ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.289
Committed: Sat Oct 10 12:12:00 2015 UTC (8 years, 7 months ago) by dl
Branch: MAIN
Changes since 1.288: +94 -106 lines
Log Message:
Ensure cancellation on shutdown

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.lang.Thread.UncaughtExceptionHandler;
10 import java.security.AccessControlContext;
11 import java.security.Permissions;
12 import java.security.ProtectionDomain;
13 import java.util.ArrayList;
14 import java.util.Arrays;
15 import java.util.Collection;
16 import java.util.Collections;
17 import java.util.List;
18 import java.util.concurrent.locks.ReentrantLock;
19 import java.util.concurrent.locks.LockSupport;
20
21 /**
22 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
23 * A {@code ForkJoinPool} provides the entry point for submissions
24 * from non-{@code ForkJoinTask} clients, as well as management and
25 * monitoring operations.
26 *
27 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
28 * ExecutorService} mainly by virtue of employing
29 * <em>work-stealing</em>: all threads in the pool attempt to find and
30 * execute tasks submitted to the pool and/or created by other active
31 * tasks (eventually blocking waiting for work if none exist). This
32 * enables efficient processing when most tasks spawn other subtasks
33 * (as do most {@code ForkJoinTask}s), as well as when many small
34 * tasks are submitted to the pool from external clients. Especially
35 * when setting <em>asyncMode</em> to true in constructors, {@code
36 * ForkJoinPool}s may also be appropriate for use with event-style
37 * tasks that are never joined.
38 *
39 * <p>A static {@link #commonPool()} is available and appropriate for
40 * most applications. The common pool is used by any ForkJoinTask that
41 * is not explicitly submitted to a specified pool. Using the common
42 * pool normally reduces resource usage (its threads are slowly
43 * reclaimed during periods of non-use, and reinstated upon subsequent
44 * use).
45 *
46 * <p>For applications that require separate or custom pools, a {@code
47 * ForkJoinPool} may be constructed with a given target parallelism
48 * level; by default, equal to the number of available processors.
49 * The pool attempts to maintain enough active (or available) threads
50 * by dynamically adding, suspending, or resuming internal worker
51 * threads, even if some tasks are stalled waiting to join others.
52 * However, no such adjustments are guaranteed in the face of blocked
53 * I/O or other unmanaged synchronization. The nested {@link
54 * ManagedBlocker} interface enables extension of the kinds of
55 * synchronization accommodated.
56 *
57 * <p>In addition to execution and lifecycle control methods, this
58 * class provides status check methods (for example
59 * {@link #getStealCount}) that are intended to aid in developing,
60 * tuning, and monitoring fork/join applications. Also, method
61 * {@link #toString} returns indications of pool state in a
62 * convenient form for informal monitoring.
63 *
64 * <p>As is the case with other ExecutorServices, there are three
65 * main task execution methods summarized in the following table.
66 * These are designed to be used primarily by clients not already
67 * engaged in fork/join computations in the current pool. The main
68 * forms of these methods accept instances of {@code ForkJoinTask},
69 * but overloaded forms also allow mixed execution of plain {@code
70 * Runnable}- or {@code Callable}- based activities as well. However,
71 * tasks that are already executing in a pool should normally instead
72 * use the within-computation forms listed in the table unless using
73 * async event-style tasks that are not usually joined, in which case
74 * there is little difference among choice of methods.
75 *
76 * <table BORDER CELLPADDING=3 CELLSPACING=1>
77 * <caption>Summary of task execution methods</caption>
78 * <tr>
79 * <td></td>
80 * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
81 * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
82 * </tr>
83 * <tr>
84 * <td> <b>Arrange async execution</b></td>
85 * <td> {@link #execute(ForkJoinTask)}</td>
86 * <td> {@link ForkJoinTask#fork}</td>
87 * </tr>
88 * <tr>
89 * <td> <b>Await and obtain result</b></td>
90 * <td> {@link #invoke(ForkJoinTask)}</td>
91 * <td> {@link ForkJoinTask#invoke}</td>
92 * </tr>
93 * <tr>
94 * <td> <b>Arrange exec and obtain Future</b></td>
95 * <td> {@link #submit(ForkJoinTask)}</td>
96 * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
97 * </tr>
98 * </table>
99 *
100 * <p>The common pool is by default constructed with default
101 * parameters, but these may be controlled by setting three
102 * {@linkplain System#getProperty system properties}:
103 * <ul>
104 * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
105 * - the parallelism level, a non-negative integer
106 * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
107 * - the class name of a {@link ForkJoinWorkerThreadFactory}
108 * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
109 * - the class name of a {@link UncaughtExceptionHandler}
110 * <li>{@code java.util.concurrent.ForkJoinPool.common.maximumSpares}
111 * - the maximum number of allowed extra threads to maintain target
112 * parallelism (default 256).
113 * </ul>
114 * If a {@link SecurityManager} is present and no factory is
115 * specified, then the default pool uses a factory supplying
116 * threads that have no {@link Permissions} enabled.
117 * The system class loader is used to load these classes.
118 * Upon any error in establishing these settings, default parameters
119 * are used. It is possible to disable or limit the use of threads in
120 * the common pool by setting the parallelism property to zero, and/or
121 * using a factory that may return {@code null}. However doing so may
122 * cause unjoined tasks to never be executed.
123 *
124 * <p><b>Implementation notes</b>: This implementation restricts the
125 * maximum number of running threads to 32767. Attempts to create
126 * pools with greater than the maximum number result in
127 * {@code IllegalArgumentException}.
128 *
129 * <p>This implementation rejects submitted tasks (that is, by throwing
130 * {@link RejectedExecutionException}) only when the pool is shut down
131 * or internal resources have been exhausted.
132 *
133 * @since 1.7
134 * @author Doug Lea
135 */
136 @sun.misc.Contended
137 public class ForkJoinPool extends AbstractExecutorService {
138
139 /*
140 * Implementation Overview
141 *
142 * This class and its nested classes provide the main
143 * functionality and control for a set of worker threads:
144 * Submissions from non-FJ threads enter into submission queues.
145 * Workers take these tasks and typically split them into subtasks
146 * that may be stolen by other workers. Preference rules give
147 * first priority to processing tasks from their own queues (LIFO
148 * or FIFO, depending on mode), then to randomized FIFO steals of
149 * tasks in other queues. This framework began as vehicle for
150 * supporting tree-structured parallelism using work-stealing.
151 * Over time, its scalability advantages led to extensions and
152 * changes to better support more diverse usage contexts. Because
153 * most internal methods and nested classes are interrelated,
154 * their main rationale and descriptions are presented here;
155 * individual methods and nested classes contain only brief
156 * comments about details.
157 *
158 * WorkQueues
159 * ==========
160 *
161 * Most operations occur within work-stealing queues (in nested
162 * class WorkQueue). These are special forms of Deques that
163 * support only three of the four possible end-operations -- push,
164 * pop, and poll (aka steal), under the further constraints that
165 * push and pop are called only from the owning thread (or, as
166 * extended here, under a lock), while poll may be called from
167 * other threads. (If you are unfamiliar with them, you probably
168 * want to read Herlihy and Shavit's book "The Art of
169 * Multiprocessor programming", chapter 16 describing these in
170 * more detail before proceeding.) The main work-stealing queue
171 * design is roughly similar to those in the papers "Dynamic
172 * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
173 * (http://research.sun.com/scalable/pubs/index.html) and
174 * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
175 * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
176 * The main differences ultimately stem from GC requirements that
177 * we null out taken slots as soon as we can, to maintain as small
178 * a footprint as possible even in programs generating huge
179 * numbers of tasks. To accomplish this, we shift the CAS
180 * arbitrating pop vs poll (steal) from being on the indices
181 * ("base" and "top") to the slots themselves.
182 *
183 * Adding tasks then takes the form of a classic array push(task)
184 * in a circular buffer:
185 * q.array[q.top++ % length] = task;
186 *
187 * (The actual code needs to null-check and size-check the array,
188 * uses masking, not mod, for indexing a power-of-two-sized array,
189 * properly fences accesses, and possibly signals waiting workers
190 * to start scanning -- see below.) Both a successful pop and
191 * poll mainly entail a CAS of a slot from non-null to null.
192 *
193 * The pop operation (always performed by owner) is:
194 * if ((the task at top slot is not null) and
195 * (CAS slot to null))
196 * decrement top and return task;
197 *
198 * And the poll operation (usually by a stealer) is
199 * if ((the task at base slot is not null) and
200 * (CAS slot to null))
201 * increment base and return task;
202 *
203 * There are several variants of each of these; for example most
204 * versions of poll pre-screen the CAS by rechecking that the base
205 * has not changed since reading the slot, and most methods only
206 * attempt the CAS if base appears not to be equal to top.
207 *
208 * Memory ordering. See "Correct and Efficient Work-Stealing for
209 * Weak Memory Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
210 * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
211 * analysis of memory ordering requirements in work-stealing
212 * algorithms similar to (but different than) the one used here.
213 * Extracting tasks in array slots via (fully fenced) CAS provides
214 * primary synchronization. The base and top indices imprecisely
215 * guide where to extract from. We do not always require strict
216 * orderings of array and index updates, so sometimes let them be
217 * subject to compiler and processor reorderings. However, the
218 * volatile "base" index also serves as a basis for memory
219 * ordering: Slot accesses are preceded by a read of base,
220 * ensuring happens-before ordering with respect to stealers (so
221 * the slots themselves can be read via plain array reads.) The
222 * only other memory orderings relied on are maintained in the
223 * course of signalling and activation (see below). A check that
224 * base == top indicates (momentary) emptiness, but otherwise may
225 * err on the side of possibly making the queue appear nonempty
226 * when a push, pop, or poll have not fully committed, or making
227 * it appear empty when an update of top has not yet been visibly
228 * written. (Method isEmpty() checks the case of a partially
229 * completed removal of the last element.) Because of this, the
230 * poll operation, considered individually, is not wait-free. One
231 * thief cannot successfully continue until another in-progress
232 * one (or, if previously empty, a push) visibly completes.
233 * However, in the aggregate, we ensure at least probabilistic
234 * non-blockingness. If an attempted steal fails, a scanning
235 * thief chooses a different random victim target to try next. So,
236 * in order for one thief to progress, it suffices for any
237 * in-progress poll or new push on any empty queue to
238 * complete. (This is why we normally use method pollAt and its
239 * variants that try once at the apparent base index, else
240 * consider alternative actions, rather than method poll, which
241 * retries.)
242 *
243 * This approach also enables support of a user mode in which
244 * local task processing is in FIFO, not LIFO order, simply by
245 * using poll rather than pop. This can be useful in
246 * message-passing frameworks in which tasks are never joined.
247 *
248 * WorkQueues are also used in a similar way for tasks submitted
249 * to the pool. We cannot mix these tasks in the same queues used
250 * by workers. Instead, we randomly associate submission queues
251 * with submitting threads, using a form of hashing. The
252 * ThreadLocalRandom probe value serves as a hash code for
253 * choosing existing queues, and may be randomly repositioned upon
254 * contention with other submitters. In essence, submitters act
255 * like workers except that they are restricted to executing local
256 * tasks that they submitted (or in the case of CountedCompleters,
257 * others with the same root task). Insertion of tasks in shared
258 * mode requires a lock but we use only a simple spinlock (using
259 * field qlock), because submitters encountering a busy queue move
260 * on to try or create other queues -- they block only when
261 * creating and registering new queues. Because it is used only as
262 * a spinlock, unlocking requires only a "releasing" store (using
263 * putOrderedInt). The qlock is also used during termination
264 * detection, in which case it is forced to a negative
265 * non-lockable value.
266 *
267 * Management
268 * ==========
269 *
270 * The main throughput advantages of work-stealing stem from
271 * decentralized control -- workers mostly take tasks from
272 * themselves or each other, at rates that can exceed a billion
273 * per second. The pool itself creates, activates (enables
274 * scanning for and running tasks), deactivates, blocks, and
275 * terminates threads, all with minimal central information.
276 * There are only a few properties that we can globally track or
277 * maintain, so we pack them into a small number of variables,
278 * often maintaining atomicity without blocking or locking.
279 * Nearly all essentially atomic control state is held in two
280 * volatile variables that are by far most often read (not
281 * written) as status and consistency checks. (Also, field
282 * "config" holds unchanging configuration state.)
283 *
284 * Field "ctl" contains 64 bits holding information needed to
285 * atomically decide to add, inactivate, enqueue (on an event
286 * queue), dequeue, and/or re-activate workers. To enable this
287 * packing, we restrict maximum parallelism to (1<<15)-1 (which is
288 * far in excess of normal operating range) to allow ids, counts,
289 * and their negations (used for thresholding) to fit into 16bit
290 * subfields.
291 *
292 * Field "runState" holds state bits (STARTED, STOP, etc). After
293 * starting, the field is updated (only during shutdown) under the
294 * auxState lock.
295 *
296 * Field "auxState" is a ReentrantLock subclass that also
297 * opportunistically holds some other bookkeeping fields accessed
298 * only when locked. It is mainly used to lock (infrequent)
299 * updates to runState and workQueues. The auxState instance is
300 * itself lazily constructed (see tryInitialize), requiring a
301 * double-check-style bootstrapping use of field runState, and
302 * locking a private static.
303 *
304 * Field "workQueues" holds references to WorkQueues. It is
305 * updated (only during worker creation and termination) under the
306 * lock, but is otherwise concurrently readable, and accessed
307 * directly. We also ensure that reads of the array reference
308 * itself never become too stale (for example, re-reading before
309 * each scan). To simplify index-based operations, the array size
310 * is always a power of two, and all readers must tolerate null
311 * slots. Worker queues are at odd indices. Shared (submission)
312 * queues are at even indices, up to a maximum of 64 slots, to
313 * limit growth even if array needs to expand to add more
314 * workers. Grouping them together in this way simplifies and
315 * speeds up task scanning.
316 *
317 * All worker thread creation is on-demand, triggered by task
318 * submissions, replacement of terminated workers, and/or
319 * compensation for blocked workers. However, all other support
320 * code is set up to work with other policies. To ensure that we
321 * do not hold on to worker references that would prevent GC, all
322 * accesses to workQueues are via indices into the workQueues
323 * array (which is one source of some of the messy code
324 * constructions here). In essence, the workQueues array serves as
325 * a weak reference mechanism. Thus for example the stack top
326 * subfield of ctl stores indices, not references.
327 *
328 * Queuing Idle Workers. Unlike HPC work-stealing frameworks, we
329 * cannot let workers spin indefinitely scanning for tasks when
330 * none can be found immediately, and we cannot start/resume
331 * workers unless there appear to be tasks available. On the
332 * other hand, we must quickly prod them into action when new
333 * tasks are submitted or generated. In many usages, ramp-up time
334 * to activate workers is the main limiting factor in overall
335 * performance, which is compounded at program start-up by JIT
336 * compilation and allocation. So we streamline this as much as
337 * possible.
338 *
339 * The "ctl" field atomically maintains active and total worker
340 * counts as well as a queue to place waiting threads so they can
341 * be located for signalling. Active counts also play the role of
342 * quiescence indicators, so are decremented when workers believe
343 * that there are no more tasks to execute. The "queue" is
344 * actually a form of Treiber stack. A stack is ideal for
345 * activating threads in most-recently used order. This improves
346 * performance and locality, outweighing the disadvantages of
347 * being prone to contention and inability to release a worker
348 * unless it is topmost on stack. We block/unblock workers after
349 * pushing on the idle worker stack (represented by the lower
350 * 32bit subfield of ctl) when they cannot find work. The top
351 * stack state holds the value of the "scanState" field of the
352 * worker: its index and status, plus a version counter that, in
353 * addition to the count subfields (also serving as version
354 * stamps) provide protection against Treiber stack ABA effects.
355 *
356 * Creating workers. To create a worker, we pre-increment total
357 * count (serving as a reservation), and attempt to construct a
358 * ForkJoinWorkerThread via its factory. Upon construction, the
359 * new thread invokes registerWorker, where it constructs a
360 * WorkQueue and is assigned an index in the workQueues array
361 * (expanding the array if necessary). The thread is then started.
362 * Upon any exception across these steps, or null return from
363 * factory, deregisterWorker adjusts counts and records
364 * accordingly. If a null return, the pool continues running with
365 * fewer than the target number workers. If exceptional, the
366 * exception is propagated, generally to some external caller.
367 * Worker index assignment avoids the bias in scanning that would
368 * occur if entries were sequentially packed starting at the front
369 * of the workQueues array. We treat the array as a simple
370 * power-of-two hash table, expanding as needed. The seedIndex
371 * increment ensures no collisions until a resize is needed or a
372 * worker is deregistered and replaced, and thereafter keeps
373 * probability of collision low. We cannot use
374 * ThreadLocalRandom.getProbe() for similar purposes here because
375 * the thread has not started yet, but do so for creating
376 * submission queues for existing external threads (see
377 * externalPush).
378 *
379 * WorkQueue field scanState is used by both workers and the pool
380 * to manage and track whether a worker is UNSIGNALLED (possibly
381 * blocked waiting for a signal). When a worker is inactivated,
382 * its scanState field is set, and is prevented from executing
383 * tasks, even though it must scan once for them to avoid queuing
384 * races. Note that scanState updates lag queue CAS releases so
385 * usage requires care. When queued, the lower 16 bits of
386 * scanState must hold its pool index. So we place the index there
387 * upon initialization (see registerWorker) and otherwise keep it
388 * there or restore it when necessary.
389 *
390 * The ctl field also serves as the basis for memory
391 * synchronization surrounding activation. This uses a more
392 * efficient version of a Dekker-like rule that task producers and
393 * consumers sync with each other by both writing/CASing ctl (even
394 * if to its current value). This would be extremely costly. So
395 * we relax it in several ways: (1) Producers only signal when
396 * their queue is empty. Other workers propagate this signal (in
397 * method scan) when they find tasks. (2) Workers only enqueue
398 * after scanning (see below) and not finding any tasks. (3)
399 * Rather than CASing ctl to its current value in the common case
400 * where no action is required, we reduce write contention by
401 * equivalently prefacing signalWork when called by an external
402 * task producer using a memory access with full-volatile
403 * semantics or a "fullFence". (4) For internal task producers we
404 * rely on the fact that even if no other workers awaken, the
405 * producer itself will eventually see the task and execute it.
406 *
407 * Almost always, too many signals are issued. A task producer
408 * cannot in general tell if some existing worker is in the midst
409 * of finishing one task (or already scanning) and ready to take
410 * another without being signalled. So the producer might instead
411 * activate a different worker that does not find any work, and
412 * then inactivates. This scarcely matters in steady-state
413 * computations involving all workers, but can create contention
414 * and bookkeeping bottlenecks during ramp-up, ramp-down, and small
415 * computations involving only a few workers.
416 *
417 * Scanning. Method scan() performs top-level scanning for tasks.
418 * Each scan traverses (and tries to poll from) each queue in
419 * pseudorandom permutation order by randomly selecting an origin
420 * index and a step value. (The pseudorandom generator need not
421 * have high-quality statistical properties in the long term, but
422 * just within computations; We use 64bit and 32bit Marsaglia
423 * XorShifts, which are cheap and suffice here.) Scanning also
424 * employs contention reduction: When scanning workers fail a CAS
425 * polling for work, they soon restart with a different
426 * pseudorandom scan order (thus likely retrying at different
427 * intervals). This improves throughput when many threads are
428 * trying to take tasks from few queues. Scans do not otherwise
429 * explicitly take into account core affinities, loads, cache
430 * localities, etc, However, they do exploit temporal locality
431 * (which usually approximates these) by preferring to re-poll (up
432 * to POLL_LIMIT times) from the same queue after a successful
433 * poll before trying others. Restricted forms of scanning occur
434 * in methods helpComplete and findNonEmptyStealQueue, and take
435 * similar but simpler forms.
436 *
437 * Deactivation and waiting. Queuing encounters several intrinsic
438 * races; most notably that an inactivating scanning worker can
439 * miss seeing a task produced during a scan. So when a worker
440 * cannot find a task to steal, it inactivates and enqueues, and
441 * then rescans to ensure that it didn't miss one, reactivating
442 * upon seeing one with probability approximately proportional to
443 * probability of a miss. (In most cases, the worker will be
444 * signalled before self-signalling, avoiding cascades of multiple
445 * signals for the same task).
446 *
447 * Workers block (in method awaitWork) using park/unpark;
448 * advertising the need for signallers to unpark by setting their
449 * "parker" fields.
450 *
451 * Trimming workers. To release resources after periods of lack of
452 * use, a worker starting to wait when the pool is quiescent will
453 * time out and terminate (see awaitWork) if the pool has remained
454 * quiescent for period given by IDLE_TIMEOUT_MS, increasing the
455 * period as the number of threads decreases, eventually removing
456 * all workers.
457 *
458 * Shutdown and Termination. A call to shutdownNow invokes
459 * tryTerminate to atomically set a runState bit. The calling
460 * thread, as well as every other worker thereafter terminating,
461 * helps terminate others by setting their (qlock) status,
462 * cancelling their unprocessed tasks, and waking them up, doing
463 * so repeatedly until stable (but with a loop bounded by the
464 * number of workers). Calls to non-abrupt shutdown() preface
465 * this by checking whether termination should commence. This
466 * relies primarily on the active count bits of "ctl" maintaining
467 * consensus -- tryTerminate is called from awaitWork whenever
468 * quiescent. However, external submitters do not take part in
469 * this consensus. So, tryTerminate sweeps through queues (until
470 * stable) to ensure lack of in-flight submissions and workers
471 * about to process them before triggering the "STOP" phase of
472 * termination. (Note: there is an intrinsic conflict if
473 * helpQuiescePool is called when shutdown is enabled. Both wait
474 * for quiescence, but tryTerminate is biased to not trigger until
475 * helpQuiescePool completes.)
476 *
477 * Joining Tasks
478 * =============
479 *
480 * Any of several actions may be taken when one worker is waiting
481 * to join a task stolen (or always held) by another. Because we
482 * are multiplexing many tasks on to a pool of workers, we can't
483 * just let them block (as in Thread.join). We also cannot just
484 * reassign the joiner's run-time stack with another and replace
485 * it later, which would be a form of "continuation", that even if
486 * possible is not necessarily a good idea since we may need both
487 * an unblocked task and its continuation to progress. Instead we
488 * combine two tactics:
489 *
490 * Helping: Arranging for the joiner to execute some task that it
491 * would be running if the steal had not occurred.
492 *
493 * Compensating: Unless there are already enough live threads,
494 * method tryCompensate() may create or re-activate a spare
495 * thread to compensate for blocked joiners until they unblock.
496 *
497 * A third form (implemented in tryRemoveAndExec) amounts to
498 * helping a hypothetical compensator: If we can readily tell that
499 * a possible action of a compensator is to steal and execute the
500 * task being joined, the joining thread can do so directly,
501 * without the need for a compensation thread (although at the
502 * expense of larger run-time stacks, but the tradeoff is
503 * typically worthwhile).
504 *
505 * The ManagedBlocker extension API can't use helping so relies
506 * only on compensation in method awaitBlocker.
507 *
508 * The algorithm in helpStealer entails a form of "linear
509 * helping". Each worker records (in field currentSteal) the most
510 * recent task it stole from some other worker (or a submission).
511 * It also records (in field currentJoin) the task it is currently
512 * actively joining. Method helpStealer uses these markers to try
513 * to find a worker to help (i.e., steal back a task from and
514 * execute it) that could hasten completion of the actively joined
515 * task. Thus, the joiner executes a task that would be on its
516 * own local deque had the to-be-joined task not been stolen. This
517 * is a conservative variant of the approach described in Wagner &
518 * Calder "Leapfrogging: a portable technique for implementing
519 * efficient futures" SIGPLAN Notices, 1993
520 * (http://portal.acm.org/citation.cfm?id=155354). It differs in
521 * that: (1) We only maintain dependency links across workers upon
522 * steals, rather than use per-task bookkeeping. This sometimes
523 * requires a linear scan of workQueues array to locate stealers,
524 * but often doesn't because stealers leave hints (that may become
525 * stale/wrong) of where to locate them. It is only a hint
526 * because a worker might have had multiple steals and the hint
527 * records only one of them (usually the most current). Hinting
528 * isolates cost to when it is needed, rather than adding to
529 * per-task overhead. (2) It is "shallow", ignoring nesting and
530 * potentially cyclic mutual steals. (3) It is intentionally
531 * racy: field currentJoin is updated only while actively joining,
532 * which means that we miss links in the chain during long-lived
533 * tasks, GC stalls etc (which is OK since blocking in such cases
534 * is usually a good idea). (4) We bound the number of attempts
535 * to find work using checksums and fall back to suspending the
536 * worker and if necessary replacing it with another.
537 *
538 * Helping actions for CountedCompleters do not require tracking
539 * currentJoins: Method helpComplete takes and executes any task
540 * with the same root as the task being waited on (preferring
541 * local pops to non-local polls). However, this still entails
542 * some traversal of completer chains, so is less efficient than
543 * using CountedCompleters without explicit joins.
544 *
545 * Compensation does not aim to keep exactly the target
546 * parallelism number of unblocked threads running at any given
547 * time. Some previous versions of this class employed immediate
548 * compensations for any blocked join. However, in practice, the
549 * vast majority of blockages are transient byproducts of GC and
550 * other JVM or OS activities that are made worse by replacement.
551 * Currently, compensation is attempted only after validating that
552 * all purportedly active threads are processing tasks by checking
553 * field WorkQueue.scanState, which eliminates most false
554 * positives. Also, compensation is bypassed (tolerating fewer
555 * threads) in the most common case in which it is rarely
556 * beneficial: when a worker with an empty queue (thus no
557 * continuation tasks) blocks on a join and there still remain
558 * enough threads to ensure liveness.
559 *
560 * Spare threads are removed as soon as they notice that the
561 * target parallelism level has been exceeded, in method
562 * tryDropSpare. (Method scan arranges returns for rechecks upon
563 * each probe via the "bound" parameter.)
564 *
565 * The compensation mechanism may be bounded. Bounds for the
566 * commonPool (see COMMON_MAX_SPARES) better enable JVMs to cope
567 * with programming errors and abuse before running out of
568 * resources to do so. In other cases, users may supply factories
569 * that limit thread construction. The effects of bounding in this
570 * pool (like all others) is imprecise. Total worker counts are
571 * decremented when threads deregister, not when they exit and
572 * resources are reclaimed by the JVM and OS. So the number of
573 * simultaneously live threads may transiently exceed bounds.
574 *
575 * Common Pool
576 * ===========
577 *
578 * The static common pool always exists after static
579 * initialization. Since it (or any other created pool) need
580 * never be used, we minimize initial construction overhead and
581 * footprint to the setup of about a dozen fields, with no nested
582 * allocation. Most bootstrapping occurs within method
583 * externalSubmit during the first submission to the pool.
584 *
585 * When external threads submit to the common pool, they can
586 * perform subtask processing (see externalHelpComplete and
587 * related methods) upon joins. This caller-helps policy makes it
588 * sensible to set common pool parallelism level to one (or more)
589 * less than the total number of available cores, or even zero for
590 * pure caller-runs. We do not need to record whether external
591 * submissions are to the common pool -- if not, external help
592 * methods return quickly. These submitters would otherwise be
593 * blocked waiting for completion, so the extra effort (with
594 * liberally sprinkled task status checks) in inapplicable cases
595 * amounts to an odd form of limited spin-wait before blocking in
596 * ForkJoinTask.join.
597 *
598 * As a more appropriate default in managed environments, unless
599 * overridden by system properties, we use workers of subclass
600 * InnocuousForkJoinWorkerThread when there is a SecurityManager
601 * present. These workers have no permissions set, do not belong
602 * to any user-defined ThreadGroup, and erase all ThreadLocals
603 * after executing any top-level task (see WorkQueue.runTask).
604 * The associated mechanics (mainly in ForkJoinWorkerThread) may
605 * be JVM-dependent and must access particular Thread class fields
606 * to achieve this effect.
607 *
608 * Style notes
609 * ===========
610 *
611 * Memory ordering relies mainly on Unsafe intrinsics that carry
612 * the further responsibility of explicitly performing null- and
613 * bounds- checks otherwise carried out implicitly by JVMs. This
614 * can be awkward and ugly, but also reflects the need to control
615 * outcomes across the unusual cases that arise in very racy code
616 * with very few invariants. So these explicit checks would exist
617 * in some form anyway. All fields are read into locals before
618 * use, and null-checked if they are references. This is usually
619 * done in a "C"-like style of listing declarations at the heads
620 * of methods or blocks, and using inline assignments on first
621 * encounter. Array bounds-checks are usually performed by
622 * masking with array.length-1, which relies on the invariant that
623 * these arrays are created with positive lengths, which is itself
624 * paranoically checked. Nearly all explicit checks lead to
625 * bypass/return, not exception throws, because they may
626 * legitimately arise due to cancellation/revocation during
627 * shutdown.
628 *
629 * There is a lot of representation-level coupling among classes
630 * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
631 * fields of WorkQueue maintain data structures managed by
632 * ForkJoinPool, so are directly accessed. There is little point
633 * trying to reduce this, since any associated future changes in
634 * representations will need to be accompanied by algorithmic
635 * changes anyway. Several methods intrinsically sprawl because
636 * they must accumulate sets of consistent reads of fields held in
637 * local variables. There are also other coding oddities
638 * (including several unnecessary-looking hoisted null checks)
639 * that help some methods perform reasonably even when interpreted
640 * (not compiled).
641 *
642 * The order of declarations in this file is (with a few exceptions):
643 * (1) Static utility functions
644 * (2) Nested (static) classes
645 * (3) Static fields
646 * (4) Fields, along with constants used when unpacking some of them
647 * (5) Internal control methods
648 * (6) Callbacks and other support for ForkJoinTask methods
649 * (7) Exported methods
650 * (8) Static block initializing statics in minimally dependent order
651 */
652
653 // Static utilities
654
655 /**
656 * If there is a security manager, makes sure caller has
657 * permission to modify threads.
658 */
659 private static void checkPermission() {
660 SecurityManager security = System.getSecurityManager();
661 if (security != null)
662 security.checkPermission(modifyThreadPermission);
663 }
664
665 // Nested classes
666
667 /**
668 * Factory for creating new {@link ForkJoinWorkerThread}s.
669 * A {@code ForkJoinWorkerThreadFactory} must be defined and used
670 * for {@code ForkJoinWorkerThread} subclasses that extend base
671 * functionality or initialize threads with different contexts.
672 */
673 public static interface ForkJoinWorkerThreadFactory {
674 /**
675 * Returns a new worker thread operating in the given pool.
676 *
677 * @param pool the pool this thread works in
678 * @return the new worker thread
679 * @throws NullPointerException if the pool is null
680 */
681 public ForkJoinWorkerThread newThread(ForkJoinPool pool);
682 }
683
684 /**
685 * Default ForkJoinWorkerThreadFactory implementation; creates a
686 * new ForkJoinWorkerThread.
687 */
688 private static final class DefaultForkJoinWorkerThreadFactory
689 implements ForkJoinWorkerThreadFactory {
690 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
691 return new ForkJoinWorkerThread(pool);
692 }
693 }
694
695 /**
696 * Class for artificial tasks that are used to replace the target
697 * of local joins if they are removed from an interior queue slot
698 * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
699 * actually do anything beyond having a unique identity.
700 */
701 private static final class EmptyTask extends ForkJoinTask<Void> {
702 private static final long serialVersionUID = -7721805057305804111L;
703 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
704 public final Void getRawResult() { return null; }
705 public final void setRawResult(Void x) {}
706 public final boolean exec() { return true; }
707 }
708
709 /**
710 * Additional fields and lock created upon initialization.
711 */
712 private static final class AuxState extends ReentrantLock {
713 private static final long serialVersionUID = -6001602636862214147L;
714 volatile long stealCount; // cumulative steal count
715 long indexSeed; // index bits for registerWorker
716 AuxState() {}
717 }
718
719 // Constants shared across ForkJoinPool and WorkQueue
720
721 // Bounds
722 static final int SMASK = 0xffff; // short bits == max index
723 static final int MAX_CAP = 0x7fff; // max #workers - 1
724 static final int EVENMASK = 0xfffe; // even short bits
725 static final int SQMASK = 0x007e; // max 64 (even) slots
726
727 // Masks and units for WorkQueue.scanState and ctl sp subfield
728 static final int UNSIGNALLED = 1 << 31; // must be negative
729 static final int SS_SEQ = 1 << 16; // version count
730
731 // Mode bits for ForkJoinPool.config and WorkQueue.config
732 static final int MODE_MASK = 0xffff << 16; // top half of int
733 static final int SPARE_WORKER = 1 << 17; // set if tc > 0 on creation
734 static final int UNREGISTERED = 1 << 18; // to skip some of deregister
735 static final int FIFO_QUEUE = 1 << 31; // must be negative
736 static final int LIFO_QUEUE = 0; // for clarity
737 static final int IS_OWNED = 1; // low bit 0 if shared
738
739 /**
740 * The maximum number of task executions from the same queue
741 * before checking other queues, bounding unfairness and impact of
742 * infinite user task recursion. Must be a power of two minus 1.
743 */
744 static final int POLL_LIMIT = (1 << 10) - 1;
745
746 /**
747 * Queues supporting work-stealing as well as external task
748 * submission. See above for descriptions and algorithms.
749 * Performance on most platforms is very sensitive to placement of
750 * instances of both WorkQueues and their arrays -- we absolutely
751 * do not want multiple WorkQueue instances or multiple queue
752 * arrays sharing cache lines. The @Contended annotation alerts
753 * JVMs to try to keep instances apart.
754 */
755 @sun.misc.Contended
756 static final class WorkQueue {
757
758 /**
759 * Capacity of work-stealing queue array upon initialization.
760 * Must be a power of two; at least 4, but should be larger to
761 * reduce or eliminate cacheline sharing among queues.
762 * Currently, it is much larger, as a partial workaround for
763 * the fact that JVMs often place arrays in locations that
764 * share GC bookkeeping (especially cardmarks) such that
765 * per-write accesses encounter serious memory contention.
766 */
767 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
768
769 /**
770 * Maximum size for queue arrays. Must be a power of two less
771 * than or equal to 1 << (31 - width of array entry) to ensure
772 * lack of wraparound of index calculations, but defined to a
773 * value a bit less than this to help users trap runaway
774 * programs before saturating systems.
775 */
776 static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
777
778 // Instance fields
779
780 volatile int scanState; // versioned, negative if inactive
781 int stackPred; // pool stack (ctl) predecessor
782 int nsteals; // number of steals
783 int hint; // randomization and stealer index hint
784 int config; // pool index and mode
785 volatile int qlock; // 1: locked, < 0: terminate; else 0
786 volatile int base; // index of next slot for poll
787 int top; // index of next slot for push
788 ForkJoinTask<?>[] array; // the elements (initially unallocated)
789 final ForkJoinPool pool; // the containing pool (may be null)
790 final ForkJoinWorkerThread owner; // owning thread or null if shared
791 volatile Thread parker; // == owner during call to park; else null
792 volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
793 @sun.misc.Contended("group2") // separate from other fields
794 volatile ForkJoinTask<?> currentSteal; // nonnull when running some task
795
796 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner) {
797 this.pool = pool;
798 this.owner = owner;
799 // Place indices in the center of array (that is not yet allocated)
800 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
801 }
802
803 /**
804 * Returns an exportable index (used by ForkJoinWorkerThread).
805 */
806 final int getPoolIndex() {
807 return (config & 0xffff) >>> 1; // ignore odd/even tag bit
808 }
809
810 /**
811 * Returns the approximate number of tasks in the queue.
812 */
813 final int queueSize() {
814 int n = base - top; // read base first
815 return (n >= 0) ? 0 : -n; // ignore transient negative
816 }
817
818 /**
819 * Provides a more accurate estimate of whether this queue has
820 * any tasks than does queueSize, by checking whether a
821 * near-empty queue has at least one unclaimed task.
822 */
823 final boolean isEmpty() {
824 ForkJoinTask<?>[] a; int n, al, s;
825 return ((n = base - (s = top)) >= 0 || // possibly one task
826 (n == -1 && ((a = array) == null ||
827 (al = a.length) == 0 ||
828 a[(al - 1) & (s - 1)] == null)));
829 }
830
831 /**
832 * Pushes a task. Call only by owner in unshared queues.
833 *
834 * @param task the task. Caller must ensure non-null.
835 * @throws RejectedExecutionException if array cannot be resized
836 */
837 final void push(ForkJoinTask<?> task) {
838 U.storeFence(); // ensure safe publication
839 int b = base, s = top, al, d; ForkJoinTask<?>[] a;
840 if ((a = array) != null && (al = a.length) > 0) {
841 a[(al - 1) & s] = task; // relaxed writes OK
842 top = s + 1;
843 ForkJoinPool p = pool;
844 if ((d = b - s) == 0 && p != null) {
845 U.fullFence();
846 p.signalWork();
847 }
848 else if (al + d == 1)
849 growArray();
850 }
851 }
852
853 /**
854 * Initializes or doubles the capacity of array. Call either
855 * by owner or with lock held -- it is OK for base, but not
856 * top, to move while resizings are in progress.
857 */
858 final ForkJoinTask<?>[] growArray() {
859 ForkJoinTask<?>[] oldA = array;
860 int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
861 if (size < INITIAL_QUEUE_CAPACITY || size > MAXIMUM_QUEUE_CAPACITY)
862 throw new RejectedExecutionException("Queue capacity exceeded");
863 int oldMask, t, b;
864 ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
865 if (oldA != null && (oldMask = oldA.length - 1) > 0 &&
866 (t = top) - (b = base) > 0) {
867 int mask = size - 1;
868 do { // emulate poll from old array, push to new array
869 int index = b & oldMask;
870 long offset = ((long)index << ASHIFT) + ABASE;
871 ForkJoinTask<?> x = (ForkJoinTask<?>)
872 U.getObjectVolatile(oldA, offset);
873 if (x != null &&
874 U.compareAndSwapObject(oldA, offset, x, null))
875 a[b & mask] = x;
876 } while (++b != t);
877 U.storeFence();
878 }
879 return a;
880 }
881
882 /**
883 * Takes next task, if one exists, in LIFO order. Call only
884 * by owner in unshared queues.
885 */
886 final ForkJoinTask<?> pop() {
887 int b = base, s = top, al, i; ForkJoinTask<?>[] a;
888 if ((a = array) != null && b != s && (al = a.length) > 0) {
889 int index = (al - 1) & --s;
890 long offset = ((long)index << ASHIFT) + ABASE;
891 ForkJoinTask<?> t = (ForkJoinTask<?>)
892 U.getObject(a, offset);
893 if (t != null &&
894 U.compareAndSwapObject(a, offset, t, null)) {
895 top = s;
896 return t;
897 }
898 }
899 return null;
900 }
901
902 /**
903 * Takes a task in FIFO order if b is base of queue and a task
904 * can be claimed without contention. Specialized versions
905 * appear in ForkJoinPool methods scan and helpStealer.
906 */
907 final ForkJoinTask<?> pollAt(int b) {
908 ForkJoinTask<?>[] a; int al;
909 if ((a = array) != null && (al = a.length) > 0) {
910 int index = (al - 1) & b;
911 long offset = ((long)index << ASHIFT) + ABASE;
912 ForkJoinTask<?> t = (ForkJoinTask<?>)
913 U.getObjectVolatile(a, offset);
914 if (t != null && b++ == base &&
915 U.compareAndSwapObject(a, offset, t, null)) {
916 base = b;
917 return t;
918 }
919 }
920 return null;
921 }
922
923 /**
924 * Takes next task, if one exists, in FIFO order.
925 */
926 final ForkJoinTask<?> poll() {
927 for (;;) {
928 int b = base, s = top, d, al; ForkJoinTask<?>[] a;
929 if ((a = array) != null && (d = b - s) < 0 &&
930 (al = a.length) > 0) {
931 int index = (al - 1) & b;
932 long offset = ((long)index << ASHIFT) + ABASE;
933 ForkJoinTask<?> t = (ForkJoinTask<?>)
934 U.getObjectVolatile(a, offset);
935 if (b++ == base) {
936 if (t != null) {
937 if (U.compareAndSwapObject(a, offset, t, null)) {
938 base = b;
939 return t;
940 }
941 }
942 else if (d == -1)
943 break; // now empty
944 }
945 }
946 else
947 break;
948 }
949 return null;
950 }
951
952 /**
953 * Takes next task, if one exists, in order specified by mode.
954 */
955 final ForkJoinTask<?> nextLocalTask() {
956 return (config < 0) ? poll() : pop();
957 }
958
959 /**
960 * Returns next task, if one exists, in order specified by mode.
961 */
962 final ForkJoinTask<?> peek() {
963 int b = base, al; ForkJoinTask<?>[] a;
964 return ((a = array) != null && (al = a.length) > 0) ?
965 a[(al - 1) & (config < 0 ? b : top - 1)] : null;
966 }
967
968 /**
969 * Pops the given task only if it is at the current top.
970 */
971 final boolean tryUnpush(ForkJoinTask<?> task) {
972 int b = base, s = top, al; ForkJoinTask<?>[] a;
973 if ((a = array) != null && b != s && (al = a.length) > 0) {
974 int index = (al - 1) & --s;
975 long offset = ((long)index << ASHIFT) + ABASE;
976 if (U.compareAndSwapObject(a, offset, task, null)) {
977 top = s;
978 return true;
979 }
980 }
981 return false;
982 }
983
984 /**
985 * Shared version of push. Fails if already locked.
986 *
987 * @return status: > 0 locked, 0 possibly was empty, < 0 was nonempty
988 */
989 final int sharedPush(ForkJoinTask<?> task) {
990 int stat;
991 if (U.compareAndSwapInt(this, QLOCK, 0, 1)) {
992 int b = base, s = top, al, d; ForkJoinTask<?>[] a;
993 if ((a = array) != null && (al = a.length) > 0 &&
994 al - 1 + (d = b - s) > 0) {
995 a[(al - 1) & s] = task;
996 top = s + 1; // relaxed writes OK here
997 qlock = 0;
998 stat = (d < 0 && b == base) ? d : 0;
999 }
1000 else {
1001 growAndSharedPush(task);
1002 stat = 0;
1003 }
1004 }
1005 else
1006 stat = 1;
1007 return stat;
1008 }
1009
1010 /*
1011 * Helper for sharedPush; called only when locked and resize
1012 * needed.
1013 */
1014 private void growAndSharedPush(ForkJoinTask<?> task) {
1015 try {
1016 growArray();
1017 int s = top, al; ForkJoinTask<?>[] a;
1018 if ((a = array) != null && (al = a.length) > 0) {
1019 a[(al - 1) & s] = task;
1020 top = s + 1;
1021 }
1022 } finally {
1023 qlock = 0;
1024 }
1025 }
1026
1027 /**
1028 * Shared version of pop.
1029 */
1030 final boolean trySharedUnpush(ForkJoinTask<?> task) {
1031 boolean popped = false;
1032 int s = top - 1, al; ForkJoinTask<?>[] a;
1033 if ((a = array) != null && (al = a.length) > 0) {
1034 int index = (al - 1) & s;
1035 long offset = ((long)index << ASHIFT) + ABASE;
1036 ForkJoinTask<?> t = (ForkJoinTask<?>) U.getObject(a, offset);
1037 if (t == task &&
1038 U.compareAndSwapInt(this, QLOCK, 0, 1)) {
1039 if (U.compareAndSwapObject(a, offset, task, null)) {
1040 popped = true;
1041 top = s;
1042 }
1043 U.putOrderedInt(this, QLOCK, 0);
1044 }
1045 }
1046 return popped;
1047 }
1048
1049 /**
1050 * Removes and cancels all known tasks, ignoring any exceptions.
1051 */
1052 final void cancelAll() {
1053 ForkJoinTask<?> t;
1054 if ((t = currentJoin) != null) {
1055 currentJoin = null;
1056 ForkJoinTask.cancelIgnoringExceptions(t);
1057 }
1058 if ((t = currentSteal) != null) {
1059 currentSteal = null;
1060 ForkJoinTask.cancelIgnoringExceptions(t);
1061 }
1062 while ((t = poll()) != null)
1063 ForkJoinTask.cancelIgnoringExceptions(t);
1064 }
1065
1066 // Specialized execution methods
1067
1068 /**
1069 * Pops and executes up to POLL_LIMIT tasks or until empty.
1070 */
1071 final void localPopAndExec() {
1072 for (int nexec = 0;;) {
1073 int b = base, s = top, al; ForkJoinTask<?>[] a;
1074 if ((a = array) != null && b != s && (al = a.length) > 0) {
1075 int index = (al - 1) & --s;
1076 long offset = ((long)index << ASHIFT) + ABASE;
1077 ForkJoinTask<?> t = (ForkJoinTask<?>)
1078 U.getAndSetObject(a, offset, null);
1079 if (t != null) {
1080 top = s;
1081 (currentSteal = t).doExec();
1082 if (++nexec > POLL_LIMIT)
1083 break;
1084 }
1085 else
1086 break;
1087 }
1088 else
1089 break;
1090 }
1091 }
1092
1093 /**
1094 * Polls and executes up to POLL_LIMIT tasks or until empty.
1095 */
1096 final void localPollAndExec() {
1097 for (int nexec = 0;;) {
1098 int b = base, s = top, al; ForkJoinTask<?>[] a;
1099 if ((a = array) != null && b != s && (al = a.length) > 0) {
1100 int index = (al - 1) & b++;
1101 long offset = ((long)index << ASHIFT) + ABASE;
1102 ForkJoinTask<?> t = (ForkJoinTask<?>)
1103 U.getAndSetObject(a, offset, null);
1104 if (t != null) {
1105 base = b;
1106 t.doExec();
1107 if (++nexec > POLL_LIMIT)
1108 break;
1109 }
1110 }
1111 else
1112 break;
1113 }
1114 }
1115
1116 /**
1117 * Executes the given task and (some) remaining local tasks.
1118 */
1119 final void runTask(ForkJoinTask<?> task) {
1120 if (task != null) {
1121 task.doExec();
1122 if (config < 0)
1123 localPollAndExec();
1124 else
1125 localPopAndExec();
1126 int ns = ++nsteals;
1127 ForkJoinWorkerThread thread = owner;
1128 currentSteal = null;
1129 if (ns < 0) // collect on overflow
1130 transferStealCount(pool);
1131 if (thread != null)
1132 thread.afterTopLevelExec();
1133 }
1134 }
1135
1136 /**
1137 * Adds steal count to pool steal count if it exists, and resets.
1138 */
1139 final void transferStealCount(ForkJoinPool p) {
1140 AuxState aux;
1141 if (p != null && (aux = p.auxState) != null) {
1142 int s = nsteals;
1143 nsteals = 0; // if negative, correct for overflow
1144 long inc = (long)(s < 0 ? Integer.MAX_VALUE : s);
1145 aux.lock();
1146 try {
1147 aux.stealCount += inc;
1148 } finally {
1149 aux.unlock();
1150 }
1151 }
1152 }
1153
1154 /**
1155 * If present, removes from queue and executes the given task,
1156 * or any other cancelled task. Used only by awaitJoin.
1157 *
1158 * @return true if queue empty and task not known to be done
1159 */
1160 final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
1161 if (task != null && task.status >= 0) {
1162 int b, s, d, al; ForkJoinTask<?>[] a;
1163 while ((d = (b = base) - (s = top)) < 0 &&
1164 (a = array) != null && (al = a.length) > 0) {
1165 for (;;) { // traverse from s to b
1166 int index = --s & (al - 1);
1167 long offset = (index << ASHIFT) + ABASE;
1168 ForkJoinTask<?> t = (ForkJoinTask<?>)
1169 U.getObjectVolatile(a, offset);
1170 if (t == null)
1171 break; // restart
1172 else if (t == task) {
1173 boolean removed = false;
1174 if (s + 1 == top) { // pop
1175 if (U.compareAndSwapObject(a, offset, t, null)) {
1176 top = s;
1177 removed = true;
1178 }
1179 }
1180 else if (base == b) // replace with proxy
1181 removed = U.compareAndSwapObject(a, offset, t,
1182 new EmptyTask());
1183 if (removed) {
1184 ForkJoinTask<?> ps = currentSteal;
1185 (currentSteal = task).doExec();
1186 currentSteal = ps;
1187 }
1188 break;
1189 }
1190 else if (t.status < 0 && s + 1 == top) {
1191 if (U.compareAndSwapObject(a, offset, t, null)) {
1192 top = s;
1193 }
1194 break; // was cancelled
1195 }
1196 else if (++d == 0) {
1197 if (base != b) // rescan
1198 break;
1199 return false;
1200 }
1201 }
1202 if (task.status < 0)
1203 return false;
1204 }
1205 }
1206 return true;
1207 }
1208
1209 /**
1210 * Pops task if in the same CC computation as the given task,
1211 * in either shared or owned mode. Used only by helpComplete.
1212 */
1213 final CountedCompleter<?> popCC(CountedCompleter<?> task, int mode) {
1214 int b = base, s = top, al; ForkJoinTask<?>[] a;
1215 if ((a = array) != null && b != s && (al = a.length) > 0) {
1216 int index = (al - 1) & (s - 1);
1217 long offset = ((long)index << ASHIFT) + ABASE;
1218 ForkJoinTask<?> o = (ForkJoinTask<?>)
1219 U.getObjectVolatile(a, offset);
1220 if (o instanceof CountedCompleter) {
1221 CountedCompleter<?> t = (CountedCompleter<?>)o;
1222 for (CountedCompleter<?> r = t;;) {
1223 if (r == task) {
1224 if ((mode & IS_OWNED) == 0) {
1225 boolean popped;
1226 if (U.compareAndSwapInt(this, QLOCK, 0, 1)) {
1227 if (popped =
1228 U.compareAndSwapObject(a, offset,
1229 t, null))
1230 top = s - 1;
1231 U.putOrderedInt(this, QLOCK, 0);
1232 if (popped)
1233 return t;
1234 }
1235 }
1236 else if (U.compareAndSwapObject(a, offset,
1237 t, null)) {
1238 top = s - 1;
1239 return t;
1240 }
1241 break;
1242 }
1243 else if ((r = r.completer) == null) // try parent
1244 break;
1245 }
1246 }
1247 }
1248 return null;
1249 }
1250
1251 /**
1252 * Steals and runs a task in the same CC computation as the
1253 * given task if one exists and can be taken without
1254 * contention. Otherwise returns a checksum/control value for
1255 * use by method helpComplete.
1256 *
1257 * @return 1 if successful, 2 if retryable (lost to another
1258 * stealer), -1 if non-empty but no matching task found, else
1259 * the base index, forced negative.
1260 */
1261 final int pollAndExecCC(CountedCompleter<?> task) {
1262 ForkJoinTask<?>[] a;
1263 int b = base, s = top, al, h;
1264 if ((a = array) != null && b != s && (al = a.length) > 0) {
1265 int index = (al - 1) & b;
1266 long offset = ((long)index << ASHIFT) + ABASE;
1267 ForkJoinTask<?> o = (ForkJoinTask<?>)
1268 U.getObjectVolatile(a, offset);
1269 if (o == null)
1270 h = 2; // retryable
1271 else if (!(o instanceof CountedCompleter))
1272 h = -1; // unmatchable
1273 else {
1274 CountedCompleter<?> t = (CountedCompleter<?>)o;
1275 for (CountedCompleter<?> r = t;;) {
1276 if (r == task) {
1277 if (b++ == base &&
1278 U.compareAndSwapObject(a, offset, t, null)) {
1279 base = b;
1280 t.doExec();
1281 h = 1; // success
1282 }
1283 else
1284 h = 2; // lost CAS
1285 break;
1286 }
1287 else if ((r = r.completer) == null) {
1288 h = -1; // unmatched
1289 break;
1290 }
1291 }
1292 }
1293 }
1294 else
1295 h = b | Integer.MIN_VALUE; // to sense movement on re-poll
1296 return h;
1297 }
1298
1299 /**
1300 * Returns true if owned and not known to be blocked.
1301 */
1302 final boolean isApparentlyUnblocked() {
1303 Thread wt; Thread.State s;
1304 return (scanState >= 0 &&
1305 (wt = owner) != null &&
1306 (s = wt.getState()) != Thread.State.BLOCKED &&
1307 s != Thread.State.WAITING &&
1308 s != Thread.State.TIMED_WAITING);
1309 }
1310
1311 // Unsafe mechanics. Note that some are (and must be) the same as in FJP
1312 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
1313 private static final int ABASE;
1314 private static final int ASHIFT;
1315 private static final long QLOCK;
1316 static {
1317 try {
1318 QLOCK = U.objectFieldOffset
1319 (WorkQueue.class.getDeclaredField("qlock"));
1320 ABASE = U.arrayBaseOffset(ForkJoinTask[].class);
1321 int scale = U.arrayIndexScale(ForkJoinTask[].class);
1322 if ((scale & (scale - 1)) != 0)
1323 throw new Error("array index scale not a power of two");
1324 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1325 } catch (ReflectiveOperationException e) {
1326 throw new Error(e);
1327 }
1328 }
1329 }
1330
1331 // static fields (initialized in static initializer below)
1332
1333 /**
1334 * Creates a new ForkJoinWorkerThread. This factory is used unless
1335 * overridden in ForkJoinPool constructors.
1336 */
1337 public static final ForkJoinWorkerThreadFactory
1338 defaultForkJoinWorkerThreadFactory;
1339
1340 /**
1341 * Permission required for callers of methods that may start or
1342 * kill threads. Also used as a static lock in tryInitialize.
1343 */
1344 static final RuntimePermission modifyThreadPermission;
1345
1346 /**
1347 * Common (static) pool. Non-null for public use unless a static
1348 * construction exception, but internal usages null-check on use
1349 * to paranoically avoid potential initialization circularities
1350 * as well as to simplify generated code.
1351 */
1352 static final ForkJoinPool common;
1353
1354 /**
1355 * Common pool parallelism. To allow simpler use and management
1356 * when common pool threads are disabled, we allow the underlying
1357 * common.parallelism field to be zero, but in that case still report
1358 * parallelism as 1 to reflect resulting caller-runs mechanics.
1359 */
1360 static final int COMMON_PARALLELISM;
1361
1362 /**
1363 * Limit on spare thread construction in tryCompensate.
1364 */
1365 private static final int COMMON_MAX_SPARES;
1366
1367 /**
1368 * Sequence number for creating workerNamePrefix.
1369 */
1370 private static int poolNumberSequence;
1371
1372 /**
1373 * Returns the next sequence number. We don't expect this to
1374 * ever contend, so use simple builtin sync.
1375 */
1376 private static final synchronized int nextPoolId() {
1377 return ++poolNumberSequence;
1378 }
1379
1380 // static configuration constants
1381
1382 /**
1383 * Initial timeout value (in milliseconds) for the thread
1384 * triggering quiescence to park waiting for new work. On timeout,
1385 * the thread will instead try to shrink the number of workers.
1386 * The value should be large enough to avoid overly aggressive
1387 * shrinkage during most transient stalls (long GCs etc).
1388 */
1389 private static final long IDLE_TIMEOUT_MS = 2000L; // 2sec
1390
1391 /**
1392 * Tolerance for idle timeouts, to cope with timer undershoots.
1393 */
1394 private static final long TIMEOUT_SLOP_MS = 20L; // 20ms
1395
1396 /**
1397 * The default value for COMMON_MAX_SPARES. Overridable using the
1398 * "java.util.concurrent.ForkJoinPool.common.maximumSpares" system
1399 * property. The default value is far in excess of normal
1400 * requirements, but also far short of MAX_CAP and typical OS
1401 * thread limits, so allows JVMs to catch misuse/abuse before
1402 * running out of resources needed to do so.
1403 */
1404 private static final int DEFAULT_COMMON_MAX_SPARES = 256;
1405
1406 /**
1407 * Increment for seed generators. See class ThreadLocal for
1408 * explanation.
1409 */
1410 private static final int SEED_INCREMENT = 0x9e3779b9;
1411
1412 /*
1413 * Bits and masks for field ctl, packed with 4 16 bit subfields:
1414 * AC: Number of active running workers minus target parallelism
1415 * TC: Number of total workers minus target parallelism
1416 * SS: version count and status of top waiting thread
1417 * ID: poolIndex of top of Treiber stack of waiters
1418 *
1419 * When convenient, we can extract the lower 32 stack top bits
1420 * (including version bits) as sp=(int)ctl. The offsets of counts
1421 * by the target parallelism and the positionings of fields makes
1422 * it possible to perform the most common checks via sign tests of
1423 * fields: When ac is negative, there are not enough active
1424 * workers, when tc is negative, there are not enough total
1425 * workers. When sp is non-zero, there are waiting workers. To
1426 * deal with possibly negative fields, we use casts in and out of
1427 * "short" and/or signed shifts to maintain signedness.
1428 *
1429 * Because it occupies uppermost bits, we can add one active count
1430 * using getAndAddLong of AC_UNIT, rather than CAS, when returning
1431 * from a blocked join. Other updates entail multiple subfields
1432 * and masking, requiring CAS.
1433 */
1434
1435 // Lower and upper word masks
1436 private static final long SP_MASK = 0xffffffffL;
1437 private static final long UC_MASK = ~SP_MASK;
1438
1439 // Active counts
1440 private static final int AC_SHIFT = 48;
1441 private static final long AC_UNIT = 0x0001L << AC_SHIFT;
1442 private static final long AC_MASK = 0xffffL << AC_SHIFT;
1443
1444 // Total counts
1445 private static final int TC_SHIFT = 32;
1446 private static final long TC_UNIT = 0x0001L << TC_SHIFT;
1447 private static final long TC_MASK = 0xffffL << TC_SHIFT;
1448 private static final long ADD_WORKER = 0x0001L << (TC_SHIFT + 15); // sign
1449
1450 // runState bits: SHUTDOWN must be negative, others arbitrary powers of two
1451 private static final int STARTED = 1;
1452 private static final int STOP = 1 << 1;
1453 private static final int TERMINATED = 1 << 2;
1454 private static final int SHUTDOWN = 1 << 31;
1455
1456 // Instance fields
1457 volatile long ctl; // main pool control
1458 volatile int runState;
1459 final int config; // parallelism, mode
1460 AuxState auxState; // lock, steal counts
1461 volatile WorkQueue[] workQueues; // main registry
1462 final String workerNamePrefix; // to create worker name string
1463 final ForkJoinWorkerThreadFactory factory;
1464 final UncaughtExceptionHandler ueh; // per-worker UEH
1465
1466 /**
1467 * Instantiates fields upon first submission, or upon shutdown if
1468 * no submissions. If checkTermination true, also responds to
1469 * termination by external calls submitting tasks.
1470 */
1471 private void tryInitialize(boolean checkTermination) {
1472 if ((runState & STARTED) == 0) { // bootstrap by locking static field
1473 int rs; // create workQueues array with size a power of two
1474 int p = config & SMASK; // ensure at least 2 slots
1475 int n = (p > 1) ? p - 1 : 1;
1476 n |= n >>> 1;
1477 n |= n >>> 2;
1478 n |= n >>> 4;
1479 n |= n >>> 8;
1480 n |= n >>> 16;
1481 n = ((n + 1) << 1) & SMASK;
1482 AuxState aux = new AuxState();
1483 WorkQueue[] ws = new WorkQueue[n];
1484 synchronized (modifyThreadPermission) { // double-check
1485 if (((rs = runState) & STARTED) == 0) {
1486 rs |= STARTED;
1487 workQueues = ws;
1488 auxState = aux;
1489 runState = rs;
1490 }
1491 }
1492 }
1493 if (checkTermination && runState < 0) {
1494 tryTerminate(false, false); // help terminate
1495 throw new RejectedExecutionException();
1496 }
1497 }
1498
1499 // Creating, registering and deregistering workers
1500
1501 /**
1502 * Tries to construct and start one worker. Assumes that total
1503 * count has already been incremented as a reservation. Invokes
1504 * deregisterWorker on any failure.
1505 *
1506 * @param isSpare true if this is a spare thread
1507 * @return true if successful
1508 */
1509 private boolean createWorker(boolean isSpare) {
1510 ForkJoinWorkerThreadFactory fac = factory;
1511 Throwable ex = null;
1512 ForkJoinWorkerThread wt = null;
1513 WorkQueue q;
1514 try {
1515 if (fac != null && (wt = fac.newThread(this)) != null) {
1516 if (isSpare && (q = wt.workQueue) != null)
1517 q.config |= SPARE_WORKER;
1518 wt.start();
1519 return true;
1520 }
1521 } catch (Throwable rex) {
1522 ex = rex;
1523 }
1524 deregisterWorker(wt, ex);
1525 return false;
1526 }
1527
1528 /**
1529 * Tries to add one worker, incrementing ctl counts before doing
1530 * so, relying on createWorker to back out on failure.
1531 *
1532 * @param c incoming ctl value, with total count negative and no
1533 * idle workers. On CAS failure, c is refreshed and retried if
1534 * this holds (otherwise, a new worker is not needed).
1535 */
1536 private void tryAddWorker(long c) {
1537 do {
1538 long nc = ((AC_MASK & (c + AC_UNIT)) |
1539 (TC_MASK & (c + TC_UNIT)));
1540 if (ctl == c && U.compareAndSwapLong(this, CTL, c, nc)) {
1541 createWorker(false);
1542 break;
1543 }
1544 } while (((c = ctl) & ADD_WORKER) != 0L && (int)c == 0);
1545 }
1546
1547 /**
1548 * Callback from ForkJoinWorkerThread constructor to establish and
1549 * record its WorkQueue.
1550 *
1551 * @param wt the worker thread
1552 * @return the worker's queue
1553 */
1554 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1555 UncaughtExceptionHandler handler;
1556 AuxState aux;
1557 wt.setDaemon(true); // configure thread
1558 if ((handler = ueh) != null)
1559 wt.setUncaughtExceptionHandler(handler);
1560 WorkQueue w = new WorkQueue(this, wt);
1561 int i = 0; // assign a pool index
1562 int mode = config & MODE_MASK;
1563 int rs = runState;
1564 if ((aux = auxState) != null) {
1565 aux.lock();
1566 try {
1567 int s = (int)(aux.indexSeed += SEED_INCREMENT), n, m;
1568 WorkQueue[] ws = workQueues;
1569 if (ws != null && (n = ws.length) > 0) {
1570 i = (m = n - 1) & ((s << 1) | 1); // odd-numbered indices
1571 if (ws[i] != null) { // collision
1572 int probes = 0; // step by approx half n
1573 int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1574 while (ws[i = (i + step) & m] != null) {
1575 if (++probes >= n) {
1576 workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1577 m = n - 1;
1578 probes = 0;
1579 }
1580 }
1581 }
1582 w.hint = s; // use as random seed
1583 w.config = i | mode;
1584 w.scanState = i | (s & 0x7fff0000); // random seq bits
1585 ws[i] = w;
1586 }
1587 } finally {
1588 aux.unlock();
1589 }
1590 }
1591 wt.setName(workerNamePrefix.concat(Integer.toString(i >>> 1)));
1592 return w;
1593 }
1594
1595 /**
1596 * Final callback from terminating worker, as well as upon failure
1597 * to construct or start a worker. Removes record of worker from
1598 * array, and adjusts counts. If pool is shutting down, tries to
1599 * complete termination.
1600 *
1601 * @param wt the worker thread, or null if construction failed
1602 * @param ex the exception causing failure, or null if none
1603 */
1604 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1605 WorkQueue w = null;
1606 int rs = runState;
1607 if (wt != null && (w = wt.workQueue) != null) {
1608 AuxState aux; WorkQueue[] ws; // remove index from array
1609 int idx = w.config & SMASK;
1610 int ns = w.nsteals;
1611 if ((aux = auxState) != null) {
1612 aux.lock();
1613 try {
1614 if ((ws = workQueues) != null && ws.length > idx &&
1615 ws[idx] == w)
1616 ws[idx] = null;
1617 aux.stealCount += ns;
1618 } finally {
1619 aux.unlock();
1620 }
1621 }
1622 }
1623 if (w == null || (w.config & UNREGISTERED) == 0) { // else pre-adjusted
1624 long c; // decrement counts
1625 do {} while (!U.compareAndSwapLong
1626 (this, CTL, c = ctl, ((AC_MASK & (c - AC_UNIT)) |
1627 (TC_MASK & (c - TC_UNIT)) |
1628 (SP_MASK & c))));
1629 }
1630 if (w != null) {
1631 w.currentSteal = null;
1632 w.qlock = -1; // ensure set
1633 w.cancelAll(); // cancel remaining tasks
1634 }
1635 while (tryTerminate(false, false) >= 0) { // possibly replace
1636 WorkQueue[] ws; int wl, sp; long c;
1637 if (w == null || w.array == null ||
1638 (ws = workQueues) == null || (wl = ws.length) <= 0)
1639 break;
1640 else if ((sp = (int)(c = ctl)) != 0) { // wake up replacement
1641 if (tryRelease(c, ws[(wl - 1) & sp], AC_UNIT))
1642 break;
1643 }
1644 else if (ex != null && (c & ADD_WORKER) != 0L) {
1645 tryAddWorker(c); // create replacement
1646 break;
1647 }
1648 else // don't need replacement
1649 break;
1650 }
1651 if (ex == null) // help clean on way out
1652 ForkJoinTask.helpExpungeStaleExceptions();
1653 else // rethrow
1654 ForkJoinTask.rethrow(ex);
1655 }
1656
1657 // Signalling
1658
1659 /**
1660 * Tries to create or activate a worker if too few are active.
1661 */
1662 final void signalWork() {
1663 for (;;) {
1664 long c; int sp, i; WorkQueue v; WorkQueue[] ws;
1665 if ((c = ctl) >= 0L) // enough workers
1666 break;
1667 else if ((sp = (int)c) == 0) { // no idle workers
1668 if ((c & ADD_WORKER) != 0L) // too few workers
1669 tryAddWorker(c);
1670 break;
1671 }
1672 else if ((ws = workQueues) == null)
1673 break; // unstarted/terminated
1674 else if (ws.length <= (i = sp & SMASK))
1675 break; // terminated
1676 else if ((v = ws[i]) == null)
1677 break; // terminating
1678 else {
1679 int ns = sp & ~UNSIGNALLED;
1680 int vs = v.scanState;
1681 long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + AC_UNIT));
1682 if (sp == vs && U.compareAndSwapLong(this, CTL, c, nc)) {
1683 v.scanState = ns;
1684 LockSupport.unpark(v.parker);
1685 break;
1686 }
1687 }
1688 }
1689 }
1690
1691 /**
1692 * Signals and releases worker v if it is top of idle worker
1693 * stack. This performs a one-shot version of signalWork only if
1694 * there is (apparently) at least one idle worker.
1695 *
1696 * @param c incoming ctl value
1697 * @param v if non-null, a worker
1698 * @param inc the increment to active count (zero when compensating)
1699 * @return true if successful
1700 */
1701 private boolean tryRelease(long c, WorkQueue v, long inc) {
1702 int sp = (int)c, ns = sp & ~UNSIGNALLED;
1703 if (v != null) {
1704 int vs = v.scanState;
1705 long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + inc));
1706 if (sp == vs && U.compareAndSwapLong(this, CTL, c, nc)) {
1707 v.scanState = ns;
1708 LockSupport.unpark(v.parker);
1709 return true;
1710 }
1711 }
1712 return false;
1713 }
1714
1715 /**
1716 * With approx probability of a missed signal, tries (once) to
1717 * reactivate worker w (or some other worker), failing if stale or
1718 * known to be already active.
1719 *
1720 * @param w the worker
1721 * @param ws the workQueue array to use
1722 * @param r random seed
1723 */
1724 private void tryReactivate(WorkQueue w, WorkQueue[] ws, int r) {
1725 long c; int sp, wl; WorkQueue v;
1726 if ((sp = (int)(c = ctl)) != 0 && w != null &&
1727 ws != null && (wl = ws.length) > 0 &&
1728 ((sp ^ r) & SS_SEQ) == 0 &&
1729 (v = ws[(wl - 1) & sp]) != null) {
1730 long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + AC_UNIT));
1731 int ns = sp & ~UNSIGNALLED;
1732 if (w.scanState < 0 &&
1733 v.scanState == sp &&
1734 U.compareAndSwapLong(this, CTL, c, nc)) {
1735 v.scanState = ns;
1736 LockSupport.unpark(v.parker);
1737 }
1738 }
1739 }
1740
1741 /**
1742 * If worker w exists and is active, enqueues and sets status to inactive.
1743 *
1744 * @param w the worker
1745 * @param ss current (non-negative) scanState
1746 */
1747 private void inactivate(WorkQueue w, int ss) {
1748 int ns = (ss + SS_SEQ) | UNSIGNALLED;
1749 long lc = ns & SP_MASK, nc, c;
1750 if (w != null) {
1751 w.scanState = ns;
1752 do {
1753 nc = lc | (UC_MASK & ((c = ctl) - AC_UNIT));
1754 w.stackPred = (int)c;
1755 } while (!U.compareAndSwapLong(this, CTL, c, nc));
1756 }
1757 }
1758
1759 /**
1760 * Possibly blocks worker w waiting for signal, or returns
1761 * negative status if the worker should terminate. May return
1762 * without status change if multiple stale unparks and/or
1763 * interrupts occur.
1764 *
1765 * @param w the calling worker
1766 * @return negative if w should terminate
1767 */
1768 private int awaitWork(WorkQueue w) {
1769 int stat = 0;
1770 if (w != null && w.scanState < 0) {
1771 long c = ctl;
1772 if ((int)(c >> AC_SHIFT) + (config & SMASK) <= 0)
1773 stat = timedAwaitWork(w, c); // possibly quiescent
1774 else if ((runState & STOP) != 0)
1775 stat = w.qlock = -1; // pool terminating
1776 else if (w.scanState < 0) {
1777 w.parker = Thread.currentThread();
1778 if (w.scanState < 0) // recheck after write
1779 LockSupport.park(this);
1780 w.parker = null;
1781 if ((runState & STOP) != 0)
1782 stat = w.qlock = -1; // recheck
1783 else if (w.scanState < 0)
1784 Thread.interrupted(); // clear status
1785 }
1786 }
1787 return stat;
1788 }
1789
1790 /**
1791 * Possibly triggers shutdown and tries (once) to block worker
1792 * when pool is (or may be) quiescent. Waits up to a duration
1793 * determined by number of workers. On timeout, if ctl has not
1794 * changed, terminates the worker, which will in turn wake up
1795 * another worker to possibly repeat this process.
1796 *
1797 * @param w the calling worker
1798 * @return negative if w should terminate
1799 */
1800 private int timedAwaitWork(WorkQueue w, long c) {
1801 int stat = 0;
1802 int scale = 1 - (short)(c >>> TC_SHIFT);
1803 long deadline = (((scale <= 0) ? 1 : scale) * IDLE_TIMEOUT_MS +
1804 System.currentTimeMillis());
1805 if ((runState >= 0 || (stat = tryTerminate(false, false)) > 0) &&
1806 w != null && w.scanState < 0) {
1807 int ss; AuxState aux;
1808 w.parker = Thread.currentThread();
1809 if (w.scanState < 0)
1810 LockSupport.parkUntil(this, deadline);
1811 w.parker = null;
1812 if ((runState & STOP) != 0)
1813 stat = w.qlock = -1; // pool terminating
1814 else if ((ss = w.scanState) < 0 && !Thread.interrupted() &&
1815 (int)c == ss && (aux = auxState) != null && ctl == c &&
1816 deadline - System.currentTimeMillis() <= TIMEOUT_SLOP_MS) {
1817 aux.lock();
1818 try { // pre-deregister
1819 WorkQueue[] ws;
1820 int cfg = w.config, idx = cfg & SMASK;
1821 long nc = ((UC_MASK & (c - TC_UNIT)) |
1822 (SP_MASK & w.stackPred));
1823 if ((runState & STOP) == 0 &&
1824 (ws = workQueues) != null &&
1825 idx < ws.length && idx >= 0 && ws[idx] == w &&
1826 U.compareAndSwapLong(this, CTL, c, nc)) {
1827 ws[idx] = null;
1828 w.config = cfg | UNREGISTERED;
1829 stat = w.qlock = -1;
1830 }
1831 } finally {
1832 aux.unlock();
1833 }
1834 }
1835 }
1836 return stat;
1837 }
1838
1839 /**
1840 * If the given worker is a spare with no queued tasks, and there
1841 * are enough existing workers, drops it from ctl counts and sets
1842 * its state to terminated.
1843 *
1844 * @param w the calling worker -- must be a spare
1845 * @return true if dropped (in which case it must not process more tasks)
1846 */
1847 private boolean tryDropSpare(WorkQueue w) {
1848 if (w != null && w.isEmpty()) { // no local tasks
1849 long c; int sp, wl; WorkQueue[] ws; WorkQueue v;
1850 while ((short)((c = ctl) >> TC_SHIFT) > 0 &&
1851 ((sp = (int)c) != 0 || (int)(c >> AC_SHIFT) > 0) &&
1852 (ws = workQueues) != null && (wl = ws.length) > 0) {
1853 boolean dropped, canDrop;
1854 if (sp == 0) { // no queued workers
1855 long nc = ((AC_MASK & (c - AC_UNIT)) |
1856 (TC_MASK & (c - TC_UNIT)) | (SP_MASK & c));
1857 dropped = U.compareAndSwapLong(this, CTL, c, nc);
1858 }
1859 else if (
1860 (v = ws[(wl - 1) & sp]) == null || v.scanState != sp)
1861 dropped = false; // stale; retry
1862 else {
1863 long nc = v.stackPred & SP_MASK;
1864 if (w == v || w.scanState >= 0) {
1865 canDrop = true; // w unqueued or topmost
1866 nc |= ((AC_MASK & c) | // ensure replacement
1867 (TC_MASK & (c - TC_UNIT)));
1868 }
1869 else { // w may be queued
1870 canDrop = false; // help uncover
1871 nc |= ((AC_MASK & (c + AC_UNIT)) |
1872 (TC_MASK & c));
1873 }
1874 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1875 v.scanState = sp & ~UNSIGNALLED;
1876 LockSupport.unpark(v.parker);
1877 dropped = canDrop;
1878 }
1879 else
1880 dropped = false;
1881 }
1882 if (dropped) { // pre-deregister
1883 int cfg = w.config, idx = cfg & SMASK;
1884 if (idx >= 0 && idx < ws.length && ws[idx] == w)
1885 ws[idx] = null;
1886 w.config = cfg | UNREGISTERED;
1887 w.qlock = -1;
1888 return true;
1889 }
1890 }
1891 }
1892 return false;
1893 }
1894
1895 /**
1896 * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1897 */
1898 final void runWorker(WorkQueue w) {
1899 w.growArray(); // allocate queue
1900 int bound = (w.config & SPARE_WORKER) != 0 ? 0 : POLL_LIMIT;
1901 long seed = w.hint * 0xdaba0b6eb09322e3L; // initial random seed
1902 if ((runState & STOP) == 0) {
1903 for (long r = (seed == 0L) ? 1L : seed;;) { // ensure nonzero
1904 if (bound == 0 && tryDropSpare(w))
1905 break;
1906 // high bits of prev seed for step; current low bits for idx
1907 int step = (int)(r >>> 48) | 1;
1908 r ^= r >>> 12; r ^= r << 25; r ^= r >>> 27; // xorshift
1909 if (scan(w, bound, step, (int)r) < 0 && awaitWork(w) < 0)
1910 break;
1911 }
1912 }
1913 }
1914
1915 // Scanning for tasks
1916
1917 /**
1918 * Repeatedly scans for and tries to steal and execute (via
1919 * workQueue.runTask) a queued task. Each scan traverses queues in
1920 * pseudorandom permutation. Upon finding a non-empty queue, makes
1921 * at most the given bound attempts to re-poll (fewer if
1922 * contended) on the same queue before returning (impossible
1923 * scanState value) 0 to restart scan. Else returns after at least
1924 * 1 and at most 32 full scans.
1925 *
1926 * @param w the worker (via its WorkQueue)
1927 * @param bound repoll bound as bitmask (0 if spare)
1928 * @param step (circular) index increment per iteration (must be odd)
1929 * @param r a random seed for origin index
1930 * @return negative if should await signal
1931 */
1932 private int scan(WorkQueue w, int bound, int step, int r) {
1933 int stat = 0, wl; WorkQueue[] ws;
1934 if ((ws = workQueues) != null && w != null && (wl = ws.length) > 0) {
1935 for (int m = wl - 1,
1936 origin = m & r, idx = origin,
1937 npolls = 0,
1938 ss = w.scanState;;) { // negative if inactive
1939 WorkQueue q; ForkJoinTask<?>[] a; int b, al;
1940 if ((q = ws[idx]) != null && (b = q.base) - q.top < 0 &&
1941 (a = q.array) != null && (al = a.length) > 0) {
1942 int index = (al - 1) & b;
1943 long offset = ((long)index << ASHIFT) + ABASE;
1944 ForkJoinTask<?> t = (ForkJoinTask<?>)
1945 U.getObjectVolatile(a, offset);
1946 if (t == null)
1947 break; // empty or busy
1948 else if (b++ != q.base)
1949 break; // busy
1950 else if (ss < 0) {
1951 tryReactivate(w, ws, r);
1952 break; // retry upon rescan
1953 }
1954 else if (!U.compareAndSwapObject(a, offset, t, null))
1955 break; // contended
1956 else {
1957 q.base = b;
1958 w.currentSteal = t;
1959 if (b != q.top) // propagate signal
1960 signalWork();
1961 w.runTask(t);
1962 if (++npolls > bound)
1963 break;
1964 }
1965 }
1966 else if (npolls != 0) // rescan
1967 break;
1968 else if ((idx = (idx + step) & m) == origin) {
1969 if (ss < 0) { // await signal
1970 stat = ss;
1971 break;
1972 }
1973 else if (r >= 0) {
1974 inactivate(w, ss);
1975 break;
1976 }
1977 else
1978 r <<= 1; // at most 31 rescans
1979 }
1980 }
1981 }
1982 return stat;
1983 }
1984
1985 // Joining tasks
1986
1987 /**
1988 * Tries to steal and run tasks within the target's computation.
1989 * Uses a variant of the top-level algorithm, restricted to tasks
1990 * with the given task as ancestor: It prefers taking and running
1991 * eligible tasks popped from the worker's own queue (via
1992 * popCC). Otherwise it scans others, randomly moving on
1993 * contention or execution, deciding to give up based on a
1994 * checksum (via return codes from pollAndExecCC). The maxTasks
1995 * argument supports external usages; internal calls use zero,
1996 * allowing unbounded steps (external calls trap non-positive
1997 * values).
1998 *
1999 * @param w caller
2000 * @param maxTasks if non-zero, the maximum number of other tasks to run
2001 * @return task status on exit
2002 */
2003 final int helpComplete(WorkQueue w, CountedCompleter<?> task,
2004 int maxTasks) {
2005 WorkQueue[] ws; int s = 0, wl;
2006 if ((ws = workQueues) != null && (wl = ws.length) > 1 &&
2007 task != null && w != null) {
2008 for (int m = wl - 1,
2009 mode = w.config,
2010 r = ~mode, // scanning seed
2011 origin = r & m, k = origin, // first queue to scan
2012 step = 3, // first scan step
2013 h = 1, // 1:ran, >1:contended, <0:hash
2014 oldSum = 0, checkSum = 0;;) {
2015 CountedCompleter<?> p; WorkQueue q; int i;
2016 if ((s = task.status) < 0)
2017 break;
2018 if (h == 1 && (p = w.popCC(task, mode)) != null) {
2019 p.doExec(); // run local task
2020 if (maxTasks != 0 && --maxTasks == 0)
2021 break;
2022 origin = k; // reset
2023 oldSum = checkSum = 0;
2024 }
2025 else { // poll other worker queues
2026 if ((i = k | 1) < 0 || i > m || (q = ws[i]) == null)
2027 h = 0;
2028 else if ((h = q.pollAndExecCC(task)) < 0)
2029 checkSum += h;
2030 if (h > 0) {
2031 if (h == 1 && maxTasks != 0 && --maxTasks == 0)
2032 break;
2033 step = (r >>> 16) | 3;
2034 r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
2035 k = origin = r & m; // move and restart
2036 oldSum = checkSum = 0;
2037 }
2038 else if ((k = (k + step) & m) == origin) {
2039 if (oldSum == (oldSum = checkSum))
2040 break;
2041 checkSum = 0;
2042 }
2043 }
2044 }
2045 }
2046 return s;
2047 }
2048
2049 /**
2050 * Tries to locate and execute tasks for a stealer of the given
2051 * task, or in turn one of its stealers. Traces currentSteal ->
2052 * currentJoin links looking for a thread working on a descendant
2053 * of the given task and with a non-empty queue to steal back and
2054 * execute tasks from. The first call to this method upon a
2055 * waiting join will often entail scanning/search, (which is OK
2056 * because the joiner has nothing better to do), but this method
2057 * leaves hints in workers to speed up subsequent calls.
2058 *
2059 * @param w caller
2060 * @param task the task to join
2061 */
2062 private void helpStealer(WorkQueue w, ForkJoinTask<?> task) {
2063 if (task != null && w != null) {
2064 ForkJoinTask<?> ps = w.currentSteal;
2065 WorkQueue[] ws; int wl, oldSum = 0;
2066 outer: while (w.tryRemoveAndExec(task) && task.status >= 0 &&
2067 (ws = workQueues) != null && (wl = ws.length) > 0) {
2068 ForkJoinTask<?> subtask;
2069 int m = wl - 1, checkSum = 0; // for stability check
2070 WorkQueue j = w, v; // v is subtask stealer
2071 descent: for (subtask = task; subtask.status >= 0; ) {
2072 for (int h = j.hint | 1, k = 0, i;;) {
2073 if ((v = ws[i = (h + (k << 1)) & m]) != null) {
2074 if (v.currentSteal == subtask) {
2075 j.hint = i;
2076 break;
2077 }
2078 checkSum += v.base;
2079 }
2080 if (++k > m) // can't find stealer
2081 break outer;
2082 }
2083
2084 for (;;) { // help v or descend
2085 ForkJoinTask<?>[] a; int b, al;
2086 if (subtask.status < 0) // too late to help
2087 break descent;
2088 checkSum += (b = v.base);
2089 ForkJoinTask<?> next = v.currentJoin;
2090 ForkJoinTask<?> t = null;
2091 if ((a = v.array) != null && (al = a.length) > 0) {
2092 int index = (al - 1) & b;
2093 long offset = ((long)index << ASHIFT) + ABASE;
2094 t = (ForkJoinTask<?>)
2095 U.getObjectVolatile(a, offset);
2096 if (t != null && b++ == v.base) {
2097 if (j.currentJoin != subtask ||
2098 v.currentSteal != subtask ||
2099 subtask.status < 0)
2100 break descent; // stale
2101 if (U.compareAndSwapObject(a, offset, t, null)) {
2102 v.base = b;
2103 w.currentSteal = t;
2104 for (int top = w.top;;) {
2105 t.doExec(); // help
2106 w.currentSteal = ps;
2107 if (task.status < 0)
2108 break outer;
2109 if (w.top == top)
2110 break; // run local tasks
2111 if ((t = w.pop()) == null)
2112 break descent;
2113 w.currentSteal = t;
2114 }
2115 }
2116 }
2117 }
2118 if (t == null && b == v.base && b - v.top >= 0) {
2119 if ((subtask = next) == null) { // try to descend
2120 if (next == v.currentJoin &&
2121 oldSum == (oldSum = checkSum))
2122 break outer;
2123 break descent;
2124 }
2125 j = v;
2126 break;
2127 }
2128 }
2129 }
2130 }
2131 }
2132 }
2133
2134 /**
2135 * Tries to decrement active count (sometimes implicitly) and
2136 * possibly release or create a compensating worker in preparation
2137 * for blocking. Returns false (retryable by caller), on
2138 * contention, detected staleness, instability, or termination.
2139 *
2140 * @param w caller
2141 */
2142 private boolean tryCompensate(WorkQueue w) {
2143 boolean canBlock; int wl;
2144 long c = ctl;
2145 WorkQueue[] ws = workQueues;
2146 int pc = config & SMASK;
2147 int ac = pc + (int)(c >> AC_SHIFT);
2148 int tc = pc + (short)(c >> TC_SHIFT);
2149 if (w == null || w.qlock < 0 || pc == 0 || // terminating or disabled
2150 ws == null || (wl = ws.length) <= 0)
2151 canBlock = false;
2152 else {
2153 int m = wl - 1, sp;
2154 boolean busy = true; // validate ac
2155 for (int i = 0; i <= m; ++i) {
2156 int k; WorkQueue v;
2157 if ((k = (i << 1) | 1) <= m && k >= 0 && (v = ws[k]) != null &&
2158 v.scanState >= 0 && v.currentSteal == null) {
2159 busy = false;
2160 break;
2161 }
2162 }
2163 if (!busy || ctl != c)
2164 canBlock = false; // unstable or stale
2165 else if ((sp = (int)c) != 0) // release idle worker
2166 canBlock = tryRelease(c, ws[m & sp], 0L);
2167 else if (tc >= pc && ac > 1 && w.isEmpty()) {
2168 long nc = ((AC_MASK & (c - AC_UNIT)) |
2169 (~AC_MASK & c)); // uncompensated
2170 canBlock = U.compareAndSwapLong(this, CTL, c, nc);
2171 }
2172 else if (tc >= MAX_CAP ||
2173 (this == common && tc >= pc + COMMON_MAX_SPARES))
2174 throw new RejectedExecutionException(
2175 "Thread limit exceeded replacing blocked worker");
2176 else { // similar to tryAddWorker
2177 boolean isSpare = (tc >= pc);
2178 long nc = (AC_MASK & c) | (TC_MASK & (c + TC_UNIT));
2179 canBlock = (U.compareAndSwapLong(this, CTL, c, nc) &&
2180 createWorker(isSpare)); // throws on exception
2181 }
2182 }
2183 return canBlock;
2184 }
2185
2186 /**
2187 * Helps and/or blocks until the given task is done or timeout.
2188 *
2189 * @param w caller
2190 * @param task the task
2191 * @param deadline for timed waits, if nonzero
2192 * @return task status on exit
2193 */
2194 final int awaitJoin(WorkQueue w, ForkJoinTask<?> task, long deadline) {
2195 int s = 0;
2196 if (w != null) {
2197 ForkJoinTask<?> prevJoin = w.currentJoin;
2198 if (task != null && (s = task.status) >= 0) {
2199 w.currentJoin = task;
2200 CountedCompleter<?> cc = (task instanceof CountedCompleter) ?
2201 (CountedCompleter<?>)task : null;
2202 for (;;) {
2203 if (cc != null)
2204 helpComplete(w, cc, 0);
2205 else
2206 helpStealer(w, task);
2207 if ((s = task.status) < 0)
2208 break;
2209 long ms, ns;
2210 if (deadline == 0L)
2211 ms = 0L;
2212 else if ((ns = deadline - System.nanoTime()) <= 0L)
2213 break;
2214 else if ((ms = TimeUnit.NANOSECONDS.toMillis(ns)) <= 0L)
2215 ms = 1L;
2216 if (tryCompensate(w)) {
2217 task.internalWait(ms);
2218 U.getAndAddLong(this, CTL, AC_UNIT);
2219 }
2220 if ((s = task.status) < 0)
2221 break;
2222 }
2223 w.currentJoin = prevJoin;
2224 }
2225 }
2226 return s;
2227 }
2228
2229 // Specialized scanning
2230
2231 /**
2232 * Returns a (probably) non-empty steal queue, if one is found
2233 * during a scan, else null. This method must be retried by
2234 * caller if, by the time it tries to use the queue, it is empty.
2235 */
2236 private WorkQueue findNonEmptyStealQueue() {
2237 WorkQueue[] ws; int wl; // one-shot version of scan loop
2238 int r = ThreadLocalRandom.nextSecondarySeed();
2239 if ((ws = workQueues) != null && (wl = ws.length) > 0) {
2240 int m = wl - 1, origin = r & m;
2241 for (int k = origin, oldSum = 0, checkSum = 0;;) {
2242 WorkQueue q; int b;
2243 if ((q = ws[k]) != null) {
2244 if ((b = q.base) - q.top < 0)
2245 return q;
2246 checkSum += b;
2247 }
2248 if ((k = (k + 1) & m) == origin) {
2249 if (oldSum == (oldSum = checkSum))
2250 break;
2251 checkSum = 0;
2252 }
2253 }
2254 }
2255 return null;
2256 }
2257
2258 /**
2259 * Runs tasks until {@code isQuiescent()}. We piggyback on
2260 * active count ctl maintenance, but rather than blocking
2261 * when tasks cannot be found, we rescan until all others cannot
2262 * find tasks either.
2263 */
2264 final void helpQuiescePool(WorkQueue w) {
2265 ForkJoinTask<?> ps = w.currentSteal; // save context
2266 int wc = w.config;
2267 for (boolean active = true;;) {
2268 long c; WorkQueue q; ForkJoinTask<?> t;
2269 if (wc >= 0 && (t = w.pop()) != null) { // run locals if LIFO
2270 (w.currentSteal = t).doExec();
2271 w.currentSteal = ps;
2272 }
2273 else if ((q = findNonEmptyStealQueue()) != null) {
2274 if (!active) { // re-establish active count
2275 active = true;
2276 U.getAndAddLong(this, CTL, AC_UNIT);
2277 }
2278 if ((t = q.pollAt(q.base)) != null) {
2279 (w.currentSteal = t).doExec();
2280 w.currentSteal = ps;
2281 if (++w.nsteals < 0)
2282 w.transferStealCount(this);
2283 }
2284 }
2285 else if (active) { // decrement active count without queuing
2286 long nc = (AC_MASK & ((c = ctl) - AC_UNIT)) | (~AC_MASK & c);
2287 if (U.compareAndSwapLong(this, CTL, c, nc))
2288 active = false;
2289 }
2290 else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) <= 0 &&
2291 U.compareAndSwapLong(this, CTL, c, c + AC_UNIT))
2292 break;
2293 }
2294 }
2295
2296 /**
2297 * Gets and removes a local or stolen task for the given worker.
2298 *
2299 * @return a task, if available
2300 */
2301 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2302 for (ForkJoinTask<?> t;;) {
2303 WorkQueue q;
2304 if ((t = w.nextLocalTask()) != null)
2305 return t;
2306 if ((q = findNonEmptyStealQueue()) == null)
2307 return null;
2308 if ((t = q.pollAt(q.base)) != null)
2309 return t;
2310 }
2311 }
2312
2313 /**
2314 * Returns a cheap heuristic guide for task partitioning when
2315 * programmers, frameworks, tools, or languages have little or no
2316 * idea about task granularity. In essence, by offering this
2317 * method, we ask users only about tradeoffs in overhead vs
2318 * expected throughput and its variance, rather than how finely to
2319 * partition tasks.
2320 *
2321 * In a steady state strict (tree-structured) computation, each
2322 * thread makes available for stealing enough tasks for other
2323 * threads to remain active. Inductively, if all threads play by
2324 * the same rules, each thread should make available only a
2325 * constant number of tasks.
2326 *
2327 * The minimum useful constant is just 1. But using a value of 1
2328 * would require immediate replenishment upon each steal to
2329 * maintain enough tasks, which is infeasible. Further,
2330 * partitionings/granularities of offered tasks should minimize
2331 * steal rates, which in general means that threads nearer the top
2332 * of computation tree should generate more than those nearer the
2333 * bottom. In perfect steady state, each thread is at
2334 * approximately the same level of computation tree. However,
2335 * producing extra tasks amortizes the uncertainty of progress and
2336 * diffusion assumptions.
2337 *
2338 * So, users will want to use values larger (but not much larger)
2339 * than 1 to both smooth over transient shortages and hedge
2340 * against uneven progress; as traded off against the cost of
2341 * extra task overhead. We leave the user to pick a threshold
2342 * value to compare with the results of this call to guide
2343 * decisions, but recommend values such as 3.
2344 *
2345 * When all threads are active, it is on average OK to estimate
2346 * surplus strictly locally. In steady-state, if one thread is
2347 * maintaining say 2 surplus tasks, then so are others. So we can
2348 * just use estimated queue length. However, this strategy alone
2349 * leads to serious mis-estimates in some non-steady-state
2350 * conditions (ramp-up, ramp-down, other stalls). We can detect
2351 * many of these by further considering the number of "idle"
2352 * threads, that are known to have zero queued tasks, so
2353 * compensate by a factor of (#idle/#active) threads.
2354 */
2355 static int getSurplusQueuedTaskCount() {
2356 Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2357 if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) {
2358 int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2359 int n = (q = wt.workQueue).top - q.base;
2360 int a = (int)(pool.ctl >> AC_SHIFT) + p;
2361 return n - (a > (p >>>= 1) ? 0 :
2362 a > (p >>>= 1) ? 1 :
2363 a > (p >>>= 1) ? 2 :
2364 a > (p >>>= 1) ? 4 :
2365 8);
2366 }
2367 return 0;
2368 }
2369
2370 // Termination
2371
2372 /**
2373 * Possibly initiates and/or completes termination.
2374 *
2375 * @param now if true, unconditionally terminate, else only
2376 * if no work and no active workers
2377 * @param enable if true, terminate when next possible
2378 * @return -1 : terminating or terminated, 0: retry if internal caller, else 1
2379 */
2380 private int tryTerminate(boolean now, boolean enable) {
2381 AuxState aux;
2382 while ((aux = auxState) == null)
2383 tryInitialize(false); // ensure initialized
2384
2385 if ((runState & SHUTDOWN) == 0) {
2386 if (!enable || this == common)
2387 return 1;
2388 aux.lock();
2389 runState = runState | SHUTDOWN;
2390 aux.unlock();
2391 }
2392
2393 if ((runState & STOP) == 0) {
2394 if (!now) { // check quiescence
2395 for (long oldSum = 0L;;) { // repeat until stable
2396 WorkQueue[] ws; WorkQueue w; int b;
2397 long checkSum = ctl;
2398 if ((int)(checkSum >> AC_SHIFT) + (config & SMASK) > 0)
2399 return 0; // still active workers
2400 if ((ws = workQueues) != null) {
2401 for (int i = 0; i < ws.length; ++i) {
2402 if ((w = ws[i]) != null) {
2403 checkSum += (b = w.base);
2404 if (w.currentSteal != null || b != w.top)
2405 return 0; // retry if internal caller
2406 }
2407 }
2408 }
2409 if (oldSum == (oldSum = checkSum))
2410 break;
2411 }
2412 }
2413 aux.lock();
2414 runState = runState | STOP;
2415 aux.unlock();
2416 }
2417
2418 for (long oldSum = 0L;;) { // repeat until stable
2419 WorkQueue[] ws; WorkQueue w; ForkJoinWorkerThread wt;
2420 long checkSum = ctl;
2421 if ((ws = workQueues) != null) { // help terminate others
2422 for (int i = 0; i < ws.length; ++i) {
2423 if ((w = ws[i]) != null) {
2424 w.cancelAll(); // clear queues
2425 checkSum += w.base;
2426 if (w.qlock >= 0) {
2427 w.qlock = -1; // racy set OK
2428 if ((wt = w.owner) != null) {
2429 try { // unblock join or park
2430 wt.interrupt();
2431 } catch (Throwable ignore) {
2432 }
2433 }
2434 }
2435 }
2436 }
2437 }
2438 if (oldSum == (oldSum = checkSum))
2439 break;
2440 }
2441
2442 if ((short)(ctl >>> TC_SHIFT) + (config & SMASK) <= 0) {
2443 aux.lock();
2444 runState |= TERMINATED;
2445 aux.unlock();
2446 synchronized (this) {
2447 notifyAll(); // for awaitTermination
2448 }
2449 }
2450
2451 return -1;
2452 }
2453
2454 // External operations
2455
2456 /**
2457 * Constructs and tries to install a new external queue,
2458 * failing if the workQueues array already has a queue at
2459 * the given index.
2460 *
2461 * @param index the index of the new queue
2462 */
2463 private void tryCreateExternalQueue(int index) {
2464 AuxState aux;
2465 if ((aux = auxState) != null && index >= 0) {
2466 WorkQueue q = new WorkQueue(this, null);
2467 q.config = index;
2468 q.scanState = ~UNSIGNALLED;
2469 q.qlock = 1; // lock queue
2470 boolean installed = false;
2471 aux.lock();
2472 try { // lock pool to install
2473 WorkQueue[] ws;
2474 if ((ws = workQueues) != null && index < ws.length &&
2475 ws[index] == null) {
2476 ws[index] = q; // else throw away
2477 installed = true;
2478 }
2479 } finally {
2480 aux.unlock();
2481 }
2482 if (installed) {
2483 try {
2484 q.growArray();
2485 } finally {
2486 q.qlock = 0;
2487 }
2488 }
2489 }
2490 }
2491
2492 /**
2493 * Adds the given task to a submission queue at submitter's
2494 * current queue. Also performs secondary initialization upon the
2495 * first submission of the first task to the pool, and detects
2496 * first submission by an external thread and creates a new shared
2497 * queue if the one at index if empty or contended.
2498 *
2499 * @param task the task. Caller must ensure non-null.
2500 */
2501 final void externalPush(ForkJoinTask<?> task) {
2502 int r; // initialize caller's probe
2503 if ((r = ThreadLocalRandom.getProbe()) == 0) {
2504 ThreadLocalRandom.localInit();
2505 r = ThreadLocalRandom.getProbe();
2506 }
2507 for (;;) {
2508 WorkQueue q; int wl, k, stat;
2509 int rs = runState;
2510 WorkQueue[] ws = workQueues;
2511 if (rs <= 0 || ws == null || (wl = ws.length) <= 0)
2512 tryInitialize(true);
2513 else if ((q = ws[k = (wl - 1) & r & SQMASK]) == null)
2514 tryCreateExternalQueue(k);
2515 else if ((stat = q.sharedPush(task)) <= 0) {
2516 if ((runState & STOP) != 0)
2517 tryTerminate(false, false);
2518 else if (stat == 0)
2519 signalWork();
2520 break;
2521 }
2522 else // move if busy
2523 r = ThreadLocalRandom.advanceProbe(r);
2524 }
2525 }
2526
2527 /**
2528 * Pushes a possibly-external submission.
2529 */
2530 private <T> ForkJoinTask<T> externalSubmit(ForkJoinTask<T> task) {
2531 Thread t; ForkJoinWorkerThread w; WorkQueue q;
2532 if (task == null)
2533 throw new NullPointerException();
2534 if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) &&
2535 (w = (ForkJoinWorkerThread)t).pool == this &&
2536 (q = w.workQueue) != null)
2537 q.push(task);
2538 else
2539 externalPush(task);
2540 return task;
2541 }
2542
2543 /**
2544 * Returns common pool queue for an external thread.
2545 */
2546 static WorkQueue commonSubmitterQueue() {
2547 ForkJoinPool p = common;
2548 int r = ThreadLocalRandom.getProbe();
2549 WorkQueue[] ws; int wl;
2550 return (p != null && (ws = p.workQueues) != null &&
2551 (wl = ws.length) > 0) ?
2552 ws[(wl - 1) & r & SQMASK] : null;
2553 }
2554
2555 /**
2556 * Performs tryUnpush for an external submitter.
2557 */
2558 final boolean tryExternalUnpush(ForkJoinTask<?> task) {
2559 int r = ThreadLocalRandom.getProbe();
2560 WorkQueue[] ws; WorkQueue w; int wl;
2561 return ((ws = workQueues) != null &&
2562 (wl = ws.length) > 0 &&
2563 (w = ws[(wl - 1) & r & SQMASK]) != null &&
2564 w.trySharedUnpush(task));
2565 }
2566
2567 /**
2568 * Performs helpComplete for an external submitter.
2569 */
2570 final int externalHelpComplete(CountedCompleter<?> task, int maxTasks) {
2571 WorkQueue[] ws; int wl;
2572 int r = ThreadLocalRandom.getProbe();
2573 return ((ws = workQueues) != null && (wl = ws.length) > 0) ?
2574 helpComplete(ws[(wl - 1) & r & SQMASK], task, maxTasks) : 0;
2575 }
2576
2577 // Exported methods
2578
2579 // Constructors
2580
2581 /**
2582 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2583 * java.lang.Runtime#availableProcessors}, using the {@linkplain
2584 * #defaultForkJoinWorkerThreadFactory default thread factory},
2585 * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2586 *
2587 * @throws SecurityException if a security manager exists and
2588 * the caller is not permitted to modify threads
2589 * because it does not hold {@link
2590 * java.lang.RuntimePermission}{@code ("modifyThread")}
2591 */
2592 public ForkJoinPool() {
2593 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2594 defaultForkJoinWorkerThreadFactory, null, false);
2595 }
2596
2597 /**
2598 * Creates a {@code ForkJoinPool} with the indicated parallelism
2599 * level, the {@linkplain
2600 * #defaultForkJoinWorkerThreadFactory default thread factory},
2601 * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2602 *
2603 * @param parallelism the parallelism level
2604 * @throws IllegalArgumentException if parallelism less than or
2605 * equal to zero, or greater than implementation limit
2606 * @throws SecurityException if a security manager exists and
2607 * the caller is not permitted to modify threads
2608 * because it does not hold {@link
2609 * java.lang.RuntimePermission}{@code ("modifyThread")}
2610 */
2611 public ForkJoinPool(int parallelism) {
2612 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2613 }
2614
2615 /**
2616 * Creates a {@code ForkJoinPool} with the given parameters.
2617 *
2618 * @param parallelism the parallelism level. For default value,
2619 * use {@link java.lang.Runtime#availableProcessors}.
2620 * @param factory the factory for creating new threads. For default value,
2621 * use {@link #defaultForkJoinWorkerThreadFactory}.
2622 * @param handler the handler for internal worker threads that
2623 * terminate due to unrecoverable errors encountered while executing
2624 * tasks. For default value, use {@code null}.
2625 * @param asyncMode if true,
2626 * establishes local first-in-first-out scheduling mode for forked
2627 * tasks that are never joined. This mode may be more appropriate
2628 * than default locally stack-based mode in applications in which
2629 * worker threads only process event-style asynchronous tasks.
2630 * For default value, use {@code false}.
2631 * @throws IllegalArgumentException if parallelism less than or
2632 * equal to zero, or greater than implementation limit
2633 * @throws NullPointerException if the factory is null
2634 * @throws SecurityException if a security manager exists and
2635 * the caller is not permitted to modify threads
2636 * because it does not hold {@link
2637 * java.lang.RuntimePermission}{@code ("modifyThread")}
2638 */
2639 public ForkJoinPool(int parallelism,
2640 ForkJoinWorkerThreadFactory factory,
2641 UncaughtExceptionHandler handler,
2642 boolean asyncMode) {
2643 this(checkParallelism(parallelism),
2644 checkFactory(factory),
2645 handler,
2646 asyncMode ? FIFO_QUEUE : LIFO_QUEUE,
2647 "ForkJoinPool-" + nextPoolId() + "-worker-");
2648 checkPermission();
2649 }
2650
2651 private static int checkParallelism(int parallelism) {
2652 if (parallelism <= 0 || parallelism > MAX_CAP)
2653 throw new IllegalArgumentException();
2654 return parallelism;
2655 }
2656
2657 private static ForkJoinWorkerThreadFactory checkFactory
2658 (ForkJoinWorkerThreadFactory factory) {
2659 if (factory == null)
2660 throw new NullPointerException();
2661 return factory;
2662 }
2663
2664 /**
2665 * Creates a {@code ForkJoinPool} with the given parameters, without
2666 * any security checks or parameter validation. Invoked directly by
2667 * makeCommonPool.
2668 */
2669 private ForkJoinPool(int parallelism,
2670 ForkJoinWorkerThreadFactory factory,
2671 UncaughtExceptionHandler handler,
2672 int mode,
2673 String workerNamePrefix) {
2674 this.workerNamePrefix = workerNamePrefix;
2675 this.factory = factory;
2676 this.ueh = handler;
2677 this.config = (parallelism & SMASK) | mode;
2678 long np = (long)(-parallelism); // offset ctl counts
2679 this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2680 }
2681
2682 /**
2683 * Returns the common pool instance. This pool is statically
2684 * constructed; its run state is unaffected by attempts to {@link
2685 * #shutdown} or {@link #shutdownNow}. However this pool and any
2686 * ongoing processing are automatically terminated upon program
2687 * {@link System#exit}. Any program that relies on asynchronous
2688 * task processing to complete before program termination should
2689 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2690 * before exit.
2691 *
2692 * @return the common pool instance
2693 * @since 1.8
2694 */
2695 public static ForkJoinPool commonPool() {
2696 // assert common != null : "static init error";
2697 return common;
2698 }
2699
2700 // Execution methods
2701
2702 /**
2703 * Performs the given task, returning its result upon completion.
2704 * If the computation encounters an unchecked Exception or Error,
2705 * it is rethrown as the outcome of this invocation. Rethrown
2706 * exceptions behave in the same way as regular exceptions, but,
2707 * when possible, contain stack traces (as displayed for example
2708 * using {@code ex.printStackTrace()}) of both the current thread
2709 * as well as the thread actually encountering the exception;
2710 * minimally only the latter.
2711 *
2712 * @param task the task
2713 * @param <T> the type of the task's result
2714 * @return the task's result
2715 * @throws NullPointerException if the task is null
2716 * @throws RejectedExecutionException if the task cannot be
2717 * scheduled for execution
2718 */
2719 public <T> T invoke(ForkJoinTask<T> task) {
2720 if (task == null)
2721 throw new NullPointerException();
2722 externalSubmit(task);
2723 return task.join();
2724 }
2725
2726 /**
2727 * Arranges for (asynchronous) execution of the given task.
2728 *
2729 * @param task the task
2730 * @throws NullPointerException if the task is null
2731 * @throws RejectedExecutionException if the task cannot be
2732 * scheduled for execution
2733 */
2734 public void execute(ForkJoinTask<?> task) {
2735 externalSubmit(task);
2736 }
2737
2738 // AbstractExecutorService methods
2739
2740 /**
2741 * @throws NullPointerException if the task is null
2742 * @throws RejectedExecutionException if the task cannot be
2743 * scheduled for execution
2744 */
2745 public void execute(Runnable task) {
2746 if (task == null)
2747 throw new NullPointerException();
2748 ForkJoinTask<?> job;
2749 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2750 job = (ForkJoinTask<?>) task;
2751 else
2752 job = new ForkJoinTask.RunnableExecuteAction(task);
2753 externalSubmit(job);
2754 }
2755
2756 /**
2757 * Submits a ForkJoinTask for execution.
2758 *
2759 * @param task the task to submit
2760 * @param <T> the type of the task's result
2761 * @return the task
2762 * @throws NullPointerException if the task is null
2763 * @throws RejectedExecutionException if the task cannot be
2764 * scheduled for execution
2765 */
2766 public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2767 return externalSubmit(task);
2768 }
2769
2770 /**
2771 * @throws NullPointerException if the task is null
2772 * @throws RejectedExecutionException if the task cannot be
2773 * scheduled for execution
2774 */
2775 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2776 return externalSubmit(new ForkJoinTask.AdaptedCallable<T>(task));
2777 }
2778
2779 /**
2780 * @throws NullPointerException if the task is null
2781 * @throws RejectedExecutionException if the task cannot be
2782 * scheduled for execution
2783 */
2784 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2785 return externalSubmit(new ForkJoinTask.AdaptedRunnable<T>(task, result));
2786 }
2787
2788 /**
2789 * @throws NullPointerException if the task is null
2790 * @throws RejectedExecutionException if the task cannot be
2791 * scheduled for execution
2792 */
2793 public ForkJoinTask<?> submit(Runnable task) {
2794 if (task == null)
2795 throw new NullPointerException();
2796 ForkJoinTask<?> job;
2797 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2798 job = (ForkJoinTask<?>) task;
2799 else
2800 job = new ForkJoinTask.AdaptedRunnableAction(task);
2801 return externalSubmit(job);
2802 }
2803
2804 /**
2805 * @throws NullPointerException {@inheritDoc}
2806 * @throws RejectedExecutionException {@inheritDoc}
2807 */
2808 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2809 // In previous versions of this class, this method constructed
2810 // a task to run ForkJoinTask.invokeAll, but now external
2811 // invocation of multiple tasks is at least as efficient.
2812 ArrayList<Future<T>> futures = new ArrayList<>(tasks.size());
2813
2814 try {
2815 for (Callable<T> t : tasks) {
2816 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2817 futures.add(f);
2818 externalSubmit(f);
2819 }
2820 for (int i = 0, size = futures.size(); i < size; i++)
2821 ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2822 return futures;
2823 } catch (Throwable t) {
2824 for (int i = 0, size = futures.size(); i < size; i++)
2825 futures.get(i).cancel(false);
2826 throw t;
2827 }
2828 }
2829
2830 /**
2831 * Returns the factory used for constructing new workers.
2832 *
2833 * @return the factory used for constructing new workers
2834 */
2835 public ForkJoinWorkerThreadFactory getFactory() {
2836 return factory;
2837 }
2838
2839 /**
2840 * Returns the handler for internal worker threads that terminate
2841 * due to unrecoverable errors encountered while executing tasks.
2842 *
2843 * @return the handler, or {@code null} if none
2844 */
2845 public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2846 return ueh;
2847 }
2848
2849 /**
2850 * Returns the targeted parallelism level of this pool.
2851 *
2852 * @return the targeted parallelism level of this pool
2853 */
2854 public int getParallelism() {
2855 int par;
2856 return ((par = config & SMASK) > 0) ? par : 1;
2857 }
2858
2859 /**
2860 * Returns the targeted parallelism level of the common pool.
2861 *
2862 * @return the targeted parallelism level of the common pool
2863 * @since 1.8
2864 */
2865 public static int getCommonPoolParallelism() {
2866 return COMMON_PARALLELISM;
2867 }
2868
2869 /**
2870 * Returns the number of worker threads that have started but not
2871 * yet terminated. The result returned by this method may differ
2872 * from {@link #getParallelism} when threads are created to
2873 * maintain parallelism when others are cooperatively blocked.
2874 *
2875 * @return the number of worker threads
2876 */
2877 public int getPoolSize() {
2878 return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2879 }
2880
2881 /**
2882 * Returns {@code true} if this pool uses local first-in-first-out
2883 * scheduling mode for forked tasks that are never joined.
2884 *
2885 * @return {@code true} if this pool uses async mode
2886 */
2887 public boolean getAsyncMode() {
2888 return (config & FIFO_QUEUE) != 0;
2889 }
2890
2891 /**
2892 * Returns an estimate of the number of worker threads that are
2893 * not blocked waiting to join tasks or for other managed
2894 * synchronization. This method may overestimate the
2895 * number of running threads.
2896 *
2897 * @return the number of worker threads
2898 */
2899 public int getRunningThreadCount() {
2900 int rc = 0;
2901 WorkQueue[] ws; WorkQueue w;
2902 if ((ws = workQueues) != null) {
2903 for (int i = 1; i < ws.length; i += 2) {
2904 if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2905 ++rc;
2906 }
2907 }
2908 return rc;
2909 }
2910
2911 /**
2912 * Returns an estimate of the number of threads that are currently
2913 * stealing or executing tasks. This method may overestimate the
2914 * number of active threads.
2915 *
2916 * @return the number of active threads
2917 */
2918 public int getActiveThreadCount() {
2919 int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2920 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2921 }
2922
2923 /**
2924 * Returns {@code true} if all worker threads are currently idle.
2925 * An idle worker is one that cannot obtain a task to execute
2926 * because none are available to steal from other threads, and
2927 * there are no pending submissions to the pool. This method is
2928 * conservative; it might not return {@code true} immediately upon
2929 * idleness of all threads, but will eventually become true if
2930 * threads remain inactive.
2931 *
2932 * @return {@code true} if all threads are currently idle
2933 */
2934 public boolean isQuiescent() {
2935 return (config & SMASK) + (int)(ctl >> AC_SHIFT) <= 0;
2936 }
2937
2938 /**
2939 * Returns an estimate of the total number of tasks stolen from
2940 * one thread's work queue by another. The reported value
2941 * underestimates the actual total number of steals when the pool
2942 * is not quiescent. This value may be useful for monitoring and
2943 * tuning fork/join programs: in general, steal counts should be
2944 * high enough to keep threads busy, but low enough to avoid
2945 * overhead and contention across threads.
2946 *
2947 * @return the number of steals
2948 */
2949 public long getStealCount() {
2950 AuxState sc = auxState;
2951 long count = (sc == null) ? 0L : sc.stealCount;
2952 WorkQueue[] ws; WorkQueue w;
2953 if ((ws = workQueues) != null) {
2954 for (int i = 1; i < ws.length; i += 2) {
2955 if ((w = ws[i]) != null)
2956 count += w.nsteals;
2957 }
2958 }
2959 return count;
2960 }
2961
2962 /**
2963 * Returns an estimate of the total number of tasks currently held
2964 * in queues by worker threads (but not including tasks submitted
2965 * to the pool that have not begun executing). This value is only
2966 * an approximation, obtained by iterating across all threads in
2967 * the pool. This method may be useful for tuning task
2968 * granularities.
2969 *
2970 * @return the number of queued tasks
2971 */
2972 public long getQueuedTaskCount() {
2973 long count = 0;
2974 WorkQueue[] ws; WorkQueue w;
2975 if ((ws = workQueues) != null) {
2976 for (int i = 1; i < ws.length; i += 2) {
2977 if ((w = ws[i]) != null)
2978 count += w.queueSize();
2979 }
2980 }
2981 return count;
2982 }
2983
2984 /**
2985 * Returns an estimate of the number of tasks submitted to this
2986 * pool that have not yet begun executing. This method may take
2987 * time proportional to the number of submissions.
2988 *
2989 * @return the number of queued submissions
2990 */
2991 public int getQueuedSubmissionCount() {
2992 int count = 0;
2993 WorkQueue[] ws; WorkQueue w;
2994 if ((ws = workQueues) != null) {
2995 for (int i = 0; i < ws.length; i += 2) {
2996 if ((w = ws[i]) != null)
2997 count += w.queueSize();
2998 }
2999 }
3000 return count;
3001 }
3002
3003 /**
3004 * Returns {@code true} if there are any tasks submitted to this
3005 * pool that have not yet begun executing.
3006 *
3007 * @return {@code true} if there are any queued submissions
3008 */
3009 public boolean hasQueuedSubmissions() {
3010 WorkQueue[] ws; WorkQueue w;
3011 if ((ws = workQueues) != null) {
3012 for (int i = 0; i < ws.length; i += 2) {
3013 if ((w = ws[i]) != null && !w.isEmpty())
3014 return true;
3015 }
3016 }
3017 return false;
3018 }
3019
3020 /**
3021 * Removes and returns the next unexecuted submission if one is
3022 * available. This method may be useful in extensions to this
3023 * class that re-assign work in systems with multiple pools.
3024 *
3025 * @return the next submission, or {@code null} if none
3026 */
3027 protected ForkJoinTask<?> pollSubmission() {
3028 WorkQueue[] ws; int wl; WorkQueue w; ForkJoinTask<?> t;
3029 int r = ThreadLocalRandom.nextSecondarySeed();
3030 if ((ws = workQueues) != null && (wl = ws.length) > 0) {
3031 for (int m = wl - 1, i = 0; i < wl; ++i) {
3032 if ((w = ws[(i << 1) & m]) != null && (t = w.poll()) != null)
3033 return t;
3034 }
3035 }
3036 return null;
3037 }
3038
3039 /**
3040 * Removes all available unexecuted submitted and forked tasks
3041 * from scheduling queues and adds them to the given collection,
3042 * without altering their execution status. These may include
3043 * artificially generated or wrapped tasks. This method is
3044 * designed to be invoked only when the pool is known to be
3045 * quiescent. Invocations at other times may not remove all
3046 * tasks. A failure encountered while attempting to add elements
3047 * to collection {@code c} may result in elements being in
3048 * neither, either or both collections when the associated
3049 * exception is thrown. The behavior of this operation is
3050 * undefined if the specified collection is modified while the
3051 * operation is in progress.
3052 *
3053 * @param c the collection to transfer elements into
3054 * @return the number of elements transferred
3055 */
3056 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
3057 int count = 0;
3058 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
3059 if ((ws = workQueues) != null) {
3060 for (int i = 0; i < ws.length; ++i) {
3061 if ((w = ws[i]) != null) {
3062 while ((t = w.poll()) != null) {
3063 c.add(t);
3064 ++count;
3065 }
3066 }
3067 }
3068 }
3069 return count;
3070 }
3071
3072 /**
3073 * Returns a string identifying this pool, as well as its state,
3074 * including indications of run state, parallelism level, and
3075 * worker and task counts.
3076 *
3077 * @return a string identifying this pool, as well as its state
3078 */
3079 public String toString() {
3080 // Use a single pass through workQueues to collect counts
3081 long qt = 0L, qs = 0L; int rc = 0;
3082 AuxState sc = auxState;
3083 long st = (sc == null) ? 0L : sc.stealCount;
3084 long c = ctl;
3085 WorkQueue[] ws; WorkQueue w;
3086 if ((ws = workQueues) != null) {
3087 for (int i = 0; i < ws.length; ++i) {
3088 if ((w = ws[i]) != null) {
3089 int size = w.queueSize();
3090 if ((i & 1) == 0)
3091 qs += size;
3092 else {
3093 qt += size;
3094 st += w.nsteals;
3095 if (w.isApparentlyUnblocked())
3096 ++rc;
3097 }
3098 }
3099 }
3100 }
3101 int pc = (config & SMASK);
3102 int tc = pc + (short)(c >>> TC_SHIFT);
3103 int ac = pc + (int)(c >> AC_SHIFT);
3104 if (ac < 0) // ignore transient negative
3105 ac = 0;
3106 int rs = runState;
3107 String level = ((rs & TERMINATED) != 0 ? "Terminated" :
3108 (rs & STOP) != 0 ? "Terminating" :
3109 (rs & SHUTDOWN) != 0 ? "Shutting down" :
3110 "Running");
3111 return super.toString() +
3112 "[" + level +
3113 ", parallelism = " + pc +
3114 ", size = " + tc +
3115 ", active = " + ac +
3116 ", running = " + rc +
3117 ", steals = " + st +
3118 ", tasks = " + qt +
3119 ", submissions = " + qs +
3120 "]";
3121 }
3122
3123 /**
3124 * Possibly initiates an orderly shutdown in which previously
3125 * submitted tasks are executed, but no new tasks will be
3126 * accepted. Invocation has no effect on execution state if this
3127 * is the {@link #commonPool()}, and no additional effect if
3128 * already shut down. Tasks that are in the process of being
3129 * submitted concurrently during the course of this method may or
3130 * may not be rejected.
3131 *
3132 * @throws SecurityException if a security manager exists and
3133 * the caller is not permitted to modify threads
3134 * because it does not hold {@link
3135 * java.lang.RuntimePermission}{@code ("modifyThread")}
3136 */
3137 public void shutdown() {
3138 checkPermission();
3139 tryTerminate(false, true);
3140 }
3141
3142 /**
3143 * Possibly attempts to cancel and/or stop all tasks, and reject
3144 * all subsequently submitted tasks. Invocation has no effect on
3145 * execution state if this is the {@link #commonPool()}, and no
3146 * additional effect if already shut down. Otherwise, tasks that
3147 * are in the process of being submitted or executed concurrently
3148 * during the course of this method may or may not be
3149 * rejected. This method cancels both existing and unexecuted
3150 * tasks, in order to permit termination in the presence of task
3151 * dependencies. So the method always returns an empty list
3152 * (unlike the case for some other Executors).
3153 *
3154 * @return an empty list
3155 * @throws SecurityException if a security manager exists and
3156 * the caller is not permitted to modify threads
3157 * because it does not hold {@link
3158 * java.lang.RuntimePermission}{@code ("modifyThread")}
3159 */
3160 public List<Runnable> shutdownNow() {
3161 checkPermission();
3162 tryTerminate(true, true);
3163 return Collections.emptyList();
3164 }
3165
3166 /**
3167 * Returns {@code true} if all tasks have completed following shut down.
3168 *
3169 * @return {@code true} if all tasks have completed following shut down
3170 */
3171 public boolean isTerminated() {
3172 return (runState & TERMINATED) != 0;
3173 }
3174
3175 /**
3176 * Returns {@code true} if the process of termination has
3177 * commenced but not yet completed. This method may be useful for
3178 * debugging. A return of {@code true} reported a sufficient
3179 * period after shutdown may indicate that submitted tasks have
3180 * ignored or suppressed interruption, or are waiting for I/O,
3181 * causing this executor not to properly terminate. (See the
3182 * advisory notes for class {@link ForkJoinTask} stating that
3183 * tasks should not normally entail blocking operations. But if
3184 * they do, they must abort them on interrupt.)
3185 *
3186 * @return {@code true} if terminating but not yet terminated
3187 */
3188 public boolean isTerminating() {
3189 int rs = runState;
3190 return (rs & STOP) != 0 && (rs & TERMINATED) == 0;
3191 }
3192
3193 /**
3194 * Returns {@code true} if this pool has been shut down.
3195 *
3196 * @return {@code true} if this pool has been shut down
3197 */
3198 public boolean isShutdown() {
3199 return (runState & SHUTDOWN) != 0;
3200 }
3201
3202 /**
3203 * Blocks until all tasks have completed execution after a
3204 * shutdown request, or the timeout occurs, or the current thread
3205 * is interrupted, whichever happens first. Because the {@link
3206 * #commonPool()} never terminates until program shutdown, when
3207 * applied to the common pool, this method is equivalent to {@link
3208 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
3209 *
3210 * @param timeout the maximum time to wait
3211 * @param unit the time unit of the timeout argument
3212 * @return {@code true} if this executor terminated and
3213 * {@code false} if the timeout elapsed before termination
3214 * @throws InterruptedException if interrupted while waiting
3215 */
3216 public boolean awaitTermination(long timeout, TimeUnit unit)
3217 throws InterruptedException {
3218 if (Thread.interrupted())
3219 throw new InterruptedException();
3220 if (this == common) {
3221 awaitQuiescence(timeout, unit);
3222 return false;
3223 }
3224 long nanos = unit.toNanos(timeout);
3225 if (isTerminated())
3226 return true;
3227 if (nanos <= 0L)
3228 return false;
3229 long deadline = System.nanoTime() + nanos;
3230 synchronized (this) {
3231 for (;;) {
3232 if (isTerminated())
3233 return true;
3234 if (nanos <= 0L)
3235 return false;
3236 long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
3237 wait(millis > 0L ? millis : 1L);
3238 nanos = deadline - System.nanoTime();
3239 }
3240 }
3241 }
3242
3243 /**
3244 * If called by a ForkJoinTask operating in this pool, equivalent
3245 * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3246 * waits and/or attempts to assist performing tasks until this
3247 * pool {@link #isQuiescent} or the indicated timeout elapses.
3248 *
3249 * @param timeout the maximum time to wait
3250 * @param unit the time unit of the timeout argument
3251 * @return {@code true} if quiescent; {@code false} if the
3252 * timeout elapsed.
3253 */
3254 public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3255 long nanos = unit.toNanos(timeout);
3256 ForkJoinWorkerThread wt;
3257 Thread thread = Thread.currentThread();
3258 if ((thread instanceof ForkJoinWorkerThread) &&
3259 (wt = (ForkJoinWorkerThread)thread).pool == this) {
3260 helpQuiescePool(wt.workQueue);
3261 return true;
3262 }
3263 long startTime = System.nanoTime();
3264 WorkQueue[] ws;
3265 int r = 0, wl;
3266 boolean found = true;
3267 while (!isQuiescent() && (ws = workQueues) != null &&
3268 (wl = ws.length) > 0) {
3269 if (!found) {
3270 if ((System.nanoTime() - startTime) > nanos)
3271 return false;
3272 Thread.yield(); // cannot block
3273 }
3274 found = false;
3275 for (int m = wl - 1, j = (m + 1) << 2; j >= 0; --j) {
3276 ForkJoinTask<?> t; WorkQueue q; int b, k;
3277 if ((k = r++ & m) <= m && k >= 0 && (q = ws[k]) != null &&
3278 (b = q.base) - q.top < 0) {
3279 found = true;
3280 if ((t = q.pollAt(b)) != null)
3281 t.doExec();
3282 break;
3283 }
3284 }
3285 }
3286 return true;
3287 }
3288
3289 /**
3290 * Waits and/or attempts to assist performing tasks indefinitely
3291 * until the {@link #commonPool()} {@link #isQuiescent}.
3292 */
3293 static void quiesceCommonPool() {
3294 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3295 }
3296
3297 /**
3298 * Interface for extending managed parallelism for tasks running
3299 * in {@link ForkJoinPool}s.
3300 *
3301 * <p>A {@code ManagedBlocker} provides two methods. Method
3302 * {@link #isReleasable} must return {@code true} if blocking is
3303 * not necessary. Method {@link #block} blocks the current thread
3304 * if necessary (perhaps internally invoking {@code isReleasable}
3305 * before actually blocking). These actions are performed by any
3306 * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
3307 * The unusual methods in this API accommodate synchronizers that
3308 * may, but don't usually, block for long periods. Similarly, they
3309 * allow more efficient internal handling of cases in which
3310 * additional workers may be, but usually are not, needed to
3311 * ensure sufficient parallelism. Toward this end,
3312 * implementations of method {@code isReleasable} must be amenable
3313 * to repeated invocation.
3314 *
3315 * <p>For example, here is a ManagedBlocker based on a
3316 * ReentrantLock:
3317 * <pre> {@code
3318 * class ManagedLocker implements ManagedBlocker {
3319 * final ReentrantLock lock;
3320 * boolean hasLock = false;
3321 * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3322 * public boolean block() {
3323 * if (!hasLock)
3324 * lock.lock();
3325 * return true;
3326 * }
3327 * public boolean isReleasable() {
3328 * return hasLock || (hasLock = lock.tryLock());
3329 * }
3330 * }}</pre>
3331 *
3332 * <p>Here is a class that possibly blocks waiting for an
3333 * item on a given queue:
3334 * <pre> {@code
3335 * class QueueTaker<E> implements ManagedBlocker {
3336 * final BlockingQueue<E> queue;
3337 * volatile E item = null;
3338 * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3339 * public boolean block() throws InterruptedException {
3340 * if (item == null)
3341 * item = queue.take();
3342 * return true;
3343 * }
3344 * public boolean isReleasable() {
3345 * return item != null || (item = queue.poll()) != null;
3346 * }
3347 * public E getItem() { // call after pool.managedBlock completes
3348 * return item;
3349 * }
3350 * }}</pre>
3351 */
3352 public static interface ManagedBlocker {
3353 /**
3354 * Possibly blocks the current thread, for example waiting for
3355 * a lock or condition.
3356 *
3357 * @return {@code true} if no additional blocking is necessary
3358 * (i.e., if isReleasable would return true)
3359 * @throws InterruptedException if interrupted while waiting
3360 * (the method is not required to do so, but is allowed to)
3361 */
3362 boolean block() throws InterruptedException;
3363
3364 /**
3365 * Returns {@code true} if blocking is unnecessary.
3366 * @return {@code true} if blocking is unnecessary
3367 */
3368 boolean isReleasable();
3369 }
3370
3371 /**
3372 * Runs the given possibly blocking task. When {@linkplain
3373 * ForkJoinTask#inForkJoinPool() running in a ForkJoinPool}, this
3374 * method possibly arranges for a spare thread to be activated if
3375 * necessary to ensure sufficient parallelism while the current
3376 * thread is blocked in {@link ManagedBlocker#block blocker.block()}.
3377 *
3378 * <p>This method repeatedly calls {@code blocker.isReleasable()} and
3379 * {@code blocker.block()} until either method returns {@code true}.
3380 * Every call to {@code blocker.block()} is preceded by a call to
3381 * {@code blocker.isReleasable()} that returned {@code false}.
3382 *
3383 * <p>If not running in a ForkJoinPool, this method is
3384 * behaviorally equivalent to
3385 * <pre> {@code
3386 * while (!blocker.isReleasable())
3387 * if (blocker.block())
3388 * break;}</pre>
3389 *
3390 * If running in a ForkJoinPool, the pool may first be expanded to
3391 * ensure sufficient parallelism available during the call to
3392 * {@code blocker.block()}.
3393 *
3394 * @param blocker the blocker task
3395 * @throws InterruptedException if {@code blocker.block()} did so
3396 */
3397 public static void managedBlock(ManagedBlocker blocker)
3398 throws InterruptedException {
3399 ForkJoinPool p;
3400 ForkJoinWorkerThread wt;
3401 Thread t = Thread.currentThread();
3402 if ((t instanceof ForkJoinWorkerThread) &&
3403 (p = (wt = (ForkJoinWorkerThread)t).pool) != null) {
3404 WorkQueue w = wt.workQueue;
3405 while (!blocker.isReleasable()) {
3406 if (p.tryCompensate(w)) {
3407 try {
3408 do {} while (!blocker.isReleasable() &&
3409 !blocker.block());
3410 } finally {
3411 U.getAndAddLong(p, CTL, AC_UNIT);
3412 }
3413 break;
3414 }
3415 }
3416 }
3417 else {
3418 do {} while (!blocker.isReleasable() &&
3419 !blocker.block());
3420 }
3421 }
3422
3423 // AbstractExecutorService overrides. These rely on undocumented
3424 // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3425 // implement RunnableFuture.
3426
3427 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3428 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3429 }
3430
3431 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3432 return new ForkJoinTask.AdaptedCallable<T>(callable);
3433 }
3434
3435 // Unsafe mechanics
3436 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
3437 private static final long CTL;
3438 private static final int ABASE;
3439 private static final int ASHIFT;
3440
3441 static {
3442 try {
3443 CTL = U.objectFieldOffset
3444 (ForkJoinPool.class.getDeclaredField("ctl"));
3445 ABASE = U.arrayBaseOffset(ForkJoinTask[].class);
3446 int scale = U.arrayIndexScale(ForkJoinTask[].class);
3447 if ((scale & (scale - 1)) != 0)
3448 throw new Error("array index scale not a power of two");
3449 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3450 } catch (ReflectiveOperationException e) {
3451 throw new Error(e);
3452 }
3453
3454 // Reduce the risk of rare disastrous classloading in first call to
3455 // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
3456 Class<?> ensureLoaded = LockSupport.class;
3457
3458 int commonMaxSpares = DEFAULT_COMMON_MAX_SPARES;
3459 try {
3460 String p = System.getProperty
3461 ("java.util.concurrent.ForkJoinPool.common.maximumSpares");
3462 if (p != null)
3463 commonMaxSpares = Integer.parseInt(p);
3464 } catch (Exception ignore) {}
3465 COMMON_MAX_SPARES = commonMaxSpares;
3466
3467 defaultForkJoinWorkerThreadFactory =
3468 new DefaultForkJoinWorkerThreadFactory();
3469 modifyThreadPermission = new RuntimePermission("modifyThread");
3470
3471 common = java.security.AccessController.doPrivileged
3472 (new java.security.PrivilegedAction<ForkJoinPool>() {
3473 public ForkJoinPool run() { return makeCommonPool(); }});
3474
3475 // report 1 even if threads disabled
3476 COMMON_PARALLELISM = Math.max(common.config & SMASK, 1);
3477 }
3478
3479 /**
3480 * Creates and returns the common pool, respecting user settings
3481 * specified via system properties.
3482 */
3483 static ForkJoinPool makeCommonPool() {
3484 int parallelism = -1;
3485 ForkJoinWorkerThreadFactory factory = null;
3486 UncaughtExceptionHandler handler = null;
3487 try { // ignore exceptions in accessing/parsing properties
3488 String pp = System.getProperty
3489 ("java.util.concurrent.ForkJoinPool.common.parallelism");
3490 String fp = System.getProperty
3491 ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3492 String hp = System.getProperty
3493 ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3494 if (pp != null)
3495 parallelism = Integer.parseInt(pp);
3496 if (fp != null)
3497 factory = ((ForkJoinWorkerThreadFactory)ClassLoader.
3498 getSystemClassLoader().loadClass(fp).newInstance());
3499 if (hp != null)
3500 handler = ((UncaughtExceptionHandler)ClassLoader.
3501 getSystemClassLoader().loadClass(hp).newInstance());
3502 } catch (Exception ignore) {
3503 }
3504 if (factory == null) {
3505 if (System.getSecurityManager() == null)
3506 factory = defaultForkJoinWorkerThreadFactory;
3507 else // use security-managed default
3508 factory = new InnocuousForkJoinWorkerThreadFactory();
3509 }
3510 if (parallelism < 0 && // default 1 less than #cores
3511 (parallelism = Runtime.getRuntime().availableProcessors() - 1) <= 0)
3512 parallelism = 1;
3513 if (parallelism > MAX_CAP)
3514 parallelism = MAX_CAP;
3515 return new ForkJoinPool(parallelism, factory, handler, LIFO_QUEUE,
3516 "ForkJoinPool.commonPool-worker-");
3517 }
3518
3519 /**
3520 * Factory for innocuous worker threads.
3521 */
3522 private static final class InnocuousForkJoinWorkerThreadFactory
3523 implements ForkJoinWorkerThreadFactory {
3524
3525 /**
3526 * An ACC to restrict permissions for the factory itself.
3527 * The constructed workers have no permissions set.
3528 */
3529 private static final AccessControlContext innocuousAcc;
3530 static {
3531 Permissions innocuousPerms = new Permissions();
3532 innocuousPerms.add(modifyThreadPermission);
3533 innocuousPerms.add(new RuntimePermission(
3534 "enableContextClassLoaderOverride"));
3535 innocuousPerms.add(new RuntimePermission(
3536 "modifyThreadGroup"));
3537 innocuousAcc = new AccessControlContext(new ProtectionDomain[] {
3538 new ProtectionDomain(null, innocuousPerms)
3539 });
3540 }
3541
3542 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
3543 return java.security.AccessController.doPrivileged(
3544 new java.security.PrivilegedAction<ForkJoinWorkerThread>() {
3545 public ForkJoinWorkerThread run() {
3546 return new ForkJoinWorkerThread.
3547 InnocuousForkJoinWorkerThread(pool);
3548 }}, innocuousAcc);
3549 }
3550 }
3551
3552 }