ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.255
Committed: Wed Aug 5 13:31:36 2015 UTC (8 years, 10 months ago) by dl
Branch: MAIN
Changes since 1.254: +10 -5 lines
Log Message:
Reduce memory contention

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.lang.Thread.UncaughtExceptionHandler;
10 import java.security.AccessControlContext;
11 import java.security.Permissions;
12 import java.security.ProtectionDomain;
13 import java.util.ArrayList;
14 import java.util.Arrays;
15 import java.util.Collection;
16 import java.util.Collections;
17 import java.util.List;
18 import java.util.concurrent.atomic.AtomicLong;
19 import java.util.concurrent.locks.LockSupport;
20
21 /**
22 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
23 * A {@code ForkJoinPool} provides the entry point for submissions
24 * from non-{@code ForkJoinTask} clients, as well as management and
25 * monitoring operations.
26 *
27 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
28 * ExecutorService} mainly by virtue of employing
29 * <em>work-stealing</em>: all threads in the pool attempt to find and
30 * execute tasks submitted to the pool and/or created by other active
31 * tasks (eventually blocking waiting for work if none exist). This
32 * enables efficient processing when most tasks spawn other subtasks
33 * (as do most {@code ForkJoinTask}s), as well as when many small
34 * tasks are submitted to the pool from external clients. Especially
35 * when setting <em>asyncMode</em> to true in constructors, {@code
36 * ForkJoinPool}s may also be appropriate for use with event-style
37 * tasks that are never joined.
38 *
39 * <p>A static {@link #commonPool()} is available and appropriate for
40 * most applications. The common pool is used by any ForkJoinTask that
41 * is not explicitly submitted to a specified pool. Using the common
42 * pool normally reduces resource usage (its threads are slowly
43 * reclaimed during periods of non-use, and reinstated upon subsequent
44 * use).
45 *
46 * <p>For applications that require separate or custom pools, a {@code
47 * ForkJoinPool} may be constructed with a given target parallelism
48 * level; by default, equal to the number of available processors.
49 * The pool attempts to maintain enough active (or available) threads
50 * by dynamically adding, suspending, or resuming internal worker
51 * threads, even if some tasks are stalled waiting to join others.
52 * However, no such adjustments are guaranteed in the face of blocked
53 * I/O or other unmanaged synchronization. The nested {@link
54 * ManagedBlocker} interface enables extension of the kinds of
55 * synchronization accommodated.
56 *
57 * <p>In addition to execution and lifecycle control methods, this
58 * class provides status check methods (for example
59 * {@link #getStealCount}) that are intended to aid in developing,
60 * tuning, and monitoring fork/join applications. Also, method
61 * {@link #toString} returns indications of pool state in a
62 * convenient form for informal monitoring.
63 *
64 * <p>As is the case with other ExecutorServices, there are three
65 * main task execution methods summarized in the following table.
66 * These are designed to be used primarily by clients not already
67 * engaged in fork/join computations in the current pool. The main
68 * forms of these methods accept instances of {@code ForkJoinTask},
69 * but overloaded forms also allow mixed execution of plain {@code
70 * Runnable}- or {@code Callable}- based activities as well. However,
71 * tasks that are already executing in a pool should normally instead
72 * use the within-computation forms listed in the table unless using
73 * async event-style tasks that are not usually joined, in which case
74 * there is little difference among choice of methods.
75 *
76 * <table BORDER CELLPADDING=3 CELLSPACING=1>
77 * <caption>Summary of task execution methods</caption>
78 * <tr>
79 * <td></td>
80 * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
81 * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
82 * </tr>
83 * <tr>
84 * <td> <b>Arrange async execution</b></td>
85 * <td> {@link #execute(ForkJoinTask)}</td>
86 * <td> {@link ForkJoinTask#fork}</td>
87 * </tr>
88 * <tr>
89 * <td> <b>Await and obtain result</b></td>
90 * <td> {@link #invoke(ForkJoinTask)}</td>
91 * <td> {@link ForkJoinTask#invoke}</td>
92 * </tr>
93 * <tr>
94 * <td> <b>Arrange exec and obtain Future</b></td>
95 * <td> {@link #submit(ForkJoinTask)}</td>
96 * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
97 * </tr>
98 * </table>
99 *
100 * <p>The common pool is by default constructed with default
101 * parameters, but these may be controlled by setting three
102 * {@linkplain System#getProperty system properties}:
103 * <ul>
104 * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
105 * - the parallelism level, a non-negative integer
106 * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
107 * - the class name of a {@link ForkJoinWorkerThreadFactory}
108 * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
109 * - the class name of a {@link UncaughtExceptionHandler}
110 * <li>{@code java.util.concurrent.ForkJoinPool.common.maximumSpares}
111 * - the maximum number of allowed extra threads to maintain target
112 * parallelism (default 256).
113 * </ul>
114 * If a {@link SecurityManager} is present and no factory is
115 * specified, then the default pool uses a factory supplying
116 * threads that have no {@link Permissions} enabled.
117 * The system class loader is used to load these classes.
118 * Upon any error in establishing these settings, default parameters
119 * are used. It is possible to disable or limit the use of threads in
120 * the common pool by setting the parallelism property to zero, and/or
121 * using a factory that may return {@code null}. However doing so may
122 * cause unjoined tasks to never be executed.
123 *
124 * <p><b>Implementation notes</b>: This implementation restricts the
125 * maximum number of running threads to 32767. Attempts to create
126 * pools with greater than the maximum number result in
127 * {@code IllegalArgumentException}.
128 *
129 * <p>This implementation rejects submitted tasks (that is, by throwing
130 * {@link RejectedExecutionException}) only when the pool is shut down
131 * or internal resources have been exhausted.
132 *
133 * @since 1.7
134 * @author Doug Lea
135 */
136 @sun.misc.Contended
137 public class ForkJoinPool extends AbstractExecutorService {
138
139 /*
140 * Implementation Overview
141 *
142 * This class and its nested classes provide the main
143 * functionality and control for a set of worker threads:
144 * Submissions from non-FJ threads enter into submission queues.
145 * Workers take these tasks and typically split them into subtasks
146 * that may be stolen by other workers. Preference rules give
147 * first priority to processing tasks from their own queues (LIFO
148 * or FIFO, depending on mode), then to randomized FIFO steals of
149 * tasks in other queues. This framework began as vehicle for
150 * supporting tree-structured parallelism using work-stealing.
151 * Over time, its scalability advantages led to extensions and
152 * changes to better support more diverse usage contexts. Because
153 * most internal methods and nested classes are interrelated,
154 * their main rationale and descriptions are presented here;
155 * individual methods and nested classes contain only brief
156 * comments about details.
157 *
158 * WorkQueues
159 * ==========
160 *
161 * Most operations occur within work-stealing queues (in nested
162 * class WorkQueue). These are special forms of Deques that
163 * support only three of the four possible end-operations -- push,
164 * pop, and poll (aka steal), under the further constraints that
165 * push and pop are called only from the owning thread (or, as
166 * extended here, under a lock), while poll may be called from
167 * other threads. (If you are unfamiliar with them, you probably
168 * want to read Herlihy and Shavit's book "The Art of
169 * Multiprocessor programming", chapter 16 describing these in
170 * more detail before proceeding.) The main work-stealing queue
171 * design is roughly similar to those in the papers "Dynamic
172 * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
173 * (http://research.sun.com/scalable/pubs/index.html) and
174 * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
175 * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
176 * The main differences ultimately stem from GC requirements that
177 * we null out taken slots as soon as we can, to maintain as small
178 * a footprint as possible even in programs generating huge
179 * numbers of tasks. To accomplish this, we shift the CAS
180 * arbitrating pop vs poll (steal) from being on the indices
181 * ("base" and "top") to the slots themselves.
182 *
183 * Adding tasks then takes the form of a classic array push(task)
184 * in a circular buffer:
185 * q.array[q.top++ % length] = task;
186 *
187 * (The actual code needs to null-check and size-check the array,
188 * uses masking, not mod, for indexing a power-of-two-sized array,
189 * properly fences accesses, and possibly signals waiting workers
190 * to start scanning -- see below.) Both a successful pop and
191 * poll mainly entail a CAS of a slot from non-null to null.
192 *
193 * The pop operation (always performed by owner) is:
194 * if ((the task at top slot is not null) and
195 * (CAS slot to null))
196 * decrement top and return task;
197 *
198 * And the poll operation (usually by a stealer) is
199 * if ((the task at base slot is not null) and
200 * (CAS slot to null))
201 * increment base and return task;
202 *
203 * There are several variants of each of these; for example most
204 * versions of poll pre-screen the CAS by rechecking that the base
205 * has not changed since reading the slot, and most methods only
206 * attempt the CAS if base appears not to be equal to top.
207 *
208 * Memory ordering. See "Correct and Efficient Work-Stealing for
209 * Weak Memory Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
210 * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
211 * analysis of memory ordering requirements in work-stealing
212 * algorithms similar to (but different than) the one used here.
213 * Extracting tasks in array slots via (fully fenced) CAS provides
214 * primary synchronization. The base and top indices imprecisely
215 * guide where to extract from. We do not always require strict
216 * orderings of array and index updates, so sometimes let them be
217 * subject to compiler and processor reorderings. However, the
218 * volatile "base" index also serves as a basis for memory
219 * ordering: Slot accesses are preceded by a read of base,
220 * ensuring happens-before ordering with respect to stealers (so
221 * the slots themselves can be read via plain array reads.) The
222 * only other memory orderings relied on are maintained in the
223 * course of signalling and activation (see below). A check that
224 * base == top indicates (momentary) emptiness, but otherwise may
225 * err on the side of possibly making the queue appear nonempty
226 * when a push, pop, or poll have not fully committed, or making
227 * it appear empty when an update of top has not yet been visibly
228 * written. (Method isEmpty() checks the case of a partially
229 * completed removal of the last element.) Because of this, the
230 * poll operation, considered individually, is not wait-free. One
231 * thief cannot successfully continue until another in-progress
232 * one (or, if previously empty, a push) visibly completes.
233 * However, in the aggregate, we ensure at least probabilistic
234 * non-blockingness. If an attempted steal fails, a scanning
235 * thief chooses a different random victim target to try next. So,
236 * in order for one thief to progress, it suffices for any
237 * in-progress poll or new push on any empty queue to
238 * complete. (This is why we normally use method pollAt and its
239 * variants that try once at the apparent base index, else
240 * consider alternative actions, rather than method poll, which
241 * retries.)
242 *
243 * This approach also enables support of a user mode in which
244 * local task processing is in FIFO, not LIFO order, simply by
245 * using poll rather than pop. This can be useful in
246 * message-passing frameworks in which tasks are never joined.
247 *
248 * WorkQueues are also used in a similar way for tasks submitted
249 * to the pool. We cannot mix these tasks in the same queues used
250 * by workers. Instead, we randomly associate submission queues
251 * with submitting threads, using a form of hashing. The
252 * ThreadLocalRandom probe value serves as a hash code for
253 * choosing existing queues, and may be randomly repositioned upon
254 * contention with other submitters. In essence, submitters act
255 * like workers except that they are restricted to executing local
256 * tasks that they submitted (or in the case of CountedCompleters,
257 * others with the same root task). Insertion of tasks in shared
258 * mode requires a lock but we use only a simple spinlock (using
259 * field qlock), because submitters encountering a busy queue move
260 * on to try or create other queues -- they block only when
261 * creating and registering new queues. Because it is used only as
262 * a spinlock, unlocking requires only a "releasing" store (using
263 * putOrderedInt). The qlock is also used during termination
264 * detection, in which case it is forced to a negative
265 * nonlockable value.
266 *
267 * Management
268 * ==========
269 *
270 * The main throughput advantages of work-stealing stem from
271 * decentralized control -- workers mostly take tasks from
272 * themselves or each other, at rates that can exceed a billion
273 * per second. The pool itself creates, activates (enables
274 * scanning for and running tasks), deactivates, blocks, and
275 * terminates threads, all with minimal central information.
276 * There are only a few properties that we can globally track or
277 * maintain, so we pack them into a small number of variables,
278 * often maintaining atomicity without blocking or locking.
279 * Nearly all essentially atomic control state is held in two
280 * volatile variables that are by far most often read (not
281 * written) as status and consistency checks. (Also, field
282 * "config" holds unchanging configuration state.)
283 *
284 * Field "ctl" contains 64 bits holding information needed to
285 * atomically decide to add, inactivate, enqueue (on an event
286 * queue), dequeue, and/or re-activate workers. To enable this
287 * packing, we restrict maximum parallelism to (1<<15)-1 (which is
288 * far in excess of normal operating range) to allow ids, counts,
289 * and their negations (used for thresholding) to fit into 16bit
290 * subfields.
291 *
292 * Field "runState" holds CASed state bits (STARTED, STOP, etc).
293 *
294 * Field "workQueues" holds references to WorkQueues. We need a
295 * lock to create, resize, and install workers in this array. We
296 * opportunistically use the "stealCounter" object as a monitor
297 * protecting access; although it too is lazily initialized (see
298 * tryInitialize) and only exists when runstate is STARTED. The
299 * workQueues array is otherwise concurrently readable, and
300 * accessed directly. We also ensure that reads of the array
301 * reference itself never become too stale (for example,
302 * re-reading before each scan). To simplify index-based
303 * operations, the array size is always a power of two, and all
304 * readers must tolerate null slots. Worker queues are at odd
305 * indices. Shared (submission) queues are at even indices, up to
306 * a maximum of 64 slots, to limit growth even if array needs to
307 * expand to add more workers. Grouping them together in this way
308 * simplifies and speeds up task scanning.
309 *
310 * All worker thread creation is on-demand, triggered by task
311 * submissions, replacement of terminated workers, and/or
312 * compensation for blocked workers. However, all other support
313 * code is set up to work with other policies. To ensure that we
314 * do not hold on to worker references that would prevent GC, All
315 * accesses to workQueues are via indices into the workQueues
316 * array (which is one source of some of the messy code
317 * constructions here). In essence, the workQueues array serves as
318 * a weak reference mechanism. Thus for example the stack top
319 * subfield of ctl stores indices, not references.
320 *
321 * Queuing Idle Workers. Unlike HPC work-stealing frameworks, we
322 * cannot let workers spin indefinitely scanning for tasks when
323 * none can be found immediately, and we cannot start/resume
324 * workers unless there appear to be tasks available. On the
325 * other hand, we must quickly prod them into action when new
326 * tasks are submitted or generated. In many usages, ramp-up time
327 * to activate workers is the main limiting factor in overall
328 * performance, which is compounded at program start-up by JIT
329 * compilation and allocation. So we streamline this as much as
330 * possible.
331 *
332 * The "ctl" field atomically maintains active and total worker
333 * counts as well as a queue to place waiting threads so they can
334 * be located for signalling. Active counts also play the role of
335 * quiescence indicators, so are decremented when workers believe
336 * that there are no more tasks to execute. The "queue" is
337 * actually a form of Treiber stack. A stack is ideal for
338 * activating threads in most-recently used order. This improves
339 * performance and locality, outweighing the disadvantages of
340 * being prone to contention and inability to release a worker
341 * unless it is topmost on stack. We block/unblock workers after
342 * pushing on the idle worker stack (represented by the lower
343 * 32bit subfield of ctl) when they cannot find work. The top
344 * stack state holds the value of the "scanState" field of the
345 * worker: its index and status, plus a version counter that, in
346 * addition to the count subfields (also serving as version
347 * stamps) provide protection against Treiber stack ABA effects.
348 *
349 * Creating workers. To create a worker, we pre-increment total
350 * count (serving as a reservation), and attempt to construct a
351 * ForkJoinWorkerThread via its factory. Upon construction, the
352 * new thread invokes registerWorker, where it constructs a
353 * WorkQueue and is assigned an index in the workQueues array
354 * (expanding the array if necessary). The thread is then
355 * started. Upon any exception across these steps, or null return
356 * from factory, deregisterWorker adjusts counts and records
357 * accordingly. If a null return, the pool continues running with
358 * fewer than the target number workers. If exceptional, the
359 * exception is propagated, generally to some external caller.
360 * Worker index assignment avoids the bias in scanning that would
361 * occur if entries were sequentially packed starting at the front
362 * of the workQueues array. We treat the array as a simple
363 * power-of-two hash table, expanding as needed. The seedIndex
364 * increment ensures no collisions until a resize is needed or a
365 * worker is deregistered and replaced, and thereafter keeps
366 * probability of collision low. We cannot use
367 * ThreadLocalRandom.getProbe() for similar purposes here because
368 * the thread has not started yet, but do so for creating
369 * submission queues for existing external threads (see
370 * externalPush).
371 *
372 * WorkQueue field scanState is used by both workers and the pool
373 * to manage and track whether a worker is UNSIGNALLED (possibly
374 * blocked waiting for a signal). When a worker is inactivated,
375 * its scanState field is set, and is prevented from executing
376 * tasks, even though it must scan once for them to avoid queuing
377 * races. Note that scanState updates lag queue CAS releases so
378 * usage requires care. When queued, the lower 16 bits of
379 * scanState must hold its pool index. So we place the index there
380 * upon initialization (see registerWorker) and otherwise keep it
381 * there or restore it when necessary.
382 *
383 * The ctl field also serves as the basis for memory
384 * synchronization surrounding activation. This uses a more
385 * efficient version of a Dekker-like rule that task producers and
386 * consumers sync with each other by both writing/CASing ctl (even
387 * if to its current value). This would be extremely costly. So
388 * we relax it in several ways: (1) Producers only signal when
389 * their queue is empty. Other workers propagate this signal (in
390 * method scan) when they find tasks. (2) Workers only enqueue
391 * after scanning (see below) and not finding any tasks. (3)
392 * Rather than CASing ctl to its current value in the common case
393 * where no action is required, we reduce write contention by
394 * equivalently prefacing signalWork when called by an external
395 * task producer using a memory access with full-volatile
396 * semantics (alternatively, a "fullFence" could be used). (4) For
397 * internal task producers we rely on the fact that even if no
398 * other workers awaken, the producer itself will eventually see
399 * the task and execute it.
400 *
401 * Almost always, too many signals are issued. A task producer
402 * cannot in general tell if some existing worker is in the midst
403 * of finishing one task (or already scanning) and ready to take
404 * another without being signalled. So the producer might instead
405 * activate a different worker that does not find any work, and
406 * then inactivates. This scarcely matters in steady-state
407 * computations involving all workers, but can create contention
408 * and bookkeeping bottlenecks during ramp-up, ramp-down, and small
409 * computations involving only a few workers.
410 *
411 * Scanning. Method scan() performs top-level scanning for tasks.
412 * Each scan traverses (and tries to poll from) each queue in
413 * pseudorandom permutation order by randomly selecting an origin
414 * index and a step value. (The pseudorandom generator need not
415 * have high-quality statistical properties in the long term, but
416 * just within computations; We use 64bit and 32bit Marsaglia
417 * XorShifts, which are cheap and suffice here.) Scanning also
418 * employs contention reduction: When scanning workers fail a CAS
419 * polling for work, they soon restart with a different
420 * pseudorandom scan order (thus likely retrying at different
421 * intervals). This improves throughput when many threads are
422 * trying to take tasks from few queues. Scans do not otherwise
423 * explicitly take into account core affinities, loads, cache
424 * localities, etc, However, they do exploit temporal locality
425 * (which usually approximates these) by preferring to re-poll (up
426 * to POLL_LIMIT times) from the same queue after a successful
427 * poll before trying others. Restricted forms of scanning occur
428 * in methods helpComplete and findNonEmptyStealQueue, and take
429 * similar but simpler forms.
430 *
431 * Deactivation and waiting. Queuing encounters several intrinsic
432 * races; most notably that a inactivating scanning worker can
433 * miss seeing a task produced during a scan. So when a worker
434 * cannot find a task to steal, it inactivates and enqueues, and
435 * then rescans to ensure that it didn't miss one, reactivating
436 * upon seeing one with probability approximately proportional to
437 * probability of a miss. (In most cases, the worker will be
438 * signalled before self-signalling, avoiding cascades of multiple
439 * signals for the same task).
440 *
441 * Workers block (in method awaitWork) using park/unpark;
442 * advertising the need for signallers to unpark by setting their
443 * "parker" fields.
444 *
445 * Trimming workers. To release resources after periods of lack of
446 * use, a worker starting to wait when the pool is quiescent will
447 * time out and terminate (see awaitWork) if the pool has remained
448 * quiescent for period IDLE_TIMEOUT, increasing the period as the
449 * number of threads decreases, eventually removing all workers.
450 *
451 * Shutdown and Termination. A call to shutdownNow invokes
452 * tryTerminate to atomically set a runState bit. The calling
453 * thread, as well as every other worker thereafter terminating,
454 * helps terminate others by setting their (qlock) status,
455 * cancelling their unprocessed tasks, and waking them up, doing
456 * so repeatedly until stable (but with a loop bounded by the
457 * number of workers). Calls to non-abrupt shutdown() preface
458 * this by checking whether termination should commence. This
459 * relies primarily on the active count bits of "ctl" maintaining
460 * consensus -- tryTerminate is called from awaitWork whenever
461 * quiescent. However, external submitters do not take part in
462 * this consensus. So, tryTerminate sweeps through queues (until
463 * stable) to ensure lack of in-flight submissions and workers
464 * about to process them before triggering the "STOP" phase of
465 * termination. (Note: there is an intrinsic conflict if
466 * helpQuiescePool is called when shutdown is enabled. Both wait
467 * for quiescence, but tryTerminate is biased to not trigger until
468 * helpQuiescePool completes.)
469 *
470 * Joining Tasks
471 * =============
472 *
473 * Any of several actions may be taken when one worker is waiting
474 * to join a task stolen (or always held) by another. Because we
475 * are multiplexing many tasks on to a pool of workers, we can't
476 * just let them block (as in Thread.join). We also cannot just
477 * reassign the joiner's run-time stack with another and replace
478 * it later, which would be a form of "continuation", that even if
479 * possible is not necessarily a good idea since we may need both
480 * an unblocked task and its continuation to progress. Instead we
481 * combine two tactics:
482 *
483 * Helping: Arranging for the joiner to execute some task that it
484 * would be running if the steal had not occurred.
485 *
486 * Compensating: Unless there are already enough live threads,
487 * method tryCompensate() may create or re-activate a spare
488 * thread to compensate for blocked joiners until they unblock.
489 *
490 * A third form (implemented in tryRemoveAndExec) amounts to
491 * helping a hypothetical compensator: If we can readily tell that
492 * a possible action of a compensator is to steal and execute the
493 * task being joined, the joining thread can do so directly,
494 * without the need for a compensation thread (although at the
495 * expense of larger run-time stacks, but the tradeoff is
496 * typically worthwhile).
497 *
498 * The ManagedBlocker extension API can't use helping so relies
499 * only on compensation in method awaitBlocker.
500 *
501 * The algorithm in helpStealer entails a form of "linear
502 * helping". Each worker records (in field currentSteal) the most
503 * recent task it stole from some other worker (or a submission).
504 * It also records (in field currentJoin) the task it is currently
505 * actively joining. Method helpStealer uses these markers to try
506 * to find a worker to help (i.e., steal back a task from and
507 * execute it) that could hasten completion of the actively joined
508 * task. Thus, the joiner executes a task that would be on its
509 * own local deque had the to-be-joined task not been stolen. This
510 * is a conservative variant of the approach described in Wagner &
511 * Calder "Leapfrogging: a portable technique for implementing
512 * efficient futures" SIGPLAN Notices, 1993
513 * (http://portal.acm.org/citation.cfm?id=155354). It differs in
514 * that: (1) We only maintain dependency links across workers upon
515 * steals, rather than use per-task bookkeeping. This sometimes
516 * requires a linear scan of workQueues array to locate stealers,
517 * but often doesn't because stealers leave hints (that may become
518 * stale/wrong) of where to locate them. It is only a hint
519 * because a worker might have had multiple steals and the hint
520 * records only one of them (usually the most current). Hinting
521 * isolates cost to when it is needed, rather than adding to
522 * per-task overhead. (2) It is "shallow", ignoring nesting and
523 * potentially cyclic mutual steals. (3) It is intentionally
524 * racy: field currentJoin is updated only while actively joining,
525 * which means that we miss links in the chain during long-lived
526 * tasks, GC stalls etc (which is OK since blocking in such cases
527 * is usually a good idea). (4) We bound the number of attempts
528 * to find work using checksums and fall back to suspending the
529 * worker and if necessary replacing it with another.
530 *
531 * Helping actions for CountedCompleters do not require tracking
532 * currentJoins: Method helpComplete takes and executes any task
533 * with the same root as the task being waited on (preferring
534 * local pops to non-local polls). However, this still entails
535 * some traversal of completer chains, so is less efficient than
536 * using CountedCompleters without explicit joins.
537 *
538 * Compensation does not aim to keep exactly the target
539 * parallelism number of unblocked threads running at any given
540 * time. Some previous versions of this class employed immediate
541 * compensations for any blocked join. However, in practice, the
542 * vast majority of blockages are transient byproducts of GC and
543 * other JVM or OS activities that are made worse by replacement.
544 * Currently, compensation is attempted only after validating that
545 * all purportedly active threads are processing tasks by checking
546 * field WorkQueue.scanState, which eliminates most false
547 * positives. Also, compensation is bypassed (tolerating fewer
548 * threads) in the most common case in which it is rarely
549 * beneficial: when a worker with an empty queue (thus no
550 * continuation tasks) blocks on a join and there still remain
551 * enough threads to ensure liveness.
552 *
553 * Spare threads are removed as soon as they notice that the
554 * target parallelism level has been exceeded, in method
555 * tryDropSpare. (Method scan arranges returns for rechecks upon
556 * each probe via the "bound" parameter.)
557 *
558 * The compensation mechanism may be bounded. Bounds for the
559 * commonPool (see commonMaxSpares) better enable JVMs to cope
560 * with programming errors and abuse before running out of
561 * resources to do so. In other cases, users may supply factories
562 * that limit thread construction. The effects of bounding in this
563 * pool (like all others) is imprecise. Total worker counts are
564 * decremented when threads deregister, not when they exit and
565 * resources are reclaimed by the JVM and OS. So the number of
566 * simultaneously live threads may transiently exceed bounds.
567 *
568 * Common Pool
569 * ===========
570 *
571 * The static common pool always exists after static
572 * initialization. Since it (or any other created pool) need
573 * never be used, we minimize initial construction overhead and
574 * footprint to the setup of about a dozen fields, with no nested
575 * allocation. Most bootstrapping occurs within method
576 * externalSubmit during the first submission to the pool.
577 *
578 * When external threads submit to the common pool, they can
579 * perform subtask processing (see externalHelpComplete and
580 * related methods) upon joins. This caller-helps policy makes it
581 * sensible to set common pool parallelism level to one (or more)
582 * less than the total number of available cores, or even zero for
583 * pure caller-runs. We do not need to record whether external
584 * submissions are to the common pool -- if not, external help
585 * methods return quickly. These submitters would otherwise be
586 * blocked waiting for completion, so the extra effort (with
587 * liberally sprinkled task status checks) in inapplicable cases
588 * amounts to an odd form of limited spin-wait before blocking in
589 * ForkJoinTask.join.
590 *
591 * As a more appropriate default in managed environments, unless
592 * overridden by system properties, we use workers of subclass
593 * InnocuousForkJoinWorkerThread when there is a SecurityManager
594 * present. These workers have no permissions set, do not belong
595 * to any user-defined ThreadGroup, and erase all ThreadLocals
596 * after executing any top-level task (see WorkQueue.runTask).
597 * The associated mechanics (mainly in ForkJoinWorkerThread) may
598 * be JVM-dependent and must access particular Thread class fields
599 * to achieve this effect.
600 *
601 * Style notes
602 * ===========
603 *
604 * Memory ordering relies mainly on Unsafe intrinsics that carry
605 * the further responsibility of explicitly performing null- and
606 * bounds- checks otherwise carried out implicitly by JVMs. This
607 * can be awkward and ugly, but also reflects the need to control
608 * outcomes across the unusual cases that arise in very racy code
609 * with very few invariants. So these explicit checks would exist
610 * in some form anyway. All fields are read into locals before
611 * use, and null-checked if they are references. This is usually
612 * done in a "C"-like style of listing declarations at the heads
613 * of methods or blocks, and using inline assignments on first
614 * encounter. Array bounds-checks are usually performed by
615 * masking with array.length-1, which relies on the invariant that
616 * these arrays are created with positive lengths, which is itself
617 * paranoically checked. Nearly all explicit checks lead to
618 * bypass/return, not exception throws, because they may
619 * legitimately arise due to cancellation/revocation during
620 * shutdown.
621 *
622 * There is a lot of representation-level coupling among classes
623 * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
624 * fields of WorkQueue maintain data structures managed by
625 * ForkJoinPool, so are directly accessed. There is little point
626 * trying to reduce this, since any associated future changes in
627 * representations will need to be accompanied by algorithmic
628 * changes anyway. Several methods intrinsically sprawl because
629 * they must accumulate sets of consistent reads of fields held in
630 * local variables. There are also other coding oddities
631 * (including several unnecessary-looking hoisted null checks)
632 * that help some methods perform reasonably even when interpreted
633 * (not compiled).
634 *
635 * The order of declarations in this file is (with a few exceptions):
636 * (1) Static utility functions
637 * (2) Nested (static) classes
638 * (3) Static fields
639 * (4) Fields, along with constants used when unpacking some of them
640 * (5) Internal control methods
641 * (6) Callbacks and other support for ForkJoinTask methods
642 * (7) Exported methods
643 * (8) Static block initializing statics in minimally dependent order
644 */
645
646 // Static utilities
647
648 /**
649 * If there is a security manager, makes sure caller has
650 * permission to modify threads.
651 */
652 private static void checkPermission() {
653 SecurityManager security = System.getSecurityManager();
654 if (security != null)
655 security.checkPermission(modifyThreadPermission);
656 }
657
658 // Nested classes
659
660 /**
661 * Factory for creating new {@link ForkJoinWorkerThread}s.
662 * A {@code ForkJoinWorkerThreadFactory} must be defined and used
663 * for {@code ForkJoinWorkerThread} subclasses that extend base
664 * functionality or initialize threads with different contexts.
665 */
666 public static interface ForkJoinWorkerThreadFactory {
667 /**
668 * Returns a new worker thread operating in the given pool.
669 *
670 * @param pool the pool this thread works in
671 * @return the new worker thread
672 * @throws NullPointerException if the pool is null
673 */
674 public ForkJoinWorkerThread newThread(ForkJoinPool pool);
675 }
676
677 /**
678 * Default ForkJoinWorkerThreadFactory implementation; creates a
679 * new ForkJoinWorkerThread.
680 */
681 static final class DefaultForkJoinWorkerThreadFactory
682 implements ForkJoinWorkerThreadFactory {
683 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
684 return new ForkJoinWorkerThread(pool);
685 }
686 }
687
688 /**
689 * Class for artificial tasks that are used to replace the target
690 * of local joins if they are removed from an interior queue slot
691 * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
692 * actually do anything beyond having a unique identity.
693 */
694 static final class EmptyTask extends ForkJoinTask<Void> {
695 private static final long serialVersionUID = -7721805057305804111L;
696 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
697 public final Void getRawResult() { return null; }
698 public final void setRawResult(Void x) {}
699 public final boolean exec() { return true; }
700 }
701
702 // Constants shared across ForkJoinPool and WorkQueue
703
704 // Bounds
705 static final int SMASK = 0xffff; // short bits == max index
706 static final int MAX_CAP = 0x7fff; // max #workers - 1
707 static final int EVENMASK = 0xfffe; // even short bits
708 static final int SQMASK = 0x007e; // max 64 (even) slots
709
710 // Masks and units for WorkQueue.scanState and ctl sp subfield
711 static final int UNSIGNALLED = 1 << 31; // must be negative
712 static final int SS_SEQ = 1 << 16; // version count
713
714 // Mode bits for ForkJoinPool.config and WorkQueue.config
715 static final int MODE_MASK = 0xffff << 16; // top half of int
716 static final int SPARE_WORKER = 1 << 17; // set if tc > 0 on creation
717 static final int UNREGISTERED = 1 << 18; // to skip some of deregister
718 static final int FIFO_QUEUE = 1 << 31; // must be negative
719 static final int LIFO_QUEUE = 0; // for clarity
720 static final int IS_OWNED = 1; // low bit 0 if shared
721
722 /**
723 * The maximum number of task executions from the same queue
724 * before checking other queues, bounding unfairness and impact of
725 * infinite user task recursion. Must be a power of two minus 1.
726 */
727 static final int POLL_LIMIT = (1 << 10) - 1;
728
729 /**
730 * Queues supporting work-stealing as well as external task
731 * submission. See above for descriptions and algorithms.
732 * Performance on most platforms is very sensitive to placement of
733 * instances of both WorkQueues and their arrays -- we absolutely
734 * do not want multiple WorkQueue instances or multiple queue
735 * arrays sharing cache lines. The @Contended annotation alerts
736 * JVMs to try to keep instances apart.
737 */
738 @sun.misc.Contended
739 static final class WorkQueue {
740
741 /**
742 * Capacity of work-stealing queue array upon initialization.
743 * Must be a power of two; at least 4, but should be larger to
744 * reduce or eliminate cacheline sharing among queues.
745 * Currently, it is much larger, as a partial workaround for
746 * the fact that JVMs often place arrays in locations that
747 * share GC bookkeeping (especially cardmarks) such that
748 * per-write accesses encounter serious memory contention.
749 */
750 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
751
752 /**
753 * Maximum size for queue arrays. Must be a power of two less
754 * than or equal to 1 << (31 - width of array entry) to ensure
755 * lack of wraparound of index calculations, but defined to a
756 * value a bit less than this to help users trap runaway
757 * programs before saturating systems.
758 */
759 static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
760
761 // Instance fields
762
763 volatile int scanState; // versioned, negative if inactive
764 int stackPred; // pool stack (ctl) predecessor
765 int nsteals; // number of steals
766 int hint; // randomization and stealer index hint
767 int config; // pool index and mode
768 volatile int qlock; // 1: locked, < 0: terminate; else 0
769 volatile int base; // index of next slot for poll
770 int top; // index of next slot for push
771 ForkJoinTask<?>[] array; // the elements (initially unallocated)
772 final ForkJoinPool pool; // the containing pool (may be null)
773 final ForkJoinWorkerThread owner; // owning thread or null if shared
774 volatile Thread parker; // == owner during call to park; else null
775 volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
776 @sun.misc.Contended("group2") // separate from other fields
777 volatile ForkJoinTask<?> currentSteal; // nonnull when running some task
778
779 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner) {
780 this.pool = pool;
781 this.owner = owner;
782 // Place indices in the center of array (that is not yet allocated)
783 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
784 }
785
786 /**
787 * Returns an exportable index (used by ForkJoinWorkerThread).
788 */
789 final int getPoolIndex() {
790 return (config & 0xffff) >>> 1; // ignore odd/even tag bit
791 }
792
793 /**
794 * Returns the approximate number of tasks in the queue.
795 */
796 final int queueSize() {
797 int n = base - top; // read base first
798 return (n >= 0) ? 0 : -n; // ignore transient negative
799 }
800
801 /**
802 * Provides a more accurate estimate of whether this queue has
803 * any tasks than does queueSize, by checking whether a
804 * near-empty queue has at least one unclaimed task.
805 */
806 final boolean isEmpty() {
807 ForkJoinTask<?>[] a; int n, al, s;
808 return ((n = base - (s = top)) >= 0 || // possibly one task
809 (n == -1 && ((a = array) == null ||
810 (al = a.length) == 0 ||
811 a[(al - 1) & (s - 1)] == null)));
812 }
813
814 /**
815 * Pushes a task. Call only by owner in unshared queues. (The
816 * shared-queue version is embedded in method externalPush.)
817 *
818 * @param task the task. Caller must ensure non-null.
819 * @throws RejectedExecutionException if array cannot be resized
820 */
821 final void push(ForkJoinTask<?> task) {
822 int b = base, s = top, al, d; ForkJoinTask<?>[] a;
823 if ((a = array) != null && (al = a.length) > 0) {
824 a[(al - 1) & s] = task; // relaxed writes OK
825 top = s + 1;
826 ForkJoinPool p = pool;
827 U.storeFence(); // ensure fields written before use
828 if ((d = b - s) == 0 && p != null)
829 p.signalWork();
830 else if (al + d == 1)
831 growArray();
832 }
833 }
834
835 /**
836 * Initializes or doubles the capacity of array. Call either
837 * by owner or with lock held -- it is OK for base, but not
838 * top, to move while resizings are in progress.
839 */
840 final ForkJoinTask<?>[] growArray() {
841 ForkJoinTask<?>[] oldA = array;
842 int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
843 if (size < INITIAL_QUEUE_CAPACITY || size > MAXIMUM_QUEUE_CAPACITY)
844 throw new RejectedExecutionException("Queue capacity exceeded");
845 int oldMask, t, b;
846 ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
847 if (oldA != null && (oldMask = oldA.length - 1) > 0 &&
848 (t = top) - (b = base) > 0) {
849 int mask = size - 1;
850 do { // emulate poll from old array, push to new array
851 long offset = ((b & oldMask) << ASHIFT) + ABASE;
852 ForkJoinTask<?> x = (ForkJoinTask<?>)
853 U.getObjectVolatile(oldA, offset);
854 if (x != null &&
855 U.compareAndSwapObject(oldA, offset, x, null))
856 a[b & mask] = x;
857 } while (++b != t);
858 U.storeFence();
859 }
860 return a;
861 }
862
863 /**
864 * Takes next task, if one exists, in LIFO order. Call only
865 * by owner in unshared queues.
866 */
867 final ForkJoinTask<?> pop() {
868 int b = base, s = top, al, i; ForkJoinTask<?>[] a;
869 if ((a = array) != null && s != b && (al = a.length) > 0) {
870 long offset = (((al - 1) & (s - 1)) << ASHIFT) + ABASE;
871 ForkJoinTask<?> t = (ForkJoinTask<?>)U.getObject(a, offset);
872 if (t != null && U.compareAndSwapObject(a, offset, t, null)) {
873 top = s - 1;
874 U.storeFence();
875 return t;
876 }
877 }
878 return null;
879 }
880
881 /**
882 * Takes a task in FIFO order if b is base of queue and a task
883 * can be claimed without contention. Specialized versions
884 * appear in ForkJoinPool methods scan and helpStealer.
885 */
886 final ForkJoinTask<?> pollAt(int b) {
887 ForkJoinTask<?>[] a; int al;
888 if ((a = array) != null && (al = a.length) > 0) {
889 long offset = (((al - 1) & b) << ASHIFT) + ABASE;
890 ForkJoinTask<?> t = (ForkJoinTask<?>)
891 U.getObjectVolatile(a, offset);
892 if (t != null && b++ == base &&
893 U.compareAndSwapObject(a, offset, t, null)) {
894 base = b;
895 return t;
896 }
897 }
898 return null;
899 }
900
901 /**
902 * Takes next task, if one exists, in FIFO order.
903 */
904 final ForkJoinTask<?> poll() {
905 for (;;) {
906 int b = base, s = top, d, al; ForkJoinTask<?>[] a;
907 if ((a = array) != null && (d = b - s) < 0 &&
908 (al = a.length) > 0) {
909 long offset = (((al - 1) & b) << ASHIFT) + ABASE;
910 ForkJoinTask<?> t = (ForkJoinTask<?>)
911 U.getObjectVolatile(a, offset);
912 if (b++ == base) {
913 if (t != null) {
914 if (U.compareAndSwapObject(a, offset, t, null)) {
915 base = b;
916 return t;
917 }
918 }
919 else if (d == -1)
920 break; // now empty
921 }
922 }
923 else
924 break;
925 }
926 return null;
927 }
928
929 /**
930 * Takes next task, if one exists, in order specified by mode.
931 */
932 final ForkJoinTask<?> nextLocalTask() {
933 return (config < 0) ? poll() : pop();
934 }
935
936 /**
937 * Returns next task, if one exists, in order specified by mode.
938 */
939 final ForkJoinTask<?> peek() {
940 int b = base, al; ForkJoinTask<?>[] a;
941 return ((a = array) != null && (al = a.length) > 0) ?
942 a[(al - 1) & (config < 0 ? b : top - 1)] : null;
943 }
944
945 /**
946 * Pops the given task only if it is at the current top.
947 */
948 final boolean tryUnpush(ForkJoinTask<?> task) {
949 int s = top - 1, al; ForkJoinTask<?>[] a;
950 if ((a = array) != null && (al = a.length) > 0) {
951 long offset = (((al - 1) & s) << ASHIFT) + ABASE;
952 if (U.getObject(a, offset) == task &&
953 U.compareAndSwapObject(a, offset, task, null)) {
954 top = s;
955 U.storeFence();
956 return true;
957 }
958 }
959 return false;
960 }
961
962 /**
963 * Shared version of pop
964 */
965 final boolean trySharedUnpush(ForkJoinTask<?> task) {
966 ForkJoinTask<?> t;
967 boolean popped = false;
968 int s = top - 1, al; ForkJoinTask<?>[] a;
969 if ((a = array) != null && (al = a.length) > 0) {
970 long offset = (((al - 1) & s) << ASHIFT) + ABASE;
971 if (U.getObject(a, offset) == task &&
972 U.compareAndSwapInt(this, QLOCK, 0, 1)) {
973 if (U.compareAndSwapObject(a, offset, task, null)) {
974 popped = true;
975 top = s;
976 }
977 U.putOrderedInt(this, QLOCK, 0);
978 }
979 }
980 return popped;
981 }
982
983 /**
984 * Removes and cancels all known tasks, ignoring any exceptions.
985 */
986 final void cancelAll() {
987 ForkJoinTask<?> t;
988 if ((t = currentJoin) != null) {
989 currentJoin = null;
990 ForkJoinTask.cancelIgnoringExceptions(t);
991 }
992 if ((t = currentSteal) != null) {
993 currentSteal = null;
994 ForkJoinTask.cancelIgnoringExceptions(t);
995 }
996 while ((t = poll()) != null)
997 ForkJoinTask.cancelIgnoringExceptions(t);
998 }
999
1000 // Specialized execution methods
1001
1002 /**
1003 * Pops and executes up to POLL_LIMIT tasks or until empty.
1004 */
1005 final void localPopAndExec() {
1006 for (int nexec = 0;;) {
1007 int b = base, s = top, al; ForkJoinTask<?>[] a;
1008 if ((a = array) != null && b != s && (al = a.length) > 0) {
1009 long offset = (((al - 1) & --s) << ASHIFT) + ABASE;
1010 ForkJoinTask<?> t = (ForkJoinTask<?>)
1011 U.getAndSetObject(a, offset, null);
1012 if (t != null) {
1013 top = s;
1014 (currentSteal = t).doExec();
1015 if (++nexec > POLL_LIMIT)
1016 break;
1017 }
1018 else
1019 break;
1020 }
1021 else
1022 break;
1023 }
1024 }
1025
1026 /**
1027 * Polls and executes up to POLL_LIMIT tasks or until empty.
1028 */
1029 final void localPollAndExec() {
1030 for (int nexec = 0;;) {
1031 int b = base, s = top, al; ForkJoinTask<?>[] a;
1032 if ((a = array) != null && b != s && (al = a.length) > 0) {
1033 long offset = (((al - 1) & b++) << ASHIFT) + ABASE;
1034 ForkJoinTask<?> t = (ForkJoinTask<?>)
1035 U.getAndSetObject(a, offset, null);
1036 if (t != null) {
1037 base = b;
1038 t.doExec();
1039 if (++nexec > POLL_LIMIT)
1040 break;
1041 }
1042 }
1043 else
1044 break;
1045 }
1046 }
1047
1048 /**
1049 * Executes the given task and (some) remaining local tasks.
1050 */
1051 final void runTask(ForkJoinTask<?> task) {
1052 if (task != null) {
1053 task.doExec();
1054 if (config < 0)
1055 localPollAndExec();
1056 else
1057 localPopAndExec();
1058 int ns = ++nsteals;
1059 ForkJoinWorkerThread thread = owner;
1060 currentSteal = null;
1061 if (ns < 0) // collect on overflow
1062 transferStealCount(pool);
1063 if (thread != null)
1064 thread.afterTopLevelExec();
1065 }
1066 }
1067
1068 /**
1069 * Adds steal count to pool stealCounter if it exists, and resets.
1070 */
1071 final void transferStealCount(ForkJoinPool p) {
1072 AtomicLong sc;
1073 if (p != null && (sc = p.stealCounter) != null) {
1074 int s = nsteals;
1075 nsteals = 0; // if negative, correct for overflow
1076 sc.getAndAdd((long)(s < 0 ? Integer.MAX_VALUE : s));
1077 }
1078 }
1079
1080 /**
1081 * If present, removes from queue and executes the given task,
1082 * or any other cancelled task. Used only by awaitJoin.
1083 *
1084 * @return true if queue empty and task not known to be done
1085 */
1086 final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
1087 if (task != null && task.status >= 0) {
1088 int b, s, d, al; ForkJoinTask<?>[] a;
1089 while ((d = (b = base) - (s = top)) < 0 &&
1090 (a = array) != null && (al = a.length) > 0) {
1091 for (;;) { // traverse from s to b
1092 int i = --s & (al - 1);
1093 long offset = (i << ASHIFT) + ABASE;
1094 ForkJoinTask<?> t = (ForkJoinTask<?>)
1095 U.getObjectVolatile(a, offset);
1096 if (t == null)
1097 break; // restart
1098 else if (t == task) {
1099 boolean removed = false;
1100 if (s + 1 == top) { // pop
1101 if (U.compareAndSwapObject(a, offset, t, null)) {
1102 top = s;
1103 U.storeFence();
1104 removed = true;
1105 }
1106 }
1107 else if (base == b) // replace with proxy
1108 removed =
1109 U.compareAndSwapObject(a, offset, t,
1110 new EmptyTask());
1111 if (removed) {
1112 ForkJoinTask<?> ps = currentSteal;
1113 (currentSteal = task).doExec();
1114 currentSteal = ps;
1115 }
1116 break;
1117 }
1118 else if (t.status < 0 && s + 1 == top) {
1119 if (U.compareAndSwapObject(a, offset, t, null)) {
1120 top = s;
1121 U.storeFence();
1122 }
1123 break; // was cancelled
1124 }
1125 else if (++d == 0) {
1126 if (base != b) // rescan
1127 break;
1128 return false;
1129 }
1130 }
1131 if (task.status < 0)
1132 return false;
1133 }
1134 }
1135 return true;
1136 }
1137
1138 /**
1139 * Pops task if in the same CC computation as the given task,
1140 * in either shared or owned mode. Used only by helpComplete.
1141 */
1142 final CountedCompleter<?> popCC(CountedCompleter<?> task, int mode) {
1143 int b = base, s = top, al; ForkJoinTask<?>[] a;
1144 if ((a = array) != null && b != s && (al = a.length) > 0) {
1145 long offset = (((al - 1) & (s - 1)) << ASHIFT) + ABASE;
1146 Object o = U.getObjectVolatile(a, offset);
1147 if (o instanceof CountedCompleter) {
1148 CountedCompleter<?> t = (CountedCompleter<?>)o;
1149 for (CountedCompleter<?> r = t;;) {
1150 if (r == task) {
1151 if ((mode & IS_OWNED) == 0) {
1152 boolean popped;
1153 if (U.compareAndSwapInt(this, QLOCK, 0, 1)) {
1154 if (popped =
1155 U.compareAndSwapObject(a, offset,
1156 t, null))
1157 top = s - 1;
1158 U.putOrderedInt(this, QLOCK, 0);
1159 if (popped)
1160 return t;
1161 }
1162 }
1163 else if (U.compareAndSwapObject(a, offset,
1164 t, null)) {
1165 top = s - 1;
1166 U.storeFence();
1167 return t;
1168 }
1169 break;
1170 }
1171 else if ((r = r.completer) == null) // try parent
1172 break;
1173 }
1174 }
1175 }
1176 return null;
1177 }
1178
1179 /**
1180 * Steals and runs a task in the same CC computation as the
1181 * given task if one exists and can be taken without
1182 * contention. Otherwise returns a checksum/control value for
1183 * use by method helpComplete.
1184 *
1185 * @return 1 if successful, 2 if retryable (lost to another
1186 * stealer), -1 if non-empty but no matching task found, else
1187 * the base index, forced negative.
1188 */
1189 final int pollAndExecCC(CountedCompleter<?> task) {
1190 ForkJoinTask<?>[] a;
1191 int b = base, s = top, al, h;
1192 if ((a = array) != null && b != s && (al = a.length) > 0) {
1193 long offset = (((al - 1) & b) << ASHIFT) + ABASE;
1194 Object o = U.getObjectVolatile(a, offset);
1195 if (o == null)
1196 h = 2; // retryable
1197 else if (!(o instanceof CountedCompleter))
1198 h = -1; // unmatchable
1199 else {
1200 CountedCompleter<?> t = (CountedCompleter<?>)o;
1201 for (CountedCompleter<?> r = t;;) {
1202 if (r == task) {
1203 if (b++ == base &&
1204 U.compareAndSwapObject(a, offset, t, null)) {
1205 base = b;
1206 t.doExec();
1207 h = 1; // success
1208 }
1209 else
1210 h = 2; // lost CAS
1211 break;
1212 }
1213 else if ((r = r.completer) == null) {
1214 h = -1; // unmatched
1215 break;
1216 }
1217 }
1218 }
1219 }
1220 else
1221 h = b | Integer.MIN_VALUE; // to sense movement on re-poll
1222 return h;
1223 }
1224
1225 /**
1226 * Returns true if owned and not known to be blocked.
1227 */
1228 final boolean isApparentlyUnblocked() {
1229 Thread wt; Thread.State s;
1230 return (scanState >= 0 &&
1231 (wt = owner) != null &&
1232 (s = wt.getState()) != Thread.State.BLOCKED &&
1233 s != Thread.State.WAITING &&
1234 s != Thread.State.TIMED_WAITING);
1235 }
1236
1237 // Unsafe mechanics. Note that some are (and must be) the same as in FJP
1238 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
1239 private static final int ABASE;
1240 private static final int ASHIFT;
1241 private static final long QLOCK;
1242 static {
1243 try {
1244 QLOCK = U.objectFieldOffset
1245 (WorkQueue.class.getDeclaredField("qlock"));
1246 ABASE = U.arrayBaseOffset(ForkJoinTask[].class);
1247 int scale = U.arrayIndexScale(ForkJoinTask[].class);
1248 if ((scale & (scale - 1)) != 0)
1249 throw new Error("array index scale not a power of two");
1250 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1251 } catch (ReflectiveOperationException e) {
1252 throw new Error(e);
1253 }
1254 }
1255 }
1256
1257 // static fields (initialized in static initializer below)
1258
1259 /**
1260 * Creates a new ForkJoinWorkerThread. This factory is used unless
1261 * overridden in ForkJoinPool constructors.
1262 */
1263 public static final ForkJoinWorkerThreadFactory
1264 defaultForkJoinWorkerThreadFactory;
1265
1266 /**
1267 * Permission required for callers of methods that may start or
1268 * kill threads.
1269 */
1270 private static final RuntimePermission modifyThreadPermission;
1271
1272 /**
1273 * Common (static) pool. Non-null for public use unless a static
1274 * construction exception, but internal usages null-check on use
1275 * to paranoically avoid potential initialization circularities
1276 * as well as to simplify generated code.
1277 */
1278 static final ForkJoinPool common;
1279
1280 /**
1281 * Common pool parallelism. To allow simpler use and management
1282 * when common pool threads are disabled, we allow the underlying
1283 * common.parallelism field to be zero, but in that case still report
1284 * parallelism as 1 to reflect resulting caller-runs mechanics.
1285 */
1286 static final int commonParallelism;
1287
1288 /**
1289 * Limit on spare thread construction in tryCompensate.
1290 */
1291 private static int commonMaxSpares;
1292
1293 /**
1294 * Sequence number for creating workerNamePrefix.
1295 */
1296 private static int poolNumberSequence;
1297
1298 /**
1299 * Returns the next sequence number. We don't expect this to
1300 * ever contend, so use simple builtin sync.
1301 */
1302 private static final synchronized int nextPoolId() {
1303 return ++poolNumberSequence;
1304 }
1305
1306 // static configuration constants
1307
1308 /**
1309 * Initial timeout value (in milliseconds) for the thread
1310 * triggering quiescence to park waiting for new work. On timeout,
1311 * the thread will instead try to shrink the number of
1312 * workers. The value should be large enough to avoid overly
1313 * aggressive shrinkage during most transient stalls (long GCs
1314 * etc).
1315 */
1316 private static final long IDLE_TIMEOUT_MS = 2000L; // 2sec
1317
1318 /**
1319 * Tolerance for idle timeouts, to cope with timer undershoots
1320 */
1321 private static final long TIMEOUT_SLOP_MS = 20L; // 20ms
1322
1323 /**
1324 * The initial value for commonMaxSpares during static
1325 * initialization unless overridden using System property
1326 * "java.util.concurrent.ForkJoinPool.common.maximumSpares". The
1327 * default value is far in excess of normal requirements, but also
1328 * far short of MAX_CAP and typical OS thread limits, so allows
1329 * JVMs to catch misuse/abuse before running out of resources
1330 * needed to do so.
1331 */
1332 private static final int DEFAULT_COMMON_MAX_SPARES = 256;
1333
1334 /**
1335 * Increment for seed generators. See class ThreadLocal for
1336 * explanation.
1337 */
1338 private static final int SEED_INCREMENT = 0x9e3779b9;
1339
1340 /*
1341 * Bits and masks for field ctl, packed with 4 16 bit subfields:
1342 * AC: Number of active running workers minus target parallelism
1343 * TC: Number of total workers minus target parallelism
1344 * SS: version count and status of top waiting thread
1345 * ID: poolIndex of top of Treiber stack of waiters
1346 *
1347 * When convenient, we can extract the lower 32 stack top bits
1348 * (including version bits) as sp=(int)ctl. The offsets of counts
1349 * by the target parallelism and the positionings of fields makes
1350 * it possible to perform the most common checks via sign tests of
1351 * fields: When ac is negative, there are not enough active
1352 * workers, when tc is negative, there are not enough total
1353 * workers. When sp is non-zero, there are waiting workers. To
1354 * deal with possibly negative fields, we use casts in and out of
1355 * "short" and/or signed shifts to maintain signedness.
1356 *
1357 * Because it occupies uppermost bits, we can add one active count
1358 * using getAndAddLong of AC_UNIT, rather than CAS, when returning
1359 * from a blocked join. Other updates entail multiple subfields
1360 * and masking, requiring CAS.
1361 */
1362
1363 // Lower and upper word masks
1364 private static final long SP_MASK = 0xffffffffL;
1365 private static final long UC_MASK = ~SP_MASK;
1366
1367 // Active counts
1368 private static final int AC_SHIFT = 48;
1369 private static final long AC_UNIT = 0x0001L << AC_SHIFT;
1370 private static final long AC_MASK = 0xffffL << AC_SHIFT;
1371
1372 // Total counts
1373 private static final int TC_SHIFT = 32;
1374 private static final long TC_UNIT = 0x0001L << TC_SHIFT;
1375 private static final long TC_MASK = 0xffffL << TC_SHIFT;
1376 private static final long ADD_WORKER = 0x0001L << (TC_SHIFT + 15); // sign
1377
1378 // runState bits: SHUTDOWN must be negative, others arbitrary powers of two
1379 private static final int STARTED = 1;
1380 private static final int STOP = 1 << 1;
1381 private static final int TERMINATED = 1 << 2;
1382 private static final int SHUTDOWN = 1 << 31;
1383
1384 // Instance fields
1385 volatile long ctl; // main pool control
1386 volatile int runState;
1387 final int config; // parallelism, mode
1388 int indexSeed; // to generate worker index
1389 volatile WorkQueue[] workQueues; // main registry
1390 final ForkJoinWorkerThreadFactory factory;
1391 final UncaughtExceptionHandler ueh; // per-worker UEH
1392 final String workerNamePrefix; // to create worker name string
1393 volatile AtomicLong stealCounter; // also used as sync monitor
1394
1395 /**
1396 * Instantiates fields upon first submission, and/or throws
1397 * exception if terminating. Called only by externalPush.
1398 */
1399 private void tryInitialize() {
1400 int rs;
1401 while (((rs = runState) & STARTED) == 0) {
1402 AtomicLong sc = new AtomicLong();
1403 if (U.compareAndSwapObject(this, STEALCOUNTER, null, sc)) {
1404 // create workQueues array with size a power of two
1405 int p = config & SMASK; // ensure at least 2 slots
1406 int n = (p > 1) ? p - 1 : 1;
1407 n |= n >>> 1; n |= n >>> 2; n |= n >>> 4;
1408 n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1;
1409 workQueues = new WorkQueue[n];
1410 while (!U.compareAndSwapInt(this, RUNSTATE, rs, rs | STARTED))
1411 rs = runState;
1412 synchronized (sc) { sc.notifyAll(); }
1413 break;
1414 }
1415 else if ((sc = stealCounter) != null) { // wait for initialization
1416 synchronized (sc) {
1417 try {
1418 if ((runState & STARTED) == 0)
1419 sc.wait();
1420 } catch (InterruptedException ie) {
1421 Thread.currentThread().interrupt();
1422 }
1423 }
1424 }
1425 }
1426 if ((rs = runState) < 0) {
1427 tryTerminate(false, false); // help terminate
1428 throw new RejectedExecutionException();
1429 }
1430 }
1431
1432 // Creating, registering and deregistering workers
1433
1434 /**
1435 * Tries to construct and start one worker. Assumes that total
1436 * count has already been incremented as a reservation. Invokes
1437 * deregisterWorker on any failure.
1438 *
1439 * @param isSpare true if this is a spare thread
1440 * @return true if successful
1441 */
1442 private boolean createWorker(boolean isSpare) {
1443 ForkJoinWorkerThreadFactory fac = factory;
1444 Throwable ex = null;
1445 ForkJoinWorkerThread wt = null;
1446 WorkQueue q;
1447 try {
1448 if (fac != null && (wt = fac.newThread(this)) != null) {
1449 if (isSpare && (q = wt.workQueue) != null)
1450 q.config |= SPARE_WORKER;
1451 wt.start();
1452 return true;
1453 }
1454 } catch (Throwable rex) {
1455 ex = rex;
1456 }
1457 deregisterWorker(wt, ex);
1458 return false;
1459 }
1460
1461 /**
1462 * Tries to add one worker, incrementing ctl counts before doing
1463 * so, relying on createWorker to back out on failure.
1464 *
1465 * @param c incoming ctl value, with total count negative and no
1466 * idle workers. On CAS failure, c is refreshed and retried if
1467 * this holds (otherwise, a new worker is not needed).
1468 */
1469 private void tryAddWorker(long c) {
1470 do {
1471 long nc = ((AC_MASK & (c + AC_UNIT)) |
1472 (TC_MASK & (c + TC_UNIT)));
1473 if (ctl == c && U.compareAndSwapLong(this, CTL, c, nc)) {
1474 createWorker(false);
1475 break;
1476 }
1477 } while (((c = ctl) & ADD_WORKER) != 0L && (int)c == 0);
1478 }
1479
1480 /**
1481 * Callback from ForkJoinWorkerThread constructor to establish and
1482 * record its WorkQueue.
1483 *
1484 * @param wt the worker thread
1485 * @return the worker's queue
1486 */
1487 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1488 UncaughtExceptionHandler handler;
1489 Object lock = stealCounter;
1490 wt.setDaemon(true); // configure thread
1491 if ((handler = ueh) != null)
1492 wt.setUncaughtExceptionHandler(handler);
1493 WorkQueue w = new WorkQueue(this, wt);
1494 int i = 0; // assign a pool index
1495 int mode = config & MODE_MASK;
1496 if (lock != null) {
1497 synchronized (lock) {
1498 WorkQueue[] ws = workQueues;
1499 int s = indexSeed += SEED_INCREMENT, n, m;
1500 if (ws != null && (n = ws.length) > 0) {
1501 i = (m = n - 1) & ((s << 1) | 1); // odd-numbered indices
1502 if (ws[i] != null) { // collision
1503 int probes = 0; // step by approx half n
1504 int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1505 while (ws[i = (i + step) & m] != null) {
1506 if (++probes >= n) {
1507 workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1508 m = n - 1;
1509 probes = 0;
1510 }
1511 }
1512 }
1513 w.hint = s; // use as random seed
1514 w.config = i | mode;
1515 w.scanState = i | (s & 0x7fff0000); // random seq bits
1516 ws[i] = w;
1517 }
1518 }
1519 }
1520 wt.setName(workerNamePrefix.concat(Integer.toString(i >>> 1)));
1521 return w;
1522 }
1523
1524 /**
1525 * Final callback from terminating worker, as well as upon failure
1526 * to construct or start a worker. Removes record of worker from
1527 * array, and adjusts counts. If pool is shutting down, tries to
1528 * complete termination.
1529 *
1530 * @param wt the worker thread, or null if construction failed
1531 * @param ex the exception causing failure, or null if none
1532 */
1533 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1534 WorkQueue w = null;
1535 if (wt != null && (w = wt.workQueue) != null) {
1536 Object lock; WorkQueue[] ws; // remove index from array
1537 int idx = w.config & SMASK;
1538 if ((lock = stealCounter) != null) {
1539 synchronized (lock) {
1540 if ((ws = workQueues) != null && ws.length > idx &&
1541 ws[idx] == w)
1542 ws[idx] = null;
1543 }
1544 }
1545 }
1546 if (w == null || (w.config & UNREGISTERED) == 0) { // else pre-adjusted
1547 long c; // decrement counts
1548 do {} while (!U.compareAndSwapLong
1549 (this, CTL, c = ctl, ((AC_MASK & (c - AC_UNIT)) |
1550 (TC_MASK & (c - TC_UNIT)) |
1551 (SP_MASK & c))));
1552 }
1553 if (w != null) {
1554 w.qlock = -1; // ensure set
1555 w.transferStealCount(this);
1556 w.cancelAll(); // cancel remaining tasks
1557 }
1558 for (;;) { // possibly replace
1559 WorkQueue[] ws; int wl, sp; long c;
1560 if (tryTerminate(false, false) || w == null || w.array == null ||
1561 (runState & STOP) != 0 || (ws = workQueues) == null ||
1562 (wl = ws.length) <= 0) // already terminating
1563 break;
1564 else if ((sp = (int)(c = ctl)) != 0) { // wake up replacement
1565 if (tryRelease(c, ws[(wl - 1) & sp], AC_UNIT))
1566 break;
1567 }
1568 else if (ex != null && (c & ADD_WORKER) != 0L) {
1569 tryAddWorker(c); // create replacement
1570 break;
1571 }
1572 else // don't need replacement
1573 break;
1574 }
1575 if (ex == null) // help clean on way out
1576 ForkJoinTask.helpExpungeStaleExceptions();
1577 else // rethrow
1578 ForkJoinTask.rethrow(ex);
1579 }
1580
1581 // Signalling
1582
1583 /**
1584 * Tries to create or activate a worker if too few are active.
1585 */
1586 final void signalWork() {
1587 for (;;) {
1588 long c; int sp, i; WorkQueue v; WorkQueue[] ws;
1589 if ((c = ctl) >= 0L) // enough workers
1590 break;
1591 else if ((sp = (int)c) == 0) { // no idle workers
1592 if ((c & ADD_WORKER) != 0L) // too few workers
1593 tryAddWorker(c);
1594 break;
1595 }
1596 else if ((ws = workQueues) == null)
1597 break; // unstarted/terminated
1598 else if (ws.length <= (i = sp & SMASK))
1599 break; // terminated
1600 else if ((v = ws[i]) == null)
1601 break; // terminating
1602 else {
1603 int ns = sp & ~UNSIGNALLED;
1604 int vs = v.scanState;
1605 long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + AC_UNIT));
1606 if (sp == vs && U.compareAndSwapLong(this, CTL, c, nc)) {
1607 v.scanState = ns;
1608 LockSupport.unpark(v.parker);
1609 break;
1610 }
1611 }
1612 }
1613 }
1614
1615 /**
1616 * Signals and releases worker v if it is top of idle worker
1617 * stack. This performs a one-shot version of signalWork only if
1618 * there is (apparently) at least one idle worker.
1619 *
1620 * @param c incoming ctl value
1621 * @param v if non-null, a worker
1622 * @param inc the increment to active count (zero when compensating)
1623 * @return true if successful
1624 */
1625 private boolean tryRelease(long c, WorkQueue v, long inc) {
1626 int sp = (int)c, ns = sp & ~UNSIGNALLED;
1627 if (v != null) {
1628 int vs = v.scanState;
1629 long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + inc));
1630 if (sp == vs && U.compareAndSwapLong(this, CTL, c, nc)) {
1631 v.scanState = ns;
1632 LockSupport.unpark(v.parker);
1633 return true;
1634 }
1635 }
1636 return false;
1637 }
1638
1639 /**
1640 * With approx probability of a missed signal, tries (once) to
1641 * reactivate worker w (or some other worker), failing if stale or
1642 * known to be already active.
1643 *
1644 * @param w the worker
1645 * @param ws the workQueue array to use
1646 * @param r random seed
1647 */
1648 private void tryReactivate(WorkQueue w, WorkQueue[] ws, int r) {
1649 long c; int sp, wl, m; WorkQueue v;
1650 if ((sp = (int)(c = ctl)) != 0 && w != null &&
1651 ws != null && (wl = ws.length) > 0 &&
1652 ((m = wl - 1) & ((sp ^ r) >>> 16)) <= 1 &&
1653 (v = ws[m & sp]) != null) {
1654 long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + AC_UNIT));
1655 int ns = sp & ~UNSIGNALLED;
1656 if ((w == v || w.scanState < 0) &&
1657 v.scanState == sp &&
1658 U.compareAndSwapLong(this, CTL, c, nc)) {
1659 v.scanState = ns;
1660 LockSupport.unpark(v.parker);
1661 }
1662 }
1663 }
1664
1665 /**
1666 * If worker w exists and is active, enqueues and sets status to inactive.
1667 *
1668 * @param w the worker
1669 * @param ss current (non-negative) scanState
1670 */
1671 private void inactivate(WorkQueue w, int ss) {
1672 int ns = (ss + SS_SEQ) | UNSIGNALLED;
1673 long lc = ns & SP_MASK, nc, c;
1674 if (w != null) {
1675 w.scanState = ns;
1676 do {
1677 nc = lc | (UC_MASK & ((c = ctl) - AC_UNIT));
1678 w.stackPred = (int)c;
1679 } while (!U.compareAndSwapLong(this, CTL, c, nc));
1680 }
1681 }
1682
1683 /**
1684 * Possibly blocks worker w waiting for signal, or returns
1685 * negative status if the worker should terminate. May return
1686 * without status change if multiple stale unparks and/or
1687 * interrupts occur.
1688 *
1689 * @param w the calling worker
1690 * @return negative if w should terminate
1691 */
1692 private int awaitWork(WorkQueue w) {
1693 int stat = 0;
1694 if (w != null && w.scanState < 0) {
1695 long c = ctl;
1696 if ((int)(c >> AC_SHIFT) + (config & SMASK) <= 0)
1697 stat = timedAwaitWork(w, c); // possibly quiescent
1698 else if ((runState & STOP) != 0)
1699 stat = w.qlock = -1; // pool terminating
1700 else if ((stat = w.qlock) >= 0 && w.scanState < 0) {
1701 w.parker = Thread.currentThread();
1702 if (w.scanState < 0) { // recheck after write
1703 LockSupport.park(this);
1704 if ((stat = w.qlock) >= 0 && w.scanState < 0) {
1705 Thread.interrupted(); // clear status
1706 LockSupport.park(this); // retry once
1707 }
1708 }
1709 w.parker = null;
1710 }
1711 }
1712 return stat;
1713 }
1714
1715 /**
1716 * Possibly triggers shutdown and tries (once) to block worker
1717 * when pool is (or may be) quiescent. Waits up to a duration
1718 * determined by number of workers. On timeout, if ctl has not
1719 * changed, terminates the worker, which will in turn wake up
1720 * another worker to possibly repeat this process.
1721 *
1722 * @param w the calling worker
1723 * @return negative if w should terminate
1724 */
1725 private int timedAwaitWork(WorkQueue w, long c) {
1726 int stat = 0;
1727 int scale = 1 - (short)(c >>> TC_SHIFT);
1728 long deadline = (((scale <= 0) ? 1 : scale) * IDLE_TIMEOUT_MS +
1729 System.currentTimeMillis());
1730 if (w != null && w.scanState < 0) {
1731 int ss; Object lock;
1732 if (runState < 0 && tryTerminate(false, false))
1733 stat = w.qlock = -1; // help terminate
1734 else if ((stat = w.qlock) >= 0 && w.scanState < 0) {
1735 w.parker = Thread.currentThread();
1736 if (w.scanState < 0)
1737 LockSupport.parkUntil(this, deadline);
1738 w.parker = null;
1739 if ((stat = w.qlock) >= 0 && (ss = w.scanState) < 0 &&
1740 !Thread.interrupted() && (int)c == ss &&
1741 (lock = stealCounter) != null && ctl == c &&
1742 deadline - System.currentTimeMillis() <= TIMEOUT_SLOP_MS) {
1743 synchronized (lock) { // pre-deregister
1744 WorkQueue[] ws;
1745 int cfg = w.config, idx = cfg & SMASK;
1746 long nc = ((UC_MASK & (c - TC_UNIT)) |
1747 (SP_MASK & w.stackPred));
1748 if ((ws = workQueues) != null &&
1749 idx < ws.length && idx >= 0 && ws[idx] == w &&
1750 U.compareAndSwapLong(this, CTL, c, nc)) {
1751 ws[idx] = null;
1752 w.config = cfg | UNREGISTERED;
1753 stat = w.qlock = -1;
1754 }
1755 }
1756 }
1757 }
1758 }
1759 return stat;
1760 }
1761
1762 /**
1763 * If the given worker is a spare with no queued tasks, and there
1764 * are enough existing workers, drops it from ctl counts and sets
1765 * its state to terminated.
1766 *
1767 * @param w the calling worker -- must be a spare
1768 * @return true if dropped (in which case it must not process more tasks)
1769 */
1770 private boolean tryDropSpare(WorkQueue w) {
1771 if (w != null && w.isEmpty()) { // no local tasks
1772 long c; int sp, wl; WorkQueue[] ws; WorkQueue v;
1773 while ((short)((c = ctl) >> TC_SHIFT) > 0 &&
1774 ((sp = (int)c) != 0 || (int)(c >> AC_SHIFT) > 0) &&
1775 (ws = workQueues) != null && (wl = ws.length) > 0) {
1776 boolean dropped, canDrop;
1777 if (sp == 0) { // no queued workers
1778 long nc = ((AC_MASK & (c - AC_UNIT)) |
1779 (TC_MASK & (c - TC_UNIT)) | (SP_MASK & c));
1780 dropped = U.compareAndSwapLong(this, CTL, c, nc);
1781 }
1782 else if (
1783 (v = ws[(wl - 1) & sp]) == null || v.scanState != sp)
1784 dropped = false; // stale; retry
1785 else {
1786 long nc = v.stackPred & SP_MASK;
1787 if (w == v || w.scanState >= 0) {
1788 canDrop = true; // w unqueued or topmost
1789 nc |= ((AC_MASK & c) | // ensure replacement
1790 (TC_MASK & (c - TC_UNIT)));
1791 }
1792 else { // w may be queued
1793 canDrop = false; // help uncover
1794 nc |= ((AC_MASK & (c + AC_UNIT)) |
1795 (TC_MASK & c));
1796 }
1797 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1798 v.scanState = sp & ~UNSIGNALLED;
1799 LockSupport.unpark(v.parker);
1800 dropped = canDrop;
1801 }
1802 else
1803 dropped = false;
1804 }
1805 if (dropped) { // pre-deregister
1806 int cfg = w.config, idx = cfg & SMASK;
1807 if (idx >= 0 && idx < ws.length && ws[idx] == w)
1808 ws[idx] = null;
1809 w.config = cfg | UNREGISTERED;
1810 w.qlock = -1;
1811 return true;
1812 }
1813 }
1814 }
1815 return false;
1816 }
1817
1818 /**
1819 * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1820 */
1821 final void runWorker(WorkQueue w) {
1822 w.growArray(); // allocate queue
1823 int bound = (w.config & SPARE_WORKER) != 0 ? 0 : POLL_LIMIT;
1824 long seed = w.hint * 0xdaba0b6eb09322e3L; // initial random seed
1825 for (long r = (seed == 0L) ? 1L : seed;;) { // ensure nonzero
1826 if (bound == 0 && tryDropSpare(w))
1827 break;
1828 // high bits of prev seed for step; current low bits for idx
1829 int step = (int)(r >>> 48) | 1;
1830 r ^= r >>> 12; r ^= r << 25; r ^= r >>> 27; // xorshift
1831 if (scan(w, bound, step, (int)r) < 0 && awaitWork(w) < 0)
1832 break;
1833 }
1834 }
1835
1836 // Scanning for tasks
1837
1838 /**
1839 * Repeatedly scans for and tries to steal and execute (via
1840 * workQueue.runTask) a queued task. Each scan traverses queues in
1841 * pseudorandom permutation. Upon finding a non-empty queue, makes
1842 * at most the given bound attempts to re-poll (fewer if
1843 * contended) on the same queue before returning (impossible
1844 * scanState value) 0 to restart scan. Else returns after at least
1845 * 1 and at most 32 full scans.
1846 *
1847 * @param w the worker (via its WorkQueue)
1848 * @param bound repoll bound as bitmask (0 if spare)
1849 * @param step (circular) index increment per iteration (must be odd)
1850 * @param r a random seed for origin index
1851 * @return negative if should await signal
1852 */
1853 private int scan(WorkQueue w, int bound, int step, int r) {
1854 int stat = 0, wl; WorkQueue[] ws;
1855 if ((ws = workQueues) != null && w != null && (wl = ws.length) > 0) {
1856 for (int m = wl - 1,
1857 origin = m & r, idx = origin,
1858 npolls = 0,
1859 ss = w.scanState;;) { // negative if inactive
1860 WorkQueue q; ForkJoinTask<?>[] a; int b, d, al;
1861 if ((q = ws[idx]) != null && (d = (b = q.base) - q.top) < 0 &&
1862 (a = q.array) != null && (al = a.length) > 0) {
1863 long offset = (((al - 1) & b) << ASHIFT) + ABASE;
1864 ForkJoinTask<?> t = (ForkJoinTask<?>)
1865 U.getObjectVolatile(a, offset);
1866 if (t == null || b++ != q.base)
1867 break; // busy or empty
1868 else if (ss < 0) {
1869 if ((ss = w.scanState) >= 0) {
1870 tryReactivate(w, ws, r);
1871 break; // retry upon rescan
1872 }
1873 r |= (1 << 31); // ensure full scan
1874 }
1875 else if (!U.compareAndSwapObject(a, offset, t, null))
1876 break; // contended
1877 else {
1878 q.base = b;
1879 w.currentSteal = t;
1880 if (d != -1) // propagate signal
1881 signalWork();
1882 w.runTask(t);
1883 if (++npolls > bound)
1884 break;
1885 }
1886 }
1887 else if (npolls != 0) // rescan
1888 break;
1889 else if ((idx = (idx + step) & m) == origin) {
1890 if (ss < 0) { // await signal
1891 stat = ss;
1892 break;
1893 }
1894 else if (r >= 0) {
1895 inactivate(w, ss);
1896 break;
1897 }
1898 else
1899 r <<= 1; // at most 31 rescans
1900 }
1901 }
1902 }
1903 return stat;
1904 }
1905
1906 // Joining tasks
1907
1908 /**
1909 * Tries to steal and run tasks within the target's computation.
1910 * Uses a variant of the top-level algorithm, restricted to tasks
1911 * with the given task as ancestor: It prefers taking and running
1912 * eligible tasks popped from the worker's own queue (via
1913 * popCC). Otherwise it scans others, randomly moving on
1914 * contention or execution, deciding to give up based on a
1915 * checksum (via return codes from pollAndExecCC). The maxTasks
1916 * argument supports external usages; internal calls use zero,
1917 * allowing unbounded steps (external calls trap non-positive
1918 * values).
1919 *
1920 * @param w caller
1921 * @param maxTasks if non-zero, the maximum number of other tasks to run
1922 * @return task status on exit
1923 */
1924 final int helpComplete(WorkQueue w, CountedCompleter<?> task,
1925 int maxTasks) {
1926 WorkQueue[] ws; int s = 0, wl;
1927 if ((ws = workQueues) != null && (wl = ws.length) > 1 &&
1928 task != null && w != null) {
1929 for (int m = wl - 1,
1930 mode = w.config,
1931 r = ~mode, // scanning seed
1932 origin = r & m, k = origin, // first queue to scan
1933 step = 3, // first scan step
1934 h = 1, // 1:ran, >1:contended, <0:hash
1935 oldSum = 0, checkSum = 0;;) {
1936 CountedCompleter<?> p; WorkQueue q; int i;
1937 if ((s = task.status) < 0)
1938 break;
1939 if (h == 1 && (p = w.popCC(task, mode)) != null) {
1940 p.doExec(); // run local task
1941 if (maxTasks != 0 && --maxTasks == 0)
1942 break;
1943 origin = k; // reset
1944 oldSum = checkSum = 0;
1945 }
1946 else { // poll other worker queues
1947 if ((i = k | 1) < 0 || i > m || (q = ws[i]) == null)
1948 h = 0;
1949 else if ((h = q.pollAndExecCC(task)) < 0)
1950 checkSum += h;
1951 if (h > 0) {
1952 if (h == 1 && maxTasks != 0 && --maxTasks == 0)
1953 break;
1954 step = (r >>> 16) | 3;
1955 r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
1956 k = origin = r & m; // move and restart
1957 oldSum = checkSum = 0;
1958 }
1959 else if ((k = (k + step) & m) == origin) {
1960 if (oldSum == (oldSum = checkSum))
1961 break;
1962 checkSum = 0;
1963 }
1964 }
1965 }
1966 }
1967 return s;
1968 }
1969
1970 /**
1971 * Tries to locate and execute tasks for a stealer of the given
1972 * task, or in turn one of its stealers, Traces currentSteal ->
1973 * currentJoin links looking for a thread working on a descendant
1974 * of the given task and with a non-empty queue to steal back and
1975 * execute tasks from. The first call to this method upon a
1976 * waiting join will often entail scanning/search, (which is OK
1977 * because the joiner has nothing better to do), but this method
1978 * leaves hints in workers to speed up subsequent calls.
1979 *
1980 * @param w caller
1981 * @param task the task to join
1982 */
1983 private void helpStealer(WorkQueue w, ForkJoinTask<?> task) {
1984 if (task != null && w != null) {
1985 ForkJoinTask<?> ps = w.currentSteal;
1986 WorkQueue[] ws; int wl, oldSum = 0;
1987 outer: while (w.tryRemoveAndExec(task) && task.status >= 0 &&
1988 (ws = workQueues) != null && (wl = ws.length) > 0) {
1989 ForkJoinTask<?> subtask;
1990 int m = wl - 1, checkSum = 0; // for stability check
1991 WorkQueue j = w, v; // v is subtask stealer
1992 descent: for (subtask = task; subtask.status >= 0; ) {
1993 for (int h = j.hint | 1, k = 0, i;;) {
1994 if ((v = ws[i = (h + (k << 1)) & m]) != null) {
1995 if (v.currentSteal == subtask) {
1996 j.hint = i;
1997 break;
1998 }
1999 checkSum += v.base;
2000 }
2001 if (++k > m) // can't find stealer
2002 break outer;
2003 }
2004
2005 for (;;) { // help v or descend
2006 ForkJoinTask<?>[] a; int b, al;
2007 if (subtask.status < 0) // too late to help
2008 break descent;
2009 checkSum += (b = v.base);
2010 ForkJoinTask<?> next = v.currentJoin;
2011 ForkJoinTask<?> t = null;
2012 if ((a = v.array) != null && (al = a.length) > 0) {
2013 long offset = (((al - 1) & b) << ASHIFT) + ABASE;
2014 t = (ForkJoinTask<?>)U.getObjectVolatile(a, offset);
2015 if (t != null && b++ == v.base) {
2016 if (j.currentJoin != subtask ||
2017 v.currentSteal != subtask ||
2018 subtask.status < 0)
2019 break descent; // stale
2020 if (U.compareAndSwapObject(a, offset, t, null)) {
2021 v.base = b;
2022 w.currentSteal = t;
2023 for (int top = w.top;;) {
2024 t.doExec(); // help
2025 w.currentSteal = ps;
2026 if (task.status < 0)
2027 break outer;
2028 if (w.top == top)
2029 break; // run local tasks
2030 if ((t = w.pop()) == null)
2031 break descent;
2032 w.currentSteal = t;
2033 }
2034 }
2035 }
2036 }
2037 if (t == null && b == v.base && b - v.top >= 0) {
2038 if ((subtask = next) == null) { // try to descend
2039 if (next == v.currentJoin &&
2040 oldSum == (oldSum = checkSum))
2041 break outer;
2042 break descent;
2043 }
2044 j = v;
2045 break;
2046 }
2047 }
2048 }
2049 }
2050 }
2051 }
2052
2053 /**
2054 * Tries to decrement active count (sometimes implicitly) and
2055 * possibly release or create a compensating worker in preparation
2056 * for blocking. Returns false (retryable by caller), on
2057 * contention, detected staleness, instability, or termination.
2058 *
2059 * @param w caller
2060 */
2061 private boolean tryCompensate(WorkQueue w) {
2062 boolean canBlock; int wl;
2063 long c = ctl;
2064 WorkQueue[] ws = workQueues;
2065 int pc = config & SMASK;
2066 int ac = pc + (int)(c >> AC_SHIFT);
2067 int tc = pc + (short)(c >> TC_SHIFT);
2068 if (w == null || w.qlock < 0 || pc == 0 || // terminating or disabled
2069 ws == null || (wl = ws.length) <= 0)
2070 canBlock = false;
2071 else {
2072 int m = wl - 1, sp;
2073 boolean busy = true; // validate ac
2074 for (int i = 0; i <= m; ++i) {
2075 int k; WorkQueue v;
2076 if ((k = (i << 1) | 1) <= m && k >= 0 && (v = ws[k]) != null &&
2077 v.scanState >= 0 && v.currentSteal == null) {
2078 busy = false;
2079 break;
2080 }
2081 }
2082 if (!busy || ctl != c)
2083 canBlock = false; // unstable or stale
2084 else if ((sp = (int)c) != 0) // release idle worker
2085 canBlock = tryRelease(c, ws[m & sp], 0L);
2086 else if (tc >= pc && ac > 1 && w.isEmpty()) {
2087 long nc = ((AC_MASK & (c - AC_UNIT)) |
2088 (~AC_MASK & c)); // uncompensated
2089 canBlock = U.compareAndSwapLong(this, CTL, c, nc);
2090 }
2091 else if (tc >= MAX_CAP ||
2092 (this == common && tc >= pc + commonMaxSpares))
2093 throw new RejectedExecutionException(
2094 "Thread limit exceeded replacing blocked worker");
2095 else { // similar to tryAddWorker
2096 boolean isSpare = (tc >= pc);
2097 long nc = (AC_MASK & c) | (TC_MASK & (c + TC_UNIT));
2098 canBlock = (U.compareAndSwapLong(this, CTL, c, nc) &&
2099 createWorker(isSpare)); // throws on exception
2100 }
2101 }
2102 return canBlock;
2103 }
2104
2105 /**
2106 * Helps and/or blocks until the given task is done or timeout.
2107 *
2108 * @param w caller
2109 * @param task the task
2110 * @param deadline for timed waits, if nonzero
2111 * @return task status on exit
2112 */
2113 final int awaitJoin(WorkQueue w, ForkJoinTask<?> task, long deadline) {
2114 int s = 0;
2115 if (w != null) {
2116 ForkJoinTask<?> prevJoin = w.currentJoin;
2117 if (task != null && (s = task.status) >= 0) {
2118 w.currentJoin = task;
2119 CountedCompleter<?> cc = (task instanceof CountedCompleter) ?
2120 (CountedCompleter<?>)task : null;
2121 for (;;) {
2122 if (cc != null)
2123 helpComplete(w, cc, 0);
2124 else
2125 helpStealer(w, task);
2126 if ((s = task.status) < 0)
2127 break;
2128 long ms, ns;
2129 if (deadline == 0L)
2130 ms = 0L;
2131 else if ((ns = deadline - System.nanoTime()) <= 0L)
2132 break;
2133 else if ((ms = TimeUnit.NANOSECONDS.toMillis(ns)) <= 0L)
2134 ms = 1L;
2135 if (tryCompensate(w)) {
2136 task.internalWait(ms);
2137 U.getAndAddLong(this, CTL, AC_UNIT);
2138 }
2139 if ((s = task.status) < 0)
2140 break;
2141 }
2142 w.currentJoin = prevJoin;
2143 }
2144 }
2145 return s;
2146 }
2147
2148 // Specialized scanning
2149
2150 /**
2151 * Returns a (probably) non-empty steal queue, if one is found
2152 * during a scan, else null. This method must be retried by
2153 * caller if, by the time it tries to use the queue, it is empty.
2154 */
2155 private WorkQueue findNonEmptyStealQueue() {
2156 WorkQueue[] ws; int wl; // one-shot version of scan loop
2157 int r = ThreadLocalRandom.nextSecondarySeed();
2158 if ((ws = workQueues) != null && (wl = ws.length) > 0) {
2159 int m = wl - 1, origin = r & m;
2160 for (int k = origin, oldSum = 0, checkSum = 0;;) {
2161 WorkQueue q; int b;
2162 if ((q = ws[k]) != null) {
2163 if ((b = q.base) - q.top < 0)
2164 return q;
2165 checkSum += b;
2166 }
2167 if ((k = (k + 1) & m) == origin) {
2168 if (oldSum == (oldSum = checkSum))
2169 break;
2170 checkSum = 0;
2171 }
2172 }
2173 }
2174 return null;
2175 }
2176
2177 /**
2178 * Runs tasks until {@code isQuiescent()}. We piggyback on
2179 * active count ctl maintenance, but rather than blocking
2180 * when tasks cannot be found, we rescan until all others cannot
2181 * find tasks either.
2182 */
2183 final void helpQuiescePool(WorkQueue w) {
2184 ForkJoinTask<?> ps = w.currentSteal; // save context
2185 int wc = w.config;
2186 for (boolean active = true;;) {
2187 long c; WorkQueue q; ForkJoinTask<?> t;
2188 if (wc >= 0 && (t = w.pop()) != null) { // run locals if LIFO
2189 (w.currentSteal = t).doExec();
2190 w.currentSteal = ps;
2191 }
2192 else if ((q = findNonEmptyStealQueue()) != null) {
2193 if (!active) { // re-establish active count
2194 active = true;
2195 U.getAndAddLong(this, CTL, AC_UNIT);
2196 }
2197 if ((t = q.pollAt(q.base)) != null) {
2198 (w.currentSteal = t).doExec();
2199 w.currentSteal = ps;
2200 if (++w.nsteals < 0)
2201 w.transferStealCount(this);
2202 }
2203 }
2204 else if (active) { // decrement active count without queuing
2205 long nc = (AC_MASK & ((c = ctl) - AC_UNIT)) | (~AC_MASK & c);
2206 if (U.compareAndSwapLong(this, CTL, c, nc))
2207 active = false;
2208 }
2209 else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) <= 0 &&
2210 U.compareAndSwapLong(this, CTL, c, c + AC_UNIT))
2211 break;
2212 }
2213 }
2214
2215 /**
2216 * Gets and removes a local or stolen task for the given worker.
2217 *
2218 * @return a task, if available
2219 */
2220 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2221 for (ForkJoinTask<?> t;;) {
2222 WorkQueue q;
2223 if ((t = w.nextLocalTask()) != null)
2224 return t;
2225 if ((q = findNonEmptyStealQueue()) == null)
2226 return null;
2227 if ((t = q.pollAt(q.base)) != null)
2228 return t;
2229 }
2230 }
2231
2232 /**
2233 * Returns a cheap heuristic guide for task partitioning when
2234 * programmers, frameworks, tools, or languages have little or no
2235 * idea about task granularity. In essence, by offering this
2236 * method, we ask users only about tradeoffs in overhead vs
2237 * expected throughput and its variance, rather than how finely to
2238 * partition tasks.
2239 *
2240 * In a steady state strict (tree-structured) computation, each
2241 * thread makes available for stealing enough tasks for other
2242 * threads to remain active. Inductively, if all threads play by
2243 * the same rules, each thread should make available only a
2244 * constant number of tasks.
2245 *
2246 * The minimum useful constant is just 1. But using a value of 1
2247 * would require immediate replenishment upon each steal to
2248 * maintain enough tasks, which is infeasible. Further,
2249 * partitionings/granularities of offered tasks should minimize
2250 * steal rates, which in general means that threads nearer the top
2251 * of computation tree should generate more than those nearer the
2252 * bottom. In perfect steady state, each thread is at
2253 * approximately the same level of computation tree. However,
2254 * producing extra tasks amortizes the uncertainty of progress and
2255 * diffusion assumptions.
2256 *
2257 * So, users will want to use values larger (but not much larger)
2258 * than 1 to both smooth over transient shortages and hedge
2259 * against uneven progress; as traded off against the cost of
2260 * extra task overhead. We leave the user to pick a threshold
2261 * value to compare with the results of this call to guide
2262 * decisions, but recommend values such as 3.
2263 *
2264 * When all threads are active, it is on average OK to estimate
2265 * surplus strictly locally. In steady-state, if one thread is
2266 * maintaining say 2 surplus tasks, then so are others. So we can
2267 * just use estimated queue length. However, this strategy alone
2268 * leads to serious mis-estimates in some non-steady-state
2269 * conditions (ramp-up, ramp-down, other stalls). We can detect
2270 * many of these by further considering the number of "idle"
2271 * threads, that are known to have zero queued tasks, so
2272 * compensate by a factor of (#idle/#active) threads.
2273 */
2274 static int getSurplusQueuedTaskCount() {
2275 Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2276 if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) {
2277 int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2278 int n = (q = wt.workQueue).top - q.base;
2279 int a = (int)(pool.ctl >> AC_SHIFT) + p;
2280 return n - (a > (p >>>= 1) ? 0 :
2281 a > (p >>>= 1) ? 1 :
2282 a > (p >>>= 1) ? 2 :
2283 a > (p >>>= 1) ? 4 :
2284 8);
2285 }
2286 return 0;
2287 }
2288
2289 // Termination
2290
2291 /**
2292 * Possibly initiates and/or completes termination.
2293 *
2294 * @param now if true, unconditionally terminate, else only
2295 * if no work and no active workers
2296 * @param enable if true, terminate when next possible
2297 * @return true if now terminating or terminated
2298 */
2299 private boolean tryTerminate(boolean now, boolean enable) {
2300 int rs;
2301 for (;;) {
2302 if ((rs = runState) < 0) // already shut down
2303 break;
2304 if (!enable || this == common)
2305 return false;
2306 if (U.compareAndSwapInt(this, RUNSTATE, rs, rs | SHUTDOWN))
2307 break;
2308 }
2309
2310 if ((rs & STOP) == 0) {
2311 if (!now) { // check quiescence
2312 for (long oldSum = 0L;;) { // repeat until stable
2313 WorkQueue[] ws; WorkQueue w; int m, b, sp; long c;
2314 long checkSum = ctl;
2315 if ((int)(checkSum >> AC_SHIFT) + (config & SMASK) > 0)
2316 return false; // still active workers
2317 if ((ws = workQueues) == null || (m = ws.length - 1) < 0)
2318 break; // check queues
2319 for (int i = 0; i <= m; ++i) {
2320 if ((w = ws[i]) != null) {
2321 if ((b = w.base) != w.top ||
2322 w.currentSteal != null) {
2323 while ((sp = (int)(c = ctl)) != 0 &&
2324 !tryRelease(c, ws[m & sp], AC_UNIT))
2325 ;
2326 return false; // arrange for recheck
2327 }
2328 checkSum += b;
2329 if ((i & 1) == 0)
2330 w.qlock = -1; // try to disable external
2331 }
2332 }
2333 if (oldSum == (oldSum = checkSum))
2334 break;
2335 }
2336 }
2337 while (((rs = runState) & STOP) == 0) // enter STOP phase
2338 U.compareAndSwapInt(this, RUNSTATE, rs, rs | STOP);
2339 }
2340
2341 int pass = 0; // 3 passes to help terminate
2342 for (long oldSum = 0L;;) { // or until done or stable
2343 WorkQueue[] ws; WorkQueue w; ForkJoinWorkerThread wt; int m;
2344 long checkSum = ctl;
2345 if ((short)(checkSum >>> TC_SHIFT) + (config & SMASK) <= 0 ||
2346 (ws = workQueues) == null || (m = ws.length - 1) < 0) {
2347 while (((rs = runState) & TERMINATED) == 0) {
2348 if (U.compareAndSwapInt(this, RUNSTATE, rs,
2349 rs | TERMINATED)) {
2350 synchronized (this) {
2351 notifyAll(); // for awaitTermination
2352 }
2353 break;
2354 }
2355 }
2356 break;
2357 }
2358 for (int i = 0; i <= m; ++i) {
2359 if ((w = ws[i]) != null) {
2360 checkSum += w.base;
2361 w.qlock = -1; // try to disable
2362 if (pass > 0) {
2363 w.cancelAll(); // clear queue
2364 if (pass > 1 && (wt = w.owner) != null) {
2365 if (!wt.isInterrupted()) {
2366 try { // unblock join
2367 wt.interrupt();
2368 } catch (Throwable ignore) {
2369 }
2370 }
2371 LockSupport.unpark(wt);
2372 }
2373 }
2374 }
2375 }
2376 if (checkSum != oldSum) { // unstable
2377 oldSum = checkSum;
2378 pass = 0;
2379 }
2380 else if (pass > 3 && pass > m) // can't further help
2381 break;
2382 else if (++pass > 1) { // try to dequeue
2383 long c; int j = 0, sp; // bound attempts
2384 while (j++ <= m && (sp = (int)(c = ctl)) != 0)
2385 tryRelease(c, ws[sp & m], AC_UNIT);
2386 }
2387 }
2388 return true;
2389 }
2390
2391 // External operations
2392
2393 /**
2394 * Constructs and tries to install a new external queue,
2395 * failing if the workQueues array already has a queue at
2396 * the given index.
2397 *
2398 * @param index the index of the new queue
2399 */
2400 private void tryCreateExternalQueue(int index) {
2401 Object lock;
2402 if ((lock = stealCounter) != null && index >= 0) {
2403 WorkQueue q = new WorkQueue(this, null);
2404 q.config = index;
2405 q.scanState = ~UNSIGNALLED;
2406 synchronized (lock) { // lock to install
2407 WorkQueue[] ws;
2408 if ((ws = workQueues) != null && index < ws.length &&
2409 ws[index] == null) {
2410 ws[index] = q; // else throw away
2411 }
2412 }
2413 }
2414 }
2415
2416 /**
2417 * Adds the given task to a submission queue at submitter's
2418 * current queue. Also performs secondary initialization upon the
2419 * first submission of the first task to the pool, and detects
2420 * first submission by an external thread and creates a new shared
2421 * queue if the one at index if empty or contended.
2422 *
2423 * @param task the task. Caller must ensure non-null.
2424 */
2425 final void externalPush(ForkJoinTask<?> task) {
2426 int r; // initialize caller's probe
2427 if ((r = ThreadLocalRandom.getProbe()) == 0) {
2428 ThreadLocalRandom.localInit();
2429 r = ThreadLocalRandom.getProbe();
2430 }
2431 for (;;) {
2432 WorkQueue q; int wl, k;
2433 int rs = runState;
2434 WorkQueue[] ws = workQueues;
2435 if (rs <= 0 || ws == null || (wl = ws.length) <= 0)
2436 tryInitialize();
2437 else if ((q = ws[k = (wl - 1) & r & SQMASK]) == null)
2438 tryCreateExternalQueue(k);
2439 else if (U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2440 int b = q.base, s = q.top, al, d; ForkJoinTask<?>[] a;
2441 if ((a = q.array) != null && (al = a.length) > 0 &&
2442 al - 1 + (d = b - s) > 0) {
2443 a[(al - 1) & s] = task; // push
2444 q.top = s + 1; // relaxed writes OK here
2445 if (d != 0)
2446 U.putOrderedInt(q, QLOCK, 0);
2447 else { // sync with signallees
2448 U.putIntVolatile(q, QLOCK, 0);
2449 signalWork();
2450 }
2451 break;
2452 }
2453 else { // grow then retry
2454 try {
2455 q.growArray();
2456 } finally {
2457 q.qlock = 0;
2458 }
2459 }
2460 }
2461 else // move if cannot lock
2462 r = ThreadLocalRandom.advanceProbe(r);
2463 }
2464 }
2465
2466 /**
2467 * Pushes a possibly-external submission.
2468 */
2469 private <T> ForkJoinTask<T> externalSubmit(ForkJoinTask<T> task) {
2470 Thread t; ForkJoinWorkerThread w; WorkQueue q;
2471 if (task == null)
2472 throw new NullPointerException();
2473 if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) &&
2474 (w = (ForkJoinWorkerThread)t).pool == this &&
2475 (q = w.workQueue) != null)
2476 q.push(task);
2477 else
2478 externalPush(task);
2479 return task;
2480 }
2481
2482 /**
2483 * Returns common pool queue for an external thread.
2484 */
2485 static WorkQueue commonSubmitterQueue() {
2486 ForkJoinPool p = common;
2487 int r = ThreadLocalRandom.getProbe();
2488 WorkQueue[] ws; int wl;
2489 return (p != null && (ws = p.workQueues) != null &&
2490 (wl = ws.length) > 0) ?
2491 ws[(wl - 1) & r & SQMASK] : null;
2492 }
2493
2494 /**
2495 * Performs tryUnpush for an external submitter.
2496 */
2497 final boolean tryExternalUnpush(ForkJoinTask<?> task) {
2498 int r = ThreadLocalRandom.getProbe();
2499 WorkQueue[] ws; WorkQueue w; int wl;
2500 return ((ws = workQueues) != null &&
2501 (wl = ws.length) > 0 &&
2502 (w = ws[(wl - 1) & r & SQMASK]) != null &&
2503 w.trySharedUnpush(task));
2504 }
2505
2506 /**
2507 * Performs helpComplete for an external submitter.
2508 */
2509 final int externalHelpComplete(CountedCompleter<?> task, int maxTasks) {
2510 WorkQueue[] ws; int wl;
2511 int r = ThreadLocalRandom.getProbe();
2512 return ((ws = workQueues) != null && (wl = ws.length) > 0) ?
2513 helpComplete(ws[(wl - 1) & r & SQMASK], task, maxTasks) : 0;
2514 }
2515
2516 // Exported methods
2517
2518 // Constructors
2519
2520 /**
2521 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2522 * java.lang.Runtime#availableProcessors}, using the {@linkplain
2523 * #defaultForkJoinWorkerThreadFactory default thread factory},
2524 * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2525 *
2526 * @throws SecurityException if a security manager exists and
2527 * the caller is not permitted to modify threads
2528 * because it does not hold {@link
2529 * java.lang.RuntimePermission}{@code ("modifyThread")}
2530 */
2531 public ForkJoinPool() {
2532 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2533 defaultForkJoinWorkerThreadFactory, null, false);
2534 }
2535
2536 /**
2537 * Creates a {@code ForkJoinPool} with the indicated parallelism
2538 * level, the {@linkplain
2539 * #defaultForkJoinWorkerThreadFactory default thread factory},
2540 * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2541 *
2542 * @param parallelism the parallelism level
2543 * @throws IllegalArgumentException if parallelism less than or
2544 * equal to zero, or greater than implementation limit
2545 * @throws SecurityException if a security manager exists and
2546 * the caller is not permitted to modify threads
2547 * because it does not hold {@link
2548 * java.lang.RuntimePermission}{@code ("modifyThread")}
2549 */
2550 public ForkJoinPool(int parallelism) {
2551 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2552 }
2553
2554 /**
2555 * Creates a {@code ForkJoinPool} with the given parameters.
2556 *
2557 * @param parallelism the parallelism level. For default value,
2558 * use {@link java.lang.Runtime#availableProcessors}.
2559 * @param factory the factory for creating new threads. For default value,
2560 * use {@link #defaultForkJoinWorkerThreadFactory}.
2561 * @param handler the handler for internal worker threads that
2562 * terminate due to unrecoverable errors encountered while executing
2563 * tasks. For default value, use {@code null}.
2564 * @param asyncMode if true,
2565 * establishes local first-in-first-out scheduling mode for forked
2566 * tasks that are never joined. This mode may be more appropriate
2567 * than default locally stack-based mode in applications in which
2568 * worker threads only process event-style asynchronous tasks.
2569 * For default value, use {@code false}.
2570 * @throws IllegalArgumentException if parallelism less than or
2571 * equal to zero, or greater than implementation limit
2572 * @throws NullPointerException if the factory is null
2573 * @throws SecurityException if a security manager exists and
2574 * the caller is not permitted to modify threads
2575 * because it does not hold {@link
2576 * java.lang.RuntimePermission}{@code ("modifyThread")}
2577 */
2578 public ForkJoinPool(int parallelism,
2579 ForkJoinWorkerThreadFactory factory,
2580 UncaughtExceptionHandler handler,
2581 boolean asyncMode) {
2582 this(checkParallelism(parallelism),
2583 checkFactory(factory),
2584 handler,
2585 asyncMode ? FIFO_QUEUE : LIFO_QUEUE,
2586 "ForkJoinPool-" + nextPoolId() + "-worker-");
2587 checkPermission();
2588 }
2589
2590 private static int checkParallelism(int parallelism) {
2591 if (parallelism <= 0 || parallelism > MAX_CAP)
2592 throw new IllegalArgumentException();
2593 return parallelism;
2594 }
2595
2596 private static ForkJoinWorkerThreadFactory checkFactory
2597 (ForkJoinWorkerThreadFactory factory) {
2598 if (factory == null)
2599 throw new NullPointerException();
2600 return factory;
2601 }
2602
2603 /**
2604 * Creates a {@code ForkJoinPool} with the given parameters, without
2605 * any security checks or parameter validation. Invoked directly by
2606 * makeCommonPool.
2607 */
2608 private ForkJoinPool(int parallelism,
2609 ForkJoinWorkerThreadFactory factory,
2610 UncaughtExceptionHandler handler,
2611 int mode,
2612 String workerNamePrefix) {
2613 this.workerNamePrefix = workerNamePrefix;
2614 this.factory = factory;
2615 this.ueh = handler;
2616 this.config = (parallelism & SMASK) | mode;
2617 long np = (long)(-parallelism); // offset ctl counts
2618 this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2619 }
2620
2621 /**
2622 * Returns the common pool instance. This pool is statically
2623 * constructed; its run state is unaffected by attempts to {@link
2624 * #shutdown} or {@link #shutdownNow}. However this pool and any
2625 * ongoing processing are automatically terminated upon program
2626 * {@link System#exit}. Any program that relies on asynchronous
2627 * task processing to complete before program termination should
2628 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2629 * before exit.
2630 *
2631 * @return the common pool instance
2632 * @since 1.8
2633 */
2634 public static ForkJoinPool commonPool() {
2635 // assert common != null : "static init error";
2636 return common;
2637 }
2638
2639 // Execution methods
2640
2641 /**
2642 * Performs the given task, returning its result upon completion.
2643 * If the computation encounters an unchecked Exception or Error,
2644 * it is rethrown as the outcome of this invocation. Rethrown
2645 * exceptions behave in the same way as regular exceptions, but,
2646 * when possible, contain stack traces (as displayed for example
2647 * using {@code ex.printStackTrace()}) of both the current thread
2648 * as well as the thread actually encountering the exception;
2649 * minimally only the latter.
2650 *
2651 * @param task the task
2652 * @param <T> the type of the task's result
2653 * @return the task's result
2654 * @throws NullPointerException if the task is null
2655 * @throws RejectedExecutionException if the task cannot be
2656 * scheduled for execution
2657 */
2658 public <T> T invoke(ForkJoinTask<T> task) {
2659 if (task == null)
2660 throw new NullPointerException();
2661 externalSubmit(task);
2662 return task.join();
2663 }
2664
2665 /**
2666 * Arranges for (asynchronous) execution of the given task.
2667 *
2668 * @param task the task
2669 * @throws NullPointerException if the task is null
2670 * @throws RejectedExecutionException if the task cannot be
2671 * scheduled for execution
2672 */
2673 public void execute(ForkJoinTask<?> task) {
2674 externalSubmit(task);
2675 }
2676
2677 // AbstractExecutorService methods
2678
2679 /**
2680 * @throws NullPointerException if the task is null
2681 * @throws RejectedExecutionException if the task cannot be
2682 * scheduled for execution
2683 */
2684 public void execute(Runnable task) {
2685 if (task == null)
2686 throw new NullPointerException();
2687 ForkJoinTask<?> job;
2688 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2689 job = (ForkJoinTask<?>) task;
2690 else
2691 job = new ForkJoinTask.RunnableExecuteAction(task);
2692 externalSubmit(job);
2693 }
2694
2695 /**
2696 * Submits a ForkJoinTask for execution.
2697 *
2698 * @param task the task to submit
2699 * @param <T> the type of the task's result
2700 * @return the task
2701 * @throws NullPointerException if the task is null
2702 * @throws RejectedExecutionException if the task cannot be
2703 * scheduled for execution
2704 */
2705 public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2706 return externalSubmit(task);
2707 }
2708
2709 /**
2710 * @throws NullPointerException if the task is null
2711 * @throws RejectedExecutionException if the task cannot be
2712 * scheduled for execution
2713 */
2714 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2715 return externalSubmit(new ForkJoinTask.AdaptedCallable<T>(task));
2716 }
2717
2718 /**
2719 * @throws NullPointerException if the task is null
2720 * @throws RejectedExecutionException if the task cannot be
2721 * scheduled for execution
2722 */
2723 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2724 return externalSubmit(new ForkJoinTask.AdaptedRunnable<T>(task, result));
2725 }
2726
2727 /**
2728 * @throws NullPointerException if the task is null
2729 * @throws RejectedExecutionException if the task cannot be
2730 * scheduled for execution
2731 */
2732 public ForkJoinTask<?> submit(Runnable task) {
2733 if (task == null)
2734 throw new NullPointerException();
2735 ForkJoinTask<?> job;
2736 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2737 job = (ForkJoinTask<?>) task;
2738 else
2739 job = new ForkJoinTask.AdaptedRunnableAction(task);
2740 return externalSubmit(job);
2741 }
2742
2743 /**
2744 * @throws NullPointerException {@inheritDoc}
2745 * @throws RejectedExecutionException {@inheritDoc}
2746 */
2747 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2748 // In previous versions of this class, this method constructed
2749 // a task to run ForkJoinTask.invokeAll, but now external
2750 // invocation of multiple tasks is at least as efficient.
2751 ArrayList<Future<T>> futures = new ArrayList<>(tasks.size());
2752
2753 try {
2754 for (Callable<T> t : tasks) {
2755 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2756 futures.add(f);
2757 externalSubmit(f);
2758 }
2759 for (int i = 0, size = futures.size(); i < size; i++)
2760 ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2761 return futures;
2762 } catch (Throwable t) {
2763 for (int i = 0, size = futures.size(); i < size; i++)
2764 futures.get(i).cancel(false);
2765 throw t;
2766 }
2767 }
2768
2769 /**
2770 * Returns the factory used for constructing new workers.
2771 *
2772 * @return the factory used for constructing new workers
2773 */
2774 public ForkJoinWorkerThreadFactory getFactory() {
2775 return factory;
2776 }
2777
2778 /**
2779 * Returns the handler for internal worker threads that terminate
2780 * due to unrecoverable errors encountered while executing tasks.
2781 *
2782 * @return the handler, or {@code null} if none
2783 */
2784 public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2785 return ueh;
2786 }
2787
2788 /**
2789 * Returns the targeted parallelism level of this pool.
2790 *
2791 * @return the targeted parallelism level of this pool
2792 */
2793 public int getParallelism() {
2794 int par;
2795 return ((par = config & SMASK) > 0) ? par : 1;
2796 }
2797
2798 /**
2799 * Returns the targeted parallelism level of the common pool.
2800 *
2801 * @return the targeted parallelism level of the common pool
2802 * @since 1.8
2803 */
2804 public static int getCommonPoolParallelism() {
2805 return commonParallelism;
2806 }
2807
2808 /**
2809 * Returns the number of worker threads that have started but not
2810 * yet terminated. The result returned by this method may differ
2811 * from {@link #getParallelism} when threads are created to
2812 * maintain parallelism when others are cooperatively blocked.
2813 *
2814 * @return the number of worker threads
2815 */
2816 public int getPoolSize() {
2817 return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2818 }
2819
2820 /**
2821 * Returns {@code true} if this pool uses local first-in-first-out
2822 * scheduling mode for forked tasks that are never joined.
2823 *
2824 * @return {@code true} if this pool uses async mode
2825 */
2826 public boolean getAsyncMode() {
2827 return (config & FIFO_QUEUE) != 0;
2828 }
2829
2830 /**
2831 * Returns an estimate of the number of worker threads that are
2832 * not blocked waiting to join tasks or for other managed
2833 * synchronization. This method may overestimate the
2834 * number of running threads.
2835 *
2836 * @return the number of worker threads
2837 */
2838 public int getRunningThreadCount() {
2839 int rc = 0;
2840 WorkQueue[] ws; WorkQueue w;
2841 if ((ws = workQueues) != null) {
2842 for (int i = 1; i < ws.length; i += 2) {
2843 if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2844 ++rc;
2845 }
2846 }
2847 return rc;
2848 }
2849
2850 /**
2851 * Returns an estimate of the number of threads that are currently
2852 * stealing or executing tasks. This method may overestimate the
2853 * number of active threads.
2854 *
2855 * @return the number of active threads
2856 */
2857 public int getActiveThreadCount() {
2858 int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2859 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2860 }
2861
2862 /**
2863 * Returns {@code true} if all worker threads are currently idle.
2864 * An idle worker is one that cannot obtain a task to execute
2865 * because none are available to steal from other threads, and
2866 * there are no pending submissions to the pool. This method is
2867 * conservative; it might not return {@code true} immediately upon
2868 * idleness of all threads, but will eventually become true if
2869 * threads remain inactive.
2870 *
2871 * @return {@code true} if all threads are currently idle
2872 */
2873 public boolean isQuiescent() {
2874 return (config & SMASK) + (int)(ctl >> AC_SHIFT) <= 0;
2875 }
2876
2877 /**
2878 * Returns an estimate of the total number of tasks stolen from
2879 * one thread's work queue by another. The reported value
2880 * underestimates the actual total number of steals when the pool
2881 * is not quiescent. This value may be useful for monitoring and
2882 * tuning fork/join programs: in general, steal counts should be
2883 * high enough to keep threads busy, but low enough to avoid
2884 * overhead and contention across threads.
2885 *
2886 * @return the number of steals
2887 */
2888 public long getStealCount() {
2889 AtomicLong sc = stealCounter;
2890 long count = (sc == null) ? 0L : sc.get();
2891 WorkQueue[] ws; WorkQueue w;
2892 if ((ws = workQueues) != null) {
2893 for (int i = 1; i < ws.length; i += 2) {
2894 if ((w = ws[i]) != null)
2895 count += w.nsteals;
2896 }
2897 }
2898 return count;
2899 }
2900
2901 /**
2902 * Returns an estimate of the total number of tasks currently held
2903 * in queues by worker threads (but not including tasks submitted
2904 * to the pool that have not begun executing). This value is only
2905 * an approximation, obtained by iterating across all threads in
2906 * the pool. This method may be useful for tuning task
2907 * granularities.
2908 *
2909 * @return the number of queued tasks
2910 */
2911 public long getQueuedTaskCount() {
2912 long count = 0;
2913 WorkQueue[] ws; WorkQueue w;
2914 if ((ws = workQueues) != null) {
2915 for (int i = 1; i < ws.length; i += 2) {
2916 if ((w = ws[i]) != null)
2917 count += w.queueSize();
2918 }
2919 }
2920 return count;
2921 }
2922
2923 /**
2924 * Returns an estimate of the number of tasks submitted to this
2925 * pool that have not yet begun executing. This method may take
2926 * time proportional to the number of submissions.
2927 *
2928 * @return the number of queued submissions
2929 */
2930 public int getQueuedSubmissionCount() {
2931 int count = 0;
2932 WorkQueue[] ws; WorkQueue w;
2933 if ((ws = workQueues) != null) {
2934 for (int i = 0; i < ws.length; i += 2) {
2935 if ((w = ws[i]) != null)
2936 count += w.queueSize();
2937 }
2938 }
2939 return count;
2940 }
2941
2942 /**
2943 * Returns {@code true} if there are any tasks submitted to this
2944 * pool that have not yet begun executing.
2945 *
2946 * @return {@code true} if there are any queued submissions
2947 */
2948 public boolean hasQueuedSubmissions() {
2949 WorkQueue[] ws; WorkQueue w;
2950 if ((ws = workQueues) != null) {
2951 for (int i = 0; i < ws.length; i += 2) {
2952 if ((w = ws[i]) != null && !w.isEmpty())
2953 return true;
2954 }
2955 }
2956 return false;
2957 }
2958
2959 /**
2960 * Removes and returns the next unexecuted submission if one is
2961 * available. This method may be useful in extensions to this
2962 * class that re-assign work in systems with multiple pools.
2963 *
2964 * @return the next submission, or {@code null} if none
2965 */
2966 protected ForkJoinTask<?> pollSubmission() {
2967 WorkQueue[] ws; int wl; WorkQueue w; ForkJoinTask<?> t;
2968 int r = ThreadLocalRandom.nextSecondarySeed();
2969 if ((ws = workQueues) != null && (wl = ws.length) > 0) {
2970 for (int m = wl - 1, i = 0; i < wl; ++i) {
2971 if ((w = ws[(i << 1) & m]) != null && (t = w.poll()) != null)
2972 return t;
2973 }
2974 }
2975 return null;
2976 }
2977
2978 /**
2979 * Removes all available unexecuted submitted and forked tasks
2980 * from scheduling queues and adds them to the given collection,
2981 * without altering their execution status. These may include
2982 * artificially generated or wrapped tasks. This method is
2983 * designed to be invoked only when the pool is known to be
2984 * quiescent. Invocations at other times may not remove all
2985 * tasks. A failure encountered while attempting to add elements
2986 * to collection {@code c} may result in elements being in
2987 * neither, either or both collections when the associated
2988 * exception is thrown. The behavior of this operation is
2989 * undefined if the specified collection is modified while the
2990 * operation is in progress.
2991 *
2992 * @param c the collection to transfer elements into
2993 * @return the number of elements transferred
2994 */
2995 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2996 int count = 0;
2997 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2998 if ((ws = workQueues) != null) {
2999 for (int i = 0; i < ws.length; ++i) {
3000 if ((w = ws[i]) != null) {
3001 while ((t = w.poll()) != null) {
3002 c.add(t);
3003 ++count;
3004 }
3005 }
3006 }
3007 }
3008 return count;
3009 }
3010
3011 /**
3012 * Returns a string identifying this pool, as well as its state,
3013 * including indications of run state, parallelism level, and
3014 * worker and task counts.
3015 *
3016 * @return a string identifying this pool, as well as its state
3017 */
3018 public String toString() {
3019 // Use a single pass through workQueues to collect counts
3020 long qt = 0L, qs = 0L; int rc = 0;
3021 AtomicLong sc = stealCounter;
3022 long st = (sc == null) ? 0L : sc.get();
3023 long c = ctl;
3024 WorkQueue[] ws; WorkQueue w;
3025 if ((ws = workQueues) != null) {
3026 for (int i = 0; i < ws.length; ++i) {
3027 if ((w = ws[i]) != null) {
3028 int size = w.queueSize();
3029 if ((i & 1) == 0)
3030 qs += size;
3031 else {
3032 qt += size;
3033 st += w.nsteals;
3034 if (w.isApparentlyUnblocked())
3035 ++rc;
3036 }
3037 }
3038 }
3039 }
3040 int pc = (config & SMASK);
3041 int tc = pc + (short)(c >>> TC_SHIFT);
3042 int ac = pc + (int)(c >> AC_SHIFT);
3043 if (ac < 0) // ignore transient negative
3044 ac = 0;
3045 int rs = runState;
3046 String level = ((rs & TERMINATED) != 0 ? "Terminated" :
3047 (rs & STOP) != 0 ? "Terminating" :
3048 (rs & SHUTDOWN) != 0 ? "Shutting down" :
3049 "Running");
3050 return super.toString() +
3051 "[" + level +
3052 ", parallelism = " + pc +
3053 ", size = " + tc +
3054 ", active = " + ac +
3055 ", running = " + rc +
3056 ", steals = " + st +
3057 ", tasks = " + qt +
3058 ", submissions = " + qs +
3059 "]";
3060 }
3061
3062 /**
3063 * Possibly initiates an orderly shutdown in which previously
3064 * submitted tasks are executed, but no new tasks will be
3065 * accepted. Invocation has no effect on execution state if this
3066 * is the {@link #commonPool()}, and no additional effect if
3067 * already shut down. Tasks that are in the process of being
3068 * submitted concurrently during the course of this method may or
3069 * may not be rejected.
3070 *
3071 * @throws SecurityException if a security manager exists and
3072 * the caller is not permitted to modify threads
3073 * because it does not hold {@link
3074 * java.lang.RuntimePermission}{@code ("modifyThread")}
3075 */
3076 public void shutdown() {
3077 checkPermission();
3078 tryTerminate(false, true);
3079 }
3080
3081 /**
3082 * Possibly attempts to cancel and/or stop all tasks, and reject
3083 * all subsequently submitted tasks. Invocation has no effect on
3084 * execution state if this is the {@link #commonPool()}, and no
3085 * additional effect if already shut down. Otherwise, tasks that
3086 * are in the process of being submitted or executed concurrently
3087 * during the course of this method may or may not be
3088 * rejected. This method cancels both existing and unexecuted
3089 * tasks, in order to permit termination in the presence of task
3090 * dependencies. So the method always returns an empty list
3091 * (unlike the case for some other Executors).
3092 *
3093 * @return an empty list
3094 * @throws SecurityException if a security manager exists and
3095 * the caller is not permitted to modify threads
3096 * because it does not hold {@link
3097 * java.lang.RuntimePermission}{@code ("modifyThread")}
3098 */
3099 public List<Runnable> shutdownNow() {
3100 checkPermission();
3101 tryTerminate(true, true);
3102 return Collections.emptyList();
3103 }
3104
3105 /**
3106 * Returns {@code true} if all tasks have completed following shut down.
3107 *
3108 * @return {@code true} if all tasks have completed following shut down
3109 */
3110 public boolean isTerminated() {
3111 return (runState & TERMINATED) != 0;
3112 }
3113
3114 /**
3115 * Returns {@code true} if the process of termination has
3116 * commenced but not yet completed. This method may be useful for
3117 * debugging. A return of {@code true} reported a sufficient
3118 * period after shutdown may indicate that submitted tasks have
3119 * ignored or suppressed interruption, or are waiting for I/O,
3120 * causing this executor not to properly terminate. (See the
3121 * advisory notes for class {@link ForkJoinTask} stating that
3122 * tasks should not normally entail blocking operations. But if
3123 * they do, they must abort them on interrupt.)
3124 *
3125 * @return {@code true} if terminating but not yet terminated
3126 */
3127 public boolean isTerminating() {
3128 int rs = runState;
3129 return (rs & STOP) != 0 && (rs & TERMINATED) == 0;
3130 }
3131
3132 /**
3133 * Returns {@code true} if this pool has been shut down.
3134 *
3135 * @return {@code true} if this pool has been shut down
3136 */
3137 public boolean isShutdown() {
3138 return (runState & SHUTDOWN) != 0;
3139 }
3140
3141 /**
3142 * Blocks until all tasks have completed execution after a
3143 * shutdown request, or the timeout occurs, or the current thread
3144 * is interrupted, whichever happens first. Because the {@link
3145 * #commonPool()} never terminates until program shutdown, when
3146 * applied to the common pool, this method is equivalent to {@link
3147 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
3148 *
3149 * @param timeout the maximum time to wait
3150 * @param unit the time unit of the timeout argument
3151 * @return {@code true} if this executor terminated and
3152 * {@code false} if the timeout elapsed before termination
3153 * @throws InterruptedException if interrupted while waiting
3154 */
3155 public boolean awaitTermination(long timeout, TimeUnit unit)
3156 throws InterruptedException {
3157 if (Thread.interrupted())
3158 throw new InterruptedException();
3159 if (this == common) {
3160 awaitQuiescence(timeout, unit);
3161 return false;
3162 }
3163 long nanos = unit.toNanos(timeout);
3164 if (isTerminated())
3165 return true;
3166 if (nanos <= 0L)
3167 return false;
3168 long deadline = System.nanoTime() + nanos;
3169 synchronized (this) {
3170 for (;;) {
3171 if (isTerminated())
3172 return true;
3173 if (nanos <= 0L)
3174 return false;
3175 long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
3176 wait(millis > 0L ? millis : 1L);
3177 nanos = deadline - System.nanoTime();
3178 }
3179 }
3180 }
3181
3182 /**
3183 * If called by a ForkJoinTask operating in this pool, equivalent
3184 * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3185 * waits and/or attempts to assist performing tasks until this
3186 * pool {@link #isQuiescent} or the indicated timeout elapses.
3187 *
3188 * @param timeout the maximum time to wait
3189 * @param unit the time unit of the timeout argument
3190 * @return {@code true} if quiescent; {@code false} if the
3191 * timeout elapsed.
3192 */
3193 public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3194 long nanos = unit.toNanos(timeout);
3195 ForkJoinWorkerThread wt;
3196 Thread thread = Thread.currentThread();
3197 if ((thread instanceof ForkJoinWorkerThread) &&
3198 (wt = (ForkJoinWorkerThread)thread).pool == this) {
3199 helpQuiescePool(wt.workQueue);
3200 return true;
3201 }
3202 long startTime = System.nanoTime();
3203 WorkQueue[] ws;
3204 int r = 0, wl;
3205 boolean found = true;
3206 while (!isQuiescent() && (ws = workQueues) != null &&
3207 (wl = ws.length) > 0) {
3208 if (!found) {
3209 if ((System.nanoTime() - startTime) > nanos)
3210 return false;
3211 Thread.yield(); // cannot block
3212 }
3213 found = false;
3214 for (int m = wl - 1, j = (m + 1) << 2; j >= 0; --j) {
3215 ForkJoinTask<?> t; WorkQueue q; int b, k;
3216 if ((k = r++ & m) <= m && k >= 0 && (q = ws[k]) != null &&
3217 (b = q.base) - q.top < 0) {
3218 found = true;
3219 if ((t = q.pollAt(b)) != null)
3220 t.doExec();
3221 break;
3222 }
3223 }
3224 }
3225 return true;
3226 }
3227
3228 /**
3229 * Waits and/or attempts to assist performing tasks indefinitely
3230 * until the {@link #commonPool()} {@link #isQuiescent}.
3231 */
3232 static void quiesceCommonPool() {
3233 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3234 }
3235
3236 /**
3237 * Interface for extending managed parallelism for tasks running
3238 * in {@link ForkJoinPool}s.
3239 *
3240 * <p>A {@code ManagedBlocker} provides two methods. Method
3241 * {@link #isReleasable} must return {@code true} if blocking is
3242 * not necessary. Method {@link #block} blocks the current thread
3243 * if necessary (perhaps internally invoking {@code isReleasable}
3244 * before actually blocking). These actions are performed by any
3245 * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
3246 * The unusual methods in this API accommodate synchronizers that
3247 * may, but don't usually, block for long periods. Similarly, they
3248 * allow more efficient internal handling of cases in which
3249 * additional workers may be, but usually are not, needed to
3250 * ensure sufficient parallelism. Toward this end,
3251 * implementations of method {@code isReleasable} must be amenable
3252 * to repeated invocation.
3253 *
3254 * <p>For example, here is a ManagedBlocker based on a
3255 * ReentrantLock:
3256 * <pre> {@code
3257 * class ManagedLocker implements ManagedBlocker {
3258 * final ReentrantLock lock;
3259 * boolean hasLock = false;
3260 * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3261 * public boolean block() {
3262 * if (!hasLock)
3263 * lock.lock();
3264 * return true;
3265 * }
3266 * public boolean isReleasable() {
3267 * return hasLock || (hasLock = lock.tryLock());
3268 * }
3269 * }}</pre>
3270 *
3271 * <p>Here is a class that possibly blocks waiting for an
3272 * item on a given queue:
3273 * <pre> {@code
3274 * class QueueTaker<E> implements ManagedBlocker {
3275 * final BlockingQueue<E> queue;
3276 * volatile E item = null;
3277 * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3278 * public boolean block() throws InterruptedException {
3279 * if (item == null)
3280 * item = queue.take();
3281 * return true;
3282 * }
3283 * public boolean isReleasable() {
3284 * return item != null || (item = queue.poll()) != null;
3285 * }
3286 * public E getItem() { // call after pool.managedBlock completes
3287 * return item;
3288 * }
3289 * }}</pre>
3290 */
3291 public static interface ManagedBlocker {
3292 /**
3293 * Possibly blocks the current thread, for example waiting for
3294 * a lock or condition.
3295 *
3296 * @return {@code true} if no additional blocking is necessary
3297 * (i.e., if isReleasable would return true)
3298 * @throws InterruptedException if interrupted while waiting
3299 * (the method is not required to do so, but is allowed to)
3300 */
3301 boolean block() throws InterruptedException;
3302
3303 /**
3304 * Returns {@code true} if blocking is unnecessary.
3305 * @return {@code true} if blocking is unnecessary
3306 */
3307 boolean isReleasable();
3308 }
3309
3310 /**
3311 * Runs the given possibly blocking task. When {@linkplain
3312 * ForkJoinTask#inForkJoinPool() running in a ForkJoinPool}, this
3313 * method possibly arranges for a spare thread to be activated if
3314 * necessary to ensure sufficient parallelism while the current
3315 * thread is blocked in {@link ManagedBlocker#block blocker.block()}.
3316 *
3317 * <p>This method repeatedly calls {@code blocker.isReleasable()} and
3318 * {@code blocker.block()} until either method returns {@code true}.
3319 * Every call to {@code blocker.block()} is preceded by a call to
3320 * {@code blocker.isReleasable()} that returned {@code false}.
3321 *
3322 * <p>If not running in a ForkJoinPool, this method is
3323 * behaviorally equivalent to
3324 * <pre> {@code
3325 * while (!blocker.isReleasable())
3326 * if (blocker.block())
3327 * break;}</pre>
3328 *
3329 * If running in a ForkJoinPool, the pool may first be expanded to
3330 * ensure sufficient parallelism available during the call to
3331 * {@code blocker.block()}.
3332 *
3333 * @param blocker the blocker task
3334 * @throws InterruptedException if {@code blocker.block()} did so
3335 */
3336 public static void managedBlock(ManagedBlocker blocker)
3337 throws InterruptedException {
3338 ForkJoinPool p;
3339 ForkJoinWorkerThread wt;
3340 Thread t = Thread.currentThread();
3341 if ((t instanceof ForkJoinWorkerThread) &&
3342 (p = (wt = (ForkJoinWorkerThread)t).pool) != null) {
3343 WorkQueue w = wt.workQueue;
3344 while (!blocker.isReleasable()) {
3345 if (p.tryCompensate(w)) {
3346 try {
3347 do {} while (!blocker.isReleasable() &&
3348 !blocker.block());
3349 } finally {
3350 U.getAndAddLong(p, CTL, AC_UNIT);
3351 }
3352 break;
3353 }
3354 }
3355 }
3356 else {
3357 do {} while (!blocker.isReleasable() &&
3358 !blocker.block());
3359 }
3360 }
3361
3362 // AbstractExecutorService overrides. These rely on undocumented
3363 // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3364 // implement RunnableFuture.
3365
3366 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3367 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3368 }
3369
3370 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3371 return new ForkJoinTask.AdaptedCallable<T>(callable);
3372 }
3373
3374 // Unsafe mechanics
3375 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
3376 private static final long CTL;
3377 private static final long RUNSTATE;
3378 private static final long STEALCOUNTER;
3379 private static final long QLOCK;
3380 private static final int ABASE;
3381 private static final int ASHIFT;
3382
3383 static {
3384 try {
3385 CTL = U.objectFieldOffset
3386 (ForkJoinPool.class.getDeclaredField("ctl"));
3387 RUNSTATE = U.objectFieldOffset
3388 (ForkJoinPool.class.getDeclaredField("runState"));
3389 STEALCOUNTER = U.objectFieldOffset
3390 (ForkJoinPool.class.getDeclaredField("stealCounter"));
3391
3392 QLOCK = U.objectFieldOffset
3393 (WorkQueue.class.getDeclaredField("qlock"));
3394
3395 ABASE = U.arrayBaseOffset(ForkJoinTask[].class);
3396 int scale = U.arrayIndexScale(ForkJoinTask[].class);
3397 if ((scale & (scale - 1)) != 0)
3398 throw new Error("array index scale not a power of two");
3399 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3400
3401 } catch (ReflectiveOperationException e) {
3402 throw new Error(e);
3403 }
3404
3405 // Reduce the risk of rare disastrous classloading in first call to
3406 // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
3407 Class<?> ensureLoaded = LockSupport.class;
3408
3409 commonMaxSpares = DEFAULT_COMMON_MAX_SPARES;
3410 defaultForkJoinWorkerThreadFactory =
3411 new DefaultForkJoinWorkerThreadFactory();
3412 modifyThreadPermission = new RuntimePermission("modifyThread");
3413
3414 common = java.security.AccessController.doPrivileged
3415 (new java.security.PrivilegedAction<ForkJoinPool>() {
3416 public ForkJoinPool run() { return makeCommonPool(); }});
3417 int par = common.config & SMASK; // report 1 even if threads disabled
3418 commonParallelism = par > 0 ? par : 1;
3419 }
3420
3421 /**
3422 * Creates and returns the common pool, respecting user settings
3423 * specified via system properties.
3424 */
3425 private static ForkJoinPool makeCommonPool() {
3426 int parallelism = -1;
3427 ForkJoinWorkerThreadFactory factory = null;
3428 UncaughtExceptionHandler handler = null;
3429 try { // ignore exceptions in accessing/parsing properties
3430 String pp = System.getProperty
3431 ("java.util.concurrent.ForkJoinPool.common.parallelism");
3432 String fp = System.getProperty
3433 ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3434 String hp = System.getProperty
3435 ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3436 String mp = System.getProperty
3437 ("java.util.concurrent.ForkJoinPool.common.maximumSpares");
3438 if (pp != null)
3439 parallelism = Integer.parseInt(pp);
3440 if (fp != null)
3441 factory = ((ForkJoinWorkerThreadFactory)ClassLoader.
3442 getSystemClassLoader().loadClass(fp).newInstance());
3443 if (hp != null)
3444 handler = ((UncaughtExceptionHandler)ClassLoader.
3445 getSystemClassLoader().loadClass(hp).newInstance());
3446 if (mp != null)
3447 commonMaxSpares = Integer.parseInt(mp);
3448 } catch (Exception ignore) {
3449 }
3450 if (factory == null) {
3451 if (System.getSecurityManager() == null)
3452 factory = defaultForkJoinWorkerThreadFactory;
3453 else // use security-managed default
3454 factory = new InnocuousForkJoinWorkerThreadFactory();
3455 }
3456 if (parallelism < 0 && // default 1 less than #cores
3457 (parallelism = Runtime.getRuntime().availableProcessors() - 1) <= 0)
3458 parallelism = 1;
3459 if (parallelism > MAX_CAP)
3460 parallelism = MAX_CAP;
3461 return new ForkJoinPool(parallelism, factory, handler, LIFO_QUEUE,
3462 "ForkJoinPool.commonPool-worker-");
3463 }
3464
3465 /**
3466 * Factory for innocuous worker threads
3467 */
3468 static final class InnocuousForkJoinWorkerThreadFactory
3469 implements ForkJoinWorkerThreadFactory {
3470
3471 /**
3472 * An ACC to restrict permissions for the factory itself.
3473 * The constructed workers have no permissions set.
3474 */
3475 private static final AccessControlContext innocuousAcc;
3476 static {
3477 Permissions innocuousPerms = new Permissions();
3478 innocuousPerms.add(modifyThreadPermission);
3479 innocuousPerms.add(new RuntimePermission(
3480 "enableContextClassLoaderOverride"));
3481 innocuousPerms.add(new RuntimePermission(
3482 "modifyThreadGroup"));
3483 innocuousAcc = new AccessControlContext(new ProtectionDomain[] {
3484 new ProtectionDomain(null, innocuousPerms)
3485 });
3486 }
3487
3488 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
3489 return java.security.AccessController.doPrivileged(
3490 new java.security.PrivilegedAction<ForkJoinWorkerThread>() {
3491 public ForkJoinWorkerThread run() {
3492 return new ForkJoinWorkerThread.
3493 InnocuousForkJoinWorkerThread(pool);
3494 }}, innocuousAcc);
3495 }
3496 }
3497
3498 }