ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.263
Committed: Sun Aug 9 16:34:16 2015 UTC (8 years, 9 months ago) by jsr166
Branch: MAIN
Changes since 1.262: +1 -1 lines
Log Message:
typo

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.lang.Thread.UncaughtExceptionHandler;
10 import java.security.AccessControlContext;
11 import java.security.Permissions;
12 import java.security.ProtectionDomain;
13 import java.util.ArrayList;
14 import java.util.Arrays;
15 import java.util.Collection;
16 import java.util.Collections;
17 import java.util.List;
18 import java.util.concurrent.locks.ReentrantLock;
19 import java.util.concurrent.locks.LockSupport;
20
21 /**
22 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
23 * A {@code ForkJoinPool} provides the entry point for submissions
24 * from non-{@code ForkJoinTask} clients, as well as management and
25 * monitoring operations.
26 *
27 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
28 * ExecutorService} mainly by virtue of employing
29 * <em>work-stealing</em>: all threads in the pool attempt to find and
30 * execute tasks submitted to the pool and/or created by other active
31 * tasks (eventually blocking waiting for work if none exist). This
32 * enables efficient processing when most tasks spawn other subtasks
33 * (as do most {@code ForkJoinTask}s), as well as when many small
34 * tasks are submitted to the pool from external clients. Especially
35 * when setting <em>asyncMode</em> to true in constructors, {@code
36 * ForkJoinPool}s may also be appropriate for use with event-style
37 * tasks that are never joined.
38 *
39 * <p>A static {@link #commonPool()} is available and appropriate for
40 * most applications. The common pool is used by any ForkJoinTask that
41 * is not explicitly submitted to a specified pool. Using the common
42 * pool normally reduces resource usage (its threads are slowly
43 * reclaimed during periods of non-use, and reinstated upon subsequent
44 * use).
45 *
46 * <p>For applications that require separate or custom pools, a {@code
47 * ForkJoinPool} may be constructed with a given target parallelism
48 * level; by default, equal to the number of available processors.
49 * The pool attempts to maintain enough active (or available) threads
50 * by dynamically adding, suspending, or resuming internal worker
51 * threads, even if some tasks are stalled waiting to join others.
52 * However, no such adjustments are guaranteed in the face of blocked
53 * I/O or other unmanaged synchronization. The nested {@link
54 * ManagedBlocker} interface enables extension of the kinds of
55 * synchronization accommodated.
56 *
57 * <p>In addition to execution and lifecycle control methods, this
58 * class provides status check methods (for example
59 * {@link #getStealCount}) that are intended to aid in developing,
60 * tuning, and monitoring fork/join applications. Also, method
61 * {@link #toString} returns indications of pool state in a
62 * convenient form for informal monitoring.
63 *
64 * <p>As is the case with other ExecutorServices, there are three
65 * main task execution methods summarized in the following table.
66 * These are designed to be used primarily by clients not already
67 * engaged in fork/join computations in the current pool. The main
68 * forms of these methods accept instances of {@code ForkJoinTask},
69 * but overloaded forms also allow mixed execution of plain {@code
70 * Runnable}- or {@code Callable}- based activities as well. However,
71 * tasks that are already executing in a pool should normally instead
72 * use the within-computation forms listed in the table unless using
73 * async event-style tasks that are not usually joined, in which case
74 * there is little difference among choice of methods.
75 *
76 * <table BORDER CELLPADDING=3 CELLSPACING=1>
77 * <caption>Summary of task execution methods</caption>
78 * <tr>
79 * <td></td>
80 * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
81 * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
82 * </tr>
83 * <tr>
84 * <td> <b>Arrange async execution</b></td>
85 * <td> {@link #execute(ForkJoinTask)}</td>
86 * <td> {@link ForkJoinTask#fork}</td>
87 * </tr>
88 * <tr>
89 * <td> <b>Await and obtain result</b></td>
90 * <td> {@link #invoke(ForkJoinTask)}</td>
91 * <td> {@link ForkJoinTask#invoke}</td>
92 * </tr>
93 * <tr>
94 * <td> <b>Arrange exec and obtain Future</b></td>
95 * <td> {@link #submit(ForkJoinTask)}</td>
96 * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
97 * </tr>
98 * </table>
99 *
100 * <p>The common pool is by default constructed with default
101 * parameters, but these may be controlled by setting three
102 * {@linkplain System#getProperty system properties}:
103 * <ul>
104 * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
105 * - the parallelism level, a non-negative integer
106 * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
107 * - the class name of a {@link ForkJoinWorkerThreadFactory}
108 * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
109 * - the class name of a {@link UncaughtExceptionHandler}
110 * <li>{@code java.util.concurrent.ForkJoinPool.common.maximumSpares}
111 * - the maximum number of allowed extra threads to maintain target
112 * parallelism (default 256).
113 * </ul>
114 * If a {@link SecurityManager} is present and no factory is
115 * specified, then the default pool uses a factory supplying
116 * threads that have no {@link Permissions} enabled.
117 * The system class loader is used to load these classes.
118 * Upon any error in establishing these settings, default parameters
119 * are used. It is possible to disable or limit the use of threads in
120 * the common pool by setting the parallelism property to zero, and/or
121 * using a factory that may return {@code null}. However doing so may
122 * cause unjoined tasks to never be executed.
123 *
124 * <p><b>Implementation notes</b>: This implementation restricts the
125 * maximum number of running threads to 32767. Attempts to create
126 * pools with greater than the maximum number result in
127 * {@code IllegalArgumentException}.
128 *
129 * <p>This implementation rejects submitted tasks (that is, by throwing
130 * {@link RejectedExecutionException}) only when the pool is shut down
131 * or internal resources have been exhausted.
132 *
133 * @since 1.7
134 * @author Doug Lea
135 */
136 @sun.misc.Contended
137 public class ForkJoinPool extends AbstractExecutorService {
138
139 /*
140 * Implementation Overview
141 *
142 * This class and its nested classes provide the main
143 * functionality and control for a set of worker threads:
144 * Submissions from non-FJ threads enter into submission queues.
145 * Workers take these tasks and typically split them into subtasks
146 * that may be stolen by other workers. Preference rules give
147 * first priority to processing tasks from their own queues (LIFO
148 * or FIFO, depending on mode), then to randomized FIFO steals of
149 * tasks in other queues. This framework began as vehicle for
150 * supporting tree-structured parallelism using work-stealing.
151 * Over time, its scalability advantages led to extensions and
152 * changes to better support more diverse usage contexts. Because
153 * most internal methods and nested classes are interrelated,
154 * their main rationale and descriptions are presented here;
155 * individual methods and nested classes contain only brief
156 * comments about details.
157 *
158 * WorkQueues
159 * ==========
160 *
161 * Most operations occur within work-stealing queues (in nested
162 * class WorkQueue). These are special forms of Deques that
163 * support only three of the four possible end-operations -- push,
164 * pop, and poll (aka steal), under the further constraints that
165 * push and pop are called only from the owning thread (or, as
166 * extended here, under a lock), while poll may be called from
167 * other threads. (If you are unfamiliar with them, you probably
168 * want to read Herlihy and Shavit's book "The Art of
169 * Multiprocessor programming", chapter 16 describing these in
170 * more detail before proceeding.) The main work-stealing queue
171 * design is roughly similar to those in the papers "Dynamic
172 * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
173 * (http://research.sun.com/scalable/pubs/index.html) and
174 * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
175 * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
176 * The main differences ultimately stem from GC requirements that
177 * we null out taken slots as soon as we can, to maintain as small
178 * a footprint as possible even in programs generating huge
179 * numbers of tasks. To accomplish this, we shift the CAS
180 * arbitrating pop vs poll (steal) from being on the indices
181 * ("base" and "top") to the slots themselves.
182 *
183 * Adding tasks then takes the form of a classic array push(task)
184 * in a circular buffer:
185 * q.array[q.top++ % length] = task;
186 *
187 * (The actual code needs to null-check and size-check the array,
188 * uses masking, not mod, for indexing a power-of-two-sized array,
189 * properly fences accesses, and possibly signals waiting workers
190 * to start scanning -- see below.) Both a successful pop and
191 * poll mainly entail a CAS of a slot from non-null to null.
192 *
193 * The pop operation (always performed by owner) is:
194 * if ((the task at top slot is not null) and
195 * (CAS slot to null))
196 * decrement top and return task;
197 *
198 * And the poll operation (usually by a stealer) is
199 * if ((the task at base slot is not null) and
200 * (CAS slot to null))
201 * increment base and return task;
202 *
203 * There are several variants of each of these; for example most
204 * versions of poll pre-screen the CAS by rechecking that the base
205 * has not changed since reading the slot, and most methods only
206 * attempt the CAS if base appears not to be equal to top.
207 *
208 * Memory ordering. See "Correct and Efficient Work-Stealing for
209 * Weak Memory Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
210 * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
211 * analysis of memory ordering requirements in work-stealing
212 * algorithms similar to (but different than) the one used here.
213 * Extracting tasks in array slots via (fully fenced) CAS provides
214 * primary synchronization. The base and top indices imprecisely
215 * guide where to extract from. We do not always require strict
216 * orderings of array and index updates, so sometimes let them be
217 * subject to compiler and processor reorderings. However, the
218 * volatile "base" index also serves as a basis for memory
219 * ordering: Slot accesses are preceded by a read of base,
220 * ensuring happens-before ordering with respect to stealers (so
221 * the slots themselves can be read via plain array reads.) The
222 * only other memory orderings relied on are maintained in the
223 * course of signalling and activation (see below). A check that
224 * base == top indicates (momentary) emptiness, but otherwise may
225 * err on the side of possibly making the queue appear nonempty
226 * when a push, pop, or poll have not fully committed, or making
227 * it appear empty when an update of top has not yet been visibly
228 * written. (Method isEmpty() checks the case of a partially
229 * completed removal of the last element.) Because of this, the
230 * poll operation, considered individually, is not wait-free. One
231 * thief cannot successfully continue until another in-progress
232 * one (or, if previously empty, a push) visibly completes.
233 * However, in the aggregate, we ensure at least probabilistic
234 * non-blockingness. If an attempted steal fails, a scanning
235 * thief chooses a different random victim target to try next. So,
236 * in order for one thief to progress, it suffices for any
237 * in-progress poll or new push on any empty queue to
238 * complete. (This is why we normally use method pollAt and its
239 * variants that try once at the apparent base index, else
240 * consider alternative actions, rather than method poll, which
241 * retries.)
242 *
243 * This approach also enables support of a user mode in which
244 * local task processing is in FIFO, not LIFO order, simply by
245 * using poll rather than pop. This can be useful in
246 * message-passing frameworks in which tasks are never joined.
247 *
248 * WorkQueues are also used in a similar way for tasks submitted
249 * to the pool. We cannot mix these tasks in the same queues used
250 * by workers. Instead, we randomly associate submission queues
251 * with submitting threads, using a form of hashing. The
252 * ThreadLocalRandom probe value serves as a hash code for
253 * choosing existing queues, and may be randomly repositioned upon
254 * contention with other submitters. In essence, submitters act
255 * like workers except that they are restricted to executing local
256 * tasks that they submitted (or in the case of CountedCompleters,
257 * others with the same root task). Insertion of tasks in shared
258 * mode requires a lock but we use only a simple spinlock (using
259 * field qlock), because submitters encountering a busy queue move
260 * on to try or create other queues -- they block only when
261 * creating and registering new queues. Because it is used only as
262 * a spinlock, unlocking requires only a "releasing" store (using
263 * putOrderedInt). The qlock is also used during termination
264 * detection, in which case it is forced to a negative
265 * nonlockable value.
266 *
267 * Management
268 * ==========
269 *
270 * The main throughput advantages of work-stealing stem from
271 * decentralized control -- workers mostly take tasks from
272 * themselves or each other, at rates that can exceed a billion
273 * per second. The pool itself creates, activates (enables
274 * scanning for and running tasks), deactivates, blocks, and
275 * terminates threads, all with minimal central information.
276 * There are only a few properties that we can globally track or
277 * maintain, so we pack them into a small number of variables,
278 * often maintaining atomicity without blocking or locking.
279 * Nearly all essentially atomic control state is held in two
280 * volatile variables that are by far most often read (not
281 * written) as status and consistency checks. (Also, field
282 * "config" holds unchanging configuration state.)
283 *
284 * Field "ctl" contains 64 bits holding information needed to
285 * atomically decide to add, inactivate, enqueue (on an event
286 * queue), dequeue, and/or re-activate workers. To enable this
287 * packing, we restrict maximum parallelism to (1<<15)-1 (which is
288 * far in excess of normal operating range) to allow ids, counts,
289 * and their negations (used for thresholding) to fit into 16bit
290 * subfields.
291 *
292 * Field "runState" holds state bits (STARTED, STOP, etc). After
293 * starting, the field is updated (only during shutdown) under the
294 * auxState lock.
295 *
296 * Field "auxState" is a ReentrantLock subclass that also
297 * opportunistically holds some other bookkeeping fields accessed
298 * only when locked. It is mainly used to lock (infrequent)
299 * updates to runState and workQueues. The auxState instance is
300 * itself lazily constructed (see tryInitialize), requiring a
301 * double-check-style bootstrapping use of field runState, and
302 * locking a private static.
303 *
304 * Field "workQueues" holds references to WorkQueues. It is
305 * updated (only during worker creation and termination) under the
306 * lock, but is otherwise concurrently readable, and accessed
307 * directly. We also ensure that reads of the array reference
308 * itself never become too stale (for example, re-reading before
309 * each scan). To simplify index-based operations, the array size
310 * is always a power of two, and all readers must tolerate null
311 * slots. Worker queues are at odd indices. Shared (submission)
312 * queues are at even indices, up to a maximum of 64 slots, to
313 * limit growth even if array needs to expand to add more
314 * workers. Grouping them together in this way simplifies and
315 * speeds up task scanning.
316 *
317 * All worker thread creation is on-demand, triggered by task
318 * submissions, replacement of terminated workers, and/or
319 * compensation for blocked workers. However, all other support
320 * code is set up to work with other policies. To ensure that we
321 * do not hold on to worker references that would prevent GC, All
322 * accesses to workQueues are via indices into the workQueues
323 * array (which is one source of some of the messy code
324 * constructions here). In essence, the workQueues array serves as
325 * a weak reference mechanism. Thus for example the stack top
326 * subfield of ctl stores indices, not references.
327 *
328 * Queuing Idle Workers. Unlike HPC work-stealing frameworks, we
329 * cannot let workers spin indefinitely scanning for tasks when
330 * none can be found immediately, and we cannot start/resume
331 * workers unless there appear to be tasks available. On the
332 * other hand, we must quickly prod them into action when new
333 * tasks are submitted or generated. In many usages, ramp-up time
334 * to activate workers is the main limiting factor in overall
335 * performance, which is compounded at program start-up by JIT
336 * compilation and allocation. So we streamline this as much as
337 * possible.
338 *
339 * The "ctl" field atomically maintains active and total worker
340 * counts as well as a queue to place waiting threads so they can
341 * be located for signalling. Active counts also play the role of
342 * quiescence indicators, so are decremented when workers believe
343 * that there are no more tasks to execute. The "queue" is
344 * actually a form of Treiber stack. A stack is ideal for
345 * activating threads in most-recently used order. This improves
346 * performance and locality, outweighing the disadvantages of
347 * being prone to contention and inability to release a worker
348 * unless it is topmost on stack. We block/unblock workers after
349 * pushing on the idle worker stack (represented by the lower
350 * 32bit subfield of ctl) when they cannot find work. The top
351 * stack state holds the value of the "scanState" field of the
352 * worker: its index and status, plus a version counter that, in
353 * addition to the count subfields (also serving as version
354 * stamps) provide protection against Treiber stack ABA effects.
355 *
356 * Creating workers. To create a worker, we pre-increment total
357 * count (serving as a reservation), and attempt to construct a
358 * ForkJoinWorkerThread via its factory. Upon construction, the
359 * new thread invokes registerWorker, where it constructs a
360 * WorkQueue and is assigned an index in the workQueues array
361 * (expanding the array if necessary). The thread is then
362 * started. Upon any exception across these steps, or null return
363 * from factory, deregisterWorker adjusts counts and records
364 * accordingly. If a null return, the pool continues running with
365 * fewer than the target number workers. If exceptional, the
366 * exception is propagated, generally to some external caller.
367 * Worker index assignment avoids the bias in scanning that would
368 * occur if entries were sequentially packed starting at the front
369 * of the workQueues array. We treat the array as a simple
370 * power-of-two hash table, expanding as needed. The seedIndex
371 * increment ensures no collisions until a resize is needed or a
372 * worker is deregistered and replaced, and thereafter keeps
373 * probability of collision low. We cannot use
374 * ThreadLocalRandom.getProbe() for similar purposes here because
375 * the thread has not started yet, but do so for creating
376 * submission queues for existing external threads (see
377 * externalPush).
378 *
379 * WorkQueue field scanState is used by both workers and the pool
380 * to manage and track whether a worker is UNSIGNALLED (possibly
381 * blocked waiting for a signal). When a worker is inactivated,
382 * its scanState field is set, and is prevented from executing
383 * tasks, even though it must scan once for them to avoid queuing
384 * races. Note that scanState updates lag queue CAS releases so
385 * usage requires care. When queued, the lower 16 bits of
386 * scanState must hold its pool index. So we place the index there
387 * upon initialization (see registerWorker) and otherwise keep it
388 * there or restore it when necessary.
389 *
390 * The ctl field also serves as the basis for memory
391 * synchronization surrounding activation. This uses a more
392 * efficient version of a Dekker-like rule that task producers and
393 * consumers sync with each other by both writing/CASing ctl (even
394 * if to its current value). This would be extremely costly. So
395 * we relax it in several ways: (1) Producers only signal when
396 * their queue is empty. Other workers propagate this signal (in
397 * method scan) when they find tasks. (2) Workers only enqueue
398 * after scanning (see below) and not finding any tasks. (3)
399 * Rather than CASing ctl to its current value in the common case
400 * where no action is required, we reduce write contention by
401 * equivalently prefacing signalWork when called by an external
402 * task producer using a memory access with full-volatile
403 * semantics or a "fullFence". (4) For internal task producers we
404 * rely on the fact that even if no other workers awaken, the
405 * producer itself will eventually see the task and execute it.
406 *
407 * Almost always, too many signals are issued. A task producer
408 * cannot in general tell if some existing worker is in the midst
409 * of finishing one task (or already scanning) and ready to take
410 * another without being signalled. So the producer might instead
411 * activate a different worker that does not find any work, and
412 * then inactivates. This scarcely matters in steady-state
413 * computations involving all workers, but can create contention
414 * and bookkeeping bottlenecks during ramp-up, ramp-down, and small
415 * computations involving only a few workers.
416 *
417 * Scanning. Method scan() performs top-level scanning for tasks.
418 * Each scan traverses (and tries to poll from) each queue in
419 * pseudorandom permutation order by randomly selecting an origin
420 * index and a step value. (The pseudorandom generator need not
421 * have high-quality statistical properties in the long term, but
422 * just within computations; We use 64bit and 32bit Marsaglia
423 * XorShifts, which are cheap and suffice here.) Scanning also
424 * employs contention reduction: When scanning workers fail a CAS
425 * polling for work, they soon restart with a different
426 * pseudorandom scan order (thus likely retrying at different
427 * intervals). This improves throughput when many threads are
428 * trying to take tasks from few queues. Scans do not otherwise
429 * explicitly take into account core affinities, loads, cache
430 * localities, etc, However, they do exploit temporal locality
431 * (which usually approximates these) by preferring to re-poll (up
432 * to POLL_LIMIT times) from the same queue after a successful
433 * poll before trying others. Restricted forms of scanning occur
434 * in methods helpComplete and findNonEmptyStealQueue, and take
435 * similar but simpler forms.
436 *
437 * Deactivation and waiting. Queuing encounters several intrinsic
438 * races; most notably that a inactivating scanning worker can
439 * miss seeing a task produced during a scan. So when a worker
440 * cannot find a task to steal, it inactivates and enqueues, and
441 * then rescans to ensure that it didn't miss one, reactivating
442 * upon seeing one with probability approximately proportional to
443 * probability of a miss. (In most cases, the worker will be
444 * signalled before self-signalling, avoiding cascades of multiple
445 * signals for the same task).
446 *
447 * Workers block (in method awaitWork) using park/unpark;
448 * advertising the need for signallers to unpark by setting their
449 * "parker" fields.
450 *
451 * Trimming workers. To release resources after periods of lack of
452 * use, a worker starting to wait when the pool is quiescent will
453 * time out and terminate (see awaitWork) if the pool has remained
454 * quiescent for period IDLE_TIMEOUT, increasing the period as the
455 * number of threads decreases, eventually removing all workers.
456 *
457 * Shutdown and Termination. A call to shutdownNow invokes
458 * tryTerminate to atomically set a runState bit. The calling
459 * thread, as well as every other worker thereafter terminating,
460 * helps terminate others by setting their (qlock) status,
461 * cancelling their unprocessed tasks, and waking them up, doing
462 * so repeatedly until stable (but with a loop bounded by the
463 * number of workers). Calls to non-abrupt shutdown() preface
464 * this by checking whether termination should commence. This
465 * relies primarily on the active count bits of "ctl" maintaining
466 * consensus -- tryTerminate is called from awaitWork whenever
467 * quiescent. However, external submitters do not take part in
468 * this consensus. So, tryTerminate sweeps through queues (until
469 * stable) to ensure lack of in-flight submissions and workers
470 * about to process them before triggering the "STOP" phase of
471 * termination. (Note: there is an intrinsic conflict if
472 * helpQuiescePool is called when shutdown is enabled. Both wait
473 * for quiescence, but tryTerminate is biased to not trigger until
474 * helpQuiescePool completes.)
475 *
476 * Joining Tasks
477 * =============
478 *
479 * Any of several actions may be taken when one worker is waiting
480 * to join a task stolen (or always held) by another. Because we
481 * are multiplexing many tasks on to a pool of workers, we can't
482 * just let them block (as in Thread.join). We also cannot just
483 * reassign the joiner's run-time stack with another and replace
484 * it later, which would be a form of "continuation", that even if
485 * possible is not necessarily a good idea since we may need both
486 * an unblocked task and its continuation to progress. Instead we
487 * combine two tactics:
488 *
489 * Helping: Arranging for the joiner to execute some task that it
490 * would be running if the steal had not occurred.
491 *
492 * Compensating: Unless there are already enough live threads,
493 * method tryCompensate() may create or re-activate a spare
494 * thread to compensate for blocked joiners until they unblock.
495 *
496 * A third form (implemented in tryRemoveAndExec) amounts to
497 * helping a hypothetical compensator: If we can readily tell that
498 * a possible action of a compensator is to steal and execute the
499 * task being joined, the joining thread can do so directly,
500 * without the need for a compensation thread (although at the
501 * expense of larger run-time stacks, but the tradeoff is
502 * typically worthwhile).
503 *
504 * The ManagedBlocker extension API can't use helping so relies
505 * only on compensation in method awaitBlocker.
506 *
507 * The algorithm in helpStealer entails a form of "linear
508 * helping". Each worker records (in field currentSteal) the most
509 * recent task it stole from some other worker (or a submission).
510 * It also records (in field currentJoin) the task it is currently
511 * actively joining. Method helpStealer uses these markers to try
512 * to find a worker to help (i.e., steal back a task from and
513 * execute it) that could hasten completion of the actively joined
514 * task. Thus, the joiner executes a task that would be on its
515 * own local deque had the to-be-joined task not been stolen. This
516 * is a conservative variant of the approach described in Wagner &
517 * Calder "Leapfrogging: a portable technique for implementing
518 * efficient futures" SIGPLAN Notices, 1993
519 * (http://portal.acm.org/citation.cfm?id=155354). It differs in
520 * that: (1) We only maintain dependency links across workers upon
521 * steals, rather than use per-task bookkeeping. This sometimes
522 * requires a linear scan of workQueues array to locate stealers,
523 * but often doesn't because stealers leave hints (that may become
524 * stale/wrong) of where to locate them. It is only a hint
525 * because a worker might have had multiple steals and the hint
526 * records only one of them (usually the most current). Hinting
527 * isolates cost to when it is needed, rather than adding to
528 * per-task overhead. (2) It is "shallow", ignoring nesting and
529 * potentially cyclic mutual steals. (3) It is intentionally
530 * racy: field currentJoin is updated only while actively joining,
531 * which means that we miss links in the chain during long-lived
532 * tasks, GC stalls etc (which is OK since blocking in such cases
533 * is usually a good idea). (4) We bound the number of attempts
534 * to find work using checksums and fall back to suspending the
535 * worker and if necessary replacing it with another.
536 *
537 * Helping actions for CountedCompleters do not require tracking
538 * currentJoins: Method helpComplete takes and executes any task
539 * with the same root as the task being waited on (preferring
540 * local pops to non-local polls). However, this still entails
541 * some traversal of completer chains, so is less efficient than
542 * using CountedCompleters without explicit joins.
543 *
544 * Compensation does not aim to keep exactly the target
545 * parallelism number of unblocked threads running at any given
546 * time. Some previous versions of this class employed immediate
547 * compensations for any blocked join. However, in practice, the
548 * vast majority of blockages are transient byproducts of GC and
549 * other JVM or OS activities that are made worse by replacement.
550 * Currently, compensation is attempted only after validating that
551 * all purportedly active threads are processing tasks by checking
552 * field WorkQueue.scanState, which eliminates most false
553 * positives. Also, compensation is bypassed (tolerating fewer
554 * threads) in the most common case in which it is rarely
555 * beneficial: when a worker with an empty queue (thus no
556 * continuation tasks) blocks on a join and there still remain
557 * enough threads to ensure liveness.
558 *
559 * Spare threads are removed as soon as they notice that the
560 * target parallelism level has been exceeded, in method
561 * tryDropSpare. (Method scan arranges returns for rechecks upon
562 * each probe via the "bound" parameter.)
563 *
564 * The compensation mechanism may be bounded. Bounds for the
565 * commonPool (see commonMaxSpares) better enable JVMs to cope
566 * with programming errors and abuse before running out of
567 * resources to do so. In other cases, users may supply factories
568 * that limit thread construction. The effects of bounding in this
569 * pool (like all others) is imprecise. Total worker counts are
570 * decremented when threads deregister, not when they exit and
571 * resources are reclaimed by the JVM and OS. So the number of
572 * simultaneously live threads may transiently exceed bounds.
573 *
574 * Common Pool
575 * ===========
576 *
577 * The static common pool always exists after static
578 * initialization. Since it (or any other created pool) need
579 * never be used, we minimize initial construction overhead and
580 * footprint to the setup of about a dozen fields, with no nested
581 * allocation. Most bootstrapping occurs within method
582 * externalSubmit during the first submission to the pool.
583 *
584 * When external threads submit to the common pool, they can
585 * perform subtask processing (see externalHelpComplete and
586 * related methods) upon joins. This caller-helps policy makes it
587 * sensible to set common pool parallelism level to one (or more)
588 * less than the total number of available cores, or even zero for
589 * pure caller-runs. We do not need to record whether external
590 * submissions are to the common pool -- if not, external help
591 * methods return quickly. These submitters would otherwise be
592 * blocked waiting for completion, so the extra effort (with
593 * liberally sprinkled task status checks) in inapplicable cases
594 * amounts to an odd form of limited spin-wait before blocking in
595 * ForkJoinTask.join.
596 *
597 * As a more appropriate default in managed environments, unless
598 * overridden by system properties, we use workers of subclass
599 * InnocuousForkJoinWorkerThread when there is a SecurityManager
600 * present. These workers have no permissions set, do not belong
601 * to any user-defined ThreadGroup, and erase all ThreadLocals
602 * after executing any top-level task (see WorkQueue.runTask).
603 * The associated mechanics (mainly in ForkJoinWorkerThread) may
604 * be JVM-dependent and must access particular Thread class fields
605 * to achieve this effect.
606 *
607 * Style notes
608 * ===========
609 *
610 * Memory ordering relies mainly on Unsafe intrinsics that carry
611 * the further responsibility of explicitly performing null- and
612 * bounds- checks otherwise carried out implicitly by JVMs. This
613 * can be awkward and ugly, but also reflects the need to control
614 * outcomes across the unusual cases that arise in very racy code
615 * with very few invariants. So these explicit checks would exist
616 * in some form anyway. All fields are read into locals before
617 * use, and null-checked if they are references. This is usually
618 * done in a "C"-like style of listing declarations at the heads
619 * of methods or blocks, and using inline assignments on first
620 * encounter. Array bounds-checks are usually performed by
621 * masking with array.length-1, which relies on the invariant that
622 * these arrays are created with positive lengths, which is itself
623 * paranoically checked. Nearly all explicit checks lead to
624 * bypass/return, not exception throws, because they may
625 * legitimately arise due to cancellation/revocation during
626 * shutdown.
627 *
628 * There is a lot of representation-level coupling among classes
629 * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
630 * fields of WorkQueue maintain data structures managed by
631 * ForkJoinPool, so are directly accessed. There is little point
632 * trying to reduce this, since any associated future changes in
633 * representations will need to be accompanied by algorithmic
634 * changes anyway. Several methods intrinsically sprawl because
635 * they must accumulate sets of consistent reads of fields held in
636 * local variables. There are also other coding oddities
637 * (including several unnecessary-looking hoisted null checks)
638 * that help some methods perform reasonably even when interpreted
639 * (not compiled).
640 *
641 * The order of declarations in this file is (with a few exceptions):
642 * (1) Static utility functions
643 * (2) Nested (static) classes
644 * (3) Static fields
645 * (4) Fields, along with constants used when unpacking some of them
646 * (5) Internal control methods
647 * (6) Callbacks and other support for ForkJoinTask methods
648 * (7) Exported methods
649 * (8) Static block initializing statics in minimally dependent order
650 */
651
652 // Static utilities
653
654 /**
655 * If there is a security manager, makes sure caller has
656 * permission to modify threads.
657 */
658 private static void checkPermission() {
659 SecurityManager security = System.getSecurityManager();
660 if (security != null)
661 security.checkPermission(modifyThreadPermission);
662 }
663
664 // Nested classes
665
666 /**
667 * Factory for creating new {@link ForkJoinWorkerThread}s.
668 * A {@code ForkJoinWorkerThreadFactory} must be defined and used
669 * for {@code ForkJoinWorkerThread} subclasses that extend base
670 * functionality or initialize threads with different contexts.
671 */
672 public static interface ForkJoinWorkerThreadFactory {
673 /**
674 * Returns a new worker thread operating in the given pool.
675 *
676 * @param pool the pool this thread works in
677 * @return the new worker thread
678 * @throws NullPointerException if the pool is null
679 */
680 public ForkJoinWorkerThread newThread(ForkJoinPool pool);
681 }
682
683 /**
684 * Default ForkJoinWorkerThreadFactory implementation; creates a
685 * new ForkJoinWorkerThread.
686 */
687 static final class DefaultForkJoinWorkerThreadFactory
688 implements ForkJoinWorkerThreadFactory {
689 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
690 return new ForkJoinWorkerThread(pool);
691 }
692 }
693
694 /**
695 * Class for artificial tasks that are used to replace the target
696 * of local joins if they are removed from an interior queue slot
697 * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
698 * actually do anything beyond having a unique identity.
699 */
700 static final class EmptyTask extends ForkJoinTask<Void> {
701 private static final long serialVersionUID = -7721805057305804111L;
702 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
703 public final Void getRawResult() { return null; }
704 public final void setRawResult(Void x) {}
705 public final boolean exec() { return true; }
706 }
707
708 /**
709 * Additional fields and lock created upon initialization.
710 */
711 static final class AuxState extends ReentrantLock {
712 private static final long serialVersionUID = -6001602636862214147L;
713 volatile long stealCount; // cumulative steal count
714 long indexSeed; // index bits for registerWorker
715 AuxState() {}
716 }
717
718 // Constants shared across ForkJoinPool and WorkQueue
719
720 // Bounds
721 static final int SMASK = 0xffff; // short bits == max index
722 static final int MAX_CAP = 0x7fff; // max #workers - 1
723 static final int EVENMASK = 0xfffe; // even short bits
724 static final int SQMASK = 0x007e; // max 64 (even) slots
725
726 // Masks and units for WorkQueue.scanState and ctl sp subfield
727 static final int UNSIGNALLED = 1 << 31; // must be negative
728 static final int SS_SEQ = 1 << 16; // version count
729
730 // Mode bits for ForkJoinPool.config and WorkQueue.config
731 static final int MODE_MASK = 0xffff << 16; // top half of int
732 static final int SPARE_WORKER = 1 << 17; // set if tc > 0 on creation
733 static final int UNREGISTERED = 1 << 18; // to skip some of deregister
734 static final int FIFO_QUEUE = 1 << 31; // must be negative
735 static final int LIFO_QUEUE = 0; // for clarity
736 static final int IS_OWNED = 1; // low bit 0 if shared
737
738 /**
739 * The maximum number of task executions from the same queue
740 * before checking other queues, bounding unfairness and impact of
741 * infinite user task recursion. Must be a power of two minus 1.
742 */
743 static final int POLL_LIMIT = (1 << 10) - 1;
744
745 /**
746 * Queues supporting work-stealing as well as external task
747 * submission. See above for descriptions and algorithms.
748 * Performance on most platforms is very sensitive to placement of
749 * instances of both WorkQueues and their arrays -- we absolutely
750 * do not want multiple WorkQueue instances or multiple queue
751 * arrays sharing cache lines. The @Contended annotation alerts
752 * JVMs to try to keep instances apart.
753 */
754 @sun.misc.Contended
755 static final class WorkQueue {
756
757 /**
758 * Capacity of work-stealing queue array upon initialization.
759 * Must be a power of two; at least 4, but should be larger to
760 * reduce or eliminate cacheline sharing among queues.
761 * Currently, it is much larger, as a partial workaround for
762 * the fact that JVMs often place arrays in locations that
763 * share GC bookkeeping (especially cardmarks) such that
764 * per-write accesses encounter serious memory contention.
765 */
766 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
767
768 /**
769 * Maximum size for queue arrays. Must be a power of two less
770 * than or equal to 1 << (31 - width of array entry) to ensure
771 * lack of wraparound of index calculations, but defined to a
772 * value a bit less than this to help users trap runaway
773 * programs before saturating systems.
774 */
775 static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
776
777 // Instance fields
778
779 volatile int scanState; // versioned, negative if inactive
780 int stackPred; // pool stack (ctl) predecessor
781 int nsteals; // number of steals
782 int hint; // randomization and stealer index hint
783 int config; // pool index and mode
784 volatile int qlock; // 1: locked, < 0: terminate; else 0
785 volatile int base; // index of next slot for poll
786 int top; // index of next slot for push
787 ForkJoinTask<?>[] array; // the elements (initially unallocated)
788 final ForkJoinPool pool; // the containing pool (may be null)
789 final ForkJoinWorkerThread owner; // owning thread or null if shared
790 volatile Thread parker; // == owner during call to park; else null
791 volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
792 @sun.misc.Contended("group2") // separate from other fields
793 volatile ForkJoinTask<?> currentSteal; // nonnull when running some task
794
795 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner) {
796 this.pool = pool;
797 this.owner = owner;
798 // Place indices in the center of array (that is not yet allocated)
799 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
800 }
801
802 /**
803 * Returns an exportable index (used by ForkJoinWorkerThread).
804 */
805 final int getPoolIndex() {
806 return (config & 0xffff) >>> 1; // ignore odd/even tag bit
807 }
808
809 /**
810 * Returns the approximate number of tasks in the queue.
811 */
812 final int queueSize() {
813 int n = base - top; // read base first
814 return (n >= 0) ? 0 : -n; // ignore transient negative
815 }
816
817 /**
818 * Provides a more accurate estimate of whether this queue has
819 * any tasks than does queueSize, by checking whether a
820 * near-empty queue has at least one unclaimed task.
821 */
822 final boolean isEmpty() {
823 ForkJoinTask<?>[] a; int n, al, s;
824 return ((n = base - (s = top)) >= 0 || // possibly one task
825 (n == -1 && ((a = array) == null ||
826 (al = a.length) == 0 ||
827 a[(al - 1) & (s - 1)] == null)));
828 }
829
830 /**
831 * Pushes a task. Call only by owner in unshared queues.
832 *
833 * @param task the task. Caller must ensure non-null.
834 * @throws RejectedExecutionException if array cannot be resized
835 */
836 final void push(ForkJoinTask<?> task) {
837 int b = base, s = top, al, d; ForkJoinTask<?>[] a;
838 if ((a = array) != null && (al = a.length) > 0) {
839 a[(al - 1) & s] = task; // relaxed writes OK
840 top = s + 1;
841 ForkJoinPool p = pool;
842 U.storeFence(); // ensure fields written before use
843 if ((d = b - s) == 0 && p != null)
844 p.signalWork();
845 else if (al + d == 1)
846 growArray();
847 }
848 }
849
850 /**
851 * Initializes or doubles the capacity of array. Call either
852 * by owner or with lock held -- it is OK for base, but not
853 * top, to move while resizings are in progress.
854 */
855 final ForkJoinTask<?>[] growArray() {
856 ForkJoinTask<?>[] oldA = array;
857 int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
858 if (size < INITIAL_QUEUE_CAPACITY || size > MAXIMUM_QUEUE_CAPACITY)
859 throw new RejectedExecutionException("Queue capacity exceeded");
860 int oldMask, t, b;
861 ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
862 if (oldA != null && (oldMask = oldA.length - 1) > 0 &&
863 (t = top) - (b = base) > 0) {
864 int mask = size - 1;
865 do { // emulate poll from old array, push to new array
866 int index = b & oldMask;
867 long offset = ((long)index << ASHIFT) + ABASE;
868 ForkJoinTask<?> x = (ForkJoinTask<?>)
869 U.getObjectVolatile(oldA, offset);
870 if (x != null &&
871 U.compareAndSwapObject(oldA, offset, x, null))
872 a[b & mask] = x;
873 } while (++b != t);
874 U.storeFence();
875 }
876 return a;
877 }
878
879 /**
880 * Takes next task, if one exists, in LIFO order. Call only
881 * by owner in unshared queues.
882 */
883 final ForkJoinTask<?> pop() {
884 int b = base, s = top, al, i; ForkJoinTask<?>[] a;
885 if ((a = array) != null && b != s && (al = a.length) > 0) {
886 int index = (al - 1) & --s;
887 long offset = ((long)index << ASHIFT) + ABASE;
888 ForkJoinTask<?> t = (ForkJoinTask<?>)
889 U.getObject(a, offset);
890 if (t != null &&
891 U.compareAndSwapObject(a, offset, t, null)) {
892 top = s;
893 U.storeFence();
894 return t;
895 }
896 }
897 return null;
898 }
899
900 /**
901 * Takes a task in FIFO order if b is base of queue and a task
902 * can be claimed without contention. Specialized versions
903 * appear in ForkJoinPool methods scan and helpStealer.
904 */
905 final ForkJoinTask<?> pollAt(int b) {
906 ForkJoinTask<?>[] a; int al;
907 if ((a = array) != null && (al = a.length) > 0) {
908 int index = (al - 1) & b;
909 long offset = ((long)index << ASHIFT) + ABASE;
910 ForkJoinTask<?> t = (ForkJoinTask<?>)
911 U.getObjectVolatile(a, offset);
912 if (t != null && b++ == base &&
913 U.compareAndSwapObject(a, offset, t, null)) {
914 base = b;
915 return t;
916 }
917 }
918 return null;
919 }
920
921 /**
922 * Takes next task, if one exists, in FIFO order.
923 */
924 final ForkJoinTask<?> poll() {
925 for (;;) {
926 int b = base, s = top, d, al; ForkJoinTask<?>[] a;
927 if ((a = array) != null && (d = b - s) < 0 &&
928 (al = a.length) > 0) {
929 int index = (al - 1) & b;
930 long offset = ((long)index << ASHIFT) + ABASE;
931 ForkJoinTask<?> t = (ForkJoinTask<?>)
932 U.getObjectVolatile(a, offset);
933 if (b++ == base) {
934 if (t != null) {
935 if (U.compareAndSwapObject(a, offset, t, null)) {
936 base = b;
937 return t;
938 }
939 }
940 else if (d == -1)
941 break; // now empty
942 }
943 }
944 else
945 break;
946 }
947 return null;
948 }
949
950 /**
951 * Takes next task, if one exists, in order specified by mode.
952 */
953 final ForkJoinTask<?> nextLocalTask() {
954 return (config < 0) ? poll() : pop();
955 }
956
957 /**
958 * Returns next task, if one exists, in order specified by mode.
959 */
960 final ForkJoinTask<?> peek() {
961 int b = base, al; ForkJoinTask<?>[] a;
962 return ((a = array) != null && (al = a.length) > 0) ?
963 a[(al - 1) & (config < 0 ? b : top - 1)] : null;
964 }
965
966 /**
967 * Pops the given task only if it is at the current top.
968 */
969 final boolean tryUnpush(ForkJoinTask<?> task) {
970 int b = base, s = top, al; ForkJoinTask<?>[] a;
971 if ((a = array) != null && b != s && (al = a.length) > 0) {
972 int index = (al - 1) & --s;
973 long offset = ((long)index << ASHIFT) + ABASE;
974 if (U.compareAndSwapObject(a, offset, task, null)) {
975 top = s;
976 U.storeFence();
977 return true;
978 }
979 }
980 return false;
981 }
982
983 /**
984 * Shared version of push. Fails if already locked.
985 *
986 * @return status: > 0 locked, 0 was empty, < 0 was nonempty
987 */
988 final int sharedPush(ForkJoinTask<?> task) {
989 int stat;
990 if (U.compareAndSwapInt(this, QLOCK, 0, 1)) {
991 int b = base, s = top, al, d; ForkJoinTask<?>[] a;
992 if ((a = array) != null && (al = a.length) > 0 &&
993 al - 1 + (d = b - s) > 0) {
994 a[(al - 1) & s] = task;
995 top = s + 1; // relaxed writes OK here
996 U.putOrderedInt(this, QLOCK, 0);
997 if (d < 0)
998 stat = d;
999 else {
1000 U.fullFence(); // sync with signallees
1001 stat = 0;
1002 }
1003 }
1004 else {
1005 growAndSharedPush(task);
1006 stat = 0;
1007 }
1008 }
1009 else
1010 stat = 1;
1011 return stat;
1012 }
1013
1014 /*
1015 * Helper for sharedPush; called only when locked and resize
1016 * needed.
1017 */
1018 private void growAndSharedPush(ForkJoinTask<?> task) {
1019 try {
1020 growArray();
1021 int s = top, al; ForkJoinTask<?>[] a;
1022 if ((a = array) != null && (al = a.length) > 0) {
1023 a[(al - 1) & s] = task;
1024 top = s + 1;
1025 }
1026 } finally {
1027 qlock = 0;
1028 }
1029 }
1030
1031 /**
1032 * Shared version of pop
1033 */
1034 final boolean trySharedUnpush(ForkJoinTask<?> task) {
1035 boolean popped = false;
1036 int s = top - 1, al; ForkJoinTask<?>[] a;
1037 if ((a = array) != null && (al = a.length) > 0) {
1038 int index = (al - 1) & s;
1039 long offset = ((long)index << ASHIFT) + ABASE;
1040 ForkJoinTask<?> t = (ForkJoinTask<?>)
1041 U.getObject(a, offset);
1042 if (t == task &&
1043 U.compareAndSwapInt(this, QLOCK, 0, 1)) {
1044 if (U.compareAndSwapObject(a, offset, task, null)) {
1045 popped = true;
1046 top = s;
1047 }
1048 U.putOrderedInt(this, QLOCK, 0);
1049 }
1050 }
1051 return popped;
1052 }
1053
1054 /**
1055 * Removes and cancels all known tasks, ignoring any exceptions.
1056 */
1057 final void cancelAll() {
1058 ForkJoinTask<?> t;
1059 if ((t = currentJoin) != null) {
1060 currentJoin = null;
1061 ForkJoinTask.cancelIgnoringExceptions(t);
1062 }
1063 if ((t = currentSteal) != null) {
1064 currentSteal = null;
1065 ForkJoinTask.cancelIgnoringExceptions(t);
1066 }
1067 while ((t = poll()) != null)
1068 ForkJoinTask.cancelIgnoringExceptions(t);
1069 }
1070
1071 // Specialized execution methods
1072
1073 /**
1074 * Pops and executes up to POLL_LIMIT tasks or until empty.
1075 */
1076 final void localPopAndExec() {
1077 for (int nexec = 0;;) {
1078 int b = base, s = top, al; ForkJoinTask<?>[] a;
1079 if ((a = array) != null && b != s && (al = a.length) > 0) {
1080 int index = (al - 1) & --s;
1081 long offset = ((long)index << ASHIFT) + ABASE;
1082 ForkJoinTask<?> t = (ForkJoinTask<?>)
1083 U.getAndSetObject(a, offset, null);
1084 if (t != null) {
1085 top = s;
1086 (currentSteal = t).doExec();
1087 if (++nexec > POLL_LIMIT)
1088 break;
1089 }
1090 else
1091 break;
1092 }
1093 else
1094 break;
1095 }
1096 }
1097
1098 /**
1099 * Polls and executes up to POLL_LIMIT tasks or until empty.
1100 */
1101 final void localPollAndExec() {
1102 for (int nexec = 0;;) {
1103 int b = base, s = top, al; ForkJoinTask<?>[] a;
1104 if ((a = array) != null && b != s && (al = a.length) > 0) {
1105 int index = (al - 1) & b++;
1106 long offset = ((long)index << ASHIFT) + ABASE;
1107 ForkJoinTask<?> t = (ForkJoinTask<?>)
1108 U.getAndSetObject(a, offset, null);
1109 if (t != null) {
1110 base = b;
1111 t.doExec();
1112 if (++nexec > POLL_LIMIT)
1113 break;
1114 }
1115 }
1116 else
1117 break;
1118 }
1119 }
1120
1121 /**
1122 * Executes the given task and (some) remaining local tasks.
1123 */
1124 final void runTask(ForkJoinTask<?> task) {
1125 if (task != null) {
1126 task.doExec();
1127 if (config < 0)
1128 localPollAndExec();
1129 else
1130 localPopAndExec();
1131 int ns = ++nsteals;
1132 ForkJoinWorkerThread thread = owner;
1133 currentSteal = null;
1134 if (ns < 0) // collect on overflow
1135 transferStealCount(pool);
1136 if (thread != null)
1137 thread.afterTopLevelExec();
1138 }
1139 }
1140
1141 /**
1142 * Adds steal count to pool steal count if it exists, and resets.
1143 */
1144 final void transferStealCount(ForkJoinPool p) {
1145 AuxState aux;
1146 if (p != null && (aux = p.auxState) != null) {
1147 int s = nsteals;
1148 nsteals = 0; // if negative, correct for overflow
1149 long inc = (long)(s < 0 ? Integer.MAX_VALUE : s);
1150 aux.lock();
1151 try {
1152 aux.stealCount += inc;
1153 } finally {
1154 aux.unlock();
1155 }
1156 }
1157 }
1158
1159 /**
1160 * If present, removes from queue and executes the given task,
1161 * or any other cancelled task. Used only by awaitJoin.
1162 *
1163 * @return true if queue empty and task not known to be done
1164 */
1165 final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
1166 if (task != null && task.status >= 0) {
1167 int b, s, d, al; ForkJoinTask<?>[] a;
1168 while ((d = (b = base) - (s = top)) < 0 &&
1169 (a = array) != null && (al = a.length) > 0) {
1170 for (;;) { // traverse from s to b
1171 int index = --s & (al - 1);
1172 long offset = (index << ASHIFT) + ABASE;
1173 ForkJoinTask<?> t = (ForkJoinTask<?>)
1174 U.getObjectVolatile(a, offset);
1175 if (t == null)
1176 break; // restart
1177 else if (t == task) {
1178 boolean removed = false;
1179 if (s + 1 == top) { // pop
1180 if (U.compareAndSwapObject(a, offset, t, null)) {
1181 top = s;
1182 U.storeFence();
1183 removed = true;
1184 }
1185 }
1186 else if (base == b) // replace with proxy
1187 removed = U.compareAndSwapObject(a, offset, t,
1188 new EmptyTask());
1189 if (removed) {
1190 ForkJoinTask<?> ps = currentSteal;
1191 (currentSteal = task).doExec();
1192 currentSteal = ps;
1193 }
1194 break;
1195 }
1196 else if (t.status < 0 && s + 1 == top) {
1197 if (U.compareAndSwapObject(a, offset, t, null)) {
1198 top = s;
1199 U.storeFence();
1200 }
1201 break; // was cancelled
1202 }
1203 else if (++d == 0) {
1204 if (base != b) // rescan
1205 break;
1206 return false;
1207 }
1208 }
1209 if (task.status < 0)
1210 return false;
1211 }
1212 }
1213 return true;
1214 }
1215
1216 /**
1217 * Pops task if in the same CC computation as the given task,
1218 * in either shared or owned mode. Used only by helpComplete.
1219 */
1220 final CountedCompleter<?> popCC(CountedCompleter<?> task, int mode) {
1221 int b = base, s = top, al; ForkJoinTask<?>[] a;
1222 if ((a = array) != null && b != s && (al = a.length) > 0) {
1223 int index = (al - 1) & (s - 1);
1224 long offset = ((long)index << ASHIFT) + ABASE;
1225 ForkJoinTask<?> o = (ForkJoinTask<?>)
1226 U.getObjectVolatile(a, offset);
1227 if (o instanceof CountedCompleter) {
1228 CountedCompleter<?> t = (CountedCompleter<?>)o;
1229 for (CountedCompleter<?> r = t;;) {
1230 if (r == task) {
1231 if ((mode & IS_OWNED) == 0) {
1232 boolean popped;
1233 if (U.compareAndSwapInt(this, QLOCK, 0, 1)) {
1234 if (popped =
1235 U.compareAndSwapObject(a, offset,
1236 t, null))
1237 top = s - 1;
1238 U.putOrderedInt(this, QLOCK, 0);
1239 if (popped)
1240 return t;
1241 }
1242 }
1243 else if (U.compareAndSwapObject(a, offset,
1244 t, null)) {
1245 top = s - 1;
1246 U.storeFence();
1247 return t;
1248 }
1249 break;
1250 }
1251 else if ((r = r.completer) == null) // try parent
1252 break;
1253 }
1254 }
1255 }
1256 return null;
1257 }
1258
1259 /**
1260 * Steals and runs a task in the same CC computation as the
1261 * given task if one exists and can be taken without
1262 * contention. Otherwise returns a checksum/control value for
1263 * use by method helpComplete.
1264 *
1265 * @return 1 if successful, 2 if retryable (lost to another
1266 * stealer), -1 if non-empty but no matching task found, else
1267 * the base index, forced negative.
1268 */
1269 final int pollAndExecCC(CountedCompleter<?> task) {
1270 ForkJoinTask<?>[] a;
1271 int b = base, s = top, al, h;
1272 if ((a = array) != null && b != s && (al = a.length) > 0) {
1273 int index = (al - 1) & b;
1274 long offset = ((long)index << ASHIFT) + ABASE;
1275 ForkJoinTask<?> o = (ForkJoinTask<?>)
1276 U.getObjectVolatile(a, offset);
1277 if (o == null)
1278 h = 2; // retryable
1279 else if (!(o instanceof CountedCompleter))
1280 h = -1; // unmatchable
1281 else {
1282 CountedCompleter<?> t = (CountedCompleter<?>)o;
1283 for (CountedCompleter<?> r = t;;) {
1284 if (r == task) {
1285 if (b++ == base &&
1286 U.compareAndSwapObject(a, offset, t, null)) {
1287 base = b;
1288 t.doExec();
1289 h = 1; // success
1290 }
1291 else
1292 h = 2; // lost CAS
1293 break;
1294 }
1295 else if ((r = r.completer) == null) {
1296 h = -1; // unmatched
1297 break;
1298 }
1299 }
1300 }
1301 }
1302 else
1303 h = b | Integer.MIN_VALUE; // to sense movement on re-poll
1304 return h;
1305 }
1306
1307 /**
1308 * Returns true if owned and not known to be blocked.
1309 */
1310 final boolean isApparentlyUnblocked() {
1311 Thread wt; Thread.State s;
1312 return (scanState >= 0 &&
1313 (wt = owner) != null &&
1314 (s = wt.getState()) != Thread.State.BLOCKED &&
1315 s != Thread.State.WAITING &&
1316 s != Thread.State.TIMED_WAITING);
1317 }
1318
1319 // Unsafe mechanics. Note that some are (and must be) the same as in FJP
1320 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
1321 private static final int ABASE;
1322 private static final int ASHIFT;
1323 private static final long QLOCK;
1324 static {
1325 try {
1326 QLOCK = U.objectFieldOffset
1327 (WorkQueue.class.getDeclaredField("qlock"));
1328 ABASE = U.arrayBaseOffset(ForkJoinTask[].class);
1329 int scale = U.arrayIndexScale(ForkJoinTask[].class);
1330 if ((scale & (scale - 1)) != 0)
1331 throw new Error("array index scale not a power of two");
1332 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1333 } catch (ReflectiveOperationException e) {
1334 throw new Error(e);
1335 }
1336 }
1337 }
1338
1339 // static fields (initialized in static initializer below)
1340
1341 /**
1342 * Creates a new ForkJoinWorkerThread. This factory is used unless
1343 * overridden in ForkJoinPool constructors.
1344 */
1345 public static final ForkJoinWorkerThreadFactory
1346 defaultForkJoinWorkerThreadFactory;
1347
1348 /**
1349 * Permission required for callers of methods that may start or
1350 * kill threads. Also used as a private static lock in tryInitialize.
1351 */
1352 private static final RuntimePermission modifyThreadPermission;
1353
1354 /**
1355 * Common (static) pool. Non-null for public use unless a static
1356 * construction exception, but internal usages null-check on use
1357 * to paranoically avoid potential initialization circularities
1358 * as well as to simplify generated code.
1359 */
1360 static final ForkJoinPool common;
1361
1362 /**
1363 * Common pool parallelism. To allow simpler use and management
1364 * when common pool threads are disabled, we allow the underlying
1365 * common.parallelism field to be zero, but in that case still report
1366 * parallelism as 1 to reflect resulting caller-runs mechanics.
1367 */
1368 static final int commonParallelism;
1369
1370 /**
1371 * Limit on spare thread construction in tryCompensate.
1372 */
1373 private static int commonMaxSpares;
1374
1375 /**
1376 * Sequence number for creating workerNamePrefix.
1377 */
1378 private static int poolNumberSequence;
1379
1380 /**
1381 * Returns the next sequence number. We don't expect this to
1382 * ever contend, so use simple builtin sync.
1383 */
1384 private static final synchronized int nextPoolId() {
1385 return ++poolNumberSequence;
1386 }
1387
1388 // static configuration constants
1389
1390 /**
1391 * Initial timeout value (in milliseconds) for the thread
1392 * triggering quiescence to park waiting for new work. On timeout,
1393 * the thread will instead try to shrink the number of
1394 * workers. The value should be large enough to avoid overly
1395 * aggressive shrinkage during most transient stalls (long GCs
1396 * etc).
1397 */
1398 private static final long IDLE_TIMEOUT_MS = 2000L; // 2sec
1399
1400 /**
1401 * Tolerance for idle timeouts, to cope with timer undershoots
1402 */
1403 private static final long TIMEOUT_SLOP_MS = 20L; // 20ms
1404
1405 /**
1406 * The initial value for commonMaxSpares during static
1407 * initialization unless overridden using System property
1408 * "java.util.concurrent.ForkJoinPool.common.maximumSpares". The
1409 * default value is far in excess of normal requirements, but also
1410 * far short of MAX_CAP and typical OS thread limits, so allows
1411 * JVMs to catch misuse/abuse before running out of resources
1412 * needed to do so.
1413 */
1414 private static final int DEFAULT_COMMON_MAX_SPARES = 256;
1415
1416 /**
1417 * Increment for seed generators. See class ThreadLocal for
1418 * explanation.
1419 */
1420 private static final int SEED_INCREMENT = 0x9e3779b9;
1421
1422 /*
1423 * Bits and masks for field ctl, packed with 4 16 bit subfields:
1424 * AC: Number of active running workers minus target parallelism
1425 * TC: Number of total workers minus target parallelism
1426 * SS: version count and status of top waiting thread
1427 * ID: poolIndex of top of Treiber stack of waiters
1428 *
1429 * When convenient, we can extract the lower 32 stack top bits
1430 * (including version bits) as sp=(int)ctl. The offsets of counts
1431 * by the target parallelism and the positionings of fields makes
1432 * it possible to perform the most common checks via sign tests of
1433 * fields: When ac is negative, there are not enough active
1434 * workers, when tc is negative, there are not enough total
1435 * workers. When sp is non-zero, there are waiting workers. To
1436 * deal with possibly negative fields, we use casts in and out of
1437 * "short" and/or signed shifts to maintain signedness.
1438 *
1439 * Because it occupies uppermost bits, we can add one active count
1440 * using getAndAddLong of AC_UNIT, rather than CAS, when returning
1441 * from a blocked join. Other updates entail multiple subfields
1442 * and masking, requiring CAS.
1443 */
1444
1445 // Lower and upper word masks
1446 private static final long SP_MASK = 0xffffffffL;
1447 private static final long UC_MASK = ~SP_MASK;
1448
1449 // Active counts
1450 private static final int AC_SHIFT = 48;
1451 private static final long AC_UNIT = 0x0001L << AC_SHIFT;
1452 private static final long AC_MASK = 0xffffL << AC_SHIFT;
1453
1454 // Total counts
1455 private static final int TC_SHIFT = 32;
1456 private static final long TC_UNIT = 0x0001L << TC_SHIFT;
1457 private static final long TC_MASK = 0xffffL << TC_SHIFT;
1458 private static final long ADD_WORKER = 0x0001L << (TC_SHIFT + 15); // sign
1459
1460 // runState bits: SHUTDOWN must be negative, others arbitrary powers of two
1461 private static final int STARTED = 1;
1462 private static final int STOP = 1 << 1;
1463 private static final int TERMINATED = 1 << 2;
1464 private static final int SHUTDOWN = 1 << 31;
1465
1466 // Instance fields
1467 volatile long ctl; // main pool control
1468 volatile int runState;
1469 final int config; // parallelism, mode
1470 AuxState auxState; // lock, steal counts
1471 volatile WorkQueue[] workQueues; // main registry
1472 final String workerNamePrefix; // to create worker name string
1473 final ForkJoinWorkerThreadFactory factory;
1474 final UncaughtExceptionHandler ueh; // per-worker UEH
1475
1476 /**
1477 * Instantiates fields upon first submission, or upon shutdown if
1478 * no submissions. If checkTermination true, also responds to
1479 * termination by external calls submitting tasks.
1480 */
1481 private void tryInitialize(boolean checkTermination) {
1482 if ((runState & STARTED) == 0) { // bootstrap by locking static field
1483 int rs; // create workQueues array with size a power of two
1484 int p = config & SMASK; // ensure at least 2 slots
1485 int n = (p > 1) ? p - 1 : 1;
1486 n |= n >>> 1; n |= n >>> 2; n |= n >>> 4;
1487 n |= n >>> 8; n |= n >>> 16; n = ((n + 1) << 1) & SMASK;
1488 AuxState aux = new AuxState();
1489 WorkQueue[] ws = new WorkQueue[n];
1490 synchronized (modifyThreadPermission) { // double-check
1491 if (((rs = runState) & STARTED) == 0) {
1492 rs |= STARTED;
1493 workQueues = ws;
1494 auxState = aux;
1495 runState = rs;
1496 }
1497 }
1498 }
1499 if (checkTermination && runState < 0) {
1500 tryTerminate(false, false); // help terminate
1501 throw new RejectedExecutionException();
1502 }
1503 }
1504
1505 // Creating, registering and deregistering workers
1506
1507 /**
1508 * Tries to construct and start one worker. Assumes that total
1509 * count has already been incremented as a reservation. Invokes
1510 * deregisterWorker on any failure.
1511 *
1512 * @param isSpare true if this is a spare thread
1513 * @return true if successful
1514 */
1515 private boolean createWorker(boolean isSpare) {
1516 ForkJoinWorkerThreadFactory fac = factory;
1517 Throwable ex = null;
1518 ForkJoinWorkerThread wt = null;
1519 WorkQueue q;
1520 try {
1521 if (fac != null && (wt = fac.newThread(this)) != null) {
1522 if (isSpare && (q = wt.workQueue) != null)
1523 q.config |= SPARE_WORKER;
1524 wt.start();
1525 return true;
1526 }
1527 } catch (Throwable rex) {
1528 ex = rex;
1529 }
1530 deregisterWorker(wt, ex);
1531 return false;
1532 }
1533
1534 /**
1535 * Tries to add one worker, incrementing ctl counts before doing
1536 * so, relying on createWorker to back out on failure.
1537 *
1538 * @param c incoming ctl value, with total count negative and no
1539 * idle workers. On CAS failure, c is refreshed and retried if
1540 * this holds (otherwise, a new worker is not needed).
1541 */
1542 private void tryAddWorker(long c) {
1543 do {
1544 long nc = ((AC_MASK & (c + AC_UNIT)) |
1545 (TC_MASK & (c + TC_UNIT)));
1546 if (ctl == c && U.compareAndSwapLong(this, CTL, c, nc)) {
1547 createWorker(false);
1548 break;
1549 }
1550 } while (((c = ctl) & ADD_WORKER) != 0L && (int)c == 0);
1551 }
1552
1553 /**
1554 * Callback from ForkJoinWorkerThread constructor to establish and
1555 * record its WorkQueue.
1556 *
1557 * @param wt the worker thread
1558 * @return the worker's queue
1559 */
1560 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1561 UncaughtExceptionHandler handler;
1562 AuxState aux;
1563 wt.setDaemon(true); // configure thread
1564 if ((handler = ueh) != null)
1565 wt.setUncaughtExceptionHandler(handler);
1566 WorkQueue w = new WorkQueue(this, wt);
1567 int i = 0; // assign a pool index
1568 int mode = config & MODE_MASK;
1569 int rs = runState;
1570 if ((aux = auxState) != null) {
1571 aux.lock();
1572 try {
1573 int s = (int)(aux.indexSeed += SEED_INCREMENT), n, m;
1574 WorkQueue[] ws = workQueues;
1575 if (ws != null && (n = ws.length) > 0) {
1576 i = (m = n - 1) & ((s << 1) | 1); // odd-numbered indices
1577 if (ws[i] != null) { // collision
1578 int probes = 0; // step by approx half n
1579 int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1580 while (ws[i = (i + step) & m] != null) {
1581 if (++probes >= n) {
1582 workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1583 m = n - 1;
1584 probes = 0;
1585 }
1586 }
1587 }
1588 w.hint = s; // use as random seed
1589 w.config = i | mode;
1590 w.scanState = i | (s & 0x7fff0000); // random seq bits
1591 ws[i] = w;
1592 }
1593 } finally {
1594 aux.unlock();
1595 }
1596 }
1597 wt.setName(workerNamePrefix.concat(Integer.toString(i >>> 1)));
1598 return w;
1599 }
1600
1601 /**
1602 * Final callback from terminating worker, as well as upon failure
1603 * to construct or start a worker. Removes record of worker from
1604 * array, and adjusts counts. If pool is shutting down, tries to
1605 * complete termination.
1606 *
1607 * @param wt the worker thread, or null if construction failed
1608 * @param ex the exception causing failure, or null if none
1609 */
1610 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1611 WorkQueue w = null;
1612 int rs = runState;
1613 if (wt != null && (w = wt.workQueue) != null) {
1614 AuxState aux; WorkQueue[] ws; // remove index from array
1615 int idx = w.config & SMASK;
1616 int ns = w.nsteals;
1617 if ((aux = auxState) != null) {
1618 aux.lock();
1619 try {
1620 if ((ws = workQueues) != null && ws.length > idx &&
1621 ws[idx] == w)
1622 ws[idx] = null;
1623 aux.stealCount += ns;
1624 } finally {
1625 aux.unlock();
1626 }
1627 }
1628 }
1629 if (w == null || (w.config & UNREGISTERED) == 0) { // else pre-adjusted
1630 long c; // decrement counts
1631 do {} while (!U.compareAndSwapLong
1632 (this, CTL, c = ctl, ((AC_MASK & (c - AC_UNIT)) |
1633 (TC_MASK & (c - TC_UNIT)) |
1634 (SP_MASK & c))));
1635 }
1636 if (w != null) {
1637 w.qlock = -1; // ensure set
1638 w.cancelAll(); // cancel remaining tasks
1639 }
1640 for (;;) { // possibly replace
1641 WorkQueue[] ws; int wl, sp; long c;
1642 if (tryTerminate(false, false) || w == null || w.array == null ||
1643 (runState & STOP) != 0 || (ws = workQueues) == null ||
1644 (wl = ws.length) <= 0) // already terminating
1645 break;
1646 else if ((sp = (int)(c = ctl)) != 0) { // wake up replacement
1647 if (tryRelease(c, ws[(wl - 1) & sp], AC_UNIT))
1648 break;
1649 }
1650 else if (ex != null && (c & ADD_WORKER) != 0L) {
1651 tryAddWorker(c); // create replacement
1652 break;
1653 }
1654 else // don't need replacement
1655 break;
1656 }
1657 if (ex == null) // help clean on way out
1658 ForkJoinTask.helpExpungeStaleExceptions();
1659 else // rethrow
1660 ForkJoinTask.rethrow(ex);
1661 }
1662
1663 // Signalling
1664
1665 /**
1666 * Tries to create or activate a worker if too few are active.
1667 */
1668 final void signalWork() {
1669 for (;;) {
1670 long c; int sp, i; WorkQueue v; WorkQueue[] ws;
1671 if ((c = ctl) >= 0L) // enough workers
1672 break;
1673 else if ((sp = (int)c) == 0) { // no idle workers
1674 if ((c & ADD_WORKER) != 0L) // too few workers
1675 tryAddWorker(c);
1676 break;
1677 }
1678 else if ((ws = workQueues) == null)
1679 break; // unstarted/terminated
1680 else if (ws.length <= (i = sp & SMASK))
1681 break; // terminated
1682 else if ((v = ws[i]) == null)
1683 break; // terminating
1684 else {
1685 int ns = sp & ~UNSIGNALLED;
1686 int vs = v.scanState;
1687 long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + AC_UNIT));
1688 if (sp == vs && U.compareAndSwapLong(this, CTL, c, nc)) {
1689 v.scanState = ns;
1690 LockSupport.unpark(v.parker);
1691 break;
1692 }
1693 }
1694 }
1695 }
1696
1697 /**
1698 * Signals and releases worker v if it is top of idle worker
1699 * stack. This performs a one-shot version of signalWork only if
1700 * there is (apparently) at least one idle worker.
1701 *
1702 * @param c incoming ctl value
1703 * @param v if non-null, a worker
1704 * @param inc the increment to active count (zero when compensating)
1705 * @return true if successful
1706 */
1707 private boolean tryRelease(long c, WorkQueue v, long inc) {
1708 int sp = (int)c, ns = sp & ~UNSIGNALLED;
1709 if (v != null) {
1710 int vs = v.scanState;
1711 long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + inc));
1712 if (sp == vs && U.compareAndSwapLong(this, CTL, c, nc)) {
1713 v.scanState = ns;
1714 LockSupport.unpark(v.parker);
1715 return true;
1716 }
1717 }
1718 return false;
1719 }
1720
1721 /**
1722 * With approx probability of a missed signal, tries (once) to
1723 * reactivate worker w (or some other worker), failing if stale or
1724 * known to be already active.
1725 *
1726 * @param w the worker
1727 * @param ws the workQueue array to use
1728 * @param r random seed
1729 */
1730 private void tryReactivate(WorkQueue w, WorkQueue[] ws, int r) {
1731 long c; int sp, wl, m; WorkQueue v;
1732 if ((sp = (int)(c = ctl)) != 0 && w != null &&
1733 ws != null && (wl = ws.length) > 0 &&
1734 ((m = wl - 1) & ((sp ^ r) >>> 16)) <= 1 &&
1735 (v = ws[m & sp]) != null) {
1736 long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + AC_UNIT));
1737 int ns = sp & ~UNSIGNALLED;
1738 if (w.scanState < 0 &&
1739 v.scanState == sp &&
1740 U.compareAndSwapLong(this, CTL, c, nc)) {
1741 v.scanState = ns;
1742 LockSupport.unpark(v.parker);
1743 }
1744 }
1745 }
1746
1747 /**
1748 * If worker w exists and is active, enqueues and sets status to inactive.
1749 *
1750 * @param w the worker
1751 * @param ss current (non-negative) scanState
1752 */
1753 private void inactivate(WorkQueue w, int ss) {
1754 int ns = (ss + SS_SEQ) | UNSIGNALLED;
1755 long lc = ns & SP_MASK, nc, c;
1756 if (w != null) {
1757 w.scanState = ns;
1758 do {
1759 nc = lc | (UC_MASK & ((c = ctl) - AC_UNIT));
1760 w.stackPred = (int)c;
1761 } while (!U.compareAndSwapLong(this, CTL, c, nc));
1762 }
1763 }
1764
1765 /**
1766 * Possibly blocks worker w waiting for signal, or returns
1767 * negative status if the worker should terminate. May return
1768 * without status change if multiple stale unparks and/or
1769 * interrupts occur.
1770 *
1771 * @param w the calling worker
1772 * @return negative if w should terminate
1773 */
1774 private int awaitWork(WorkQueue w) {
1775 int stat = 0;
1776 if (w != null && w.scanState < 0) {
1777 long c = ctl;
1778 if ((int)(c >> AC_SHIFT) + (config & SMASK) <= 0)
1779 stat = timedAwaitWork(w, c); // possibly quiescent
1780 else if ((runState & STOP) != 0)
1781 stat = w.qlock = -1; // pool terminating
1782 else if ((stat = w.qlock) >= 0 && w.scanState < 0) {
1783 w.parker = Thread.currentThread();
1784 if (w.scanState < 0) { // recheck after write
1785 LockSupport.park(this);
1786 if ((stat = w.qlock) >= 0 && w.scanState < 0) {
1787 Thread.interrupted(); // clear status
1788 LockSupport.park(this); // retry once
1789 }
1790 }
1791 w.parker = null;
1792 }
1793 }
1794 return stat;
1795 }
1796
1797 /**
1798 * Possibly triggers shutdown and tries (once) to block worker
1799 * when pool is (or may be) quiescent. Waits up to a duration
1800 * determined by number of workers. On timeout, if ctl has not
1801 * changed, terminates the worker, which will in turn wake up
1802 * another worker to possibly repeat this process.
1803 *
1804 * @param w the calling worker
1805 * @return negative if w should terminate
1806 */
1807 private int timedAwaitWork(WorkQueue w, long c) {
1808 int stat = 0;
1809 int scale = 1 - (short)(c >>> TC_SHIFT);
1810 long deadline = (((scale <= 0) ? 1 : scale) * IDLE_TIMEOUT_MS +
1811 System.currentTimeMillis());
1812 if (w != null && w.scanState < 0) {
1813 int ss; AuxState aux;
1814 if (runState < 0 && tryTerminate(false, false))
1815 stat = w.qlock = -1; // help terminate
1816 else if ((stat = w.qlock) >= 0 && w.scanState < 0) {
1817 w.parker = Thread.currentThread();
1818 if (w.scanState < 0)
1819 LockSupport.parkUntil(this, deadline);
1820 w.parker = null;
1821 if ((stat = w.qlock) >= 0 && (ss = w.scanState) < 0 &&
1822 !Thread.interrupted() && (int)c == ss &&
1823 (aux = auxState) != null && ctl == c &&
1824 deadline - System.currentTimeMillis() <= TIMEOUT_SLOP_MS) {
1825 aux.lock();
1826 try { // pre-deregister
1827 WorkQueue[] ws;
1828 int cfg = w.config, idx = cfg & SMASK;
1829 long nc = ((UC_MASK & (c - TC_UNIT)) |
1830 (SP_MASK & w.stackPred));
1831 if ((ws = workQueues) != null &&
1832 idx < ws.length && idx >= 0 && ws[idx] == w &&
1833 U.compareAndSwapLong(this, CTL, c, nc)) {
1834 ws[idx] = null;
1835 w.config = cfg | UNREGISTERED;
1836 stat = w.qlock = -1;
1837 }
1838 } finally {
1839 aux.unlock();
1840 }
1841 }
1842 }
1843 }
1844 return stat;
1845 }
1846
1847 /**
1848 * If the given worker is a spare with no queued tasks, and there
1849 * are enough existing workers, drops it from ctl counts and sets
1850 * its state to terminated.
1851 *
1852 * @param w the calling worker -- must be a spare
1853 * @return true if dropped (in which case it must not process more tasks)
1854 */
1855 private boolean tryDropSpare(WorkQueue w) {
1856 if (w != null && w.isEmpty()) { // no local tasks
1857 long c; int sp, wl; WorkQueue[] ws; WorkQueue v;
1858 while ((short)((c = ctl) >> TC_SHIFT) > 0 &&
1859 ((sp = (int)c) != 0 || (int)(c >> AC_SHIFT) > 0) &&
1860 (ws = workQueues) != null && (wl = ws.length) > 0) {
1861 boolean dropped, canDrop;
1862 if (sp == 0) { // no queued workers
1863 long nc = ((AC_MASK & (c - AC_UNIT)) |
1864 (TC_MASK & (c - TC_UNIT)) | (SP_MASK & c));
1865 dropped = U.compareAndSwapLong(this, CTL, c, nc);
1866 }
1867 else if (
1868 (v = ws[(wl - 1) & sp]) == null || v.scanState != sp)
1869 dropped = false; // stale; retry
1870 else {
1871 long nc = v.stackPred & SP_MASK;
1872 if (w == v || w.scanState >= 0) {
1873 canDrop = true; // w unqueued or topmost
1874 nc |= ((AC_MASK & c) | // ensure replacement
1875 (TC_MASK & (c - TC_UNIT)));
1876 }
1877 else { // w may be queued
1878 canDrop = false; // help uncover
1879 nc |= ((AC_MASK & (c + AC_UNIT)) |
1880 (TC_MASK & c));
1881 }
1882 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1883 v.scanState = sp & ~UNSIGNALLED;
1884 LockSupport.unpark(v.parker);
1885 dropped = canDrop;
1886 }
1887 else
1888 dropped = false;
1889 }
1890 if (dropped) { // pre-deregister
1891 int cfg = w.config, idx = cfg & SMASK;
1892 if (idx >= 0 && idx < ws.length && ws[idx] == w)
1893 ws[idx] = null;
1894 w.config = cfg | UNREGISTERED;
1895 w.qlock = -1;
1896 return true;
1897 }
1898 }
1899 }
1900 return false;
1901 }
1902
1903 /**
1904 * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1905 */
1906 final void runWorker(WorkQueue w) {
1907 w.growArray(); // allocate queue
1908 int bound = (w.config & SPARE_WORKER) != 0 ? 0 : POLL_LIMIT;
1909 long seed = w.hint * 0xdaba0b6eb09322e3L; // initial random seed
1910 for (long r = (seed == 0L) ? 1L : seed;;) { // ensure nonzero
1911 if (bound == 0 && tryDropSpare(w))
1912 break;
1913 // high bits of prev seed for step; current low bits for idx
1914 int step = (int)(r >>> 48) | 1;
1915 r ^= r >>> 12; r ^= r << 25; r ^= r >>> 27; // xorshift
1916 if (scan(w, bound, step, (int)r) < 0 && awaitWork(w) < 0)
1917 break;
1918 }
1919 }
1920
1921 // Scanning for tasks
1922
1923 /**
1924 * Repeatedly scans for and tries to steal and execute (via
1925 * workQueue.runTask) a queued task. Each scan traverses queues in
1926 * pseudorandom permutation. Upon finding a non-empty queue, makes
1927 * at most the given bound attempts to re-poll (fewer if
1928 * contended) on the same queue before returning (impossible
1929 * scanState value) 0 to restart scan. Else returns after at least
1930 * 1 and at most 32 full scans.
1931 *
1932 * @param w the worker (via its WorkQueue)
1933 * @param bound repoll bound as bitmask (0 if spare)
1934 * @param step (circular) index increment per iteration (must be odd)
1935 * @param r a random seed for origin index
1936 * @return negative if should await signal
1937 */
1938 private int scan(WorkQueue w, int bound, int step, int r) {
1939 int stat = 0, wl; WorkQueue[] ws;
1940 if ((ws = workQueues) != null && w != null && (wl = ws.length) > 0) {
1941 for (int m = wl - 1,
1942 origin = m & r, idx = origin,
1943 npolls = 0,
1944 ss = w.scanState;;) { // negative if inactive
1945 WorkQueue q; ForkJoinTask<?>[] a; int b, d, al;
1946 if ((q = ws[idx]) != null && (d = (b = q.base) - q.top) < 0 &&
1947 (a = q.array) != null && (al = a.length) > 0) {
1948 int index = (al - 1) & b;
1949 long offset = ((long)index << ASHIFT) + ABASE;
1950 ForkJoinTask<?> t = (ForkJoinTask<?>)
1951 U.getObjectVolatile(a, offset);
1952 if (t == null)
1953 break; // empty or busy
1954 else if (b++ != q.base)
1955 break; // busy
1956 else if (ss < 0) {
1957 tryReactivate(w, ws, r);
1958 break; // retry upon rescan
1959 }
1960 else if (!U.compareAndSwapObject(a, offset, t, null))
1961 break; // contended
1962 else {
1963 q.base = b;
1964 w.currentSteal = t;
1965 if (d != -1) // propagate signal
1966 signalWork();
1967 w.runTask(t);
1968 if (++npolls > bound)
1969 break;
1970 }
1971 }
1972 else if (npolls != 0) // rescan
1973 break;
1974 else if ((idx = (idx + step) & m) == origin) {
1975 if (ss < 0) { // await signal
1976 stat = ss;
1977 break;
1978 }
1979 else if (r >= 0) {
1980 inactivate(w, ss);
1981 break;
1982 }
1983 else
1984 r <<= 1; // at most 31 rescans
1985 }
1986 }
1987 }
1988 return stat;
1989 }
1990
1991 // Joining tasks
1992
1993 /**
1994 * Tries to steal and run tasks within the target's computation.
1995 * Uses a variant of the top-level algorithm, restricted to tasks
1996 * with the given task as ancestor: It prefers taking and running
1997 * eligible tasks popped from the worker's own queue (via
1998 * popCC). Otherwise it scans others, randomly moving on
1999 * contention or execution, deciding to give up based on a
2000 * checksum (via return codes from pollAndExecCC). The maxTasks
2001 * argument supports external usages; internal calls use zero,
2002 * allowing unbounded steps (external calls trap non-positive
2003 * values).
2004 *
2005 * @param w caller
2006 * @param maxTasks if non-zero, the maximum number of other tasks to run
2007 * @return task status on exit
2008 */
2009 final int helpComplete(WorkQueue w, CountedCompleter<?> task,
2010 int maxTasks) {
2011 WorkQueue[] ws; int s = 0, wl;
2012 if ((ws = workQueues) != null && (wl = ws.length) > 1 &&
2013 task != null && w != null) {
2014 for (int m = wl - 1,
2015 mode = w.config,
2016 r = ~mode, // scanning seed
2017 origin = r & m, k = origin, // first queue to scan
2018 step = 3, // first scan step
2019 h = 1, // 1:ran, >1:contended, <0:hash
2020 oldSum = 0, checkSum = 0;;) {
2021 CountedCompleter<?> p; WorkQueue q; int i;
2022 if ((s = task.status) < 0)
2023 break;
2024 if (h == 1 && (p = w.popCC(task, mode)) != null) {
2025 p.doExec(); // run local task
2026 if (maxTasks != 0 && --maxTasks == 0)
2027 break;
2028 origin = k; // reset
2029 oldSum = checkSum = 0;
2030 }
2031 else { // poll other worker queues
2032 if ((i = k | 1) < 0 || i > m || (q = ws[i]) == null)
2033 h = 0;
2034 else if ((h = q.pollAndExecCC(task)) < 0)
2035 checkSum += h;
2036 if (h > 0) {
2037 if (h == 1 && maxTasks != 0 && --maxTasks == 0)
2038 break;
2039 step = (r >>> 16) | 3;
2040 r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
2041 k = origin = r & m; // move and restart
2042 oldSum = checkSum = 0;
2043 }
2044 else if ((k = (k + step) & m) == origin) {
2045 if (oldSum == (oldSum = checkSum))
2046 break;
2047 checkSum = 0;
2048 }
2049 }
2050 }
2051 }
2052 return s;
2053 }
2054
2055 /**
2056 * Tries to locate and execute tasks for a stealer of the given
2057 * task, or in turn one of its stealers, Traces currentSteal ->
2058 * currentJoin links looking for a thread working on a descendant
2059 * of the given task and with a non-empty queue to steal back and
2060 * execute tasks from. The first call to this method upon a
2061 * waiting join will often entail scanning/search, (which is OK
2062 * because the joiner has nothing better to do), but this method
2063 * leaves hints in workers to speed up subsequent calls.
2064 *
2065 * @param w caller
2066 * @param task the task to join
2067 */
2068 private void helpStealer(WorkQueue w, ForkJoinTask<?> task) {
2069 if (task != null && w != null) {
2070 ForkJoinTask<?> ps = w.currentSteal;
2071 WorkQueue[] ws; int wl, oldSum = 0;
2072 outer: while (w.tryRemoveAndExec(task) && task.status >= 0 &&
2073 (ws = workQueues) != null && (wl = ws.length) > 0) {
2074 ForkJoinTask<?> subtask;
2075 int m = wl - 1, checkSum = 0; // for stability check
2076 WorkQueue j = w, v; // v is subtask stealer
2077 descent: for (subtask = task; subtask.status >= 0; ) {
2078 for (int h = j.hint | 1, k = 0, i;;) {
2079 if ((v = ws[i = (h + (k << 1)) & m]) != null) {
2080 if (v.currentSteal == subtask) {
2081 j.hint = i;
2082 break;
2083 }
2084 checkSum += v.base;
2085 }
2086 if (++k > m) // can't find stealer
2087 break outer;
2088 }
2089
2090 for (;;) { // help v or descend
2091 ForkJoinTask<?>[] a; int b, al;
2092 if (subtask.status < 0) // too late to help
2093 break descent;
2094 checkSum += (b = v.base);
2095 ForkJoinTask<?> next = v.currentJoin;
2096 ForkJoinTask<?> t = null;
2097 if ((a = v.array) != null && (al = a.length) > 0) {
2098 int index = (al - 1) & b;
2099 long offset = ((long)index << ASHIFT) + ABASE;
2100 t = (ForkJoinTask<?>)
2101 U.getObjectVolatile(a, offset);
2102 if (t != null && b++ == v.base) {
2103 if (j.currentJoin != subtask ||
2104 v.currentSteal != subtask ||
2105 subtask.status < 0)
2106 break descent; // stale
2107 if (U.compareAndSwapObject(a, offset, t, null)) {
2108 v.base = b;
2109 w.currentSteal = t;
2110 for (int top = w.top;;) {
2111 t.doExec(); // help
2112 w.currentSteal = ps;
2113 if (task.status < 0)
2114 break outer;
2115 if (w.top == top)
2116 break; // run local tasks
2117 if ((t = w.pop()) == null)
2118 break descent;
2119 w.currentSteal = t;
2120 }
2121 }
2122 }
2123 }
2124 if (t == null && b == v.base && b - v.top >= 0) {
2125 if ((subtask = next) == null) { // try to descend
2126 if (next == v.currentJoin &&
2127 oldSum == (oldSum = checkSum))
2128 break outer;
2129 break descent;
2130 }
2131 j = v;
2132 break;
2133 }
2134 }
2135 }
2136 }
2137 }
2138 }
2139
2140 /**
2141 * Tries to decrement active count (sometimes implicitly) and
2142 * possibly release or create a compensating worker in preparation
2143 * for blocking. Returns false (retryable by caller), on
2144 * contention, detected staleness, instability, or termination.
2145 *
2146 * @param w caller
2147 */
2148 private boolean tryCompensate(WorkQueue w) {
2149 boolean canBlock; int wl;
2150 long c = ctl;
2151 WorkQueue[] ws = workQueues;
2152 int pc = config & SMASK;
2153 int ac = pc + (int)(c >> AC_SHIFT);
2154 int tc = pc + (short)(c >> TC_SHIFT);
2155 if (w == null || w.qlock < 0 || pc == 0 || // terminating or disabled
2156 ws == null || (wl = ws.length) <= 0)
2157 canBlock = false;
2158 else {
2159 int m = wl - 1, sp;
2160 boolean busy = true; // validate ac
2161 for (int i = 0; i <= m; ++i) {
2162 int k; WorkQueue v;
2163 if ((k = (i << 1) | 1) <= m && k >= 0 && (v = ws[k]) != null &&
2164 v.scanState >= 0 && v.currentSteal == null) {
2165 busy = false;
2166 break;
2167 }
2168 }
2169 if (!busy || ctl != c)
2170 canBlock = false; // unstable or stale
2171 else if ((sp = (int)c) != 0) // release idle worker
2172 canBlock = tryRelease(c, ws[m & sp], 0L);
2173 else if (tc >= pc && ac > 1 && w.isEmpty()) {
2174 long nc = ((AC_MASK & (c - AC_UNIT)) |
2175 (~AC_MASK & c)); // uncompensated
2176 canBlock = U.compareAndSwapLong(this, CTL, c, nc);
2177 }
2178 else if (tc >= MAX_CAP ||
2179 (this == common && tc >= pc + commonMaxSpares))
2180 throw new RejectedExecutionException(
2181 "Thread limit exceeded replacing blocked worker");
2182 else { // similar to tryAddWorker
2183 boolean isSpare = (tc >= pc);
2184 long nc = (AC_MASK & c) | (TC_MASK & (c + TC_UNIT));
2185 canBlock = (U.compareAndSwapLong(this, CTL, c, nc) &&
2186 createWorker(isSpare)); // throws on exception
2187 }
2188 }
2189 return canBlock;
2190 }
2191
2192 /**
2193 * Helps and/or blocks until the given task is done or timeout.
2194 *
2195 * @param w caller
2196 * @param task the task
2197 * @param deadline for timed waits, if nonzero
2198 * @return task status on exit
2199 */
2200 final int awaitJoin(WorkQueue w, ForkJoinTask<?> task, long deadline) {
2201 int s = 0;
2202 if (w != null) {
2203 ForkJoinTask<?> prevJoin = w.currentJoin;
2204 if (task != null && (s = task.status) >= 0) {
2205 w.currentJoin = task;
2206 CountedCompleter<?> cc = (task instanceof CountedCompleter) ?
2207 (CountedCompleter<?>)task : null;
2208 for (;;) {
2209 if (cc != null)
2210 helpComplete(w, cc, 0);
2211 else
2212 helpStealer(w, task);
2213 if ((s = task.status) < 0)
2214 break;
2215 long ms, ns;
2216 if (deadline == 0L)
2217 ms = 0L;
2218 else if ((ns = deadline - System.nanoTime()) <= 0L)
2219 break;
2220 else if ((ms = TimeUnit.NANOSECONDS.toMillis(ns)) <= 0L)
2221 ms = 1L;
2222 if (tryCompensate(w)) {
2223 task.internalWait(ms);
2224 U.getAndAddLong(this, CTL, AC_UNIT);
2225 }
2226 if ((s = task.status) < 0)
2227 break;
2228 }
2229 w.currentJoin = prevJoin;
2230 }
2231 }
2232 return s;
2233 }
2234
2235 // Specialized scanning
2236
2237 /**
2238 * Returns a (probably) non-empty steal queue, if one is found
2239 * during a scan, else null. This method must be retried by
2240 * caller if, by the time it tries to use the queue, it is empty.
2241 */
2242 private WorkQueue findNonEmptyStealQueue() {
2243 WorkQueue[] ws; int wl; // one-shot version of scan loop
2244 int r = ThreadLocalRandom.nextSecondarySeed();
2245 if ((ws = workQueues) != null && (wl = ws.length) > 0) {
2246 int m = wl - 1, origin = r & m;
2247 for (int k = origin, oldSum = 0, checkSum = 0;;) {
2248 WorkQueue q; int b;
2249 if ((q = ws[k]) != null) {
2250 if ((b = q.base) - q.top < 0)
2251 return q;
2252 checkSum += b;
2253 }
2254 if ((k = (k + 1) & m) == origin) {
2255 if (oldSum == (oldSum = checkSum))
2256 break;
2257 checkSum = 0;
2258 }
2259 }
2260 }
2261 return null;
2262 }
2263
2264 /**
2265 * Runs tasks until {@code isQuiescent()}. We piggyback on
2266 * active count ctl maintenance, but rather than blocking
2267 * when tasks cannot be found, we rescan until all others cannot
2268 * find tasks either.
2269 */
2270 final void helpQuiescePool(WorkQueue w) {
2271 ForkJoinTask<?> ps = w.currentSteal; // save context
2272 int wc = w.config;
2273 for (boolean active = true;;) {
2274 long c; WorkQueue q; ForkJoinTask<?> t;
2275 if (wc >= 0 && (t = w.pop()) != null) { // run locals if LIFO
2276 (w.currentSteal = t).doExec();
2277 w.currentSteal = ps;
2278 }
2279 else if ((q = findNonEmptyStealQueue()) != null) {
2280 if (!active) { // re-establish active count
2281 active = true;
2282 U.getAndAddLong(this, CTL, AC_UNIT);
2283 }
2284 if ((t = q.pollAt(q.base)) != null) {
2285 (w.currentSteal = t).doExec();
2286 w.currentSteal = ps;
2287 if (++w.nsteals < 0)
2288 w.transferStealCount(this);
2289 }
2290 }
2291 else if (active) { // decrement active count without queuing
2292 long nc = (AC_MASK & ((c = ctl) - AC_UNIT)) | (~AC_MASK & c);
2293 if (U.compareAndSwapLong(this, CTL, c, nc))
2294 active = false;
2295 }
2296 else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) <= 0 &&
2297 U.compareAndSwapLong(this, CTL, c, c + AC_UNIT))
2298 break;
2299 }
2300 }
2301
2302 /**
2303 * Gets and removes a local or stolen task for the given worker.
2304 *
2305 * @return a task, if available
2306 */
2307 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2308 for (ForkJoinTask<?> t;;) {
2309 WorkQueue q;
2310 if ((t = w.nextLocalTask()) != null)
2311 return t;
2312 if ((q = findNonEmptyStealQueue()) == null)
2313 return null;
2314 if ((t = q.pollAt(q.base)) != null)
2315 return t;
2316 }
2317 }
2318
2319 /**
2320 * Returns a cheap heuristic guide for task partitioning when
2321 * programmers, frameworks, tools, or languages have little or no
2322 * idea about task granularity. In essence, by offering this
2323 * method, we ask users only about tradeoffs in overhead vs
2324 * expected throughput and its variance, rather than how finely to
2325 * partition tasks.
2326 *
2327 * In a steady state strict (tree-structured) computation, each
2328 * thread makes available for stealing enough tasks for other
2329 * threads to remain active. Inductively, if all threads play by
2330 * the same rules, each thread should make available only a
2331 * constant number of tasks.
2332 *
2333 * The minimum useful constant is just 1. But using a value of 1
2334 * would require immediate replenishment upon each steal to
2335 * maintain enough tasks, which is infeasible. Further,
2336 * partitionings/granularities of offered tasks should minimize
2337 * steal rates, which in general means that threads nearer the top
2338 * of computation tree should generate more than those nearer the
2339 * bottom. In perfect steady state, each thread is at
2340 * approximately the same level of computation tree. However,
2341 * producing extra tasks amortizes the uncertainty of progress and
2342 * diffusion assumptions.
2343 *
2344 * So, users will want to use values larger (but not much larger)
2345 * than 1 to both smooth over transient shortages and hedge
2346 * against uneven progress; as traded off against the cost of
2347 * extra task overhead. We leave the user to pick a threshold
2348 * value to compare with the results of this call to guide
2349 * decisions, but recommend values such as 3.
2350 *
2351 * When all threads are active, it is on average OK to estimate
2352 * surplus strictly locally. In steady-state, if one thread is
2353 * maintaining say 2 surplus tasks, then so are others. So we can
2354 * just use estimated queue length. However, this strategy alone
2355 * leads to serious mis-estimates in some non-steady-state
2356 * conditions (ramp-up, ramp-down, other stalls). We can detect
2357 * many of these by further considering the number of "idle"
2358 * threads, that are known to have zero queued tasks, so
2359 * compensate by a factor of (#idle/#active) threads.
2360 */
2361 static int getSurplusQueuedTaskCount() {
2362 Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2363 if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) {
2364 int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2365 int n = (q = wt.workQueue).top - q.base;
2366 int a = (int)(pool.ctl >> AC_SHIFT) + p;
2367 return n - (a > (p >>>= 1) ? 0 :
2368 a > (p >>>= 1) ? 1 :
2369 a > (p >>>= 1) ? 2 :
2370 a > (p >>>= 1) ? 4 :
2371 8);
2372 }
2373 return 0;
2374 }
2375
2376 // Termination
2377
2378 /**
2379 * Possibly initiates and/or completes termination.
2380 *
2381 * @param now if true, unconditionally terminate, else only
2382 * if no work and no active workers
2383 * @param enable if true, terminate when next possible
2384 * @return true if now terminating or terminated
2385 */
2386 private boolean tryTerminate(boolean now, boolean enable) {
2387 AuxState aux; int rs;
2388 if ((rs = runState) >= 0 && (!enable || this == common))
2389 return false;
2390 while ((aux = auxState) == null)
2391 tryInitialize(false);
2392 aux.lock();
2393 rs = runState = runState | SHUTDOWN;
2394 aux.unlock();
2395 if ((rs & STOP) == 0) {
2396 if (!now) { // check quiescence
2397 for (long oldSum = 0L;;) { // repeat until stable
2398 WorkQueue[] ws; WorkQueue w; int m, b, sp; long c;
2399 long checkSum = ctl;
2400 if ((int)(checkSum >> AC_SHIFT) + (config & SMASK) > 0)
2401 return false; // still active workers
2402 if ((ws = workQueues) == null || (m = ws.length - 1) < 0)
2403 break; // check queues
2404 for (int i = 0; i <= m; ++i) {
2405 if ((w = ws[i]) != null) {
2406 if ((b = w.base) != w.top ||
2407 w.currentSteal != null) {
2408 while ((sp = (int)(c = ctl)) != 0 &&
2409 !tryRelease(c, ws[m & sp], AC_UNIT))
2410 ;
2411 return false; // arrange for recheck
2412 }
2413 checkSum += b;
2414 if ((i & 1) == 0)
2415 w.qlock = -1; // try to disable external
2416 }
2417 }
2418 if (oldSum == (oldSum = checkSum))
2419 break;
2420 }
2421 }
2422 aux.lock();
2423 rs = runState = runState | STOP;
2424 aux.unlock();
2425 }
2426
2427 int pass = 0; // 3 passes to help terminate
2428 for (long oldSum = 0L;;) { // or until done or stable
2429 WorkQueue[] ws; WorkQueue w; ForkJoinWorkerThread wt; int m;
2430 long checkSum = ctl;
2431 if ((short)(checkSum >>> TC_SHIFT) + (config & SMASK) <= 0 ||
2432 (ws = workQueues) == null || (m = ws.length - 1) < 0) {
2433 aux.lock();
2434 runState |= TERMINATED;
2435 aux.unlock();
2436 synchronized (this) {
2437 notifyAll(); // for awaitTermination
2438 }
2439 break;
2440 }
2441 for (int i = 0; i <= m; ++i) {
2442 if ((w = ws[i]) != null) {
2443 checkSum += w.base;
2444 w.qlock = -1; // try to disable
2445 if (pass > 0) {
2446 w.cancelAll(); // clear queue
2447 if (pass > 1 && (wt = w.owner) != null) {
2448 if (!wt.isInterrupted()) {
2449 try { // unblock join
2450 wt.interrupt();
2451 } catch (Throwable ignore) {
2452 }
2453 }
2454 LockSupport.unpark(wt);
2455 }
2456 }
2457 }
2458 }
2459 if (checkSum != oldSum) { // unstable
2460 oldSum = checkSum;
2461 pass = 0;
2462 }
2463 else if (pass > 3 && pass > m) // can't further help
2464 break;
2465 else if (++pass > 1) { // try to dequeue
2466 long c; int j = 0, sp; // bound attempts
2467 while (j++ <= m && (sp = (int)(c = ctl)) != 0)
2468 tryRelease(c, ws[sp & m], AC_UNIT);
2469 }
2470 }
2471 return true;
2472 }
2473
2474 // External operations
2475
2476 /**
2477 * Constructs and tries to install a new external queue,
2478 * failing if the workQueues array already has a queue at
2479 * the given index.
2480 *
2481 * @param index the index of the new queue
2482 */
2483 private void tryCreateExternalQueue(int index) {
2484 AuxState aux;
2485 if ((aux = auxState) != null && index >= 0) {
2486 WorkQueue q = new WorkQueue(this, null);
2487 q.config = index;
2488 q.scanState = ~UNSIGNALLED;
2489 q.qlock = 1; // lock queue
2490 boolean installed = false;
2491 aux.lock();
2492 try { // lock pool to install
2493 WorkQueue[] ws;
2494 if ((ws = workQueues) != null && index < ws.length &&
2495 ws[index] == null) {
2496 ws[index] = q; // else throw away
2497 installed = true;
2498 }
2499 } finally {
2500 aux.unlock();
2501 }
2502 if (installed) {
2503 try {
2504 q.growArray();
2505 } finally {
2506 q.qlock = 0;
2507 }
2508 }
2509 }
2510 }
2511
2512 /**
2513 * Adds the given task to a submission queue at submitter's
2514 * current queue. Also performs secondary initialization upon the
2515 * first submission of the first task to the pool, and detects
2516 * first submission by an external thread and creates a new shared
2517 * queue if the one at index if empty or contended.
2518 *
2519 * @param task the task. Caller must ensure non-null.
2520 */
2521 final void externalPush(ForkJoinTask<?> task) {
2522 int r; // initialize caller's probe
2523 if ((r = ThreadLocalRandom.getProbe()) == 0) {
2524 ThreadLocalRandom.localInit();
2525 r = ThreadLocalRandom.getProbe();
2526 }
2527 for (;;) {
2528 WorkQueue q; int wl, k, stat;
2529 int rs = runState;
2530 WorkQueue[] ws = workQueues;
2531 if (rs <= 0 || ws == null || (wl = ws.length) <= 0)
2532 tryInitialize(true);
2533 else if ((q = ws[k = (wl - 1) & r & SQMASK]) == null)
2534 tryCreateExternalQueue(k);
2535 else if ((stat = q.sharedPush(task)) < 0)
2536 break;
2537 else if (stat == 0) {
2538 signalWork();
2539 break;
2540 }
2541 else // move if busy
2542 r = ThreadLocalRandom.advanceProbe(r);
2543 }
2544 }
2545
2546 /**
2547 * Pushes a possibly-external submission.
2548 */
2549 private <T> ForkJoinTask<T> externalSubmit(ForkJoinTask<T> task) {
2550 Thread t; ForkJoinWorkerThread w; WorkQueue q;
2551 if (task == null)
2552 throw new NullPointerException();
2553 if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) &&
2554 (w = (ForkJoinWorkerThread)t).pool == this &&
2555 (q = w.workQueue) != null)
2556 q.push(task);
2557 else
2558 externalPush(task);
2559 return task;
2560 }
2561
2562 /**
2563 * Returns common pool queue for an external thread.
2564 */
2565 static WorkQueue commonSubmitterQueue() {
2566 ForkJoinPool p = common;
2567 int r = ThreadLocalRandom.getProbe();
2568 WorkQueue[] ws; int wl;
2569 return (p != null && (ws = p.workQueues) != null &&
2570 (wl = ws.length) > 0) ?
2571 ws[(wl - 1) & r & SQMASK] : null;
2572 }
2573
2574 /**
2575 * Performs tryUnpush for an external submitter.
2576 */
2577 final boolean tryExternalUnpush(ForkJoinTask<?> task) {
2578 int r = ThreadLocalRandom.getProbe();
2579 WorkQueue[] ws; WorkQueue w; int wl;
2580 return ((ws = workQueues) != null &&
2581 (wl = ws.length) > 0 &&
2582 (w = ws[(wl - 1) & r & SQMASK]) != null &&
2583 w.trySharedUnpush(task));
2584 }
2585
2586 /**
2587 * Performs helpComplete for an external submitter.
2588 */
2589 final int externalHelpComplete(CountedCompleter<?> task, int maxTasks) {
2590 WorkQueue[] ws; int wl;
2591 int r = ThreadLocalRandom.getProbe();
2592 return ((ws = workQueues) != null && (wl = ws.length) > 0) ?
2593 helpComplete(ws[(wl - 1) & r & SQMASK], task, maxTasks) : 0;
2594 }
2595
2596 // Exported methods
2597
2598 // Constructors
2599
2600 /**
2601 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2602 * java.lang.Runtime#availableProcessors}, using the {@linkplain
2603 * #defaultForkJoinWorkerThreadFactory default thread factory},
2604 * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2605 *
2606 * @throws SecurityException if a security manager exists and
2607 * the caller is not permitted to modify threads
2608 * because it does not hold {@link
2609 * java.lang.RuntimePermission}{@code ("modifyThread")}
2610 */
2611 public ForkJoinPool() {
2612 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2613 defaultForkJoinWorkerThreadFactory, null, false);
2614 }
2615
2616 /**
2617 * Creates a {@code ForkJoinPool} with the indicated parallelism
2618 * level, the {@linkplain
2619 * #defaultForkJoinWorkerThreadFactory default thread factory},
2620 * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2621 *
2622 * @param parallelism the parallelism level
2623 * @throws IllegalArgumentException if parallelism less than or
2624 * equal to zero, or greater than implementation limit
2625 * @throws SecurityException if a security manager exists and
2626 * the caller is not permitted to modify threads
2627 * because it does not hold {@link
2628 * java.lang.RuntimePermission}{@code ("modifyThread")}
2629 */
2630 public ForkJoinPool(int parallelism) {
2631 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2632 }
2633
2634 /**
2635 * Creates a {@code ForkJoinPool} with the given parameters.
2636 *
2637 * @param parallelism the parallelism level. For default value,
2638 * use {@link java.lang.Runtime#availableProcessors}.
2639 * @param factory the factory for creating new threads. For default value,
2640 * use {@link #defaultForkJoinWorkerThreadFactory}.
2641 * @param handler the handler for internal worker threads that
2642 * terminate due to unrecoverable errors encountered while executing
2643 * tasks. For default value, use {@code null}.
2644 * @param asyncMode if true,
2645 * establishes local first-in-first-out scheduling mode for forked
2646 * tasks that are never joined. This mode may be more appropriate
2647 * than default locally stack-based mode in applications in which
2648 * worker threads only process event-style asynchronous tasks.
2649 * For default value, use {@code false}.
2650 * @throws IllegalArgumentException if parallelism less than or
2651 * equal to zero, or greater than implementation limit
2652 * @throws NullPointerException if the factory is null
2653 * @throws SecurityException if a security manager exists and
2654 * the caller is not permitted to modify threads
2655 * because it does not hold {@link
2656 * java.lang.RuntimePermission}{@code ("modifyThread")}
2657 */
2658 public ForkJoinPool(int parallelism,
2659 ForkJoinWorkerThreadFactory factory,
2660 UncaughtExceptionHandler handler,
2661 boolean asyncMode) {
2662 this(checkParallelism(parallelism),
2663 checkFactory(factory),
2664 handler,
2665 asyncMode ? FIFO_QUEUE : LIFO_QUEUE,
2666 "ForkJoinPool-" + nextPoolId() + "-worker-");
2667 checkPermission();
2668 }
2669
2670 private static int checkParallelism(int parallelism) {
2671 if (parallelism <= 0 || parallelism > MAX_CAP)
2672 throw new IllegalArgumentException();
2673 return parallelism;
2674 }
2675
2676 private static ForkJoinWorkerThreadFactory checkFactory
2677 (ForkJoinWorkerThreadFactory factory) {
2678 if (factory == null)
2679 throw new NullPointerException();
2680 return factory;
2681 }
2682
2683 /**
2684 * Creates a {@code ForkJoinPool} with the given parameters, without
2685 * any security checks or parameter validation. Invoked directly by
2686 * makeCommonPool.
2687 */
2688 private ForkJoinPool(int parallelism,
2689 ForkJoinWorkerThreadFactory factory,
2690 UncaughtExceptionHandler handler,
2691 int mode,
2692 String workerNamePrefix) {
2693 this.workerNamePrefix = workerNamePrefix;
2694 this.factory = factory;
2695 this.ueh = handler;
2696 this.config = (parallelism & SMASK) | mode;
2697 long np = (long)(-parallelism); // offset ctl counts
2698 this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2699 }
2700
2701 /**
2702 * Returns the common pool instance. This pool is statically
2703 * constructed; its run state is unaffected by attempts to {@link
2704 * #shutdown} or {@link #shutdownNow}. However this pool and any
2705 * ongoing processing are automatically terminated upon program
2706 * {@link System#exit}. Any program that relies on asynchronous
2707 * task processing to complete before program termination should
2708 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2709 * before exit.
2710 *
2711 * @return the common pool instance
2712 * @since 1.8
2713 */
2714 public static ForkJoinPool commonPool() {
2715 // assert common != null : "static init error";
2716 return common;
2717 }
2718
2719 // Execution methods
2720
2721 /**
2722 * Performs the given task, returning its result upon completion.
2723 * If the computation encounters an unchecked Exception or Error,
2724 * it is rethrown as the outcome of this invocation. Rethrown
2725 * exceptions behave in the same way as regular exceptions, but,
2726 * when possible, contain stack traces (as displayed for example
2727 * using {@code ex.printStackTrace()}) of both the current thread
2728 * as well as the thread actually encountering the exception;
2729 * minimally only the latter.
2730 *
2731 * @param task the task
2732 * @param <T> the type of the task's result
2733 * @return the task's result
2734 * @throws NullPointerException if the task is null
2735 * @throws RejectedExecutionException if the task cannot be
2736 * scheduled for execution
2737 */
2738 public <T> T invoke(ForkJoinTask<T> task) {
2739 if (task == null)
2740 throw new NullPointerException();
2741 externalSubmit(task);
2742 return task.join();
2743 }
2744
2745 /**
2746 * Arranges for (asynchronous) execution of the given task.
2747 *
2748 * @param task the task
2749 * @throws NullPointerException if the task is null
2750 * @throws RejectedExecutionException if the task cannot be
2751 * scheduled for execution
2752 */
2753 public void execute(ForkJoinTask<?> task) {
2754 externalSubmit(task);
2755 }
2756
2757 // AbstractExecutorService methods
2758
2759 /**
2760 * @throws NullPointerException if the task is null
2761 * @throws RejectedExecutionException if the task cannot be
2762 * scheduled for execution
2763 */
2764 public void execute(Runnable task) {
2765 if (task == null)
2766 throw new NullPointerException();
2767 ForkJoinTask<?> job;
2768 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2769 job = (ForkJoinTask<?>) task;
2770 else
2771 job = new ForkJoinTask.RunnableExecuteAction(task);
2772 externalSubmit(job);
2773 }
2774
2775 /**
2776 * Submits a ForkJoinTask for execution.
2777 *
2778 * @param task the task to submit
2779 * @param <T> the type of the task's result
2780 * @return the task
2781 * @throws NullPointerException if the task is null
2782 * @throws RejectedExecutionException if the task cannot be
2783 * scheduled for execution
2784 */
2785 public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2786 return externalSubmit(task);
2787 }
2788
2789 /**
2790 * @throws NullPointerException if the task is null
2791 * @throws RejectedExecutionException if the task cannot be
2792 * scheduled for execution
2793 */
2794 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2795 return externalSubmit(new ForkJoinTask.AdaptedCallable<T>(task));
2796 }
2797
2798 /**
2799 * @throws NullPointerException if the task is null
2800 * @throws RejectedExecutionException if the task cannot be
2801 * scheduled for execution
2802 */
2803 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2804 return externalSubmit(new ForkJoinTask.AdaptedRunnable<T>(task, result));
2805 }
2806
2807 /**
2808 * @throws NullPointerException if the task is null
2809 * @throws RejectedExecutionException if the task cannot be
2810 * scheduled for execution
2811 */
2812 public ForkJoinTask<?> submit(Runnable task) {
2813 if (task == null)
2814 throw new NullPointerException();
2815 ForkJoinTask<?> job;
2816 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2817 job = (ForkJoinTask<?>) task;
2818 else
2819 job = new ForkJoinTask.AdaptedRunnableAction(task);
2820 return externalSubmit(job);
2821 }
2822
2823 /**
2824 * @throws NullPointerException {@inheritDoc}
2825 * @throws RejectedExecutionException {@inheritDoc}
2826 */
2827 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2828 // In previous versions of this class, this method constructed
2829 // a task to run ForkJoinTask.invokeAll, but now external
2830 // invocation of multiple tasks is at least as efficient.
2831 ArrayList<Future<T>> futures = new ArrayList<>(tasks.size());
2832
2833 try {
2834 for (Callable<T> t : tasks) {
2835 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2836 futures.add(f);
2837 externalSubmit(f);
2838 }
2839 for (int i = 0, size = futures.size(); i < size; i++)
2840 ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2841 return futures;
2842 } catch (Throwable t) {
2843 for (int i = 0, size = futures.size(); i < size; i++)
2844 futures.get(i).cancel(false);
2845 throw t;
2846 }
2847 }
2848
2849 /**
2850 * Returns the factory used for constructing new workers.
2851 *
2852 * @return the factory used for constructing new workers
2853 */
2854 public ForkJoinWorkerThreadFactory getFactory() {
2855 return factory;
2856 }
2857
2858 /**
2859 * Returns the handler for internal worker threads that terminate
2860 * due to unrecoverable errors encountered while executing tasks.
2861 *
2862 * @return the handler, or {@code null} if none
2863 */
2864 public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2865 return ueh;
2866 }
2867
2868 /**
2869 * Returns the targeted parallelism level of this pool.
2870 *
2871 * @return the targeted parallelism level of this pool
2872 */
2873 public int getParallelism() {
2874 int par;
2875 return ((par = config & SMASK) > 0) ? par : 1;
2876 }
2877
2878 /**
2879 * Returns the targeted parallelism level of the common pool.
2880 *
2881 * @return the targeted parallelism level of the common pool
2882 * @since 1.8
2883 */
2884 public static int getCommonPoolParallelism() {
2885 return commonParallelism;
2886 }
2887
2888 /**
2889 * Returns the number of worker threads that have started but not
2890 * yet terminated. The result returned by this method may differ
2891 * from {@link #getParallelism} when threads are created to
2892 * maintain parallelism when others are cooperatively blocked.
2893 *
2894 * @return the number of worker threads
2895 */
2896 public int getPoolSize() {
2897 return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2898 }
2899
2900 /**
2901 * Returns {@code true} if this pool uses local first-in-first-out
2902 * scheduling mode for forked tasks that are never joined.
2903 *
2904 * @return {@code true} if this pool uses async mode
2905 */
2906 public boolean getAsyncMode() {
2907 return (config & FIFO_QUEUE) != 0;
2908 }
2909
2910 /**
2911 * Returns an estimate of the number of worker threads that are
2912 * not blocked waiting to join tasks or for other managed
2913 * synchronization. This method may overestimate the
2914 * number of running threads.
2915 *
2916 * @return the number of worker threads
2917 */
2918 public int getRunningThreadCount() {
2919 int rc = 0;
2920 WorkQueue[] ws; WorkQueue w;
2921 if ((ws = workQueues) != null) {
2922 for (int i = 1; i < ws.length; i += 2) {
2923 if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2924 ++rc;
2925 }
2926 }
2927 return rc;
2928 }
2929
2930 /**
2931 * Returns an estimate of the number of threads that are currently
2932 * stealing or executing tasks. This method may overestimate the
2933 * number of active threads.
2934 *
2935 * @return the number of active threads
2936 */
2937 public int getActiveThreadCount() {
2938 int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2939 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2940 }
2941
2942 /**
2943 * Returns {@code true} if all worker threads are currently idle.
2944 * An idle worker is one that cannot obtain a task to execute
2945 * because none are available to steal from other threads, and
2946 * there are no pending submissions to the pool. This method is
2947 * conservative; it might not return {@code true} immediately upon
2948 * idleness of all threads, but will eventually become true if
2949 * threads remain inactive.
2950 *
2951 * @return {@code true} if all threads are currently idle
2952 */
2953 public boolean isQuiescent() {
2954 return (config & SMASK) + (int)(ctl >> AC_SHIFT) <= 0;
2955 }
2956
2957 /**
2958 * Returns an estimate of the total number of tasks stolen from
2959 * one thread's work queue by another. The reported value
2960 * underestimates the actual total number of steals when the pool
2961 * is not quiescent. This value may be useful for monitoring and
2962 * tuning fork/join programs: in general, steal counts should be
2963 * high enough to keep threads busy, but low enough to avoid
2964 * overhead and contention across threads.
2965 *
2966 * @return the number of steals
2967 */
2968 public long getStealCount() {
2969 AuxState sc = auxState;
2970 long count = (sc == null) ? 0L : sc.stealCount;
2971 WorkQueue[] ws; WorkQueue w;
2972 if ((ws = workQueues) != null) {
2973 for (int i = 1; i < ws.length; i += 2) {
2974 if ((w = ws[i]) != null)
2975 count += w.nsteals;
2976 }
2977 }
2978 return count;
2979 }
2980
2981 /**
2982 * Returns an estimate of the total number of tasks currently held
2983 * in queues by worker threads (but not including tasks submitted
2984 * to the pool that have not begun executing). This value is only
2985 * an approximation, obtained by iterating across all threads in
2986 * the pool. This method may be useful for tuning task
2987 * granularities.
2988 *
2989 * @return the number of queued tasks
2990 */
2991 public long getQueuedTaskCount() {
2992 long count = 0;
2993 WorkQueue[] ws; WorkQueue w;
2994 if ((ws = workQueues) != null) {
2995 for (int i = 1; i < ws.length; i += 2) {
2996 if ((w = ws[i]) != null)
2997 count += w.queueSize();
2998 }
2999 }
3000 return count;
3001 }
3002
3003 /**
3004 * Returns an estimate of the number of tasks submitted to this
3005 * pool that have not yet begun executing. This method may take
3006 * time proportional to the number of submissions.
3007 *
3008 * @return the number of queued submissions
3009 */
3010 public int getQueuedSubmissionCount() {
3011 int count = 0;
3012 WorkQueue[] ws; WorkQueue w;
3013 if ((ws = workQueues) != null) {
3014 for (int i = 0; i < ws.length; i += 2) {
3015 if ((w = ws[i]) != null)
3016 count += w.queueSize();
3017 }
3018 }
3019 return count;
3020 }
3021
3022 /**
3023 * Returns {@code true} if there are any tasks submitted to this
3024 * pool that have not yet begun executing.
3025 *
3026 * @return {@code true} if there are any queued submissions
3027 */
3028 public boolean hasQueuedSubmissions() {
3029 WorkQueue[] ws; WorkQueue w;
3030 if ((ws = workQueues) != null) {
3031 for (int i = 0; i < ws.length; i += 2) {
3032 if ((w = ws[i]) != null && !w.isEmpty())
3033 return true;
3034 }
3035 }
3036 return false;
3037 }
3038
3039 /**
3040 * Removes and returns the next unexecuted submission if one is
3041 * available. This method may be useful in extensions to this
3042 * class that re-assign work in systems with multiple pools.
3043 *
3044 * @return the next submission, or {@code null} if none
3045 */
3046 protected ForkJoinTask<?> pollSubmission() {
3047 WorkQueue[] ws; int wl; WorkQueue w; ForkJoinTask<?> t;
3048 int r = ThreadLocalRandom.nextSecondarySeed();
3049 if ((ws = workQueues) != null && (wl = ws.length) > 0) {
3050 for (int m = wl - 1, i = 0; i < wl; ++i) {
3051 if ((w = ws[(i << 1) & m]) != null && (t = w.poll()) != null)
3052 return t;
3053 }
3054 }
3055 return null;
3056 }
3057
3058 /**
3059 * Removes all available unexecuted submitted and forked tasks
3060 * from scheduling queues and adds them to the given collection,
3061 * without altering their execution status. These may include
3062 * artificially generated or wrapped tasks. This method is
3063 * designed to be invoked only when the pool is known to be
3064 * quiescent. Invocations at other times may not remove all
3065 * tasks. A failure encountered while attempting to add elements
3066 * to collection {@code c} may result in elements being in
3067 * neither, either or both collections when the associated
3068 * exception is thrown. The behavior of this operation is
3069 * undefined if the specified collection is modified while the
3070 * operation is in progress.
3071 *
3072 * @param c the collection to transfer elements into
3073 * @return the number of elements transferred
3074 */
3075 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
3076 int count = 0;
3077 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
3078 if ((ws = workQueues) != null) {
3079 for (int i = 0; i < ws.length; ++i) {
3080 if ((w = ws[i]) != null) {
3081 while ((t = w.poll()) != null) {
3082 c.add(t);
3083 ++count;
3084 }
3085 }
3086 }
3087 }
3088 return count;
3089 }
3090
3091 /**
3092 * Returns a string identifying this pool, as well as its state,
3093 * including indications of run state, parallelism level, and
3094 * worker and task counts.
3095 *
3096 * @return a string identifying this pool, as well as its state
3097 */
3098 public String toString() {
3099 // Use a single pass through workQueues to collect counts
3100 long qt = 0L, qs = 0L; int rc = 0;
3101 AuxState sc = auxState;
3102 long st = (sc == null) ? 0L : sc.stealCount;
3103 long c = ctl;
3104 WorkQueue[] ws; WorkQueue w;
3105 if ((ws = workQueues) != null) {
3106 for (int i = 0; i < ws.length; ++i) {
3107 if ((w = ws[i]) != null) {
3108 int size = w.queueSize();
3109 if ((i & 1) == 0)
3110 qs += size;
3111 else {
3112 qt += size;
3113 st += w.nsteals;
3114 if (w.isApparentlyUnblocked())
3115 ++rc;
3116 }
3117 }
3118 }
3119 }
3120 int pc = (config & SMASK);
3121 int tc = pc + (short)(c >>> TC_SHIFT);
3122 int ac = pc + (int)(c >> AC_SHIFT);
3123 if (ac < 0) // ignore transient negative
3124 ac = 0;
3125 int rs = runState;
3126 String level = ((rs & TERMINATED) != 0 ? "Terminated" :
3127 (rs & STOP) != 0 ? "Terminating" :
3128 (rs & SHUTDOWN) != 0 ? "Shutting down" :
3129 "Running");
3130 return super.toString() +
3131 "[" + level +
3132 ", parallelism = " + pc +
3133 ", size = " + tc +
3134 ", active = " + ac +
3135 ", running = " + rc +
3136 ", steals = " + st +
3137 ", tasks = " + qt +
3138 ", submissions = " + qs +
3139 "]";
3140 }
3141
3142 /**
3143 * Possibly initiates an orderly shutdown in which previously
3144 * submitted tasks are executed, but no new tasks will be
3145 * accepted. Invocation has no effect on execution state if this
3146 * is the {@link #commonPool()}, and no additional effect if
3147 * already shut down. Tasks that are in the process of being
3148 * submitted concurrently during the course of this method may or
3149 * may not be rejected.
3150 *
3151 * @throws SecurityException if a security manager exists and
3152 * the caller is not permitted to modify threads
3153 * because it does not hold {@link
3154 * java.lang.RuntimePermission}{@code ("modifyThread")}
3155 */
3156 public void shutdown() {
3157 checkPermission();
3158 tryTerminate(false, true);
3159 }
3160
3161 /**
3162 * Possibly attempts to cancel and/or stop all tasks, and reject
3163 * all subsequently submitted tasks. Invocation has no effect on
3164 * execution state if this is the {@link #commonPool()}, and no
3165 * additional effect if already shut down. Otherwise, tasks that
3166 * are in the process of being submitted or executed concurrently
3167 * during the course of this method may or may not be
3168 * rejected. This method cancels both existing and unexecuted
3169 * tasks, in order to permit termination in the presence of task
3170 * dependencies. So the method always returns an empty list
3171 * (unlike the case for some other Executors).
3172 *
3173 * @return an empty list
3174 * @throws SecurityException if a security manager exists and
3175 * the caller is not permitted to modify threads
3176 * because it does not hold {@link
3177 * java.lang.RuntimePermission}{@code ("modifyThread")}
3178 */
3179 public List<Runnable> shutdownNow() {
3180 checkPermission();
3181 tryTerminate(true, true);
3182 return Collections.emptyList();
3183 }
3184
3185 /**
3186 * Returns {@code true} if all tasks have completed following shut down.
3187 *
3188 * @return {@code true} if all tasks have completed following shut down
3189 */
3190 public boolean isTerminated() {
3191 return (runState & TERMINATED) != 0;
3192 }
3193
3194 /**
3195 * Returns {@code true} if the process of termination has
3196 * commenced but not yet completed. This method may be useful for
3197 * debugging. A return of {@code true} reported a sufficient
3198 * period after shutdown may indicate that submitted tasks have
3199 * ignored or suppressed interruption, or are waiting for I/O,
3200 * causing this executor not to properly terminate. (See the
3201 * advisory notes for class {@link ForkJoinTask} stating that
3202 * tasks should not normally entail blocking operations. But if
3203 * they do, they must abort them on interrupt.)
3204 *
3205 * @return {@code true} if terminating but not yet terminated
3206 */
3207 public boolean isTerminating() {
3208 int rs = runState;
3209 return (rs & STOP) != 0 && (rs & TERMINATED) == 0;
3210 }
3211
3212 /**
3213 * Returns {@code true} if this pool has been shut down.
3214 *
3215 * @return {@code true} if this pool has been shut down
3216 */
3217 public boolean isShutdown() {
3218 return (runState & SHUTDOWN) != 0;
3219 }
3220
3221 /**
3222 * Blocks until all tasks have completed execution after a
3223 * shutdown request, or the timeout occurs, or the current thread
3224 * is interrupted, whichever happens first. Because the {@link
3225 * #commonPool()} never terminates until program shutdown, when
3226 * applied to the common pool, this method is equivalent to {@link
3227 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
3228 *
3229 * @param timeout the maximum time to wait
3230 * @param unit the time unit of the timeout argument
3231 * @return {@code true} if this executor terminated and
3232 * {@code false} if the timeout elapsed before termination
3233 * @throws InterruptedException if interrupted while waiting
3234 */
3235 public boolean awaitTermination(long timeout, TimeUnit unit)
3236 throws InterruptedException {
3237 if (Thread.interrupted())
3238 throw new InterruptedException();
3239 if (this == common) {
3240 awaitQuiescence(timeout, unit);
3241 return false;
3242 }
3243 long nanos = unit.toNanos(timeout);
3244 if (isTerminated())
3245 return true;
3246 if (nanos <= 0L)
3247 return false;
3248 long deadline = System.nanoTime() + nanos;
3249 synchronized (this) {
3250 for (;;) {
3251 if (isTerminated())
3252 return true;
3253 if (nanos <= 0L)
3254 return false;
3255 long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
3256 wait(millis > 0L ? millis : 1L);
3257 nanos = deadline - System.nanoTime();
3258 }
3259 }
3260 }
3261
3262 /**
3263 * If called by a ForkJoinTask operating in this pool, equivalent
3264 * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3265 * waits and/or attempts to assist performing tasks until this
3266 * pool {@link #isQuiescent} or the indicated timeout elapses.
3267 *
3268 * @param timeout the maximum time to wait
3269 * @param unit the time unit of the timeout argument
3270 * @return {@code true} if quiescent; {@code false} if the
3271 * timeout elapsed.
3272 */
3273 public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3274 long nanos = unit.toNanos(timeout);
3275 ForkJoinWorkerThread wt;
3276 Thread thread = Thread.currentThread();
3277 if ((thread instanceof ForkJoinWorkerThread) &&
3278 (wt = (ForkJoinWorkerThread)thread).pool == this) {
3279 helpQuiescePool(wt.workQueue);
3280 return true;
3281 }
3282 long startTime = System.nanoTime();
3283 WorkQueue[] ws;
3284 int r = 0, wl;
3285 boolean found = true;
3286 while (!isQuiescent() && (ws = workQueues) != null &&
3287 (wl = ws.length) > 0) {
3288 if (!found) {
3289 if ((System.nanoTime() - startTime) > nanos)
3290 return false;
3291 Thread.yield(); // cannot block
3292 }
3293 found = false;
3294 for (int m = wl - 1, j = (m + 1) << 2; j >= 0; --j) {
3295 ForkJoinTask<?> t; WorkQueue q; int b, k;
3296 if ((k = r++ & m) <= m && k >= 0 && (q = ws[k]) != null &&
3297 (b = q.base) - q.top < 0) {
3298 found = true;
3299 if ((t = q.pollAt(b)) != null)
3300 t.doExec();
3301 break;
3302 }
3303 }
3304 }
3305 return true;
3306 }
3307
3308 /**
3309 * Waits and/or attempts to assist performing tasks indefinitely
3310 * until the {@link #commonPool()} {@link #isQuiescent}.
3311 */
3312 static void quiesceCommonPool() {
3313 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3314 }
3315
3316 /**
3317 * Interface for extending managed parallelism for tasks running
3318 * in {@link ForkJoinPool}s.
3319 *
3320 * <p>A {@code ManagedBlocker} provides two methods. Method
3321 * {@link #isReleasable} must return {@code true} if blocking is
3322 * not necessary. Method {@link #block} blocks the current thread
3323 * if necessary (perhaps internally invoking {@code isReleasable}
3324 * before actually blocking). These actions are performed by any
3325 * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
3326 * The unusual methods in this API accommodate synchronizers that
3327 * may, but don't usually, block for long periods. Similarly, they
3328 * allow more efficient internal handling of cases in which
3329 * additional workers may be, but usually are not, needed to
3330 * ensure sufficient parallelism. Toward this end,
3331 * implementations of method {@code isReleasable} must be amenable
3332 * to repeated invocation.
3333 *
3334 * <p>For example, here is a ManagedBlocker based on a
3335 * ReentrantLock:
3336 * <pre> {@code
3337 * class ManagedLocker implements ManagedBlocker {
3338 * final ReentrantLock lock;
3339 * boolean hasLock = false;
3340 * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3341 * public boolean block() {
3342 * if (!hasLock)
3343 * lock.lock();
3344 * return true;
3345 * }
3346 * public boolean isReleasable() {
3347 * return hasLock || (hasLock = lock.tryLock());
3348 * }
3349 * }}</pre>
3350 *
3351 * <p>Here is a class that possibly blocks waiting for an
3352 * item on a given queue:
3353 * <pre> {@code
3354 * class QueueTaker<E> implements ManagedBlocker {
3355 * final BlockingQueue<E> queue;
3356 * volatile E item = null;
3357 * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3358 * public boolean block() throws InterruptedException {
3359 * if (item == null)
3360 * item = queue.take();
3361 * return true;
3362 * }
3363 * public boolean isReleasable() {
3364 * return item != null || (item = queue.poll()) != null;
3365 * }
3366 * public E getItem() { // call after pool.managedBlock completes
3367 * return item;
3368 * }
3369 * }}</pre>
3370 */
3371 public static interface ManagedBlocker {
3372 /**
3373 * Possibly blocks the current thread, for example waiting for
3374 * a lock or condition.
3375 *
3376 * @return {@code true} if no additional blocking is necessary
3377 * (i.e., if isReleasable would return true)
3378 * @throws InterruptedException if interrupted while waiting
3379 * (the method is not required to do so, but is allowed to)
3380 */
3381 boolean block() throws InterruptedException;
3382
3383 /**
3384 * Returns {@code true} if blocking is unnecessary.
3385 * @return {@code true} if blocking is unnecessary
3386 */
3387 boolean isReleasable();
3388 }
3389
3390 /**
3391 * Runs the given possibly blocking task. When {@linkplain
3392 * ForkJoinTask#inForkJoinPool() running in a ForkJoinPool}, this
3393 * method possibly arranges for a spare thread to be activated if
3394 * necessary to ensure sufficient parallelism while the current
3395 * thread is blocked in {@link ManagedBlocker#block blocker.block()}.
3396 *
3397 * <p>This method repeatedly calls {@code blocker.isReleasable()} and
3398 * {@code blocker.block()} until either method returns {@code true}.
3399 * Every call to {@code blocker.block()} is preceded by a call to
3400 * {@code blocker.isReleasable()} that returned {@code false}.
3401 *
3402 * <p>If not running in a ForkJoinPool, this method is
3403 * behaviorally equivalent to
3404 * <pre> {@code
3405 * while (!blocker.isReleasable())
3406 * if (blocker.block())
3407 * break;}</pre>
3408 *
3409 * If running in a ForkJoinPool, the pool may first be expanded to
3410 * ensure sufficient parallelism available during the call to
3411 * {@code blocker.block()}.
3412 *
3413 * @param blocker the blocker task
3414 * @throws InterruptedException if {@code blocker.block()} did so
3415 */
3416 public static void managedBlock(ManagedBlocker blocker)
3417 throws InterruptedException {
3418 ForkJoinPool p;
3419 ForkJoinWorkerThread wt;
3420 Thread t = Thread.currentThread();
3421 if ((t instanceof ForkJoinWorkerThread) &&
3422 (p = (wt = (ForkJoinWorkerThread)t).pool) != null) {
3423 WorkQueue w = wt.workQueue;
3424 while (!blocker.isReleasable()) {
3425 if (p.tryCompensate(w)) {
3426 try {
3427 do {} while (!blocker.isReleasable() &&
3428 !blocker.block());
3429 } finally {
3430 U.getAndAddLong(p, CTL, AC_UNIT);
3431 }
3432 break;
3433 }
3434 }
3435 }
3436 else {
3437 do {} while (!blocker.isReleasable() &&
3438 !blocker.block());
3439 }
3440 }
3441
3442 // AbstractExecutorService overrides. These rely on undocumented
3443 // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3444 // implement RunnableFuture.
3445
3446 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3447 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3448 }
3449
3450 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3451 return new ForkJoinTask.AdaptedCallable<T>(callable);
3452 }
3453
3454 // Unsafe mechanics
3455 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
3456 private static final long CTL;
3457 private static final int ABASE;
3458 private static final int ASHIFT;
3459
3460 static {
3461 try {
3462 CTL = U.objectFieldOffset
3463 (ForkJoinPool.class.getDeclaredField("ctl"));
3464 ABASE = U.arrayBaseOffset(ForkJoinTask[].class);
3465 int scale = U.arrayIndexScale(ForkJoinTask[].class);
3466 if ((scale & (scale - 1)) != 0)
3467 throw new Error("array index scale not a power of two");
3468 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3469 } catch (ReflectiveOperationException e) {
3470 throw new Error(e);
3471 }
3472
3473 // Reduce the risk of rare disastrous classloading in first call to
3474 // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
3475 Class<?> ensureLoaded = LockSupport.class;
3476
3477 commonMaxSpares = DEFAULT_COMMON_MAX_SPARES;
3478 defaultForkJoinWorkerThreadFactory =
3479 new DefaultForkJoinWorkerThreadFactory();
3480 modifyThreadPermission = new RuntimePermission("modifyThread");
3481
3482 common = java.security.AccessController.doPrivileged
3483 (new java.security.PrivilegedAction<ForkJoinPool>() {
3484 public ForkJoinPool run() { return makeCommonPool(); }});
3485 int par = common.config & SMASK; // report 1 even if threads disabled
3486 commonParallelism = par > 0 ? par : 1;
3487 }
3488
3489 /**
3490 * Creates and returns the common pool, respecting user settings
3491 * specified via system properties.
3492 */
3493 private static ForkJoinPool makeCommonPool() {
3494 int parallelism = -1;
3495 ForkJoinWorkerThreadFactory factory = null;
3496 UncaughtExceptionHandler handler = null;
3497 try { // ignore exceptions in accessing/parsing properties
3498 String pp = System.getProperty
3499 ("java.util.concurrent.ForkJoinPool.common.parallelism");
3500 String fp = System.getProperty
3501 ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3502 String hp = System.getProperty
3503 ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3504 String mp = System.getProperty
3505 ("java.util.concurrent.ForkJoinPool.common.maximumSpares");
3506 if (pp != null)
3507 parallelism = Integer.parseInt(pp);
3508 if (fp != null)
3509 factory = ((ForkJoinWorkerThreadFactory)ClassLoader.
3510 getSystemClassLoader().loadClass(fp).newInstance());
3511 if (hp != null)
3512 handler = ((UncaughtExceptionHandler)ClassLoader.
3513 getSystemClassLoader().loadClass(hp).newInstance());
3514 if (mp != null)
3515 commonMaxSpares = Integer.parseInt(mp);
3516 } catch (Exception ignore) {
3517 }
3518 if (factory == null) {
3519 if (System.getSecurityManager() == null)
3520 factory = defaultForkJoinWorkerThreadFactory;
3521 else // use security-managed default
3522 factory = new InnocuousForkJoinWorkerThreadFactory();
3523 }
3524 if (parallelism < 0 && // default 1 less than #cores
3525 (parallelism = Runtime.getRuntime().availableProcessors() - 1) <= 0)
3526 parallelism = 1;
3527 if (parallelism > MAX_CAP)
3528 parallelism = MAX_CAP;
3529 return new ForkJoinPool(parallelism, factory, handler, LIFO_QUEUE,
3530 "ForkJoinPool.commonPool-worker-");
3531 }
3532
3533 /**
3534 * Factory for innocuous worker threads
3535 */
3536 static final class InnocuousForkJoinWorkerThreadFactory
3537 implements ForkJoinWorkerThreadFactory {
3538
3539 /**
3540 * An ACC to restrict permissions for the factory itself.
3541 * The constructed workers have no permissions set.
3542 */
3543 private static final AccessControlContext innocuousAcc;
3544 static {
3545 Permissions innocuousPerms = new Permissions();
3546 innocuousPerms.add(modifyThreadPermission);
3547 innocuousPerms.add(new RuntimePermission(
3548 "enableContextClassLoaderOverride"));
3549 innocuousPerms.add(new RuntimePermission(
3550 "modifyThreadGroup"));
3551 innocuousAcc = new AccessControlContext(new ProtectionDomain[] {
3552 new ProtectionDomain(null, innocuousPerms)
3553 });
3554 }
3555
3556 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
3557 return java.security.AccessController.doPrivileged(
3558 new java.security.PrivilegedAction<ForkJoinWorkerThread>() {
3559 public ForkJoinWorkerThread run() {
3560 return new ForkJoinWorkerThread.
3561 InnocuousForkJoinWorkerThread(pool);
3562 }}, innocuousAcc);
3563 }
3564 }
3565
3566 }