ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.244
Committed: Wed Jul 22 20:46:50 2015 UTC (8 years, 10 months ago) by jsr166
Branch: MAIN
Changes since 1.243: +11 -11 lines
Log Message:
whitespace

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.lang.Thread.UncaughtExceptionHandler;
10 import java.security.AccessControlContext;
11 import java.security.Permissions;
12 import java.security.ProtectionDomain;
13 import java.util.ArrayList;
14 import java.util.Arrays;
15 import java.util.Collection;
16 import java.util.Collections;
17 import java.util.List;
18 import java.util.concurrent.atomic.AtomicLong;
19 import java.util.concurrent.locks.LockSupport;
20
21 /**
22 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
23 * A {@code ForkJoinPool} provides the entry point for submissions
24 * from non-{@code ForkJoinTask} clients, as well as management and
25 * monitoring operations.
26 *
27 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
28 * ExecutorService} mainly by virtue of employing
29 * <em>work-stealing</em>: all threads in the pool attempt to find and
30 * execute tasks submitted to the pool and/or created by other active
31 * tasks (eventually blocking waiting for work if none exist). This
32 * enables efficient processing when most tasks spawn other subtasks
33 * (as do most {@code ForkJoinTask}s), as well as when many small
34 * tasks are submitted to the pool from external clients. Especially
35 * when setting <em>asyncMode</em> to true in constructors, {@code
36 * ForkJoinPool}s may also be appropriate for use with event-style
37 * tasks that are never joined.
38 *
39 * <p>A static {@link #commonPool()} is available and appropriate for
40 * most applications. The common pool is used by any ForkJoinTask that
41 * is not explicitly submitted to a specified pool. Using the common
42 * pool normally reduces resource usage (its threads are slowly
43 * reclaimed during periods of non-use, and reinstated upon subsequent
44 * use).
45 *
46 * <p>For applications that require separate or custom pools, a {@code
47 * ForkJoinPool} may be constructed with a given target parallelism
48 * level; by default, equal to the number of available processors.
49 * The pool attempts to maintain enough active (or available) threads
50 * by dynamically adding, suspending, or resuming internal worker
51 * threads, even if some tasks are stalled waiting to join others.
52 * However, no such adjustments are guaranteed in the face of blocked
53 * I/O or other unmanaged synchronization. The nested {@link
54 * ManagedBlocker} interface enables extension of the kinds of
55 * synchronization accommodated.
56 *
57 * <p>In addition to execution and lifecycle control methods, this
58 * class provides status check methods (for example
59 * {@link #getStealCount}) that are intended to aid in developing,
60 * tuning, and monitoring fork/join applications. Also, method
61 * {@link #toString} returns indications of pool state in a
62 * convenient form for informal monitoring.
63 *
64 * <p>As is the case with other ExecutorServices, there are three
65 * main task execution methods summarized in the following table.
66 * These are designed to be used primarily by clients not already
67 * engaged in fork/join computations in the current pool. The main
68 * forms of these methods accept instances of {@code ForkJoinTask},
69 * but overloaded forms also allow mixed execution of plain {@code
70 * Runnable}- or {@code Callable}- based activities as well. However,
71 * tasks that are already executing in a pool should normally instead
72 * use the within-computation forms listed in the table unless using
73 * async event-style tasks that are not usually joined, in which case
74 * there is little difference among choice of methods.
75 *
76 * <table BORDER CELLPADDING=3 CELLSPACING=1>
77 * <caption>Summary of task execution methods</caption>
78 * <tr>
79 * <td></td>
80 * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
81 * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
82 * </tr>
83 * <tr>
84 * <td> <b>Arrange async execution</b></td>
85 * <td> {@link #execute(ForkJoinTask)}</td>
86 * <td> {@link ForkJoinTask#fork}</td>
87 * </tr>
88 * <tr>
89 * <td> <b>Await and obtain result</b></td>
90 * <td> {@link #invoke(ForkJoinTask)}</td>
91 * <td> {@link ForkJoinTask#invoke}</td>
92 * </tr>
93 * <tr>
94 * <td> <b>Arrange exec and obtain Future</b></td>
95 * <td> {@link #submit(ForkJoinTask)}</td>
96 * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
97 * </tr>
98 * </table>
99 *
100 * <p>The common pool is by default constructed with default
101 * parameters, but these may be controlled by setting three
102 * {@linkplain System#getProperty system properties}:
103 * <ul>
104 * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
105 * - the parallelism level, a non-negative integer
106 * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
107 * - the class name of a {@link ForkJoinWorkerThreadFactory}
108 * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
109 * - the class name of a {@link UncaughtExceptionHandler}
110 * <li>{@code java.util.concurrent.ForkJoinPool.common.maximumSpares}
111 * - the maximum number of allowed extra threads to maintain target
112 * parallelism (default 256).
113 * </ul>
114 * If a {@link SecurityManager} is present and no factory is
115 * specified, then the default pool uses a factory supplying
116 * threads that have no {@link Permissions} enabled.
117 * The system class loader is used to load these classes.
118 * Upon any error in establishing these settings, default parameters
119 * are used. It is possible to disable or limit the use of threads in
120 * the common pool by setting the parallelism property to zero, and/or
121 * using a factory that may return {@code null}. However doing so may
122 * cause unjoined tasks to never be executed.
123 *
124 * <p><b>Implementation notes</b>: This implementation restricts the
125 * maximum number of running threads to 32767. Attempts to create
126 * pools with greater than the maximum number result in
127 * {@code IllegalArgumentException}.
128 *
129 * <p>This implementation rejects submitted tasks (that is, by throwing
130 * {@link RejectedExecutionException}) only when the pool is shut down
131 * or internal resources have been exhausted.
132 *
133 * @since 1.7
134 * @author Doug Lea
135 */
136 @sun.misc.Contended
137 public class ForkJoinPool extends AbstractExecutorService {
138
139 /*
140 * Implementation Overview
141 *
142 * This class and its nested classes provide the main
143 * functionality and control for a set of worker threads:
144 * Submissions from non-FJ threads enter into submission queues.
145 * Workers take these tasks and typically split them into subtasks
146 * that may be stolen by other workers. Preference rules give
147 * first priority to processing tasks from their own queues (LIFO
148 * or FIFO, depending on mode), then to randomized FIFO steals of
149 * tasks in other queues. This framework began as vehicle for
150 * supporting tree-structured parallelism using work-stealing.
151 * Over time, its scalability advantages led to extensions and
152 * changes to better support more diverse usage contexts. Because
153 * most internal methods and nested classes are interrelated,
154 * their main rationale and descriptions are presented here;
155 * individual methods and nested classes contain only brief
156 * comments about details.
157 *
158 * WorkQueues
159 * ==========
160 *
161 * Most operations occur within work-stealing queues (in nested
162 * class WorkQueue). These are special forms of Deques that
163 * support only three of the four possible end-operations -- push,
164 * pop, and poll (aka steal), under the further constraints that
165 * push and pop are called only from the owning thread (or, as
166 * extended here, under a lock), while poll may be called from
167 * other threads. (If you are unfamiliar with them, you probably
168 * want to read Herlihy and Shavit's book "The Art of
169 * Multiprocessor programming", chapter 16 describing these in
170 * more detail before proceeding.) The main work-stealing queue
171 * design is roughly similar to those in the papers "Dynamic
172 * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
173 * (http://research.sun.com/scalable/pubs/index.html) and
174 * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
175 * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
176 * The main differences ultimately stem from GC requirements that
177 * we null out taken slots as soon as we can, to maintain as small
178 * a footprint as possible even in programs generating huge
179 * numbers of tasks. To accomplish this, we shift the CAS
180 * arbitrating pop vs poll (steal) from being on the indices
181 * ("base" and "top") to the slots themselves.
182 *
183 * Adding tasks then takes the form of a classic array push(task)
184 * in a circular buffer:
185 * q.array[q.top++ % length] = task;
186 *
187 * (The actual code needs to null-check and size-check the array,
188 * uses masking not mod for indexing a pawer-of-two-sized array,
189 * properly fences accesses, and possibly signals waiting workers
190 * to start scanning -- see below.) Both a successful pop and
191 * poll mainly entail a CAS of a slot from non-null to null.
192 *
193 * The pop operation (always performed by owner) is:
194 * if ((the task at top slot is not null) and
195 * (CAS slot to null))
196 * decrement top and return task;
197 *
198 * And the poll operation (usually by a stealer) is
199 * if ((the task at base slot is not null) and
200 * (CAS slot to null))
201 * increment base and return task;
202 *
203 * There are several variants of each of these; for example most
204 * versions of poll prescreen the CAS by rechecking that the base
205 * has not changed since reading the slot, and most methods only
206 * attempt the CAS if base appears not to be equal to top.
207 *
208 * Memory ordering. See "Correct and Efficient Work-Stealing for
209 * Weak Memory Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
210 * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
211 * analysis of memory ordering requirements in work-stealing
212 * algorithms similar to (but different than) the one used here.
213 * Extracting tasks in array slots via (fully fenced) CAS provides
214 * primary synchronization. The base and top indices imprecisely
215 * guide where to extract from. We do not always require strict
216 * orderings of array and index updates, so sometimes let them be
217 * subject to compiler and processor reorderings. However, the
218 * volatile "base" index also serves as a basis for memory
219 * ordering: Slot accesses are preceded by a read of base,
220 * ensuring happens-before ordering with repect to stealers (so
221 * the slots themselves can be read via plain array reads.) The
222 * only other memory orderings relied on are maintained in the
223 * course of signalling and activation (see below). A check that
224 * base == top indicates (momentary) emptiness, but otherwise may
225 * err on the side of possibly making the queue appear nonempty
226 * when a push, pop, or poll have not fully committed, or making
227 * it appear empty when an update of top has not yet been visibly
228 * written. (Method isEmpty() checks the case of a partially
229 * completed removal of the last element.) Because of this, the
230 * poll operation, considered individually, is not wait-free. One
231 * thief cannot successfully continue until another in-progress
232 * one (or, if previously empty, a push) visibly completes.
233 * However, in the aggregate, we ensure at least probabilistic
234 * non-blockingness. If an attempted steal fails, a scanning
235 * thief chooses a different random victim target to try next. So,
236 * in order for one thief to progress, it suffices for any
237 * in-progress poll or new push on any empty queue to
238 * complete. (This is why we normally use method pollAt and its
239 * variants that try once at the apparent base index, else
240 * consider alternative actions, rather than method poll, which
241 * retries.)
242 *
243 * This approach also enables support of a user mode in which
244 * local task processing is in FIFO, not LIFO order, simply by
245 * using poll rather than pop. This can be useful in
246 * message-passing frameworks in which tasks are never joined.
247 *
248 * WorkQueues are also used in a similar way for tasks submitted
249 * to the pool. We cannot mix these tasks in the same queues used
250 * by workers. Instead, we randomly associate submission queues
251 * with submitting threads, using a form of hashing. The
252 * ThreadLocalRandom probe value serves as a hash code for
253 * choosing existing queues, and may be randomly repositioned upon
254 * contention with other submitters. In essence, submitters act
255 * like workers except that they are restricted to executing local
256 * tasks that they submitted (or in the case of CountedCompleters,
257 * others with the same root task). Insertion of tasks in shared
258 * mode requires a lock but we use only a simple spinlock (using
259 * field qlock), because submitters encountering a busy queue move
260 * on to try or create other queues -- they block only when
261 * creating and registering new queues. Because it is used only as
262 * a spinlock, unlocking requires only a "releasing" store (using
263 * putOrderedInt). The qlock is also used during termination
264 * de3tection, in which case it is forced to a negative
265 * nonlockable value.
266 *
267 * Management
268 * ==========
269 *
270 * The main throughput advantages of work-stealing stem from
271 * decentralized control -- workers mostly take tasks from
272 * themselves or each other, at rates that can exceed a billion
273 * per second. The pool itself creates, activates (enables
274 * scanning for and running tasks), deactivates, blocks, and
275 * terminates threads, all with minimal central information.
276 * There are only a few properties that we can globally track or
277 * maintain, so we pack them into a small number of variables,
278 * often maintaining atomicity without blocking or locking.
279 * Nearly all essentially atomic control state is held in two
280 * volatile variables that are by far most often read (not
281 * written) as status and consistency checks. (Also, field
282 * "config" holds unchanging configuration state.)
283 *
284 * Field "ctl" contains 64 bits holding information needed to
285 * atomically decide to add, inactivate, enqueue (on an event
286 * queue), dequeue, and/or re-activate workers. To enable this
287 * packing, we restrict maximum parallelism to (1<<15)-1 (which is
288 * far in excess of normal operating range) to allow ids, counts,
289 * and their negations (used for thresholding) to fit into 16bit
290 * subfields.
291 *
292 * Field "runState" holds CASed state bits (STARTED, STOP, etc).
293 *
294 * Field "workQueues" holds references to WorkQueues. We need a
295 * lock to create, resize, and install workers in this array. We
296 * opportunistically use the "stealCounter" object as a monitor
297 * protecting access; although it too is lazily initialized (see
298 * tryInitialize) and only exists when runstate is STARTED. The
299 * workQueues array is otherwise concurrently readable, and
300 * accessed directly. We also ensure that reads of the array
301 * reference itself never become too stale (for example,
302 * re-reading before each scan). To simplify index-based
303 * operations, the array size is always a power of two, and all
304 * readers must tolerate null slots. Worker queues are at odd
305 * indices. Shared (submission) queues are at even indices, up to
306 * a maximum of 64 slots, to limit growth even if array needs to
307 * expand to add more workers. Grouping them together in this way
308 * simplifies and speeds up task scanning.
309 *
310 * All worker thread creation is on-demand, triggered by task
311 * submissions, replacement of terminated workers, and/or
312 * compensation for blocked workers. However, all other support
313 * code is set up to work with other policies. To ensure that we
314 * do not hold on to worker references that would prevent GC, All
315 * accesses to workQueues are via indices into the workQueues
316 * array (which is one source of some of the messy code
317 * constructions here). In essence, the workQueues array serves as
318 * a weak reference mechanism. Thus for example the stack top
319 * subfield of ctl stores indices, not references.
320 *
321 * Queuing Idle Workers. Unlike HPC work-stealing frameworks, we
322 * cannot let workers spin indefinitely scanning for tasks when
323 * none can be found immediately, and we cannot start/resume
324 * workers unless there appear to be tasks available. On the
325 * other hand, we must quickly prod them into action when new
326 * tasks are submitted or generated. In many usages, ramp-up time
327 * to activate workers is the main limiting factor in overall
328 * performance, which is compounded at program start-up by JIT
329 * compilation and allocation. So we streamline this as much as
330 * possible.
331 *
332 * The "ctl" field atomically maintains active and total worker
333 * counts as well as a queue to place waiting threads so they can
334 * be located for signalling. Active counts also play the role of
335 * quiescence indicators, so are decremented when workers believe
336 * that there are no more tasks to execute. The "queue" is
337 * actually a form of Treiber stack. A stack is ideal for
338 * activating threads in most-recently used order. This improves
339 * performance and locality, outweighing the disadvantages of
340 * being prone to contention and inability to release a worker
341 * unless it is topmost on stack. We block/unblock workers after
342 * pushing on the idle worker stack (represented by the lower
343 * 32bit subfield of ctl) when they cannot find work. The top
344 * stack state holds the value of the "scanState" field of the
345 * worker: its index and status, plus a version counter that, in
346 * addition to the count subfields (also serving as version
347 * stamps) provide protection against Treiber stack ABA effects.
348 *
349 * Creating workers. To create a worker, we pre-increment total
350 * count (serving as a reservation), and attempt to construct a
351 * ForkJoinWorkerThread via its factory. Upon construction, the
352 * new thread invokes registerWorker, where it constructs a
353 * WorkQueue and is assigned an index in the workQueues array
354 * (expanding the array if necessary). The thread is then
355 * started. Upon any exception across these steps, or null return
356 * from factory, deregisterWorker adjusts counts and records
357 * accordingly. If a null return, the pool continues running with
358 * fewer than the target number workers. If exceptional, the
359 * exception is propagated, generally to some external caller.
360 * Worker index assignment avoids the bias in scanning that would
361 * occur if entries were sequentially packed starting at the front
362 * of the workQueues array. We treat the array as a simple
363 * power-of-two hash table, expanding as needed. The seedIndex
364 * increment ensures no collisions until a resize is needed or a
365 * worker is deregistered and replaced, and thereafter keeps
366 * probability of collision low. We cannot use
367 * ThreadLocalRandom.getProbe() for similar purposes here because
368 * the thread has not started yet, but do so for creating
369 * submission queues for existing external threads (see
370 * externalPush).
371 *
372 * WorkQueue field scanState is used by both workers and the pool
373 * to manage and track whether a worker is UNSIGNALLED (possibly
374 * blocked waiting for a signal). When a worker is inactivated,
375 * its scanState field is set, and is prevented from executing
376 * tasks, even though it must scan once for them to avoid queuing
377 * races. Note that scanState updates lag queue CAS releases so
378 * usage requires care. When queued, the lower 16 bits of
379 * scanState must hold its pool index. So we place the index there
380 * upon initialization (see registerWorker) and otherwise keep it
381 * there or restore it when necessary.
382 *
383 * The ctl field also serves as the basis for memory
384 * synchronization surrounding activation. This uses a more
385 * efficient version of a Dekker-like rule that task producers and
386 * consumers sync with each other by both writing/CASing ctl (even
387 * if to its current value). This would be extemely costly. So we
388 * relax it in several ways: (1) Producers only signal when their
389 * queue is empty. Other workers propagate this signal (in method
390 * scan) when they find tasks. (2) Workers only enqueue after
391 * scanning (see below) and not finding any tasks. (3) Rather
392 * than CASing ctl to its current value in the common case where
393 * no action is required, we reduce write contention by
394 * equivalently prefacing signalWork when called by a task
395 * producer with a "fullFence".
396 *
397 * Amost always, too many signals are issued. A task producer
398 * cannot in general tell if some existing worker is in the midst
399 * of finishing one task (or already scanning) and ready to take
400 * another without being signalled. So the producer might instead
401 * activate a different worker that does not find any work, and
402 * then inactivates. This scarcely matters in steady-state
403 * computations involving all workers, but can create contention
404 * and bookeeping bottlenecks during ramp-up, ramp-down, and small
405 * computations involving only a few workers.
406 *
407 * Scanning. Method scan() performs top-level scanning for tasks.
408 * Each scan traverses (and tries to poll from) each queue in
409 * pseudorandom permutation order by randomly selecting an origin
410 * index and a step value. (The pseudorandom generator need not
411 * have high-quality statistical properties in the long term, but
412 * just within computations; We use 64bit and 32bit Marsaglia
413 * XorShifts, which are cheap and suffice here.) Scanning also
414 * employs contention reduction: When scanning workers fail a CAS
415 * polling for work, they soon restart with a different
416 * pseudorandom scan order (thus likely retrying at different
417 * intervals). This improves throughput when many threads are
418 * trying to take tasks from few queues. Scans do not otherwise
419 * explicitly take into account core affinities, loads, cache
420 * localities, etc, However, they do exploit temporal locality
421 * (which usually approximates these) by probabilistically
422 * preferring to re-poll from the same queue after a successful
423 * poll on average #workers times before trying others.
424 * Restricted forms of scanning occur in methods helpComplete and
425 * findNonEmptyStealQueue, and take similar but simpler forms.
426 *
427 * Deactivation and waiting. Queuing encounters several intrinsic
428 * races; most notably that a inactivating scanning worker can
429 * miss seeing a task produced during a scan. So when a worker
430 * cannot find a task to steal, it inactivates and enqueues, and
431 * then rescans to ensure that it didn't miss one, reactivating
432 * upon seeing one with probability approximately proportional to
433 * probability of a miss. (In most cases, the worker will be
434 * signalled before self-signalling, avoiding cascades of multiple
435 * signals for the same task).
436 *
437 * Workers block (in method awaitWork) using park/unpark;
438 * advertising the need for signallers to unpark by setting their
439 * "parker" fields.
440 *
441 * Trimming workers. To release resources after periods of lack of
442 * use, a worker starting to wait when the pool is quiescent will
443 * time out and terminate (see awaitWork) if the pool has remained
444 * quiescent for period IDLE_TIMEOUT, increasing the period as the
445 * number of threads decreases, eventually removing all workers.
446 *
447 * Shutdown and Termination. A call to shutdownNow invokes
448 * tryTerminate to atomically set a runState bit. The calling
449 * thread, as well as every other worker thereafter terminating,
450 * helps terminate others by setting their (qlock) status,
451 * cancelling their unprocessed tasks, and waking them up, doing
452 * so repeatedly until stable (but with a loop bounded by the
453 * number of workers). Calls to non-abrupt shutdown() preface
454 * this by checking whether termination should commence. This
455 * relies primarily on the active count bits of "ctl" maintaining
456 * consensus -- tryTerminate is called from awaitWork whenever
457 * quiescent. However, external submitters do not take part in
458 * this consensus. So, tryTerminate sweeps through queues (until
459 * stable) to ensure lack of in-flight submissions and workers
460 * about to process them before triggering the "STOP" phase of
461 * termination. (Note: there is an intrinsic conflict if
462 * helpQuiescePool is called when shutdown is enabled. Both wait
463 * for quiescence, but tryTerminate is biased to not trigger until
464 * helpQuiescePool completes.)
465 *
466 * Joining Tasks
467 * =============
468 *
469 * Any of several actions may be taken when one worker is waiting
470 * to join a task stolen (or always held) by another. Because we
471 * are multiplexing many tasks on to a pool of workers, we can't
472 * just let them block (as in Thread.join). We also cannot just
473 * reassign the joiner's run-time stack with another and replace
474 * it later, which would be a form of "continuation", that even if
475 * possible is not necessarily a good idea since we may need both
476 * an unblocked task and its continuation to progress. Instead we
477 * combine two tactics:
478 *
479 * Helping: Arranging for the joiner to execute some task that it
480 * would be running if the steal had not occurred.
481 *
482 * Compensating: Unless there are already enough live threads,
483 * method tryCompensate() may create or re-activate a spare
484 * thread to compensate for blocked joiners until they unblock.
485 *
486 * A third form (implemented in tryRemoveAndExec) amounts to
487 * helping a hypothetical compensator: If we can readily tell that
488 * a possible action of a compensator is to steal and execute the
489 * task being joined, the joining thread can do so directly,
490 * without the need for a compensation thread (although at the
491 * expense of larger run-time stacks, but the tradeoff is
492 * typically worthwhile).
493 *
494 * The ManagedBlocker extension API can't use helping so relies
495 * only on compensation in method awaitBlocker.
496 *
497 * The algorithm in helpStealer entails a form of "linear
498 * helping". Each worker records (in field currentSteal) the most
499 * recent task it stole from some other worker (or a submission).
500 * It also records (in field currentJoin) the task it is currently
501 * actively joining. Method helpStealer uses these markers to try
502 * to find a worker to help (i.e., steal back a task from and
503 * execute it) that could hasten completion of the actively joined
504 * task. Thus, the joiner executes a task that would be on its
505 * own local deque had the to-be-joined task not been stolen. This
506 * is a conservative variant of the approach described in Wagner &
507 * Calder "Leapfrogging: a portable technique for implementing
508 * efficient futures" SIGPLAN Notices, 1993
509 * (http://portal.acm.org/citation.cfm?id=155354). It differs in
510 * that: (1) We only maintain dependency links across workers upon
511 * steals, rather than use per-task bookkeeping. This sometimes
512 * requires a linear scan of workQueues array to locate stealers,
513 * but often doesn't because stealers leave hints (that may become
514 * stale/wrong) of where to locate them. It is only a hint
515 * because a worker might have had multiple steals and the hint
516 * records only one of them (usually the most current). Hinting
517 * isolates cost to when it is needed, rather than adding to
518 * per-task overhead. (2) It is "shallow", ignoring nesting and
519 * potentially cyclic mutual steals. (3) It is intentionally
520 * racy: field currentJoin is updated only while actively joining,
521 * which means that we miss links in the chain during long-lived
522 * tasks, GC stalls etc (which is OK since blocking in such cases
523 * is usually a good idea). (4) We bound the number of attempts
524 * to find work using checksums and fall back to suspending the
525 * worker and if necessary replacing it with another.
526 *
527 * Helping actions for CountedCompleters do not require tracking
528 * currentJoins: Method helpComplete takes and executes any task
529 * with the same root as the task being waited on (preferring
530 * local pops to non-local polls). However, this still entails
531 * some traversal of completer chains, so is less efficient than
532 * using CountedCompleters without explicit joins.
533 *
534 * Compensation does not aim to keep exactly the target
535 * parallelism number of unblocked threads running at any given
536 * time. Some previous versions of this class employed immediate
537 * compensations for any blocked join. However, in practice, the
538 * vast majority of blockages are transient byproducts of GC and
539 * other JVM or OS activities that are made worse by replacement.
540 * Currently, compensation is attempted only after validating that
541 * all purportedly active threads are processing tasks by checking
542 * field WorkQueue.scanState, which eliminates most false
543 * positives. Also, compensation is bypassed (tolerating fewer
544 * threads) in the most common case in which it is rarely
545 * beneficial: when a worker with an empty queue (thus no
546 * continuation tasks) blocks on a join and there still remain
547 * enough threads to ensure liveness.
548 *
549 * Spare threads are removed as soon as they notice that the
550 * target parallelism level has been exceeded, in method
551 * tryDropSpare. (Method scan arranges returns for rechecks upon
552 * each probe via the "bound" paramter.)
553 *
554 * The compensation mechanism may be bounded. Bounds for the
555 * commonPool (see commonMaxSpares) better enable JVMs to cope
556 * with programming errors and abuse before running out of
557 * resources to do so. In other cases, users may supply factories
558 * that limit thread construction. The effects of bounding in this
559 * pool (like all others) is imprecise. Total worker counts are
560 * decremented when threads deregister, not when they exit and
561 * resources are reclaimed by the JVM and OS. So the number of
562 * simultaneously live threads may transiently exceed bounds.
563 *
564 * Common Pool
565 * ===========
566 *
567 * The static common pool always exists after static
568 * initialization. Since it (or any other created pool) need
569 * never be used, we minimize initial construction overhead and
570 * footprint to the setup of about a dozen fields, with no nested
571 * allocation. Most bootstrapping occurs within method
572 * externalSubmit during the first submission to the pool.
573 *
574 * When external threads submit to the common pool, they can
575 * perform subtask processing (see externalHelpComplete and
576 * related methods) upon joins. This caller-helps policy makes it
577 * sensible to set common pool parallelism level to one (or more)
578 * less than the total number of available cores, or even zero for
579 * pure caller-runs. We do not need to record whether external
580 * submissions are to the common pool -- if not, external help
581 * methods return quickly. These submitters would otherwise be
582 * blocked waiting for completion, so the extra effort (with
583 * liberally sprinkled task status checks) in inapplicable cases
584 * amounts to an odd form of limited spin-wait before blocking in
585 * ForkJoinTask.join.
586 *
587 * As a more appropriate default in managed environments, unless
588 * overridden by system properties, we use workers of subclass
589 * InnocuousForkJoinWorkerThread when there is a SecurityManager
590 * present. These workers have no permissions set, do not belong
591 * to any user-defined ThreadGroup, and erase all ThreadLocals
592 * after executing any top-level task (see WorkQueue.runTask).
593 * The associated mechanics (mainly in ForkJoinWorkerThread) may
594 * be JVM-dependent and must access particular Thread class fields
595 * to achieve this effect.
596 *
597 * Style notes
598 * ===========
599 *
600 * Memory ordering relies mainly on Unsafe intrinsics that carry
601 * the further responsibility of explicitly performing null- and
602 * bounds- checks otherwise carried out implicitly by JVMs. This
603 * can be awkward and ugly, but also reflects the need to control
604 * outcomes across the unusual cases that arise in very racy code
605 * with very few invariants. So these explicit checks would exist
606 * in some form anyway. All fields are read into locals before
607 * use, and null-checked if they are references. This is usually
608 * done in a "C"-like style of listing declarations at the heads
609 * of methods or blocks, and using inline assignments on first
610 * encounter. Array bounds-checks are usually performed by
611 * masking with array.length-1, which relies on the invariant that
612 * these arrays are created with positive lengths, which is itself
613 * paranoically checked. Nearly all explicit checks lead to
614 * bypass/return, not exception throws, because they may
615 * legitimately arise due to cancellation/revocation during
616 * shutdown.
617 *
618 * There is a lot of representation-level coupling among classes
619 * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
620 * fields of WorkQueue maintain data structures managed by
621 * ForkJoinPool, so are directly accessed. There is little point
622 * trying to reduce this, since any associated future changes in
623 * representations will need to be accompanied by algorithmic
624 * changes anyway. Several methods intrinsically sprawl because
625 * they must accumulate sets of consistent reads of fields held in
626 * local variables. There are also other coding oddities
627 * (including several unnecessary-looking hoisted null checks)
628 * that help some methods perform reasonably even when interpreted
629 * (not compiled).
630 *
631 * The order of declarations in this file is (with a few exceptions):
632 * (1) Static utility functions
633 * (2) Nested (static) classes
634 * (3) Static fields
635 * (4) Fields, along with constants used when unpacking some of them
636 * (5) Internal control methods
637 * (6) Callbacks and other support for ForkJoinTask methods
638 * (7) Exported methods
639 * (8) Static block initializing statics in minimally dependent order
640 */
641
642 // Static utilities
643
644 /**
645 * If there is a security manager, makes sure caller has
646 * permission to modify threads.
647 */
648 private static void checkPermission() {
649 SecurityManager security = System.getSecurityManager();
650 if (security != null)
651 security.checkPermission(modifyThreadPermission);
652 }
653
654 // Nested classes
655
656 /**
657 * Factory for creating new {@link ForkJoinWorkerThread}s.
658 * A {@code ForkJoinWorkerThreadFactory} must be defined and used
659 * for {@code ForkJoinWorkerThread} subclasses that extend base
660 * functionality or initialize threads with different contexts.
661 */
662 public static interface ForkJoinWorkerThreadFactory {
663 /**
664 * Returns a new worker thread operating in the given pool.
665 *
666 * @param pool the pool this thread works in
667 * @return the new worker thread
668 * @throws NullPointerException if the pool is null
669 */
670 public ForkJoinWorkerThread newThread(ForkJoinPool pool);
671 }
672
673 /**
674 * Default ForkJoinWorkerThreadFactory implementation; creates a
675 * new ForkJoinWorkerThread.
676 */
677 static final class DefaultForkJoinWorkerThreadFactory
678 implements ForkJoinWorkerThreadFactory {
679 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
680 return new ForkJoinWorkerThread(pool);
681 }
682 }
683
684 /**
685 * Class for artificial tasks that are used to replace the target
686 * of local joins if they are removed from an interior queue slot
687 * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
688 * actually do anything beyond having a unique identity.
689 */
690 static final class EmptyTask extends ForkJoinTask<Void> {
691 private static final long serialVersionUID = -7721805057305804111L;
692 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
693 public final Void getRawResult() { return null; }
694 public final void setRawResult(Void x) {}
695 public final boolean exec() { return true; }
696 }
697
698 // Constants shared across ForkJoinPool and WorkQueue
699
700 // Bounds
701 static final int SMASK = 0xffff; // short bits == max index
702 static final int MAX_CAP = 0x7fff; // max #workers - 1
703 static final int EVENMASK = 0xfffe; // even short bits
704 static final int SQMASK = 0x007e; // max 64 (even) slots
705
706 // Masks and units for WorkQueue.scanState and ctl sp subfield
707 static final int UNSIGNALLED = 1 << 31; // must be negative
708 static final int SS_SEQ = 1 << 16; // version count
709
710 // Mode bits for ForkJoinPool.config and WorkQueue.config
711 static final int MODE_MASK = 0xffff << 16; // top half of int
712 static final int SPARE_WORKER = 1 << 17; // set if tc > 0 on creation
713 static final int UNREGISTERED = 1 << 18; // to skip some of deregister
714 static final int FIFO_QUEUE = 1 << 31; // must be negative
715 static final int LIFO_QUEUE = 0; // for clarity
716 static final int IS_OWNED = 1; // low bit 0 if shared
717
718 /**
719 * Queues supporting work-stealing as well as external task
720 * submission. See above for descriptions and algorithms.
721 * Performance on most platforms is very sensitive to placement of
722 * instances of both WorkQueues and their arrays -- we absolutely
723 * do not want multiple WorkQueue instances or multiple queue
724 * arrays sharing cache lines. The @Contended annotation alerts
725 * JVMs to try to keep instances apart.
726 */
727 @sun.misc.Contended
728 static final class WorkQueue {
729
730 /**
731 * Capacity of work-stealing queue array upon initialization.
732 * Must be a power of two; at least 4, but should be larger to
733 * reduce or eliminate cacheline sharing among queues.
734 * Currently, it is much larger, as a partial workaround for
735 * the fact that JVMs often place arrays in locations that
736 * share GC bookkeeping (especially cardmarks) such that
737 * per-write accesses encounter serious memory contention.
738 */
739 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
740
741 /**
742 * Maximum size for queue arrays. Must be a power of two less
743 * than or equal to 1 << (31 - width of array entry) to ensure
744 * lack of wraparound of index calculations, but defined to a
745 * value a bit less than this to help users trap runaway
746 * programs before saturating systems.
747 */
748 static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
749
750 // Instance fields
751 volatile int scanState; // versioned, negative if inactive
752 int stackPred; // pool stack (ctl) predecessor
753 int nsteals; // number of steals
754 int hint; // randomization and stealer index hint
755 int config; // pool index and mode
756 volatile int qlock; // 1: locked, < 0: terminate; else 0
757 volatile int base; // index of next slot for poll
758 int top; // index of next slot for push
759 ForkJoinTask<?>[] array; // the elements (initially unallocated)
760 final ForkJoinPool pool; // the containing pool (may be null)
761 final ForkJoinWorkerThread owner; // owning thread or null if shared
762 volatile Thread parker; // == owner during call to park; else null
763 volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
764 volatile ForkJoinTask<?> currentSteal; // mainly used by helpStealer
765
766 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner) {
767 this.pool = pool;
768 this.owner = owner;
769 // Place indices in the center of array (that is not yet allocated)
770 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
771 }
772
773 /**
774 * Returns an exportable index (used by ForkJoinWorkerThread).
775 */
776 final int getPoolIndex() {
777 return (config & 0xffff) >>> 1; // ignore odd/even tag bit
778 }
779
780 /**
781 * Returns the approximate number of tasks in the queue.
782 */
783 final int queueSize() {
784 int n = base - top; // read base first
785 return (n >= 0) ? 0 : -n; // ignore transient negative
786 }
787
788 /**
789 * Provides a more accurate estimate of whether this queue has
790 * any tasks than does queueSize, by checking whether a
791 * near-empty queue has at least one unclaimed task.
792 */
793 final boolean isEmpty() {
794 ForkJoinTask<?>[] a; int n, al, s;
795 return ((n = base - (s = top)) >= 0 || // possibly one task
796 (n == -1 && ((a = array) == null ||
797 (al = a.length) == 0 ||
798 a[(al - 1) & (s - 1)] == null)));
799 }
800
801 /**
802 * Pushes a task. Call only by owner in unshared queues. (The
803 * shared-queue version is embedded in method externalPush.)
804 *
805 * @param task the task. Caller must ensure non-null.
806 * @throws RejectedExecutionException if array cannot be resized
807 */
808 final void push(ForkJoinTask<?> task) {
809 int b = base, s = top, al, d; ForkJoinTask<?>[] a;
810 if ((a = array) != null && (al = a.length) > 0) {
811 a[(al - 1) & s] = task; // relaxed writes OK
812 top = s + 1;
813 ForkJoinPool p = pool;
814 if ((d = b - s) == 0 && p != null)
815 p.signalWork(true);
816 else if (al + d != 1)
817 U.storeFence(); // ensure fields written before use
818 else
819 growArray();
820 }
821 }
822
823 /**
824 * Initializes or doubles the capacity of array. Call either
825 * by owner or with lock held -- it is OK for base, but not
826 * top, to move while resizings are in progress.
827 */
828 final ForkJoinTask<?>[] growArray() {
829 ForkJoinTask<?>[] oldA = array;
830 int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
831 if (size < INITIAL_QUEUE_CAPACITY || size > MAXIMUM_QUEUE_CAPACITY)
832 throw new RejectedExecutionException("Queue capacity exceeded");
833 int oldMask, t, b;
834 ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
835 if (oldA != null && (oldMask = oldA.length - 1) > 0 &&
836 (t = top) - (b = base) > 0) {
837 int mask = size - 1;
838 do { // emulate poll from old array, push to new array
839 long offset = ((b & oldMask) << ASHIFT) + ABASE;
840 ForkJoinTask<?> x = (ForkJoinTask<?>)
841 U.getObjectVolatile(oldA, offset);
842 if (x != null &&
843 U.compareAndSwapObject(oldA, offset, x, null))
844 a[b & mask] = x;
845 } while (++b != t);
846 U.storeFence();
847 }
848 return a;
849 }
850
851 /**
852 * Takes next task, if one exists, in LIFO order. Call only
853 * by owner in unshared queues.
854 */
855 final ForkJoinTask<?> pop() {
856 int b = base, s = top, al, i; ForkJoinTask<?>[] a;
857 if ((a = array) != null && s != b && (al = a.length) > 0) {
858 long offset = (((al - 1) & (s - 1)) << ASHIFT) + ABASE;
859 ForkJoinTask<?> t = (ForkJoinTask<?>)U.getObject(a, offset);
860 if (t != null && U.compareAndSwapObject(a, offset, t, null)) {
861 top = s - 1;
862 U.storeFence();
863 return t;
864 }
865 }
866 return null;
867 }
868
869 /**
870 * Takes a task in FIFO order if b is base of queue and a task
871 * can be claimed without contention. Specialized versions
872 * appear in ForkJoinPool methods scan and helpStealer.
873 */
874 final ForkJoinTask<?> pollAt(int b) {
875 ForkJoinTask<?>[] a; int al;
876 if ((a = array) != null && (al = a.length) > 0) {
877 long offset = (((al - 1) & b) << ASHIFT) + ABASE;
878 ForkJoinTask<?> t = (ForkJoinTask<?>)
879 U.getObjectVolatile(a, offset);
880 if (t != null && b++ == base &&
881 U.compareAndSwapObject(a, offset, t, null)) {
882 base = b;
883 return t;
884 }
885 }
886 return null;
887 }
888
889 /**
890 * Takes next task, if one exists, in FIFO order.
891 */
892 final ForkJoinTask<?> poll() {
893 for (;;) {
894 int b = base, s = top, d, al; ForkJoinTask<?>[] a;
895 if ((a = array) != null && (d = b - s) < 0 &&
896 (al = a.length) > 0) {
897 long offset = (((al - 1) & b) << ASHIFT) + ABASE;
898 ForkJoinTask<?> t = (ForkJoinTask<?>)
899 U.getObjectVolatile(a, offset);
900 if (b++ == base) {
901 if (t != null) {
902 if (U.compareAndSwapObject(a, offset, t, null)) {
903 base = b;
904 return t;
905 }
906 }
907 else if (d == -1)
908 break; // now empty
909 }
910 }
911 else
912 break;
913 }
914 return null;
915 }
916
917 /**
918 * Takes next task, if one exists, in order specified by mode.
919 */
920 final ForkJoinTask<?> nextLocalTask() {
921 return (config < 0) ? poll() : pop();
922 }
923
924 /**
925 * Returns next task, if one exists, in order specified by mode.
926 */
927 final ForkJoinTask<?> peek() {
928 int b = base, al; ForkJoinTask<?>[] a;
929 return ((a = array) != null && (al = a.length) > 0) ?
930 a[(al - 1) & (config < 0 ? b : top - 1)] : null;
931 }
932
933 /**
934 * Pops the given task only if it is at the current top.
935 */
936 final boolean tryUnpush(ForkJoinTask<?> task) {
937 int s = top - 1, al; ForkJoinTask<?>[] a;
938 if ((a = array) != null && (al = a.length) > 0) {
939 long offset = (((al - 1) & s) << ASHIFT) + ABASE;
940 if (U.getObject(a, offset) == task &&
941 U.compareAndSwapObject(a, offset, task, null)) {
942 top = s;
943 U.storeFence();
944 return true;
945 }
946 }
947 return false;
948 }
949
950 /**
951 * Shared version of pop
952 */
953 final boolean trySharedUnpush(ForkJoinTask<?> task) {
954 ForkJoinTask<?> t;
955 boolean popped = false;
956 int s = top - 1, al; ForkJoinTask<?>[] a;
957 if ((a = array) != null && (al = a.length) > 0) {
958 long offset = (((al - 1) & s) << ASHIFT) + ABASE;
959 if (U.getObject(a, offset) == task &&
960 U.compareAndSwapInt(this, QLOCK, 0, 1)) {
961 if (U.compareAndSwapObject(a, offset, task, null)) {
962 popped = true;
963 top = s;
964 }
965 U.putOrderedInt(this, QLOCK, 0);
966 }
967 }
968 return popped;
969 }
970
971 /**
972 * Removes and cancels all known tasks, ignoring any exceptions.
973 */
974 final void cancelAll() {
975 ForkJoinTask<?> t;
976 if ((t = currentJoin) != null) {
977 currentJoin = null;
978 ForkJoinTask.cancelIgnoringExceptions(t);
979 }
980 if ((t = currentSteal) != null) {
981 currentSteal = null;
982 ForkJoinTask.cancelIgnoringExceptions(t);
983 }
984 while ((t = poll()) != null)
985 ForkJoinTask.cancelIgnoringExceptions(t);
986 }
987
988 // Specialized execution methods
989
990 /**
991 * Executes the given task and any remaining local tasks if in
992 * LIFO mode
993 */
994 final void runTask(ForkJoinTask<?> task) {
995 if (task != null) {
996 task.doExec();
997 if (config >= 0) {
998 for (ForkJoinTask<?> t; (t = pop()) != null;)
999 (currentSteal = t).doExec();
1000 }
1001 int ns = ++nsteals;
1002 ForkJoinWorkerThread thread = owner;
1003 currentSteal = null;
1004 if (ns < 0) // collect on overflow
1005 transferStealCount(pool);
1006 if (thread != null)
1007 thread.afterTopLevelExec();
1008 }
1009 }
1010
1011 /**
1012 * Adds steal count to pool stealCounter if it exists, and resets.
1013 */
1014 final void transferStealCount(ForkJoinPool p) {
1015 AtomicLong sc;
1016 if (p != null && (sc = p.stealCounter) != null) {
1017 int s = nsteals;
1018 nsteals = 0; // if negative, correct for overflow
1019 sc.getAndAdd((long)(s < 0 ? Integer.MAX_VALUE : s));
1020 }
1021 }
1022
1023 /**
1024 * If present, removes from queue and executes the given task,
1025 * or any other cancelled task. Used only by awaitJoin.
1026 *
1027 * @return true if queue empty and task not known to be done
1028 */
1029 final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
1030 if (task != null && task.status >= 0) {
1031 int b, s, d, al; ForkJoinTask<?>[] a;
1032 while ((d = (b = base) - (s = top)) < 0 &&
1033 (a = array) != null && (al = a.length) > 0) {
1034 for (;;) { // traverse from s to b
1035 int i = --s & (al - 1);
1036 long offset = (i << ASHIFT) + ABASE;
1037 ForkJoinTask<?> t = (ForkJoinTask<?>)
1038 U.getObjectVolatile(a, offset);
1039 if (t == null)
1040 break; // restart
1041 else if (t == task) {
1042 boolean removed = false;
1043 if (s + 1 == top) { // pop
1044 if (U.compareAndSwapObject(a, offset, t, null)) {
1045 top = s;
1046 U.storeFence();
1047 removed = true;
1048 }
1049 }
1050 else if (base == b) // replace with proxy
1051 removed =
1052 U.compareAndSwapObject(a, offset, t,
1053 new EmptyTask());
1054 if (removed) {
1055 ForkJoinTask<?> ps = currentSteal;
1056 (currentSteal = task).doExec();
1057 currentSteal = ps;
1058 }
1059 break;
1060 }
1061 else if (t.status < 0 && s + 1 == top) {
1062 if (U.compareAndSwapObject(a, offset, t, null)) {
1063 top = s;
1064 U.storeFence();
1065 }
1066 break; // was cancelled
1067 }
1068 else if (++d == 0) {
1069 if (base != b) // rescan
1070 break;
1071 return false;
1072 }
1073 }
1074 if (task.status < 0)
1075 return false;
1076 }
1077 }
1078 return true;
1079 }
1080
1081 /**
1082 * Pops task if in the same CC computation as the given task,
1083 * in either shared or owned mode. Used only by helpComplete.
1084 */
1085 final CountedCompleter<?> popCC(CountedCompleter<?> task, int owned) {
1086 int b = base, s = top, al; ForkJoinTask<?>[] a;
1087 if ((a = array) != null && b != s && (al = a.length) > 0) {
1088 long offset = (((al - 1) & (s - 1)) << ASHIFT) + ABASE;
1089 Object o = U.getObjectVolatile(a, offset);
1090 if (o instanceof CountedCompleter) {
1091 CountedCompleter<?> t = (CountedCompleter<?>)o;
1092 for (CountedCompleter<?> r = t;;) {
1093 if (r == task) {
1094 if (owned == 0) {
1095 boolean popped;
1096 if (U.compareAndSwapInt(this, QLOCK, 0, 1)) {
1097 if (popped =
1098 U.compareAndSwapObject(a, offset,
1099 t, null))
1100 top = s - 1;
1101 U.putOrderedInt(this, QLOCK, 0);
1102 if (popped)
1103 return t;
1104 }
1105 }
1106 else if (U.compareAndSwapObject(a, offset,
1107 t, null)) {
1108 top = s - 1;
1109 U.storeFence();
1110 return t;
1111 }
1112 break;
1113 }
1114 else if ((r = r.completer) == null) // try parent
1115 break;
1116 }
1117 }
1118 }
1119 return null;
1120 }
1121
1122 /**
1123 * Steals and runs a task in the same CC computation as the
1124 * given task if one exists and can be taken without
1125 * contention. Otherwise returns a checksum/control value for
1126 * use by method helpComplete.
1127 *
1128 * @return 1 if successful, 2 if retryable (lost to another
1129 * stealer), -1 if non-empty but no matching task found, else
1130 * the base index, forced negative.
1131 */
1132 final int pollAndExecCC(CountedCompleter<?> task) {
1133 ForkJoinTask<?>[] a;
1134 int b = base, s = top, al, h;
1135 if ((a = array) != null && b != s && (al = a.length) > 0) {
1136 long offset = (((al - 1) & b) << ASHIFT) + ABASE;
1137 Object o = U.getObjectVolatile(a, offset);
1138 if (o == null)
1139 h = 2; // retryable
1140 else if (!(o instanceof CountedCompleter))
1141 h = -1; // unmatchable
1142 else {
1143 CountedCompleter<?> t = (CountedCompleter<?>)o;
1144 for (CountedCompleter<?> r = t;;) {
1145 if (r == task) {
1146 if (b++ == base &&
1147 U.compareAndSwapObject(a, offset, t, null)) {
1148 base = b;
1149 t.doExec();
1150 h = 1; // success
1151 }
1152 else
1153 h = 2; // lost CAS
1154 break;
1155 }
1156 else if ((r = r.completer) == null) {
1157 h = -1; // unmatched
1158 break;
1159 }
1160 }
1161 }
1162 }
1163 else
1164 h = b | Integer.MIN_VALUE; // to sense movement on re-poll
1165 return h;
1166 }
1167
1168 /**
1169 * Returns true if owned and not known to be blocked.
1170 */
1171 final boolean isApparentlyUnblocked() {
1172 Thread wt; Thread.State s;
1173 return (scanState >= 0 &&
1174 (wt = owner) != null &&
1175 (s = wt.getState()) != Thread.State.BLOCKED &&
1176 s != Thread.State.WAITING &&
1177 s != Thread.State.TIMED_WAITING);
1178 }
1179
1180 // Unsafe mechanics. Note that some are (and must be) the same as in FJP
1181 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
1182 private static final int ABASE;
1183 private static final int ASHIFT;
1184 private static final long QLOCK;
1185 static {
1186 try {
1187 QLOCK = U.objectFieldOffset
1188 (WorkQueue.class.getDeclaredField("qlock"));
1189 ABASE = U.arrayBaseOffset(ForkJoinTask[].class);
1190 int scale = U.arrayIndexScale(ForkJoinTask[].class);
1191 if ((scale & (scale - 1)) != 0)
1192 throw new Error("array index scale not a power of two");
1193 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1194 } catch (ReflectiveOperationException e) {
1195 throw new Error(e);
1196 }
1197 }
1198 }
1199
1200 // static fields (initialized in static initializer below)
1201
1202 /**
1203 * Creates a new ForkJoinWorkerThread. This factory is used unless
1204 * overridden in ForkJoinPool constructors.
1205 */
1206 public static final ForkJoinWorkerThreadFactory
1207 defaultForkJoinWorkerThreadFactory;
1208
1209 /**
1210 * Permission required for callers of methods that may start or
1211 * kill threads.
1212 */
1213 private static final RuntimePermission modifyThreadPermission;
1214
1215 /**
1216 * Common (static) pool. Non-null for public use unless a static
1217 * construction exception, but internal usages null-check on use
1218 * to paranoically avoid potential initialization circularities
1219 * as well as to simplify generated code.
1220 */
1221 static final ForkJoinPool common;
1222
1223 /**
1224 * Common pool parallelism. To allow simpler use and management
1225 * when common pool threads are disabled, we allow the underlying
1226 * common.parallelism field to be zero, but in that case still report
1227 * parallelism as 1 to reflect resulting caller-runs mechanics.
1228 */
1229 static final int commonParallelism;
1230
1231 /**
1232 * Limit on spare thread construction in tryCompensate.
1233 */
1234 private static int commonMaxSpares;
1235
1236 /**
1237 * Sequence number for creating workerNamePrefix.
1238 */
1239 private static int poolNumberSequence;
1240
1241 /**
1242 * Returns the next sequence number. We don't expect this to
1243 * ever contend, so use simple builtin sync.
1244 */
1245 private static final synchronized int nextPoolId() {
1246 return ++poolNumberSequence;
1247 }
1248
1249 // static configuration constants
1250
1251 /**
1252 * Initial timeout value (in milliseconds) for the thread
1253 * triggering quiescence to park waiting for new work. On timeout,
1254 * the thread will instead try to shrink the number of
1255 * workers. The value should be large enough to avoid overly
1256 * aggressive shrinkage during most transient stalls (long GCs
1257 * etc).
1258 */
1259 private static final long IDLE_TIMEOUT_MS = 2000L; // 2sec
1260
1261 /**
1262 * Tolerance for idle timeouts, to cope with timer undershoots
1263 */
1264 private static final long TIMEOUT_SLOP_MS = 20L; // 20ms
1265
1266 /**
1267 * The initial value for commonMaxSpares during static
1268 * initialization unless overridden using System property
1269 * "java.util.concurrent.ForkJoinPool.common.maximumSpares". The
1270 * default value is far in excess of normal requirements, but also
1271 * far short of MAX_CAP and typical OS thread limits, so allows
1272 * JVMs to catch misuse/abuse before running out of resources
1273 * needed to do so.
1274 */
1275 private static final int DEFAULT_COMMON_MAX_SPARES = 256;
1276
1277 /**
1278 * The maximum number of repolls or rescans per scan.
1279 * Must be a power of two minus 1.
1280 */
1281 private static final int POLL_LIMIT = 255;
1282
1283 /**
1284 * Increment for seed generators. See class ThreadLocal for
1285 * explanation.
1286 */
1287 private static final int SEED_INCREMENT = 0x9e3779b9;
1288
1289 /*
1290 * Bits and masks for field ctl, packed with 4 16 bit subfields:
1291 * AC: Number of active running workers minus target parallelism
1292 * TC: Number of total workers minus target parallelism
1293 * SS: version count and status of top waiting thread
1294 * ID: poolIndex of top of Treiber stack of waiters
1295 *
1296 * When convenient, we can extract the lower 32 stack top bits
1297 * (including version bits) as sp=(int)ctl. The offsets of counts
1298 * by the target parallelism and the positionings of fields makes
1299 * it possible to perform the most common checks via sign tests of
1300 * fields: When ac is negative, there are not enough active
1301 * workers, when tc is negative, there are not enough total
1302 * workers. When sp is non-zero, there are waiting workers. To
1303 * deal with possibly negative fields, we use casts in and out of
1304 * "short" and/or signed shifts to maintain signedness.
1305 *
1306 * Because it occupies uppermost bits, we can add one active count
1307 * using getAndAddLong of AC_UNIT, rather than CAS, when returning
1308 * from a blocked join. Other updates entail multiple subfields
1309 * and masking, requiring CAS.
1310 */
1311
1312 // Lower and upper word masks
1313 private static final long SP_MASK = 0xffffffffL;
1314 private static final long UC_MASK = ~SP_MASK;
1315
1316 // Active counts
1317 private static final int AC_SHIFT = 48;
1318 private static final long AC_UNIT = 0x0001L << AC_SHIFT;
1319 private static final long AC_MASK = 0xffffL << AC_SHIFT;
1320
1321 // Total counts
1322 private static final int TC_SHIFT = 32;
1323 private static final long TC_UNIT = 0x0001L << TC_SHIFT;
1324 private static final long TC_MASK = 0xffffL << TC_SHIFT;
1325 private static final long ADD_WORKER = 0x0001L << (TC_SHIFT + 15); // sign
1326
1327 // runState bits: SHUTDOWN must be negative, others arbitrary powers of two
1328 private static final int STARTED = 1;
1329 private static final int STOP = 1 << 1;
1330 private static final int TERMINATED = 1 << 2;
1331 private static final int SHUTDOWN = 1 << 31;
1332
1333 // Instance fields
1334 volatile long ctl; // main pool control
1335 volatile int runState;
1336 final int config; // parallelism, mode
1337 int indexSeed; // to generate worker index
1338 volatile WorkQueue[] workQueues; // main registry
1339 final ForkJoinWorkerThreadFactory factory;
1340 final UncaughtExceptionHandler ueh; // per-worker UEH
1341 final String workerNamePrefix; // to create worker name string
1342 volatile AtomicLong stealCounter; // also used as sync monitor
1343
1344 /**
1345 * Instantiates fields upon first submission, and/or throws
1346 * exception if terminating. Called only by externalPush.
1347 */
1348 private void tryInitialize() {
1349 int rs;
1350 while (((rs = runState) & STARTED) == 0) {
1351 AtomicLong sc = new AtomicLong();
1352 if (U.compareAndSwapObject(this, STEALCOUNTER, null, sc)) {
1353 // create workQueues array with size a power of two
1354 int p = config & SMASK; // ensure at least 4 slots
1355 int n = (p > 3) ? p - 1 : 3;
1356 n |= n >>> 1; n |= n >>> 2; n |= n >>> 4;
1357 n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1;
1358 workQueues = new WorkQueue[n];
1359 while (!U.compareAndSwapInt(this, RUNSTATE, rs, rs | STARTED))
1360 rs = runState;
1361 synchronized (sc) { sc.notifyAll(); }
1362 break;
1363 }
1364 else if ((sc = stealCounter) != null) { // wait for initialization
1365 synchronized (sc) {
1366 try {
1367 if ((runState & STARTED) == 0)
1368 sc.wait();
1369 } catch (InterruptedException ie) {
1370 Thread.currentThread().interrupt();
1371 }
1372 }
1373 }
1374 }
1375 if ((rs = runState) < 0) {
1376 tryTerminate(false, false); // help terminate
1377 throw new RejectedExecutionException();
1378 }
1379 }
1380
1381 // Creating, registering and deregistering workers
1382
1383 /**
1384 * Tries to construct and start one worker. Assumes that total
1385 * count has already been incremented as a reservation. Invokes
1386 * deregisterWorker on any failure.
1387 *
1388 * @param isSpare true if this is a spare thread
1389 * @return true if successful
1390 */
1391 private boolean createWorker(boolean isSpare) {
1392 ForkJoinWorkerThreadFactory fac = factory;
1393 Throwable ex = null;
1394 ForkJoinWorkerThread wt = null;
1395 WorkQueue q;
1396 try {
1397 if (fac != null && (wt = fac.newThread(this)) != null) {
1398 if (isSpare && (q = wt.workQueue) != null)
1399 q.config |= SPARE_WORKER;
1400 wt.start();
1401 return true;
1402 }
1403 } catch (Throwable rex) {
1404 ex = rex;
1405 }
1406 deregisterWorker(wt, ex);
1407 return false;
1408 }
1409
1410 /**
1411 * Tries to add one worker, incrementing ctl counts before doing
1412 * so, relying on createWorker to back out on failure.
1413 *
1414 * @param c incoming ctl value, with total count negative and no
1415 * idle workers. On CAS failure, c is refreshed and retried if
1416 * this holds (otherwise, a new worker is not needed).
1417 */
1418 private void tryAddWorker(long c) {
1419 do {
1420 long nc = ((AC_MASK & (c + AC_UNIT)) |
1421 (TC_MASK & (c + TC_UNIT)));
1422 if (ctl == c && U.compareAndSwapLong(this, CTL, c, nc)) {
1423 createWorker(false);
1424 break;
1425 }
1426 } while (((c = ctl) & ADD_WORKER) != 0L && (int)c == 0);
1427 }
1428
1429 /**
1430 * Callback from ForkJoinWorkerThread constructor to establish and
1431 * record its WorkQueue.
1432 *
1433 * @param wt the worker thread
1434 * @return the worker's queue
1435 */
1436 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1437 UncaughtExceptionHandler handler;
1438 Object lock = stealCounter;
1439 wt.setDaemon(true); // configure thread
1440 if ((handler = ueh) != null)
1441 wt.setUncaughtExceptionHandler(handler);
1442 WorkQueue w = new WorkQueue(this, wt);
1443 int i = 0; // assign a pool index
1444 int mode = config & MODE_MASK;
1445 if (lock != null) {
1446 synchronized (lock) {
1447 WorkQueue[] ws = workQueues;
1448 int s = indexSeed += SEED_INCREMENT, n, m;
1449 if (ws != null && (n = ws.length) > 0) {
1450 i = (m = n - 1) & ((s << 1) | 1); // odd-numbered indices
1451 if (ws[i] != null) { // collision
1452 int probes = 0; // step by approx half n
1453 int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1454 while (ws[i = (i + step) & m] != null) {
1455 if (++probes >= n) {
1456 workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1457 m = n - 1;
1458 probes = 0;
1459 }
1460 }
1461 }
1462 w.hint = s; // use as random seed
1463 w.config = i | mode;
1464 w.scanState = i | (s & 0x7fff0000); // random seq bits
1465 ws[i] = w;
1466 }
1467 }
1468 }
1469 wt.setName(workerNamePrefix.concat(Integer.toString(i >>> 1)));
1470 return w;
1471 }
1472
1473 /**
1474 * Final callback from terminating worker, as well as upon failure
1475 * to construct or start a worker. Removes record of worker from
1476 * array, and adjusts counts. If pool is shutting down, tries to
1477 * complete termination.
1478 *
1479 * @param wt the worker thread, or null if construction failed
1480 * @param ex the exception causing failure, or null if none
1481 */
1482 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1483 WorkQueue w = null;
1484 if (wt != null && (w = wt.workQueue) != null) {
1485 Object lock; WorkQueue[] ws; // remove index from array
1486 int idx = w.config & SMASK;
1487 if ((lock = stealCounter) != null) {
1488 synchronized (lock) {
1489 if ((ws = workQueues) != null && ws.length > idx &&
1490 ws[idx] == w)
1491 ws[idx] = null;
1492 }
1493 }
1494 }
1495 if (w == null || (w.config & UNREGISTERED) == 0) { // else pre-adjusted
1496 long c; // decrement counts
1497 do {} while (!U.compareAndSwapLong
1498 (this, CTL, c = ctl, ((AC_MASK & (c - AC_UNIT)) |
1499 (TC_MASK & (c - TC_UNIT)) |
1500 (SP_MASK & c))));
1501 }
1502 if (w != null) {
1503 w.qlock = -1; // ensure set
1504 w.transferStealCount(this);
1505 w.cancelAll(); // cancel remaining tasks
1506 }
1507 for (;;) { // possibly replace
1508 WorkQueue[] ws; int wl, sp; long c;
1509 if (tryTerminate(false, false) || w == null || w.array == null ||
1510 (runState & STOP) != 0 || (ws = workQueues) == null ||
1511 (wl = ws.length) <= 0) // already terminating
1512 break;
1513 else if ((sp = (int)(c = ctl)) != 0) { // wake up replacement
1514 if (tryRelease(c, ws[(wl - 1) & sp], AC_UNIT))
1515 break;
1516 }
1517 else if (ex != null && (c & ADD_WORKER) != 0L) {
1518 tryAddWorker(c); // create replacement
1519 break;
1520 }
1521 else // don't need replacement
1522 break;
1523 }
1524 if (ex == null) // help clean on way out
1525 ForkJoinTask.helpExpungeStaleExceptions();
1526 else // rethrow
1527 ForkJoinTask.rethrow(ex);
1528 }
1529
1530 // Signalling
1531
1532 /**
1533 * Tries to create or activate a worker if too few are active.
1534 *
1535 * @param producer true if caller produced a task
1536 */
1537 final void signalWork(boolean producer) {
1538 if (producer)
1539 U.fullFence(); // sync with signallees
1540 for (;;) {
1541 long c; int sp, i; WorkQueue v; WorkQueue[] ws;
1542 if ((c = ctl) >= 0L) // enough workers
1543 break;
1544 else if ((sp = (int)c) == 0) { // no idle workers
1545 if ((c & ADD_WORKER) != 0L) // too few workers
1546 tryAddWorker(c);
1547 break;
1548 }
1549 else if ((ws = workQueues) == null)
1550 break; // unstarted/terminated
1551 else if (ws.length <= (i = sp & SMASK))
1552 break; // terminated
1553 else if ((v = ws[i]) == null)
1554 break; // terminating
1555 else {
1556 int ns = sp & ~UNSIGNALLED;
1557 int vs = v.scanState;
1558 long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + AC_UNIT));
1559 if (sp == vs && U.compareAndSwapLong(this, CTL, c, nc)) {
1560 v.scanState = ns;
1561 LockSupport.unpark(v.parker);
1562 break;
1563 }
1564 }
1565 }
1566 }
1567
1568 /**
1569 * Signals and releases worker v if it is top of idle worker
1570 * stack. This performs a one-shot version of signalWork only if
1571 * there is (apparently) at least one idle worker.
1572 *
1573 * @param c incoming ctl value
1574 * @param v if non-null, a worker
1575 * @param inc the increment to active count (zero when compensating)
1576 * @return true if successful
1577 */
1578 private boolean tryRelease(long c, WorkQueue v, long inc) {
1579 int sp = (int)c, ns = sp & ~UNSIGNALLED;
1580 if (v != null) {
1581 int vs = v.scanState;
1582 long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + inc));
1583 if (sp == vs && U.compareAndSwapLong(this, CTL, c, nc)) {
1584 v.scanState = ns;
1585 LockSupport.unpark(v.parker);
1586 return true;
1587 }
1588 }
1589 return false;
1590 }
1591
1592 /**
1593 * With approx probability of a missed signal, tries (once) to
1594 * reactivate worker w (or some other worker), failing if stale or
1595 * known to be already active.
1596 *
1597 * @param w the worker
1598 * @param ws the workQueue array to use
1599 * @param r random seed
1600 */
1601 private void tryReactivate(WorkQueue w, WorkQueue[] ws, int r) {
1602 long c; int sp, wl, m; WorkQueue v;
1603 if ((sp = (int)(c = ctl)) != 0 && w != null &&
1604 ws != null && (wl = ws.length) > 0 &&
1605 ((m = wl - 1) & ((sp ^ r) >>> 16)) == 0 &&
1606 (v = ws[m & sp]) != null) {
1607 long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + AC_UNIT));
1608 int ns = sp & ~UNSIGNALLED;
1609 if ((w == v || w.scanState < 0) &&
1610 v.scanState == sp &&
1611 U.compareAndSwapLong(this, CTL, c, nc)) {
1612 v.scanState = ns;
1613 LockSupport.unpark(v.parker);
1614 }
1615 }
1616 }
1617
1618 /**
1619 * If worker w exists and is active, enqueues and sets status to inactive.
1620 *
1621 * @param w the worker
1622 * @param ss current (non-negative) scanState
1623 */
1624 private void inactivate(WorkQueue w, int ss) {
1625 int ns = (ss + SS_SEQ) | UNSIGNALLED;
1626 long lc = ns & SP_MASK, nc, c;
1627 if (w != null) {
1628 w.scanState = ns;
1629 do {
1630 nc = lc | (UC_MASK & ((c = ctl) - AC_UNIT));
1631 w.stackPred = (int)c;
1632 } while (!U.compareAndSwapLong(this, CTL, c, nc));
1633 }
1634 }
1635
1636 /**
1637 * Possibly blocks worker w waiting for signal, or returns
1638 * negative status if the worker should terminate. May return
1639 * without status change if multiple stale unparks and/or
1640 * interrupts occur.
1641 *
1642 * @param w the calling worker
1643 * @return negative if w should terminate
1644 */
1645 private int awaitWork(WorkQueue w) {
1646 int stat = 0;
1647 if (w != null && w.scanState < 0) {
1648 long c = ctl;
1649 if ((int)(c >> AC_SHIFT) + (config & SMASK) <= 0)
1650 stat = timedAwaitWork(w, c); // possibly quiescent
1651 else if ((runState & STOP) != 0)
1652 stat = w.qlock = -1; // pool terminating
1653 else if ((stat = w.qlock) >= 0 && w.scanState < 0) {
1654 w.parker = Thread.currentThread();
1655 if (w.scanState < 0) { // recheck after write
1656 LockSupport.park(this);
1657 if ((stat = w.qlock) >= 0 && w.scanState < 0) {
1658 Thread.interrupted(); // clear status
1659 LockSupport.park(this); // retry once
1660 }
1661 }
1662 w.parker = null;
1663 }
1664 }
1665 return stat;
1666 }
1667
1668 /**
1669 * Possibly triggers shutdown and tries (once) to block worker
1670 * when pool is (or may be) quiescent. Waits up to a duration
1671 * determined by number of workers. On timeout, if ctl has not
1672 * changed, terminates the worker, which will in turn wake up
1673 * another worker to possibly repeat this process.
1674 *
1675 * @param w the calling worker
1676 * @return negative if w should terminate
1677 */
1678 private int timedAwaitWork(WorkQueue w, long c) {
1679 int stat = 0;
1680 int scale = 1 - (short)(c >>> TC_SHIFT);
1681 long deadline = (((scale <= 0) ? 1 : scale) * IDLE_TIMEOUT_MS +
1682 System.currentTimeMillis());
1683 if (w != null && w.scanState < 0) {
1684 int ss; Object lock;
1685 if (runState < 0 && tryTerminate(false, false))
1686 stat = w.qlock = -1; // help terminate
1687 else if ((stat = w.qlock) >= 0 && w.scanState < 0) {
1688 w.parker = Thread.currentThread();
1689 if (w.scanState < 0)
1690 LockSupport.parkUntil(this, deadline);
1691 w.parker = null;
1692 if ((stat = w.qlock) >= 0 && (ss = w.scanState) < 0 &&
1693 !Thread.interrupted() && (int)c == ss &&
1694 (lock = stealCounter) != null && ctl == c &&
1695 deadline - System.currentTimeMillis() <= TIMEOUT_SLOP_MS) {
1696 synchronized (lock) { // pre-deregister
1697 WorkQueue[] ws;
1698 int cfg = w.config, idx = cfg & SMASK;
1699 long nc = ((UC_MASK & (c - TC_UNIT)) |
1700 (SP_MASK & w.stackPred));
1701 if ((ws = workQueues) != null &&
1702 idx < ws.length && idx >= 0 && ws[idx] == w &&
1703 U.compareAndSwapLong(this, CTL, c, nc)) {
1704 ws[idx] = null;
1705 w.config = cfg | UNREGISTERED;
1706 stat = w.qlock = -1;
1707 }
1708 }
1709 }
1710 }
1711 }
1712 return stat;
1713 }
1714
1715 /**
1716 * If the given worker is a spare with no queued tasks, and there
1717 * are enough existing workers, drops it from ctl counts and sets
1718 * it state to terminated.
1719 *
1720 * @param w the calling worker -- must be a spare
1721 * @return true if dropped (in which case it must not process more tasks)
1722 */
1723 private boolean tryDropSpare(WorkQueue w) {
1724 if (w != null && w.isEmpty()) { // no local tasks
1725 long c; int sp, wl; WorkQueue[] ws; WorkQueue v;
1726 while ((short)((c = ctl) >> TC_SHIFT) > 0 &&
1727 ((sp = (int)c) != 0 || (int)(c >> AC_SHIFT) > 0) &&
1728 (ws = workQueues) != null && (wl = ws.length) > 0) {
1729 boolean dropped, canDrop;
1730 if (sp == 0) { // no queued workers
1731 long nc = ((AC_MASK & (c - AC_UNIT)) |
1732 (TC_MASK & (c - TC_UNIT)) | (SP_MASK & c));
1733 dropped = U.compareAndSwapLong(this, CTL, c, nc);
1734 }
1735 else if (
1736 (v = ws[(wl - 1) & sp]) == null || v.scanState != sp)
1737 dropped = false; // stale; retry
1738 else {
1739 long nc = v.stackPred & SP_MASK;
1740 if (w == v || w.scanState >= 0) {
1741 canDrop = true; // w unqueued or topmost
1742 nc |= ((AC_MASK & c) | // ensure replacement
1743 (TC_MASK & (c - TC_UNIT)));
1744 }
1745 else { // w may be queued
1746 canDrop = false; // help uncover
1747 nc |= ((AC_MASK & (c + AC_UNIT)) |
1748 (TC_MASK & c));
1749 }
1750 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1751 v.scanState = sp & ~UNSIGNALLED;
1752 LockSupport.unpark(v.parker);
1753 dropped = canDrop;
1754 }
1755 else
1756 dropped = false;
1757 }
1758 if (dropped) { // pre-deregister
1759 int cfg = w.config, idx = cfg & SMASK;
1760 if (idx >= 0 && idx < ws.length && ws[idx] == w)
1761 ws[idx] = null;
1762 w.config = cfg | UNREGISTERED;
1763 w.qlock = -1;
1764 return true;
1765 }
1766 }
1767 }
1768 return false;
1769 }
1770
1771 /**
1772 * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1773 */
1774 final void runWorker(WorkQueue w) {
1775 w.growArray(); // allocate queue
1776 long seed = w.hint * 0xdaba0b6eb09322e3L; // initial random seed
1777 int bound = (w.config & SPARE_WORKER) != 0 ? 0 : POLL_LIMIT;
1778 for (long r = (seed == 0L) ? 1L : seed;;) { // ensure nonzero
1779 if (bound == 0 && tryDropSpare(w))
1780 break;
1781 // high bits of prev seed for limit, step; current low bits for idx
1782 int u = (int)(r >>> 48), limit = u & bound, step = u | 1;
1783 r ^= r >>> 12; r ^= r << 25; r ^= r >>> 27; // xorshift
1784 if (scan(w, limit, step, (int)r) < 0 && awaitWork(w) < 0)
1785 break;
1786 }
1787 }
1788
1789 // Scanning for tasks
1790
1791 /**
1792 * Repeatedly scans for and tries to steal and execute (via
1793 * workQueue.runTask) a queued task. Each scan traverses queues in
1794 * pseudorandom permutation. Upon finding a non-empty queue, makes
1795 * on average #workers attempts to re-poll (fewer if contended) on
1796 * the same queue before returning (impossible scanState value) 0
1797 * to restart scan. Else returns after at least one full scan and
1798 * at most the given step limit.
1799 *
1800 * @param w the worker (via its WorkQueue)
1801 * @param limit scan/repoll limit as bitmask (0 if spare)
1802 * @param step (circular) index increment per iteration (must be odd)
1803 * @param r a random seed for origin index
1804 * @return negative if should await signal
1805 */
1806 private int scan(WorkQueue w, int limit, int step, int r) {
1807 int stat = 0, wl; WorkQueue[] ws;
1808 if ((ws = workQueues) != null && (wl = ws.length) > 0) {
1809 for (int m = wl - 1,
1810 idx = m & r, // origin index
1811 nsteps = m | limit, // at least one full scan
1812 maxPolls = m & limit, // mean <= m/2 unless spare
1813 npolls = 0,
1814 ss = w.scanState;;) { // negative if inactive
1815 WorkQueue q; ForkJoinTask<?>[] a; int b, d, al;
1816 if ((q = ws[idx]) != null && (d = (b = q.base) - q.top) < 0 &&
1817 (a = q.array) != null && (al = a.length) > 0) {
1818 long offset = (((al - 1) & b) << ASHIFT) + ABASE;
1819 ForkJoinTask<?> t = (ForkJoinTask<?>)
1820 U.getObjectVolatile(a, offset);
1821 ++npolls;
1822 if (t != null && b++ == q.base) {
1823 if (ss < 0) {
1824 tryReactivate(w, ws, r);
1825 if ((ss = w.scanState) < 0)
1826 break; // retry upon rescan
1827 }
1828 else if (U.compareAndSwapObject(a, offset, t, null)) {
1829 q.base = b;
1830 w.currentSteal = t;
1831 if (d != -1) // propagate signal
1832 signalWork(false);
1833 w.runTask(t);
1834 }
1835 else
1836 break; // contention
1837 }
1838 if (npolls > maxPolls)
1839 break;
1840 }
1841 else if (npolls != 0) // rescan
1842 break;
1843 else if (--nsteps < 0) { // inactivate or wait
1844 if ((stat = ss) >= 0)
1845 inactivate(w, ss);
1846 break;
1847 }
1848 else // circularly traverse
1849 idx = (idx + step) & m;
1850 }
1851 }
1852 return stat;
1853 }
1854
1855 // Joining tasks
1856
1857 /**
1858 * Tries to steal and run tasks within the target's computation.
1859 * Uses a variant of the top-level algorithm, restricted to tasks
1860 * with the given task as ancestor: It prefers taking and running
1861 * eligible tasks popped from the worker's own queue (via
1862 * popCC). Otherwise it scans others, randomly moving on
1863 * contention or execution, deciding to give up based on a
1864 * checksum (via return codes from pollAndExecCC). The maxTasks
1865 * argument supports external usages; internal calls use zero,
1866 * allowing unbounded steps (external calls trap non-positive
1867 * values).
1868 *
1869 * @param w caller
1870 * @param maxTasks if non-zero, the maximum number of other tasks to run
1871 * @return task status on exit
1872 */
1873 final int helpComplete(WorkQueue w, CountedCompleter<?> task,
1874 int maxTasks) {
1875 int r = ThreadLocalRandom.nextSecondarySeed();
1876 WorkQueue[] ws; int s = 0, wl;
1877 if ((ws = workQueues) != null && (wl = ws.length) > 1 &&
1878 task != null && w != null) {
1879 int m = wl - 1;
1880 int owned = w.config & IS_OWNED;
1881 int h = 1; // 1:ran, >1:contended, <0:hash
1882 int origin = r & m, k = origin; // first queue to scan
1883 int step = (r >>> 16) | 1;
1884 for (int oldSum = 0, checkSum = 0;;) {
1885 CountedCompleter<?> p; WorkQueue q; int i;
1886 if ((s = task.status) < 0)
1887 break;
1888 if (h == 1 && (p = w.popCC(task, owned)) != null) {
1889 p.doExec(); // run local task
1890 if (maxTasks != 0 && --maxTasks == 0)
1891 break;
1892 origin = k; // reset
1893 oldSum = checkSum = 0;
1894 }
1895 else { // poll other worker queues
1896 if ((i = k | 1) < 0 || i > m || (q = ws[i]) == null)
1897 h = 0;
1898 else if ((h = q.pollAndExecCC(task)) < 0)
1899 checkSum += h;
1900 if (h > 0) {
1901 if (h == 1 && maxTasks != 0 && --maxTasks == 0)
1902 break;
1903 r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
1904 k = origin = r & m; // move and restart
1905 step = (r >>> 16) | 1;
1906 oldSum = checkSum = 0;
1907 }
1908 else if ((k = (k + step) & m) == origin) {
1909 if (oldSum == (oldSum = checkSum))
1910 break;
1911 checkSum = 0;
1912 }
1913 }
1914 }
1915 }
1916 return s;
1917 }
1918
1919 /**
1920 * Tries to locate and execute tasks for a stealer of the given
1921 * task, or in turn one of its stealers, Traces currentSteal ->
1922 * currentJoin links looking for a thread working on a descendant
1923 * of the given task and with a non-empty queue to steal back and
1924 * execute tasks from. The first call to this method upon a
1925 * waiting join will often entail scanning/search, (which is OK
1926 * because the joiner has nothing better to do), but this method
1927 * leaves hints in workers to speed up subsequent calls.
1928 *
1929 * @param w caller
1930 * @param task the task to join
1931 */
1932 private void helpStealer(WorkQueue w, ForkJoinTask<?> task) {
1933 if (task != null && w != null) {
1934 ForkJoinTask<?> ps = w.currentSteal;
1935 WorkQueue[] ws; int wl, oldSum = 0;
1936 outer: while (w.tryRemoveAndExec(task) && task.status >= 0 &&
1937 (ws = workQueues) != null && (wl = ws.length) > 0) {
1938 ForkJoinTask<?> subtask;
1939 int m = wl - 1, checkSum = 0; // for stability check
1940 WorkQueue j = w, v; // v is subtask stealer
1941 descent: for (subtask = task; subtask.status >= 0; ) {
1942 for (int h = j.hint | 1, k = 0, i;;) {
1943 if ((v = ws[i = (h + (k << 1)) & m]) != null) {
1944 if (v.currentSteal == subtask) {
1945 j.hint = i;
1946 break;
1947 }
1948 checkSum += v.base;
1949 }
1950 if (++k > m) // can't find stealer
1951 break outer;
1952 }
1953
1954 for (;;) { // help v or descend
1955 ForkJoinTask<?>[] a; int b, al;
1956 if (subtask.status < 0) // too late to help
1957 break descent;
1958 checkSum += (b = v.base);
1959 ForkJoinTask<?> next = v.currentJoin;
1960 ForkJoinTask<?> t = null;
1961 if ((a = v.array) != null && (al = a.length) > 0) {
1962 long offset = (((al - 1) & b) << ASHIFT) + ABASE;
1963 t = (ForkJoinTask<?>)U.getObjectVolatile(a, offset);
1964 if (t != null && b++ == v.base) {
1965 if (j.currentJoin != subtask ||
1966 v.currentSteal != subtask ||
1967 subtask.status < 0)
1968 break descent; // stale
1969 if (U.compareAndSwapObject(a, offset, t, null)) {
1970 v.base = b;
1971 w.currentSteal = t;
1972 for (int top = w.top;;) {
1973 t.doExec(); // help
1974 w.currentSteal = ps;
1975 if (task.status < 0)
1976 break outer;
1977 if (w.top == top)
1978 break; // run local tasks
1979 if ((t = w.pop()) == null)
1980 break descent;
1981 w.currentSteal = t;
1982 }
1983 }
1984 }
1985 }
1986 if (t == null && b == v.base && b - v.top >= 0) {
1987 if ((subtask = next) == null) { // try to descend
1988 if (next == v.currentJoin &&
1989 oldSum == (oldSum = checkSum))
1990 break outer;
1991 break descent;
1992 }
1993 j = v;
1994 break;
1995 }
1996 }
1997 }
1998 }
1999 }
2000 }
2001
2002 /**
2003 * Tries to decrement active count (sometimes implicitly) and
2004 * possibly release or create a compensating worker in preparation
2005 * for blocking. Returns false (retryable by caller), on
2006 * contention, detected staleness, instability, or termination.
2007 *
2008 * @param w caller
2009 */
2010 private boolean tryCompensate(WorkQueue w) {
2011 boolean canBlock; int wl;
2012 long c = ctl;
2013 WorkQueue[] ws = workQueues;
2014 int pc = config & SMASK;
2015 int ac = pc + (int)(c >> AC_SHIFT);
2016 int tc = pc + (short)(c >> TC_SHIFT);
2017 if (w == null || w.qlock < 0 || pc == 0 || // terminating or disabled
2018 ws == null || (wl = ws.length) <= 0)
2019 canBlock = false;
2020 else {
2021 int m = wl - 1, sp;
2022 boolean busy = true; // validate ac
2023 for (int i = 0; i <= m; ++i) {
2024 int k; WorkQueue v;
2025 if ((k = (i << 1) | 1) <= m && k >= 0 && (v = ws[k]) != null &&
2026 v.scanState >= 0 && v.currentSteal == null) {
2027 busy = false;
2028 break;
2029 }
2030 }
2031 if (!busy || ctl != c)
2032 canBlock = false; // unstable or stale
2033 else if ((sp = (int)c) != 0) // release idle worker
2034 canBlock = tryRelease(c, ws[m & sp], 0L);
2035 else if (tc >= pc && ac > 1 && w.isEmpty()) {
2036 long nc = ((AC_MASK & (c - AC_UNIT)) |
2037 (~AC_MASK & c)); // uncompensated
2038 canBlock = U.compareAndSwapLong(this, CTL, c, nc);
2039 }
2040 else if (tc >= MAX_CAP ||
2041 (this == common && tc >= pc + commonMaxSpares))
2042 throw new RejectedExecutionException(
2043 "Thread limit exceeded replacing blocked worker");
2044 else { // similar to tryAddWorker
2045 boolean isSpare = (tc >= pc);
2046 long nc = (AC_MASK & c) | (TC_MASK & (c + TC_UNIT));
2047 canBlock = (U.compareAndSwapLong(this, CTL, c, nc) &&
2048 createWorker(isSpare)); // throws on exception
2049 }
2050 }
2051 return canBlock;
2052 }
2053
2054 /**
2055 * Helps and/or blocks until the given task is done or timeout.
2056 *
2057 * @param w caller
2058 * @param task the task
2059 * @param deadline for timed waits, if nonzero
2060 * @return task status on exit
2061 */
2062 final int awaitJoin(WorkQueue w, ForkJoinTask<?> task, long deadline) {
2063 int s = 0;
2064 if (w != null) {
2065 ForkJoinTask<?> prevJoin = w.currentJoin;
2066 if (task != null && (s = task.status) >= 0) {
2067 w.currentJoin = task;
2068 CountedCompleter<?> cc = (task instanceof CountedCompleter) ?
2069 (CountedCompleter<?>)task : null;
2070 for (;;) {
2071 if (cc != null)
2072 helpComplete(w, cc, 0);
2073 else
2074 helpStealer(w, task);
2075 if ((s = task.status) < 0)
2076 break;
2077 long ms, ns;
2078 if (deadline == 0L)
2079 ms = 0L;
2080 else if ((ns = deadline - System.nanoTime()) <= 0L)
2081 break;
2082 else if ((ms = TimeUnit.NANOSECONDS.toMillis(ns)) <= 0L)
2083 ms = 1L;
2084 if (tryCompensate(w)) {
2085 task.internalWait(ms);
2086 U.getAndAddLong(this, CTL, AC_UNIT);
2087 }
2088 if ((s = task.status) < 0)
2089 break;
2090 }
2091 w.currentJoin = prevJoin;
2092 }
2093 }
2094 return s;
2095 }
2096
2097 // Specialized scanning
2098
2099 /**
2100 * Returns a (probably) non-empty steal queue, if one is found
2101 * during a scan, else null. This method must be retried by
2102 * caller if, by the time it tries to use the queue, it is empty.
2103 */
2104 private WorkQueue findNonEmptyStealQueue() {
2105 WorkQueue[] ws; int wl; // one-shot version of scan loop
2106 int r = ThreadLocalRandom.nextSecondarySeed();
2107 if ((ws = workQueues) != null && (wl = ws.length) > 0) {
2108 int m = wl - 1, origin = r & m;
2109 for (int k = origin, oldSum = 0, checkSum = 0;;) {
2110 WorkQueue q; int b;
2111 if ((q = ws[k]) != null) {
2112 if ((b = q.base) - q.top < 0)
2113 return q;
2114 checkSum += b;
2115 }
2116 if ((k = (k + 1) & m) == origin) {
2117 if (oldSum == (oldSum = checkSum))
2118 break;
2119 checkSum = 0;
2120 }
2121 }
2122 }
2123 return null;
2124 }
2125
2126 /**
2127 * Runs tasks until {@code isQuiescent()}. We piggyback on
2128 * active count ctl maintenance, but rather than blocking
2129 * when tasks cannot be found, we rescan until all others cannot
2130 * find tasks either.
2131 */
2132 final void helpQuiescePool(WorkQueue w) {
2133 ForkJoinTask<?> ps = w.currentSteal; // save context
2134 int wc = w.config;
2135 for (boolean active = true;;) {
2136 long c; WorkQueue q; ForkJoinTask<?> t;
2137 if (wc >= 0 && (t = w.pop()) != null) { // run locals if LIFO
2138 (w.currentSteal = t).doExec();
2139 w.currentSteal = ps;
2140 }
2141 else if ((q = findNonEmptyStealQueue()) != null) {
2142 if (!active) { // re-establish active count
2143 active = true;
2144 U.getAndAddLong(this, CTL, AC_UNIT);
2145 }
2146 if ((t = q.pollAt(q.base)) != null) {
2147 (w.currentSteal = t).doExec();
2148 w.currentSteal = ps;
2149 if (++w.nsteals < 0)
2150 w.transferStealCount(this);
2151 }
2152 }
2153 else if (active) { // decrement active count without queuing
2154 long nc = (AC_MASK & ((c = ctl) - AC_UNIT)) | (~AC_MASK & c);
2155 if (U.compareAndSwapLong(this, CTL, c, nc))
2156 active = false;
2157 }
2158 else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) <= 0 &&
2159 U.compareAndSwapLong(this, CTL, c, c + AC_UNIT))
2160 break;
2161 }
2162 }
2163
2164 /**
2165 * Gets and removes a local or stolen task for the given worker.
2166 *
2167 * @return a task, if available
2168 */
2169 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2170 for (ForkJoinTask<?> t;;) {
2171 WorkQueue q;
2172 if ((t = w.nextLocalTask()) != null)
2173 return t;
2174 if ((q = findNonEmptyStealQueue()) == null)
2175 return null;
2176 if ((t = q.pollAt(q.base)) != null)
2177 return t;
2178 }
2179 }
2180
2181 /**
2182 * Returns a cheap heuristic guide for task partitioning when
2183 * programmers, frameworks, tools, or languages have little or no
2184 * idea about task granularity. In essence, by offering this
2185 * method, we ask users only about tradeoffs in overhead vs
2186 * expected throughput and its variance, rather than how finely to
2187 * partition tasks.
2188 *
2189 * In a steady state strict (tree-structured) computation, each
2190 * thread makes available for stealing enough tasks for other
2191 * threads to remain active. Inductively, if all threads play by
2192 * the same rules, each thread should make available only a
2193 * constant number of tasks.
2194 *
2195 * The minimum useful constant is just 1. But using a value of 1
2196 * would require immediate replenishment upon each steal to
2197 * maintain enough tasks, which is infeasible. Further,
2198 * partitionings/granularities of offered tasks should minimize
2199 * steal rates, which in general means that threads nearer the top
2200 * of computation tree should generate more than those nearer the
2201 * bottom. In perfect steady state, each thread is at
2202 * approximately the same level of computation tree. However,
2203 * producing extra tasks amortizes the uncertainty of progress and
2204 * diffusion assumptions.
2205 *
2206 * So, users will want to use values larger (but not much larger)
2207 * than 1 to both smooth over transient shortages and hedge
2208 * against uneven progress; as traded off against the cost of
2209 * extra task overhead. We leave the user to pick a threshold
2210 * value to compare with the results of this call to guide
2211 * decisions, but recommend values such as 3.
2212 *
2213 * When all threads are active, it is on average OK to estimate
2214 * surplus strictly locally. In steady-state, if one thread is
2215 * maintaining say 2 surplus tasks, then so are others. So we can
2216 * just use estimated queue length. However, this strategy alone
2217 * leads to serious mis-estimates in some non-steady-state
2218 * conditions (ramp-up, ramp-down, other stalls). We can detect
2219 * many of these by further considering the number of "idle"
2220 * threads, that are known to have zero queued tasks, so
2221 * compensate by a factor of (#idle/#active) threads.
2222 */
2223 static int getSurplusQueuedTaskCount() {
2224 Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2225 if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) {
2226 int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2227 int n = (q = wt.workQueue).top - q.base;
2228 int a = (int)(pool.ctl >> AC_SHIFT) + p;
2229 return n - (a > (p >>>= 1) ? 0 :
2230 a > (p >>>= 1) ? 1 :
2231 a > (p >>>= 1) ? 2 :
2232 a > (p >>>= 1) ? 4 :
2233 8);
2234 }
2235 return 0;
2236 }
2237
2238 // Termination
2239
2240 /**
2241 * Possibly initiates and/or completes termination.
2242 *
2243 * @param now if true, unconditionally terminate, else only
2244 * if no work and no active workers
2245 * @param enable if true, terminate when next possible
2246 * @return true if now terminating or terminated
2247 */
2248 private boolean tryTerminate(boolean now, boolean enable) {
2249 int rs;
2250 for (;;) {
2251 if ((rs = runState) < 0) // already shut down
2252 break;
2253 if (!enable || this == common)
2254 return false;
2255 if (U.compareAndSwapInt(this, RUNSTATE, rs, rs | SHUTDOWN))
2256 break;
2257 }
2258
2259 if ((rs & STOP) == 0) {
2260 if (!now) { // check quiescence
2261 for (long oldSum = 0L;;) { // repeat until stable
2262 WorkQueue[] ws; WorkQueue w; int m, b, sp; long c;
2263 long checkSum = ctl;
2264 if ((int)(checkSum >> AC_SHIFT) + (config & SMASK) > 0)
2265 return false; // still active workers
2266 if ((ws = workQueues) == null || (m = ws.length - 1) < 0)
2267 break; // check queues
2268 for (int i = 0; i <= m; ++i) {
2269 if ((w = ws[i]) != null) {
2270 if ((b = w.base) != w.top ||
2271 w.currentSteal != null) {
2272 while ((sp = (int)(c = ctl)) != 0 &&
2273 !tryRelease(c, ws[m & sp], AC_UNIT))
2274 ;
2275 return false; // arrange for recheck
2276 }
2277 checkSum += b;
2278 if ((i & 1) == 0)
2279 w.qlock = -1; // try to disable external
2280 }
2281 }
2282 if (oldSum == (oldSum = checkSum))
2283 break;
2284 }
2285 }
2286 while (((rs = runState) & STOP) == 0) // enter STOP phase
2287 U.compareAndSwapInt(this, RUNSTATE, rs, rs | STOP);
2288 }
2289
2290 int pass = 0; // 3 passes to help terminate
2291 for (long oldSum = 0L;;) { // or until done or stable
2292 WorkQueue[] ws; WorkQueue w; ForkJoinWorkerThread wt; int m;
2293 long checkSum = ctl;
2294 if ((short)(checkSum >>> TC_SHIFT) + (config & SMASK) <= 0 ||
2295 (ws = workQueues) == null || (m = ws.length - 1) < 0) {
2296 while (((rs = runState) & TERMINATED) == 0) {
2297 if (U.compareAndSwapInt(this, RUNSTATE, rs,
2298 rs | TERMINATED)) {
2299 synchronized (this) {
2300 notifyAll(); // for awaitTermination
2301 }
2302 break;
2303 }
2304 }
2305 break;
2306 }
2307 for (int i = 0; i <= m; ++i) {
2308 if ((w = ws[i]) != null) {
2309 checkSum += w.base;
2310 w.qlock = -1; // try to disable
2311 if (pass > 0) {
2312 w.cancelAll(); // clear queue
2313 if (pass > 1 && (wt = w.owner) != null) {
2314 if (!wt.isInterrupted()) {
2315 try { // unblock join
2316 wt.interrupt();
2317 } catch (Throwable ignore) {
2318 }
2319 }
2320 LockSupport.unpark(wt);
2321 }
2322 }
2323 }
2324 }
2325 if (checkSum != oldSum) { // unstable
2326 oldSum = checkSum;
2327 pass = 0;
2328 }
2329 else if (pass > 3 && pass > m) // can't further help
2330 break;
2331 else if (++pass > 1) { // try to dequeue
2332 long c; int j = 0, sp; // bound attempts
2333 while (j++ <= m && (sp = (int)(c = ctl)) != 0)
2334 tryRelease(c, ws[sp & m], AC_UNIT);
2335 }
2336 }
2337 return true;
2338 }
2339
2340 // External operations
2341
2342 /**
2343 * Constructs and tries to install a new external queue,
2344 * failing if the workQueues array already has a queue at
2345 * the give index.
2346 *
2347 * @param index the index of the new queue
2348 */
2349 private void tryCreateExternalQueue(int index) {
2350 Object lock;
2351 if ((lock = stealCounter) != null && index >= 0) {
2352 WorkQueue q = new WorkQueue(this, null);
2353 q.config = index;
2354 q.scanState = ~UNSIGNALLED;
2355 synchronized (lock) { // lock to install
2356 WorkQueue[] ws;
2357 if ((ws = workQueues) != null && index < ws.length &&
2358 ws[index] == null) {
2359 ws[index] = q; // else throw away
2360 }
2361 }
2362 }
2363 }
2364
2365 /**
2366 * Adds the given task to a submission queue at submitter's
2367 * current queue. Also performs secondary initialization upon the
2368 * first submission of the first task to the pool, and detects
2369 * first submission by an external thread and creates a new shared
2370 * queue if the one at index if empty or contended.
2371 *
2372 * @param task the task. Caller must ensure non-null.
2373 */
2374 final void externalPush(ForkJoinTask<?> task) {
2375 int r; // initialize caller's probe
2376 if ((r = ThreadLocalRandom.getProbe()) == 0) {
2377 ThreadLocalRandom.localInit();
2378 r = ThreadLocalRandom.getProbe();
2379 }
2380 for (;;) {
2381 WorkQueue q; int wl, k;
2382 int rs = runState;
2383 WorkQueue[] ws = workQueues;
2384 if (rs <= 0 || ws == null || (wl = ws.length) <= 0)
2385 tryInitialize();
2386 else if ((q = ws[k = (wl - 1) & r & SQMASK]) == null)
2387 tryCreateExternalQueue(k);
2388 else if (U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2389 int b = q.base, s = q.top, al, d; ForkJoinTask<?>[] a;
2390 if ((a = q.array) != null && (al = a.length) > 0 &&
2391 al - 1 + (d = b - s) > 0) {
2392 a[(al - 1) & s] = task; // push
2393 q.top = s + 1; // relaxed writes OK here
2394 U.putOrderedInt(q, QLOCK, 0);
2395 if (d == 0)
2396 signalWork(true);
2397 break;
2398 }
2399 else { // grow then retry
2400 try {
2401 q.growArray();
2402 } finally {
2403 q.qlock = 0;
2404 }
2405 }
2406 }
2407 else // move if cannot lock
2408 r = ThreadLocalRandom.advanceProbe(r);
2409 }
2410 }
2411
2412 /**
2413 * Pushes a possibly-external submission.
2414 */
2415 private <T> ForkJoinTask<T> externalSubmit(ForkJoinTask<T> task) {
2416 Thread t; ForkJoinWorkerThread w; WorkQueue q;
2417 if (task == null)
2418 throw new NullPointerException();
2419 if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) &&
2420 (w = (ForkJoinWorkerThread)t).pool == this &&
2421 (q = w.workQueue) != null)
2422 q.push(task);
2423 else
2424 externalPush(task);
2425 return task;
2426 }
2427
2428 /**
2429 * Returns common pool queue for an external thread.
2430 */
2431 static WorkQueue commonSubmitterQueue() {
2432 ForkJoinPool p = common;
2433 int r = ThreadLocalRandom.getProbe();
2434 WorkQueue[] ws; int wl;
2435 return (p != null && (ws = p.workQueues) != null &&
2436 (wl = ws.length) > 0) ?
2437 ws[(wl - 1) & r & SQMASK] : null;
2438 }
2439
2440 /**
2441 * Performs tryUnpush for an external submitter
2442 */
2443 final boolean tryExternalUnpush(ForkJoinTask<?> task) {
2444 int r = ThreadLocalRandom.getProbe();
2445 WorkQueue[] ws; WorkQueue w; int wl;
2446 return ((ws = workQueues) != null &&
2447 (wl = ws.length) > 0 &&
2448 (w = ws[(wl - 1) & r & SQMASK]) != null &&
2449 w.trySharedUnpush(task));
2450 }
2451
2452 /**
2453 * Performs helpComplete for an external submitter.
2454 */
2455 final int externalHelpComplete(CountedCompleter<?> task, int maxTasks) {
2456 WorkQueue[] ws; int wl;
2457 int r = ThreadLocalRandom.getProbe();
2458 return ((ws = workQueues) != null && (wl = ws.length) > 0) ?
2459 helpComplete(ws[(wl - 1) & r & SQMASK], task, maxTasks) : 0;
2460 }
2461
2462 // Exported methods
2463
2464 // Constructors
2465
2466 /**
2467 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2468 * java.lang.Runtime#availableProcessors}, using the {@linkplain
2469 * #defaultForkJoinWorkerThreadFactory default thread factory},
2470 * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2471 *
2472 * @throws SecurityException if a security manager exists and
2473 * the caller is not permitted to modify threads
2474 * because it does not hold {@link
2475 * java.lang.RuntimePermission}{@code ("modifyThread")}
2476 */
2477 public ForkJoinPool() {
2478 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2479 defaultForkJoinWorkerThreadFactory, null, false);
2480 }
2481
2482 /**
2483 * Creates a {@code ForkJoinPool} with the indicated parallelism
2484 * level, the {@linkplain
2485 * #defaultForkJoinWorkerThreadFactory default thread factory},
2486 * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2487 *
2488 * @param parallelism the parallelism level
2489 * @throws IllegalArgumentException if parallelism less than or
2490 * equal to zero, or greater than implementation limit
2491 * @throws SecurityException if a security manager exists and
2492 * the caller is not permitted to modify threads
2493 * because it does not hold {@link
2494 * java.lang.RuntimePermission}{@code ("modifyThread")}
2495 */
2496 public ForkJoinPool(int parallelism) {
2497 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2498 }
2499
2500 /**
2501 * Creates a {@code ForkJoinPool} with the given parameters.
2502 *
2503 * @param parallelism the parallelism level. For default value,
2504 * use {@link java.lang.Runtime#availableProcessors}.
2505 * @param factory the factory for creating new threads. For default value,
2506 * use {@link #defaultForkJoinWorkerThreadFactory}.
2507 * @param handler the handler for internal worker threads that
2508 * terminate due to unrecoverable errors encountered while executing
2509 * tasks. For default value, use {@code null}.
2510 * @param asyncMode if true,
2511 * establishes local first-in-first-out scheduling mode for forked
2512 * tasks that are never joined. This mode may be more appropriate
2513 * than default locally stack-based mode in applications in which
2514 * worker threads only process event-style asynchronous tasks.
2515 * For default value, use {@code false}.
2516 * @throws IllegalArgumentException if parallelism less than or
2517 * equal to zero, or greater than implementation limit
2518 * @throws NullPointerException if the factory is null
2519 * @throws SecurityException if a security manager exists and
2520 * the caller is not permitted to modify threads
2521 * because it does not hold {@link
2522 * java.lang.RuntimePermission}{@code ("modifyThread")}
2523 */
2524 public ForkJoinPool(int parallelism,
2525 ForkJoinWorkerThreadFactory factory,
2526 UncaughtExceptionHandler handler,
2527 boolean asyncMode) {
2528 this(checkParallelism(parallelism),
2529 checkFactory(factory),
2530 handler,
2531 asyncMode ? FIFO_QUEUE : LIFO_QUEUE,
2532 "ForkJoinPool-" + nextPoolId() + "-worker-");
2533 checkPermission();
2534 }
2535
2536 private static int checkParallelism(int parallelism) {
2537 if (parallelism <= 0 || parallelism > MAX_CAP)
2538 throw new IllegalArgumentException();
2539 return parallelism;
2540 }
2541
2542 private static ForkJoinWorkerThreadFactory checkFactory
2543 (ForkJoinWorkerThreadFactory factory) {
2544 if (factory == null)
2545 throw new NullPointerException();
2546 return factory;
2547 }
2548
2549 /**
2550 * Creates a {@code ForkJoinPool} with the given parameters, without
2551 * any security checks or parameter validation. Invoked directly by
2552 * makeCommonPool.
2553 */
2554 private ForkJoinPool(int parallelism,
2555 ForkJoinWorkerThreadFactory factory,
2556 UncaughtExceptionHandler handler,
2557 int mode,
2558 String workerNamePrefix) {
2559 this.workerNamePrefix = workerNamePrefix;
2560 this.factory = factory;
2561 this.ueh = handler;
2562 this.config = (parallelism & SMASK) | mode;
2563 long np = (long)(-parallelism); // offset ctl counts
2564 this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2565 }
2566
2567 /**
2568 * Returns the common pool instance. This pool is statically
2569 * constructed; its run state is unaffected by attempts to {@link
2570 * #shutdown} or {@link #shutdownNow}. However this pool and any
2571 * ongoing processing are automatically terminated upon program
2572 * {@link System#exit}. Any program that relies on asynchronous
2573 * task processing to complete before program termination should
2574 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2575 * before exit.
2576 *
2577 * @return the common pool instance
2578 * @since 1.8
2579 */
2580 public static ForkJoinPool commonPool() {
2581 // assert common != null : "static init error";
2582 return common;
2583 }
2584
2585 // Execution methods
2586
2587 /**
2588 * Performs the given task, returning its result upon completion.
2589 * If the computation encounters an unchecked Exception or Error,
2590 * it is rethrown as the outcome of this invocation. Rethrown
2591 * exceptions behave in the same way as regular exceptions, but,
2592 * when possible, contain stack traces (as displayed for example
2593 * using {@code ex.printStackTrace()}) of both the current thread
2594 * as well as the thread actually encountering the exception;
2595 * minimally only the latter.
2596 *
2597 * @param task the task
2598 * @param <T> the type of the task's result
2599 * @return the task's result
2600 * @throws NullPointerException if the task is null
2601 * @throws RejectedExecutionException if the task cannot be
2602 * scheduled for execution
2603 */
2604 public <T> T invoke(ForkJoinTask<T> task) {
2605 if (task == null)
2606 throw new NullPointerException();
2607 externalSubmit(task);
2608 return task.join();
2609 }
2610
2611 /**
2612 * Arranges for (asynchronous) execution of the given task.
2613 *
2614 * @param task the task
2615 * @throws NullPointerException if the task is null
2616 * @throws RejectedExecutionException if the task cannot be
2617 * scheduled for execution
2618 */
2619 public void execute(ForkJoinTask<?> task) {
2620 externalSubmit(task);
2621 }
2622
2623 // AbstractExecutorService methods
2624
2625 /**
2626 * @throws NullPointerException if the task is null
2627 * @throws RejectedExecutionException if the task cannot be
2628 * scheduled for execution
2629 */
2630 public void execute(Runnable task) {
2631 if (task == null)
2632 throw new NullPointerException();
2633 ForkJoinTask<?> job;
2634 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2635 job = (ForkJoinTask<?>) task;
2636 else
2637 job = new ForkJoinTask.RunnableExecuteAction(task);
2638 externalSubmit(job);
2639 }
2640
2641 /**
2642 * Submits a ForkJoinTask for execution.
2643 *
2644 * @param task the task to submit
2645 * @param <T> the type of the task's result
2646 * @return the task
2647 * @throws NullPointerException if the task is null
2648 * @throws RejectedExecutionException if the task cannot be
2649 * scheduled for execution
2650 */
2651 public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2652 return externalSubmit(task);
2653 }
2654
2655 /**
2656 * @throws NullPointerException if the task is null
2657 * @throws RejectedExecutionException if the task cannot be
2658 * scheduled for execution
2659 */
2660 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2661 return externalSubmit(new ForkJoinTask.AdaptedCallable<T>(task));
2662 }
2663
2664 /**
2665 * @throws NullPointerException if the task is null
2666 * @throws RejectedExecutionException if the task cannot be
2667 * scheduled for execution
2668 */
2669 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2670 return externalSubmit(new ForkJoinTask.AdaptedRunnable<T>(task, result));
2671 }
2672
2673 /**
2674 * @throws NullPointerException if the task is null
2675 * @throws RejectedExecutionException if the task cannot be
2676 * scheduled for execution
2677 */
2678 public ForkJoinTask<?> submit(Runnable task) {
2679 if (task == null)
2680 throw new NullPointerException();
2681 ForkJoinTask<?> job;
2682 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2683 job = (ForkJoinTask<?>) task;
2684 else
2685 job = new ForkJoinTask.AdaptedRunnableAction(task);
2686 return externalSubmit(job);
2687 }
2688
2689 /**
2690 * @throws NullPointerException {@inheritDoc}
2691 * @throws RejectedExecutionException {@inheritDoc}
2692 */
2693 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2694 // In previous versions of this class, this method constructed
2695 // a task to run ForkJoinTask.invokeAll, but now external
2696 // invocation of multiple tasks is at least as efficient.
2697 ArrayList<Future<T>> futures = new ArrayList<>(tasks.size());
2698
2699 try {
2700 for (Callable<T> t : tasks) {
2701 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2702 futures.add(f);
2703 externalSubmit(f);
2704 }
2705 for (int i = 0, size = futures.size(); i < size; i++)
2706 ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2707 return futures;
2708 } catch (Throwable t) {
2709 for (int i = 0, size = futures.size(); i < size; i++)
2710 futures.get(i).cancel(false);
2711 throw t;
2712 }
2713 }
2714
2715 /**
2716 * Returns the factory used for constructing new workers.
2717 *
2718 * @return the factory used for constructing new workers
2719 */
2720 public ForkJoinWorkerThreadFactory getFactory() {
2721 return factory;
2722 }
2723
2724 /**
2725 * Returns the handler for internal worker threads that terminate
2726 * due to unrecoverable errors encountered while executing tasks.
2727 *
2728 * @return the handler, or {@code null} if none
2729 */
2730 public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2731 return ueh;
2732 }
2733
2734 /**
2735 * Returns the targeted parallelism level of this pool.
2736 *
2737 * @return the targeted parallelism level of this pool
2738 */
2739 public int getParallelism() {
2740 int par;
2741 return ((par = config & SMASK) > 0) ? par : 1;
2742 }
2743
2744 /**
2745 * Returns the targeted parallelism level of the common pool.
2746 *
2747 * @return the targeted parallelism level of the common pool
2748 * @since 1.8
2749 */
2750 public static int getCommonPoolParallelism() {
2751 return commonParallelism;
2752 }
2753
2754 /**
2755 * Returns the number of worker threads that have started but not
2756 * yet terminated. The result returned by this method may differ
2757 * from {@link #getParallelism} when threads are created to
2758 * maintain parallelism when others are cooperatively blocked.
2759 *
2760 * @return the number of worker threads
2761 */
2762 public int getPoolSize() {
2763 return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2764 }
2765
2766 /**
2767 * Returns {@code true} if this pool uses local first-in-first-out
2768 * scheduling mode for forked tasks that are never joined.
2769 *
2770 * @return {@code true} if this pool uses async mode
2771 */
2772 public boolean getAsyncMode() {
2773 return (config & FIFO_QUEUE) != 0;
2774 }
2775
2776 /**
2777 * Returns an estimate of the number of worker threads that are
2778 * not blocked waiting to join tasks or for other managed
2779 * synchronization. This method may overestimate the
2780 * number of running threads.
2781 *
2782 * @return the number of worker threads
2783 */
2784 public int getRunningThreadCount() {
2785 int rc = 0;
2786 WorkQueue[] ws; WorkQueue w;
2787 if ((ws = workQueues) != null) {
2788 for (int i = 1; i < ws.length; i += 2) {
2789 if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2790 ++rc;
2791 }
2792 }
2793 return rc;
2794 }
2795
2796 /**
2797 * Returns an estimate of the number of threads that are currently
2798 * stealing or executing tasks. This method may overestimate the
2799 * number of active threads.
2800 *
2801 * @return the number of active threads
2802 */
2803 public int getActiveThreadCount() {
2804 int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2805 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2806 }
2807
2808 /**
2809 * Returns {@code true} if all worker threads are currently idle.
2810 * An idle worker is one that cannot obtain a task to execute
2811 * because none are available to steal from other threads, and
2812 * there are no pending submissions to the pool. This method is
2813 * conservative; it might not return {@code true} immediately upon
2814 * idleness of all threads, but will eventually become true if
2815 * threads remain inactive.
2816 *
2817 * @return {@code true} if all threads are currently idle
2818 */
2819 public boolean isQuiescent() {
2820 return (config & SMASK) + (int)(ctl >> AC_SHIFT) <= 0;
2821 }
2822
2823 /**
2824 * Returns an estimate of the total number of tasks stolen from
2825 * one thread's work queue by another. The reported value
2826 * underestimates the actual total number of steals when the pool
2827 * is not quiescent. This value may be useful for monitoring and
2828 * tuning fork/join programs: in general, steal counts should be
2829 * high enough to keep threads busy, but low enough to avoid
2830 * overhead and contention across threads.
2831 *
2832 * @return the number of steals
2833 */
2834 public long getStealCount() {
2835 AtomicLong sc = stealCounter;
2836 long count = (sc == null) ? 0L : sc.get();
2837 WorkQueue[] ws; WorkQueue w;
2838 if ((ws = workQueues) != null) {
2839 for (int i = 1; i < ws.length; i += 2) {
2840 if ((w = ws[i]) != null)
2841 count += w.nsteals;
2842 }
2843 }
2844 return count;
2845 }
2846
2847 /**
2848 * Returns an estimate of the total number of tasks currently held
2849 * in queues by worker threads (but not including tasks submitted
2850 * to the pool that have not begun executing). This value is only
2851 * an approximation, obtained by iterating across all threads in
2852 * the pool. This method may be useful for tuning task
2853 * granularities.
2854 *
2855 * @return the number of queued tasks
2856 */
2857 public long getQueuedTaskCount() {
2858 long count = 0;
2859 WorkQueue[] ws; WorkQueue w;
2860 if ((ws = workQueues) != null) {
2861 for (int i = 1; i < ws.length; i += 2) {
2862 if ((w = ws[i]) != null)
2863 count += w.queueSize();
2864 }
2865 }
2866 return count;
2867 }
2868
2869 /**
2870 * Returns an estimate of the number of tasks submitted to this
2871 * pool that have not yet begun executing. This method may take
2872 * time proportional to the number of submissions.
2873 *
2874 * @return the number of queued submissions
2875 */
2876 public int getQueuedSubmissionCount() {
2877 int count = 0;
2878 WorkQueue[] ws; WorkQueue w;
2879 if ((ws = workQueues) != null) {
2880 for (int i = 0; i < ws.length; i += 2) {
2881 if ((w = ws[i]) != null)
2882 count += w.queueSize();
2883 }
2884 }
2885 return count;
2886 }
2887
2888 /**
2889 * Returns {@code true} if there are any tasks submitted to this
2890 * pool that have not yet begun executing.
2891 *
2892 * @return {@code true} if there are any queued submissions
2893 */
2894 public boolean hasQueuedSubmissions() {
2895 WorkQueue[] ws; WorkQueue w;
2896 if ((ws = workQueues) != null) {
2897 for (int i = 0; i < ws.length; i += 2) {
2898 if ((w = ws[i]) != null && !w.isEmpty())
2899 return true;
2900 }
2901 }
2902 return false;
2903 }
2904
2905 /**
2906 * Removes and returns the next unexecuted submission if one is
2907 * available. This method may be useful in extensions to this
2908 * class that re-assign work in systems with multiple pools.
2909 *
2910 * @return the next submission, or {@code null} if none
2911 */
2912 protected ForkJoinTask<?> pollSubmission() {
2913 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2914 if ((ws = workQueues) != null) {
2915 for (int i = 0; i < ws.length; i += 2) {
2916 if ((w = ws[i]) != null && (t = w.poll()) != null)
2917 return t;
2918 }
2919 }
2920 return null;
2921 }
2922
2923 /**
2924 * Removes all available unexecuted submitted and forked tasks
2925 * from scheduling queues and adds them to the given collection,
2926 * without altering their execution status. These may include
2927 * artificially generated or wrapped tasks. This method is
2928 * designed to be invoked only when the pool is known to be
2929 * quiescent. Invocations at other times may not remove all
2930 * tasks. A failure encountered while attempting to add elements
2931 * to collection {@code c} may result in elements being in
2932 * neither, either or both collections when the associated
2933 * exception is thrown. The behavior of this operation is
2934 * undefined if the specified collection is modified while the
2935 * operation is in progress.
2936 *
2937 * @param c the collection to transfer elements into
2938 * @return the number of elements transferred
2939 */
2940 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2941 int count = 0;
2942 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2943 if ((ws = workQueues) != null) {
2944 for (int i = 0; i < ws.length; ++i) {
2945 if ((w = ws[i]) != null) {
2946 while ((t = w.poll()) != null) {
2947 c.add(t);
2948 ++count;
2949 }
2950 }
2951 }
2952 }
2953 return count;
2954 }
2955
2956 /**
2957 * Returns a string identifying this pool, as well as its state,
2958 * including indications of run state, parallelism level, and
2959 * worker and task counts.
2960 *
2961 * @return a string identifying this pool, as well as its state
2962 */
2963 public String toString() {
2964 // Use a single pass through workQueues to collect counts
2965 long qt = 0L, qs = 0L; int rc = 0;
2966 AtomicLong sc = stealCounter;
2967 long st = (sc == null) ? 0L : sc.get();
2968 long c = ctl;
2969 WorkQueue[] ws; WorkQueue w;
2970 if ((ws = workQueues) != null) {
2971 for (int i = 0; i < ws.length; ++i) {
2972 if ((w = ws[i]) != null) {
2973 int size = w.queueSize();
2974 if ((i & 1) == 0)
2975 qs += size;
2976 else {
2977 qt += size;
2978 st += w.nsteals;
2979 if (w.isApparentlyUnblocked())
2980 ++rc;
2981 }
2982 }
2983 }
2984 }
2985 int pc = (config & SMASK);
2986 int tc = pc + (short)(c >>> TC_SHIFT);
2987 int ac = pc + (int)(c >> AC_SHIFT);
2988 if (ac < 0) // ignore transient negative
2989 ac = 0;
2990 int rs = runState;
2991 String level = ((rs & TERMINATED) != 0 ? "Terminated" :
2992 (rs & STOP) != 0 ? "Terminating" :
2993 (rs & SHUTDOWN) != 0 ? "Shutting down" :
2994 "Running");
2995 return super.toString() +
2996 "[" + level +
2997 ", parallelism = " + pc +
2998 ", size = " + tc +
2999 ", active = " + ac +
3000 ", running = " + rc +
3001 ", steals = " + st +
3002 ", tasks = " + qt +
3003 ", submissions = " + qs +
3004 "]";
3005 }
3006
3007 /**
3008 * Possibly initiates an orderly shutdown in which previously
3009 * submitted tasks are executed, but no new tasks will be
3010 * accepted. Invocation has no effect on execution state if this
3011 * is the {@link #commonPool()}, and no additional effect if
3012 * already shut down. Tasks that are in the process of being
3013 * submitted concurrently during the course of this method may or
3014 * may not be rejected.
3015 *
3016 * @throws SecurityException if a security manager exists and
3017 * the caller is not permitted to modify threads
3018 * because it does not hold {@link
3019 * java.lang.RuntimePermission}{@code ("modifyThread")}
3020 */
3021 public void shutdown() {
3022 checkPermission();
3023 tryTerminate(false, true);
3024 }
3025
3026 /**
3027 * Possibly attempts to cancel and/or stop all tasks, and reject
3028 * all subsequently submitted tasks. Invocation has no effect on
3029 * execution state if this is the {@link #commonPool()}, and no
3030 * additional effect if already shut down. Otherwise, tasks that
3031 * are in the process of being submitted or executed concurrently
3032 * during the course of this method may or may not be
3033 * rejected. This method cancels both existing and unexecuted
3034 * tasks, in order to permit termination in the presence of task
3035 * dependencies. So the method always returns an empty list
3036 * (unlike the case for some other Executors).
3037 *
3038 * @return an empty list
3039 * @throws SecurityException if a security manager exists and
3040 * the caller is not permitted to modify threads
3041 * because it does not hold {@link
3042 * java.lang.RuntimePermission}{@code ("modifyThread")}
3043 */
3044 public List<Runnable> shutdownNow() {
3045 checkPermission();
3046 tryTerminate(true, true);
3047 return Collections.emptyList();
3048 }
3049
3050 /**
3051 * Returns {@code true} if all tasks have completed following shut down.
3052 *
3053 * @return {@code true} if all tasks have completed following shut down
3054 */
3055 public boolean isTerminated() {
3056 return (runState & TERMINATED) != 0;
3057 }
3058
3059 /**
3060 * Returns {@code true} if the process of termination has
3061 * commenced but not yet completed. This method may be useful for
3062 * debugging. A return of {@code true} reported a sufficient
3063 * period after shutdown may indicate that submitted tasks have
3064 * ignored or suppressed interruption, or are waiting for I/O,
3065 * causing this executor not to properly terminate. (See the
3066 * advisory notes for class {@link ForkJoinTask} stating that
3067 * tasks should not normally entail blocking operations. But if
3068 * they do, they must abort them on interrupt.)
3069 *
3070 * @return {@code true} if terminating but not yet terminated
3071 */
3072 public boolean isTerminating() {
3073 int rs = runState;
3074 return (rs & STOP) != 0 && (rs & TERMINATED) == 0;
3075 }
3076
3077 /**
3078 * Returns {@code true} if this pool has been shut down.
3079 *
3080 * @return {@code true} if this pool has been shut down
3081 */
3082 public boolean isShutdown() {
3083 return (runState & SHUTDOWN) != 0;
3084 }
3085
3086 /**
3087 * Blocks until all tasks have completed execution after a
3088 * shutdown request, or the timeout occurs, or the current thread
3089 * is interrupted, whichever happens first. Because the {@link
3090 * #commonPool()} never terminates until program shutdown, when
3091 * applied to the common pool, this method is equivalent to {@link
3092 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
3093 *
3094 * @param timeout the maximum time to wait
3095 * @param unit the time unit of the timeout argument
3096 * @return {@code true} if this executor terminated and
3097 * {@code false} if the timeout elapsed before termination
3098 * @throws InterruptedException if interrupted while waiting
3099 */
3100 public boolean awaitTermination(long timeout, TimeUnit unit)
3101 throws InterruptedException {
3102 if (Thread.interrupted())
3103 throw new InterruptedException();
3104 if (this == common) {
3105 awaitQuiescence(timeout, unit);
3106 return false;
3107 }
3108 long nanos = unit.toNanos(timeout);
3109 if (isTerminated())
3110 return true;
3111 if (nanos <= 0L)
3112 return false;
3113 long deadline = System.nanoTime() + nanos;
3114 synchronized (this) {
3115 for (;;) {
3116 if (isTerminated())
3117 return true;
3118 if (nanos <= 0L)
3119 return false;
3120 long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
3121 wait(millis > 0L ? millis : 1L);
3122 nanos = deadline - System.nanoTime();
3123 }
3124 }
3125 }
3126
3127 /**
3128 * If called by a ForkJoinTask operating in this pool, equivalent
3129 * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3130 * waits and/or attempts to assist performing tasks until this
3131 * pool {@link #isQuiescent} or the indicated timeout elapses.
3132 *
3133 * @param timeout the maximum time to wait
3134 * @param unit the time unit of the timeout argument
3135 * @return {@code true} if quiescent; {@code false} if the
3136 * timeout elapsed.
3137 */
3138 public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3139 long nanos = unit.toNanos(timeout);
3140 ForkJoinWorkerThread wt;
3141 Thread thread = Thread.currentThread();
3142 if ((thread instanceof ForkJoinWorkerThread) &&
3143 (wt = (ForkJoinWorkerThread)thread).pool == this) {
3144 helpQuiescePool(wt.workQueue);
3145 return true;
3146 }
3147 long startTime = System.nanoTime();
3148 WorkQueue[] ws;
3149 int r = 0, wl;
3150 boolean found = true;
3151 while (!isQuiescent() && (ws = workQueues) != null &&
3152 (wl = ws.length) > 0) {
3153 if (!found) {
3154 if ((System.nanoTime() - startTime) > nanos)
3155 return false;
3156 Thread.yield(); // cannot block
3157 }
3158 found = false;
3159 for (int m = wl - 1, j = (m + 1) << 2; j >= 0; --j) {
3160 ForkJoinTask<?> t; WorkQueue q; int b, k;
3161 if ((k = r++ & m) <= m && k >= 0 && (q = ws[k]) != null &&
3162 (b = q.base) - q.top < 0) {
3163 found = true;
3164 if ((t = q.pollAt(b)) != null)
3165 t.doExec();
3166 break;
3167 }
3168 }
3169 }
3170 return true;
3171 }
3172
3173 /**
3174 * Waits and/or attempts to assist performing tasks indefinitely
3175 * until the {@link #commonPool()} {@link #isQuiescent}.
3176 */
3177 static void quiesceCommonPool() {
3178 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3179 }
3180
3181 /**
3182 * Interface for extending managed parallelism for tasks running
3183 * in {@link ForkJoinPool}s.
3184 *
3185 * <p>A {@code ManagedBlocker} provides two methods. Method
3186 * {@link #isReleasable} must return {@code true} if blocking is
3187 * not necessary. Method {@link #block} blocks the current thread
3188 * if necessary (perhaps internally invoking {@code isReleasable}
3189 * before actually blocking). These actions are performed by any
3190 * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
3191 * The unusual methods in this API accommodate synchronizers that
3192 * may, but don't usually, block for long periods. Similarly, they
3193 * allow more efficient internal handling of cases in which
3194 * additional workers may be, but usually are not, needed to
3195 * ensure sufficient parallelism. Toward this end,
3196 * implementations of method {@code isReleasable} must be amenable
3197 * to repeated invocation.
3198 *
3199 * <p>For example, here is a ManagedBlocker based on a
3200 * ReentrantLock:
3201 * <pre> {@code
3202 * class ManagedLocker implements ManagedBlocker {
3203 * final ReentrantLock lock;
3204 * boolean hasLock = false;
3205 * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3206 * public boolean block() {
3207 * if (!hasLock)
3208 * lock.lock();
3209 * return true;
3210 * }
3211 * public boolean isReleasable() {
3212 * return hasLock || (hasLock = lock.tryLock());
3213 * }
3214 * }}</pre>
3215 *
3216 * <p>Here is a class that possibly blocks waiting for an
3217 * item on a given queue:
3218 * <pre> {@code
3219 * class QueueTaker<E> implements ManagedBlocker {
3220 * final BlockingQueue<E> queue;
3221 * volatile E item = null;
3222 * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3223 * public boolean block() throws InterruptedException {
3224 * if (item == null)
3225 * item = queue.take();
3226 * return true;
3227 * }
3228 * public boolean isReleasable() {
3229 * return item != null || (item = queue.poll()) != null;
3230 * }
3231 * public E getItem() { // call after pool.managedBlock completes
3232 * return item;
3233 * }
3234 * }}</pre>
3235 */
3236 public static interface ManagedBlocker {
3237 /**
3238 * Possibly blocks the current thread, for example waiting for
3239 * a lock or condition.
3240 *
3241 * @return {@code true} if no additional blocking is necessary
3242 * (i.e., if isReleasable would return true)
3243 * @throws InterruptedException if interrupted while waiting
3244 * (the method is not required to do so, but is allowed to)
3245 */
3246 boolean block() throws InterruptedException;
3247
3248 /**
3249 * Returns {@code true} if blocking is unnecessary.
3250 * @return {@code true} if blocking is unnecessary
3251 */
3252 boolean isReleasable();
3253 }
3254
3255 /**
3256 * Runs the given possibly blocking task. When {@linkplain
3257 * ForkJoinTask#inForkJoinPool() running in a ForkJoinPool}, this
3258 * method possibly arranges for a spare thread to be activated if
3259 * necessary to ensure sufficient parallelism while the current
3260 * thread is blocked in {@link ManagedBlocker#block blocker.block()}.
3261 *
3262 * <p>This method repeatedly calls {@code blocker.isReleasable()} and
3263 * {@code blocker.block()} until either method returns {@code true}.
3264 * Every call to {@code blocker.block()} is preceded by a call to
3265 * {@code blocker.isReleasable()} that returned {@code false}.
3266 *
3267 * <p>If not running in a ForkJoinPool, this method is
3268 * behaviorally equivalent to
3269 * <pre> {@code
3270 * while (!blocker.isReleasable())
3271 * if (blocker.block())
3272 * break;}</pre>
3273 *
3274 * If running in a ForkJoinPool, the pool may first be expanded to
3275 * ensure sufficient parallelism available during the call to
3276 * {@code blocker.block()}.
3277 *
3278 * @param blocker the blocker task
3279 * @throws InterruptedException if {@code blocker.block()} did so
3280 */
3281 public static void managedBlock(ManagedBlocker blocker)
3282 throws InterruptedException {
3283 ForkJoinPool p;
3284 ForkJoinWorkerThread wt;
3285 Thread t = Thread.currentThread();
3286 if ((t instanceof ForkJoinWorkerThread) &&
3287 (p = (wt = (ForkJoinWorkerThread)t).pool) != null) {
3288 WorkQueue w = wt.workQueue;
3289 while (!blocker.isReleasable()) {
3290 if (p.tryCompensate(w)) {
3291 try {
3292 do {} while (!blocker.isReleasable() &&
3293 !blocker.block());
3294 } finally {
3295 U.getAndAddLong(p, CTL, AC_UNIT);
3296 }
3297 break;
3298 }
3299 }
3300 }
3301 else {
3302 do {} while (!blocker.isReleasable() &&
3303 !blocker.block());
3304 }
3305 }
3306
3307 // AbstractExecutorService overrides. These rely on undocumented
3308 // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3309 // implement RunnableFuture.
3310
3311 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3312 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3313 }
3314
3315 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3316 return new ForkJoinTask.AdaptedCallable<T>(callable);
3317 }
3318
3319 // Unsafe mechanics
3320 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
3321 private static final long CTL;
3322 private static final long RUNSTATE;
3323 private static final long STEALCOUNTER;
3324 private static final long QLOCK;
3325 private static final int ABASE;
3326 private static final int ASHIFT;
3327
3328 static {
3329 try {
3330 CTL = U.objectFieldOffset
3331 (ForkJoinPool.class.getDeclaredField("ctl"));
3332 RUNSTATE = U.objectFieldOffset
3333 (ForkJoinPool.class.getDeclaredField("runState"));
3334 STEALCOUNTER = U.objectFieldOffset
3335 (ForkJoinPool.class.getDeclaredField("stealCounter"));
3336
3337 QLOCK = U.objectFieldOffset
3338 (WorkQueue.class.getDeclaredField("qlock"));
3339
3340 ABASE = U.arrayBaseOffset(ForkJoinTask[].class);
3341 int scale = U.arrayIndexScale(ForkJoinTask[].class);
3342 if ((scale & (scale - 1)) != 0)
3343 throw new Error("array index scale not a power of two");
3344 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3345
3346 } catch (ReflectiveOperationException e) {
3347 throw new Error(e);
3348 }
3349
3350 // Reduce the risk of rare disastrous classloading in first call to
3351 // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
3352 Class<?> ensureLoaded = LockSupport.class;
3353
3354 commonMaxSpares = DEFAULT_COMMON_MAX_SPARES;
3355 defaultForkJoinWorkerThreadFactory =
3356 new DefaultForkJoinWorkerThreadFactory();
3357 modifyThreadPermission = new RuntimePermission("modifyThread");
3358
3359 common = java.security.AccessController.doPrivileged
3360 (new java.security.PrivilegedAction<ForkJoinPool>() {
3361 public ForkJoinPool run() { return makeCommonPool(); }});
3362 int par = common.config & SMASK; // report 1 even if threads disabled
3363 commonParallelism = par > 0 ? par : 1;
3364 }
3365
3366 /**
3367 * Creates and returns the common pool, respecting user settings
3368 * specified via system properties.
3369 */
3370 private static ForkJoinPool makeCommonPool() {
3371 int parallelism = -1;
3372 ForkJoinWorkerThreadFactory factory = null;
3373 UncaughtExceptionHandler handler = null;
3374 try { // ignore exceptions in accessing/parsing properties
3375 String pp = System.getProperty
3376 ("java.util.concurrent.ForkJoinPool.common.parallelism");
3377 String fp = System.getProperty
3378 ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3379 String hp = System.getProperty
3380 ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3381 String mp = System.getProperty
3382 ("java.util.concurrent.ForkJoinPool.common.maximumSpares");
3383 if (pp != null)
3384 parallelism = Integer.parseInt(pp);
3385 if (fp != null)
3386 factory = ((ForkJoinWorkerThreadFactory)ClassLoader.
3387 getSystemClassLoader().loadClass(fp).newInstance());
3388 if (hp != null)
3389 handler = ((UncaughtExceptionHandler)ClassLoader.
3390 getSystemClassLoader().loadClass(hp).newInstance());
3391 if (mp != null)
3392 commonMaxSpares = Integer.parseInt(mp);
3393 } catch (Exception ignore) {
3394 }
3395 if (factory == null) {
3396 if (System.getSecurityManager() == null)
3397 factory = defaultForkJoinWorkerThreadFactory;
3398 else // use security-managed default
3399 factory = new InnocuousForkJoinWorkerThreadFactory();
3400 }
3401 if (parallelism < 0 && // default 1 less than #cores
3402 (parallelism = Runtime.getRuntime().availableProcessors() - 1) <= 0)
3403 parallelism = 1;
3404 if (parallelism > MAX_CAP)
3405 parallelism = MAX_CAP;
3406 return new ForkJoinPool(parallelism, factory, handler, LIFO_QUEUE,
3407 "ForkJoinPool.commonPool-worker-");
3408 }
3409
3410 /**
3411 * Factory for innocuous worker threads
3412 */
3413 static final class InnocuousForkJoinWorkerThreadFactory
3414 implements ForkJoinWorkerThreadFactory {
3415
3416 /**
3417 * An ACC to restrict permissions for the factory itself.
3418 * The constructed workers have no permissions set.
3419 */
3420 private static final AccessControlContext innocuousAcc;
3421 static {
3422 Permissions innocuousPerms = new Permissions();
3423 innocuousPerms.add(modifyThreadPermission);
3424 innocuousPerms.add(new RuntimePermission(
3425 "enableContextClassLoaderOverride"));
3426 innocuousPerms.add(new RuntimePermission(
3427 "modifyThreadGroup"));
3428 innocuousAcc = new AccessControlContext(new ProtectionDomain[] {
3429 new ProtectionDomain(null, innocuousPerms)
3430 });
3431 }
3432
3433 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
3434 return java.security.AccessController.doPrivileged(
3435 new java.security.PrivilegedAction<ForkJoinWorkerThread>() {
3436 public ForkJoinWorkerThread run() {
3437 return new ForkJoinWorkerThread.
3438 InnocuousForkJoinWorkerThread(pool);
3439 }}, innocuousAcc);
3440 }
3441 }
3442
3443 }