DefaultForkJoinWorkerThreadFactory
695 implements ForkJoinWorkerThreadFactory {
696 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
697 return new ForkJoinWorkerThread(pool);
698 }
699 }
700
701 /**
702 * Class for artificial tasks that are used to replace the target
703 * of local joins if they are removed from an interior queue slot
704 * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
705 * actually do anything beyond having a unique identity.
706 */
707 static final class EmptyTask extends ForkJoinTask<Void> {
708 private static final long serialVersionUID = -7721805057305804111L;
709 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
710 public final Void getRawResult() { return null; }
711 public final void setRawResult(Void x) {}
712 public final boolean exec() { return true; }
713 }
714
715 // Constants shared across ForkJoinPool and WorkQueue
716
717 // Bounds
718 static final int SMASK = 0xffff; // short bits == max index
719 static final int MAX_CAP = 0x7fff; // max #workers - 1
720 static final int EVENMASK = 0xfffe; // even short bits
721 static final int SQMASK = 0x007e; // max 64 (even) slots
722
723 // Masks and units for WorkQueue.scanState and ctl sp subfield
724 static final int SCANNING = 1; // false when running tasks
725 static final int INACTIVE = 1 << 31; // must be negative
726 static final int SS_SEQ = 1 << 16; // version count
727
728 // Mode bits for ForkJoinPool.config and WorkQueue.config
729 static final int MODE_MASK = 0xffff << 16; // top half of int
730 static final int LIFO_QUEUE = 0;
731 static final int FIFO_QUEUE = 1 << 16;
732 static final int SHARED_QUEUE = 1 << 31; // must be negative
733
734 // This version uses array access methods in anticipation of JDK9 support
735 // that should eliminate their need
736
737 static final ForkJoinTask<?> getAt(ForkJoinTask<?>[] a, int i) {
738 return (ForkJoinTask<?>)U.getObjectVolatile(
739 a, (long)((i << ASHIFT) + ABASE));
740 }
741
742 static final void setAt(ForkJoinTask<?>[] a, int i, ForkJoinTask<?> x) {
743 U.putOrderedObject(a, (long)((i << ASHIFT) + ABASE), x);
744 }
745
746 static final boolean casAt(ForkJoinTask<?>[] a, int i,
747 ForkJoinTask<?> c, ForkJoinTask<?> v) {
748 return U.compareAndSwapObject(
749 a, (long)((i << ASHIFT) + ABASE), c, v);
750 }
751
752 static final ForkJoinTask<?> xchgAt(ForkJoinTask<?>[] a, int i,
753 ForkJoinTask<?> x) {
754 return (ForkJoinTask<?>)U.getAndSetObject(
755 a, (long)((i << ASHIFT) + ABASE), x);
756 }
757
758 /**
759 * Queues supporting work-stealing as well as external task
760 * submission. See above for descriptions and algorithms.
761 * Performance on most platforms is very sensitive to placement of
762 * instances of both WorkQueues and their arrays -- we absolutely
763 * do not want multiple WorkQueue instances or multiple queue
764 * arrays sharing cache lines. The @Contended annotation alerts
765 * JVMs to try to keep instances apart.
766 */
767 @sun.misc.Contended
768 static final class WorkQueue {
769
770 /**
771 * Capacity of work-stealing queue array upon initialization.
772 * Must be a power of two; at least 4, but should be larger to
773 * reduce or eliminate cacheline sharing among queues.
774 * Currently, it is much larger, as a partial workaround for
775 * the fact that JVMs often place arrays in locations that
776 * share GC bookkeeping (especially cardmarks) such that
777 * per-write accesses encounter serious memory contention.
778 */
779 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
780
781 /**
782 * Maximum size for queue arrays. Must be a power of two less
783 * than or equal to 1 << (31 - width of array entry) to ensure
784 * lack of wraparound of index calculations, but defined to a
785 * value a bit less than this to help users trap runaway
786 * programs before saturating systems.
787 */
788 static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
789
790 // Instance fields
791 volatile int scanState; // versioned, <0: inactive; odd:scanning
792 int stackPred; // pool stack (ctl) predecessor
793 int nsteals; // number of steals
794 int hint; // randomization and stealer index hint
795 int config; // pool index and mode
796 volatile int qlock; // 1: locked, < 0: terminate; else 0
797 volatile int base; // index of next slot for poll
798 int top; // index of next slot for push
799 ForkJoinTask<?>[] array; // the elements (initially unallocated)
800 final ForkJoinPool pool; // the containing pool (may be null)
801 final ForkJoinWorkerThread owner; // owning thread or null if shared
802 volatile Thread parker; // == owner during call to park; else null
803 volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
804 volatile ForkJoinTask<?> currentSteal; // mainly used by helpStealer
805
806 // Temporary repeats of array access methods
807
808 static final ForkJoinTask<?> getAt(ForkJoinTask<?>[] a, int i) {
809 return (ForkJoinTask<?>)U.getObjectVolatile(
810 a, (long)((i << ASHIFT) + ABASE));
811 }
812
813 static final void setAt(ForkJoinTask<?>[] a, int i, ForkJoinTask<?> x) {
814 U.putOrderedObject(a, (long)((i << ASHIFT) + ABASE), x);
815 }
816
817 static final boolean casAt(ForkJoinTask<?>[] a, int i,
818 ForkJoinTask<?> c, ForkJoinTask<?> v) {
819 return U.compareAndSwapObject(
820 a, (long)((i << ASHIFT) + ABASE), c, v);
821 }
822
823 static final ForkJoinTask<?> xchgAt(ForkJoinTask<?>[] a, int i,
824 ForkJoinTask<?> x) {
825 return (ForkJoinTask<?>)U.getAndSetObject(
826 a, (long)((i << ASHIFT) + ABASE), x);
827 }
828
829 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner) {
830 this.pool = pool;
831 this.owner = owner;
832 // Place indices in the center of array (that is not yet allocated)
833 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
834 }
835
836 /**
837 * Returns an exportable index (used by ForkJoinWorkerThread).
838 */
839 final int getPoolIndex() {
840 return (config & 0xffff) >>> 1; // ignore odd/even tag bit
841 }
842
843 /**
844 * Returns the approximate number of tasks in the queue.
845 */
846 final int queueSize() {
847 int n = base - top; // non-owner callers must read base first
848 return (n >= 0) ? 0 : -n; // ignore transient negative
849 }
850
851 /**
852 * Provides a more accurate estimate of whether this queue has
853 * any tasks than does queueSize, by checking whether a
854 * near-empty queue has at least one unclaimed task.
855 */
856 final boolean isEmpty() {
857 ForkJoinTask<?>[] a; int n, al, s;
858 return ((n = base - (s = top)) >= 0 ||
859 (n == -1 && // possibly one task
860 ((a = array) == null || (al = a.length) == 0 ||
861 getAt(a, (al - 1) & (s - 1)) == null)));
862 }
863
864 /**
865 * Pushes a task. Call only by owner in unshared queues. (The
866 * shared-queue version is embedded in method externalPush.)
867 *
868 * @param task the task. Caller must ensure non-null.
869 * @throws RejectedExecutionException if array cannot be resized
870 */
871 final void push(ForkJoinTask<?> task) {
872 ForkJoinTask<?>[] a; ForkJoinPool p;
873 if ((a = array) != null) { // ignore if queue removed
874 int b = base, m = a.length - 1, s = top, n;
875 if (m > 0) { // always true, but check required
876 setAt(a, m & s, task);
877 U.putOrderedInt(this, QTOP, s + 1);
878 if ((n = s - b) <= 1) {
879 if ((p = pool) != null)
880 p.signalWork(p.workQueues, this);
881 }
882 else if (n >= m)
883 growArray();
884 }
885 }
886 }
887
888 /**
889 * Initializes or doubles the capacity of array. Call either
890 * by owner or with lock held -- it is OK for base, but not
891 * top, to move while resizings are in progress.
892 */
893 final ForkJoinTask<?>[] growArray() {
894 ForkJoinTask<?>[] oldA = array;
895 int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
896 if (size < INITIAL_QUEUE_CAPACITY || size > MAXIMUM_QUEUE_CAPACITY)
897 throw new RejectedExecutionException("Queue capacity exceeded");
898 int oldMask, t, b;
899 ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
900 if (oldA != null && (oldMask = oldA.length - 1) > 0 &&
901 (t = top) - (b = base) > 0) {
902 int mask = size - 1;
903 do { // emulate poll from old array, push to new array
904 ForkJoinTask<?> x;
905 int oldj = b & oldMask, j = b & mask;
906 if ((x = getAt(oldA, oldj)) != null &&
907 casAt(oldA, oldj, x, null))
908 setAt(a, j, x);
909 } while (++b != t);
910 }
911 return a;
912 }
913
914 /**
915 * Takes next task, if one exists, in LIFO order. Call only
916 * by owner in unshared queues.
917 */
918 final ForkJoinTask<?> pop() {
919 ForkJoinTask<?>[] a; ForkJoinTask<?> t; int al;
920 if ((a = array) != null && (al = a.length) > 0) {
921 for (int s; (s = top - 1) - base >= 0;) {
922 int j = (al - 1) & s;
923 if ((t = getAt(a, j)) == null)
924 break;
925 if (casAt(a, j, t, null)) {
926 U.putOrderedInt(this, QTOP, s);
927 return t;
928 }
929 }
930 }
931 return null;
932 }
933
934 /**
935 * Takes a task in FIFO order if b is base of queue and a task
936 * can be claimed without contention. Specialized versions
937 * appear in ForkJoinPool methods scan and helpStealer.
938 */
939 final ForkJoinTask<?> pollAt(int b) {
940 ForkJoinTask<?> t; ForkJoinTask<?>[] a;
941 if ((a = array) != null) {
942 int al = a.length, j = (al - 1) & b;
943 if (al > 0 && (t = getAt(a, j)) != null &&
944 base == b && casAt(a, j, t, null)) {
945 base = b + 1;
946 return t;
947 }
948 }
949 return null;
950 }
951
952 /**
953 * Takes next task, if one exists, in FIFO order.
954 */
955 final ForkJoinTask<?> poll() {
956 ForkJoinTask<?>[] a; int b, al, j;
957 while ((b = base) - top < 0 && (a = array) != null &&
958 (al = a.length) > 0) {
959 ForkJoinTask<?> t = getAt(a, j = (al - 1) & b);
960 if (base == b) {
961 if (t != null) {
962 if (casAt(a, j, t, null)) {
963 base = b + 1;
964 return t;
965 }
966 }
967 else if (b + 1 == top) // now empty
968 break;
969 }
970 }
971 return null;
972 }
973
974 /**
975 * Takes next task, if one exists, in order specified by mode.
976 */
977 final ForkJoinTask<?> nextLocalTask() {
978 return (config & FIFO_QUEUE) == 0 ? pop() : poll();
979 }
980
981 /**
982 * Returns next task, if one exists, in order specified by mode.
983 */
984 final ForkJoinTask<?> peek() {
985 ForkJoinTask<?>[] a = array; int al;
986 if (a != null && (al = a.length) > 0) {
987 int i = (config & FIFO_QUEUE) == 0 ? top - 1 : base;
988 return getAt(a, (al - 1) & i);
989 }
990 return null;
991 }
992
993 /**
994 * Pops the given task only if it is at the current top.
995 * (A shared version is available only via FJP.tryExternalUnpush)
996 */
997 final boolean tryUnpush(ForkJoinTask<?> t) {
998 ForkJoinTask<?>[] a;
999 if ((a = array) != null) {
1000 int b = base, al = a.length, s = top;
1001 if (s != b && al > 0 &&
1002 casAt(a, (al - 1) & (s - 1), t, null)) {
1003 U.putOrderedInt(this, QTOP, s - 1);
1004 return true;
1005 }
1006 }
1007 return false;
1008 }
1009
1010 /**
1011 * Removes and cancels all known tasks, ignoring any exceptions.
1012 */
1013 final void cancelAll() {
1014 ForkJoinTask<?> t;
1015 if ((t = currentJoin) != null) {
1016 currentJoin = null;
1017 ForkJoinTask.cancelIgnoringExceptions(t);
1018 }
1019 if ((t = currentSteal) != null) {
1020 currentSteal = null;
1021 ForkJoinTask.cancelIgnoringExceptions(t);
1022 }
1023 while ((t = poll()) != null)
1024 ForkJoinTask.cancelIgnoringExceptions(t);
1025 }
1026
1027 // Specialized execution methods
1028
1029 /**
1030 * Polls and runs tasks until empty.
1031 */
1032 final void pollAndExecAll() {
1033 for (ForkJoinTask<?> t; (t = poll()) != null;)
1034 t.doExec();
1035 }
1036
1037 /**
1038 * Pops and runs tasks until empty.
1039 */
1040 final void popAndExecAll() {
1041 ForkJoinTask<?>[] a; ForkJoinTask<?> t;
1042 while ((a = array) != null) {
1043 int b = base, al = a.length, s = top, i = (al - 1) & (s - 1);
1044 if (b != s && al > 0 &&
1045 (t = xchgAt(a, i, null)) != null) {
1046 U.putOrderedInt(this, QTOP, s - 1);
1047 t.doExec();
1048 }
1049 else
1050 break;
1051 }
1052 }
1053
1054 /**
1055 * Executes the given task and any remaining local tasks.
1056 */
1057 final void runTask(ForkJoinTask<?> task) {
1058 if (task != null) {
1059 scanState &= ~SCANNING; // mark as busy
1060 (currentSteal = task).doExec();
1061 U.putOrderedObject(this, QCURRENTSTEAL, null); // release for GC
1062 if ((config & FIFO_QUEUE) != 0)
1063 pollAndExecAll();
1064 else
1065 popAndExecAll();
1066 ForkJoinWorkerThread thread = owner;
1067 if (++nsteals < 0) // collect on overflow
1068 transferStealCount(pool);
1069 scanState |= SCANNING;
1070 if (thread != null)
1071 thread.afterTopLevelExec();
1072 }
1073 }
1074
1075 /**
1076 * Adds steal count to pool stealCounter if it exists, and resets.
1077 */
1078 final void transferStealCount(ForkJoinPool p) {
1079 AtomicLong sc;
1080 if (p != null && (sc = p.stealCounter) != null) {
1081 int s = nsteals;
1082 nsteals = 0; // if negative, correct for overflow
1083 sc.getAndAdd((long)(s < 0 ? Integer.MAX_VALUE : s));
1084 }
1085 }
1086
1087 /**
1088 * If present, removes from queue and executes the given task,
1089 * or any other cancelled task. Used only by awaitJoin.
1090 *
1091 * @return true if queue empty and task not known to be done
1092 */
1093 final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
1094 ForkJoinTask<?>[] a; int al, s, b, n;
1095 if ((a = array) != null && (al = a.length) > 0 && task != null) {
1096 while ((n = (s = top) - (b = base)) > 0) {
1097 for (ForkJoinTask<?> t;;) { // traverse from s to b
1098 int j = --s & (al - 1);
1099 if ((t = getAt(a, j)) == null)
1100 return s + 1 == top; // shorter than expected
1101 else if (t == task) {
1102 boolean removed = false;
1103 if (s + 1 == top) { // pop
1104 if (casAt(a, j, task, null)) {
1105 U.putOrderedInt(this, QTOP, s);
1106 removed = true;
1107 }
1108 }
1109 else if (base == b) // replace with proxy
1110 removed = casAt(a, j, task, new EmptyTask());
1111 if (removed)
1112 task.doExec();
1113 break;
1114 }
1115 else if (t.status < 0 && s + 1 == top) {
1116 if (casAt(a, j, t, null))
1117 U.putOrderedInt(this, QTOP, s);
1118 break; // was cancelled
1119 }
1120 if (--n == 0)
1121 return false;
1122 }
1123 if (task.status < 0)
1124 return false;
1125 }
1126 }
1127 return true;
1128 }
1129
1130 /**
1131 * Pops task if in the same CC computation as the given task,
1132 * in either shared or owned mode. Used only by helpComplete.
1133 */
1134 final CountedCompleter<?> popCC(CountedCompleter<?> task, int mode) {
1135 ForkJoinTask<?>[] a; ForkJoinTask<?> o;
1136 if ((a = array) != null) {
1137 int b = base, al = a.length, s = top, i = (al - 1) & (s - 1);
1138 if (b != s && al > 0 &&
1139 ((o = a[i]) instanceof CountedCompleter)) {
1140 CountedCompleter<?> t = (CountedCompleter<?>)o;
1141 for (CountedCompleter<?> r = t;;) {
1142 if (r == task) {
1143 if (mode < 0) { // must lock
1144 if (U.compareAndSwapInt(this, QLOCK, 0, 1)) {
1145 if (top == s && array == a &&
1146 casAt(a, i, t, null)) {
1147 U.putOrderedInt(this, QTOP, s - 1);
1148 qlock = 0; // until next line diagnosed
1149 // U.putOrderedInt(this, QLOCK, 0);
1150 return t;
1151 }
1152 U.compareAndSwapInt(this, QLOCK, 1, 0);
1153 }
1154 }
1155 else if (casAt(a, i, t, null)) {
1156 U.putOrderedInt(this, QTOP, s - 1);
1157 return t;
1158 }
1159 break;
1160 }
1161 else if ((r = r.completer) == null) // try parent
1162 break;
1163 }
1164 }
1165 }
1166 return null;
1167 }
1168
1169 /**
1170 * Steals and runs a task in the same CC computation as the
1171 * given task if one exists and can be taken without
1172 * contention. Otherwise returns a checksum/control value for
1173 * use by method helpComplete.
1174 *
1175 * @return 1 if successful, 2 if retryable (lost to another
1176 * stealer), -1 if non-empty but no matching task found, else
1177 * the base index, forced negative.
1178 */
1179 final int pollAndExecCC(CountedCompleter<?> task) {
1180 int b, h, j, al; ForkJoinTask<?>[] a; Object o;
1181 if ((b = base) - top >= 0 || (a = array) == null ||
1182 (al = a.length) <= 0)
1183 h = b | Integer.MIN_VALUE; // to sense movement on re-poll
1184 else if ((o = getAt(a, j = (al - 1) & b)) == null)
1185 h = 2; // retryable
1186 else if (!(o instanceof CountedCompleter))
1187 h = -1; // unmatchable
1188 else {
1189 CountedCompleter<?> t = (CountedCompleter<?>)o;
1190 for (CountedCompleter<?> r = t;;) {
1191 if (r == task) {
1192 if (base == b && casAt(a, j, t, null)) {
1193 base = b + 1;
1194 t.doExec();
1195 h = 1; // success
1196 }
1197 else
1198 h = 2; // lost CAS
1199 break;
1200 }
1201 else if ((r = r.completer) == null) {
1202 h = -1; // unmatched
1203 break;
1204 }
1205 }
1206 }
1207 return h;
1208 }
1209
1210 /**
1211 * Returns true if owned and not known to be blocked.
1212 */
1213 final boolean isApparentlyUnblocked() {
1214 Thread wt; Thread.State s;
1215 return (scanState >= 0 &&
1216 (wt = owner) != null &&
1217 (s = wt.getState()) != Thread.State.BLOCKED &&
1218 s != Thread.State.WAITING &&
1219 s != Thread.State.TIMED_WAITING);
1220 }
1221
1222 // Unsafe mechanics. Note that some are (and must be) the same as in FJP
1223 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
1224 private static final int ABASE;
1225 private static final int ASHIFT;
1226 private static final long QTOP;
1227 private static final long QLOCK;
1228 private static final long QCURRENTSTEAL;
1229 static {
1230 try {
1231 QTOP = U.objectFieldOffset
1232 (WorkQueue.class.getDeclaredField("top"));
1233 QLOCK = U.objectFieldOffset
1234 (WorkQueue.class.getDeclaredField("qlock"));
1235 QCURRENTSTEAL = U.objectFieldOffset
1236 (WorkQueue.class.getDeclaredField("currentSteal"));
1237
1238 ABASE = U.arrayBaseOffset(ForkJoinTask[].class);
1239 int scale = U.arrayIndexScale(ForkJoinTask[].class);
1240 if ((scale & (scale - 1)) != 0)
1241 throw new Error("array index scale not a power of two");
1242 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1243 } catch (ReflectiveOperationException e) {
1244 throw new Error(e);
1245 }
1246 }
1247 }
1248
1249 // static fields (initialized in static initializer below)
1250
1251 /**
1252 * Creates a new ForkJoinWorkerThread. This factory is used unless
1253 * overridden in ForkJoinPool constructors.
1254 */
1255 public static final ForkJoinWorkerThreadFactory
1256 defaultForkJoinWorkerThreadFactory;
1257
1258 /**
1259 * Permission required for callers of methods that may start or
1260 * kill threads.
1261 */
1262 private static final RuntimePermission modifyThreadPermission;
1263
1264 /**
1265 * Common (static) pool. Non-null for public use unless a static
1266 * construction exception, but internal usages null-check on use
1267 * to paranoically avoid potential initialization circularities
1268 * as well as to simplify generated code.
1269 */
1270 static final ForkJoinPool common;
1271
1272 /**
1273 * Common pool parallelism. To allow simpler use and management
1274 * when common pool threads are disabled, we allow the underlying
1275 * common.parallelism field to be zero, but in that case still report
1276 * parallelism as 1 to reflect resulting caller-runs mechanics.
1277 */
1278 static final int commonParallelism;
1279
1280 /**
1281 * Limit on spare thread construction in tryCompensate.
1282 */
1283 private static int commonMaxSpares;
1284
1285 /**
1286 * Sequence number for creating workerNamePrefix.
1287 */
1288 private static int poolNumberSequence;
1289
1290 /**
1291 * Returns the next sequence number. We don't expect this to
1292 * ever contend, so use simple builtin sync.
1293 */
1294 private static final synchronized int nextPoolId() {
1295 return ++poolNumberSequence;
1296 }
1297
1298 // static configuration constants
1299
1300 /**
1301 * Initial timeout value (in nanoseconds) for the thread
1302 * triggering quiescence to park waiting for new work. On timeout,
1303 * the thread will instead try to shrink the number of
1304 * workers. The value should be large enough to avoid overly
1305 * aggressive shrinkage during most transient stalls (long GCs
1306 * etc).
1307 */
1308 private static final long IDLE_TIMEOUT = 2000L * 1000L * 1000L; // 2sec
1309
1310 /**
1311 * Tolerance for idle timeouts, to cope with timer undershoots
1312 */
1313 private static final long TIMEOUT_SLOP = 20L * 1000L * 1000L; // 20ms
1314
1315 /**
1316 * The initial value for commonMaxSpares during static
1317 * initialization unless overridden using System property
1318 * "java.util.concurrent.ForkJoinPool.common.maximumSpares". The
1319 * default value is far in excess of normal requirements, but also
1320 * far short of MAX_CAP and typical OS thread limits, so allows
1321 * JVMs to catch misuse/abuse before running out of resources
1322 * needed to do so.
1323 */
1324 private static final int DEFAULT_COMMON_MAX_SPARES = 256;
1325
1326 /**
1327 * Number of times to spin-wait before blocking. The spins (in
1328 * awaitRunStateLock and awaitWork) currently use randomized
1329 * spins. If/when MWAIT-like intrinsics becomes available, they
1330 * may allow quieter spinning. The value of SPINS must be a power
1331 * of two, at least 4. The current value causes spinning for a
1332 * small fraction of typical context-switch times, well worthwhile
1333 * given the typical likelihoods that blocking is not necessary.
1334 */
1335 private static final int SPINS = 1 << 11;
1336
1337 /**
1338 * Increment for seed generators. See class ThreadLocal for
1339 * explanation.
1340 */
1341 private static final int SEED_INCREMENT = 0x9e3779b9;
1342
1343 /*
1344 * Bits and masks for field ctl, packed with 4 16 bit subfields:
1345 * AC: Number of active running workers minus target parallelism
1346 * TC: Number of total workers minus target parallelism
1347 * SS: version count and status of top waiting thread
1348 * ID: poolIndex of top of Treiber stack of waiters
1349 *
1350 * When convenient, we can extract the lower 32 stack top bits
1351 * (including version bits) as sp=(int)ctl. The offsets of counts
1352 * by the target parallelism and the positionings of fields makes
1353 * it possible to perform the most common checks via sign tests of
1354 * fields: When ac is negative, there are not enough active
1355 * workers, when tc is negative, there are not enough total
1356 * workers. When sp is non-zero, there are waiting workers. To
1357 * deal with possibly negative fields, we use casts in and out of
1358 * "short" and/or signed shifts to maintain signedness.
1359 *
1360 * Because it occupies uppermost bits, we can add one active count
1361 * using getAndAddLong of AC_UNIT, rather than CAS, when returning
1362 * from a blocked join. Other updates entail multiple subfields
1363 * and masking, requiring CAS.
1364 */
1365
1366 // Lower and upper word masks
1367 private static final long SP_MASK = 0xffffffffL;
1368 private static final long UC_MASK = ~SP_MASK;
1369
1370 // Active counts
1371 private static final int AC_SHIFT = 48;
1372 private static final long AC_UNIT = 0x0001L << AC_SHIFT;
1373 private static final long AC_MASK = 0xffffL << AC_SHIFT;
1374
1375 // Total counts
1376 private static final int TC_SHIFT = 32;
1377 private static final long TC_UNIT = 0x0001L << TC_SHIFT;
1378 private static final long TC_MASK = 0xffffL << TC_SHIFT;
1379 private static final long ADD_WORKER = 0x0001L << (TC_SHIFT + 15); // sign
1380
1381 // runState bits: SHUTDOWN must be negative, others arbitrary powers of two
1382 private static final int RSLOCK = 1;
1383 private static final int RSIGNAL = 1 << 1;
1384 private static final int STARTED = 1 << 2;
1385 private static final int STOP = 1 << 29;
1386 private static final int TERMINATED = 1 << 30;
1387 private static final int SHUTDOWN = 1 << 31;
1388
1389 // Instance fields
1390 volatile long ctl; // main pool control
1391 volatile int runState; // lockable status
1392 final int config; // parallelism, mode
1393 int indexSeed; // to generate worker index
1394 volatile WorkQueue[] workQueues; // main registry
1395 final ForkJoinWorkerThreadFactory factory;
1396 final UncaughtExceptionHandler ueh; // per-worker UEH
1397 final String workerNamePrefix; // to create worker name string
1398 volatile AtomicLong stealCounter; // also used as sync monitor
1399
1400 /**
1401 * Acquires the runState lock; returns current (locked) runState.
1402 */
1403 private int lockRunState() {
1404 int rs;
1405 return ((((rs = runState) & RSLOCK) != 0 ||
1406 !U.compareAndSwapInt(this, RUNSTATE, rs, rs |= RSLOCK)) ?
1407 awaitRunStateLock() : rs);
1408 }
1409
1410 /**
1411 * Spins and/or blocks until runstate lock is available. See
1412 * above for explanation.
1413 */
1414 private int awaitRunStateLock() {
1415 Object lock;
1416 boolean wasInterrupted = false;
1417 for (int spins = SPINS, r = 0, rs, ns;;) {
1418 if (((rs = runState) & RSLOCK) == 0) {
1419 if (U.compareAndSwapInt(this, RUNSTATE, rs, ns = rs | RSLOCK)) {
1420 if (wasInterrupted) {
1421 try {
1422 Thread.currentThread().interrupt();
1423 } catch (SecurityException ignore) {
1424 }
1425 }
1426 return ns;
1427 }
1428 }
1429 else if (r == 0)
1430 r = ThreadLocalRandom.nextSecondarySeed();
1431 else if (spins > 0) {
1432 r ^= r << 6; r ^= r >>> 21; r ^= r << 7; // xorshift
1433 if (r >= 0)
1434 --spins;
1435 }
1436 else if ((rs & STARTED) == 0 || (lock = stealCounter) == null)
1437 Thread.yield(); // initialization race
1438 else if (U.compareAndSwapInt(this, RUNSTATE, rs, rs | RSIGNAL)) {
1439 synchronized (lock) {
1440 if ((runState & RSIGNAL) != 0) {
1441 try {
1442 lock.wait();
1443 } catch (InterruptedException ie) {
1444 if (!(Thread.currentThread() instanceof
1445 ForkJoinWorkerThread))
1446 wasInterrupted = true;
1447 }
1448 }
1449 else
1450 lock.notifyAll();
1451 }
1452 }
1453 }
1454 }
1455
1456 /**
1457 * Unlocks and sets runState to newRunState.
1458 *
1459 * @param oldRunState a value returned from lockRunState
1460 * @param newRunState the next value (must have lock bit clear).
1461 */
1462 private void unlockRunState(int oldRunState, int newRunState) {
1463 if (!U.compareAndSwapInt(this, RUNSTATE, oldRunState, newRunState)) {
1464 Object lock = stealCounter;
1465 runState = newRunState; // clears RSIGNAL bit
1466 if (lock != null)
1467 synchronized (lock) { lock.notifyAll(); }
1468 }
1469 }
1470
1471 // Creating, registering and deregistering workers
1472
1473 /**
1474 * Tries to construct and start one worker. Assumes that total
1475 * count has already been incremented as a reservation. Invokes
1476 * deregisterWorker on any failure.
1477 *
1478 * @return true if successful
1479 */
1480 private boolean createWorker() {
1481 ForkJoinWorkerThreadFactory fac = factory;
1482 Throwable ex = null;
1483 ForkJoinWorkerThread wt = null;
1484 try {
1485 if (fac != null && (wt = fac.newThread(this)) != null) {
1486 wt.start();
1487 return true;
1488 }
1489 } catch (Throwable rex) {
1490 ex = rex;
1491 }
1492 deregisterWorker(wt, ex);
1493 return false;
1494 }
1495
1496 /**
1497 * Tries to add one worker, incrementing ctl counts before doing
1498 * so, relying on createWorker to back out on failure.
1499 *
1500 * @param c incoming ctl value, with total count negative and no
1501 * idle workers. On CAS failure, c is refreshed and retried if
1502 * this holds (otherwise, a new worker is not needed).
1503 */
1504 private void tryAddWorker(long c) {
1505 boolean add = false;
1506 do {
1507 long nc = ((AC_MASK & (c + AC_UNIT)) |
1508 (TC_MASK & (c + TC_UNIT)));
1509 if (ctl == c) {
1510 int rs, stop; // check if terminating
1511 if ((stop = (rs = lockRunState()) & STOP) == 0)
1512 add = U.compareAndSwapLong(this, CTL, c, nc);
1513 unlockRunState(rs, rs & ~RSLOCK);
1514 if (stop != 0)
1515 break;
1516 if (add) {
1517 createWorker();
1518 break;
1519 }
1520 }
1521 } while (((c = ctl) & ADD_WORKER) != 0L && (int)c == 0);
1522 }
1523
1524 /**
1525 * Callback from ForkJoinWorkerThread constructor to establish and
1526 * record its WorkQueue.
1527 *
1528 * @param wt the worker thread
1529 * @return the worker's queue
1530 */
1531 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1532 UncaughtExceptionHandler handler;
1533 wt.setDaemon(true); // configure thread
1534 if ((handler = ueh) != null)
1535 wt.setUncaughtExceptionHandler(handler);
1536 WorkQueue w = new WorkQueue(this, wt);
1537 int i = 0; // assign a pool index
1538 int mode = config & MODE_MASK;
1539 int rs = lockRunState();
1540 try {
1541 WorkQueue[] ws; int n; // skip if no array
1542 if ((ws = workQueues) != null && (n = ws.length) > 0) {
1543 int s = indexSeed += SEED_INCREMENT; // unlikely to collide
1544 int m = n - 1;
1545 i = ((s << 1) | 1) & m; // odd-numbered indices
1546 if (ws[i] != null) { // collision
1547 int probes = 0; // step by approx half n
1548 int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1549 while (ws[i = (i + step) & m] != null) {
1550 if (++probes >= n) {
1551 workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1552 m = n - 1;
1553 probes = 0;
1554 }
1555 }
1556 }
1557 w.hint = s; // use as random seed
1558 w.config = i | mode;
1559 w.scanState = i; // publication fence
1560 ws[i] = w;
1561 }
1562 } finally {
1563 unlockRunState(rs, rs & ~RSLOCK);
1564 }
1565 wt.setName(workerNamePrefix.concat(Integer.toString(i >>> 1)));
1566 return w;
1567 }
1568
1569 /**
1570 * Final callback from terminating worker, as well as upon failure
1571 * to construct or start a worker. Removes record of worker from
1572 * array, and adjusts counts. If pool is shutting down, tries to
1573 * complete termination.
1574 *
1575 * @param wt the worker thread, or null if construction failed
1576 * @param ex the exception causing failure, or null if none
1577 */
1578 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1579 WorkQueue w = null;
1580 if (wt != null && (w = wt.workQueue) != null) {
1581 WorkQueue[] ws; // remove index from array
1582 int idx = w.config & SMASK;
1583 int rs = lockRunState();
1584 if ((ws = workQueues) != null && ws.length > idx && ws[idx] == w)
1585 ws[idx] = null;
1586 unlockRunState(rs, rs & ~RSLOCK);
1587 }
1588 long c; // decrement counts
1589 do {} while (!U.compareAndSwapLong
1590 (this, CTL, c = ctl, ((AC_MASK & (c - AC_UNIT)) |
1591 (TC_MASK & (c - TC_UNIT)) |
1592 (SP_MASK & c))));
1593 if (w != null) {
1594 w.qlock = -1; // ensure set
1595 w.transferStealCount(this);
1596 w.cancelAll(); // cancel remaining tasks
1597 }
1598 for (;;) { // possibly replace
1599 WorkQueue[] ws; int m, sp;
1600 if (tryTerminate(false, false) || w == null || w.array == null ||
1601 (runState & STOP) != 0 || (ws = workQueues) == null ||
1602 (m = ws.length - 1) < 0) // already terminating
1603 break;
1604 if ((sp = (int)(c = ctl)) != 0) { // wake up replacement
1605 if (tryRelease(c, ws[sp & m], AC_UNIT))
1606 break;
1607 }
1608 else if (ex != null && (c & ADD_WORKER) != 0L) {
1609 tryAddWorker(c); // create replacement
1610 break;
1611 }
1612 else // don't need replacement
1613 break;
1614 }
1615 if (ex == null) // help clean on way out
1616 ForkJoinTask.helpExpungeStaleExceptions();
1617 else // rethrow
1618 ForkJoinTask.rethrow(ex);
1619 }
1620
1621 // Signalling
1622
1623 /**
1624 * Tries to create or activate a worker if too few are active.
1625 *
1626 * @param ws the worker array to use to find signallees
1627 * @param q a WorkQueue --if non-null, don't retry if now empty
1628 */
1629 final void signalWork(WorkQueue[] ws, WorkQueue q) {
1630 long c; int sp, i; WorkQueue v; Thread p;
1631 while ((c = ctl) < 0L) { // too few active
1632 if ((sp = (int)c) == 0) { // no idle workers
1633 if ((c & ADD_WORKER) != 0L) // too few workers
1634 tryAddWorker(c);
1635 break;
1636 }
1637 if (ws == null) // unstarted/terminated
1638 break;
1639 if (ws.length <= (i = sp & SMASK)) // terminated
1640 break;
1641 if ((v = ws[i]) == null) // terminating
1642 break;
1643 int vs = (sp + SS_SEQ) & ~INACTIVE; // next scanState
1644 int d = sp - v.scanState; // screen CAS
1645 long nc = (UC_MASK & (c + AC_UNIT)) | (SP_MASK & v.stackPred);
1646 if (d == 0 && U.compareAndSwapLong(this, CTL, c, nc)) {
1647 v.scanState = vs; // activate v
1648 if ((p = v.parker) != null)
1649 U.unpark(p);
1650 break;
1651 }
1652 if (q != null && q.base == q.top) // no more work
1653 break;
1654 }
1655 }
1656
1657 /**
1658 * Signals and releases worker v if it is top of idle worker
1659 * stack. This performs a one-shot version of signalWork only if
1660 * there is (apparently) at least one idle worker.
1661 *
1662 * @param c incoming ctl value
1663 * @param v if non-null, a worker
1664 * @param inc the increment to active count (zero when compensating)
1665 * @return true if successful
1666 */
1667 private boolean tryRelease(long c, WorkQueue v, long inc) {
1668 int sp = (int)c, vs = (sp + SS_SEQ) & ~INACTIVE; Thread p;
1669 if (v != null && v.scanState == sp) { // v is at top of stack
1670 long nc = (UC_MASK & (c + inc)) | (SP_MASK & v.stackPred);
1671 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1672 v.scanState = vs;
1673 if ((p = v.parker) != null)
1674 U.unpark(p);
1675 return true;
1676 }
1677 }
1678 return false;
1679 }
1680
1681 // Scanning for tasks
1682
1683 /**
1684 * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1685 */
1686 final void runWorker(WorkQueue w) {
1687 w.growArray(); // allocate queue
1688 int seed = w.hint; // initially holds randomization hint
1689 int r = (seed == 0) ? 1 : seed; // avoid 0 for xorShift
1690 for (ForkJoinTask<?> t;;) {
1691 if ((t = scan(w, r)) != null)
1692 w.runTask(t);
1693 else if (!awaitWork(w, r))
1694 break;
1695 r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
1696 }
1697 }
1698
1699 /**
1700 * Scans for and tries to steal a top-level task. Scans start at a
1701 * random location, randomly moving on apparent contention,
1702 * otherwise continuing linearly until reaching two consecutive
1703 * empty passes over all queues with the same checksum (summing
1704 * each base index of each queue, that moves on each steal), at
1705 * which point the worker tries to inactivate and then re-scans,
1706 * attempting to re-activate (itself or some other worker) if
1707 * finding a task; otherwise returning null to await work. Scans
1708 * otherwise touch as little memory as possible, to reduce
1709 * disruption on other scanning threads.
1710 *
1711 * @param w the worker (via its WorkQueue)
1712 * @param r a random seed
1713 * @return a task, or null if none found
1714 */
1715 private ForkJoinTask<?> scan(WorkQueue w, int r) {
1716 WorkQueue[] ws; int m;
1717 if ((ws = workQueues) != null && (m = ws.length - 1) > 0 && w != null) {
1718 int ss = w.scanState; // initially non-negative
1719 for (int origin = r & m, k = origin, oldSum = 0, checkSum = 0;;) {
1720 WorkQueue q; ForkJoinTask<?> t; int al, i, n; long c;
1721 if ((q = ws[k]) != null) {
1722 int b = q.base; ForkJoinTask<?>[] a = q.array;
1723 if ((n = b - q.top) < 0 && a != null &&
1724 (al = a.length) > 0) { // non-empty
1725 if ((t = getAt(a, i = (al - 1) & b)) != null &&
1726 q.base == b) {
1727 if (ss >= 0) {
1728 if (casAt(a, i, t, null)) {
1729 q.base = b + 1;
1730 if (n < -1) // signal others
1731 signalWork(ws, q);
1732 return t;
1733 }
1734 }
1735 else if (oldSum == 0 && // try to activate
1736 w.scanState < 0)
1737 tryRelease(c = ctl, ws[m & (int)c], AC_UNIT);
1738 }
1739 if (ss < 0) // refresh
1740 ss = w.scanState;
1741 r ^= r << 1; r ^= r >>> 3; r ^= r << 10;
1742 origin = k = r & m; // move and rescan
1743 oldSum = checkSum = 0;
1744 continue;
1745 }
1746 checkSum += b;
1747 }
1748 if ((k = (k + 1) & m) == origin) { // continue until stable
1749 if ((ss >= 0 || (ss == (ss = w.scanState))) &&
1750 oldSum == (oldSum = checkSum)) {
1751 if (ss < 0 || w.qlock < 0) // already inactive
1752 break;
1753 int ns = ss | INACTIVE; // try to inactivate
1754 long nc = ((SP_MASK & ns) |
1755 (UC_MASK & ((c = ctl) - AC_UNIT)));
1756 w.stackPred = (int)c; // hold prev stack top
1757 U.putInt(w, QSCANSTATE, ns);
1758 if (U.compareAndSwapLong(this, CTL, c, nc))
1759 ss = ns;
1760 else
1761 w.scanState = ss; // back out
1762 }
1763 checkSum = 0;
1764 }
1765 }
1766 }
1767 return null;
1768 }
1769
1770 /**
1771 * Possibly blocks worker w waiting for a task to steal, or
1772 * returns false if the worker should terminate. If inactivating
1773 * w has caused the pool to become quiescent, checks for pool
1774 * termination, and, so long as this is not the only worker, waits
1775 * for up to a given duration. On timeout, if ctl has not
1776 * changed, terminates the worker, which will in turn wake up
1777 * another worker to possibly repeat this process.
1778 *
1779 * @param w the calling worker
1780 * @param r a random seed (for spins)
1781 * @return false if the worker should terminate
1782 */
1783 private boolean awaitWork(WorkQueue w, int r) {
1784 if (w == null || w.qlock < 0) // w is terminating
1785 return false;
1786 for (int pred = w.stackPred, spins = SPINS, ss;;) {
1787 if ((ss = w.scanState) >= 0)
1788 break;
1789 else if (spins > 0) {
1790 r ^= r << 6; r ^= r >>> 21; r ^= r << 7;
1791 if (r >= 0 && --spins == 0) { // randomize spins
1792 WorkQueue v; WorkQueue[] ws; int j;
1793 if (pred != 0 && (ws = workQueues) != null &&
1794 (j = pred & SMASK) < ws.length &&
1795 (v = ws[j]) != null && // see if pred parking
1796 (v.parker == null || v.scanState >= 0))
1797 spins = SPINS; // continue spinning
1798 }
1799 }
1800 else if (w.qlock < 0) // recheck after spins
1801 return false;
1802 else if (!Thread.interrupted()) {
1803 long c, prevctl, parkTime, deadline;
1804 int ac = (int)((c = ctl) >> AC_SHIFT) + (config & SMASK);
1805 if ((ac <= 0 && tryTerminate(false, false)) ||
1806 (runState & STOP) != 0) // pool terminating
1807 return false;
1808 if (ac <= 0 && ss == (int)c) { // is last waiter
1809 prevctl = (UC_MASK & (c + AC_UNIT)) | (SP_MASK & pred);
1810 int t = (short)(c >>> TC_SHIFT); // shrink excess spares
1811 if (t > 2 && U.compareAndSwapLong(this, CTL, c, prevctl))
1812 return false; // else use timed wait
1813 parkTime = IDLE_TIMEOUT * ((t >= 0) ? 1 : 1 - t);
1814 deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
1815 }
1816 else
1817 prevctl = parkTime = deadline = 0L;
1818 Thread wt = Thread.currentThread();
1819 U.putObject(wt, PARKBLOCKER, this); // emulate LockSupport
1820 w.parker = wt;
1821 if (w.scanState < 0 && ctl == c) // recheck before park
1822 U.park(false, parkTime);
1823 U.putOrderedObject(w, QPARKER, null);
1824 U.putObject(wt, PARKBLOCKER, null);
1825 if (w.scanState >= 0)
1826 break;
1827 if (parkTime != 0L && ctl == c &&
1828 deadline - System.nanoTime() <= 0L &&
1829 U.compareAndSwapLong(this, CTL, c, prevctl))
1830 return false; // shrink pool
1831 }
1832 }
1833 return true;
1834 }
1835
1836 // Joining tasks
1837
1838 /**
1839 * Tries to steal and run tasks within the target's computation.
1840 * Uses a variant of the top-level algorithm, restricted to tasks
1841 * with the given task as ancestor: It prefers taking and running
1842 * eligible tasks popped from the worker's own queue (via
1843 * popCC). Otherwise it scans others, randomly moving on
1844 * contention or execution, deciding to give up based on a
1845 * checksum (via return codes frob pollAndExecCC). The maxTasks
1846 * argument supports external usages; internal calls use zero,
1847 * allowing unbounded steps (external calls trap non-positive
1848 * values).
1849 *
1850 * @param w caller
1851 * @param maxTasks if non-zero, the maximum number of other tasks to run
1852 * @return task status on exit
1853 */
1854 final int helpComplete(WorkQueue w, CountedCompleter<?> task,
1855 int maxTasks) {
1856 WorkQueue[] ws; int s = 0, m;
1857 if ((ws = workQueues) != null && (m = ws.length - 1) > 0 &&
1858 task != null && w != null) {
1859 int mode = w.config; // for popCC
1860 int r = w.hint ^ w.top; // arbitrary seed for origin
1861 int origin = r & m; // first queue to scan
1862 int h = 1; // 1:ran, >1:contended, <0:hash
1863 for (int k = origin, oldSum = 0, checkSum = 0;;) {
1864 CountedCompleter<?> p; WorkQueue q;
1865 if ((s = task.status) < 0)
1866 break;
1867 if (h == 1 && (p = w.popCC(task, mode)) != null) {
1868 p.doExec(); // run local task
1869 if (maxTasks != 0 && --maxTasks == 0)
1870 break;
1871 origin = k; // reset
1872 oldSum = checkSum = 0;
1873 }
1874 else { // poll other queues
1875 if ((q = ws[k]) == null)
1876 h = 0;
1877 else if ((h = q.pollAndExecCC(task)) < 0)
1878 checkSum += h;
1879 if (h > 0) {
1880 if (h == 1 && maxTasks != 0 && --maxTasks == 0)
1881 break;
1882 r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
1883 origin = k = r & m; // move and restart
1884 oldSum = checkSum = 0;
1885 }
1886 else if ((k = (k + 1) & m) == origin) {
1887 if (oldSum == (oldSum = checkSum))
1888 break;
1889 checkSum = 0;
1890 }
1891 }
1892 }
1893 }
1894 return s;
1895 }
1896
1897 /**
1898 * Tries to locate and execute tasks for a stealer of the given
1899 * task, or in turn one of its stealers, Traces currentSteal ->
1900 * currentJoin links looking for a thread working on a descendant
1901 * of the given task and with a non-empty queue to steal back and
1902 * execute tasks from. The first call to this method upon a
1903 * waiting join will often entail scanning/search, (which is OK
1904 * because the joiner has nothing better to do), but this method
1905 * leaves hints in workers to speed up subsequent calls.
1906 *
1907 * @param w caller
1908 * @param task the task to join
1909 */
1910 private void helpStealer(WorkQueue w, ForkJoinTask<?> task) {
1911 WorkQueue[] ws = workQueues;
1912 int oldSum = 0, checkSum, m;
1913 if (ws != null && (m = ws.length - 1) > 0 && w != null &&
1914 task != null) {
1915 do { // restart point
1916 checkSum = 0; // for stability check
1917 ForkJoinTask<?> subtask;
1918 WorkQueue j = w, v; // v is subtask stealer
1919 descent: for (subtask = task; subtask.status >= 0; ) {
1920 for (int h = j.hint | 1, k = 0, i; ; k += 2) {
1921 if (k > m) // can't find stealer
1922 break descent;
1923 if ((v = ws[i = (h + k) & m]) != null) {
1924 if (v.currentSteal == subtask) {
1925 j.hint = i;
1926 break;
1927 }
1928 checkSum += v.base;
1929 }
1930 }
1931 for (;;) { // help v or descend
1932 ForkJoinTask<?>[] a; int b, al, i;
1933 checkSum += (b = v.base);
1934 ForkJoinTask<?> next = v.currentJoin;
1935 if (subtask.status < 0 || j.currentJoin != subtask ||
1936 v.currentSteal != subtask) // stale
1937 break descent;
1938 if (b - v.top >= 0 || (a = v.array) == null ||
1939 (al = a.length) <= 0) {
1940 if ((subtask = next) == null)
1941 break descent;
1942 j = v;
1943 break;
1944 }
1945 ForkJoinTask<?> t = getAt(a, i = (al - 1) & b);
1946 if (v.base == b) {
1947 if (t == null) // stale
1948 break descent;
1949 if (casAt(a, i, t, null)) {
1950 v.base = b + 1;
1951 ForkJoinTask<?> ps = w.currentSteal;
1952 int top = w.top;
1953 do {
1954 U.putOrderedObject(w, QCURRENTSTEAL, t);
1955 t.doExec(); // clear local tasks too
1956 } while (task.status >= 0 &&
1957 w.top != top &&
1958 (t = w.pop()) != null);
1959 U.putOrderedObject(w, QCURRENTSTEAL, ps);
1960 if (w.base != w.top)
1961 return; // can't further help
1962 }
1963 }
1964 }
1965 }
1966 } while (task.status >= 0 && oldSum != (oldSum = checkSum));
1967 }
1968 }
1969
1970 /**
1971 * Tries to decrement active count (sometimes implicitly) and
1972 * possibly release or create a compensating worker in preparation
1973 * for blocking. Returns false (retryable by caller), on
1974 * contention, detected staleness, instability, or termination.
1975 *
1976 * @param w caller
1977 */
1978 private boolean tryCompensate(WorkQueue w) {
1979 boolean canBlock;
1980 WorkQueue[] ws; long c; int m, pc, sp;
1981 if (w == null || w.qlock < 0 || // caller terminating
1982 (ws = workQueues) == null || (m = ws.length - 1) <= 0 ||
1983 (pc = config & SMASK) == 0) // parallelism disabled
1984 canBlock = false;
1985 else if ((sp = (int)(c = ctl)) != 0) // release idle worker
1986 canBlock = tryRelease(c, ws[sp & m], 0L);
1987 else {
1988 int ac = (int)(c >> AC_SHIFT) + pc;
1989 int tc = (short)(c >> TC_SHIFT) + pc;
1990 int nbusy = 0; // validate saturation
1991 for (int i = 0; i <= m; ++i) { // two passes of odd indices
1992 WorkQueue v;
1993 if ((v = ws[((i << 1) | 1) & m]) != null) {
1994 if ((v.scanState & SCANNING) != 0)
1995 break;
1996 ++nbusy;
1997 }
1998 }
1999 if (nbusy != (tc << 1) || ctl != c)
2000 canBlock = false; // unstable or stale
2001 else if (tc >= pc && ac > 1 && w.isEmpty()) {
2002 long nc = ((AC_MASK & (c - AC_UNIT)) |
2003 (~AC_MASK & c)); // uncompensated
2004 canBlock = U.compareAndSwapLong(this, CTL, c, nc);
2005 }
2006 else if (tc >= MAX_CAP ||
2007 (this == common && tc >= pc + commonMaxSpares))
2008 throw new RejectedExecutionException(
2009 "Thread limit exceeded replacing blocked worker");
2010 else { // similar to tryAddWorker
2011 boolean add = false; int rs; // CAS within lock
2012 long nc = ((AC_MASK & c) |
2013 (TC_MASK & (c + TC_UNIT)));
2014 if (((rs = lockRunState()) & STOP) == 0)
2015 add = U.compareAndSwapLong(this, CTL, c, nc);
2016 unlockRunState(rs, rs & ~RSLOCK);
2017 canBlock = add && createWorker(); // throws on exception
2018 }
2019 }
2020 return canBlock;
2021 }
2022
2023 /**
2024 * Helps and/or blocks until the given task is done or timeout.
2025 *
2026 * @param w caller
2027 * @param task the task
2028 * @param deadline for timed waits, if nonzero
2029 * @return task status on exit
2030 */
2031 final int awaitJoin(WorkQueue w, ForkJoinTask<?> task, long deadline) {
2032 int s = 0;
2033 if (task != null && w != null) {
2034 ForkJoinTask<?> prevJoin = w.currentJoin;
2035 U.putOrderedObject(w, QCURRENTJOIN, task);
2036 CountedCompleter<?> cc = (task instanceof CountedCompleter) ?
2037 (CountedCompleter<?>)task : null;
2038 for (;;) {
2039 if ((s = task.status) < 0)
2040 break;
2041 if (cc != null)
2042 helpComplete(w, cc, 0);
2043 else if (w.base == w.top || w.tryRemoveAndExec(task))
2044 helpStealer(w, task);
2045 if ((s = task.status) < 0)
2046 break;
2047 long ms, ns;
2048 if (deadline == 0L)
2049 ms = 0L;
2050 else if ((ns = deadline - System.nanoTime()) <= 0L)
2051 break;
2052 else if ((ms = TimeUnit.NANOSECONDS.toMillis(ns)) <= 0L)
2053 ms = 1L;
2054 if (tryCompensate(w)) {
2055 task.internalWait(ms);
2056 U.getAndAddLong(this, CTL, AC_UNIT);
2057 }
2058 }
2059 U.putOrderedObject(w, QCURRENTJOIN, prevJoin);
2060 }
2061 return s;
2062 }
2063
2064 // Specialized scanning
2065
2066 /**
2067 * Returns a (probably) non-empty steal queue, if one is found
2068 * during a scan, else null. This method must be retried by
2069 * caller if, by the time it tries to use the queue, it is empty.
2070 */
2071 private WorkQueue findNonEmptyStealQueue() {
2072 WorkQueue[] ws; int m; // one-shot version of scan loop
2073 int r = ThreadLocalRandom.nextSecondarySeed();
2074 if ((ws = workQueues) != null && (m = ws.length - 1) > 0) {
2075 for (int origin = r & m, k = origin, oldSum = 0, checkSum = 0;;) {
2076 WorkQueue q; int b;
2077 if ((q = ws[k]) != null) {
2078 if ((b = q.base) - q.top < 0)
2079 return q;
2080 checkSum += b;
2081 }
2082 if ((k = (k + 1) & m) == origin) {
2083 if (oldSum == (oldSum = checkSum))
2084 break;
2085 checkSum = 0;
2086 }
2087 }
2088 }
2089 return null;
2090 }
2091
2092 /**
2093 * Runs tasks until {@code isQuiescent()}. We piggyback on
2094 * active count ctl maintenance, but rather than blocking
2095 * when tasks cannot be found, we rescan until all others cannot
2096 * find tasks either.
2097 */
2098 final void helpQuiescePool(WorkQueue w) {
2099 ForkJoinTask<?> ps = w.currentSteal; // save context
2100 for (boolean active = true;;) {
2101 long c; WorkQueue q; ForkJoinTask<?> t; int b;
2102 if ((w.config & FIFO_QUEUE) != 0)
2103 w.pollAndExecAll(); // run locals before each scan
2104 else
2105 w.popAndExecAll();
2106 if ((q = findNonEmptyStealQueue()) != null) {
2107 if (!active) { // re-establish active count
2108 active = true;
2109 U.getAndAddLong(this, CTL, AC_UNIT);
2110 }
2111 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2112 U.putOrderedObject(w, QCURRENTSTEAL, t);
2113 t.doExec();
2114 if (++w.nsteals < 0)
2115 w.transferStealCount(this);
2116 }
2117 }
2118 else if (active) { // decrement active count without queuing
2119 long nc = (AC_MASK & ((c = ctl) - AC_UNIT)) | (~AC_MASK & c);
2120 if ((int)(nc >> AC_SHIFT) + (config & SMASK) <= 0)
2121 break; // bypass decrement-then-increment
2122 if (U.compareAndSwapLong(this, CTL, c, nc))
2123 active = false;
2124 }
2125 else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) <= 0 &&
2126 U.compareAndSwapLong(this, CTL, c, c + AC_UNIT))
2127 break;
2128 }
2129 U.putOrderedObject(w, QCURRENTSTEAL, ps);
2130 }
2131
2132 /**
2133 * Gets and removes a local or stolen task for the given worker.
2134 *
2135 * @return a task, if available
2136 */
2137 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2138 for (ForkJoinTask<?> t;;) {
2139 WorkQueue q; int b;
2140 if ((t = w.nextLocalTask()) != null)
2141 return t;
2142 if ((q = findNonEmptyStealQueue()) == null)
2143 return null;
2144 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2145 return t;
2146 }
2147 }
2148
2149 /**
2150 * Returns a cheap heuristic guide for task partitioning when
2151 * programmers, frameworks, tools, or languages have little or no
2152 * idea about task granularity. In essence, by offering this
2153 * method, we ask users only about tradeoffs in overhead vs
2154 * expected throughput and its variance, rather than how finely to
2155 * partition tasks.
2156 *
2157 * In a steady state strict (tree-structured) computation, each
2158 * thread makes available for stealing enough tasks for other
2159 * threads to remain active. Inductively, if all threads play by
2160 * the same rules, each thread should make available only a
2161 * constant number of tasks.
2162 *
2163 * The minimum useful constant is just 1. But using a value of 1
2164 * would require immediate replenishment upon each steal to
2165 * maintain enough tasks, which is infeasible. Further,
2166 * partitionings/granularities of offered tasks should minimize
2167 * steal rates, which in general means that threads nearer the top
2168 * of computation tree should generate more than those nearer the
2169 * bottom. In perfect steady state, each thread is at
2170 * approximately the same level of computation tree. However,
2171 * producing extra tasks amortizes the uncertainty of progress and
2172 * diffusion assumptions.
2173 *
2174 * So, users will want to use values larger (but not much larger)
2175 * than 1 to both smooth over transient shortages and hedge
2176 * against uneven progress; as traded off against the cost of
2177 * extra task overhead. We leave the user to pick a threshold
2178 * value to compare with the results of this call to guide
2179 * decisions, but recommend values such as 3.
2180 *
2181 * When all threads are active, it is on average OK to estimate
2182 * surplus strictly locally. In steady-state, if one thread is
2183 * maintaining say 2 surplus tasks, then so are others. So we can
2184 * just use estimated queue length. However, this strategy alone
2185 * leads to serious mis-estimates in some non-steady-state
2186 * conditions (ramp-up, ramp-down, other stalls). We can detect
2187 * many of these by further considering the number of "idle"
2188 * threads, that are known to have zero queued tasks, so
2189 * compensate by a factor of (#idle/#active) threads.
2190 */
2191 static int getSurplusQueuedTaskCount() {
2192 Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2193 if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) {
2194 int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).
2195 config & SMASK;
2196 int n = (q = wt.workQueue).top - q.base;
2197 int a = (int)(pool.ctl >> AC_SHIFT) + p;
2198 return n - (a > (p >>>= 1) ? 0 :
2199 a > (p >>>= 1) ? 1 :
2200 a > (p >>>= 1) ? 2 :
2201 a > (p >>>= 1) ? 4 :
2202 8);
2203 }
2204 return 0;
2205 }
2206
2207 // Termination
2208
2209 /**
2210 * Possibly initiates and/or completes termination.
2211 *
2212 * @param now if true, unconditionally terminate, else only
2213 * if no work and no active workers
2214 * @param enable if true, enable shutdown when next possible
2215 * @return true if now terminating or terminated
2216 */
2217 private boolean tryTerminate(boolean now, boolean enable) {
2218 int rs;
2219 if (this == common) // cannot shut down
2220 return false;
2221 if ((rs = runState) >= 0) {
2222 if (!enable)
2223 return false;
2224 rs = lockRunState(); // enter SHUTDOWN phase
2225 unlockRunState(rs, (rs & ~RSLOCK) | SHUTDOWN);
2226 }
2227
2228 if ((rs & STOP) == 0) {
2229 if (!now) { // check quiescence
2230 for (long oldSum = 0L;;) { // repeat until stable
2231 WorkQueue[] ws; WorkQueue w; int m, b; long c;
2232 long checkSum = ctl;
2233 if ((int)(checkSum >> AC_SHIFT) + (config & SMASK) > 0)
2234 return false; // still active workers
2235 if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
2236 break; // check queues
2237 for (int i = 0; i <= m; ++i) {
2238 if ((w = ws[i]) != null) {
2239 if ((b = w.base) != w.top || w.scanState >= 0 ||
2240 w.currentSteal != null) {
2241 tryRelease(c = ctl, ws[m & (int)c], AC_UNIT);
2242 return false; // arrange for recheck
2243 }
2244 checkSum += b;
2245 if ((i & 1) == 0)
2246 w.qlock = -1; // try to disable external
2247 }
2248 }
2249 if (oldSum == (oldSum = checkSum))
2250 break;
2251 }
2252 }
2253 if ((runState & STOP) == 0) {
2254 rs = lockRunState(); // enter STOP phase
2255 unlockRunState(rs, (rs & ~RSLOCK) | STOP);
2256 }
2257 }
2258
2259 int pass = 0; // 3 passes to help terminate
2260 for (long oldSum = 0L;;) { // or until done or stable
2261 WorkQueue[] ws; WorkQueue w; ForkJoinWorkerThread wt; int m;
2262 long checkSum = ctl;
2263 if ((short)(checkSum >>> TC_SHIFT) + (config & SMASK) <= 0 ||
2264 (ws = workQueues) == null || (m = ws.length - 1) <= 0) {
2265 if ((runState & TERMINATED) == 0) {
2266 rs = lockRunState(); // done
2267 unlockRunState(rs, (rs & ~RSLOCK) | TERMINATED);
2268 synchronized (this) { notifyAll(); } // for awaitTermination
2269 }
2270 break;
2271 }
2272 for (int i = 0; i <= m; ++i) {
2273 if ((w = ws[i]) != null) {
2274 checkSum += w.base;
2275 w.qlock = -1; // try to disable
2276 if (pass > 0) {
2277 w.cancelAll(); // clear queue
2278 if (pass > 1 && (wt = w.owner) != null) {
2279 if (!wt.isInterrupted()) {
2280 try { // unblock join
2281 wt.interrupt();
2282 } catch (Throwable ignore) {
2283 }
2284 }
2285 if (w.scanState < 0)
2286 U.unpark(wt); // wake up
2287 }
2288 }
2289 }
2290 }
2291 if (checkSum != oldSum) { // unstable
2292 oldSum = checkSum;
2293 pass = 0;
2294 }
2295 else if (pass > 3 && pass > m) // can't further help
2296 break;
2297 else if (++pass > 1) { // try to dequeue
2298 long c; int j = 0, sp; // bound attempts
2299 while (j++ <= m && (sp = (int)(c = ctl)) != 0)
2300 tryRelease(c, ws[sp & m], AC_UNIT);
2301 }
2302 }
2303 return true;
2304 }
2305
2306 // External operations
2307
2308 /**
2309 * Full version of externalPush, handling uncommon cases, as well
2310 * as performing secondary initialization upon the first
2311 * submission of the first task to the pool. It also detects
2312 * first submission by an external thread and creates a new shared
2313 * queue if the one at index if empty or contended.
2314 *
2315 * @param task the task. Caller must ensure non-null.
2316 */
2317 private void externalSubmit(ForkJoinTask<?> task) {
2318 int r; // initialize caller's probe
2319 if ((r = ThreadLocalRandom.getProbe()) == 0) {
2320 ThreadLocalRandom.localInit();
2321 r = ThreadLocalRandom.getProbe();
2322 }
2323 for (;;) {
2324 WorkQueue[] ws; WorkQueue q; int rs, m, k;
2325 boolean move = false;
2326 if ((rs = runState) < 0) {
2327 tryTerminate(false, false); // help terminate
2328 throw new RejectedExecutionException();
2329 }
2330 else if ((rs & STARTED) == 0 || // initialize
2331 ((ws = workQueues) == null || (m = ws.length - 1) <= 0)) {
2332 int ns = 0;
2333 rs = lockRunState();
2334 try {
2335 if ((rs & STARTED) == 0) {
2336 U.compareAndSwapObject(this, STEALCOUNTER, null,
2337 new AtomicLong());
2338 // create workQueues array with size a power of two
2339 int p = config & SMASK; // ensure at least 2 slots
2340 int n = (p > 1) ? p - 1 : 1;
2341 n |= n >>> 1; n |= n >>> 2; n |= n >>> 4;
2342 n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1;
2343 workQueues = new WorkQueue[n];
2344 ns = STARTED;
2345 }
2346 } finally {
2347 unlockRunState(rs, (rs & ~RSLOCK) | ns);
2348 }
2349 }
2350 else if ((q = ws[k = r & m & SQMASK]) != null) {
2351 if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2352 ForkJoinTask<?>[] a = q.array;
2353 int s = q.top;
2354 boolean submitted = false; // initial submission or resizing
2355 try { // locked version of push
2356 if ((a != null && a.length > s + 1 - q.base) ||
2357 (a = q.growArray()) != null) {
2358 int al = a.length, j = (al - 1) & s;
2359 if (al > 0) {
2360 setAt(a, j, task);
2361 U.putOrderedInt(q, QTOP, s + 1);
2362 submitted = true;
2363 }
2364 }
2365 } finally {
2366 U.compareAndSwapInt(q, QLOCK, 1, 0);
2367 }
2368 if (submitted) {
2369 signalWork(ws, q);
2370 return;
2371 }
2372 }
2373 move = true; // move on failure
2374 }
2375 else if (((rs = runState) & RSLOCK) == 0) { // create new queue
2376 q = new WorkQueue(this, null);
2377 q.hint = r;
2378 q.config = k | SHARED_QUEUE;
2379 q.scanState = INACTIVE;
2380 rs = lockRunState(); // publish index
2381 if (rs > 0 && (ws = workQueues) != null &&
2382 k < ws.length && ws[k] == null)
2383 ws[k] = q; // else terminated
2384 unlockRunState(rs, rs & ~RSLOCK);
2385 }
2386 else
2387 move = true; // move if busy
2388 if (move)
2389 r = ThreadLocalRandom.advanceProbe(r);
2390 }
2391 }
2392
2393 /**
2394 * Tries to add the given task to a submission queue at
2395 * submitter's current queue. Only the (vastly) most common path
2396 * is directly handled in this method, while screening for need
2397 * for externalSubmit.
2398 *
2399 * @param task the task. Caller must ensure non-null.
2400 */
2401 final void externalPush(ForkJoinTask<?> task) {
2402 WorkQueue[] ws; WorkQueue q; int m;
2403 int r = ThreadLocalRandom.getProbe();
2404 int rs = runState;
2405 if ((ws = workQueues) != null && (m = (ws.length - 1)) > 0 &&
2406 (q = ws[m & r & SQMASK]) != null && r != 0 && rs > 0 &&
2407 U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2408 ForkJoinTask<?>[] a;
2409 if ((a = q.array) != null) {
2410 int b = q.base, al = a.length, s = q.top;
2411 if (al > 0) {
2412 int am = al - 1, j = am & s, n;
2413 if ((n = s - b) < am) {
2414 setAt(a, j, task);
2415 U.putOrderedInt(q, QTOP, s + 1);
2416 q.qlock = 0; // fix until next line diagnosed
2417 // U.putOrderedInt(q, QLOCK, 0);
2418 if (n <= 1)
2419 signalWork(ws, q);
2420 return;
2421 }
2422 }
2423 }
2424 U.compareAndSwapInt(q, QLOCK, 1, 0);
2425 }
2426 externalSubmit(task);
2427 }
2428
2429 /**
2430 * Pushes a possibly-external submission.
2431 */
2432 final <T> ForkJoinTask<T> doSubmit(ForkJoinTask<T> task) {
2433 Thread t; ForkJoinWorkerThread w;
2434 if (task == null)
2435 throw new NullPointerException();
2436 if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) &&
2437 (w = (ForkJoinWorkerThread)t).pool == this)
2438 w.workQueue.push(task);
2439 else
2440 externalPush(task);
2441 return task;
2442 }
2443
2444 /**
2445 * Returns common pool queue for an external thread.
2446 */
2447 static WorkQueue commonSubmitterQueue() {
2448 ForkJoinPool p = common;
2449 int r = ThreadLocalRandom.getProbe();
2450 WorkQueue[] ws; int m;
2451 return (p != null && (ws = p.workQueues) != null &&
2452 (m = ws.length - 1) > 0) ?
2453 ws[m & r & SQMASK] : null;
2454 }
2455
2456 /**
2457 * Performs tryUnpush for an external submitter: Finds queue,
2458 * locks if apparently non-empty, validates upon locking, and
2459 * adjusts top. Each check can fail but rarely does.
2460 */
2461 final boolean tryExternalUnpush(ForkJoinTask<?> task) {
2462 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?>[] a; int m;
2463 int r = ThreadLocalRandom.getProbe();
2464 if ((ws = workQueues) != null && (m = ws.length - 1) > 0 &&
2465 (w = ws[m & r & SQMASK]) != null &&
2466 (a = w.array) != null) {
2467 int b = w.base, al = a.length, s = w.top;
2468 if (s != b && al > 0 &&
2469 U.compareAndSwapInt(w, QLOCK, 0, 1)) {
2470 int i = (al - 1) & (s - 1);
2471 if (w.top == s && w.array == a && casAt(a, i, task, null)) {
2472 U.putOrderedInt(w, QTOP, s - 1);
2473 w.qlock = 0; // fix until next line diagnosed
2474 // U.putOrderedInt(w, QLOCK, 0);
2475 return true;
2476 }
2477 U.compareAndSwapInt(w, QLOCK, 1, 0);
2478 }
2479 }
2480 return false;
2481 }
2482
2483 /**
2484 * Performs helpComplete for an external submitter.
2485 */
2486 final int externalHelpComplete(CountedCompleter<?> task, int maxTasks) {
2487 WorkQueue[] ws; int n;
2488 int r = ThreadLocalRandom.getProbe();
2489 return ((ws = workQueues) == null || (n = ws.length) == 0) ? 0 :
2490 helpComplete(ws[(n - 1) & r & SQMASK], task, maxTasks);
2491 }
2492
2493 // Exported methods
2494
2495 // Constructors
2496
2497 /**
2498 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2499 * java.lang.Runtime#availableProcessors}, using the {@linkplain
2500 * #defaultForkJoinWorkerThreadFactory default thread factory},
2501 * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2502 *
2503 * @throws SecurityException if a security manager exists and
2504 * the caller is not permitted to modify threads
2505 * because it does not hold {@link
2506 * java.lang.RuntimePermission}{@code ("modifyThread")}
2507 */
2508 public ForkJoinPool() {
2509 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2510 defaultForkJoinWorkerThreadFactory, null, false);
2511 }
2512
2513 /**
2514 * Creates a {@code ForkJoinPool} with the indicated parallelism
2515 * level, the {@linkplain
2516 * #defaultForkJoinWorkerThreadFactory default thread factory},
2517 * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2518 *
2519 * @param parallelism the parallelism level
2520 * @throws IllegalArgumentException if parallelism less than or
2521 * equal to zero, or greater than implementation limit
2522 * @throws SecurityException if a security manager exists and
2523 * the caller is not permitted to modify threads
2524 * because it does not hold {@link
2525 * java.lang.RuntimePermission}{@code ("modifyThread")}
2526 */
2527 public ForkJoinPool(int parallelism) {
2528 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2529 }
2530
2531 /**
2532 * Creates a {@code ForkJoinPool} with the given parameters.
2533 *
2534 * @param parallelism the parallelism level. For default value,
2535 * use {@link java.lang.Runtime#availableProcessors}.
2536 * @param factory the factory for creating new threads. For default value,
2537 * use {@link #defaultForkJoinWorkerThreadFactory}.
2538 * @param handler the handler for internal worker threads that
2539 * terminate due to unrecoverable errors encountered while executing
2540 * tasks. For default value, use {@code null}.
2541 * @param asyncMode if true,
2542 * establishes local first-in-first-out scheduling mode for forked
2543 * tasks that are never joined. This mode may be more appropriate
2544 * than default locally stack-based mode in applications in which
2545 * worker threads only process event-style asynchronous tasks.
2546 * For default value, use {@code false}.
2547 * @throws IllegalArgumentException if parallelism less than or
2548 * equal to zero, or greater than implementation limit
2549 * @throws NullPointerException if the factory is null
2550 * @throws SecurityException if a security manager exists and
2551 * the caller is not permitted to modify threads
2552 * because it does not hold {@link
2553 * java.lang.RuntimePermission}{@code ("modifyThread")}
2554 */
2555 public ForkJoinPool(int parallelism,
2556 ForkJoinWorkerThreadFactory factory,
2557 UncaughtExceptionHandler handler,
2558 boolean asyncMode) {
2559 this(checkParallelism(parallelism),
2560 checkFactory(factory),
2561 handler,
2562 asyncMode ? FIFO_QUEUE : LIFO_QUEUE,
2563 "ForkJoinPool-" + nextPoolId() + "-worker-");
2564 checkPermission();
2565 }
2566
2567 private static int checkParallelism(int parallelism) {
2568 if (parallelism <= 0 || parallelism > MAX_CAP)
2569 throw new IllegalArgumentException();
2570 return parallelism;
2571 }
2572
2573 private static ForkJoinWorkerThreadFactory checkFactory
2574 (ForkJoinWorkerThreadFactory factory) {
2575 if (factory == null)
2576 throw new NullPointerException();
2577 return factory;
2578 }
2579
2580 /**
2581 * Creates a {@code ForkJoinPool} with the given parameters, without
2582 * any security checks or parameter validation. Invoked directly by
2583 * makeCommonPool.
2584 */
2585 private ForkJoinPool(int parallelism,
2586 ForkJoinWorkerThreadFactory factory,
2587 UncaughtExceptionHandler handler,
2588 int mode,
2589 String workerNamePrefix) {
2590 this.workerNamePrefix = workerNamePrefix;
2591 this.factory = factory;
2592 this.ueh = handler;
2593 this.config = (parallelism & SMASK) | mode;
2594 long np = (long)(-parallelism); // offset ctl counts
2595 this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2596 }
2597
2598 /**
2599 * Returns the common pool instance. This pool is statically
2600 * constructed; its run state is unaffected by attempts to {@link
2601 * #shutdown} or {@link #shutdownNow}. However this pool and any
2602 * ongoing processing are automatically terminated upon program
2603 * {@link System#exit}. Any program that relies on asynchronous
2604 * task processing to complete before program termination should
2605 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2606 * before exit.
2607 *
2608 * @return the common pool instance
2609 * @since 1.8
2610 */
2611 public static ForkJoinPool commonPool() {
2612 // assert common != null : "static init error";
2613 return common;
2614 }
2615
2616 // Execution methods
2617
2618 /**
2619 * Performs the given task, returning its result upon completion.
2620 * If the computation encounters an unchecked Exception or Error,
2621 * it is rethrown as the outcome of this invocation. Rethrown
2622 * exceptions behave in the same way as regular exceptions, but,
2623 * when possible, contain stack traces (as displayed for example
2624 * using {@code ex.printStackTrace()}) of both the current thread
2625 * as well as the thread actually encountering the exception;
2626 * minimally only the latter.
2627 *
2628 * @param task the task
2629 * @param <T> the type of the task's result
2630 * @return the task's result
2631 * @throws NullPointerException if the task is null
2632 * @throws RejectedExecutionException if the task cannot be
2633 * scheduled for execution
2634 */
2635 public <T> T invoke(ForkJoinTask<T> task) {
2636 if (task == null)
2637 throw new NullPointerException();
2638 doSubmit(task);
2639 return task.join();
2640 }
2641
2642 /**
2643 * Arranges for (asynchronous) execution of the given task.
2644 *
2645 * @param task the task
2646 * @throws NullPointerException if the task is null
2647 * @throws RejectedExecutionException if the task cannot be
2648 * scheduled for execution
2649 */
2650 public void execute(ForkJoinTask<?> task) {
2651 doSubmit(task);
2652 }
2653
2654 // AbstractExecutorService methods
2655
2656 /**
2657 * @throws NullPointerException if the task is null
2658 * @throws RejectedExecutionException if the task cannot be
2659 * scheduled for execution
2660 */
2661 public void execute(Runnable task) {
2662 if (task == null)
2663 throw new NullPointerException();
2664 ForkJoinTask<?> job;
2665 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2666 job = (ForkJoinTask<?>) task;
2667 else
2668 job = new ForkJoinTask.RunnableExecuteAction(task);
2669 doSubmit(job);
2670 }
2671
2672 /**
2673 * Submits a ForkJoinTask for execution.
2674 *
2675 * @param task the task to submit
2676 * @param <T> the type of the task's result
2677 * @return the task
2678 * @throws NullPointerException if the task is null
2679 * @throws RejectedExecutionException if the task cannot be
2680 * scheduled for execution
2681 */
2682 public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2683 return doSubmit(task);
2684 }
2685
2686 /**
2687 * @throws NullPointerException if the task is null
2688 * @throws RejectedExecutionException if the task cannot be
2689 * scheduled for execution
2690 */
2691 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2692 return doSubmit(new ForkJoinTask.AdaptedCallable<T>(task));
2693 }
2694
2695 /**
2696 * @throws NullPointerException if the task is null
2697 * @throws RejectedExecutionException if the task cannot be
2698 * scheduled for execution
2699 */
2700 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2701 return doSubmit(new ForkJoinTask.AdaptedRunnable<T>(task, result));
2702 }
2703
2704 /**
2705 * @throws NullPointerException if the task is null
2706 * @throws RejectedExecutionException if the task cannot be
2707 * scheduled for execution
2708 */
2709 public ForkJoinTask<?> submit(Runnable task) {
2710 if (task == null)
2711 throw new NullPointerException();
2712 ForkJoinTask<?> job;
2713 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2714 job = (ForkJoinTask<?>) task;
2715 else
2716 job = new ForkJoinTask.AdaptedRunnableAction(task);
2717 return doSubmit(job);
2718 }
2719
2720 /**
2721 * @throws NullPointerException {@inheritDoc}
2722 * @throws RejectedExecutionException {@inheritDoc}
2723 */
2724 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2725 // In previous versions of this class, this method constructed
2726 // a task to run ForkJoinTask.invokeAll, but now external
2727 // invocation of multiple tasks is at least as efficient.
2728 ArrayList<Future<T>> futures = new ArrayList<>(tasks.size());
2729
2730 try {
2731 for (Callable<T> t : tasks) {
2732 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2733 futures.add(f);
2734 doSubmit(f);
2735 }
2736 for (int i = 0, size = futures.size(); i < size; i++)
2737 ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2738 return futures;
2739 } catch (Throwable t) {
2740 for (int i = 0, size = futures.size(); i < size; i++)
2741 futures.get(i).cancel(false);
2742 throw t;
2743 }
2744 }
2745
2746 /**
2747 * Returns the factory used for constructing new workers.
2748 *
2749 * @return the factory used for constructing new workers
2750 */
2751 public ForkJoinWorkerThreadFactory getFactory() {
2752 return factory;
2753 }
2754
2755 /**
2756 * Returns the handler for internal worker threads that terminate
2757 * due to unrecoverable errors encountered while executing tasks.
2758 *
2759 * @return the handler, or {@code null} if none
2760 */
2761 public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2762 return ueh;
2763 }
2764
2765 /**
2766 * Returns the targeted parallelism level of this pool.
2767 *
2768 * @return the targeted parallelism level of this pool
2769 */
2770 public int getParallelism() {
2771 int par;
2772 return ((par = config & SMASK) > 0) ? par : 1;
2773 }
2774
2775 /**
2776 * Returns the targeted parallelism level of the common pool.
2777 *
2778 * @return the targeted parallelism level of the common pool
2779 * @since 1.8
2780 */
2781 public static int getCommonPoolParallelism() {
2782 return commonParallelism;
2783 }
2784
2785 /**
2786 * Returns the number of worker threads that have started but not
2787 * yet terminated. The result returned by this method may differ
2788 * from {@link #getParallelism} when threads are created to
2789 * maintain parallelism when others are cooperatively blocked.
2790 *
2791 * @return the number of worker threads
2792 */
2793 public int getPoolSize() {
2794 return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2795 }
2796
2797 /**
2798 * Returns {@code true} if this pool uses local first-in-first-out
2799 * scheduling mode for forked tasks that are never joined.
2800 *
2801 * @return {@code true} if this pool uses async mode
2802 */
2803 public boolean getAsyncMode() {
2804 return (config & FIFO_QUEUE) != 0;
2805 }
2806
2807 /**
2808 * Returns an estimate of the number of worker threads that are
2809 * not blocked waiting to join tasks or for other managed
2810 * synchronization. This method may overestimate the
2811 * number of running threads.
2812 *
2813 * @return the number of worker threads
2814 */
2815 public int getRunningThreadCount() {
2816 int rc = 0;
2817 WorkQueue[] ws; WorkQueue w;
2818 if ((ws = workQueues) != null) {
2819 for (int i = 1; i < ws.length; i += 2) {
2820 if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2821 ++rc;
2822 }
2823 }
2824 return rc;
2825 }
2826
2827 /**
2828 * Returns an estimate of the number of threads that are currently
2829 * stealing or executing tasks. This method may overestimate the
2830 * number of active threads.
2831 *
2832 * @return the number of active threads
2833 */
2834 public int getActiveThreadCount() {
2835 int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2836 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2837 }
2838
2839 /**
2840 * Returns {@code true} if all worker threads are currently idle.
2841 * An idle worker is one that cannot obtain a task to execute
2842 * because none are available to steal from other threads, and
2843 * there are no pending submissions to the pool. This method is
2844 * conservative; it might not return {@code true} immediately upon
2845 * idleness of all threads, but will eventually become true if
2846 * threads remain inactive.
2847 *
2848 * @return {@code true} if all threads are currently idle
2849 */
2850 public boolean isQuiescent() {
2851 return (config & SMASK) + (int)(ctl >> AC_SHIFT) <= 0;
2852 }
2853
2854 /**
2855 * Returns an estimate of the total number of tasks stolen from
2856 * one thread's work queue by another. The reported value
2857 * underestimates the actual total number of steals when the pool
2858 * is not quiescent. This value may be useful for monitoring and
2859 * tuning fork/join programs: in general, steal counts should be
2860 * high enough to keep threads busy, but low enough to avoid
2861 * overhead and contention across threads.
2862 *
2863 * @return the number of steals
2864 */
2865 public long getStealCount() {
2866 AtomicLong sc = stealCounter;
2867 long count = (sc == null) ? 0L : sc.get();
2868 WorkQueue[] ws; WorkQueue w;
2869 if ((ws = workQueues) != null) {
2870 for (int i = 1; i < ws.length; i += 2) {
2871 if ((w = ws[i]) != null)
2872 count += w.nsteals;
2873 }
2874 }
2875 return count;
2876 }
2877
2878 /**
2879 * Returns an estimate of the total number of tasks currently held
2880 * in queues by worker threads (but not including tasks submitted
2881 * to the pool that have not begun executing). This value is only
2882 * an approximation, obtained by iterating across all threads in
2883 * the pool. This method may be useful for tuning task
2884 * granularities.
2885 *
2886 * @return the number of queued tasks
2887 */
2888 public long getQueuedTaskCount() {
2889 long count = 0;
2890 WorkQueue[] ws; WorkQueue w;
2891 if ((ws = workQueues) != null) {
2892 for (int i = 1; i < ws.length; i += 2) {
2893 if ((w = ws[i]) != null)
2894 count += w.queueSize();
2895 }
2896 }
2897 return count;
2898 }
2899
2900 /**
2901 * Returns an estimate of the number of tasks submitted to this
2902 * pool that have not yet begun executing. This method may take
2903 * time proportional to the number of submissions.
2904 *
2905 * @return the number of queued submissions
2906 */
2907 public int getQueuedSubmissionCount() {
2908 int count = 0;
2909 WorkQueue[] ws; WorkQueue w;
2910 if ((ws = workQueues) != null) {
2911 for (int i = 0; i < ws.length; i += 2) {
2912 if ((w = ws[i]) != null)
2913 count += w.queueSize();
2914 }
2915 }
2916 return count;
2917 }
2918
2919 /**
2920 * Returns {@code true} if there are any tasks submitted to this
2921 * pool that have not yet begun executing.
2922 *
2923 * @return {@code true} if there are any queued submissions
2924 */
2925 public boolean hasQueuedSubmissions() {
2926 WorkQueue[] ws; WorkQueue w;
2927 if ((ws = workQueues) != null) {
2928 for (int i = 0; i < ws.length; i += 2) {
2929 if ((w = ws[i]) != null && !w.isEmpty())
2930 return true;
2931 }
2932 }
2933 return false;
2934 }
2935
2936 /**
2937 * Removes and returns the next unexecuted submission if one is
2938 * available. This method may be useful in extensions to this
2939 * class that re-assign work in systems with multiple pools.
2940 *
2941 * @return the next submission, or {@code null} if none
2942 */
2943 protected ForkJoinTask<?> pollSubmission() {
2944 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2945 if ((ws = workQueues) != null) {
2946 for (int i = 0; i < ws.length; i += 2) {
2947 if ((w = ws[i]) != null && (t = w.poll()) != null)
2948 return t;
2949 }
2950 }
2951 return null;
2952 }
2953
2954 /**
2955 * Removes all available unexecuted submitted and forked tasks
2956 * from scheduling queues and adds them to the given collection,
2957 * without altering their execution status. These may include
2958 * artificially generated or wrapped tasks. This method is
2959 * designed to be invoked only when the pool is known to be
2960 * quiescent. Invocations at other times may not remove all
2961 * tasks. A failure encountered while attempting to add elements
2962 * to collection {@code c} may result in elements being in
2963 * neither, either or both collections when the associated
2964 * exception is thrown. The behavior of this operation is
2965 * undefined if the specified collection is modified while the
2966 * operation is in progress.
2967 *
2968 * @param c the collection to transfer elements into
2969 * @return the number of elements transferred
2970 */
2971 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2972 int count = 0;
2973 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2974 if ((ws = workQueues) != null) {
2975 for (int i = 0; i < ws.length; ++i) {
2976 if ((w = ws[i]) != null) {
2977 while ((t = w.poll()) != null) {
2978 c.add(t);
2979 ++count;
2980 }
2981 }
2982 }
2983 }
2984 return count;
2985 }
2986
2987 /**
2988 * Returns a string identifying this pool, as well as its state,
2989 * including indications of run state, parallelism level, and
2990 * worker and task counts.
2991 *
2992 * @return a string identifying this pool, as well as its state
2993 */
2994 public String toString() {
2995 // Use a single pass through workQueues to collect counts
2996 long qt = 0L, qs = 0L; int rc = 0;
2997 AtomicLong sc = stealCounter;
2998 long st = (sc == null) ? 0L : sc.get();
2999 long c = ctl;
3000 WorkQueue[] ws; WorkQueue w;
3001 if ((ws = workQueues) != null) {
3002 for (int i = 0; i < ws.length; ++i) {
3003 if ((w = ws[i]) != null) {
3004 int size = w.queueSize();
3005 if ((i & 1) == 0)
3006 qs += size;
3007 else {
3008 qt += size;
3009 st += w.nsteals;
3010 if (w.isApparentlyUnblocked())
3011 ++rc;
3012 }
3013 }
3014 }
3015 }
3016 int pc = (config & SMASK);
3017 int tc = pc + (short)(c >>> TC_SHIFT);
3018 int ac = pc + (int)(c >> AC_SHIFT);
3019 if (ac < 0) // ignore transient negative
3020 ac = 0;
3021 int rs = runState;
3022 String level = ((rs & TERMINATED) != 0 ? "Terminated" :
3023 (rs & STOP) != 0 ? "Terminating" :
3024 (rs & SHUTDOWN) != 0 ? "Shutting down" :
3025 "Running");
3026 return super.toString() +
3027 "[" + level +
3028 ", parallelism = " + pc +
3029 ", size = " + tc +
3030 ", active = " + ac +
3031 ", running = " + rc +
3032 ", steals = " + st +
3033 ", tasks = " + qt +
3034 ", submissions = " + qs +
3035 "]";
3036 }
3037
3038 /**
3039 * Possibly initiates an orderly shutdown in which previously
3040 * submitted tasks are executed, but no new tasks will be
3041 * accepted. Invocation has no effect on execution state if this
3042 * is the {@link #commonPool()}, and no additional effect if
3043 * already shut down. Tasks that are in the process of being
3044 * submitted concurrently during the course of this method may or
3045 * may not be rejected.
3046 *
3047 * @throws SecurityException if a security manager exists and
3048 * the caller is not permitted to modify threads
3049 * because it does not hold {@link
3050 * java.lang.RuntimePermission}{@code ("modifyThread")}
3051 */
3052 public void shutdown() {
3053 checkPermission();
3054 tryTerminate(false, true);
3055 }
3056
3057 /**
3058 * Possibly attempts to cancel and/or stop all tasks, and reject
3059 * all subsequently submitted tasks. Invocation has no effect on
3060 * execution state if this is the {@link #commonPool()}, and no
3061 * additional effect if already shut down. Otherwise, tasks that
3062 * are in the process of being submitted or executed concurrently
3063 * during the course of this method may or may not be
3064 * rejected. This method cancels both existing and unexecuted
3065 * tasks, in order to permit termination in the presence of task
3066 * dependencies. So the method always returns an empty list
3067 * (unlike the case for some other Executors).
3068 *
3069 * @return an empty list
3070 * @throws SecurityException if a security manager exists and
3071 * the caller is not permitted to modify threads
3072 * because it does not hold {@link
3073 * java.lang.RuntimePermission}{@code ("modifyThread")}
3074 */
3075 public List<Runnable> shutdownNow() {
3076 checkPermission();
3077 tryTerminate(true, true);
3078 return Collections.emptyList();
3079 }
3080
3081 /**
3082 * Returns {@code true} if all tasks have completed following shut down.
3083 *
3084 * @return {@code true} if all tasks have completed following shut down
3085 */
3086 public boolean isTerminated() {
3087 return (runState & TERMINATED) != 0;
3088 }
3089
3090 /**
3091 * Returns {@code true} if the process of termination has
3092 * commenced but not yet completed. This method may be useful for
3093 * debugging. A return of {@code true} reported a sufficient
3094 * period after shutdown may indicate that submitted tasks have
3095 * ignored or suppressed interruption, or are waiting for I/O,
3096 * causing this executor not to properly terminate. (See the
3097 * advisory notes for class {@link ForkJoinTask} stating that
3098 * tasks should not normally entail blocking operations. But if
3099 * they do, they must abort them on interrupt.)
3100 *
3101 * @return {@code true} if terminating but not yet terminated
3102 */
3103 public boolean isTerminating() {
3104 int rs = runState;
3105 return (rs & STOP) != 0 && (rs & TERMINATED) == 0;
3106 }
3107
3108 /**
3109 * Returns {@code true} if this pool has been shut down.
3110 *
3111 * @return {@code true} if this pool has been shut down
3112 */
3113 public boolean isShutdown() {
3114 return (runState & SHUTDOWN) != 0;
3115 }
3116
3117 /**
3118 * Blocks until all tasks have completed execution after a
3119 * shutdown request, or the timeout occurs, or the current thread
3120 * is interrupted, whichever happens first. Because the {@link
3121 * #commonPool()} never terminates until program shutdown, when
3122 * applied to the common pool, this method is equivalent to {@link
3123 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
3124 *
3125 * @param timeout the maximum time to wait
3126 * @param unit the time unit of the timeout argument
3127 * @return {@code true} if this executor terminated and
3128 * {@code false} if the timeout elapsed before termination
3129 * @throws InterruptedException if interrupted while waiting
3130 */
3131 public boolean awaitTermination(long timeout, TimeUnit unit)
3132 throws InterruptedException {
3133 if (Thread.interrupted())
3134 throw new InterruptedException();
3135 if (this == common) {
3136 awaitQuiescence(timeout, unit);
3137 return false;
3138 }
3139 long nanos = unit.toNanos(timeout);
3140 if (isTerminated())
3141 return true;
3142 if (nanos <= 0L)
3143 return false;
3144 long deadline = System.nanoTime() + nanos;
3145 synchronized (this) {
3146 for (;;) {
3147 if (isTerminated())
3148 return true;
3149 if (nanos <= 0L)
3150 return false;
3151 long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
3152 wait(millis > 0L ? millis : 1L);
3153 nanos = deadline - System.nanoTime();
3154 }
3155 }
3156 }
3157
3158 /**
3159 * If called by a ForkJoinTask operating in this pool, equivalent
3160 * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3161 * waits and/or attempts to assist performing tasks until this
3162 * pool {@link #isQuiescent} or the indicated timeout elapses.
3163 *
3164 * @param timeout the maximum time to wait
3165 * @param unit the time unit of the timeout argument
3166 * @return {@code true} if quiescent; {@code false} if the
3167 * timeout elapsed.
3168 */
3169 public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3170 long nanos = unit.toNanos(timeout);
3171 ForkJoinWorkerThread wt;
3172 Thread thread = Thread.currentThread();
3173 if ((thread instanceof ForkJoinWorkerThread) &&
3174 (wt = (ForkJoinWorkerThread)thread).pool == this) {
3175 helpQuiescePool(wt.workQueue);
3176 return true;
3177 }
3178 long startTime = System.nanoTime();
3179 WorkQueue[] ws;
3180 int r = 0, m;
3181 boolean found = true;
3182 while (!isQuiescent() && (ws = workQueues) != null &&
3183 (m = ws.length - 1) > 0) {
3184 if (!found) {
3185 if ((System.nanoTime() - startTime) > nanos)
3186 return false;
3187 Thread.yield(); // cannot block
3188 }
3189 found = false;
3190 for (int j = (m + 1) << 2; j >= 0; --j) {
3191 ForkJoinTask<?> t; WorkQueue q; int b, k;
3192 if ((k = r++ & m) <= m && k >= 0 && (q = ws[k]) != null &&
3193 (b = q.base) - q.top < 0) {
3194 found = true;
3195 if ((t = q.pollAt(b)) != null)
3196 t.doExec();
3197 break;
3198 }
3199 }
3200 }
3201 return true;
3202 }
3203
3204 /**
3205 * Waits and/or attempts to assist performing tasks indefinitely
3206 * until the {@link #commonPool()} {@link #isQuiescent}.
3207 */
3208 static void quiesceCommonPool() {
3209 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3210 }
3211
3212 /**
3213 * Interface for extending managed parallelism for tasks running
3214 * in {@link ForkJoinPool}s.
3215 *
3216 * <p>A {@code ManagedBlocker} provides two methods. Method
3217 * {@link #isReleasable} must return {@code true} if blocking is
3218 * not necessary. Method {@link #block} blocks the current thread
3219 * if necessary (perhaps internally invoking {@code isReleasable}
3220 * before actually blocking). These actions are performed by any
3221 * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
3222 * The unusual methods in this API accommodate synchronizers that
3223 * may, but don't usually, block for long periods. Similarly, they
3224 * allow more efficient internal handling of cases in which
3225 * additional workers may be, but usually are not, needed to
3226 * ensure sufficient parallelism. Toward this end,
3227 * implementations of method {@code isReleasable} must be amenable
3228 * to repeated invocation.
3229 *
3230 * <p>For example, here is a ManagedBlocker based on a
3231 * ReentrantLock:
3232 * <pre> {@code
3233 * class ManagedLocker implements ManagedBlocker {
3234 * final ReentrantLock lock;
3235 * boolean hasLock = false;
3236 * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3237 * public boolean block() {
3238 * if (!hasLock)
3239 * lock.lock();
3240 * return true;
3241 * }
3242 * public boolean isReleasable() {
3243 * return hasLock || (hasLock = lock.tryLock());
3244 * }
3245 * }}</pre>
3246 *
3247 * <p>Here is a class that possibly blocks waiting for an
3248 * item on a given queue:
3249 * <pre> {@code
3250 * class QueueTaker<E> implements ManagedBlocker {
3251 * final BlockingQueue<E> queue;
3252 * volatile E item = null;
3253 * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3254 * public boolean block() throws InterruptedException {
3255 * if (item == null)
3256 * item = queue.take();
3257 * return true;
3258 * }
3259 * public boolean isReleasable() {
3260 * return item != null || (item = queue.poll()) != null;
3261 * }
3262 * public E getItem() { // call after pool.managedBlock completes
3263 * return item;
3264 * }
3265 * }}</pre>
3266 */
3267 public static interface ManagedBlocker {
3268 /**
3269 * Possibly blocks the current thread, for example waiting for
3270 * a lock or condition.
3271 *
3272 * @return {@code true} if no additional blocking is necessary
3273 * (i.e., if isReleasable would return true)
3274 * @throws InterruptedException if interrupted while waiting
3275 * (the method is not required to do so, but is allowed to)
3276 */
3277 boolean block() throws InterruptedException;
3278
3279 /**
3280 * Returns {@code true} if blocking is unnecessary.
3281 * @return {@code true} if blocking is unnecessary
3282 */
3283 boolean isReleasable();
3284 }
3285
3286 /**
3287 * Runs the given possibly blocking task. When {@linkplain
3288 * ForkJoinTask#inForkJoinPool() running in a ForkJoinPool}, this
3289 * method possibly arranges for a spare thread to be activated if
3290 * necessary to ensure sufficient parallelism while the current
3291 * thread is blocked in {@link ManagedBlocker#block blocker.block()}.
3292 *
3293 * <p>This method repeatedly calls {@code blocker.isReleasable()} and
3294 * {@code blocker.block()} until either method returns {@code true}.
3295 * Every call to {@code blocker.block()} is preceded by a call to
3296 * {@code blocker.isReleasable()} that returned {@code false}.
3297 *
3298 * <p>If not running in a ForkJoinPool, this method is
3299 * behaviorally equivalent to
3300 * <pre> {@code
3301 * while (!blocker.isReleasable())
3302 * if (blocker.block())
3303 * break;}</pre>
3304 *
3305 * If running in a ForkJoinPool, the pool may first be expanded to
3306 * ensure sufficient parallelism available during the call to
3307 * {@code blocker.block()}.
3308 *
3309 * @param blocker the blocker task
3310 * @throws InterruptedException if {@code blocker.block()} did so
3311 */
3312 public static void managedBlock(ManagedBlocker blocker)
3313 throws InterruptedException {
3314 ForkJoinPool p;
3315 ForkJoinWorkerThread wt;
3316 Thread t = Thread.currentThread();
3317 if ((t instanceof ForkJoinWorkerThread) &&
3318 (p = (wt = (ForkJoinWorkerThread)t).pool) != null) {
3319 WorkQueue w = wt.workQueue;
3320 while (!blocker.isReleasable()) {
3321 if (p.tryCompensate(w)) {
3322 try {
3323 do {} while (!blocker.isReleasable() &&
3324 !blocker.block());
3325 } finally {
3326 U.getAndAddLong(p, CTL, AC_UNIT);
3327 }
3328 break;
3329 }
3330 }
3331 }
3332 else {
3333 do {} while (!blocker.isReleasable() &&
3334 !blocker.block());
3335 }
3336 }
3337
3338 // AbstractExecutorService overrides. These rely on undocumented
3339 // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3340 // implement RunnableFuture.
3341
3342 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3343 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3344 }
3345
3346 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3347 return new ForkJoinTask.AdaptedCallable<T>(callable);
3348 }
3349
3350 // Unsafe mechanics
3351 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
3352 private static final int ABASE;
3353 private static final int ASHIFT;
3354 private static final long CTL;
3355 private static final long RUNSTATE;
3356 private static final long STEALCOUNTER;
3357 private static final long PARKBLOCKER;
3358 private static final long QTOP;
3359 private static final long QLOCK;
3360 private static final long QSCANSTATE;
3361 private static final long QPARKER;
3362 private static final long QCURRENTSTEAL;
3363 private static final long QCURRENTJOIN;
3364
3365 static {
3366 try {
3367 CTL = U.objectFieldOffset
3368 (ForkJoinPool.class.getDeclaredField("ctl"));
3369 RUNSTATE = U.objectFieldOffset
3370 (ForkJoinPool.class.getDeclaredField("runState"));
3371 STEALCOUNTER = U.objectFieldOffset
3372 (ForkJoinPool.class.getDeclaredField("stealCounter"));
3373
3374 PARKBLOCKER = U.objectFieldOffset
3375 (Thread.class.getDeclaredField("parkBlocker"));
3376
3377 QTOP = U.objectFieldOffset
3378 (WorkQueue.class.getDeclaredField("top"));
3379 QLOCK = U.objectFieldOffset
3380 (WorkQueue.class.getDeclaredField("qlock"));
3381 QSCANSTATE = U.objectFieldOffset
3382 (WorkQueue.class.getDeclaredField("scanState"));
3383 QPARKER = U.objectFieldOffset
3384 (WorkQueue.class.getDeclaredField("parker"));
3385 QCURRENTSTEAL = U.objectFieldOffset
3386 (WorkQueue.class.getDeclaredField("currentSteal"));
3387 QCURRENTJOIN = U.objectFieldOffset
3388 (WorkQueue.class.getDeclaredField("currentJoin"));
3389
3390 ABASE = U.arrayBaseOffset(ForkJoinTask[].class);
3391 int scale = U.arrayIndexScale(ForkJoinTask[].class);
3392 if ((scale & (scale - 1)) != 0)
3393 throw new Error("array index scale not a power of two");
3394 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3395 } catch (ReflectiveOperationException e) {
3396 throw new Error(e);
3397 }
3398
3399 commonMaxSpares = DEFAULT_COMMON_MAX_SPARES;
3400 defaultForkJoinWorkerThreadFactory =
3401 new DefaultForkJoinWorkerThreadFactory();
3402 modifyThreadPermission = new RuntimePermission("modifyThread");
3403
3404 common = java.security.AccessController.doPrivileged
3405 (new java.security.PrivilegedAction<ForkJoinPool>() {
3406 public ForkJoinPool run() { return makeCommonPool(); }});
3407 int par = common.config & SMASK; // report 1 even if threads disabled
3408 commonParallelism = par > 0 ? par : 1;
3409 }
3410
3411 /**
3412 * Creates and returns the common pool, respecting user settings
3413 * specified via system properties.
3414 */
3415 private static ForkJoinPool makeCommonPool() {
3416 int parallelism = -1;
3417 ForkJoinWorkerThreadFactory factory = null;
3418 UncaughtExceptionHandler handler = null;
3419 try { // ignore exceptions in accessing/parsing properties
3420 String pp = System.getProperty
3421 ("java.util.concurrent.ForkJoinPool.common.parallelism");
3422 String fp = System.getProperty
3423 ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3424 String hp = System.getProperty
3425 ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3426 String mp = System.getProperty
3427 ("java.util.concurrent.ForkJoinPool.common.maximumSpares");
3428 if (pp != null)
3429 parallelism = Integer.parseInt(pp);
3430 if (fp != null)
3431 factory = ((ForkJoinWorkerThreadFactory)ClassLoader.
3432 getSystemClassLoader().loadClass(fp).newInstance());
3433 if (hp != null)
3434 handler = ((UncaughtExceptionHandler)ClassLoader.
3435 getSystemClassLoader().loadClass(hp).newInstance());
3436 if (mp != null)
3437 commonMaxSpares = Integer.parseInt(mp);
3438 } catch (Exception ignore) {
3439 }
3440 if (factory == null) {
3441 if (System.getSecurityManager() == null)
3442 factory = defaultForkJoinWorkerThreadFactory;
3443 else // use security-managed default
3444 factory = new InnocuousForkJoinWorkerThreadFactory();
3445 }
3446 if (parallelism < 0 && // default 1 less than #cores
3447 (parallelism = Runtime.getRuntime().availableProcessors() - 1) <= 0)
3448 parallelism = 1;
3449 if (parallelism > MAX_CAP)
3450 parallelism = MAX_CAP;
3451 return new ForkJoinPool(parallelism, factory, handler, LIFO_QUEUE,
3452 "ForkJoinPool.commonPool-worker-");
3453 }
3454
3455 /**
3456 * Factory for innocuous worker threads
3457 */
3458 static final class InnocuousForkJoinWorkerThreadFactory
3459 implements ForkJoinWorkerThreadFactory {
3460
3461 /**
3462 * An ACC to restrict permissions for the factory itself.
3463 * The constructed workers have no permissions set.
3464 */
3465 private static final AccessControlContext innocuousAcc;
3466 static {
3467 Permissions innocuousPerms = new Permissions();
3468 innocuousPerms.add(modifyThreadPermission);
3469 innocuousPerms.add(new RuntimePermission(
3470 "enableContextClassLoaderOverride"));
3471 innocuousPerms.add(new RuntimePermission(
3472 "modifyThreadGroup"));
3473 innocuousAcc = new AccessControlContext(new ProtectionDomain[] {
3474 new ProtectionDomain(null, innocuousPerms)
3475 });
3476 }
3477
3478 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
3479 return java.security.AccessController.doPrivileged(
3480 new java.security.PrivilegedAction<ForkJoinWorkerThread>() {
3481 public ForkJoinWorkerThread run() {
3482 return new ForkJoinWorkerThread.
3483 InnocuousForkJoinWorkerThread(pool);
3484 }}, innocuousAcc);
3485 }
3486 }
3487
3488 }