ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.286
Committed: Mon Oct 5 15:01:30 2015 UTC (8 years, 8 months ago) by dl
Branch: MAIN
Changes since 1.285: +12 -16 lines
Log Message:
Widen termination retry loop

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.lang.Thread.UncaughtExceptionHandler;
10 import java.security.AccessControlContext;
11 import java.security.Permissions;
12 import java.security.ProtectionDomain;
13 import java.util.ArrayList;
14 import java.util.Arrays;
15 import java.util.Collection;
16 import java.util.Collections;
17 import java.util.List;
18 import java.util.concurrent.locks.ReentrantLock;
19 import java.util.concurrent.locks.LockSupport;
20
21 /**
22 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
23 * A {@code ForkJoinPool} provides the entry point for submissions
24 * from non-{@code ForkJoinTask} clients, as well as management and
25 * monitoring operations.
26 *
27 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
28 * ExecutorService} mainly by virtue of employing
29 * <em>work-stealing</em>: all threads in the pool attempt to find and
30 * execute tasks submitted to the pool and/or created by other active
31 * tasks (eventually blocking waiting for work if none exist). This
32 * enables efficient processing when most tasks spawn other subtasks
33 * (as do most {@code ForkJoinTask}s), as well as when many small
34 * tasks are submitted to the pool from external clients. Especially
35 * when setting <em>asyncMode</em> to true in constructors, {@code
36 * ForkJoinPool}s may also be appropriate for use with event-style
37 * tasks that are never joined.
38 *
39 * <p>A static {@link #commonPool()} is available and appropriate for
40 * most applications. The common pool is used by any ForkJoinTask that
41 * is not explicitly submitted to a specified pool. Using the common
42 * pool normally reduces resource usage (its threads are slowly
43 * reclaimed during periods of non-use, and reinstated upon subsequent
44 * use).
45 *
46 * <p>For applications that require separate or custom pools, a {@code
47 * ForkJoinPool} may be constructed with a given target parallelism
48 * level; by default, equal to the number of available processors.
49 * The pool attempts to maintain enough active (or available) threads
50 * by dynamically adding, suspending, or resuming internal worker
51 * threads, even if some tasks are stalled waiting to join others.
52 * However, no such adjustments are guaranteed in the face of blocked
53 * I/O or other unmanaged synchronization. The nested {@link
54 * ManagedBlocker} interface enables extension of the kinds of
55 * synchronization accommodated.
56 *
57 * <p>In addition to execution and lifecycle control methods, this
58 * class provides status check methods (for example
59 * {@link #getStealCount}) that are intended to aid in developing,
60 * tuning, and monitoring fork/join applications. Also, method
61 * {@link #toString} returns indications of pool state in a
62 * convenient form for informal monitoring.
63 *
64 * <p>As is the case with other ExecutorServices, there are three
65 * main task execution methods summarized in the following table.
66 * These are designed to be used primarily by clients not already
67 * engaged in fork/join computations in the current pool. The main
68 * forms of these methods accept instances of {@code ForkJoinTask},
69 * but overloaded forms also allow mixed execution of plain {@code
70 * Runnable}- or {@code Callable}- based activities as well. However,
71 * tasks that are already executing in a pool should normally instead
72 * use the within-computation forms listed in the table unless using
73 * async event-style tasks that are not usually joined, in which case
74 * there is little difference among choice of methods.
75 *
76 * <table BORDER CELLPADDING=3 CELLSPACING=1>
77 * <caption>Summary of task execution methods</caption>
78 * <tr>
79 * <td></td>
80 * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
81 * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
82 * </tr>
83 * <tr>
84 * <td> <b>Arrange async execution</b></td>
85 * <td> {@link #execute(ForkJoinTask)}</td>
86 * <td> {@link ForkJoinTask#fork}</td>
87 * </tr>
88 * <tr>
89 * <td> <b>Await and obtain result</b></td>
90 * <td> {@link #invoke(ForkJoinTask)}</td>
91 * <td> {@link ForkJoinTask#invoke}</td>
92 * </tr>
93 * <tr>
94 * <td> <b>Arrange exec and obtain Future</b></td>
95 * <td> {@link #submit(ForkJoinTask)}</td>
96 * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
97 * </tr>
98 * </table>
99 *
100 * <p>The common pool is by default constructed with default
101 * parameters, but these may be controlled by setting three
102 * {@linkplain System#getProperty system properties}:
103 * <ul>
104 * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
105 * - the parallelism level, a non-negative integer
106 * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
107 * - the class name of a {@link ForkJoinWorkerThreadFactory}
108 * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
109 * - the class name of a {@link UncaughtExceptionHandler}
110 * <li>{@code java.util.concurrent.ForkJoinPool.common.maximumSpares}
111 * - the maximum number of allowed extra threads to maintain target
112 * parallelism (default 256).
113 * </ul>
114 * If a {@link SecurityManager} is present and no factory is
115 * specified, then the default pool uses a factory supplying
116 * threads that have no {@link Permissions} enabled.
117 * The system class loader is used to load these classes.
118 * Upon any error in establishing these settings, default parameters
119 * are used. It is possible to disable or limit the use of threads in
120 * the common pool by setting the parallelism property to zero, and/or
121 * using a factory that may return {@code null}. However doing so may
122 * cause unjoined tasks to never be executed.
123 *
124 * <p><b>Implementation notes</b>: This implementation restricts the
125 * maximum number of running threads to 32767. Attempts to create
126 * pools with greater than the maximum number result in
127 * {@code IllegalArgumentException}.
128 *
129 * <p>This implementation rejects submitted tasks (that is, by throwing
130 * {@link RejectedExecutionException}) only when the pool is shut down
131 * or internal resources have been exhausted.
132 *
133 * @since 1.7
134 * @author Doug Lea
135 */
136 @sun.misc.Contended
137 public class ForkJoinPool extends AbstractExecutorService {
138
139 /*
140 * Implementation Overview
141 *
142 * This class and its nested classes provide the main
143 * functionality and control for a set of worker threads:
144 * Submissions from non-FJ threads enter into submission queues.
145 * Workers take these tasks and typically split them into subtasks
146 * that may be stolen by other workers. Preference rules give
147 * first priority to processing tasks from their own queues (LIFO
148 * or FIFO, depending on mode), then to randomized FIFO steals of
149 * tasks in other queues. This framework began as vehicle for
150 * supporting tree-structured parallelism using work-stealing.
151 * Over time, its scalability advantages led to extensions and
152 * changes to better support more diverse usage contexts. Because
153 * most internal methods and nested classes are interrelated,
154 * their main rationale and descriptions are presented here;
155 * individual methods and nested classes contain only brief
156 * comments about details.
157 *
158 * WorkQueues
159 * ==========
160 *
161 * Most operations occur within work-stealing queues (in nested
162 * class WorkQueue). These are special forms of Deques that
163 * support only three of the four possible end-operations -- push,
164 * pop, and poll (aka steal), under the further constraints that
165 * push and pop are called only from the owning thread (or, as
166 * extended here, under a lock), while poll may be called from
167 * other threads. (If you are unfamiliar with them, you probably
168 * want to read Herlihy and Shavit's book "The Art of
169 * Multiprocessor programming", chapter 16 describing these in
170 * more detail before proceeding.) The main work-stealing queue
171 * design is roughly similar to those in the papers "Dynamic
172 * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
173 * (http://research.sun.com/scalable/pubs/index.html) and
174 * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
175 * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
176 * The main differences ultimately stem from GC requirements that
177 * we null out taken slots as soon as we can, to maintain as small
178 * a footprint as possible even in programs generating huge
179 * numbers of tasks. To accomplish this, we shift the CAS
180 * arbitrating pop vs poll (steal) from being on the indices
181 * ("base" and "top") to the slots themselves.
182 *
183 * Adding tasks then takes the form of a classic array push(task)
184 * in a circular buffer:
185 * q.array[q.top++ % length] = task;
186 *
187 * (The actual code needs to null-check and size-check the array,
188 * uses masking, not mod, for indexing a power-of-two-sized array,
189 * properly fences accesses, and possibly signals waiting workers
190 * to start scanning -- see below.) Both a successful pop and
191 * poll mainly entail a CAS of a slot from non-null to null.
192 *
193 * The pop operation (always performed by owner) is:
194 * if ((the task at top slot is not null) and
195 * (CAS slot to null))
196 * decrement top and return task;
197 *
198 * And the poll operation (usually by a stealer) is
199 * if ((the task at base slot is not null) and
200 * (CAS slot to null))
201 * increment base and return task;
202 *
203 * There are several variants of each of these; for example most
204 * versions of poll pre-screen the CAS by rechecking that the base
205 * has not changed since reading the slot, and most methods only
206 * attempt the CAS if base appears not to be equal to top.
207 *
208 * Memory ordering. See "Correct and Efficient Work-Stealing for
209 * Weak Memory Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
210 * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
211 * analysis of memory ordering requirements in work-stealing
212 * algorithms similar to (but different than) the one used here.
213 * Extracting tasks in array slots via (fully fenced) CAS provides
214 * primary synchronization. The base and top indices imprecisely
215 * guide where to extract from. We do not always require strict
216 * orderings of array and index updates, so sometimes let them be
217 * subject to compiler and processor reorderings. However, the
218 * volatile "base" index also serves as a basis for memory
219 * ordering: Slot accesses are preceded by a read of base,
220 * ensuring happens-before ordering with respect to stealers (so
221 * the slots themselves can be read via plain array reads.) The
222 * only other memory orderings relied on are maintained in the
223 * course of signalling and activation (see below). A check that
224 * base == top indicates (momentary) emptiness, but otherwise may
225 * err on the side of possibly making the queue appear nonempty
226 * when a push, pop, or poll have not fully committed, or making
227 * it appear empty when an update of top has not yet been visibly
228 * written. (Method isEmpty() checks the case of a partially
229 * completed removal of the last element.) Because of this, the
230 * poll operation, considered individually, is not wait-free. One
231 * thief cannot successfully continue until another in-progress
232 * one (or, if previously empty, a push) visibly completes.
233 * However, in the aggregate, we ensure at least probabilistic
234 * non-blockingness. If an attempted steal fails, a scanning
235 * thief chooses a different random victim target to try next. So,
236 * in order for one thief to progress, it suffices for any
237 * in-progress poll or new push on any empty queue to
238 * complete. (This is why we normally use method pollAt and its
239 * variants that try once at the apparent base index, else
240 * consider alternative actions, rather than method poll, which
241 * retries.)
242 *
243 * This approach also enables support of a user mode in which
244 * local task processing is in FIFO, not LIFO order, simply by
245 * using poll rather than pop. This can be useful in
246 * message-passing frameworks in which tasks are never joined.
247 *
248 * WorkQueues are also used in a similar way for tasks submitted
249 * to the pool. We cannot mix these tasks in the same queues used
250 * by workers. Instead, we randomly associate submission queues
251 * with submitting threads, using a form of hashing. The
252 * ThreadLocalRandom probe value serves as a hash code for
253 * choosing existing queues, and may be randomly repositioned upon
254 * contention with other submitters. In essence, submitters act
255 * like workers except that they are restricted to executing local
256 * tasks that they submitted (or in the case of CountedCompleters,
257 * others with the same root task). Insertion of tasks in shared
258 * mode requires a lock but we use only a simple spinlock (using
259 * field qlock), because submitters encountering a busy queue move
260 * on to try or create other queues -- they block only when
261 * creating and registering new queues. Because it is used only as
262 * a spinlock, unlocking requires only a "releasing" store (using
263 * putOrderedInt). The qlock is also used during termination
264 * detection, in which case it is forced to a negative
265 * non-lockable value.
266 *
267 * Management
268 * ==========
269 *
270 * The main throughput advantages of work-stealing stem from
271 * decentralized control -- workers mostly take tasks from
272 * themselves or each other, at rates that can exceed a billion
273 * per second. The pool itself creates, activates (enables
274 * scanning for and running tasks), deactivates, blocks, and
275 * terminates threads, all with minimal central information.
276 * There are only a few properties that we can globally track or
277 * maintain, so we pack them into a small number of variables,
278 * often maintaining atomicity without blocking or locking.
279 * Nearly all essentially atomic control state is held in two
280 * volatile variables that are by far most often read (not
281 * written) as status and consistency checks. (Also, field
282 * "config" holds unchanging configuration state.)
283 *
284 * Field "ctl" contains 64 bits holding information needed to
285 * atomically decide to add, inactivate, enqueue (on an event
286 * queue), dequeue, and/or re-activate workers. To enable this
287 * packing, we restrict maximum parallelism to (1<<15)-1 (which is
288 * far in excess of normal operating range) to allow ids, counts,
289 * and their negations (used for thresholding) to fit into 16bit
290 * subfields.
291 *
292 * Field "runState" holds state bits (STARTED, STOP, etc). After
293 * starting, the field is updated (only during shutdown) under the
294 * auxState lock.
295 *
296 * Field "auxState" is a ReentrantLock subclass that also
297 * opportunistically holds some other bookkeeping fields accessed
298 * only when locked. It is mainly used to lock (infrequent)
299 * updates to runState and workQueues. The auxState instance is
300 * itself lazily constructed (see tryInitialize), requiring a
301 * double-check-style bootstrapping use of field runState, and
302 * locking a private static.
303 *
304 * Field "workQueues" holds references to WorkQueues. It is
305 * updated (only during worker creation and termination) under the
306 * lock, but is otherwise concurrently readable, and accessed
307 * directly. We also ensure that reads of the array reference
308 * itself never become too stale (for example, re-reading before
309 * each scan). To simplify index-based operations, the array size
310 * is always a power of two, and all readers must tolerate null
311 * slots. Worker queues are at odd indices. Shared (submission)
312 * queues are at even indices, up to a maximum of 64 slots, to
313 * limit growth even if array needs to expand to add more
314 * workers. Grouping them together in this way simplifies and
315 * speeds up task scanning.
316 *
317 * All worker thread creation is on-demand, triggered by task
318 * submissions, replacement of terminated workers, and/or
319 * compensation for blocked workers. However, all other support
320 * code is set up to work with other policies. To ensure that we
321 * do not hold on to worker references that would prevent GC, all
322 * accesses to workQueues are via indices into the workQueues
323 * array (which is one source of some of the messy code
324 * constructions here). In essence, the workQueues array serves as
325 * a weak reference mechanism. Thus for example the stack top
326 * subfield of ctl stores indices, not references.
327 *
328 * Queuing Idle Workers. Unlike HPC work-stealing frameworks, we
329 * cannot let workers spin indefinitely scanning for tasks when
330 * none can be found immediately, and we cannot start/resume
331 * workers unless there appear to be tasks available. On the
332 * other hand, we must quickly prod them into action when new
333 * tasks are submitted or generated. In many usages, ramp-up time
334 * to activate workers is the main limiting factor in overall
335 * performance, which is compounded at program start-up by JIT
336 * compilation and allocation. So we streamline this as much as
337 * possible.
338 *
339 * The "ctl" field atomically maintains active and total worker
340 * counts as well as a queue to place waiting threads so they can
341 * be located for signalling. Active counts also play the role of
342 * quiescence indicators, so are decremented when workers believe
343 * that there are no more tasks to execute. The "queue" is
344 * actually a form of Treiber stack. A stack is ideal for
345 * activating threads in most-recently used order. This improves
346 * performance and locality, outweighing the disadvantages of
347 * being prone to contention and inability to release a worker
348 * unless it is topmost on stack. We block/unblock workers after
349 * pushing on the idle worker stack (represented by the lower
350 * 32bit subfield of ctl) when they cannot find work. The top
351 * stack state holds the value of the "scanState" field of the
352 * worker: its index and status, plus a version counter that, in
353 * addition to the count subfields (also serving as version
354 * stamps) provide protection against Treiber stack ABA effects.
355 *
356 * Creating workers. To create a worker, we pre-increment total
357 * count (serving as a reservation), and attempt to construct a
358 * ForkJoinWorkerThread via its factory. Upon construction, the
359 * new thread invokes registerWorker, where it constructs a
360 * WorkQueue and is assigned an index in the workQueues array
361 * (expanding the array if necessary). The thread is then started.
362 * Upon any exception across these steps, or null return from
363 * factory, deregisterWorker adjusts counts and records
364 * accordingly. If a null return, the pool continues running with
365 * fewer than the target number workers. If exceptional, the
366 * exception is propagated, generally to some external caller.
367 * Worker index assignment avoids the bias in scanning that would
368 * occur if entries were sequentially packed starting at the front
369 * of the workQueues array. We treat the array as a simple
370 * power-of-two hash table, expanding as needed. The seedIndex
371 * increment ensures no collisions until a resize is needed or a
372 * worker is deregistered and replaced, and thereafter keeps
373 * probability of collision low. We cannot use
374 * ThreadLocalRandom.getProbe() for similar purposes here because
375 * the thread has not started yet, but do so for creating
376 * submission queues for existing external threads (see
377 * externalPush).
378 *
379 * WorkQueue field scanState is used by both workers and the pool
380 * to manage and track whether a worker is UNSIGNALLED (possibly
381 * blocked waiting for a signal). When a worker is inactivated,
382 * its scanState field is set, and is prevented from executing
383 * tasks, even though it must scan once for them to avoid queuing
384 * races. Note that scanState updates lag queue CAS releases so
385 * usage requires care. When queued, the lower 16 bits of
386 * scanState must hold its pool index. So we place the index there
387 * upon initialization (see registerWorker) and otherwise keep it
388 * there or restore it when necessary.
389 *
390 * The ctl field also serves as the basis for memory
391 * synchronization surrounding activation. This uses a more
392 * efficient version of a Dekker-like rule that task producers and
393 * consumers sync with each other by both writing/CASing ctl (even
394 * if to its current value). This would be extremely costly. So
395 * we relax it in several ways: (1) Producers only signal when
396 * their queue is empty. Other workers propagate this signal (in
397 * method scan) when they find tasks. (2) Workers only enqueue
398 * after scanning (see below) and not finding any tasks. (3)
399 * Rather than CASing ctl to its current value in the common case
400 * where no action is required, we reduce write contention by
401 * equivalently prefacing signalWork when called by an external
402 * task producer using a memory access with full-volatile
403 * semantics or a "fullFence". (4) For internal task producers we
404 * rely on the fact that even if no other workers awaken, the
405 * producer itself will eventually see the task and execute it.
406 *
407 * Almost always, too many signals are issued. A task producer
408 * cannot in general tell if some existing worker is in the midst
409 * of finishing one task (or already scanning) and ready to take
410 * another without being signalled. So the producer might instead
411 * activate a different worker that does not find any work, and
412 * then inactivates. This scarcely matters in steady-state
413 * computations involving all workers, but can create contention
414 * and bookkeeping bottlenecks during ramp-up, ramp-down, and small
415 * computations involving only a few workers.
416 *
417 * Scanning. Method scan() performs top-level scanning for tasks.
418 * Each scan traverses (and tries to poll from) each queue in
419 * pseudorandom permutation order by randomly selecting an origin
420 * index and a step value. (The pseudorandom generator need not
421 * have high-quality statistical properties in the long term, but
422 * just within computations; We use 64bit and 32bit Marsaglia
423 * XorShifts, which are cheap and suffice here.) Scanning also
424 * employs contention reduction: When scanning workers fail a CAS
425 * polling for work, they soon restart with a different
426 * pseudorandom scan order (thus likely retrying at different
427 * intervals). This improves throughput when many threads are
428 * trying to take tasks from few queues. Scans do not otherwise
429 * explicitly take into account core affinities, loads, cache
430 * localities, etc, However, they do exploit temporal locality
431 * (which usually approximates these) by preferring to re-poll (up
432 * to POLL_LIMIT times) from the same queue after a successful
433 * poll before trying others. Restricted forms of scanning occur
434 * in methods helpComplete and findNonEmptyStealQueue, and take
435 * similar but simpler forms.
436 *
437 * Deactivation and waiting. Queuing encounters several intrinsic
438 * races; most notably that an inactivating scanning worker can
439 * miss seeing a task produced during a scan. So when a worker
440 * cannot find a task to steal, it inactivates and enqueues, and
441 * then rescans to ensure that it didn't miss one, reactivating
442 * upon seeing one with probability approximately proportional to
443 * probability of a miss. (In most cases, the worker will be
444 * signalled before self-signalling, avoiding cascades of multiple
445 * signals for the same task).
446 *
447 * Workers block (in method awaitWork) using park/unpark;
448 * advertising the need for signallers to unpark by setting their
449 * "parker" fields.
450 *
451 * Trimming workers. To release resources after periods of lack of
452 * use, a worker starting to wait when the pool is quiescent will
453 * time out and terminate (see awaitWork) if the pool has remained
454 * quiescent for period given by IDLE_TIMEOUT_MS, increasing the
455 * period as the number of threads decreases, eventually removing
456 * all workers.
457 *
458 * Shutdown and Termination. A call to shutdownNow invokes
459 * tryTerminate to atomically set a runState bit. The calling
460 * thread, as well as every other worker thereafter terminating,
461 * helps terminate others by setting their (qlock) status,
462 * cancelling their unprocessed tasks, and waking them up, doing
463 * so repeatedly until stable (but with a loop bounded by the
464 * number of workers). Calls to non-abrupt shutdown() preface
465 * this by checking whether termination should commence. This
466 * relies primarily on the active count bits of "ctl" maintaining
467 * consensus -- tryTerminate is called from awaitWork whenever
468 * quiescent. However, external submitters do not take part in
469 * this consensus. So, tryTerminate sweeps through queues (until
470 * stable) to ensure lack of in-flight submissions and workers
471 * about to process them before triggering the "STOP" phase of
472 * termination. (Note: there is an intrinsic conflict if
473 * helpQuiescePool is called when shutdown is enabled. Both wait
474 * for quiescence, but tryTerminate is biased to not trigger until
475 * helpQuiescePool completes.)
476 *
477 * Joining Tasks
478 * =============
479 *
480 * Any of several actions may be taken when one worker is waiting
481 * to join a task stolen (or always held) by another. Because we
482 * are multiplexing many tasks on to a pool of workers, we can't
483 * just let them block (as in Thread.join). We also cannot just
484 * reassign the joiner's run-time stack with another and replace
485 * it later, which would be a form of "continuation", that even if
486 * possible is not necessarily a good idea since we may need both
487 * an unblocked task and its continuation to progress. Instead we
488 * combine two tactics:
489 *
490 * Helping: Arranging for the joiner to execute some task that it
491 * would be running if the steal had not occurred.
492 *
493 * Compensating: Unless there are already enough live threads,
494 * method tryCompensate() may create or re-activate a spare
495 * thread to compensate for blocked joiners until they unblock.
496 *
497 * A third form (implemented in tryRemoveAndExec) amounts to
498 * helping a hypothetical compensator: If we can readily tell that
499 * a possible action of a compensator is to steal and execute the
500 * task being joined, the joining thread can do so directly,
501 * without the need for a compensation thread (although at the
502 * expense of larger run-time stacks, but the tradeoff is
503 * typically worthwhile).
504 *
505 * The ManagedBlocker extension API can't use helping so relies
506 * only on compensation in method awaitBlocker.
507 *
508 * The algorithm in helpStealer entails a form of "linear
509 * helping". Each worker records (in field currentSteal) the most
510 * recent task it stole from some other worker (or a submission).
511 * It also records (in field currentJoin) the task it is currently
512 * actively joining. Method helpStealer uses these markers to try
513 * to find a worker to help (i.e., steal back a task from and
514 * execute it) that could hasten completion of the actively joined
515 * task. Thus, the joiner executes a task that would be on its
516 * own local deque had the to-be-joined task not been stolen. This
517 * is a conservative variant of the approach described in Wagner &
518 * Calder "Leapfrogging: a portable technique for implementing
519 * efficient futures" SIGPLAN Notices, 1993
520 * (http://portal.acm.org/citation.cfm?id=155354). It differs in
521 * that: (1) We only maintain dependency links across workers upon
522 * steals, rather than use per-task bookkeeping. This sometimes
523 * requires a linear scan of workQueues array to locate stealers,
524 * but often doesn't because stealers leave hints (that may become
525 * stale/wrong) of where to locate them. It is only a hint
526 * because a worker might have had multiple steals and the hint
527 * records only one of them (usually the most current). Hinting
528 * isolates cost to when it is needed, rather than adding to
529 * per-task overhead. (2) It is "shallow", ignoring nesting and
530 * potentially cyclic mutual steals. (3) It is intentionally
531 * racy: field currentJoin is updated only while actively joining,
532 * which means that we miss links in the chain during long-lived
533 * tasks, GC stalls etc (which is OK since blocking in such cases
534 * is usually a good idea). (4) We bound the number of attempts
535 * to find work using checksums and fall back to suspending the
536 * worker and if necessary replacing it with another.
537 *
538 * Helping actions for CountedCompleters do not require tracking
539 * currentJoins: Method helpComplete takes and executes any task
540 * with the same root as the task being waited on (preferring
541 * local pops to non-local polls). However, this still entails
542 * some traversal of completer chains, so is less efficient than
543 * using CountedCompleters without explicit joins.
544 *
545 * Compensation does not aim to keep exactly the target
546 * parallelism number of unblocked threads running at any given
547 * time. Some previous versions of this class employed immediate
548 * compensations for any blocked join. However, in practice, the
549 * vast majority of blockages are transient byproducts of GC and
550 * other JVM or OS activities that are made worse by replacement.
551 * Currently, compensation is attempted only after validating that
552 * all purportedly active threads are processing tasks by checking
553 * field WorkQueue.scanState, which eliminates most false
554 * positives. Also, compensation is bypassed (tolerating fewer
555 * threads) in the most common case in which it is rarely
556 * beneficial: when a worker with an empty queue (thus no
557 * continuation tasks) blocks on a join and there still remain
558 * enough threads to ensure liveness.
559 *
560 * Spare threads are removed as soon as they notice that the
561 * target parallelism level has been exceeded, in method
562 * tryDropSpare. (Method scan arranges returns for rechecks upon
563 * each probe via the "bound" parameter.)
564 *
565 * The compensation mechanism may be bounded. Bounds for the
566 * commonPool (see COMMON_MAX_SPARES) better enable JVMs to cope
567 * with programming errors and abuse before running out of
568 * resources to do so. In other cases, users may supply factories
569 * that limit thread construction. The effects of bounding in this
570 * pool (like all others) is imprecise. Total worker counts are
571 * decremented when threads deregister, not when they exit and
572 * resources are reclaimed by the JVM and OS. So the number of
573 * simultaneously live threads may transiently exceed bounds.
574 *
575 * Common Pool
576 * ===========
577 *
578 * The static common pool always exists after static
579 * initialization. Since it (or any other created pool) need
580 * never be used, we minimize initial construction overhead and
581 * footprint to the setup of about a dozen fields, with no nested
582 * allocation. Most bootstrapping occurs within method
583 * externalSubmit during the first submission to the pool.
584 *
585 * When external threads submit to the common pool, they can
586 * perform subtask processing (see externalHelpComplete and
587 * related methods) upon joins. This caller-helps policy makes it
588 * sensible to set common pool parallelism level to one (or more)
589 * less than the total number of available cores, or even zero for
590 * pure caller-runs. We do not need to record whether external
591 * submissions are to the common pool -- if not, external help
592 * methods return quickly. These submitters would otherwise be
593 * blocked waiting for completion, so the extra effort (with
594 * liberally sprinkled task status checks) in inapplicable cases
595 * amounts to an odd form of limited spin-wait before blocking in
596 * ForkJoinTask.join.
597 *
598 * As a more appropriate default in managed environments, unless
599 * overridden by system properties, we use workers of subclass
600 * InnocuousForkJoinWorkerThread when there is a SecurityManager
601 * present. These workers have no permissions set, do not belong
602 * to any user-defined ThreadGroup, and erase all ThreadLocals
603 * after executing any top-level task (see WorkQueue.runTask).
604 * The associated mechanics (mainly in ForkJoinWorkerThread) may
605 * be JVM-dependent and must access particular Thread class fields
606 * to achieve this effect.
607 *
608 * Style notes
609 * ===========
610 *
611 * Memory ordering relies mainly on Unsafe intrinsics that carry
612 * the further responsibility of explicitly performing null- and
613 * bounds- checks otherwise carried out implicitly by JVMs. This
614 * can be awkward and ugly, but also reflects the need to control
615 * outcomes across the unusual cases that arise in very racy code
616 * with very few invariants. So these explicit checks would exist
617 * in some form anyway. All fields are read into locals before
618 * use, and null-checked if they are references. This is usually
619 * done in a "C"-like style of listing declarations at the heads
620 * of methods or blocks, and using inline assignments on first
621 * encounter. Array bounds-checks are usually performed by
622 * masking with array.length-1, which relies on the invariant that
623 * these arrays are created with positive lengths, which is itself
624 * paranoically checked. Nearly all explicit checks lead to
625 * bypass/return, not exception throws, because they may
626 * legitimately arise due to cancellation/revocation during
627 * shutdown.
628 *
629 * There is a lot of representation-level coupling among classes
630 * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
631 * fields of WorkQueue maintain data structures managed by
632 * ForkJoinPool, so are directly accessed. There is little point
633 * trying to reduce this, since any associated future changes in
634 * representations will need to be accompanied by algorithmic
635 * changes anyway. Several methods intrinsically sprawl because
636 * they must accumulate sets of consistent reads of fields held in
637 * local variables. There are also other coding oddities
638 * (including several unnecessary-looking hoisted null checks)
639 * that help some methods perform reasonably even when interpreted
640 * (not compiled).
641 *
642 * The order of declarations in this file is (with a few exceptions):
643 * (1) Static utility functions
644 * (2) Nested (static) classes
645 * (3) Static fields
646 * (4) Fields, along with constants used when unpacking some of them
647 * (5) Internal control methods
648 * (6) Callbacks and other support for ForkJoinTask methods
649 * (7) Exported methods
650 * (8) Static block initializing statics in minimally dependent order
651 */
652
653 // Static utilities
654
655 /**
656 * If there is a security manager, makes sure caller has
657 * permission to modify threads.
658 */
659 private static void checkPermission() {
660 SecurityManager security = System.getSecurityManager();
661 if (security != null)
662 security.checkPermission(modifyThreadPermission);
663 }
664
665 // Nested classes
666
667 /**
668 * Factory for creating new {@link ForkJoinWorkerThread}s.
669 * A {@code ForkJoinWorkerThreadFactory} must be defined and used
670 * for {@code ForkJoinWorkerThread} subclasses that extend base
671 * functionality or initialize threads with different contexts.
672 */
673 public static interface ForkJoinWorkerThreadFactory {
674 /**
675 * Returns a new worker thread operating in the given pool.
676 *
677 * @param pool the pool this thread works in
678 * @return the new worker thread
679 * @throws NullPointerException if the pool is null
680 */
681 public ForkJoinWorkerThread newThread(ForkJoinPool pool);
682 }
683
684 /**
685 * Default ForkJoinWorkerThreadFactory implementation; creates a
686 * new ForkJoinWorkerThread.
687 */
688 private static final class DefaultForkJoinWorkerThreadFactory
689 implements ForkJoinWorkerThreadFactory {
690 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
691 return new ForkJoinWorkerThread(pool);
692 }
693 }
694
695 /**
696 * Class for artificial tasks that are used to replace the target
697 * of local joins if they are removed from an interior queue slot
698 * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
699 * actually do anything beyond having a unique identity.
700 */
701 private static final class EmptyTask extends ForkJoinTask<Void> {
702 private static final long serialVersionUID = -7721805057305804111L;
703 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
704 public final Void getRawResult() { return null; }
705 public final void setRawResult(Void x) {}
706 public final boolean exec() { return true; }
707 }
708
709 /**
710 * Additional fields and lock created upon initialization.
711 */
712 private static final class AuxState extends ReentrantLock {
713 private static final long serialVersionUID = -6001602636862214147L;
714 volatile long stealCount; // cumulative steal count
715 long indexSeed; // index bits for registerWorker
716 AuxState() {}
717 }
718
719 // Constants shared across ForkJoinPool and WorkQueue
720
721 // Bounds
722 static final int SMASK = 0xffff; // short bits == max index
723 static final int MAX_CAP = 0x7fff; // max #workers - 1
724 static final int EVENMASK = 0xfffe; // even short bits
725 static final int SQMASK = 0x007e; // max 64 (even) slots
726
727 // Masks and units for WorkQueue.scanState and ctl sp subfield
728 static final int UNSIGNALLED = 1 << 31; // must be negative
729 static final int SS_SEQ = 1 << 16; // version count
730
731 // Mode bits for ForkJoinPool.config and WorkQueue.config
732 static final int MODE_MASK = 0xffff << 16; // top half of int
733 static final int SPARE_WORKER = 1 << 17; // set if tc > 0 on creation
734 static final int UNREGISTERED = 1 << 18; // to skip some of deregister
735 static final int FIFO_QUEUE = 1 << 31; // must be negative
736 static final int LIFO_QUEUE = 0; // for clarity
737 static final int IS_OWNED = 1; // low bit 0 if shared
738
739 /**
740 * The maximum number of task executions from the same queue
741 * before checking other queues, bounding unfairness and impact of
742 * infinite user task recursion. Must be a power of two minus 1.
743 */
744 static final int POLL_LIMIT = (1 << 10) - 1;
745
746 /**
747 * Queues supporting work-stealing as well as external task
748 * submission. See above for descriptions and algorithms.
749 * Performance on most platforms is very sensitive to placement of
750 * instances of both WorkQueues and their arrays -- we absolutely
751 * do not want multiple WorkQueue instances or multiple queue
752 * arrays sharing cache lines. The @Contended annotation alerts
753 * JVMs to try to keep instances apart.
754 */
755 @sun.misc.Contended
756 static final class WorkQueue {
757
758 /**
759 * Capacity of work-stealing queue array upon initialization.
760 * Must be a power of two; at least 4, but should be larger to
761 * reduce or eliminate cacheline sharing among queues.
762 * Currently, it is much larger, as a partial workaround for
763 * the fact that JVMs often place arrays in locations that
764 * share GC bookkeeping (especially cardmarks) such that
765 * per-write accesses encounter serious memory contention.
766 */
767 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
768
769 /**
770 * Maximum size for queue arrays. Must be a power of two less
771 * than or equal to 1 << (31 - width of array entry) to ensure
772 * lack of wraparound of index calculations, but defined to a
773 * value a bit less than this to help users trap runaway
774 * programs before saturating systems.
775 */
776 static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
777
778 // Instance fields
779
780 volatile int scanState; // versioned, negative if inactive
781 int stackPred; // pool stack (ctl) predecessor
782 int nsteals; // number of steals
783 int hint; // randomization and stealer index hint
784 int config; // pool index and mode
785 volatile int qlock; // 1: locked, < 0: terminate; else 0
786 volatile int base; // index of next slot for poll
787 int top; // index of next slot for push
788 ForkJoinTask<?>[] array; // the elements (initially unallocated)
789 final ForkJoinPool pool; // the containing pool (may be null)
790 final ForkJoinWorkerThread owner; // owning thread or null if shared
791 volatile Thread parker; // == owner during call to park; else null
792 volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
793 @sun.misc.Contended("group2") // separate from other fields
794 volatile ForkJoinTask<?> currentSteal; // nonnull when running some task
795
796 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner) {
797 this.pool = pool;
798 this.owner = owner;
799 // Place indices in the center of array (that is not yet allocated)
800 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
801 }
802
803 /**
804 * Returns an exportable index (used by ForkJoinWorkerThread).
805 */
806 final int getPoolIndex() {
807 return (config & 0xffff) >>> 1; // ignore odd/even tag bit
808 }
809
810 /**
811 * Returns the approximate number of tasks in the queue.
812 */
813 final int queueSize() {
814 int n = base - top; // read base first
815 return (n >= 0) ? 0 : -n; // ignore transient negative
816 }
817
818 /**
819 * Provides a more accurate estimate of whether this queue has
820 * any tasks than does queueSize, by checking whether a
821 * near-empty queue has at least one unclaimed task.
822 */
823 final boolean isEmpty() {
824 ForkJoinTask<?>[] a; int n, al, s;
825 return ((n = base - (s = top)) >= 0 || // possibly one task
826 (n == -1 && ((a = array) == null ||
827 (al = a.length) == 0 ||
828 a[(al - 1) & (s - 1)] == null)));
829 }
830
831 /**
832 * Pushes a task. Call only by owner in unshared queues.
833 *
834 * @param task the task. Caller must ensure non-null.
835 * @throws RejectedExecutionException if array cannot be resized
836 */
837 final void push(ForkJoinTask<?> task) {
838 int b = base, s = top, al, d; ForkJoinTask<?>[] a;
839 if ((a = array) != null && (al = a.length) > 0) {
840 a[(al - 1) & s] = task; // relaxed writes OK
841 top = s + 1;
842 ForkJoinPool p = pool;
843 U.storeFence(); // ensure fields written
844 if (((d = b - s) == 0 || b != base) && p != null) {
845 U.fullFence();
846 p.signalWork();
847 }
848 else if (al + d == 1)
849 growArray();
850 }
851 }
852
853 /**
854 * Initializes or doubles the capacity of array. Call either
855 * by owner or with lock held -- it is OK for base, but not
856 * top, to move while resizings are in progress.
857 */
858 final ForkJoinTask<?>[] growArray() {
859 ForkJoinTask<?>[] oldA = array;
860 int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
861 if (size < INITIAL_QUEUE_CAPACITY || size > MAXIMUM_QUEUE_CAPACITY)
862 throw new RejectedExecutionException("Queue capacity exceeded");
863 int oldMask, t, b;
864 ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
865 if (oldA != null && (oldMask = oldA.length - 1) > 0 &&
866 (t = top) - (b = base) > 0) {
867 int mask = size - 1;
868 do { // emulate poll from old array, push to new array
869 int index = b & oldMask;
870 long offset = ((long)index << ASHIFT) + ABASE;
871 ForkJoinTask<?> x = (ForkJoinTask<?>)
872 U.getObjectVolatile(oldA, offset);
873 if (x != null &&
874 U.compareAndSwapObject(oldA, offset, x, null))
875 a[b & mask] = x;
876 } while (++b != t);
877 U.storeFence();
878 }
879 return a;
880 }
881
882 /**
883 * Takes next task, if one exists, in LIFO order. Call only
884 * by owner in unshared queues.
885 */
886 final ForkJoinTask<?> pop() {
887 int b = base, s = top, al, i; ForkJoinTask<?>[] a;
888 if ((a = array) != null && b != s && (al = a.length) > 0) {
889 int index = (al - 1) & --s;
890 long offset = ((long)index << ASHIFT) + ABASE;
891 ForkJoinTask<?> t = (ForkJoinTask<?>)
892 U.getObject(a, offset);
893 if (t != null &&
894 U.compareAndSwapObject(a, offset, t, null)) {
895 top = s;
896 return t;
897 }
898 }
899 return null;
900 }
901
902 /**
903 * Takes a task in FIFO order if b is base of queue and a task
904 * can be claimed without contention. Specialized versions
905 * appear in ForkJoinPool methods scan and helpStealer.
906 */
907 final ForkJoinTask<?> pollAt(int b) {
908 ForkJoinTask<?>[] a; int al;
909 if ((a = array) != null && (al = a.length) > 0) {
910 int index = (al - 1) & b;
911 long offset = ((long)index << ASHIFT) + ABASE;
912 ForkJoinTask<?> t = (ForkJoinTask<?>)
913 U.getObjectVolatile(a, offset);
914 if (t != null && b++ == base &&
915 U.compareAndSwapObject(a, offset, t, null)) {
916 base = b;
917 return t;
918 }
919 }
920 return null;
921 }
922
923 /**
924 * Takes next task, if one exists, in FIFO order.
925 */
926 final ForkJoinTask<?> poll() {
927 for (;;) {
928 int b = base, s = top, d, al; ForkJoinTask<?>[] a;
929 if ((a = array) != null && (d = b - s) < 0 &&
930 (al = a.length) > 0) {
931 int index = (al - 1) & b;
932 long offset = ((long)index << ASHIFT) + ABASE;
933 ForkJoinTask<?> t = (ForkJoinTask<?>)
934 U.getObjectVolatile(a, offset);
935 if (b++ == base) {
936 if (t != null) {
937 if (U.compareAndSwapObject(a, offset, t, null)) {
938 base = b;
939 return t;
940 }
941 }
942 else if (d == -1)
943 break; // now empty
944 }
945 }
946 else
947 break;
948 }
949 return null;
950 }
951
952 /**
953 * Takes next task, if one exists, in order specified by mode.
954 */
955 final ForkJoinTask<?> nextLocalTask() {
956 return (config < 0) ? poll() : pop();
957 }
958
959 /**
960 * Returns next task, if one exists, in order specified by mode.
961 */
962 final ForkJoinTask<?> peek() {
963 int b = base, al; ForkJoinTask<?>[] a;
964 return ((a = array) != null && (al = a.length) > 0) ?
965 a[(al - 1) & (config < 0 ? b : top - 1)] : null;
966 }
967
968 /**
969 * Pops the given task only if it is at the current top.
970 */
971 final boolean tryUnpush(ForkJoinTask<?> task) {
972 int b = base, s = top, al; ForkJoinTask<?>[] a;
973 if ((a = array) != null && b != s && (al = a.length) > 0) {
974 int index = (al - 1) & --s;
975 long offset = ((long)index << ASHIFT) + ABASE;
976 if (U.compareAndSwapObject(a, offset, task, null)) {
977 top = s;
978 return true;
979 }
980 }
981 return false;
982 }
983
984 /**
985 * Shared version of push. Fails if already locked.
986 *
987 * @return status: > 0 locked, 0 possibly was empty, < 0 was nonempty
988 */
989 final int sharedPush(ForkJoinTask<?> task) {
990 int stat;
991 if (U.compareAndSwapInt(this, QLOCK, 0, 1)) {
992 int b = base, s = top, al, d; ForkJoinTask<?>[] a;
993 if ((a = array) != null && (al = a.length) > 0 &&
994 al - 1 + (d = b - s) > 0) {
995 a[(al - 1) & s] = task;
996 top = s + 1; // relaxed writes OK here
997 qlock = 0;
998 stat = (d < 0 && b == base) ? d : 0;
999 }
1000 else {
1001 growAndSharedPush(task);
1002 stat = 0;
1003 }
1004 }
1005 else
1006 stat = 1;
1007 return stat;
1008 }
1009
1010 /*
1011 * Helper for sharedPush; called only when locked and resize
1012 * needed.
1013 */
1014 private void growAndSharedPush(ForkJoinTask<?> task) {
1015 try {
1016 growArray();
1017 int s = top, al; ForkJoinTask<?>[] a;
1018 if ((a = array) != null && (al = a.length) > 0) {
1019 a[(al - 1) & s] = task;
1020 top = s + 1;
1021 }
1022 } finally {
1023 qlock = 0;
1024 }
1025 }
1026
1027 /**
1028 * Shared version of pop.
1029 */
1030 final boolean trySharedUnpush(ForkJoinTask<?> task) {
1031 boolean popped = false;
1032 int s = top - 1, al; ForkJoinTask<?>[] a;
1033 if ((a = array) != null && (al = a.length) > 0) {
1034 int index = (al - 1) & s;
1035 long offset = ((long)index << ASHIFT) + ABASE;
1036 ForkJoinTask<?> t = (ForkJoinTask<?>) U.getObject(a, offset);
1037 if (t == task &&
1038 U.compareAndSwapInt(this, QLOCK, 0, 1)) {
1039 if (U.compareAndSwapObject(a, offset, task, null)) {
1040 popped = true;
1041 top = s;
1042 }
1043 U.putOrderedInt(this, QLOCK, 0);
1044 }
1045 }
1046 return popped;
1047 }
1048
1049 /**
1050 * Removes and cancels all known tasks, ignoring any exceptions.
1051 */
1052 final void cancelAll() {
1053 ForkJoinTask<?> t;
1054 if ((t = currentJoin) != null) {
1055 currentJoin = null;
1056 ForkJoinTask.cancelIgnoringExceptions(t);
1057 }
1058 if ((t = currentSteal) != null) {
1059 currentSteal = null;
1060 ForkJoinTask.cancelIgnoringExceptions(t);
1061 }
1062 while ((t = poll()) != null)
1063 ForkJoinTask.cancelIgnoringExceptions(t);
1064 }
1065
1066 // Specialized execution methods
1067
1068 /**
1069 * Pops and executes up to POLL_LIMIT tasks or until empty.
1070 */
1071 final void localPopAndExec() {
1072 for (int nexec = 0;;) {
1073 int b = base, s = top, al; ForkJoinTask<?>[] a;
1074 if ((a = array) != null && b != s && (al = a.length) > 0) {
1075 int index = (al - 1) & --s;
1076 long offset = ((long)index << ASHIFT) + ABASE;
1077 ForkJoinTask<?> t = (ForkJoinTask<?>)
1078 U.getAndSetObject(a, offset, null);
1079 if (t != null) {
1080 top = s;
1081 (currentSteal = t).doExec();
1082 if (++nexec > POLL_LIMIT)
1083 break;
1084 }
1085 else
1086 break;
1087 }
1088 else
1089 break;
1090 }
1091 }
1092
1093 /**
1094 * Polls and executes up to POLL_LIMIT tasks or until empty.
1095 */
1096 final void localPollAndExec() {
1097 for (int nexec = 0;;) {
1098 int b = base, s = top, al; ForkJoinTask<?>[] a;
1099 if ((a = array) != null && b != s && (al = a.length) > 0) {
1100 int index = (al - 1) & b++;
1101 long offset = ((long)index << ASHIFT) + ABASE;
1102 ForkJoinTask<?> t = (ForkJoinTask<?>)
1103 U.getAndSetObject(a, offset, null);
1104 if (t != null) {
1105 base = b;
1106 t.doExec();
1107 if (++nexec > POLL_LIMIT)
1108 break;
1109 }
1110 }
1111 else
1112 break;
1113 }
1114 }
1115
1116 /**
1117 * Executes the given task and (some) remaining local tasks.
1118 */
1119 final void runTask(ForkJoinTask<?> task) {
1120 if (task != null) {
1121 task.doExec();
1122 if (config < 0)
1123 localPollAndExec();
1124 else
1125 localPopAndExec();
1126 int ns = ++nsteals;
1127 ForkJoinWorkerThread thread = owner;
1128 currentSteal = null;
1129 if (ns < 0) // collect on overflow
1130 transferStealCount(pool);
1131 if (thread != null)
1132 thread.afterTopLevelExec();
1133 }
1134 }
1135
1136 /**
1137 * Adds steal count to pool steal count if it exists, and resets.
1138 */
1139 final void transferStealCount(ForkJoinPool p) {
1140 AuxState aux;
1141 if (p != null && (aux = p.auxState) != null) {
1142 int s = nsteals;
1143 nsteals = 0; // if negative, correct for overflow
1144 long inc = (long)(s < 0 ? Integer.MAX_VALUE : s);
1145 aux.lock();
1146 try {
1147 aux.stealCount += inc;
1148 } finally {
1149 aux.unlock();
1150 }
1151 }
1152 }
1153
1154 /**
1155 * If present, removes from queue and executes the given task,
1156 * or any other cancelled task. Used only by awaitJoin.
1157 *
1158 * @return true if queue empty and task not known to be done
1159 */
1160 final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
1161 if (task != null && task.status >= 0) {
1162 int b, s, d, al; ForkJoinTask<?>[] a;
1163 while ((d = (b = base) - (s = top)) < 0 &&
1164 (a = array) != null && (al = a.length) > 0) {
1165 for (;;) { // traverse from s to b
1166 int index = --s & (al - 1);
1167 long offset = (index << ASHIFT) + ABASE;
1168 ForkJoinTask<?> t = (ForkJoinTask<?>)
1169 U.getObjectVolatile(a, offset);
1170 if (t == null)
1171 break; // restart
1172 else if (t == task) {
1173 boolean removed = false;
1174 if (s + 1 == top) { // pop
1175 if (U.compareAndSwapObject(a, offset, t, null)) {
1176 top = s;
1177 removed = true;
1178 }
1179 }
1180 else if (base == b) // replace with proxy
1181 removed = U.compareAndSwapObject(a, offset, t,
1182 new EmptyTask());
1183 if (removed) {
1184 ForkJoinTask<?> ps = currentSteal;
1185 (currentSteal = task).doExec();
1186 currentSteal = ps;
1187 }
1188 break;
1189 }
1190 else if (t.status < 0 && s + 1 == top) {
1191 if (U.compareAndSwapObject(a, offset, t, null)) {
1192 top = s;
1193 }
1194 break; // was cancelled
1195 }
1196 else if (++d == 0) {
1197 if (base != b) // rescan
1198 break;
1199 return false;
1200 }
1201 }
1202 if (task.status < 0)
1203 return false;
1204 }
1205 }
1206 return true;
1207 }
1208
1209 /**
1210 * Pops task if in the same CC computation as the given task,
1211 * in either shared or owned mode. Used only by helpComplete.
1212 */
1213 final CountedCompleter<?> popCC(CountedCompleter<?> task, int mode) {
1214 int b = base, s = top, al; ForkJoinTask<?>[] a;
1215 if ((a = array) != null && b != s && (al = a.length) > 0) {
1216 int index = (al - 1) & (s - 1);
1217 long offset = ((long)index << ASHIFT) + ABASE;
1218 ForkJoinTask<?> o = (ForkJoinTask<?>)
1219 U.getObjectVolatile(a, offset);
1220 if (o instanceof CountedCompleter) {
1221 CountedCompleter<?> t = (CountedCompleter<?>)o;
1222 for (CountedCompleter<?> r = t;;) {
1223 if (r == task) {
1224 if ((mode & IS_OWNED) == 0) {
1225 boolean popped;
1226 if (U.compareAndSwapInt(this, QLOCK, 0, 1)) {
1227 if (popped =
1228 U.compareAndSwapObject(a, offset,
1229 t, null))
1230 top = s - 1;
1231 U.putOrderedInt(this, QLOCK, 0);
1232 if (popped)
1233 return t;
1234 }
1235 }
1236 else if (U.compareAndSwapObject(a, offset,
1237 t, null)) {
1238 top = s - 1;
1239 return t;
1240 }
1241 break;
1242 }
1243 else if ((r = r.completer) == null) // try parent
1244 break;
1245 }
1246 }
1247 }
1248 return null;
1249 }
1250
1251 /**
1252 * Steals and runs a task in the same CC computation as the
1253 * given task if one exists and can be taken without
1254 * contention. Otherwise returns a checksum/control value for
1255 * use by method helpComplete.
1256 *
1257 * @return 1 if successful, 2 if retryable (lost to another
1258 * stealer), -1 if non-empty but no matching task found, else
1259 * the base index, forced negative.
1260 */
1261 final int pollAndExecCC(CountedCompleter<?> task) {
1262 ForkJoinTask<?>[] a;
1263 int b = base, s = top, al, h;
1264 if ((a = array) != null && b != s && (al = a.length) > 0) {
1265 int index = (al - 1) & b;
1266 long offset = ((long)index << ASHIFT) + ABASE;
1267 ForkJoinTask<?> o = (ForkJoinTask<?>)
1268 U.getObjectVolatile(a, offset);
1269 if (o == null)
1270 h = 2; // retryable
1271 else if (!(o instanceof CountedCompleter))
1272 h = -1; // unmatchable
1273 else {
1274 CountedCompleter<?> t = (CountedCompleter<?>)o;
1275 for (CountedCompleter<?> r = t;;) {
1276 if (r == task) {
1277 if (b++ == base &&
1278 U.compareAndSwapObject(a, offset, t, null)) {
1279 base = b;
1280 t.doExec();
1281 h = 1; // success
1282 }
1283 else
1284 h = 2; // lost CAS
1285 break;
1286 }
1287 else if ((r = r.completer) == null) {
1288 h = -1; // unmatched
1289 break;
1290 }
1291 }
1292 }
1293 }
1294 else
1295 h = b | Integer.MIN_VALUE; // to sense movement on re-poll
1296 return h;
1297 }
1298
1299 /**
1300 * Returns true if owned and not known to be blocked.
1301 */
1302 final boolean isApparentlyUnblocked() {
1303 Thread wt; Thread.State s;
1304 return (scanState >= 0 &&
1305 (wt = owner) != null &&
1306 (s = wt.getState()) != Thread.State.BLOCKED &&
1307 s != Thread.State.WAITING &&
1308 s != Thread.State.TIMED_WAITING);
1309 }
1310
1311 // Unsafe mechanics. Note that some are (and must be) the same as in FJP
1312 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
1313 private static final int ABASE;
1314 private static final int ASHIFT;
1315 private static final long QLOCK;
1316 static {
1317 try {
1318 QLOCK = U.objectFieldOffset
1319 (WorkQueue.class.getDeclaredField("qlock"));
1320 ABASE = U.arrayBaseOffset(ForkJoinTask[].class);
1321 int scale = U.arrayIndexScale(ForkJoinTask[].class);
1322 if ((scale & (scale - 1)) != 0)
1323 throw new Error("array index scale not a power of two");
1324 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1325 } catch (ReflectiveOperationException e) {
1326 throw new Error(e);
1327 }
1328 }
1329 }
1330
1331 // static fields (initialized in static initializer below)
1332
1333 /**
1334 * Creates a new ForkJoinWorkerThread. This factory is used unless
1335 * overridden in ForkJoinPool constructors.
1336 */
1337 public static final ForkJoinWorkerThreadFactory
1338 defaultForkJoinWorkerThreadFactory;
1339
1340 /**
1341 * Permission required for callers of methods that may start or
1342 * kill threads. Also used as a static lock in tryInitialize.
1343 */
1344 static final RuntimePermission modifyThreadPermission;
1345
1346 /**
1347 * Common (static) pool. Non-null for public use unless a static
1348 * construction exception, but internal usages null-check on use
1349 * to paranoically avoid potential initialization circularities
1350 * as well as to simplify generated code.
1351 */
1352 static final ForkJoinPool common;
1353
1354 /**
1355 * Common pool parallelism. To allow simpler use and management
1356 * when common pool threads are disabled, we allow the underlying
1357 * common.parallelism field to be zero, but in that case still report
1358 * parallelism as 1 to reflect resulting caller-runs mechanics.
1359 */
1360 static final int COMMON_PARALLELISM;
1361
1362 /**
1363 * Limit on spare thread construction in tryCompensate.
1364 */
1365 private static final int COMMON_MAX_SPARES;
1366
1367 /**
1368 * Sequence number for creating workerNamePrefix.
1369 */
1370 private static int poolNumberSequence;
1371
1372 /**
1373 * Returns the next sequence number. We don't expect this to
1374 * ever contend, so use simple builtin sync.
1375 */
1376 private static final synchronized int nextPoolId() {
1377 return ++poolNumberSequence;
1378 }
1379
1380 // static configuration constants
1381
1382 /**
1383 * Initial timeout value (in milliseconds) for the thread
1384 * triggering quiescence to park waiting for new work. On timeout,
1385 * the thread will instead try to shrink the number of workers.
1386 * The value should be large enough to avoid overly aggressive
1387 * shrinkage during most transient stalls (long GCs etc).
1388 */
1389 private static final long IDLE_TIMEOUT_MS = 2000L; // 2sec
1390
1391 /**
1392 * Tolerance for idle timeouts, to cope with timer undershoots.
1393 */
1394 private static final long TIMEOUT_SLOP_MS = 20L; // 20ms
1395
1396 /**
1397 * The default value for COMMON_MAX_SPARES. Overridable using the
1398 * "java.util.concurrent.ForkJoinPool.common.maximumSpares" system
1399 * property. The default value is far in excess of normal
1400 * requirements, but also far short of MAX_CAP and typical OS
1401 * thread limits, so allows JVMs to catch misuse/abuse before
1402 * running out of resources needed to do so.
1403 */
1404 private static final int DEFAULT_COMMON_MAX_SPARES = 256;
1405
1406 /**
1407 * Increment for seed generators. See class ThreadLocal for
1408 * explanation.
1409 */
1410 private static final int SEED_INCREMENT = 0x9e3779b9;
1411
1412 /*
1413 * Bits and masks for field ctl, packed with 4 16 bit subfields:
1414 * AC: Number of active running workers minus target parallelism
1415 * TC: Number of total workers minus target parallelism
1416 * SS: version count and status of top waiting thread
1417 * ID: poolIndex of top of Treiber stack of waiters
1418 *
1419 * When convenient, we can extract the lower 32 stack top bits
1420 * (including version bits) as sp=(int)ctl. The offsets of counts
1421 * by the target parallelism and the positionings of fields makes
1422 * it possible to perform the most common checks via sign tests of
1423 * fields: When ac is negative, there are not enough active
1424 * workers, when tc is negative, there are not enough total
1425 * workers. When sp is non-zero, there are waiting workers. To
1426 * deal with possibly negative fields, we use casts in and out of
1427 * "short" and/or signed shifts to maintain signedness.
1428 *
1429 * Because it occupies uppermost bits, we can add one active count
1430 * using getAndAddLong of AC_UNIT, rather than CAS, when returning
1431 * from a blocked join. Other updates entail multiple subfields
1432 * and masking, requiring CAS.
1433 */
1434
1435 // Lower and upper word masks
1436 private static final long SP_MASK = 0xffffffffL;
1437 private static final long UC_MASK = ~SP_MASK;
1438
1439 // Active counts
1440 private static final int AC_SHIFT = 48;
1441 private static final long AC_UNIT = 0x0001L << AC_SHIFT;
1442 private static final long AC_MASK = 0xffffL << AC_SHIFT;
1443
1444 // Total counts
1445 private static final int TC_SHIFT = 32;
1446 private static final long TC_UNIT = 0x0001L << TC_SHIFT;
1447 private static final long TC_MASK = 0xffffL << TC_SHIFT;
1448 private static final long ADD_WORKER = 0x0001L << (TC_SHIFT + 15); // sign
1449
1450 // runState bits: SHUTDOWN must be negative, others arbitrary powers of two
1451 private static final int STARTED = 1;
1452 private static final int STOP = 1 << 1;
1453 private static final int TERMINATED = 1 << 2;
1454 private static final int SHUTDOWN = 1 << 31;
1455
1456 // Instance fields
1457 volatile long ctl; // main pool control
1458 volatile int runState;
1459 final int config; // parallelism, mode
1460 AuxState auxState; // lock, steal counts
1461 volatile WorkQueue[] workQueues; // main registry
1462 final String workerNamePrefix; // to create worker name string
1463 final ForkJoinWorkerThreadFactory factory;
1464 final UncaughtExceptionHandler ueh; // per-worker UEH
1465
1466 /**
1467 * Instantiates fields upon first submission, or upon shutdown if
1468 * no submissions. If checkTermination true, also responds to
1469 * termination by external calls submitting tasks.
1470 */
1471 private void tryInitialize(boolean checkTermination) {
1472 if ((runState & STARTED) == 0) { // bootstrap by locking static field
1473 int rs; // create workQueues array with size a power of two
1474 int p = config & SMASK; // ensure at least 2 slots
1475 int n = (p > 1) ? p - 1 : 1;
1476 n |= n >>> 1;
1477 n |= n >>> 2;
1478 n |= n >>> 4;
1479 n |= n >>> 8;
1480 n |= n >>> 16;
1481 n = ((n + 1) << 1) & SMASK;
1482 AuxState aux = new AuxState();
1483 WorkQueue[] ws = new WorkQueue[n];
1484 synchronized (modifyThreadPermission) { // double-check
1485 if (((rs = runState) & STARTED) == 0) {
1486 rs |= STARTED;
1487 workQueues = ws;
1488 auxState = aux;
1489 runState = rs;
1490 }
1491 }
1492 }
1493 if (checkTermination && runState < 0) {
1494 tryTerminate(false, false); // help terminate
1495 throw new RejectedExecutionException();
1496 }
1497 }
1498
1499 // Creating, registering and deregistering workers
1500
1501 /**
1502 * Tries to construct and start one worker. Assumes that total
1503 * count has already been incremented as a reservation. Invokes
1504 * deregisterWorker on any failure.
1505 *
1506 * @param isSpare true if this is a spare thread
1507 * @return true if successful
1508 */
1509 private boolean createWorker(boolean isSpare) {
1510 ForkJoinWorkerThreadFactory fac = factory;
1511 Throwable ex = null;
1512 ForkJoinWorkerThread wt = null;
1513 WorkQueue q;
1514 try {
1515 if (fac != null && (wt = fac.newThread(this)) != null) {
1516 if (isSpare && (q = wt.workQueue) != null)
1517 q.config |= SPARE_WORKER;
1518 wt.start();
1519 return true;
1520 }
1521 } catch (Throwable rex) {
1522 ex = rex;
1523 }
1524 deregisterWorker(wt, ex);
1525 return false;
1526 }
1527
1528 /**
1529 * Tries to add one worker, incrementing ctl counts before doing
1530 * so, relying on createWorker to back out on failure.
1531 *
1532 * @param c incoming ctl value, with total count negative and no
1533 * idle workers. On CAS failure, c is refreshed and retried if
1534 * this holds (otherwise, a new worker is not needed).
1535 */
1536 private void tryAddWorker(long c) {
1537 do {
1538 long nc = ((AC_MASK & (c + AC_UNIT)) |
1539 (TC_MASK & (c + TC_UNIT)));
1540 if (ctl == c && U.compareAndSwapLong(this, CTL, c, nc)) {
1541 createWorker(false);
1542 break;
1543 }
1544 } while (((c = ctl) & ADD_WORKER) != 0L && (int)c == 0);
1545 }
1546
1547 /**
1548 * Callback from ForkJoinWorkerThread constructor to establish and
1549 * record its WorkQueue.
1550 *
1551 * @param wt the worker thread
1552 * @return the worker's queue
1553 */
1554 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1555 UncaughtExceptionHandler handler;
1556 AuxState aux;
1557 wt.setDaemon(true); // configure thread
1558 if ((handler = ueh) != null)
1559 wt.setUncaughtExceptionHandler(handler);
1560 WorkQueue w = new WorkQueue(this, wt);
1561 int i = 0; // assign a pool index
1562 int mode = config & MODE_MASK;
1563 int rs = runState;
1564 if ((aux = auxState) != null) {
1565 aux.lock();
1566 try {
1567 int s = (int)(aux.indexSeed += SEED_INCREMENT), n, m;
1568 WorkQueue[] ws = workQueues;
1569 if (ws != null && (n = ws.length) > 0) {
1570 i = (m = n - 1) & ((s << 1) | 1); // odd-numbered indices
1571 if (ws[i] != null) { // collision
1572 int probes = 0; // step by approx half n
1573 int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1574 while (ws[i = (i + step) & m] != null) {
1575 if (++probes >= n) {
1576 workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1577 m = n - 1;
1578 probes = 0;
1579 }
1580 }
1581 }
1582 w.hint = s; // use as random seed
1583 w.config = i | mode;
1584 w.scanState = i | (s & 0x7fff0000); // random seq bits
1585 ws[i] = w;
1586 }
1587 } finally {
1588 aux.unlock();
1589 }
1590 }
1591 wt.setName(workerNamePrefix.concat(Integer.toString(i >>> 1)));
1592 return w;
1593 }
1594
1595 /**
1596 * Final callback from terminating worker, as well as upon failure
1597 * to construct or start a worker. Removes record of worker from
1598 * array, and adjusts counts. If pool is shutting down, tries to
1599 * complete termination.
1600 *
1601 * @param wt the worker thread, or null if construction failed
1602 * @param ex the exception causing failure, or null if none
1603 */
1604 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1605 WorkQueue w = null;
1606 int rs = runState;
1607 if (wt != null && (w = wt.workQueue) != null) {
1608 AuxState aux; WorkQueue[] ws; // remove index from array
1609 int idx = w.config & SMASK;
1610 int ns = w.nsteals;
1611 if ((aux = auxState) != null) {
1612 aux.lock();
1613 try {
1614 if ((ws = workQueues) != null && ws.length > idx &&
1615 ws[idx] == w)
1616 ws[idx] = null;
1617 aux.stealCount += ns;
1618 } finally {
1619 aux.unlock();
1620 }
1621 }
1622 }
1623 if (w == null || (w.config & UNREGISTERED) == 0) { // else pre-adjusted
1624 long c; // decrement counts
1625 do {} while (!U.compareAndSwapLong
1626 (this, CTL, c = ctl, ((AC_MASK & (c - AC_UNIT)) |
1627 (TC_MASK & (c - TC_UNIT)) |
1628 (SP_MASK & c))));
1629 }
1630 if (w != null) {
1631 w.currentSteal = null;
1632 w.qlock = -1; // ensure set
1633 w.cancelAll(); // cancel remaining tasks
1634 }
1635 while (tryTerminate(false, false) >= 0) { // possibly replace
1636 WorkQueue[] ws; int wl, sp; long c;
1637 if (w == null || w.array == null ||
1638 (runState & STOP) != 0 || (ws = workQueues) == null ||
1639 (wl = ws.length) <= 0) // already terminating
1640 break;
1641 else if ((sp = (int)(c = ctl)) != 0) { // wake up replacement
1642 if (tryRelease(c, ws[(wl - 1) & sp], AC_UNIT))
1643 break;
1644 }
1645 else if (ex != null && (c & ADD_WORKER) != 0L) {
1646 tryAddWorker(c); // create replacement
1647 break;
1648 }
1649 else // don't need replacement
1650 break;
1651 }
1652 if (ex == null) // help clean on way out
1653 ForkJoinTask.helpExpungeStaleExceptions();
1654 else // rethrow
1655 ForkJoinTask.rethrow(ex);
1656 }
1657
1658 // Signalling
1659
1660 /**
1661 * Tries to create or activate a worker if too few are active.
1662 */
1663 final void signalWork() {
1664 for (;;) {
1665 long c; int sp, i; WorkQueue v; WorkQueue[] ws;
1666 if ((c = ctl) >= 0L) // enough workers
1667 break;
1668 else if ((sp = (int)c) == 0) { // no idle workers
1669 if ((c & ADD_WORKER) != 0L) // too few workers
1670 tryAddWorker(c);
1671 break;
1672 }
1673 else if ((ws = workQueues) == null)
1674 break; // unstarted/terminated
1675 else if (ws.length <= (i = sp & SMASK))
1676 break; // terminated
1677 else if ((v = ws[i]) == null)
1678 break; // terminating
1679 else {
1680 int ns = sp & ~UNSIGNALLED;
1681 int vs = v.scanState;
1682 long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + AC_UNIT));
1683 if (sp == vs && U.compareAndSwapLong(this, CTL, c, nc)) {
1684 v.scanState = ns;
1685 LockSupport.unpark(v.parker);
1686 break;
1687 }
1688 }
1689 }
1690 }
1691
1692 /**
1693 * Signals and releases worker v if it is top of idle worker
1694 * stack. This performs a one-shot version of signalWork only if
1695 * there is (apparently) at least one idle worker.
1696 *
1697 * @param c incoming ctl value
1698 * @param v if non-null, a worker
1699 * @param inc the increment to active count (zero when compensating)
1700 * @return true if successful
1701 */
1702 private boolean tryRelease(long c, WorkQueue v, long inc) {
1703 int sp = (int)c, ns = sp & ~UNSIGNALLED;
1704 if (v != null) {
1705 int vs = v.scanState;
1706 long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + inc));
1707 if (sp == vs && U.compareAndSwapLong(this, CTL, c, nc)) {
1708 v.scanState = ns;
1709 LockSupport.unpark(v.parker);
1710 return true;
1711 }
1712 }
1713 return false;
1714 }
1715
1716 /**
1717 * With approx probability of a missed signal, tries (once) to
1718 * reactivate worker w (or some other worker), failing if stale or
1719 * known to be already active.
1720 *
1721 * @param w the worker
1722 * @param ws the workQueue array to use
1723 * @param r random seed
1724 */
1725 private void tryReactivate(WorkQueue w, WorkQueue[] ws, int r) {
1726 long c; int sp, wl; WorkQueue v;
1727 if ((sp = (int)(c = ctl)) != 0 && w != null &&
1728 ws != null && (wl = ws.length) > 0 &&
1729 ((sp ^ r) & SS_SEQ) == 0 &&
1730 (v = ws[(wl - 1) & sp]) != null) {
1731 long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + AC_UNIT));
1732 int ns = sp & ~UNSIGNALLED;
1733 if (w.scanState < 0 &&
1734 v.scanState == sp &&
1735 U.compareAndSwapLong(this, CTL, c, nc)) {
1736 v.scanState = ns;
1737 LockSupport.unpark(v.parker);
1738 }
1739 }
1740 }
1741
1742 /**
1743 * If worker w exists and is active, enqueues and sets status to inactive.
1744 *
1745 * @param w the worker
1746 * @param ss current (non-negative) scanState
1747 */
1748 private void inactivate(WorkQueue w, int ss) {
1749 int ns = (ss + SS_SEQ) | UNSIGNALLED;
1750 long lc = ns & SP_MASK, nc, c;
1751 if (w != null) {
1752 w.scanState = ns;
1753 do {
1754 nc = lc | (UC_MASK & ((c = ctl) - AC_UNIT));
1755 w.stackPred = (int)c;
1756 } while (!U.compareAndSwapLong(this, CTL, c, nc));
1757 }
1758 }
1759
1760 /**
1761 * Possibly blocks worker w waiting for signal, or returns
1762 * negative status if the worker should terminate. May return
1763 * without status change if multiple stale unparks and/or
1764 * interrupts occur.
1765 *
1766 * @param w the calling worker
1767 * @return negative if w should terminate
1768 */
1769 private int awaitWork(WorkQueue w) {
1770 int stat = 0;
1771 if (w != null && w.scanState < 0) {
1772 long c = ctl;
1773 if ((int)(c >> AC_SHIFT) + (config & SMASK) <= 0)
1774 stat = timedAwaitWork(w, c); // possibly quiescent
1775 else if ((runState & STOP) != 0)
1776 stat = w.qlock = -1; // pool terminating
1777 else if ((stat = w.qlock) >= 0 && w.scanState < 0) {
1778 w.parker = Thread.currentThread();
1779 if (w.scanState < 0) { // recheck after write
1780 LockSupport.park(this);
1781 if ((stat = w.qlock) >= 0 && w.scanState < 0) {
1782 Thread.interrupted(); // clear status and retry once
1783 if ((runState & STOP) != 0)
1784 stat = w.qlock = -1;
1785 else
1786 LockSupport.park(this);
1787 }
1788 }
1789 w.parker = null;
1790 }
1791 }
1792 return stat;
1793 }
1794
1795 /**
1796 * Possibly triggers shutdown and tries (once) to block worker
1797 * when pool is (or may be) quiescent. Waits up to a duration
1798 * determined by number of workers. On timeout, if ctl has not
1799 * changed, terminates the worker, which will in turn wake up
1800 * another worker to possibly repeat this process.
1801 *
1802 * @param w the calling worker
1803 * @return negative if w should terminate
1804 */
1805 private int timedAwaitWork(WorkQueue w, long c) {
1806 int stat = 0;
1807 int scale = 1 - (short)(c >>> TC_SHIFT);
1808 long deadline = (((scale <= 0) ? 1 : scale) * IDLE_TIMEOUT_MS +
1809 System.currentTimeMillis());
1810 if (w != null && w.scanState < 0) {
1811 int ss; AuxState aux;
1812 if ((runState >= 0 ||
1813 (stat = tryTerminate(false, false)) > 0) &&
1814 ((stat = w.qlock) >= 0 && w.scanState < 0)) {
1815 w.parker = Thread.currentThread();
1816 if (w.scanState < 0)
1817 LockSupport.parkUntil(this, deadline);
1818 w.parker = null;
1819 if ((stat = w.qlock) >= 0 && (ss = w.scanState) < 0 &&
1820 !Thread.interrupted() && (int)c == ss &&
1821 (aux = auxState) != null && ctl == c &&
1822 deadline - System.currentTimeMillis() <= TIMEOUT_SLOP_MS) {
1823 aux.lock();
1824 try { // pre-deregister
1825 WorkQueue[] ws;
1826 int cfg = w.config, idx = cfg & SMASK;
1827 long nc = ((UC_MASK & (c - TC_UNIT)) |
1828 (SP_MASK & w.stackPred));
1829 if ((runState & STOP) == 0 &&
1830 (ws = workQueues) != null &&
1831 idx < ws.length && idx >= 0 && ws[idx] == w &&
1832 U.compareAndSwapLong(this, CTL, c, nc)) {
1833 ws[idx] = null;
1834 w.config = cfg | UNREGISTERED;
1835 stat = w.qlock = -1;
1836 }
1837 } finally {
1838 aux.unlock();
1839 }
1840 }
1841 }
1842 }
1843 return stat;
1844 }
1845
1846 /**
1847 * If the given worker is a spare with no queued tasks, and there
1848 * are enough existing workers, drops it from ctl counts and sets
1849 * its state to terminated.
1850 *
1851 * @param w the calling worker -- must be a spare
1852 * @return true if dropped (in which case it must not process more tasks)
1853 */
1854 private boolean tryDropSpare(WorkQueue w) {
1855 if (w != null && w.isEmpty()) { // no local tasks
1856 long c; int sp, wl; WorkQueue[] ws; WorkQueue v;
1857 while ((short)((c = ctl) >> TC_SHIFT) > 0 &&
1858 ((sp = (int)c) != 0 || (int)(c >> AC_SHIFT) > 0) &&
1859 (ws = workQueues) != null && (wl = ws.length) > 0) {
1860 boolean dropped, canDrop;
1861 if (sp == 0) { // no queued workers
1862 long nc = ((AC_MASK & (c - AC_UNIT)) |
1863 (TC_MASK & (c - TC_UNIT)) | (SP_MASK & c));
1864 dropped = U.compareAndSwapLong(this, CTL, c, nc);
1865 }
1866 else if (
1867 (v = ws[(wl - 1) & sp]) == null || v.scanState != sp)
1868 dropped = false; // stale; retry
1869 else {
1870 long nc = v.stackPred & SP_MASK;
1871 if (w == v || w.scanState >= 0) {
1872 canDrop = true; // w unqueued or topmost
1873 nc |= ((AC_MASK & c) | // ensure replacement
1874 (TC_MASK & (c - TC_UNIT)));
1875 }
1876 else { // w may be queued
1877 canDrop = false; // help uncover
1878 nc |= ((AC_MASK & (c + AC_UNIT)) |
1879 (TC_MASK & c));
1880 }
1881 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1882 v.scanState = sp & ~UNSIGNALLED;
1883 LockSupport.unpark(v.parker);
1884 dropped = canDrop;
1885 }
1886 else
1887 dropped = false;
1888 }
1889 if (dropped) { // pre-deregister
1890 int cfg = w.config, idx = cfg & SMASK;
1891 if (idx >= 0 && idx < ws.length && ws[idx] == w)
1892 ws[idx] = null;
1893 w.config = cfg | UNREGISTERED;
1894 w.qlock = -1;
1895 return true;
1896 }
1897 }
1898 }
1899 return false;
1900 }
1901
1902 /**
1903 * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1904 */
1905 final void runWorker(WorkQueue w) {
1906 w.growArray(); // allocate queue
1907 int bound = (w.config & SPARE_WORKER) != 0 ? 0 : POLL_LIMIT;
1908 long seed = w.hint * 0xdaba0b6eb09322e3L; // initial random seed
1909 for (long r = (seed == 0L) ? 1L : seed;;) { // ensure nonzero
1910 if (bound == 0 && tryDropSpare(w))
1911 break;
1912 // high bits of prev seed for step; current low bits for idx
1913 int step = (int)(r >>> 48) | 1;
1914 r ^= r >>> 12; r ^= r << 25; r ^= r >>> 27; // xorshift
1915 if (scan(w, bound, step, (int)r) < 0 && awaitWork(w) < 0)
1916 break;
1917 }
1918 }
1919
1920 // Scanning for tasks
1921
1922 /**
1923 * Repeatedly scans for and tries to steal and execute (via
1924 * workQueue.runTask) a queued task. Each scan traverses queues in
1925 * pseudorandom permutation. Upon finding a non-empty queue, makes
1926 * at most the given bound attempts to re-poll (fewer if
1927 * contended) on the same queue before returning (impossible
1928 * scanState value) 0 to restart scan. Else returns after at least
1929 * 1 and at most 32 full scans.
1930 *
1931 * @param w the worker (via its WorkQueue)
1932 * @param bound repoll bound as bitmask (0 if spare)
1933 * @param step (circular) index increment per iteration (must be odd)
1934 * @param r a random seed for origin index
1935 * @return negative if should await signal
1936 */
1937 private int scan(WorkQueue w, int bound, int step, int r) {
1938 int stat = 0, wl; WorkQueue[] ws;
1939 if ((ws = workQueues) != null && w != null && (wl = ws.length) > 0) {
1940 for (int m = wl - 1,
1941 origin = m & r, idx = origin,
1942 npolls = 0,
1943 ss = w.scanState;;) { // negative if inactive
1944 WorkQueue q; ForkJoinTask<?>[] a; int b, d, al;
1945 if ((q = ws[idx]) != null && (d = (b = q.base) - q.top) < 0 &&
1946 (a = q.array) != null && (al = a.length) > 0) {
1947 int index = (al - 1) & b;
1948 long offset = ((long)index << ASHIFT) + ABASE;
1949 ForkJoinTask<?> t = (ForkJoinTask<?>)
1950 U.getObjectVolatile(a, offset);
1951 if (t == null)
1952 break; // empty or busy
1953 else if (b++ != q.base)
1954 break; // busy
1955 else if (ss < 0) {
1956 tryReactivate(w, ws, r);
1957 break; // retry upon rescan
1958 }
1959 else if (!U.compareAndSwapObject(a, offset, t, null))
1960 break; // contended
1961 else {
1962 q.base = b;
1963 w.currentSteal = t;
1964 if (d != -1 || b != q.top) // propagate signal
1965 signalWork();
1966 w.runTask(t);
1967 if (++npolls > bound)
1968 break;
1969 }
1970 }
1971 else if (npolls != 0) // rescan
1972 break;
1973 else if ((idx = (idx + step) & m) == origin) {
1974 if (ss < 0) { // await signal
1975 stat = ss;
1976 break;
1977 }
1978 else if (r >= 0) {
1979 inactivate(w, ss);
1980 break;
1981 }
1982 else
1983 r <<= 1; // at most 31 rescans
1984 }
1985 }
1986 }
1987 return stat;
1988 }
1989
1990 // Joining tasks
1991
1992 /**
1993 * Tries to steal and run tasks within the target's computation.
1994 * Uses a variant of the top-level algorithm, restricted to tasks
1995 * with the given task as ancestor: It prefers taking and running
1996 * eligible tasks popped from the worker's own queue (via
1997 * popCC). Otherwise it scans others, randomly moving on
1998 * contention or execution, deciding to give up based on a
1999 * checksum (via return codes from pollAndExecCC). The maxTasks
2000 * argument supports external usages; internal calls use zero,
2001 * allowing unbounded steps (external calls trap non-positive
2002 * values).
2003 *
2004 * @param w caller
2005 * @param maxTasks if non-zero, the maximum number of other tasks to run
2006 * @return task status on exit
2007 */
2008 final int helpComplete(WorkQueue w, CountedCompleter<?> task,
2009 int maxTasks) {
2010 WorkQueue[] ws; int s = 0, wl;
2011 if ((ws = workQueues) != null && (wl = ws.length) > 1 &&
2012 task != null && w != null) {
2013 for (int m = wl - 1,
2014 mode = w.config,
2015 r = ~mode, // scanning seed
2016 origin = r & m, k = origin, // first queue to scan
2017 step = 3, // first scan step
2018 h = 1, // 1:ran, >1:contended, <0:hash
2019 oldSum = 0, checkSum = 0;;) {
2020 CountedCompleter<?> p; WorkQueue q; int i;
2021 if ((s = task.status) < 0)
2022 break;
2023 if (h == 1 && (p = w.popCC(task, mode)) != null) {
2024 p.doExec(); // run local task
2025 if (maxTasks != 0 && --maxTasks == 0)
2026 break;
2027 origin = k; // reset
2028 oldSum = checkSum = 0;
2029 }
2030 else { // poll other worker queues
2031 if ((i = k | 1) < 0 || i > m || (q = ws[i]) == null)
2032 h = 0;
2033 else if ((h = q.pollAndExecCC(task)) < 0)
2034 checkSum += h;
2035 if (h > 0) {
2036 if (h == 1 && maxTasks != 0 && --maxTasks == 0)
2037 break;
2038 step = (r >>> 16) | 3;
2039 r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
2040 k = origin = r & m; // move and restart
2041 oldSum = checkSum = 0;
2042 }
2043 else if ((k = (k + step) & m) == origin) {
2044 if (oldSum == (oldSum = checkSum))
2045 break;
2046 checkSum = 0;
2047 }
2048 }
2049 }
2050 }
2051 return s;
2052 }
2053
2054 /**
2055 * Tries to locate and execute tasks for a stealer of the given
2056 * task, or in turn one of its stealers. Traces currentSteal ->
2057 * currentJoin links looking for a thread working on a descendant
2058 * of the given task and with a non-empty queue to steal back and
2059 * execute tasks from. The first call to this method upon a
2060 * waiting join will often entail scanning/search, (which is OK
2061 * because the joiner has nothing better to do), but this method
2062 * leaves hints in workers to speed up subsequent calls.
2063 *
2064 * @param w caller
2065 * @param task the task to join
2066 */
2067 private void helpStealer(WorkQueue w, ForkJoinTask<?> task) {
2068 if (task != null && w != null) {
2069 ForkJoinTask<?> ps = w.currentSteal;
2070 WorkQueue[] ws; int wl, oldSum = 0;
2071 outer: while (w.tryRemoveAndExec(task) && task.status >= 0 &&
2072 (ws = workQueues) != null && (wl = ws.length) > 0) {
2073 ForkJoinTask<?> subtask;
2074 int m = wl - 1, checkSum = 0; // for stability check
2075 WorkQueue j = w, v; // v is subtask stealer
2076 descent: for (subtask = task; subtask.status >= 0; ) {
2077 for (int h = j.hint | 1, k = 0, i;;) {
2078 if ((v = ws[i = (h + (k << 1)) & m]) != null) {
2079 if (v.currentSteal == subtask) {
2080 j.hint = i;
2081 break;
2082 }
2083 checkSum += v.base;
2084 }
2085 if (++k > m) // can't find stealer
2086 break outer;
2087 }
2088
2089 for (;;) { // help v or descend
2090 ForkJoinTask<?>[] a; int b, al;
2091 if (subtask.status < 0) // too late to help
2092 break descent;
2093 checkSum += (b = v.base);
2094 ForkJoinTask<?> next = v.currentJoin;
2095 ForkJoinTask<?> t = null;
2096 if ((a = v.array) != null && (al = a.length) > 0) {
2097 int index = (al - 1) & b;
2098 long offset = ((long)index << ASHIFT) + ABASE;
2099 t = (ForkJoinTask<?>)
2100 U.getObjectVolatile(a, offset);
2101 if (t != null && b++ == v.base) {
2102 if (j.currentJoin != subtask ||
2103 v.currentSteal != subtask ||
2104 subtask.status < 0)
2105 break descent; // stale
2106 if (U.compareAndSwapObject(a, offset, t, null)) {
2107 v.base = b;
2108 w.currentSteal = t;
2109 for (int top = w.top;;) {
2110 t.doExec(); // help
2111 w.currentSteal = ps;
2112 if (task.status < 0)
2113 break outer;
2114 if (w.top == top)
2115 break; // run local tasks
2116 if ((t = w.pop()) == null)
2117 break descent;
2118 w.currentSteal = t;
2119 }
2120 }
2121 }
2122 }
2123 if (t == null && b == v.base && b - v.top >= 0) {
2124 if ((subtask = next) == null) { // try to descend
2125 if (next == v.currentJoin &&
2126 oldSum == (oldSum = checkSum))
2127 break outer;
2128 break descent;
2129 }
2130 j = v;
2131 break;
2132 }
2133 }
2134 }
2135 }
2136 }
2137 }
2138
2139 /**
2140 * Tries to decrement active count (sometimes implicitly) and
2141 * possibly release or create a compensating worker in preparation
2142 * for blocking. Returns false (retryable by caller), on
2143 * contention, detected staleness, instability, or termination.
2144 *
2145 * @param w caller
2146 */
2147 private boolean tryCompensate(WorkQueue w) {
2148 boolean canBlock; int wl;
2149 long c = ctl;
2150 WorkQueue[] ws = workQueues;
2151 int pc = config & SMASK;
2152 int ac = pc + (int)(c >> AC_SHIFT);
2153 int tc = pc + (short)(c >> TC_SHIFT);
2154 if (w == null || w.qlock < 0 || pc == 0 || // terminating or disabled
2155 ws == null || (wl = ws.length) <= 0)
2156 canBlock = false;
2157 else {
2158 int m = wl - 1, sp;
2159 boolean busy = true; // validate ac
2160 for (int i = 0; i <= m; ++i) {
2161 int k; WorkQueue v;
2162 if ((k = (i << 1) | 1) <= m && k >= 0 && (v = ws[k]) != null &&
2163 v.scanState >= 0 && v.currentSteal == null) {
2164 busy = false;
2165 break;
2166 }
2167 }
2168 if (!busy || ctl != c)
2169 canBlock = false; // unstable or stale
2170 else if ((sp = (int)c) != 0) // release idle worker
2171 canBlock = tryRelease(c, ws[m & sp], 0L);
2172 else if (tc >= pc && ac > 1 && w.isEmpty()) {
2173 long nc = ((AC_MASK & (c - AC_UNIT)) |
2174 (~AC_MASK & c)); // uncompensated
2175 canBlock = U.compareAndSwapLong(this, CTL, c, nc);
2176 }
2177 else if (tc >= MAX_CAP ||
2178 (this == common && tc >= pc + COMMON_MAX_SPARES))
2179 throw new RejectedExecutionException(
2180 "Thread limit exceeded replacing blocked worker");
2181 else { // similar to tryAddWorker
2182 boolean isSpare = (tc >= pc);
2183 long nc = (AC_MASK & c) | (TC_MASK & (c + TC_UNIT));
2184 canBlock = (U.compareAndSwapLong(this, CTL, c, nc) &&
2185 createWorker(isSpare)); // throws on exception
2186 }
2187 }
2188 return canBlock;
2189 }
2190
2191 /**
2192 * Helps and/or blocks until the given task is done or timeout.
2193 *
2194 * @param w caller
2195 * @param task the task
2196 * @param deadline for timed waits, if nonzero
2197 * @return task status on exit
2198 */
2199 final int awaitJoin(WorkQueue w, ForkJoinTask<?> task, long deadline) {
2200 int s = 0;
2201 if (w != null) {
2202 ForkJoinTask<?> prevJoin = w.currentJoin;
2203 if (task != null && (s = task.status) >= 0) {
2204 w.currentJoin = task;
2205 CountedCompleter<?> cc = (task instanceof CountedCompleter) ?
2206 (CountedCompleter<?>)task : null;
2207 for (;;) {
2208 if (cc != null)
2209 helpComplete(w, cc, 0);
2210 else
2211 helpStealer(w, task);
2212 if ((s = task.status) < 0)
2213 break;
2214 long ms, ns;
2215 if (deadline == 0L)
2216 ms = 0L;
2217 else if ((ns = deadline - System.nanoTime()) <= 0L)
2218 break;
2219 else if ((ms = TimeUnit.NANOSECONDS.toMillis(ns)) <= 0L)
2220 ms = 1L;
2221 if (tryCompensate(w)) {
2222 task.internalWait(ms);
2223 U.getAndAddLong(this, CTL, AC_UNIT);
2224 }
2225 if ((s = task.status) < 0)
2226 break;
2227 }
2228 w.currentJoin = prevJoin;
2229 }
2230 }
2231 return s;
2232 }
2233
2234 // Specialized scanning
2235
2236 /**
2237 * Returns a (probably) non-empty steal queue, if one is found
2238 * during a scan, else null. This method must be retried by
2239 * caller if, by the time it tries to use the queue, it is empty.
2240 */
2241 private WorkQueue findNonEmptyStealQueue() {
2242 WorkQueue[] ws; int wl; // one-shot version of scan loop
2243 int r = ThreadLocalRandom.nextSecondarySeed();
2244 if ((ws = workQueues) != null && (wl = ws.length) > 0) {
2245 int m = wl - 1, origin = r & m;
2246 for (int k = origin, oldSum = 0, checkSum = 0;;) {
2247 WorkQueue q; int b;
2248 if ((q = ws[k]) != null) {
2249 if ((b = q.base) - q.top < 0)
2250 return q;
2251 checkSum += b;
2252 }
2253 if ((k = (k + 1) & m) == origin) {
2254 if (oldSum == (oldSum = checkSum))
2255 break;
2256 checkSum = 0;
2257 }
2258 }
2259 }
2260 return null;
2261 }
2262
2263 /**
2264 * Runs tasks until {@code isQuiescent()}. We piggyback on
2265 * active count ctl maintenance, but rather than blocking
2266 * when tasks cannot be found, we rescan until all others cannot
2267 * find tasks either.
2268 */
2269 final void helpQuiescePool(WorkQueue w) {
2270 ForkJoinTask<?> ps = w.currentSteal; // save context
2271 int wc = w.config;
2272 for (boolean active = true;;) {
2273 long c; WorkQueue q; ForkJoinTask<?> t;
2274 if (wc >= 0 && (t = w.pop()) != null) { // run locals if LIFO
2275 (w.currentSteal = t).doExec();
2276 w.currentSteal = ps;
2277 }
2278 else if ((q = findNonEmptyStealQueue()) != null) {
2279 if (!active) { // re-establish active count
2280 active = true;
2281 U.getAndAddLong(this, CTL, AC_UNIT);
2282 }
2283 if ((t = q.pollAt(q.base)) != null) {
2284 (w.currentSteal = t).doExec();
2285 w.currentSteal = ps;
2286 if (++w.nsteals < 0)
2287 w.transferStealCount(this);
2288 }
2289 }
2290 else if (active) { // decrement active count without queuing
2291 long nc = (AC_MASK & ((c = ctl) - AC_UNIT)) | (~AC_MASK & c);
2292 if (U.compareAndSwapLong(this, CTL, c, nc))
2293 active = false;
2294 }
2295 else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) <= 0 &&
2296 U.compareAndSwapLong(this, CTL, c, c + AC_UNIT))
2297 break;
2298 }
2299 }
2300
2301 /**
2302 * Gets and removes a local or stolen task for the given worker.
2303 *
2304 * @return a task, if available
2305 */
2306 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2307 for (ForkJoinTask<?> t;;) {
2308 WorkQueue q;
2309 if ((t = w.nextLocalTask()) != null)
2310 return t;
2311 if ((q = findNonEmptyStealQueue()) == null)
2312 return null;
2313 if ((t = q.pollAt(q.base)) != null)
2314 return t;
2315 }
2316 }
2317
2318 /**
2319 * Returns a cheap heuristic guide for task partitioning when
2320 * programmers, frameworks, tools, or languages have little or no
2321 * idea about task granularity. In essence, by offering this
2322 * method, we ask users only about tradeoffs in overhead vs
2323 * expected throughput and its variance, rather than how finely to
2324 * partition tasks.
2325 *
2326 * In a steady state strict (tree-structured) computation, each
2327 * thread makes available for stealing enough tasks for other
2328 * threads to remain active. Inductively, if all threads play by
2329 * the same rules, each thread should make available only a
2330 * constant number of tasks.
2331 *
2332 * The minimum useful constant is just 1. But using a value of 1
2333 * would require immediate replenishment upon each steal to
2334 * maintain enough tasks, which is infeasible. Further,
2335 * partitionings/granularities of offered tasks should minimize
2336 * steal rates, which in general means that threads nearer the top
2337 * of computation tree should generate more than those nearer the
2338 * bottom. In perfect steady state, each thread is at
2339 * approximately the same level of computation tree. However,
2340 * producing extra tasks amortizes the uncertainty of progress and
2341 * diffusion assumptions.
2342 *
2343 * So, users will want to use values larger (but not much larger)
2344 * than 1 to both smooth over transient shortages and hedge
2345 * against uneven progress; as traded off against the cost of
2346 * extra task overhead. We leave the user to pick a threshold
2347 * value to compare with the results of this call to guide
2348 * decisions, but recommend values such as 3.
2349 *
2350 * When all threads are active, it is on average OK to estimate
2351 * surplus strictly locally. In steady-state, if one thread is
2352 * maintaining say 2 surplus tasks, then so are others. So we can
2353 * just use estimated queue length. However, this strategy alone
2354 * leads to serious mis-estimates in some non-steady-state
2355 * conditions (ramp-up, ramp-down, other stalls). We can detect
2356 * many of these by further considering the number of "idle"
2357 * threads, that are known to have zero queued tasks, so
2358 * compensate by a factor of (#idle/#active) threads.
2359 */
2360 static int getSurplusQueuedTaskCount() {
2361 Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2362 if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) {
2363 int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2364 int n = (q = wt.workQueue).top - q.base;
2365 int a = (int)(pool.ctl >> AC_SHIFT) + p;
2366 return n - (a > (p >>>= 1) ? 0 :
2367 a > (p >>>= 1) ? 1 :
2368 a > (p >>>= 1) ? 2 :
2369 a > (p >>>= 1) ? 4 :
2370 8);
2371 }
2372 return 0;
2373 }
2374
2375 // Termination
2376
2377 /**
2378 * Possibly initiates and/or completes termination.
2379 *
2380 * @param now if true, unconditionally terminate, else only
2381 * if no work and no active workers
2382 * @param enable if true, terminate when next possible
2383 * @return -1 : terminating or terminated, 0: retry if internal caller, else 1
2384 */
2385 private int tryTerminate(boolean now, boolean enable) {
2386 AuxState aux; int rs;
2387 if ((rs = runState) >= 0 && (!enable || this == common))
2388 return 1;
2389 while ((aux = auxState) == null)
2390 tryInitialize(false);
2391 aux.lock();
2392 rs = runState = runState | SHUTDOWN;
2393 aux.unlock();
2394 if ((rs & STOP) == 0) {
2395 if (!now) { // check quiescence
2396 for (long oldSum = 0L;;) { // repeat until stable
2397 WorkQueue[] ws; WorkQueue w; int m, b, sp; long c;
2398 long checkSum = ctl;
2399 if ((int)(checkSum >> AC_SHIFT) + (config & SMASK) > 0)
2400 return 0; // still active workers
2401 if ((ws = workQueues) == null || (m = ws.length - 1) < 0)
2402 break; // check queues
2403 for (int i = 0; i <= m; ++i) {
2404 if ((w = ws[i]) != null) {
2405 checkSum += (b = w.base);
2406 if (w.currentSteal != null || b != w.top) {
2407 if ((sp = (int)(c = ctl)) == 0 ||
2408 tryRelease(c, ws[m & sp], AC_UNIT))
2409 return 0; // retry if internal caller
2410 }
2411 }
2412 }
2413 if (oldSum == (oldSum = checkSum))
2414 break;
2415 }
2416 }
2417 aux.lock();
2418 rs = runState = runState | STOP;
2419 aux.unlock();
2420 }
2421
2422 int pass = 0; // 3 passes to help terminate
2423 for (long oldSum = 0L;;) { // or until done or stable
2424 WorkQueue[] ws; WorkQueue w; ForkJoinWorkerThread wt; int m;
2425 long checkSum = ctl;
2426 if ((short)(checkSum >>> TC_SHIFT) + (config & SMASK) <= 0 ||
2427 (ws = workQueues) == null || (m = ws.length - 1) < 0) {
2428 aux.lock();
2429 runState |= TERMINATED;
2430 aux.unlock();
2431 synchronized (this) {
2432 notifyAll(); // for awaitTermination
2433 }
2434 break;
2435 }
2436 for (int i = 0; i <= m; ++i) {
2437 if ((w = ws[i]) != null) {
2438 checkSum += w.base;
2439 w.qlock = -1; // try to disable
2440 if (pass > 0) {
2441 w.cancelAll(); // clear queue
2442 if (pass > 1 && (wt = w.owner) != null) {
2443 if (!wt.isInterrupted()) {
2444 try { // unblock join
2445 wt.interrupt();
2446 } catch (Throwable ignore) {
2447 }
2448 }
2449 LockSupport.unpark(wt);
2450 }
2451 }
2452 }
2453 }
2454 if (checkSum != oldSum) { // unstable
2455 oldSum = checkSum;
2456 pass = 0;
2457 }
2458 else if (pass > 3 && pass > m) // can't further help
2459 break;
2460 else if (++pass > 1) { // try to dequeue
2461 long c; int j = 0, sp; // bound attempts
2462 while (j++ <= m && (sp = (int)(c = ctl)) != 0)
2463 tryRelease(c, ws[sp & m], AC_UNIT);
2464 }
2465 }
2466 return -1;
2467 }
2468
2469 // External operations
2470
2471 /**
2472 * Constructs and tries to install a new external queue,
2473 * failing if the workQueues array already has a queue at
2474 * the given index.
2475 *
2476 * @param index the index of the new queue
2477 */
2478 private void tryCreateExternalQueue(int index) {
2479 AuxState aux;
2480 if ((aux = auxState) != null && index >= 0) {
2481 WorkQueue q = new WorkQueue(this, null);
2482 q.config = index;
2483 q.scanState = ~UNSIGNALLED;
2484 q.qlock = 1; // lock queue
2485 boolean installed = false;
2486 aux.lock();
2487 try { // lock pool to install
2488 WorkQueue[] ws;
2489 if ((ws = workQueues) != null && index < ws.length &&
2490 ws[index] == null) {
2491 ws[index] = q; // else throw away
2492 installed = true;
2493 }
2494 } finally {
2495 aux.unlock();
2496 }
2497 if (installed) {
2498 try {
2499 q.growArray();
2500 } finally {
2501 q.qlock = 0;
2502 }
2503 }
2504 }
2505 }
2506
2507 /**
2508 * Adds the given task to a submission queue at submitter's
2509 * current queue. Also performs secondary initialization upon the
2510 * first submission of the first task to the pool, and detects
2511 * first submission by an external thread and creates a new shared
2512 * queue if the one at index if empty or contended.
2513 *
2514 * @param task the task. Caller must ensure non-null.
2515 */
2516 final void externalPush(ForkJoinTask<?> task) {
2517 int r; // initialize caller's probe
2518 if ((r = ThreadLocalRandom.getProbe()) == 0) {
2519 ThreadLocalRandom.localInit();
2520 r = ThreadLocalRandom.getProbe();
2521 }
2522 for (;;) {
2523 WorkQueue q; int wl, k, stat;
2524 int rs = runState;
2525 WorkQueue[] ws = workQueues;
2526 if (rs <= 0 || ws == null || (wl = ws.length) <= 0)
2527 tryInitialize(true);
2528 else if ((q = ws[k = (wl - 1) & r & SQMASK]) == null)
2529 tryCreateExternalQueue(k);
2530 else if ((stat = q.sharedPush(task)) < 0)
2531 break;
2532 else if (stat == 0) {
2533 signalWork();
2534 break;
2535 }
2536 else // move if busy
2537 r = ThreadLocalRandom.advanceProbe(r);
2538 }
2539 }
2540
2541 /**
2542 * Pushes a possibly-external submission.
2543 */
2544 private <T> ForkJoinTask<T> externalSubmit(ForkJoinTask<T> task) {
2545 Thread t; ForkJoinWorkerThread w; WorkQueue q;
2546 if (task == null)
2547 throw new NullPointerException();
2548 if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) &&
2549 (w = (ForkJoinWorkerThread)t).pool == this &&
2550 (q = w.workQueue) != null)
2551 q.push(task);
2552 else
2553 externalPush(task);
2554 return task;
2555 }
2556
2557 /**
2558 * Returns common pool queue for an external thread.
2559 */
2560 static WorkQueue commonSubmitterQueue() {
2561 ForkJoinPool p = common;
2562 int r = ThreadLocalRandom.getProbe();
2563 WorkQueue[] ws; int wl;
2564 return (p != null && (ws = p.workQueues) != null &&
2565 (wl = ws.length) > 0) ?
2566 ws[(wl - 1) & r & SQMASK] : null;
2567 }
2568
2569 /**
2570 * Performs tryUnpush for an external submitter.
2571 */
2572 final boolean tryExternalUnpush(ForkJoinTask<?> task) {
2573 int r = ThreadLocalRandom.getProbe();
2574 WorkQueue[] ws; WorkQueue w; int wl;
2575 return ((ws = workQueues) != null &&
2576 (wl = ws.length) > 0 &&
2577 (w = ws[(wl - 1) & r & SQMASK]) != null &&
2578 w.trySharedUnpush(task));
2579 }
2580
2581 /**
2582 * Performs helpComplete for an external submitter.
2583 */
2584 final int externalHelpComplete(CountedCompleter<?> task, int maxTasks) {
2585 WorkQueue[] ws; int wl;
2586 int r = ThreadLocalRandom.getProbe();
2587 return ((ws = workQueues) != null && (wl = ws.length) > 0) ?
2588 helpComplete(ws[(wl - 1) & r & SQMASK], task, maxTasks) : 0;
2589 }
2590
2591 // Exported methods
2592
2593 // Constructors
2594
2595 /**
2596 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2597 * java.lang.Runtime#availableProcessors}, using the {@linkplain
2598 * #defaultForkJoinWorkerThreadFactory default thread factory},
2599 * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2600 *
2601 * @throws SecurityException if a security manager exists and
2602 * the caller is not permitted to modify threads
2603 * because it does not hold {@link
2604 * java.lang.RuntimePermission}{@code ("modifyThread")}
2605 */
2606 public ForkJoinPool() {
2607 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2608 defaultForkJoinWorkerThreadFactory, null, false);
2609 }
2610
2611 /**
2612 * Creates a {@code ForkJoinPool} with the indicated parallelism
2613 * level, the {@linkplain
2614 * #defaultForkJoinWorkerThreadFactory default thread factory},
2615 * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2616 *
2617 * @param parallelism the parallelism level
2618 * @throws IllegalArgumentException if parallelism less than or
2619 * equal to zero, or greater than implementation limit
2620 * @throws SecurityException if a security manager exists and
2621 * the caller is not permitted to modify threads
2622 * because it does not hold {@link
2623 * java.lang.RuntimePermission}{@code ("modifyThread")}
2624 */
2625 public ForkJoinPool(int parallelism) {
2626 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2627 }
2628
2629 /**
2630 * Creates a {@code ForkJoinPool} with the given parameters.
2631 *
2632 * @param parallelism the parallelism level. For default value,
2633 * use {@link java.lang.Runtime#availableProcessors}.
2634 * @param factory the factory for creating new threads. For default value,
2635 * use {@link #defaultForkJoinWorkerThreadFactory}.
2636 * @param handler the handler for internal worker threads that
2637 * terminate due to unrecoverable errors encountered while executing
2638 * tasks. For default value, use {@code null}.
2639 * @param asyncMode if true,
2640 * establishes local first-in-first-out scheduling mode for forked
2641 * tasks that are never joined. This mode may be more appropriate
2642 * than default locally stack-based mode in applications in which
2643 * worker threads only process event-style asynchronous tasks.
2644 * For default value, use {@code false}.
2645 * @throws IllegalArgumentException if parallelism less than or
2646 * equal to zero, or greater than implementation limit
2647 * @throws NullPointerException if the factory is null
2648 * @throws SecurityException if a security manager exists and
2649 * the caller is not permitted to modify threads
2650 * because it does not hold {@link
2651 * java.lang.RuntimePermission}{@code ("modifyThread")}
2652 */
2653 public ForkJoinPool(int parallelism,
2654 ForkJoinWorkerThreadFactory factory,
2655 UncaughtExceptionHandler handler,
2656 boolean asyncMode) {
2657 this(checkParallelism(parallelism),
2658 checkFactory(factory),
2659 handler,
2660 asyncMode ? FIFO_QUEUE : LIFO_QUEUE,
2661 "ForkJoinPool-" + nextPoolId() + "-worker-");
2662 checkPermission();
2663 }
2664
2665 private static int checkParallelism(int parallelism) {
2666 if (parallelism <= 0 || parallelism > MAX_CAP)
2667 throw new IllegalArgumentException();
2668 return parallelism;
2669 }
2670
2671 private static ForkJoinWorkerThreadFactory checkFactory
2672 (ForkJoinWorkerThreadFactory factory) {
2673 if (factory == null)
2674 throw new NullPointerException();
2675 return factory;
2676 }
2677
2678 /**
2679 * Creates a {@code ForkJoinPool} with the given parameters, without
2680 * any security checks or parameter validation. Invoked directly by
2681 * makeCommonPool.
2682 */
2683 private ForkJoinPool(int parallelism,
2684 ForkJoinWorkerThreadFactory factory,
2685 UncaughtExceptionHandler handler,
2686 int mode,
2687 String workerNamePrefix) {
2688 this.workerNamePrefix = workerNamePrefix;
2689 this.factory = factory;
2690 this.ueh = handler;
2691 this.config = (parallelism & SMASK) | mode;
2692 long np = (long)(-parallelism); // offset ctl counts
2693 this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2694 }
2695
2696 /**
2697 * Returns the common pool instance. This pool is statically
2698 * constructed; its run state is unaffected by attempts to {@link
2699 * #shutdown} or {@link #shutdownNow}. However this pool and any
2700 * ongoing processing are automatically terminated upon program
2701 * {@link System#exit}. Any program that relies on asynchronous
2702 * task processing to complete before program termination should
2703 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2704 * before exit.
2705 *
2706 * @return the common pool instance
2707 * @since 1.8
2708 */
2709 public static ForkJoinPool commonPool() {
2710 // assert common != null : "static init error";
2711 return common;
2712 }
2713
2714 // Execution methods
2715
2716 /**
2717 * Performs the given task, returning its result upon completion.
2718 * If the computation encounters an unchecked Exception or Error,
2719 * it is rethrown as the outcome of this invocation. Rethrown
2720 * exceptions behave in the same way as regular exceptions, but,
2721 * when possible, contain stack traces (as displayed for example
2722 * using {@code ex.printStackTrace()}) of both the current thread
2723 * as well as the thread actually encountering the exception;
2724 * minimally only the latter.
2725 *
2726 * @param task the task
2727 * @param <T> the type of the task's result
2728 * @return the task's result
2729 * @throws NullPointerException if the task is null
2730 * @throws RejectedExecutionException if the task cannot be
2731 * scheduled for execution
2732 */
2733 public <T> T invoke(ForkJoinTask<T> task) {
2734 if (task == null)
2735 throw new NullPointerException();
2736 externalSubmit(task);
2737 return task.join();
2738 }
2739
2740 /**
2741 * Arranges for (asynchronous) execution of the given task.
2742 *
2743 * @param task the task
2744 * @throws NullPointerException if the task is null
2745 * @throws RejectedExecutionException if the task cannot be
2746 * scheduled for execution
2747 */
2748 public void execute(ForkJoinTask<?> task) {
2749 externalSubmit(task);
2750 }
2751
2752 // AbstractExecutorService methods
2753
2754 /**
2755 * @throws NullPointerException if the task is null
2756 * @throws RejectedExecutionException if the task cannot be
2757 * scheduled for execution
2758 */
2759 public void execute(Runnable task) {
2760 if (task == null)
2761 throw new NullPointerException();
2762 ForkJoinTask<?> job;
2763 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2764 job = (ForkJoinTask<?>) task;
2765 else
2766 job = new ForkJoinTask.RunnableExecuteAction(task);
2767 externalSubmit(job);
2768 }
2769
2770 /**
2771 * Submits a ForkJoinTask for execution.
2772 *
2773 * @param task the task to submit
2774 * @param <T> the type of the task's result
2775 * @return the task
2776 * @throws NullPointerException if the task is null
2777 * @throws RejectedExecutionException if the task cannot be
2778 * scheduled for execution
2779 */
2780 public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2781 return externalSubmit(task);
2782 }
2783
2784 /**
2785 * @throws NullPointerException if the task is null
2786 * @throws RejectedExecutionException if the task cannot be
2787 * scheduled for execution
2788 */
2789 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2790 return externalSubmit(new ForkJoinTask.AdaptedCallable<T>(task));
2791 }
2792
2793 /**
2794 * @throws NullPointerException if the task is null
2795 * @throws RejectedExecutionException if the task cannot be
2796 * scheduled for execution
2797 */
2798 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2799 return externalSubmit(new ForkJoinTask.AdaptedRunnable<T>(task, result));
2800 }
2801
2802 /**
2803 * @throws NullPointerException if the task is null
2804 * @throws RejectedExecutionException if the task cannot be
2805 * scheduled for execution
2806 */
2807 public ForkJoinTask<?> submit(Runnable task) {
2808 if (task == null)
2809 throw new NullPointerException();
2810 ForkJoinTask<?> job;
2811 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2812 job = (ForkJoinTask<?>) task;
2813 else
2814 job = new ForkJoinTask.AdaptedRunnableAction(task);
2815 return externalSubmit(job);
2816 }
2817
2818 /**
2819 * @throws NullPointerException {@inheritDoc}
2820 * @throws RejectedExecutionException {@inheritDoc}
2821 */
2822 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2823 // In previous versions of this class, this method constructed
2824 // a task to run ForkJoinTask.invokeAll, but now external
2825 // invocation of multiple tasks is at least as efficient.
2826 ArrayList<Future<T>> futures = new ArrayList<>(tasks.size());
2827
2828 try {
2829 for (Callable<T> t : tasks) {
2830 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2831 futures.add(f);
2832 externalSubmit(f);
2833 }
2834 for (int i = 0, size = futures.size(); i < size; i++)
2835 ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2836 return futures;
2837 } catch (Throwable t) {
2838 for (int i = 0, size = futures.size(); i < size; i++)
2839 futures.get(i).cancel(false);
2840 throw t;
2841 }
2842 }
2843
2844 /**
2845 * Returns the factory used for constructing new workers.
2846 *
2847 * @return the factory used for constructing new workers
2848 */
2849 public ForkJoinWorkerThreadFactory getFactory() {
2850 return factory;
2851 }
2852
2853 /**
2854 * Returns the handler for internal worker threads that terminate
2855 * due to unrecoverable errors encountered while executing tasks.
2856 *
2857 * @return the handler, or {@code null} if none
2858 */
2859 public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2860 return ueh;
2861 }
2862
2863 /**
2864 * Returns the targeted parallelism level of this pool.
2865 *
2866 * @return the targeted parallelism level of this pool
2867 */
2868 public int getParallelism() {
2869 int par;
2870 return ((par = config & SMASK) > 0) ? par : 1;
2871 }
2872
2873 /**
2874 * Returns the targeted parallelism level of the common pool.
2875 *
2876 * @return the targeted parallelism level of the common pool
2877 * @since 1.8
2878 */
2879 public static int getCommonPoolParallelism() {
2880 return COMMON_PARALLELISM;
2881 }
2882
2883 /**
2884 * Returns the number of worker threads that have started but not
2885 * yet terminated. The result returned by this method may differ
2886 * from {@link #getParallelism} when threads are created to
2887 * maintain parallelism when others are cooperatively blocked.
2888 *
2889 * @return the number of worker threads
2890 */
2891 public int getPoolSize() {
2892 return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2893 }
2894
2895 /**
2896 * Returns {@code true} if this pool uses local first-in-first-out
2897 * scheduling mode for forked tasks that are never joined.
2898 *
2899 * @return {@code true} if this pool uses async mode
2900 */
2901 public boolean getAsyncMode() {
2902 return (config & FIFO_QUEUE) != 0;
2903 }
2904
2905 /**
2906 * Returns an estimate of the number of worker threads that are
2907 * not blocked waiting to join tasks or for other managed
2908 * synchronization. This method may overestimate the
2909 * number of running threads.
2910 *
2911 * @return the number of worker threads
2912 */
2913 public int getRunningThreadCount() {
2914 int rc = 0;
2915 WorkQueue[] ws; WorkQueue w;
2916 if ((ws = workQueues) != null) {
2917 for (int i = 1; i < ws.length; i += 2) {
2918 if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2919 ++rc;
2920 }
2921 }
2922 return rc;
2923 }
2924
2925 /**
2926 * Returns an estimate of the number of threads that are currently
2927 * stealing or executing tasks. This method may overestimate the
2928 * number of active threads.
2929 *
2930 * @return the number of active threads
2931 */
2932 public int getActiveThreadCount() {
2933 int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2934 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2935 }
2936
2937 /**
2938 * Returns {@code true} if all worker threads are currently idle.
2939 * An idle worker is one that cannot obtain a task to execute
2940 * because none are available to steal from other threads, and
2941 * there are no pending submissions to the pool. This method is
2942 * conservative; it might not return {@code true} immediately upon
2943 * idleness of all threads, but will eventually become true if
2944 * threads remain inactive.
2945 *
2946 * @return {@code true} if all threads are currently idle
2947 */
2948 public boolean isQuiescent() {
2949 return (config & SMASK) + (int)(ctl >> AC_SHIFT) <= 0;
2950 }
2951
2952 /**
2953 * Returns an estimate of the total number of tasks stolen from
2954 * one thread's work queue by another. The reported value
2955 * underestimates the actual total number of steals when the pool
2956 * is not quiescent. This value may be useful for monitoring and
2957 * tuning fork/join programs: in general, steal counts should be
2958 * high enough to keep threads busy, but low enough to avoid
2959 * overhead and contention across threads.
2960 *
2961 * @return the number of steals
2962 */
2963 public long getStealCount() {
2964 AuxState sc = auxState;
2965 long count = (sc == null) ? 0L : sc.stealCount;
2966 WorkQueue[] ws; WorkQueue w;
2967 if ((ws = workQueues) != null) {
2968 for (int i = 1; i < ws.length; i += 2) {
2969 if ((w = ws[i]) != null)
2970 count += w.nsteals;
2971 }
2972 }
2973 return count;
2974 }
2975
2976 /**
2977 * Returns an estimate of the total number of tasks currently held
2978 * in queues by worker threads (but not including tasks submitted
2979 * to the pool that have not begun executing). This value is only
2980 * an approximation, obtained by iterating across all threads in
2981 * the pool. This method may be useful for tuning task
2982 * granularities.
2983 *
2984 * @return the number of queued tasks
2985 */
2986 public long getQueuedTaskCount() {
2987 long count = 0;
2988 WorkQueue[] ws; WorkQueue w;
2989 if ((ws = workQueues) != null) {
2990 for (int i = 1; i < ws.length; i += 2) {
2991 if ((w = ws[i]) != null)
2992 count += w.queueSize();
2993 }
2994 }
2995 return count;
2996 }
2997
2998 /**
2999 * Returns an estimate of the number of tasks submitted to this
3000 * pool that have not yet begun executing. This method may take
3001 * time proportional to the number of submissions.
3002 *
3003 * @return the number of queued submissions
3004 */
3005 public int getQueuedSubmissionCount() {
3006 int count = 0;
3007 WorkQueue[] ws; WorkQueue w;
3008 if ((ws = workQueues) != null) {
3009 for (int i = 0; i < ws.length; i += 2) {
3010 if ((w = ws[i]) != null)
3011 count += w.queueSize();
3012 }
3013 }
3014 return count;
3015 }
3016
3017 /**
3018 * Returns {@code true} if there are any tasks submitted to this
3019 * pool that have not yet begun executing.
3020 *
3021 * @return {@code true} if there are any queued submissions
3022 */
3023 public boolean hasQueuedSubmissions() {
3024 WorkQueue[] ws; WorkQueue w;
3025 if ((ws = workQueues) != null) {
3026 for (int i = 0; i < ws.length; i += 2) {
3027 if ((w = ws[i]) != null && !w.isEmpty())
3028 return true;
3029 }
3030 }
3031 return false;
3032 }
3033
3034 /**
3035 * Removes and returns the next unexecuted submission if one is
3036 * available. This method may be useful in extensions to this
3037 * class that re-assign work in systems with multiple pools.
3038 *
3039 * @return the next submission, or {@code null} if none
3040 */
3041 protected ForkJoinTask<?> pollSubmission() {
3042 WorkQueue[] ws; int wl; WorkQueue w; ForkJoinTask<?> t;
3043 int r = ThreadLocalRandom.nextSecondarySeed();
3044 if ((ws = workQueues) != null && (wl = ws.length) > 0) {
3045 for (int m = wl - 1, i = 0; i < wl; ++i) {
3046 if ((w = ws[(i << 1) & m]) != null && (t = w.poll()) != null)
3047 return t;
3048 }
3049 }
3050 return null;
3051 }
3052
3053 /**
3054 * Removes all available unexecuted submitted and forked tasks
3055 * from scheduling queues and adds them to the given collection,
3056 * without altering their execution status. These may include
3057 * artificially generated or wrapped tasks. This method is
3058 * designed to be invoked only when the pool is known to be
3059 * quiescent. Invocations at other times may not remove all
3060 * tasks. A failure encountered while attempting to add elements
3061 * to collection {@code c} may result in elements being in
3062 * neither, either or both collections when the associated
3063 * exception is thrown. The behavior of this operation is
3064 * undefined if the specified collection is modified while the
3065 * operation is in progress.
3066 *
3067 * @param c the collection to transfer elements into
3068 * @return the number of elements transferred
3069 */
3070 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
3071 int count = 0;
3072 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
3073 if ((ws = workQueues) != null) {
3074 for (int i = 0; i < ws.length; ++i) {
3075 if ((w = ws[i]) != null) {
3076 while ((t = w.poll()) != null) {
3077 c.add(t);
3078 ++count;
3079 }
3080 }
3081 }
3082 }
3083 return count;
3084 }
3085
3086 /**
3087 * Returns a string identifying this pool, as well as its state,
3088 * including indications of run state, parallelism level, and
3089 * worker and task counts.
3090 *
3091 * @return a string identifying this pool, as well as its state
3092 */
3093 public String toString() {
3094 // Use a single pass through workQueues to collect counts
3095 long qt = 0L, qs = 0L; int rc = 0;
3096 AuxState sc = auxState;
3097 long st = (sc == null) ? 0L : sc.stealCount;
3098 long c = ctl;
3099 WorkQueue[] ws; WorkQueue w;
3100 if ((ws = workQueues) != null) {
3101 for (int i = 0; i < ws.length; ++i) {
3102 if ((w = ws[i]) != null) {
3103 int size = w.queueSize();
3104 if ((i & 1) == 0)
3105 qs += size;
3106 else {
3107 qt += size;
3108 st += w.nsteals;
3109 if (w.isApparentlyUnblocked())
3110 ++rc;
3111 }
3112 }
3113 }
3114 }
3115 int pc = (config & SMASK);
3116 int tc = pc + (short)(c >>> TC_SHIFT);
3117 int ac = pc + (int)(c >> AC_SHIFT);
3118 if (ac < 0) // ignore transient negative
3119 ac = 0;
3120 int rs = runState;
3121 String level = ((rs & TERMINATED) != 0 ? "Terminated" :
3122 (rs & STOP) != 0 ? "Terminating" :
3123 (rs & SHUTDOWN) != 0 ? "Shutting down" :
3124 "Running");
3125 return super.toString() +
3126 "[" + level +
3127 ", parallelism = " + pc +
3128 ", size = " + tc +
3129 ", active = " + ac +
3130 ", running = " + rc +
3131 ", steals = " + st +
3132 ", tasks = " + qt +
3133 ", submissions = " + qs +
3134 "]";
3135 }
3136
3137 /**
3138 * Possibly initiates an orderly shutdown in which previously
3139 * submitted tasks are executed, but no new tasks will be
3140 * accepted. Invocation has no effect on execution state if this
3141 * is the {@link #commonPool()}, and no additional effect if
3142 * already shut down. Tasks that are in the process of being
3143 * submitted concurrently during the course of this method may or
3144 * may not be rejected.
3145 *
3146 * @throws SecurityException if a security manager exists and
3147 * the caller is not permitted to modify threads
3148 * because it does not hold {@link
3149 * java.lang.RuntimePermission}{@code ("modifyThread")}
3150 */
3151 public void shutdown() {
3152 checkPermission();
3153 tryTerminate(false, true);
3154 }
3155
3156 /**
3157 * Possibly attempts to cancel and/or stop all tasks, and reject
3158 * all subsequently submitted tasks. Invocation has no effect on
3159 * execution state if this is the {@link #commonPool()}, and no
3160 * additional effect if already shut down. Otherwise, tasks that
3161 * are in the process of being submitted or executed concurrently
3162 * during the course of this method may or may not be
3163 * rejected. This method cancels both existing and unexecuted
3164 * tasks, in order to permit termination in the presence of task
3165 * dependencies. So the method always returns an empty list
3166 * (unlike the case for some other Executors).
3167 *
3168 * @return an empty list
3169 * @throws SecurityException if a security manager exists and
3170 * the caller is not permitted to modify threads
3171 * because it does not hold {@link
3172 * java.lang.RuntimePermission}{@code ("modifyThread")}
3173 */
3174 public List<Runnable> shutdownNow() {
3175 checkPermission();
3176 tryTerminate(true, true);
3177 return Collections.emptyList();
3178 }
3179
3180 /**
3181 * Returns {@code true} if all tasks have completed following shut down.
3182 *
3183 * @return {@code true} if all tasks have completed following shut down
3184 */
3185 public boolean isTerminated() {
3186 return (runState & TERMINATED) != 0;
3187 }
3188
3189 /**
3190 * Returns {@code true} if the process of termination has
3191 * commenced but not yet completed. This method may be useful for
3192 * debugging. A return of {@code true} reported a sufficient
3193 * period after shutdown may indicate that submitted tasks have
3194 * ignored or suppressed interruption, or are waiting for I/O,
3195 * causing this executor not to properly terminate. (See the
3196 * advisory notes for class {@link ForkJoinTask} stating that
3197 * tasks should not normally entail blocking operations. But if
3198 * they do, they must abort them on interrupt.)
3199 *
3200 * @return {@code true} if terminating but not yet terminated
3201 */
3202 public boolean isTerminating() {
3203 int rs = runState;
3204 return (rs & STOP) != 0 && (rs & TERMINATED) == 0;
3205 }
3206
3207 /**
3208 * Returns {@code true} if this pool has been shut down.
3209 *
3210 * @return {@code true} if this pool has been shut down
3211 */
3212 public boolean isShutdown() {
3213 return (runState & SHUTDOWN) != 0;
3214 }
3215
3216 /**
3217 * Blocks until all tasks have completed execution after a
3218 * shutdown request, or the timeout occurs, or the current thread
3219 * is interrupted, whichever happens first. Because the {@link
3220 * #commonPool()} never terminates until program shutdown, when
3221 * applied to the common pool, this method is equivalent to {@link
3222 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
3223 *
3224 * @param timeout the maximum time to wait
3225 * @param unit the time unit of the timeout argument
3226 * @return {@code true} if this executor terminated and
3227 * {@code false} if the timeout elapsed before termination
3228 * @throws InterruptedException if interrupted while waiting
3229 */
3230 public boolean awaitTermination(long timeout, TimeUnit unit)
3231 throws InterruptedException {
3232 if (Thread.interrupted())
3233 throw new InterruptedException();
3234 if (this == common) {
3235 awaitQuiescence(timeout, unit);
3236 return false;
3237 }
3238 long nanos = unit.toNanos(timeout);
3239 if (isTerminated())
3240 return true;
3241 if (nanos <= 0L)
3242 return false;
3243 long deadline = System.nanoTime() + nanos;
3244 synchronized (this) {
3245 for (;;) {
3246 if (isTerminated())
3247 return true;
3248 if (nanos <= 0L)
3249 return false;
3250 long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
3251 wait(millis > 0L ? millis : 1L);
3252 nanos = deadline - System.nanoTime();
3253 }
3254 }
3255 }
3256
3257 /**
3258 * If called by a ForkJoinTask operating in this pool, equivalent
3259 * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3260 * waits and/or attempts to assist performing tasks until this
3261 * pool {@link #isQuiescent} or the indicated timeout elapses.
3262 *
3263 * @param timeout the maximum time to wait
3264 * @param unit the time unit of the timeout argument
3265 * @return {@code true} if quiescent; {@code false} if the
3266 * timeout elapsed.
3267 */
3268 public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3269 long nanos = unit.toNanos(timeout);
3270 ForkJoinWorkerThread wt;
3271 Thread thread = Thread.currentThread();
3272 if ((thread instanceof ForkJoinWorkerThread) &&
3273 (wt = (ForkJoinWorkerThread)thread).pool == this) {
3274 helpQuiescePool(wt.workQueue);
3275 return true;
3276 }
3277 long startTime = System.nanoTime();
3278 WorkQueue[] ws;
3279 int r = 0, wl;
3280 boolean found = true;
3281 while (!isQuiescent() && (ws = workQueues) != null &&
3282 (wl = ws.length) > 0) {
3283 if (!found) {
3284 if ((System.nanoTime() - startTime) > nanos)
3285 return false;
3286 Thread.yield(); // cannot block
3287 }
3288 found = false;
3289 for (int m = wl - 1, j = (m + 1) << 2; j >= 0; --j) {
3290 ForkJoinTask<?> t; WorkQueue q; int b, k;
3291 if ((k = r++ & m) <= m && k >= 0 && (q = ws[k]) != null &&
3292 (b = q.base) - q.top < 0) {
3293 found = true;
3294 if ((t = q.pollAt(b)) != null)
3295 t.doExec();
3296 break;
3297 }
3298 }
3299 }
3300 return true;
3301 }
3302
3303 /**
3304 * Waits and/or attempts to assist performing tasks indefinitely
3305 * until the {@link #commonPool()} {@link #isQuiescent}.
3306 */
3307 static void quiesceCommonPool() {
3308 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3309 }
3310
3311 /**
3312 * Interface for extending managed parallelism for tasks running
3313 * in {@link ForkJoinPool}s.
3314 *
3315 * <p>A {@code ManagedBlocker} provides two methods. Method
3316 * {@link #isReleasable} must return {@code true} if blocking is
3317 * not necessary. Method {@link #block} blocks the current thread
3318 * if necessary (perhaps internally invoking {@code isReleasable}
3319 * before actually blocking). These actions are performed by any
3320 * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
3321 * The unusual methods in this API accommodate synchronizers that
3322 * may, but don't usually, block for long periods. Similarly, they
3323 * allow more efficient internal handling of cases in which
3324 * additional workers may be, but usually are not, needed to
3325 * ensure sufficient parallelism. Toward this end,
3326 * implementations of method {@code isReleasable} must be amenable
3327 * to repeated invocation.
3328 *
3329 * <p>For example, here is a ManagedBlocker based on a
3330 * ReentrantLock:
3331 * <pre> {@code
3332 * class ManagedLocker implements ManagedBlocker {
3333 * final ReentrantLock lock;
3334 * boolean hasLock = false;
3335 * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3336 * public boolean block() {
3337 * if (!hasLock)
3338 * lock.lock();
3339 * return true;
3340 * }
3341 * public boolean isReleasable() {
3342 * return hasLock || (hasLock = lock.tryLock());
3343 * }
3344 * }}</pre>
3345 *
3346 * <p>Here is a class that possibly blocks waiting for an
3347 * item on a given queue:
3348 * <pre> {@code
3349 * class QueueTaker<E> implements ManagedBlocker {
3350 * final BlockingQueue<E> queue;
3351 * volatile E item = null;
3352 * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3353 * public boolean block() throws InterruptedException {
3354 * if (item == null)
3355 * item = queue.take();
3356 * return true;
3357 * }
3358 * public boolean isReleasable() {
3359 * return item != null || (item = queue.poll()) != null;
3360 * }
3361 * public E getItem() { // call after pool.managedBlock completes
3362 * return item;
3363 * }
3364 * }}</pre>
3365 */
3366 public static interface ManagedBlocker {
3367 /**
3368 * Possibly blocks the current thread, for example waiting for
3369 * a lock or condition.
3370 *
3371 * @return {@code true} if no additional blocking is necessary
3372 * (i.e., if isReleasable would return true)
3373 * @throws InterruptedException if interrupted while waiting
3374 * (the method is not required to do so, but is allowed to)
3375 */
3376 boolean block() throws InterruptedException;
3377
3378 /**
3379 * Returns {@code true} if blocking is unnecessary.
3380 * @return {@code true} if blocking is unnecessary
3381 */
3382 boolean isReleasable();
3383 }
3384
3385 /**
3386 * Runs the given possibly blocking task. When {@linkplain
3387 * ForkJoinTask#inForkJoinPool() running in a ForkJoinPool}, this
3388 * method possibly arranges for a spare thread to be activated if
3389 * necessary to ensure sufficient parallelism while the current
3390 * thread is blocked in {@link ManagedBlocker#block blocker.block()}.
3391 *
3392 * <p>This method repeatedly calls {@code blocker.isReleasable()} and
3393 * {@code blocker.block()} until either method returns {@code true}.
3394 * Every call to {@code blocker.block()} is preceded by a call to
3395 * {@code blocker.isReleasable()} that returned {@code false}.
3396 *
3397 * <p>If not running in a ForkJoinPool, this method is
3398 * behaviorally equivalent to
3399 * <pre> {@code
3400 * while (!blocker.isReleasable())
3401 * if (blocker.block())
3402 * break;}</pre>
3403 *
3404 * If running in a ForkJoinPool, the pool may first be expanded to
3405 * ensure sufficient parallelism available during the call to
3406 * {@code blocker.block()}.
3407 *
3408 * @param blocker the blocker task
3409 * @throws InterruptedException if {@code blocker.block()} did so
3410 */
3411 public static void managedBlock(ManagedBlocker blocker)
3412 throws InterruptedException {
3413 ForkJoinPool p;
3414 ForkJoinWorkerThread wt;
3415 Thread t = Thread.currentThread();
3416 if ((t instanceof ForkJoinWorkerThread) &&
3417 (p = (wt = (ForkJoinWorkerThread)t).pool) != null) {
3418 WorkQueue w = wt.workQueue;
3419 while (!blocker.isReleasable()) {
3420 if (p.tryCompensate(w)) {
3421 try {
3422 do {} while (!blocker.isReleasable() &&
3423 !blocker.block());
3424 } finally {
3425 U.getAndAddLong(p, CTL, AC_UNIT);
3426 }
3427 break;
3428 }
3429 }
3430 }
3431 else {
3432 do {} while (!blocker.isReleasable() &&
3433 !blocker.block());
3434 }
3435 }
3436
3437 // AbstractExecutorService overrides. These rely on undocumented
3438 // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3439 // implement RunnableFuture.
3440
3441 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3442 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3443 }
3444
3445 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3446 return new ForkJoinTask.AdaptedCallable<T>(callable);
3447 }
3448
3449 // Unsafe mechanics
3450 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
3451 private static final long CTL;
3452 private static final int ABASE;
3453 private static final int ASHIFT;
3454
3455 static {
3456 try {
3457 CTL = U.objectFieldOffset
3458 (ForkJoinPool.class.getDeclaredField("ctl"));
3459 ABASE = U.arrayBaseOffset(ForkJoinTask[].class);
3460 int scale = U.arrayIndexScale(ForkJoinTask[].class);
3461 if ((scale & (scale - 1)) != 0)
3462 throw new Error("array index scale not a power of two");
3463 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3464 } catch (ReflectiveOperationException e) {
3465 throw new Error(e);
3466 }
3467
3468 // Reduce the risk of rare disastrous classloading in first call to
3469 // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
3470 Class<?> ensureLoaded = LockSupport.class;
3471
3472 int commonMaxSpares = DEFAULT_COMMON_MAX_SPARES;
3473 try {
3474 String p = System.getProperty
3475 ("java.util.concurrent.ForkJoinPool.common.maximumSpares");
3476 if (p != null)
3477 commonMaxSpares = Integer.parseInt(p);
3478 } catch (Exception ignore) {}
3479 COMMON_MAX_SPARES = commonMaxSpares;
3480
3481 defaultForkJoinWorkerThreadFactory =
3482 new DefaultForkJoinWorkerThreadFactory();
3483 modifyThreadPermission = new RuntimePermission("modifyThread");
3484
3485 common = java.security.AccessController.doPrivileged
3486 (new java.security.PrivilegedAction<ForkJoinPool>() {
3487 public ForkJoinPool run() { return makeCommonPool(); }});
3488
3489 // report 1 even if threads disabled
3490 COMMON_PARALLELISM = Math.max(common.config & SMASK, 1);
3491 }
3492
3493 /**
3494 * Creates and returns the common pool, respecting user settings
3495 * specified via system properties.
3496 */
3497 static ForkJoinPool makeCommonPool() {
3498 int parallelism = -1;
3499 ForkJoinWorkerThreadFactory factory = null;
3500 UncaughtExceptionHandler handler = null;
3501 try { // ignore exceptions in accessing/parsing properties
3502 String pp = System.getProperty
3503 ("java.util.concurrent.ForkJoinPool.common.parallelism");
3504 String fp = System.getProperty
3505 ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3506 String hp = System.getProperty
3507 ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3508 if (pp != null)
3509 parallelism = Integer.parseInt(pp);
3510 if (fp != null)
3511 factory = ((ForkJoinWorkerThreadFactory)ClassLoader.
3512 getSystemClassLoader().loadClass(fp).newInstance());
3513 if (hp != null)
3514 handler = ((UncaughtExceptionHandler)ClassLoader.
3515 getSystemClassLoader().loadClass(hp).newInstance());
3516 } catch (Exception ignore) {
3517 }
3518 if (factory == null) {
3519 if (System.getSecurityManager() == null)
3520 factory = defaultForkJoinWorkerThreadFactory;
3521 else // use security-managed default
3522 factory = new InnocuousForkJoinWorkerThreadFactory();
3523 }
3524 if (parallelism < 0 && // default 1 less than #cores
3525 (parallelism = Runtime.getRuntime().availableProcessors() - 1) <= 0)
3526 parallelism = 1;
3527 if (parallelism > MAX_CAP)
3528 parallelism = MAX_CAP;
3529 return new ForkJoinPool(parallelism, factory, handler, LIFO_QUEUE,
3530 "ForkJoinPool.commonPool-worker-");
3531 }
3532
3533 /**
3534 * Factory for innocuous worker threads.
3535 */
3536 private static final class InnocuousForkJoinWorkerThreadFactory
3537 implements ForkJoinWorkerThreadFactory {
3538
3539 /**
3540 * An ACC to restrict permissions for the factory itself.
3541 * The constructed workers have no permissions set.
3542 */
3543 private static final AccessControlContext innocuousAcc;
3544 static {
3545 Permissions innocuousPerms = new Permissions();
3546 innocuousPerms.add(modifyThreadPermission);
3547 innocuousPerms.add(new RuntimePermission(
3548 "enableContextClassLoaderOverride"));
3549 innocuousPerms.add(new RuntimePermission(
3550 "modifyThreadGroup"));
3551 innocuousAcc = new AccessControlContext(new ProtectionDomain[] {
3552 new ProtectionDomain(null, innocuousPerms)
3553 });
3554 }
3555
3556 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
3557 return java.security.AccessController.doPrivileged(
3558 new java.security.PrivilegedAction<ForkJoinWorkerThread>() {
3559 public ForkJoinWorkerThread run() {
3560 return new ForkJoinWorkerThread.
3561 InnocuousForkJoinWorkerThread(pool);
3562 }}, innocuousAcc);
3563 }
3564 }
3565
3566 }