ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.294
Committed: Mon Oct 12 13:34:03 2015 UTC (8 years, 7 months ago) by dl
Branch: MAIN
Changes since 1.293: +45 -52 lines
Log Message:
Simplify runState maintenance

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.lang.Thread.UncaughtExceptionHandler;
10 import java.security.AccessControlContext;
11 import java.security.Permissions;
12 import java.security.ProtectionDomain;
13 import java.util.ArrayList;
14 import java.util.Arrays;
15 import java.util.Collection;
16 import java.util.Collections;
17 import java.util.List;
18 import java.util.concurrent.locks.ReentrantLock;
19 import java.util.concurrent.locks.LockSupport;
20
21 /**
22 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
23 * A {@code ForkJoinPool} provides the entry point for submissions
24 * from non-{@code ForkJoinTask} clients, as well as management and
25 * monitoring operations.
26 *
27 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
28 * ExecutorService} mainly by virtue of employing
29 * <em>work-stealing</em>: all threads in the pool attempt to find and
30 * execute tasks submitted to the pool and/or created by other active
31 * tasks (eventually blocking waiting for work if none exist). This
32 * enables efficient processing when most tasks spawn other subtasks
33 * (as do most {@code ForkJoinTask}s), as well as when many small
34 * tasks are submitted to the pool from external clients. Especially
35 * when setting <em>asyncMode</em> to true in constructors, {@code
36 * ForkJoinPool}s may also be appropriate for use with event-style
37 * tasks that are never joined.
38 *
39 * <p>A static {@link #commonPool()} is available and appropriate for
40 * most applications. The common pool is used by any ForkJoinTask that
41 * is not explicitly submitted to a specified pool. Using the common
42 * pool normally reduces resource usage (its threads are slowly
43 * reclaimed during periods of non-use, and reinstated upon subsequent
44 * use).
45 *
46 * <p>For applications that require separate or custom pools, a {@code
47 * ForkJoinPool} may be constructed with a given target parallelism
48 * level; by default, equal to the number of available processors.
49 * The pool attempts to maintain enough active (or available) threads
50 * by dynamically adding, suspending, or resuming internal worker
51 * threads, even if some tasks are stalled waiting to join others.
52 * However, no such adjustments are guaranteed in the face of blocked
53 * I/O or other unmanaged synchronization. The nested {@link
54 * ManagedBlocker} interface enables extension of the kinds of
55 * synchronization accommodated.
56 *
57 * <p>In addition to execution and lifecycle control methods, this
58 * class provides status check methods (for example
59 * {@link #getStealCount}) that are intended to aid in developing,
60 * tuning, and monitoring fork/join applications. Also, method
61 * {@link #toString} returns indications of pool state in a
62 * convenient form for informal monitoring.
63 *
64 * <p>As is the case with other ExecutorServices, there are three
65 * main task execution methods summarized in the following table.
66 * These are designed to be used primarily by clients not already
67 * engaged in fork/join computations in the current pool. The main
68 * forms of these methods accept instances of {@code ForkJoinTask},
69 * but overloaded forms also allow mixed execution of plain {@code
70 * Runnable}- or {@code Callable}- based activities as well. However,
71 * tasks that are already executing in a pool should normally instead
72 * use the within-computation forms listed in the table unless using
73 * async event-style tasks that are not usually joined, in which case
74 * there is little difference among choice of methods.
75 *
76 * <table BORDER CELLPADDING=3 CELLSPACING=1>
77 * <caption>Summary of task execution methods</caption>
78 * <tr>
79 * <td></td>
80 * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
81 * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
82 * </tr>
83 * <tr>
84 * <td> <b>Arrange async execution</b></td>
85 * <td> {@link #execute(ForkJoinTask)}</td>
86 * <td> {@link ForkJoinTask#fork}</td>
87 * </tr>
88 * <tr>
89 * <td> <b>Await and obtain result</b></td>
90 * <td> {@link #invoke(ForkJoinTask)}</td>
91 * <td> {@link ForkJoinTask#invoke}</td>
92 * </tr>
93 * <tr>
94 * <td> <b>Arrange exec and obtain Future</b></td>
95 * <td> {@link #submit(ForkJoinTask)}</td>
96 * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
97 * </tr>
98 * </table>
99 *
100 * <p>The common pool is by default constructed with default
101 * parameters, but these may be controlled by setting three
102 * {@linkplain System#getProperty system properties}:
103 * <ul>
104 * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
105 * - the parallelism level, a non-negative integer
106 * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
107 * - the class name of a {@link ForkJoinWorkerThreadFactory}
108 * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
109 * - the class name of a {@link UncaughtExceptionHandler}
110 * <li>{@code java.util.concurrent.ForkJoinPool.common.maximumSpares}
111 * - the maximum number of allowed extra threads to maintain target
112 * parallelism (default 256).
113 * </ul>
114 * If a {@link SecurityManager} is present and no factory is
115 * specified, then the default pool uses a factory supplying
116 * threads that have no {@link Permissions} enabled.
117 * The system class loader is used to load these classes.
118 * Upon any error in establishing these settings, default parameters
119 * are used. It is possible to disable or limit the use of threads in
120 * the common pool by setting the parallelism property to zero, and/or
121 * using a factory that may return {@code null}. However doing so may
122 * cause unjoined tasks to never be executed.
123 *
124 * <p><b>Implementation notes</b>: This implementation restricts the
125 * maximum number of running threads to 32767. Attempts to create
126 * pools with greater than the maximum number result in
127 * {@code IllegalArgumentException}.
128 *
129 * <p>This implementation rejects submitted tasks (that is, by throwing
130 * {@link RejectedExecutionException}) only when the pool is shut down
131 * or internal resources have been exhausted.
132 *
133 * @since 1.7
134 * @author Doug Lea
135 */
136 @sun.misc.Contended
137 public class ForkJoinPool extends AbstractExecutorService {
138
139 /*
140 * Implementation Overview
141 *
142 * This class and its nested classes provide the main
143 * functionality and control for a set of worker threads:
144 * Submissions from non-FJ threads enter into submission queues.
145 * Workers take these tasks and typically split them into subtasks
146 * that may be stolen by other workers. Preference rules give
147 * first priority to processing tasks from their own queues (LIFO
148 * or FIFO, depending on mode), then to randomized FIFO steals of
149 * tasks in other queues. This framework began as vehicle for
150 * supporting tree-structured parallelism using work-stealing.
151 * Over time, its scalability advantages led to extensions and
152 * changes to better support more diverse usage contexts. Because
153 * most internal methods and nested classes are interrelated,
154 * their main rationale and descriptions are presented here;
155 * individual methods and nested classes contain only brief
156 * comments about details.
157 *
158 * WorkQueues
159 * ==========
160 *
161 * Most operations occur within work-stealing queues (in nested
162 * class WorkQueue). These are special forms of Deques that
163 * support only three of the four possible end-operations -- push,
164 * pop, and poll (aka steal), under the further constraints that
165 * push and pop are called only from the owning thread (or, as
166 * extended here, under a lock), while poll may be called from
167 * other threads. (If you are unfamiliar with them, you probably
168 * want to read Herlihy and Shavit's book "The Art of
169 * Multiprocessor programming", chapter 16 describing these in
170 * more detail before proceeding.) The main work-stealing queue
171 * design is roughly similar to those in the papers "Dynamic
172 * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
173 * (http://research.sun.com/scalable/pubs/index.html) and
174 * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
175 * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
176 * The main differences ultimately stem from GC requirements that
177 * we null out taken slots as soon as we can, to maintain as small
178 * a footprint as possible even in programs generating huge
179 * numbers of tasks. To accomplish this, we shift the CAS
180 * arbitrating pop vs poll (steal) from being on the indices
181 * ("base" and "top") to the slots themselves.
182 *
183 * Adding tasks then takes the form of a classic array push(task)
184 * in a circular buffer:
185 * q.array[q.top++ % length] = task;
186 *
187 * (The actual code needs to null-check and size-check the array,
188 * uses masking, not mod, for indexing a power-of-two-sized array,
189 * properly fences accesses, and possibly signals waiting workers
190 * to start scanning -- see below.) Both a successful pop and
191 * poll mainly entail a CAS of a slot from non-null to null.
192 *
193 * The pop operation (always performed by owner) is:
194 * if ((the task at top slot is not null) and
195 * (CAS slot to null))
196 * decrement top and return task;
197 *
198 * And the poll operation (usually by a stealer) is
199 * if ((the task at base slot is not null) and
200 * (CAS slot to null))
201 * increment base and return task;
202 *
203 * There are several variants of each of these; for example most
204 * versions of poll pre-screen the CAS by rechecking that the base
205 * has not changed since reading the slot, and most methods only
206 * attempt the CAS if base appears not to be equal to top.
207 *
208 * Memory ordering. See "Correct and Efficient Work-Stealing for
209 * Weak Memory Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
210 * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
211 * analysis of memory ordering requirements in work-stealing
212 * algorithms similar to (but different than) the one used here.
213 * Extracting tasks in array slots via (fully fenced) CAS provides
214 * primary synchronization. The base and top indices imprecisely
215 * guide where to extract from. We do not always require strict
216 * orderings of array and index updates, so sometimes let them be
217 * subject to compiler and processor reorderings. However, the
218 * volatile "base" index also serves as a basis for memory
219 * ordering: Slot accesses are preceded by a read of base,
220 * ensuring happens-before ordering with respect to stealers (so
221 * the slots themselves can be read via plain array reads.) The
222 * only other memory orderings relied on are maintained in the
223 * course of signalling and activation (see below). A check that
224 * base == top indicates (momentary) emptiness, but otherwise may
225 * err on the side of possibly making the queue appear nonempty
226 * when a push, pop, or poll have not fully committed, or making
227 * it appear empty when an update of top has not yet been visibly
228 * written. (Method isEmpty() checks the case of a partially
229 * completed removal of the last element.) Because of this, the
230 * poll operation, considered individually, is not wait-free. One
231 * thief cannot successfully continue until another in-progress
232 * one (or, if previously empty, a push) visibly completes.
233 * However, in the aggregate, we ensure at least probabilistic
234 * non-blockingness. If an attempted steal fails, a scanning
235 * thief chooses a different random victim target to try next. So,
236 * in order for one thief to progress, it suffices for any
237 * in-progress poll or new push on any empty queue to
238 * complete. (This is why we normally use method pollAt and its
239 * variants that try once at the apparent base index, else
240 * consider alternative actions, rather than method poll, which
241 * retries.)
242 *
243 * This approach also enables support of a user mode in which
244 * local task processing is in FIFO, not LIFO order, simply by
245 * using poll rather than pop. This can be useful in
246 * message-passing frameworks in which tasks are never joined.
247 *
248 * WorkQueues are also used in a similar way for tasks submitted
249 * to the pool. We cannot mix these tasks in the same queues used
250 * by workers. Instead, we randomly associate submission queues
251 * with submitting threads, using a form of hashing. The
252 * ThreadLocalRandom probe value serves as a hash code for
253 * choosing existing queues, and may be randomly repositioned upon
254 * contention with other submitters. In essence, submitters act
255 * like workers except that they are restricted to executing local
256 * tasks that they submitted (or in the case of CountedCompleters,
257 * others with the same root task). Insertion of tasks in shared
258 * mode requires a lock but we use only a simple spinlock (using
259 * field qlock), because submitters encountering a busy queue move
260 * on to try or create other queues -- they block only when
261 * creating and registering new queues. Because it is used only as
262 * a spinlock, unlocking requires only a "releasing" store (using
263 * putOrderedInt). The qlock is also used during termination
264 * detection, in which case it is forced to a negative
265 * non-lockable value.
266 *
267 * Management
268 * ==========
269 *
270 * The main throughput advantages of work-stealing stem from
271 * decentralized control -- workers mostly take tasks from
272 * themselves or each other, at rates that can exceed a billion
273 * per second. The pool itself creates, activates (enables
274 * scanning for and running tasks), deactivates, blocks, and
275 * terminates threads, all with minimal central information.
276 * There are only a few properties that we can globally track or
277 * maintain, so we pack them into a small number of variables,
278 * often maintaining atomicity without blocking or locking.
279 * Nearly all essentially atomic control state is held in two
280 * volatile variables that are by far most often read (not
281 * written) as status and consistency checks. (Also, field
282 * "config" holds unchanging configuration state.)
283 *
284 * Field "ctl" contains 64 bits holding information needed to
285 * atomically decide to add, inactivate, enqueue (on an event
286 * queue), dequeue, and/or re-activate workers. To enable this
287 * packing, we restrict maximum parallelism to (1<<15)-1 (which is
288 * far in excess of normal operating range) to allow ids, counts,
289 * and their negations (used for thresholding) to fit into 16bit
290 * subfields.
291 *
292 * Field "runState" holds lifetime status, atomically and
293 * monotonically setting STARTED, SHUTDOWN, STOP, and finally
294 * TERMINATED bits.
295 *
296 * Field "auxState" is a ReentrantLock subclass that also
297 * opportunistically holds some other bookkeeping fields accessed
298 * only when locked. It is mainly used to lock (infrequent)
299 * updates to workQueues. The auxState instance is itself lazily
300 * constructed (see tryInitialize), requiring a double-check-style
301 * bootstrapping use of field runState, and locking a private
302 * static.
303 *
304 * Field "workQueues" holds references to WorkQueues. It is
305 * updated (only during worker creation and termination) under the
306 * lock, but is otherwise concurrently readable, and accessed
307 * directly. We also ensure that reads of the array reference
308 * itself never become too stale (for example, re-reading before
309 * each scan). To simplify index-based operations, the array size
310 * is always a power of two, and all readers must tolerate null
311 * slots. Worker queues are at odd indices. Shared (submission)
312 * queues are at even indices, up to a maximum of 64 slots, to
313 * limit growth even if array needs to expand to add more
314 * workers. Grouping them together in this way simplifies and
315 * speeds up task scanning.
316 *
317 * All worker thread creation is on-demand, triggered by task
318 * submissions, replacement of terminated workers, and/or
319 * compensation for blocked workers. However, all other support
320 * code is set up to work with other policies. To ensure that we
321 * do not hold on to worker references that would prevent GC, all
322 * accesses to workQueues are via indices into the workQueues
323 * array (which is one source of some of the messy code
324 * constructions here). In essence, the workQueues array serves as
325 * a weak reference mechanism. Thus for example the stack top
326 * subfield of ctl stores indices, not references.
327 *
328 * Queuing Idle Workers. Unlike HPC work-stealing frameworks, we
329 * cannot let workers spin indefinitely scanning for tasks when
330 * none can be found immediately, and we cannot start/resume
331 * workers unless there appear to be tasks available. On the
332 * other hand, we must quickly prod them into action when new
333 * tasks are submitted or generated. In many usages, ramp-up time
334 * to activate workers is the main limiting factor in overall
335 * performance, which is compounded at program start-up by JIT
336 * compilation and allocation. So we streamline this as much as
337 * possible.
338 *
339 * The "ctl" field atomically maintains active and total worker
340 * counts as well as a queue to place waiting threads so they can
341 * be located for signalling. Active counts also play the role of
342 * quiescence indicators, so are decremented when workers believe
343 * that there are no more tasks to execute. The "queue" is
344 * actually a form of Treiber stack. A stack is ideal for
345 * activating threads in most-recently used order. This improves
346 * performance and locality, outweighing the disadvantages of
347 * being prone to contention and inability to release a worker
348 * unless it is topmost on stack. We block/unblock workers after
349 * pushing on the idle worker stack (represented by the lower
350 * 32bit subfield of ctl) when they cannot find work. The top
351 * stack state holds the value of the "scanState" field of the
352 * worker: its index and status, plus a version counter that, in
353 * addition to the count subfields (also serving as version
354 * stamps) provide protection against Treiber stack ABA effects.
355 *
356 * Creating workers. To create a worker, we pre-increment total
357 * count (serving as a reservation), and attempt to construct a
358 * ForkJoinWorkerThread via its factory. Upon construction, the
359 * new thread invokes registerWorker, where it constructs a
360 * WorkQueue and is assigned an index in the workQueues array
361 * (expanding the array if necessary). The thread is then started.
362 * Upon any exception across these steps, or null return from
363 * factory, deregisterWorker adjusts counts and records
364 * accordingly. If a null return, the pool continues running with
365 * fewer than the target number workers. If exceptional, the
366 * exception is propagated, generally to some external caller.
367 * Worker index assignment avoids the bias in scanning that would
368 * occur if entries were sequentially packed starting at the front
369 * of the workQueues array. We treat the array as a simple
370 * power-of-two hash table, expanding as needed. The seedIndex
371 * increment ensures no collisions until a resize is needed or a
372 * worker is deregistered and replaced, and thereafter keeps
373 * probability of collision low. We cannot use
374 * ThreadLocalRandom.getProbe() for similar purposes here because
375 * the thread has not started yet, but do so for creating
376 * submission queues for existing external threads (see
377 * externalPush).
378 *
379 * WorkQueue field scanState is used by both workers and the pool
380 * to manage and track whether a worker is UNSIGNALLED (possibly
381 * blocked waiting for a signal). When a worker is inactivated,
382 * its scanState field is set, and is prevented from executing
383 * tasks, even though it must scan once for them to avoid queuing
384 * races. Note that scanState updates lag queue CAS releases so
385 * usage requires care. When queued, the lower 16 bits of
386 * scanState must hold its pool index. So we place the index there
387 * upon initialization (see registerWorker) and otherwise keep it
388 * there or restore it when necessary.
389 *
390 * The ctl field also serves as the basis for memory
391 * synchronization surrounding activation. This uses a more
392 * efficient version of a Dekker-like rule that task producers and
393 * consumers sync with each other by both writing/CASing ctl (even
394 * if to its current value). This would be extremely costly. So
395 * we relax it in several ways: (1) Producers only signal when
396 * their queue is empty. Other workers propagate this signal (in
397 * method scan) when they find tasks. (2) Workers only enqueue
398 * after scanning (see below) and not finding any tasks. (3)
399 * Rather than CASing ctl to its current value in the common case
400 * where no action is required, we reduce write contention by
401 * equivalently prefacing signalWork when called by an external
402 * task producer using a memory access with full-volatile
403 * semantics or a "fullFence". (4) For internal task producers we
404 * rely on the fact that even if no other workers awaken, the
405 * producer itself will eventually see the task and execute it.
406 *
407 * Almost always, too many signals are issued. A task producer
408 * cannot in general tell if some existing worker is in the midst
409 * of finishing one task (or already scanning) and ready to take
410 * another without being signalled. So the producer might instead
411 * activate a different worker that does not find any work, and
412 * then inactivates. This scarcely matters in steady-state
413 * computations involving all workers, but can create contention
414 * and bookkeeping bottlenecks during ramp-up, ramp-down, and small
415 * computations involving only a few workers.
416 *
417 * Scanning. Method scan() performs top-level scanning for tasks.
418 * Each scan traverses (and tries to poll from) each queue in
419 * pseudorandom permutation order by randomly selecting an origin
420 * index and a step value. (The pseudorandom generator need not
421 * have high-quality statistical properties in the long term, but
422 * just within computations; We use 64bit and 32bit Marsaglia
423 * XorShifts, which are cheap and suffice here.) Scanning also
424 * employs contention reduction: When scanning workers fail a CAS
425 * polling for work, they soon restart with a different
426 * pseudorandom scan order (thus likely retrying at different
427 * intervals). This improves throughput when many threads are
428 * trying to take tasks from few queues. Scans do not otherwise
429 * explicitly take into account core affinities, loads, cache
430 * localities, etc, However, they do exploit temporal locality
431 * (which usually approximates these) by preferring to re-poll (up
432 * to POLL_LIMIT times) from the same queue after a successful
433 * poll before trying others. Restricted forms of scanning occur
434 * in methods helpComplete and findNonEmptyStealQueue, and take
435 * similar but simpler forms.
436 *
437 * Deactivation and waiting. Queuing encounters several intrinsic
438 * races; most notably that an inactivating scanning worker can
439 * miss seeing a task produced during a scan. So when a worker
440 * cannot find a task to steal, it inactivates and enqueues, and
441 * then rescans to ensure that it didn't miss one, reactivating
442 * upon seeing one with probability approximately proportional to
443 * probability of a miss. (In most cases, the worker will be
444 * signalled before self-signalling, avoiding cascades of multiple
445 * signals for the same task).
446 *
447 * Workers block (in method awaitWork) using park/unpark;
448 * advertising the need for signallers to unpark by setting their
449 * "parker" fields.
450 *
451 * Trimming workers. To release resources after periods of lack of
452 * use, a worker starting to wait when the pool is quiescent will
453 * time out and terminate (see awaitWork) if the pool has remained
454 * quiescent for period given by IDLE_TIMEOUT_MS, increasing the
455 * period as the number of threads decreases, eventually removing
456 * all workers.
457 *
458 * Shutdown and Termination. A call to shutdownNow invokes
459 * tryTerminate to atomically set a runState bit. The calling
460 * thread, as well as every other worker thereafter terminating,
461 * helps terminate others by setting their (qlock) status,
462 * cancelling their unprocessed tasks, and waking them up, doing
463 * so repeatedly until stable. Calls to non-abrupt shutdown()
464 * preface this by checking whether termination should
465 * commence. This relies primarily on the active count bits of
466 * "ctl" maintaining consensus -- tryTerminate is called from
467 * awaitWork whenever quiescent. However, external submitters do
468 * not take part in this consensus. So, tryTerminate sweeps
469 * through queues (until stable) to ensure lack of in-flight
470 * submissions and workers about to process them before triggering
471 * the "STOP" phase of termination. (Note: there is an intrinsic
472 * conflict if helpQuiescePool is called when shutdown is
473 * enabled. Both wait for quiescence, but tryTerminate is biased
474 * to not trigger until helpQuiescePool completes.)
475 *
476 * Joining Tasks
477 * =============
478 *
479 * Any of several actions may be taken when one worker is waiting
480 * to join a task stolen (or always held) by another. Because we
481 * are multiplexing many tasks on to a pool of workers, we can't
482 * just let them block (as in Thread.join). We also cannot just
483 * reassign the joiner's run-time stack with another and replace
484 * it later, which would be a form of "continuation", that even if
485 * possible is not necessarily a good idea since we may need both
486 * an unblocked task and its continuation to progress. Instead we
487 * combine two tactics:
488 *
489 * Helping: Arranging for the joiner to execute some task that it
490 * would be running if the steal had not occurred.
491 *
492 * Compensating: Unless there are already enough live threads,
493 * method tryCompensate() may create or re-activate a spare
494 * thread to compensate for blocked joiners until they unblock.
495 *
496 * A third form (implemented in tryRemoveAndExec) amounts to
497 * helping a hypothetical compensator: If we can readily tell that
498 * a possible action of a compensator is to steal and execute the
499 * task being joined, the joining thread can do so directly,
500 * without the need for a compensation thread (although at the
501 * expense of larger run-time stacks, but the tradeoff is
502 * typically worthwhile).
503 *
504 * The ManagedBlocker extension API can't use helping so relies
505 * only on compensation in method awaitBlocker.
506 *
507 * The algorithm in helpStealer entails a form of "linear
508 * helping". Each worker records (in field currentSteal) the most
509 * recent task it stole from some other worker (or a submission).
510 * It also records (in field currentJoin) the task it is currently
511 * actively joining. Method helpStealer uses these markers to try
512 * to find a worker to help (i.e., steal back a task from and
513 * execute it) that could hasten completion of the actively joined
514 * task. Thus, the joiner executes a task that would be on its
515 * own local deque had the to-be-joined task not been stolen. This
516 * is a conservative variant of the approach described in Wagner &
517 * Calder "Leapfrogging: a portable technique for implementing
518 * efficient futures" SIGPLAN Notices, 1993
519 * (http://portal.acm.org/citation.cfm?id=155354). It differs in
520 * that: (1) We only maintain dependency links across workers upon
521 * steals, rather than use per-task bookkeeping. This sometimes
522 * requires a linear scan of workQueues array to locate stealers,
523 * but often doesn't because stealers leave hints (that may become
524 * stale/wrong) of where to locate them. It is only a hint
525 * because a worker might have had multiple steals and the hint
526 * records only one of them (usually the most current). Hinting
527 * isolates cost to when it is needed, rather than adding to
528 * per-task overhead. (2) It is "shallow", ignoring nesting and
529 * potentially cyclic mutual steals. (3) It is intentionally
530 * racy: field currentJoin is updated only while actively joining,
531 * which means that we miss links in the chain during long-lived
532 * tasks, GC stalls etc (which is OK since blocking in such cases
533 * is usually a good idea). (4) We bound the number of attempts
534 * to find work using checksums and fall back to suspending the
535 * worker and if necessary replacing it with another.
536 *
537 * Helping actions for CountedCompleters do not require tracking
538 * currentJoins: Method helpComplete takes and executes any task
539 * with the same root as the task being waited on (preferring
540 * local pops to non-local polls). However, this still entails
541 * some traversal of completer chains, so is less efficient than
542 * using CountedCompleters without explicit joins.
543 *
544 * Compensation does not aim to keep exactly the target
545 * parallelism number of unblocked threads running at any given
546 * time. Some previous versions of this class employed immediate
547 * compensations for any blocked join. However, in practice, the
548 * vast majority of blockages are transient byproducts of GC and
549 * other JVM or OS activities that are made worse by replacement.
550 * Currently, compensation is attempted only after validating that
551 * all purportedly active threads are processing tasks by checking
552 * field WorkQueue.scanState, which eliminates most false
553 * positives. Also, compensation is bypassed (tolerating fewer
554 * threads) in the most common case in which it is rarely
555 * beneficial: when a worker with an empty queue (thus no
556 * continuation tasks) blocks on a join and there still remain
557 * enough threads to ensure liveness.
558 *
559 * Spare threads are removed as soon as they notice that the
560 * target parallelism level has been exceeded, in method
561 * tryDropSpare. (Method scan arranges returns for rechecks upon
562 * each probe via the "bound" parameter.)
563 *
564 * The compensation mechanism may be bounded. Bounds for the
565 * commonPool (see COMMON_MAX_SPARES) better enable JVMs to cope
566 * with programming errors and abuse before running out of
567 * resources to do so. In other cases, users may supply factories
568 * that limit thread construction. The effects of bounding in this
569 * pool (like all others) is imprecise. Total worker counts are
570 * decremented when threads deregister, not when they exit and
571 * resources are reclaimed by the JVM and OS. So the number of
572 * simultaneously live threads may transiently exceed bounds.
573 *
574 * Common Pool
575 * ===========
576 *
577 * The static common pool always exists after static
578 * initialization. Since it (or any other created pool) need
579 * never be used, we minimize initial construction overhead and
580 * footprint to the setup of about a dozen fields, with no nested
581 * allocation. Most bootstrapping occurs within method
582 * externalSubmit during the first submission to the pool.
583 *
584 * When external threads submit to the common pool, they can
585 * perform subtask processing (see externalHelpComplete and
586 * related methods) upon joins. This caller-helps policy makes it
587 * sensible to set common pool parallelism level to one (or more)
588 * less than the total number of available cores, or even zero for
589 * pure caller-runs. We do not need to record whether external
590 * submissions are to the common pool -- if not, external help
591 * methods return quickly. These submitters would otherwise be
592 * blocked waiting for completion, so the extra effort (with
593 * liberally sprinkled task status checks) in inapplicable cases
594 * amounts to an odd form of limited spin-wait before blocking in
595 * ForkJoinTask.join.
596 *
597 * As a more appropriate default in managed environments, unless
598 * overridden by system properties, we use workers of subclass
599 * InnocuousForkJoinWorkerThread when there is a SecurityManager
600 * present. These workers have no permissions set, do not belong
601 * to any user-defined ThreadGroup, and erase all ThreadLocals
602 * after executing any top-level task (see WorkQueue.runTask).
603 * The associated mechanics (mainly in ForkJoinWorkerThread) may
604 * be JVM-dependent and must access particular Thread class fields
605 * to achieve this effect.
606 *
607 * Style notes
608 * ===========
609 *
610 * Memory ordering relies mainly on Unsafe intrinsics that carry
611 * the further responsibility of explicitly performing null- and
612 * bounds- checks otherwise carried out implicitly by JVMs. This
613 * can be awkward and ugly, but also reflects the need to control
614 * outcomes across the unusual cases that arise in very racy code
615 * with very few invariants. So these explicit checks would exist
616 * in some form anyway. All fields are read into locals before
617 * use, and null-checked if they are references. This is usually
618 * done in a "C"-like style of listing declarations at the heads
619 * of methods or blocks, and using inline assignments on first
620 * encounter. Array bounds-checks are usually performed by
621 * masking with array.length-1, which relies on the invariant that
622 * these arrays are created with positive lengths, which is itself
623 * paranoically checked. Nearly all explicit checks lead to
624 * bypass/return, not exception throws, because they may
625 * legitimately arise due to cancellation/revocation during
626 * shutdown.
627 *
628 * There is a lot of representation-level coupling among classes
629 * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
630 * fields of WorkQueue maintain data structures managed by
631 * ForkJoinPool, so are directly accessed. There is little point
632 * trying to reduce this, since any associated future changes in
633 * representations will need to be accompanied by algorithmic
634 * changes anyway. Several methods intrinsically sprawl because
635 * they must accumulate sets of consistent reads of fields held in
636 * local variables. There are also other coding oddities
637 * (including several unnecessary-looking hoisted null checks)
638 * that help some methods perform reasonably even when interpreted
639 * (not compiled).
640 *
641 * The order of declarations in this file is (with a few exceptions):
642 * (1) Static utility functions
643 * (2) Nested (static) classes
644 * (3) Static fields
645 * (4) Fields, along with constants used when unpacking some of them
646 * (5) Internal control methods
647 * (6) Callbacks and other support for ForkJoinTask methods
648 * (7) Exported methods
649 * (8) Static block initializing statics in minimally dependent order
650 */
651
652 // Static utilities
653
654 /**
655 * If there is a security manager, makes sure caller has
656 * permission to modify threads.
657 */
658 private static void checkPermission() {
659 SecurityManager security = System.getSecurityManager();
660 if (security != null)
661 security.checkPermission(modifyThreadPermission);
662 }
663
664 // Nested classes
665
666 /**
667 * Factory for creating new {@link ForkJoinWorkerThread}s.
668 * A {@code ForkJoinWorkerThreadFactory} must be defined and used
669 * for {@code ForkJoinWorkerThread} subclasses that extend base
670 * functionality or initialize threads with different contexts.
671 */
672 public static interface ForkJoinWorkerThreadFactory {
673 /**
674 * Returns a new worker thread operating in the given pool.
675 *
676 * @param pool the pool this thread works in
677 * @return the new worker thread
678 * @throws NullPointerException if the pool is null
679 */
680 public ForkJoinWorkerThread newThread(ForkJoinPool pool);
681 }
682
683 /**
684 * Default ForkJoinWorkerThreadFactory implementation; creates a
685 * new ForkJoinWorkerThread.
686 */
687 private static final class DefaultForkJoinWorkerThreadFactory
688 implements ForkJoinWorkerThreadFactory {
689 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
690 return new ForkJoinWorkerThread(pool);
691 }
692 }
693
694 /**
695 * Class for artificial tasks that are used to replace the target
696 * of local joins if they are removed from an interior queue slot
697 * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
698 * actually do anything beyond having a unique identity.
699 */
700 private static final class EmptyTask extends ForkJoinTask<Void> {
701 private static final long serialVersionUID = -7721805057305804111L;
702 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
703 public final Void getRawResult() { return null; }
704 public final void setRawResult(Void x) {}
705 public final boolean exec() { return true; }
706 }
707
708 /**
709 * Additional fields and lock created upon initialization.
710 */
711 private static final class AuxState extends ReentrantLock {
712 private static final long serialVersionUID = -6001602636862214147L;
713 volatile long stealCount; // cumulative steal count
714 long indexSeed; // index bits for registerWorker
715 AuxState() {}
716 }
717
718 // Constants shared across ForkJoinPool and WorkQueue
719
720 // Bounds
721 static final int SMASK = 0xffff; // short bits == max index
722 static final int MAX_CAP = 0x7fff; // max #workers - 1
723 static final int EVENMASK = 0xfffe; // even short bits
724 static final int SQMASK = 0x007e; // max 64 (even) slots
725
726 // Masks and units for WorkQueue.scanState and ctl sp subfield
727 static final int UNSIGNALLED = 1 << 31; // must be negative
728 static final int SS_SEQ = 1 << 16; // version count
729
730 // Mode bits for ForkJoinPool.config and WorkQueue.config
731 static final int MODE_MASK = 0xffff << 16; // top half of int
732 static final int SPARE_WORKER = 1 << 17; // set if tc > 0 on creation
733 static final int UNREGISTERED = 1 << 18; // to skip some of deregister
734 static final int FIFO_QUEUE = 1 << 31; // must be negative
735 static final int LIFO_QUEUE = 0; // for clarity
736 static final int IS_OWNED = 1; // low bit 0 if shared
737
738 /**
739 * The maximum number of task executions from the same queue
740 * before checking other queues, bounding unfairness and impact of
741 * infinite user task recursion. Must be a power of two minus 1.
742 */
743 static final int POLL_LIMIT = (1 << 10) - 1;
744
745 /**
746 * Queues supporting work-stealing as well as external task
747 * submission. See above for descriptions and algorithms.
748 * Performance on most platforms is very sensitive to placement of
749 * instances of both WorkQueues and their arrays -- we absolutely
750 * do not want multiple WorkQueue instances or multiple queue
751 * arrays sharing cache lines. The @Contended annotation alerts
752 * JVMs to try to keep instances apart.
753 */
754 @sun.misc.Contended
755 static final class WorkQueue {
756
757 /**
758 * Capacity of work-stealing queue array upon initialization.
759 * Must be a power of two; at least 4, but should be larger to
760 * reduce or eliminate cacheline sharing among queues.
761 * Currently, it is much larger, as a partial workaround for
762 * the fact that JVMs often place arrays in locations that
763 * share GC bookkeeping (especially cardmarks) such that
764 * per-write accesses encounter serious memory contention.
765 */
766 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
767
768 /**
769 * Maximum size for queue arrays. Must be a power of two less
770 * than or equal to 1 << (31 - width of array entry) to ensure
771 * lack of wraparound of index calculations, but defined to a
772 * value a bit less than this to help users trap runaway
773 * programs before saturating systems.
774 */
775 static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
776
777 // Instance fields
778
779 volatile int scanState; // versioned, negative if inactive
780 int stackPred; // pool stack (ctl) predecessor
781 int nsteals; // number of steals
782 int hint; // randomization and stealer index hint
783 int config; // pool index and mode
784 volatile int qlock; // 1: locked, < 0: terminate; else 0
785 volatile int base; // index of next slot for poll
786 int top; // index of next slot for push
787 ForkJoinTask<?>[] array; // the elements (initially unallocated)
788 final ForkJoinPool pool; // the containing pool (may be null)
789 final ForkJoinWorkerThread owner; // owning thread or null if shared
790 volatile Thread parker; // == owner during call to park; else null
791 volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
792 @sun.misc.Contended("group2") // separate from other fields
793 volatile ForkJoinTask<?> currentSteal; // nonnull when running some task
794
795 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner) {
796 this.pool = pool;
797 this.owner = owner;
798 // Place indices in the center of array (that is not yet allocated)
799 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
800 }
801
802 /**
803 * Returns an exportable index (used by ForkJoinWorkerThread).
804 */
805 final int getPoolIndex() {
806 return (config & 0xffff) >>> 1; // ignore odd/even tag bit
807 }
808
809 /**
810 * Returns the approximate number of tasks in the queue.
811 */
812 final int queueSize() {
813 int n = base - top; // read base first
814 return (n >= 0) ? 0 : -n; // ignore transient negative
815 }
816
817 /**
818 * Provides a more accurate estimate of whether this queue has
819 * any tasks than does queueSize, by checking whether a
820 * near-empty queue has at least one unclaimed task.
821 */
822 final boolean isEmpty() {
823 ForkJoinTask<?>[] a; int n, al, s;
824 return ((n = base - (s = top)) >= 0 || // possibly one task
825 (n == -1 && ((a = array) == null ||
826 (al = a.length) == 0 ||
827 a[(al - 1) & (s - 1)] == null)));
828 }
829
830 /**
831 * Pushes a task. Call only by owner in unshared queues.
832 *
833 * @param task the task. Caller must ensure non-null.
834 * @throws RejectedExecutionException if array cannot be resized
835 */
836 final void push(ForkJoinTask<?> task) {
837 U.storeFence(); // ensure safe publication
838 int s = top, al, d; ForkJoinTask<?>[] a;
839 if ((a = array) != null && (al = a.length) > 0) {
840 a[(al - 1) & s] = task; // relaxed writes OK
841 top = s + 1;
842 ForkJoinPool p = pool;
843 if ((d = base - s) == 0 && p != null) {
844 U.fullFence();
845 p.signalWork();
846 }
847 else if (al + d == 1)
848 growArray();
849 }
850 }
851
852 /**
853 * Initializes or doubles the capacity of array. Call either
854 * by owner or with lock held -- it is OK for base, but not
855 * top, to move while resizings are in progress.
856 */
857 final ForkJoinTask<?>[] growArray() {
858 ForkJoinTask<?>[] oldA = array;
859 int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
860 if (size < INITIAL_QUEUE_CAPACITY || size > MAXIMUM_QUEUE_CAPACITY)
861 throw new RejectedExecutionException("Queue capacity exceeded");
862 int oldMask, t, b;
863 ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
864 if (oldA != null && (oldMask = oldA.length - 1) > 0 &&
865 (t = top) - (b = base) > 0) {
866 int mask = size - 1;
867 do { // emulate poll from old array, push to new array
868 int index = b & oldMask;
869 long offset = ((long)index << ASHIFT) + ABASE;
870 ForkJoinTask<?> x = (ForkJoinTask<?>)
871 U.getObjectVolatile(oldA, offset);
872 if (x != null &&
873 U.compareAndSwapObject(oldA, offset, x, null))
874 a[b & mask] = x;
875 } while (++b != t);
876 U.storeFence();
877 }
878 return a;
879 }
880
881 /**
882 * Takes next task, if one exists, in LIFO order. Call only
883 * by owner in unshared queues.
884 */
885 final ForkJoinTask<?> pop() {
886 int b = base, s = top, al, i; ForkJoinTask<?>[] a;
887 if ((a = array) != null && b != s && (al = a.length) > 0) {
888 int index = (al - 1) & --s;
889 long offset = ((long)index << ASHIFT) + ABASE;
890 ForkJoinTask<?> t = (ForkJoinTask<?>)
891 U.getObject(a, offset);
892 if (t != null &&
893 U.compareAndSwapObject(a, offset, t, null)) {
894 top = s;
895 return t;
896 }
897 }
898 return null;
899 }
900
901 /**
902 * Takes a task in FIFO order if b is base of queue and a task
903 * can be claimed without contention. Specialized versions
904 * appear in ForkJoinPool methods scan and helpStealer.
905 */
906 final ForkJoinTask<?> pollAt(int b) {
907 ForkJoinTask<?>[] a; int al;
908 if ((a = array) != null && (al = a.length) > 0) {
909 int index = (al - 1) & b;
910 long offset = ((long)index << ASHIFT) + ABASE;
911 ForkJoinTask<?> t = (ForkJoinTask<?>)
912 U.getObjectVolatile(a, offset);
913 if (t != null && b++ == base &&
914 U.compareAndSwapObject(a, offset, t, null)) {
915 base = b;
916 return t;
917 }
918 }
919 return null;
920 }
921
922 /**
923 * Takes next task, if one exists, in FIFO order.
924 */
925 final ForkJoinTask<?> poll() {
926 for (;;) {
927 int b = base, s = top, d, al; ForkJoinTask<?>[] a;
928 if ((a = array) != null && (d = b - s) < 0 &&
929 (al = a.length) > 0) {
930 int index = (al - 1) & b;
931 long offset = ((long)index << ASHIFT) + ABASE;
932 ForkJoinTask<?> t = (ForkJoinTask<?>)
933 U.getObjectVolatile(a, offset);
934 if (b++ == base) {
935 if (t != null) {
936 if (U.compareAndSwapObject(a, offset, t, null)) {
937 base = b;
938 return t;
939 }
940 }
941 else if (d == -1)
942 break; // now empty
943 }
944 }
945 else
946 break;
947 }
948 return null;
949 }
950
951 /**
952 * Takes next task, if one exists, in order specified by mode.
953 */
954 final ForkJoinTask<?> nextLocalTask() {
955 return (config < 0) ? poll() : pop();
956 }
957
958 /**
959 * Returns next task, if one exists, in order specified by mode.
960 */
961 final ForkJoinTask<?> peek() {
962 int al; ForkJoinTask<?>[] a;
963 return ((a = array) != null && (al = a.length) > 0) ?
964 a[(al - 1) & (config < 0 ? base : top - 1)] : null;
965 }
966
967 /**
968 * Pops the given task only if it is at the current top.
969 */
970 final boolean tryUnpush(ForkJoinTask<?> task) {
971 int b = base, s = top, al; ForkJoinTask<?>[] a;
972 if ((a = array) != null && b != s && (al = a.length) > 0) {
973 int index = (al - 1) & --s;
974 long offset = ((long)index << ASHIFT) + ABASE;
975 if (U.compareAndSwapObject(a, offset, task, null)) {
976 top = s;
977 return true;
978 }
979 }
980 return false;
981 }
982
983 /**
984 * Shared version of push. Fails if already locked.
985 *
986 * @return status: > 0 locked, 0 possibly was empty, < 0 was nonempty
987 */
988 final int sharedPush(ForkJoinTask<?> task) {
989 int stat;
990 if (U.compareAndSwapInt(this, QLOCK, 0, 1)) {
991 int b = base, s = top, al, d; ForkJoinTask<?>[] a;
992 if ((a = array) != null && (al = a.length) > 0 &&
993 al - 1 + (d = b - s) > 0) {
994 a[(al - 1) & s] = task;
995 top = s + 1; // relaxed writes OK here
996 qlock = 0;
997 stat = (d < 0 && b == base) ? d : 0;
998 }
999 else {
1000 growAndSharedPush(task);
1001 stat = 0;
1002 }
1003 }
1004 else
1005 stat = 1;
1006 return stat;
1007 }
1008
1009 /**
1010 * Helper for sharedPush; called only when locked and resize
1011 * needed.
1012 */
1013 private void growAndSharedPush(ForkJoinTask<?> task) {
1014 try {
1015 growArray();
1016 int s = top, al; ForkJoinTask<?>[] a;
1017 if ((a = array) != null && (al = a.length) > 0) {
1018 a[(al - 1) & s] = task;
1019 top = s + 1;
1020 }
1021 } finally {
1022 qlock = 0;
1023 }
1024 }
1025
1026 /**
1027 * Shared version of pop.
1028 */
1029 final boolean trySharedUnpush(ForkJoinTask<?> task) {
1030 boolean popped = false;
1031 int s = top - 1, al; ForkJoinTask<?>[] a;
1032 if ((a = array) != null && (al = a.length) > 0) {
1033 int index = (al - 1) & s;
1034 long offset = ((long)index << ASHIFT) + ABASE;
1035 ForkJoinTask<?> t = (ForkJoinTask<?>) U.getObject(a, offset);
1036 if (t == task &&
1037 U.compareAndSwapInt(this, QLOCK, 0, 1)) {
1038 if (U.compareAndSwapObject(a, offset, task, null)) {
1039 popped = true;
1040 top = s;
1041 }
1042 U.putOrderedInt(this, QLOCK, 0);
1043 }
1044 }
1045 return popped;
1046 }
1047
1048 /**
1049 * Removes and cancels all known tasks, ignoring any exceptions.
1050 */
1051 final void cancelAll() {
1052 ForkJoinTask<?> t;
1053 if ((t = currentJoin) != null) {
1054 currentJoin = null;
1055 ForkJoinTask.cancelIgnoringExceptions(t);
1056 }
1057 if ((t = currentSteal) != null) {
1058 currentSteal = null;
1059 ForkJoinTask.cancelIgnoringExceptions(t);
1060 }
1061 while ((t = poll()) != null)
1062 ForkJoinTask.cancelIgnoringExceptions(t);
1063 }
1064
1065 // Specialized execution methods
1066
1067 /**
1068 * Pops and executes up to POLL_LIMIT tasks or until empty.
1069 */
1070 final void localPopAndExec() {
1071 for (int nexec = 0;;) {
1072 int b = base, s = top, al; ForkJoinTask<?>[] a;
1073 if ((a = array) != null && b != s && (al = a.length) > 0) {
1074 int index = (al - 1) & --s;
1075 long offset = ((long)index << ASHIFT) + ABASE;
1076 ForkJoinTask<?> t = (ForkJoinTask<?>)
1077 U.getAndSetObject(a, offset, null);
1078 if (t != null) {
1079 top = s;
1080 (currentSteal = t).doExec();
1081 if (++nexec > POLL_LIMIT)
1082 break;
1083 }
1084 else
1085 break;
1086 }
1087 else
1088 break;
1089 }
1090 }
1091
1092 /**
1093 * Polls and executes up to POLL_LIMIT tasks or until empty.
1094 */
1095 final void localPollAndExec() {
1096 for (int nexec = 0;;) {
1097 int b = base, s = top, al; ForkJoinTask<?>[] a;
1098 if ((a = array) != null && b != s && (al = a.length) > 0) {
1099 int index = (al - 1) & b++;
1100 long offset = ((long)index << ASHIFT) + ABASE;
1101 ForkJoinTask<?> t = (ForkJoinTask<?>)
1102 U.getAndSetObject(a, offset, null);
1103 if (t != null) {
1104 base = b;
1105 t.doExec();
1106 if (++nexec > POLL_LIMIT)
1107 break;
1108 }
1109 }
1110 else
1111 break;
1112 }
1113 }
1114
1115 /**
1116 * Executes the given task and (some) remaining local tasks.
1117 */
1118 final void runTask(ForkJoinTask<?> task) {
1119 if (task != null) {
1120 task.doExec();
1121 if (config < 0)
1122 localPollAndExec();
1123 else
1124 localPopAndExec();
1125 int ns = ++nsteals;
1126 ForkJoinWorkerThread thread = owner;
1127 currentSteal = null;
1128 if (ns < 0) // collect on overflow
1129 transferStealCount(pool);
1130 if (thread != null)
1131 thread.afterTopLevelExec();
1132 }
1133 }
1134
1135 /**
1136 * Adds steal count to pool steal count if it exists, and resets.
1137 */
1138 final void transferStealCount(ForkJoinPool p) {
1139 AuxState aux;
1140 if (p != null && (aux = p.auxState) != null) {
1141 long s = nsteals;
1142 nsteals = 0; // if negative, correct for overflow
1143 if (s < 0) s = Integer.MAX_VALUE;
1144 aux.lock();
1145 try {
1146 aux.stealCount += s;
1147 } finally {
1148 aux.unlock();
1149 }
1150 }
1151 }
1152
1153 /**
1154 * If present, removes from queue and executes the given task,
1155 * or any other cancelled task. Used only by awaitJoin.
1156 *
1157 * @return true if queue empty and task not known to be done
1158 */
1159 final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
1160 if (task != null && task.status >= 0) {
1161 int b, s, d, al; ForkJoinTask<?>[] a;
1162 while ((d = (b = base) - (s = top)) < 0 &&
1163 (a = array) != null && (al = a.length) > 0) {
1164 for (;;) { // traverse from s to b
1165 int index = --s & (al - 1);
1166 long offset = (index << ASHIFT) + ABASE;
1167 ForkJoinTask<?> t = (ForkJoinTask<?>)
1168 U.getObjectVolatile(a, offset);
1169 if (t == null)
1170 break; // restart
1171 else if (t == task) {
1172 boolean removed = false;
1173 if (s + 1 == top) { // pop
1174 if (U.compareAndSwapObject(a, offset, t, null)) {
1175 top = s;
1176 removed = true;
1177 }
1178 }
1179 else if (base == b) // replace with proxy
1180 removed = U.compareAndSwapObject(a, offset, t,
1181 new EmptyTask());
1182 if (removed) {
1183 ForkJoinTask<?> ps = currentSteal;
1184 (currentSteal = task).doExec();
1185 currentSteal = ps;
1186 }
1187 break;
1188 }
1189 else if (t.status < 0 && s + 1 == top) {
1190 if (U.compareAndSwapObject(a, offset, t, null)) {
1191 top = s;
1192 }
1193 break; // was cancelled
1194 }
1195 else if (++d == 0) {
1196 if (base != b) // rescan
1197 break;
1198 return false;
1199 }
1200 }
1201 if (task.status < 0)
1202 return false;
1203 }
1204 }
1205 return true;
1206 }
1207
1208 /**
1209 * Pops task if in the same CC computation as the given task,
1210 * in either shared or owned mode. Used only by helpComplete.
1211 */
1212 final CountedCompleter<?> popCC(CountedCompleter<?> task, int mode) {
1213 int b = base, s = top, al; ForkJoinTask<?>[] a;
1214 if ((a = array) != null && b != s && (al = a.length) > 0) {
1215 int index = (al - 1) & (s - 1);
1216 long offset = ((long)index << ASHIFT) + ABASE;
1217 ForkJoinTask<?> o = (ForkJoinTask<?>)
1218 U.getObjectVolatile(a, offset);
1219 if (o instanceof CountedCompleter) {
1220 CountedCompleter<?> t = (CountedCompleter<?>)o;
1221 for (CountedCompleter<?> r = t;;) {
1222 if (r == task) {
1223 if ((mode & IS_OWNED) == 0) {
1224 boolean popped;
1225 if (U.compareAndSwapInt(this, QLOCK, 0, 1)) {
1226 if (popped =
1227 U.compareAndSwapObject(a, offset,
1228 t, null))
1229 top = s - 1;
1230 U.putOrderedInt(this, QLOCK, 0);
1231 if (popped)
1232 return t;
1233 }
1234 }
1235 else if (U.compareAndSwapObject(a, offset,
1236 t, null)) {
1237 top = s - 1;
1238 return t;
1239 }
1240 break;
1241 }
1242 else if ((r = r.completer) == null) // try parent
1243 break;
1244 }
1245 }
1246 }
1247 return null;
1248 }
1249
1250 /**
1251 * Steals and runs a task in the same CC computation as the
1252 * given task if one exists and can be taken without
1253 * contention. Otherwise returns a checksum/control value for
1254 * use by method helpComplete.
1255 *
1256 * @return 1 if successful, 2 if retryable (lost to another
1257 * stealer), -1 if non-empty but no matching task found, else
1258 * the base index, forced negative.
1259 */
1260 final int pollAndExecCC(CountedCompleter<?> task) {
1261 ForkJoinTask<?>[] a;
1262 int b = base, s = top, al, h;
1263 if ((a = array) != null && b != s && (al = a.length) > 0) {
1264 int index = (al - 1) & b;
1265 long offset = ((long)index << ASHIFT) + ABASE;
1266 ForkJoinTask<?> o = (ForkJoinTask<?>)
1267 U.getObjectVolatile(a, offset);
1268 if (o == null)
1269 h = 2; // retryable
1270 else if (!(o instanceof CountedCompleter))
1271 h = -1; // unmatchable
1272 else {
1273 CountedCompleter<?> t = (CountedCompleter<?>)o;
1274 for (CountedCompleter<?> r = t;;) {
1275 if (r == task) {
1276 if (b++ == base &&
1277 U.compareAndSwapObject(a, offset, t, null)) {
1278 base = b;
1279 t.doExec();
1280 h = 1; // success
1281 }
1282 else
1283 h = 2; // lost CAS
1284 break;
1285 }
1286 else if ((r = r.completer) == null) {
1287 h = -1; // unmatched
1288 break;
1289 }
1290 }
1291 }
1292 }
1293 else
1294 h = b | Integer.MIN_VALUE; // to sense movement on re-poll
1295 return h;
1296 }
1297
1298 /**
1299 * Returns true if owned and not known to be blocked.
1300 */
1301 final boolean isApparentlyUnblocked() {
1302 Thread wt; Thread.State s;
1303 return (scanState >= 0 &&
1304 (wt = owner) != null &&
1305 (s = wt.getState()) != Thread.State.BLOCKED &&
1306 s != Thread.State.WAITING &&
1307 s != Thread.State.TIMED_WAITING);
1308 }
1309
1310 // Unsafe mechanics. Note that some are (and must be) the same as in FJP
1311 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
1312 private static final long QLOCK;
1313 private static final int ABASE;
1314 private static final int ASHIFT;
1315 static {
1316 try {
1317 QLOCK = U.objectFieldOffset
1318 (WorkQueue.class.getDeclaredField("qlock"));
1319 ABASE = U.arrayBaseOffset(ForkJoinTask[].class);
1320 int scale = U.arrayIndexScale(ForkJoinTask[].class);
1321 if ((scale & (scale - 1)) != 0)
1322 throw new Error("array index scale not a power of two");
1323 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1324 } catch (ReflectiveOperationException e) {
1325 throw new Error(e);
1326 }
1327 }
1328 }
1329
1330 // static fields (initialized in static initializer below)
1331
1332 /**
1333 * Creates a new ForkJoinWorkerThread. This factory is used unless
1334 * overridden in ForkJoinPool constructors.
1335 */
1336 public static final ForkJoinWorkerThreadFactory
1337 defaultForkJoinWorkerThreadFactory;
1338
1339 /**
1340 * Permission required for callers of methods that may start or
1341 * kill threads. Also used as a static lock in tryInitialize.
1342 */
1343 static final RuntimePermission modifyThreadPermission;
1344
1345 /**
1346 * Common (static) pool. Non-null for public use unless a static
1347 * construction exception, but internal usages null-check on use
1348 * to paranoically avoid potential initialization circularities
1349 * as well as to simplify generated code.
1350 */
1351 static final ForkJoinPool common;
1352
1353 /**
1354 * Common pool parallelism. To allow simpler use and management
1355 * when common pool threads are disabled, we allow the underlying
1356 * common.parallelism field to be zero, but in that case still report
1357 * parallelism as 1 to reflect resulting caller-runs mechanics.
1358 */
1359 static final int COMMON_PARALLELISM;
1360
1361 /**
1362 * Limit on spare thread construction in tryCompensate.
1363 */
1364 private static final int COMMON_MAX_SPARES;
1365
1366 /**
1367 * Sequence number for creating workerNamePrefix.
1368 */
1369 private static int poolNumberSequence;
1370
1371 /**
1372 * Returns the next sequence number. We don't expect this to
1373 * ever contend, so use simple builtin sync.
1374 */
1375 private static final synchronized int nextPoolId() {
1376 return ++poolNumberSequence;
1377 }
1378
1379 // static configuration constants
1380
1381 /**
1382 * Initial timeout value (in milliseconds) for the thread
1383 * triggering quiescence to park waiting for new work. On timeout,
1384 * the thread will instead try to shrink the number of workers.
1385 * The value should be large enough to avoid overly aggressive
1386 * shrinkage during most transient stalls (long GCs etc).
1387 */
1388 private static final long IDLE_TIMEOUT_MS = 2000L; // 2sec
1389
1390 /**
1391 * Tolerance for idle timeouts, to cope with timer undershoots.
1392 */
1393 private static final long TIMEOUT_SLOP_MS = 20L; // 20ms
1394
1395 /**
1396 * The default value for COMMON_MAX_SPARES. Overridable using the
1397 * "java.util.concurrent.ForkJoinPool.common.maximumSpares" system
1398 * property. The default value is far in excess of normal
1399 * requirements, but also far short of MAX_CAP and typical OS
1400 * thread limits, so allows JVMs to catch misuse/abuse before
1401 * running out of resources needed to do so.
1402 */
1403 private static final int DEFAULT_COMMON_MAX_SPARES = 256;
1404
1405 /**
1406 * Increment for seed generators. See class ThreadLocal for
1407 * explanation.
1408 */
1409 private static final int SEED_INCREMENT = 0x9e3779b9;
1410
1411 /*
1412 * Bits and masks for field ctl, packed with 4 16 bit subfields:
1413 * AC: Number of active running workers minus target parallelism
1414 * TC: Number of total workers minus target parallelism
1415 * SS: version count and status of top waiting thread
1416 * ID: poolIndex of top of Treiber stack of waiters
1417 *
1418 * When convenient, we can extract the lower 32 stack top bits
1419 * (including version bits) as sp=(int)ctl. The offsets of counts
1420 * by the target parallelism and the positionings of fields makes
1421 * it possible to perform the most common checks via sign tests of
1422 * fields: When ac is negative, there are not enough active
1423 * workers, when tc is negative, there are not enough total
1424 * workers. When sp is non-zero, there are waiting workers. To
1425 * deal with possibly negative fields, we use casts in and out of
1426 * "short" and/or signed shifts to maintain signedness.
1427 *
1428 * Because it occupies uppermost bits, we can add one active count
1429 * using getAndAddLong of AC_UNIT, rather than CAS, when returning
1430 * from a blocked join. Other updates entail multiple subfields
1431 * and masking, requiring CAS.
1432 */
1433
1434 // Lower and upper word masks
1435 private static final long SP_MASK = 0xffffffffL;
1436 private static final long UC_MASK = ~SP_MASK;
1437
1438 // Active counts
1439 private static final int AC_SHIFT = 48;
1440 private static final long AC_UNIT = 0x0001L << AC_SHIFT;
1441 private static final long AC_MASK = 0xffffL << AC_SHIFT;
1442
1443 // Total counts
1444 private static final int TC_SHIFT = 32;
1445 private static final long TC_UNIT = 0x0001L << TC_SHIFT;
1446 private static final long TC_MASK = 0xffffL << TC_SHIFT;
1447 private static final long ADD_WORKER = 0x0001L << (TC_SHIFT + 15); // sign
1448
1449 // runState bits: SHUTDOWN must be negative, others arbitrary powers of two
1450 private static final int STARTED = 1;
1451 private static final int STOP = 1 << 1;
1452 private static final int TERMINATED = 1 << 2;
1453 private static final int SHUTDOWN = 1 << 31;
1454
1455 // Instance fields
1456 volatile long ctl; // main pool control
1457 volatile int runState;
1458 final int config; // parallelism, mode
1459 AuxState auxState; // lock, steal counts
1460 volatile WorkQueue[] workQueues; // main registry
1461 final String workerNamePrefix; // to create worker name string
1462 final ForkJoinWorkerThreadFactory factory;
1463 final UncaughtExceptionHandler ueh; // per-worker UEH
1464
1465 /**
1466 * Instantiates fields upon first submission, or upon shutdown if
1467 * no submissions. If checkTermination true, also responds to
1468 * termination by external calls submitting tasks.
1469 */
1470 private void tryInitialize(boolean checkTermination) {
1471 if (runState == 0) { // bootstrap by locking static field
1472 int p = config & SMASK;
1473 int n = (p > 1) ? p - 1 : 1; // ensure at least 2 slots
1474 n |= n >>> 1; // create workQueues array with size a power of two
1475 n |= n >>> 2;
1476 n |= n >>> 4;
1477 n |= n >>> 8;
1478 n |= n >>> 16;
1479 n = ((n + 1) << 1) & SMASK;
1480 AuxState aux = new AuxState();
1481 WorkQueue[] ws = new WorkQueue[n];
1482 synchronized (modifyThreadPermission) { // double-check
1483 if (runState == 0) {
1484 workQueues = ws;
1485 auxState = aux;
1486 runState = STARTED;
1487 }
1488 }
1489 }
1490 if (checkTermination && runState < 0) {
1491 tryTerminate(false, false); // help terminate
1492 throw new RejectedExecutionException();
1493 }
1494 }
1495
1496 // Creating, registering and deregistering workers
1497
1498 /**
1499 * Tries to construct and start one worker. Assumes that total
1500 * count has already been incremented as a reservation. Invokes
1501 * deregisterWorker on any failure.
1502 *
1503 * @param isSpare true if this is a spare thread
1504 * @return true if successful
1505 */
1506 private boolean createWorker(boolean isSpare) {
1507 ForkJoinWorkerThreadFactory fac = factory;
1508 Throwable ex = null;
1509 ForkJoinWorkerThread wt = null;
1510 WorkQueue q;
1511 try {
1512 if (fac != null && (wt = fac.newThread(this)) != null) {
1513 if (isSpare && (q = wt.workQueue) != null)
1514 q.config |= SPARE_WORKER;
1515 wt.start();
1516 return true;
1517 }
1518 } catch (Throwable rex) {
1519 ex = rex;
1520 }
1521 deregisterWorker(wt, ex);
1522 return false;
1523 }
1524
1525 /**
1526 * Tries to add one worker, incrementing ctl counts before doing
1527 * so, relying on createWorker to back out on failure.
1528 *
1529 * @param c incoming ctl value, with total count negative and no
1530 * idle workers. On CAS failure, c is refreshed and retried if
1531 * this holds (otherwise, a new worker is not needed).
1532 */
1533 private void tryAddWorker(long c) {
1534 do {
1535 long nc = ((AC_MASK & (c + AC_UNIT)) |
1536 (TC_MASK & (c + TC_UNIT)));
1537 if (ctl == c && U.compareAndSwapLong(this, CTL, c, nc)) {
1538 createWorker(false);
1539 break;
1540 }
1541 } while (((c = ctl) & ADD_WORKER) != 0L && (int)c == 0);
1542 }
1543
1544 /**
1545 * Callback from ForkJoinWorkerThread constructor to establish and
1546 * record its WorkQueue.
1547 *
1548 * @param wt the worker thread
1549 * @return the worker's queue
1550 */
1551 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1552 UncaughtExceptionHandler handler;
1553 AuxState aux;
1554 wt.setDaemon(true); // configure thread
1555 if ((handler = ueh) != null)
1556 wt.setUncaughtExceptionHandler(handler);
1557 WorkQueue w = new WorkQueue(this, wt);
1558 int i = 0; // assign a pool index
1559 int mode = config & MODE_MASK;
1560 if ((aux = auxState) != null) {
1561 aux.lock();
1562 try {
1563 int s = (int)(aux.indexSeed += SEED_INCREMENT), n, m;
1564 WorkQueue[] ws = workQueues;
1565 if (ws != null && (n = ws.length) > 0) {
1566 i = (m = n - 1) & ((s << 1) | 1); // odd-numbered indices
1567 if (ws[i] != null) { // collision
1568 int probes = 0; // step by approx half n
1569 int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1570 while (ws[i = (i + step) & m] != null) {
1571 if (++probes >= n) {
1572 workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1573 m = n - 1;
1574 probes = 0;
1575 }
1576 }
1577 }
1578 w.hint = s; // use as random seed
1579 w.config = i | mode;
1580 w.scanState = i | (s & 0x7fff0000); // random seq bits
1581 ws[i] = w;
1582 }
1583 } finally {
1584 aux.unlock();
1585 }
1586 }
1587 wt.setName(workerNamePrefix.concat(Integer.toString(i >>> 1)));
1588 return w;
1589 }
1590
1591 /**
1592 * Final callback from terminating worker, as well as upon failure
1593 * to construct or start a worker. Removes record of worker from
1594 * array, and adjusts counts. If pool is shutting down, tries to
1595 * complete termination.
1596 *
1597 * @param wt the worker thread, or null if construction failed
1598 * @param ex the exception causing failure, or null if none
1599 */
1600 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1601 WorkQueue w = null;
1602 if (wt != null && (w = wt.workQueue) != null) {
1603 AuxState aux; WorkQueue[] ws; // remove index from array
1604 int idx = w.config & SMASK;
1605 int ns = w.nsteals;
1606 if ((aux = auxState) != null) {
1607 aux.lock();
1608 try {
1609 if ((ws = workQueues) != null && ws.length > idx &&
1610 ws[idx] == w)
1611 ws[idx] = null;
1612 aux.stealCount += ns;
1613 } finally {
1614 aux.unlock();
1615 }
1616 }
1617 }
1618 if (w == null || (w.config & UNREGISTERED) == 0) { // else pre-adjusted
1619 long c; // decrement counts
1620 do {} while (!U.compareAndSwapLong
1621 (this, CTL, c = ctl, ((AC_MASK & (c - AC_UNIT)) |
1622 (TC_MASK & (c - TC_UNIT)) |
1623 (SP_MASK & c))));
1624 }
1625 if (w != null) {
1626 w.currentSteal = null;
1627 w.qlock = -1; // ensure set
1628 w.cancelAll(); // cancel remaining tasks
1629 }
1630 while (tryTerminate(false, false) >= 0) { // possibly replace
1631 WorkQueue[] ws; int wl, sp; long c;
1632 if (w == null || w.array == null ||
1633 (ws = workQueues) == null || (wl = ws.length) <= 0)
1634 break;
1635 else if ((sp = (int)(c = ctl)) != 0) { // wake up replacement
1636 if (tryRelease(c, ws[(wl - 1) & sp], AC_UNIT))
1637 break;
1638 }
1639 else if (ex != null && (c & ADD_WORKER) != 0L) {
1640 tryAddWorker(c); // create replacement
1641 break;
1642 }
1643 else // don't need replacement
1644 break;
1645 }
1646 if (ex == null) // help clean on way out
1647 ForkJoinTask.helpExpungeStaleExceptions();
1648 else // rethrow
1649 ForkJoinTask.rethrow(ex);
1650 }
1651
1652 // Signalling
1653
1654 /**
1655 * Tries to create or activate a worker if too few are active.
1656 */
1657 final void signalWork() {
1658 for (;;) {
1659 long c; int sp, i; WorkQueue v; WorkQueue[] ws;
1660 if ((c = ctl) >= 0L) // enough workers
1661 break;
1662 else if ((sp = (int)c) == 0) { // no idle workers
1663 if ((c & ADD_WORKER) != 0L) // too few workers
1664 tryAddWorker(c);
1665 break;
1666 }
1667 else if ((ws = workQueues) == null)
1668 break; // unstarted/terminated
1669 else if (ws.length <= (i = sp & SMASK))
1670 break; // terminated
1671 else if ((v = ws[i]) == null)
1672 break; // terminating
1673 else {
1674 int ns = sp & ~UNSIGNALLED;
1675 int vs = v.scanState;
1676 long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + AC_UNIT));
1677 if (sp == vs && U.compareAndSwapLong(this, CTL, c, nc)) {
1678 v.scanState = ns;
1679 LockSupport.unpark(v.parker);
1680 break;
1681 }
1682 }
1683 }
1684 }
1685
1686 /**
1687 * Signals and releases worker v if it is top of idle worker
1688 * stack. This performs a one-shot version of signalWork only if
1689 * there is (apparently) at least one idle worker.
1690 *
1691 * @param c incoming ctl value
1692 * @param v if non-null, a worker
1693 * @param inc the increment to active count (zero when compensating)
1694 * @return true if successful
1695 */
1696 private boolean tryRelease(long c, WorkQueue v, long inc) {
1697 int sp = (int)c, ns = sp & ~UNSIGNALLED;
1698 if (v != null) {
1699 int vs = v.scanState;
1700 long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + inc));
1701 if (sp == vs && U.compareAndSwapLong(this, CTL, c, nc)) {
1702 v.scanState = ns;
1703 LockSupport.unpark(v.parker);
1704 return true;
1705 }
1706 }
1707 return false;
1708 }
1709
1710 /**
1711 * With approx probability of a missed signal, tries (once) to
1712 * reactivate worker w (or some other worker), failing if stale or
1713 * known to be already active.
1714 *
1715 * @param w the worker
1716 * @param ws the workQueue array to use
1717 * @param r random seed
1718 */
1719 private void tryReactivate(WorkQueue w, WorkQueue[] ws, int r) {
1720 long c; int sp, wl; WorkQueue v;
1721 if ((sp = (int)(c = ctl)) != 0 && w != null &&
1722 ws != null && (wl = ws.length) > 0 &&
1723 ((sp ^ r) & SS_SEQ) == 0 &&
1724 (v = ws[(wl - 1) & sp]) != null) {
1725 long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + AC_UNIT));
1726 int ns = sp & ~UNSIGNALLED;
1727 if (w.scanState < 0 &&
1728 v.scanState == sp &&
1729 U.compareAndSwapLong(this, CTL, c, nc)) {
1730 v.scanState = ns;
1731 LockSupport.unpark(v.parker);
1732 }
1733 }
1734 }
1735
1736 /**
1737 * If worker w exists and is active, enqueues and sets status to inactive.
1738 *
1739 * @param w the worker
1740 * @param ss current (non-negative) scanState
1741 */
1742 private void inactivate(WorkQueue w, int ss) {
1743 int ns = (ss + SS_SEQ) | UNSIGNALLED;
1744 long lc = ns & SP_MASK, nc, c;
1745 if (w != null) {
1746 w.scanState = ns;
1747 do {
1748 nc = lc | (UC_MASK & ((c = ctl) - AC_UNIT));
1749 w.stackPred = (int)c;
1750 } while (!U.compareAndSwapLong(this, CTL, c, nc));
1751 }
1752 }
1753
1754 /**
1755 * Possibly blocks worker w waiting for signal, or returns
1756 * negative status if the worker should terminate. May return
1757 * without status change if multiple stale unparks and/or
1758 * interrupts occur.
1759 *
1760 * @param w the calling worker
1761 * @return negative if w should terminate
1762 */
1763 private int awaitWork(WorkQueue w) {
1764 int stat = 0;
1765 if (w != null && w.scanState < 0) {
1766 long c = ctl;
1767 if ((int)(c >> AC_SHIFT) + (config & SMASK) <= 0)
1768 stat = timedAwaitWork(w, c); // possibly quiescent
1769 else if ((runState & STOP) != 0)
1770 stat = w.qlock = -1; // pool terminating
1771 else if (w.scanState < 0) {
1772 w.parker = Thread.currentThread();
1773 if (w.scanState < 0) // recheck after write
1774 LockSupport.park(this);
1775 w.parker = null;
1776 if ((runState & STOP) != 0)
1777 stat = w.qlock = -1; // recheck
1778 else if (w.scanState < 0)
1779 Thread.interrupted(); // clear status
1780 }
1781 }
1782 return stat;
1783 }
1784
1785 /**
1786 * Possibly triggers shutdown and tries (once) to block worker
1787 * when pool is (or may be) quiescent. Waits up to a duration
1788 * determined by number of workers. On timeout, if ctl has not
1789 * changed, terminates the worker, which will in turn wake up
1790 * another worker to possibly repeat this process.
1791 *
1792 * @param w the calling worker
1793 * @return negative if w should terminate
1794 */
1795 private int timedAwaitWork(WorkQueue w, long c) {
1796 int stat = 0;
1797 int scale = 1 - (short)(c >>> TC_SHIFT);
1798 long deadline = (((scale <= 0) ? 1 : scale) * IDLE_TIMEOUT_MS +
1799 System.currentTimeMillis());
1800 if ((runState >= 0 || (stat = tryTerminate(false, false)) > 0) &&
1801 w != null && w.scanState < 0) {
1802 int ss; AuxState aux;
1803 w.parker = Thread.currentThread();
1804 if (w.scanState < 0)
1805 LockSupport.parkUntil(this, deadline);
1806 w.parker = null;
1807 if ((runState & STOP) != 0)
1808 stat = w.qlock = -1; // pool terminating
1809 else if ((ss = w.scanState) < 0 && !Thread.interrupted() &&
1810 (int)c == ss && (aux = auxState) != null && ctl == c &&
1811 deadline - System.currentTimeMillis() <= TIMEOUT_SLOP_MS) {
1812 aux.lock();
1813 try { // pre-deregister
1814 WorkQueue[] ws;
1815 int cfg = w.config, idx = cfg & SMASK;
1816 long nc = ((UC_MASK & (c - TC_UNIT)) |
1817 (SP_MASK & w.stackPred));
1818 if ((runState & STOP) == 0 &&
1819 (ws = workQueues) != null &&
1820 idx < ws.length && idx >= 0 && ws[idx] == w &&
1821 U.compareAndSwapLong(this, CTL, c, nc)) {
1822 ws[idx] = null;
1823 w.config = cfg | UNREGISTERED;
1824 stat = w.qlock = -1;
1825 }
1826 } finally {
1827 aux.unlock();
1828 }
1829 }
1830 }
1831 return stat;
1832 }
1833
1834 /**
1835 * If the given worker is a spare with no queued tasks, and there
1836 * are enough existing workers, drops it from ctl counts and sets
1837 * its state to terminated.
1838 *
1839 * @param w the calling worker -- must be a spare
1840 * @return true if dropped (in which case it must not process more tasks)
1841 */
1842 private boolean tryDropSpare(WorkQueue w) {
1843 if (w != null && w.isEmpty()) { // no local tasks
1844 long c; int sp, wl; WorkQueue[] ws; WorkQueue v;
1845 while ((short)((c = ctl) >> TC_SHIFT) > 0 &&
1846 ((sp = (int)c) != 0 || (int)(c >> AC_SHIFT) > 0) &&
1847 (ws = workQueues) != null && (wl = ws.length) > 0) {
1848 boolean dropped, canDrop;
1849 if (sp == 0) { // no queued workers
1850 long nc = ((AC_MASK & (c - AC_UNIT)) |
1851 (TC_MASK & (c - TC_UNIT)) | (SP_MASK & c));
1852 dropped = U.compareAndSwapLong(this, CTL, c, nc);
1853 }
1854 else if (
1855 (v = ws[(wl - 1) & sp]) == null || v.scanState != sp)
1856 dropped = false; // stale; retry
1857 else {
1858 long nc = v.stackPred & SP_MASK;
1859 if (w == v || w.scanState >= 0) {
1860 canDrop = true; // w unqueued or topmost
1861 nc |= ((AC_MASK & c) | // ensure replacement
1862 (TC_MASK & (c - TC_UNIT)));
1863 }
1864 else { // w may be queued
1865 canDrop = false; // help uncover
1866 nc |= ((AC_MASK & (c + AC_UNIT)) |
1867 (TC_MASK & c));
1868 }
1869 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1870 v.scanState = sp & ~UNSIGNALLED;
1871 LockSupport.unpark(v.parker);
1872 dropped = canDrop;
1873 }
1874 else
1875 dropped = false;
1876 }
1877 if (dropped) { // pre-deregister
1878 int cfg = w.config, idx = cfg & SMASK;
1879 if (idx >= 0 && idx < ws.length && ws[idx] == w)
1880 ws[idx] = null;
1881 w.config = cfg | UNREGISTERED;
1882 w.qlock = -1;
1883 return true;
1884 }
1885 }
1886 }
1887 return false;
1888 }
1889
1890 /**
1891 * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1892 */
1893 final void runWorker(WorkQueue w) {
1894 w.growArray(); // allocate queue
1895 int bound = (w.config & SPARE_WORKER) != 0 ? 0 : POLL_LIMIT;
1896 long seed = w.hint * 0xdaba0b6eb09322e3L; // initial random seed
1897 if ((runState & STOP) == 0) {
1898 for (long r = (seed == 0L) ? 1L : seed;;) { // ensure nonzero
1899 if (bound == 0 && tryDropSpare(w))
1900 break;
1901 // high bits of prev seed for step; current low bits for idx
1902 int step = (int)(r >>> 48) | 1;
1903 r ^= r >>> 12; r ^= r << 25; r ^= r >>> 27; // xorshift
1904 if (scan(w, bound, step, (int)r) < 0 && awaitWork(w) < 0)
1905 break;
1906 }
1907 }
1908 }
1909
1910 // Scanning for tasks
1911
1912 /**
1913 * Repeatedly scans for and tries to steal and execute (via
1914 * workQueue.runTask) a queued task. Each scan traverses queues in
1915 * pseudorandom permutation. Upon finding a non-empty queue, makes
1916 * at most the given bound attempts to re-poll (fewer if
1917 * contended) on the same queue before returning (impossible
1918 * scanState value) 0 to restart scan. Else returns after at least
1919 * 1 and at most 32 full scans.
1920 *
1921 * @param w the worker (via its WorkQueue)
1922 * @param bound repoll bound as bitmask (0 if spare)
1923 * @param step (circular) index increment per iteration (must be odd)
1924 * @param r a random seed for origin index
1925 * @return negative if should await signal
1926 */
1927 private int scan(WorkQueue w, int bound, int step, int r) {
1928 int stat = 0, wl; WorkQueue[] ws;
1929 if ((ws = workQueues) != null && w != null && (wl = ws.length) > 0) {
1930 for (int m = wl - 1,
1931 origin = m & r, idx = origin,
1932 npolls = 0,
1933 ss = w.scanState;;) { // negative if inactive
1934 WorkQueue q; ForkJoinTask<?>[] a; int b, al;
1935 if ((q = ws[idx]) != null && (b = q.base) - q.top < 0 &&
1936 (a = q.array) != null && (al = a.length) > 0) {
1937 int index = (al - 1) & b;
1938 long offset = ((long)index << ASHIFT) + ABASE;
1939 ForkJoinTask<?> t = (ForkJoinTask<?>)
1940 U.getObjectVolatile(a, offset);
1941 if (t == null)
1942 break; // empty or busy
1943 else if (b++ != q.base)
1944 break; // busy
1945 else if (ss < 0) {
1946 tryReactivate(w, ws, r);
1947 break; // retry upon rescan
1948 }
1949 else if (!U.compareAndSwapObject(a, offset, t, null))
1950 break; // contended
1951 else {
1952 q.base = b;
1953 w.currentSteal = t;
1954 if (b != q.top) // propagate signal
1955 signalWork();
1956 w.runTask(t);
1957 if (++npolls > bound)
1958 break;
1959 }
1960 }
1961 else if (npolls != 0) // rescan
1962 break;
1963 else if ((idx = (idx + step) & m) == origin) {
1964 if (ss < 0) { // await signal
1965 stat = ss;
1966 break;
1967 }
1968 else if (r >= 0) {
1969 inactivate(w, ss);
1970 break;
1971 }
1972 else
1973 r <<= 1; // at most 31 rescans
1974 }
1975 }
1976 }
1977 return stat;
1978 }
1979
1980 // Joining tasks
1981
1982 /**
1983 * Tries to steal and run tasks within the target's computation.
1984 * Uses a variant of the top-level algorithm, restricted to tasks
1985 * with the given task as ancestor: It prefers taking and running
1986 * eligible tasks popped from the worker's own queue (via
1987 * popCC). Otherwise it scans others, randomly moving on
1988 * contention or execution, deciding to give up based on a
1989 * checksum (via return codes from pollAndExecCC). The maxTasks
1990 * argument supports external usages; internal calls use zero,
1991 * allowing unbounded steps (external calls trap non-positive
1992 * values).
1993 *
1994 * @param w caller
1995 * @param maxTasks if non-zero, the maximum number of other tasks to run
1996 * @return task status on exit
1997 */
1998 final int helpComplete(WorkQueue w, CountedCompleter<?> task,
1999 int maxTasks) {
2000 WorkQueue[] ws; int s = 0, wl;
2001 if ((ws = workQueues) != null && (wl = ws.length) > 1 &&
2002 task != null && w != null) {
2003 for (int m = wl - 1,
2004 mode = w.config,
2005 r = ~mode, // scanning seed
2006 origin = r & m, k = origin, // first queue to scan
2007 step = 3, // first scan step
2008 h = 1, // 1:ran, >1:contended, <0:hash
2009 oldSum = 0, checkSum = 0;;) {
2010 CountedCompleter<?> p; WorkQueue q; int i;
2011 if ((s = task.status) < 0)
2012 break;
2013 if (h == 1 && (p = w.popCC(task, mode)) != null) {
2014 p.doExec(); // run local task
2015 if (maxTasks != 0 && --maxTasks == 0)
2016 break;
2017 origin = k; // reset
2018 oldSum = checkSum = 0;
2019 }
2020 else { // poll other worker queues
2021 if ((i = k | 1) < 0 || i > m || (q = ws[i]) == null)
2022 h = 0;
2023 else if ((h = q.pollAndExecCC(task)) < 0)
2024 checkSum += h;
2025 if (h > 0) {
2026 if (h == 1 && maxTasks != 0 && --maxTasks == 0)
2027 break;
2028 step = (r >>> 16) | 3;
2029 r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
2030 k = origin = r & m; // move and restart
2031 oldSum = checkSum = 0;
2032 }
2033 else if ((k = (k + step) & m) == origin) {
2034 if (oldSum == (oldSum = checkSum))
2035 break;
2036 checkSum = 0;
2037 }
2038 }
2039 }
2040 }
2041 return s;
2042 }
2043
2044 /**
2045 * Tries to locate and execute tasks for a stealer of the given
2046 * task, or in turn one of its stealers. Traces currentSteal ->
2047 * currentJoin links looking for a thread working on a descendant
2048 * of the given task and with a non-empty queue to steal back and
2049 * execute tasks from. The first call to this method upon a
2050 * waiting join will often entail scanning/search, (which is OK
2051 * because the joiner has nothing better to do), but this method
2052 * leaves hints in workers to speed up subsequent calls.
2053 *
2054 * @param w caller
2055 * @param task the task to join
2056 */
2057 private void helpStealer(WorkQueue w, ForkJoinTask<?> task) {
2058 if (task != null && w != null) {
2059 ForkJoinTask<?> ps = w.currentSteal;
2060 WorkQueue[] ws; int wl, oldSum = 0;
2061 outer: while (w.tryRemoveAndExec(task) && task.status >= 0 &&
2062 (ws = workQueues) != null && (wl = ws.length) > 0) {
2063 ForkJoinTask<?> subtask;
2064 int m = wl - 1, checkSum = 0; // for stability check
2065 WorkQueue j = w, v; // v is subtask stealer
2066 descent: for (subtask = task; subtask.status >= 0; ) {
2067 for (int h = j.hint | 1, k = 0, i;;) {
2068 if ((v = ws[i = (h + (k << 1)) & m]) != null) {
2069 if (v.currentSteal == subtask) {
2070 j.hint = i;
2071 break;
2072 }
2073 checkSum += v.base;
2074 }
2075 if (++k > m) // can't find stealer
2076 break outer;
2077 }
2078
2079 for (;;) { // help v or descend
2080 ForkJoinTask<?>[] a; int b, al;
2081 if (subtask.status < 0) // too late to help
2082 break descent;
2083 checkSum += (b = v.base);
2084 ForkJoinTask<?> next = v.currentJoin;
2085 ForkJoinTask<?> t = null;
2086 if ((a = v.array) != null && (al = a.length) > 0) {
2087 int index = (al - 1) & b;
2088 long offset = ((long)index << ASHIFT) + ABASE;
2089 t = (ForkJoinTask<?>)
2090 U.getObjectVolatile(a, offset);
2091 if (t != null && b++ == v.base) {
2092 if (j.currentJoin != subtask ||
2093 v.currentSteal != subtask ||
2094 subtask.status < 0)
2095 break descent; // stale
2096 if (U.compareAndSwapObject(a, offset, t, null)) {
2097 v.base = b;
2098 w.currentSteal = t;
2099 for (int top = w.top;;) {
2100 t.doExec(); // help
2101 w.currentSteal = ps;
2102 if (task.status < 0)
2103 break outer;
2104 if (w.top == top)
2105 break; // run local tasks
2106 if ((t = w.pop()) == null)
2107 break descent;
2108 w.currentSteal = t;
2109 }
2110 }
2111 }
2112 }
2113 if (t == null && b == v.base && b - v.top >= 0) {
2114 if ((subtask = next) == null) { // try to descend
2115 if (next == v.currentJoin &&
2116 oldSum == (oldSum = checkSum))
2117 break outer;
2118 break descent;
2119 }
2120 j = v;
2121 break;
2122 }
2123 }
2124 }
2125 }
2126 }
2127 }
2128
2129 /**
2130 * Tries to decrement active count (sometimes implicitly) and
2131 * possibly release or create a compensating worker in preparation
2132 * for blocking. Returns false (retryable by caller), on
2133 * contention, detected staleness, instability, or termination.
2134 *
2135 * @param w caller
2136 */
2137 private boolean tryCompensate(WorkQueue w) {
2138 boolean canBlock; int wl;
2139 long c = ctl;
2140 WorkQueue[] ws = workQueues;
2141 int pc = config & SMASK;
2142 int ac = pc + (int)(c >> AC_SHIFT);
2143 int tc = pc + (short)(c >> TC_SHIFT);
2144 if (w == null || w.qlock < 0 || pc == 0 || // terminating or disabled
2145 ws == null || (wl = ws.length) <= 0)
2146 canBlock = false;
2147 else {
2148 int m = wl - 1, sp;
2149 boolean busy = true; // validate ac
2150 for (int i = 0; i <= m; ++i) {
2151 int k; WorkQueue v;
2152 if ((k = (i << 1) | 1) <= m && k >= 0 && (v = ws[k]) != null &&
2153 v.scanState >= 0 && v.currentSteal == null) {
2154 busy = false;
2155 break;
2156 }
2157 }
2158 if (!busy || ctl != c)
2159 canBlock = false; // unstable or stale
2160 else if ((sp = (int)c) != 0) // release idle worker
2161 canBlock = tryRelease(c, ws[m & sp], 0L);
2162 else if (tc >= pc && ac > 1 && w.isEmpty()) {
2163 long nc = ((AC_MASK & (c - AC_UNIT)) |
2164 (~AC_MASK & c)); // uncompensated
2165 canBlock = U.compareAndSwapLong(this, CTL, c, nc);
2166 }
2167 else if (tc >= MAX_CAP ||
2168 (this == common && tc >= pc + COMMON_MAX_SPARES))
2169 throw new RejectedExecutionException(
2170 "Thread limit exceeded replacing blocked worker");
2171 else { // similar to tryAddWorker
2172 boolean isSpare = (tc >= pc);
2173 long nc = (AC_MASK & c) | (TC_MASK & (c + TC_UNIT));
2174 canBlock = (U.compareAndSwapLong(this, CTL, c, nc) &&
2175 createWorker(isSpare)); // throws on exception
2176 }
2177 }
2178 return canBlock;
2179 }
2180
2181 /**
2182 * Helps and/or blocks until the given task is done or timeout.
2183 *
2184 * @param w caller
2185 * @param task the task
2186 * @param deadline for timed waits, if nonzero
2187 * @return task status on exit
2188 */
2189 final int awaitJoin(WorkQueue w, ForkJoinTask<?> task, long deadline) {
2190 int s = 0;
2191 if (w != null) {
2192 ForkJoinTask<?> prevJoin = w.currentJoin;
2193 if (task != null && (s = task.status) >= 0) {
2194 w.currentJoin = task;
2195 CountedCompleter<?> cc = (task instanceof CountedCompleter) ?
2196 (CountedCompleter<?>)task : null;
2197 for (;;) {
2198 if (cc != null)
2199 helpComplete(w, cc, 0);
2200 else
2201 helpStealer(w, task);
2202 if ((s = task.status) < 0)
2203 break;
2204 long ms, ns;
2205 if (deadline == 0L)
2206 ms = 0L;
2207 else if ((ns = deadline - System.nanoTime()) <= 0L)
2208 break;
2209 else if ((ms = TimeUnit.NANOSECONDS.toMillis(ns)) <= 0L)
2210 ms = 1L;
2211 if (tryCompensate(w)) {
2212 task.internalWait(ms);
2213 U.getAndAddLong(this, CTL, AC_UNIT);
2214 }
2215 if ((s = task.status) < 0)
2216 break;
2217 }
2218 w.currentJoin = prevJoin;
2219 }
2220 }
2221 return s;
2222 }
2223
2224 // Specialized scanning
2225
2226 /**
2227 * Returns a (probably) non-empty steal queue, if one is found
2228 * during a scan, else null. This method must be retried by
2229 * caller if, by the time it tries to use the queue, it is empty.
2230 */
2231 private WorkQueue findNonEmptyStealQueue() {
2232 WorkQueue[] ws; int wl; // one-shot version of scan loop
2233 int r = ThreadLocalRandom.nextSecondarySeed();
2234 if ((ws = workQueues) != null && (wl = ws.length) > 0) {
2235 int m = wl - 1, origin = r & m;
2236 for (int k = origin, oldSum = 0, checkSum = 0;;) {
2237 WorkQueue q; int b;
2238 if ((q = ws[k]) != null) {
2239 if ((b = q.base) - q.top < 0)
2240 return q;
2241 checkSum += b;
2242 }
2243 if ((k = (k + 1) & m) == origin) {
2244 if (oldSum == (oldSum = checkSum))
2245 break;
2246 checkSum = 0;
2247 }
2248 }
2249 }
2250 return null;
2251 }
2252
2253 /**
2254 * Runs tasks until {@code isQuiescent()}. We piggyback on
2255 * active count ctl maintenance, but rather than blocking
2256 * when tasks cannot be found, we rescan until all others cannot
2257 * find tasks either.
2258 */
2259 final void helpQuiescePool(WorkQueue w) {
2260 ForkJoinTask<?> ps = w.currentSteal; // save context
2261 int wc = w.config;
2262 for (boolean active = true;;) {
2263 long c; WorkQueue q; ForkJoinTask<?> t;
2264 if (wc >= 0 && (t = w.pop()) != null) { // run locals if LIFO
2265 (w.currentSteal = t).doExec();
2266 w.currentSteal = ps;
2267 }
2268 else if ((q = findNonEmptyStealQueue()) != null) {
2269 if (!active) { // re-establish active count
2270 active = true;
2271 U.getAndAddLong(this, CTL, AC_UNIT);
2272 }
2273 if ((t = q.pollAt(q.base)) != null) {
2274 (w.currentSteal = t).doExec();
2275 w.currentSteal = ps;
2276 if (++w.nsteals < 0)
2277 w.transferStealCount(this);
2278 }
2279 }
2280 else if (active) { // decrement active count without queuing
2281 long nc = (AC_MASK & ((c = ctl) - AC_UNIT)) | (~AC_MASK & c);
2282 if (U.compareAndSwapLong(this, CTL, c, nc))
2283 active = false;
2284 }
2285 else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) <= 0 &&
2286 U.compareAndSwapLong(this, CTL, c, c + AC_UNIT))
2287 break;
2288 }
2289 }
2290
2291 /**
2292 * Gets and removes a local or stolen task for the given worker.
2293 *
2294 * @return a task, if available
2295 */
2296 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2297 for (ForkJoinTask<?> t;;) {
2298 WorkQueue q;
2299 if ((t = w.nextLocalTask()) != null)
2300 return t;
2301 if ((q = findNonEmptyStealQueue()) == null)
2302 return null;
2303 if ((t = q.pollAt(q.base)) != null)
2304 return t;
2305 }
2306 }
2307
2308 /**
2309 * Returns a cheap heuristic guide for task partitioning when
2310 * programmers, frameworks, tools, or languages have little or no
2311 * idea about task granularity. In essence, by offering this
2312 * method, we ask users only about tradeoffs in overhead vs
2313 * expected throughput and its variance, rather than how finely to
2314 * partition tasks.
2315 *
2316 * In a steady state strict (tree-structured) computation, each
2317 * thread makes available for stealing enough tasks for other
2318 * threads to remain active. Inductively, if all threads play by
2319 * the same rules, each thread should make available only a
2320 * constant number of tasks.
2321 *
2322 * The minimum useful constant is just 1. But using a value of 1
2323 * would require immediate replenishment upon each steal to
2324 * maintain enough tasks, which is infeasible. Further,
2325 * partitionings/granularities of offered tasks should minimize
2326 * steal rates, which in general means that threads nearer the top
2327 * of computation tree should generate more than those nearer the
2328 * bottom. In perfect steady state, each thread is at
2329 * approximately the same level of computation tree. However,
2330 * producing extra tasks amortizes the uncertainty of progress and
2331 * diffusion assumptions.
2332 *
2333 * So, users will want to use values larger (but not much larger)
2334 * than 1 to both smooth over transient shortages and hedge
2335 * against uneven progress; as traded off against the cost of
2336 * extra task overhead. We leave the user to pick a threshold
2337 * value to compare with the results of this call to guide
2338 * decisions, but recommend values such as 3.
2339 *
2340 * When all threads are active, it is on average OK to estimate
2341 * surplus strictly locally. In steady-state, if one thread is
2342 * maintaining say 2 surplus tasks, then so are others. So we can
2343 * just use estimated queue length. However, this strategy alone
2344 * leads to serious mis-estimates in some non-steady-state
2345 * conditions (ramp-up, ramp-down, other stalls). We can detect
2346 * many of these by further considering the number of "idle"
2347 * threads, that are known to have zero queued tasks, so
2348 * compensate by a factor of (#idle/#active) threads.
2349 */
2350 static int getSurplusQueuedTaskCount() {
2351 Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2352 if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) {
2353 int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2354 int n = (q = wt.workQueue).top - q.base;
2355 int a = (int)(pool.ctl >> AC_SHIFT) + p;
2356 return n - (a > (p >>>= 1) ? 0 :
2357 a > (p >>>= 1) ? 1 :
2358 a > (p >>>= 1) ? 2 :
2359 a > (p >>>= 1) ? 4 :
2360 8);
2361 }
2362 return 0;
2363 }
2364
2365 // Termination
2366
2367 /**
2368 * Possibly initiates and/or completes termination.
2369 *
2370 * @param now if true, unconditionally terminate, else only
2371 * if no work and no active workers
2372 * @param enable if true, terminate when next possible
2373 * @return -1: terminating/terminated, 0: retry if internal caller, else 1
2374 */
2375 private int tryTerminate(boolean now, boolean enable) {
2376 int rs; // 3 phases: try to set SHUTDOWN, then STOP, then TERMINATED
2377
2378 while ((rs = runState) >= 0) {
2379 if (!enable || this == common) // cannot shutdown
2380 return 1;
2381 else if (rs == 0)
2382 tryInitialize(false); // ensure initialized
2383 else
2384 U.compareAndSwapInt(this, RUNSTATE, rs, rs | SHUTDOWN);
2385 }
2386
2387 if ((rs & STOP) == 0) { // try to initiate termination
2388 if (!now) { // check quiescence
2389 for (long oldSum = 0L;;) { // repeat until stable
2390 WorkQueue[] ws; WorkQueue w; int b;
2391 long checkSum = ctl;
2392 if ((int)(checkSum >> AC_SHIFT) + (config & SMASK) > 0)
2393 return 0; // still active workers
2394 if ((ws = workQueues) != null) {
2395 for (int i = 0; i < ws.length; ++i) {
2396 if ((w = ws[i]) != null) {
2397 checkSum += (b = w.base);
2398 if (w.currentSteal != null || b != w.top)
2399 return 0; // retry if internal caller
2400 }
2401 }
2402 }
2403 if (oldSum == (oldSum = checkSum))
2404 break;
2405 }
2406 }
2407 do {} while (!U.compareAndSwapInt(this, RUNSTATE,
2408 rs = runState, rs | STOP));
2409 }
2410
2411 for (long oldSum = 0L;;) { // repeat until stable
2412 WorkQueue[] ws; WorkQueue w; ForkJoinWorkerThread wt;
2413 long checkSum = ctl;
2414 if ((ws = workQueues) != null) { // help terminate others
2415 for (int i = 0; i < ws.length; ++i) {
2416 if ((w = ws[i]) != null) {
2417 w.cancelAll(); // clear queues
2418 checkSum += w.base;
2419 if (w.qlock >= 0) {
2420 w.qlock = -1; // racy set OK
2421 if ((wt = w.owner) != null) {
2422 try { // unblock join or park
2423 wt.interrupt();
2424 } catch (Throwable ignore) {
2425 }
2426 }
2427 }
2428 }
2429 }
2430 }
2431 if (oldSum == (oldSum = checkSum))
2432 break;
2433 }
2434
2435 if ((short)(ctl >>> TC_SHIFT) + (config & SMASK) <= 0) {
2436 runState = (STARTED | SHUTDOWN | STOP | TERMINATED); // final write
2437 synchronized (this) {
2438 notifyAll(); // for awaitTermination
2439 }
2440 }
2441
2442 return -1;
2443 }
2444
2445 // External operations
2446
2447 /**
2448 * Constructs and tries to install a new external queue,
2449 * failing if the workQueues array already has a queue at
2450 * the given index.
2451 *
2452 * @param index the index of the new queue
2453 */
2454 private void tryCreateExternalQueue(int index) {
2455 AuxState aux;
2456 if ((aux = auxState) != null && index >= 0) {
2457 WorkQueue q = new WorkQueue(this, null);
2458 q.config = index;
2459 q.scanState = ~UNSIGNALLED;
2460 q.qlock = 1; // lock queue
2461 boolean installed = false;
2462 aux.lock();
2463 try { // lock pool to install
2464 WorkQueue[] ws;
2465 if ((ws = workQueues) != null && index < ws.length &&
2466 ws[index] == null) {
2467 ws[index] = q; // else throw away
2468 installed = true;
2469 }
2470 } finally {
2471 aux.unlock();
2472 }
2473 if (installed) {
2474 try {
2475 q.growArray();
2476 } finally {
2477 q.qlock = 0;
2478 }
2479 }
2480 }
2481 }
2482
2483 /**
2484 * Adds the given task to a submission queue at submitter's
2485 * current queue. Also performs secondary initialization upon the
2486 * first submission of the first task to the pool, and detects
2487 * first submission by an external thread and creates a new shared
2488 * queue if the one at index if empty or contended.
2489 *
2490 * @param task the task. Caller must ensure non-null.
2491 */
2492 final void externalPush(ForkJoinTask<?> task) {
2493 int r; // initialize caller's probe
2494 if ((r = ThreadLocalRandom.getProbe()) == 0) {
2495 ThreadLocalRandom.localInit();
2496 r = ThreadLocalRandom.getProbe();
2497 }
2498 for (;;) {
2499 WorkQueue q; int wl, k, stat;
2500 int rs = runState;
2501 WorkQueue[] ws = workQueues;
2502 if (rs <= 0 || ws == null || (wl = ws.length) <= 0)
2503 tryInitialize(true);
2504 else if ((q = ws[k = (wl - 1) & r & SQMASK]) == null)
2505 tryCreateExternalQueue(k);
2506 else if ((stat = q.sharedPush(task)) < 0)
2507 break;
2508 else if (stat == 0) {
2509 signalWork();
2510 break;
2511 }
2512 else // move if busy
2513 r = ThreadLocalRandom.advanceProbe(r);
2514 }
2515 }
2516
2517 /**
2518 * Pushes a possibly-external submission.
2519 */
2520 private <T> ForkJoinTask<T> externalSubmit(ForkJoinTask<T> task) {
2521 Thread t; ForkJoinWorkerThread w; WorkQueue q;
2522 if (task == null)
2523 throw new NullPointerException();
2524 if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) &&
2525 (w = (ForkJoinWorkerThread)t).pool == this &&
2526 (q = w.workQueue) != null)
2527 q.push(task);
2528 else
2529 externalPush(task);
2530 return task;
2531 }
2532
2533 /**
2534 * Returns common pool queue for an external thread.
2535 */
2536 static WorkQueue commonSubmitterQueue() {
2537 ForkJoinPool p = common;
2538 int r = ThreadLocalRandom.getProbe();
2539 WorkQueue[] ws; int wl;
2540 return (p != null && (ws = p.workQueues) != null &&
2541 (wl = ws.length) > 0) ?
2542 ws[(wl - 1) & r & SQMASK] : null;
2543 }
2544
2545 /**
2546 * Performs tryUnpush for an external submitter.
2547 */
2548 final boolean tryExternalUnpush(ForkJoinTask<?> task) {
2549 int r = ThreadLocalRandom.getProbe();
2550 WorkQueue[] ws; WorkQueue w; int wl;
2551 return ((ws = workQueues) != null &&
2552 (wl = ws.length) > 0 &&
2553 (w = ws[(wl - 1) & r & SQMASK]) != null &&
2554 w.trySharedUnpush(task));
2555 }
2556
2557 /**
2558 * Performs helpComplete for an external submitter.
2559 */
2560 final int externalHelpComplete(CountedCompleter<?> task, int maxTasks) {
2561 WorkQueue[] ws; int wl;
2562 int r = ThreadLocalRandom.getProbe();
2563 return ((ws = workQueues) != null && (wl = ws.length) > 0) ?
2564 helpComplete(ws[(wl - 1) & r & SQMASK], task, maxTasks) : 0;
2565 }
2566
2567 // Exported methods
2568
2569 // Constructors
2570
2571 /**
2572 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2573 * java.lang.Runtime#availableProcessors}, using the {@linkplain
2574 * #defaultForkJoinWorkerThreadFactory default thread factory},
2575 * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2576 *
2577 * @throws SecurityException if a security manager exists and
2578 * the caller is not permitted to modify threads
2579 * because it does not hold {@link
2580 * java.lang.RuntimePermission}{@code ("modifyThread")}
2581 */
2582 public ForkJoinPool() {
2583 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2584 defaultForkJoinWorkerThreadFactory, null, false);
2585 }
2586
2587 /**
2588 * Creates a {@code ForkJoinPool} with the indicated parallelism
2589 * level, the {@linkplain
2590 * #defaultForkJoinWorkerThreadFactory default thread factory},
2591 * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2592 *
2593 * @param parallelism the parallelism level
2594 * @throws IllegalArgumentException if parallelism less than or
2595 * equal to zero, or greater than implementation limit
2596 * @throws SecurityException if a security manager exists and
2597 * the caller is not permitted to modify threads
2598 * because it does not hold {@link
2599 * java.lang.RuntimePermission}{@code ("modifyThread")}
2600 */
2601 public ForkJoinPool(int parallelism) {
2602 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2603 }
2604
2605 /**
2606 * Creates a {@code ForkJoinPool} with the given parameters.
2607 *
2608 * @param parallelism the parallelism level. For default value,
2609 * use {@link java.lang.Runtime#availableProcessors}.
2610 * @param factory the factory for creating new threads. For default value,
2611 * use {@link #defaultForkJoinWorkerThreadFactory}.
2612 * @param handler the handler for internal worker threads that
2613 * terminate due to unrecoverable errors encountered while executing
2614 * tasks. For default value, use {@code null}.
2615 * @param asyncMode if true,
2616 * establishes local first-in-first-out scheduling mode for forked
2617 * tasks that are never joined. This mode may be more appropriate
2618 * than default locally stack-based mode in applications in which
2619 * worker threads only process event-style asynchronous tasks.
2620 * For default value, use {@code false}.
2621 * @throws IllegalArgumentException if parallelism less than or
2622 * equal to zero, or greater than implementation limit
2623 * @throws NullPointerException if the factory is null
2624 * @throws SecurityException if a security manager exists and
2625 * the caller is not permitted to modify threads
2626 * because it does not hold {@link
2627 * java.lang.RuntimePermission}{@code ("modifyThread")}
2628 */
2629 public ForkJoinPool(int parallelism,
2630 ForkJoinWorkerThreadFactory factory,
2631 UncaughtExceptionHandler handler,
2632 boolean asyncMode) {
2633 this(checkParallelism(parallelism),
2634 checkFactory(factory),
2635 handler,
2636 asyncMode ? FIFO_QUEUE : LIFO_QUEUE,
2637 "ForkJoinPool-" + nextPoolId() + "-worker-");
2638 checkPermission();
2639 }
2640
2641 private static int checkParallelism(int parallelism) {
2642 if (parallelism <= 0 || parallelism > MAX_CAP)
2643 throw new IllegalArgumentException();
2644 return parallelism;
2645 }
2646
2647 private static ForkJoinWorkerThreadFactory checkFactory
2648 (ForkJoinWorkerThreadFactory factory) {
2649 if (factory == null)
2650 throw new NullPointerException();
2651 return factory;
2652 }
2653
2654 /**
2655 * Creates a {@code ForkJoinPool} with the given parameters, without
2656 * any security checks or parameter validation. Invoked directly by
2657 * makeCommonPool.
2658 */
2659 private ForkJoinPool(int parallelism,
2660 ForkJoinWorkerThreadFactory factory,
2661 UncaughtExceptionHandler handler,
2662 int mode,
2663 String workerNamePrefix) {
2664 this.workerNamePrefix = workerNamePrefix;
2665 this.factory = factory;
2666 this.ueh = handler;
2667 this.config = (parallelism & SMASK) | mode;
2668 long np = (long)(-parallelism); // offset ctl counts
2669 this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2670 }
2671
2672 /**
2673 * Returns the common pool instance. This pool is statically
2674 * constructed; its run state is unaffected by attempts to {@link
2675 * #shutdown} or {@link #shutdownNow}. However this pool and any
2676 * ongoing processing are automatically terminated upon program
2677 * {@link System#exit}. Any program that relies on asynchronous
2678 * task processing to complete before program termination should
2679 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2680 * before exit.
2681 *
2682 * @return the common pool instance
2683 * @since 1.8
2684 */
2685 public static ForkJoinPool commonPool() {
2686 // assert common != null : "static init error";
2687 return common;
2688 }
2689
2690 // Execution methods
2691
2692 /**
2693 * Performs the given task, returning its result upon completion.
2694 * If the computation encounters an unchecked Exception or Error,
2695 * it is rethrown as the outcome of this invocation. Rethrown
2696 * exceptions behave in the same way as regular exceptions, but,
2697 * when possible, contain stack traces (as displayed for example
2698 * using {@code ex.printStackTrace()}) of both the current thread
2699 * as well as the thread actually encountering the exception;
2700 * minimally only the latter.
2701 *
2702 * @param task the task
2703 * @param <T> the type of the task's result
2704 * @return the task's result
2705 * @throws NullPointerException if the task is null
2706 * @throws RejectedExecutionException if the task cannot be
2707 * scheduled for execution
2708 */
2709 public <T> T invoke(ForkJoinTask<T> task) {
2710 if (task == null)
2711 throw new NullPointerException();
2712 externalSubmit(task);
2713 return task.join();
2714 }
2715
2716 /**
2717 * Arranges for (asynchronous) execution of the given task.
2718 *
2719 * @param task the task
2720 * @throws NullPointerException if the task is null
2721 * @throws RejectedExecutionException if the task cannot be
2722 * scheduled for execution
2723 */
2724 public void execute(ForkJoinTask<?> task) {
2725 externalSubmit(task);
2726 }
2727
2728 // AbstractExecutorService methods
2729
2730 /**
2731 * @throws NullPointerException if the task is null
2732 * @throws RejectedExecutionException if the task cannot be
2733 * scheduled for execution
2734 */
2735 public void execute(Runnable task) {
2736 if (task == null)
2737 throw new NullPointerException();
2738 ForkJoinTask<?> job;
2739 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2740 job = (ForkJoinTask<?>) task;
2741 else
2742 job = new ForkJoinTask.RunnableExecuteAction(task);
2743 externalSubmit(job);
2744 }
2745
2746 /**
2747 * Submits a ForkJoinTask for execution.
2748 *
2749 * @param task the task to submit
2750 * @param <T> the type of the task's result
2751 * @return the task
2752 * @throws NullPointerException if the task is null
2753 * @throws RejectedExecutionException if the task cannot be
2754 * scheduled for execution
2755 */
2756 public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2757 return externalSubmit(task);
2758 }
2759
2760 /**
2761 * @throws NullPointerException if the task is null
2762 * @throws RejectedExecutionException if the task cannot be
2763 * scheduled for execution
2764 */
2765 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2766 return externalSubmit(new ForkJoinTask.AdaptedCallable<T>(task));
2767 }
2768
2769 /**
2770 * @throws NullPointerException if the task is null
2771 * @throws RejectedExecutionException if the task cannot be
2772 * scheduled for execution
2773 */
2774 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2775 return externalSubmit(new ForkJoinTask.AdaptedRunnable<T>(task, result));
2776 }
2777
2778 /**
2779 * @throws NullPointerException if the task is null
2780 * @throws RejectedExecutionException if the task cannot be
2781 * scheduled for execution
2782 */
2783 public ForkJoinTask<?> submit(Runnable task) {
2784 if (task == null)
2785 throw new NullPointerException();
2786 ForkJoinTask<?> job;
2787 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2788 job = (ForkJoinTask<?>) task;
2789 else
2790 job = new ForkJoinTask.AdaptedRunnableAction(task);
2791 return externalSubmit(job);
2792 }
2793
2794 /**
2795 * @throws NullPointerException {@inheritDoc}
2796 * @throws RejectedExecutionException {@inheritDoc}
2797 */
2798 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2799 // In previous versions of this class, this method constructed
2800 // a task to run ForkJoinTask.invokeAll, but now external
2801 // invocation of multiple tasks is at least as efficient.
2802 ArrayList<Future<T>> futures = new ArrayList<>(tasks.size());
2803
2804 try {
2805 for (Callable<T> t : tasks) {
2806 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2807 futures.add(f);
2808 externalSubmit(f);
2809 }
2810 for (int i = 0, size = futures.size(); i < size; i++)
2811 ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2812 return futures;
2813 } catch (Throwable t) {
2814 for (int i = 0, size = futures.size(); i < size; i++)
2815 futures.get(i).cancel(false);
2816 throw t;
2817 }
2818 }
2819
2820 /**
2821 * Returns the factory used for constructing new workers.
2822 *
2823 * @return the factory used for constructing new workers
2824 */
2825 public ForkJoinWorkerThreadFactory getFactory() {
2826 return factory;
2827 }
2828
2829 /**
2830 * Returns the handler for internal worker threads that terminate
2831 * due to unrecoverable errors encountered while executing tasks.
2832 *
2833 * @return the handler, or {@code null} if none
2834 */
2835 public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2836 return ueh;
2837 }
2838
2839 /**
2840 * Returns the targeted parallelism level of this pool.
2841 *
2842 * @return the targeted parallelism level of this pool
2843 */
2844 public int getParallelism() {
2845 int par;
2846 return ((par = config & SMASK) > 0) ? par : 1;
2847 }
2848
2849 /**
2850 * Returns the targeted parallelism level of the common pool.
2851 *
2852 * @return the targeted parallelism level of the common pool
2853 * @since 1.8
2854 */
2855 public static int getCommonPoolParallelism() {
2856 return COMMON_PARALLELISM;
2857 }
2858
2859 /**
2860 * Returns the number of worker threads that have started but not
2861 * yet terminated. The result returned by this method may differ
2862 * from {@link #getParallelism} when threads are created to
2863 * maintain parallelism when others are cooperatively blocked.
2864 *
2865 * @return the number of worker threads
2866 */
2867 public int getPoolSize() {
2868 return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2869 }
2870
2871 /**
2872 * Returns {@code true} if this pool uses local first-in-first-out
2873 * scheduling mode for forked tasks that are never joined.
2874 *
2875 * @return {@code true} if this pool uses async mode
2876 */
2877 public boolean getAsyncMode() {
2878 return (config & FIFO_QUEUE) != 0;
2879 }
2880
2881 /**
2882 * Returns an estimate of the number of worker threads that are
2883 * not blocked waiting to join tasks or for other managed
2884 * synchronization. This method may overestimate the
2885 * number of running threads.
2886 *
2887 * @return the number of worker threads
2888 */
2889 public int getRunningThreadCount() {
2890 int rc = 0;
2891 WorkQueue[] ws; WorkQueue w;
2892 if ((ws = workQueues) != null) {
2893 for (int i = 1; i < ws.length; i += 2) {
2894 if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2895 ++rc;
2896 }
2897 }
2898 return rc;
2899 }
2900
2901 /**
2902 * Returns an estimate of the number of threads that are currently
2903 * stealing or executing tasks. This method may overestimate the
2904 * number of active threads.
2905 *
2906 * @return the number of active threads
2907 */
2908 public int getActiveThreadCount() {
2909 int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2910 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2911 }
2912
2913 /**
2914 * Returns {@code true} if all worker threads are currently idle.
2915 * An idle worker is one that cannot obtain a task to execute
2916 * because none are available to steal from other threads, and
2917 * there are no pending submissions to the pool. This method is
2918 * conservative; it might not return {@code true} immediately upon
2919 * idleness of all threads, but will eventually become true if
2920 * threads remain inactive.
2921 *
2922 * @return {@code true} if all threads are currently idle
2923 */
2924 public boolean isQuiescent() {
2925 return (config & SMASK) + (int)(ctl >> AC_SHIFT) <= 0;
2926 }
2927
2928 /**
2929 * Returns an estimate of the total number of tasks stolen from
2930 * one thread's work queue by another. The reported value
2931 * underestimates the actual total number of steals when the pool
2932 * is not quiescent. This value may be useful for monitoring and
2933 * tuning fork/join programs: in general, steal counts should be
2934 * high enough to keep threads busy, but low enough to avoid
2935 * overhead and contention across threads.
2936 *
2937 * @return the number of steals
2938 */
2939 public long getStealCount() {
2940 AuxState sc = auxState;
2941 long count = (sc == null) ? 0L : sc.stealCount;
2942 WorkQueue[] ws; WorkQueue w;
2943 if ((ws = workQueues) != null) {
2944 for (int i = 1; i < ws.length; i += 2) {
2945 if ((w = ws[i]) != null)
2946 count += w.nsteals;
2947 }
2948 }
2949 return count;
2950 }
2951
2952 /**
2953 * Returns an estimate of the total number of tasks currently held
2954 * in queues by worker threads (but not including tasks submitted
2955 * to the pool that have not begun executing). This value is only
2956 * an approximation, obtained by iterating across all threads in
2957 * the pool. This method may be useful for tuning task
2958 * granularities.
2959 *
2960 * @return the number of queued tasks
2961 */
2962 public long getQueuedTaskCount() {
2963 long count = 0;
2964 WorkQueue[] ws; WorkQueue w;
2965 if ((ws = workQueues) != null) {
2966 for (int i = 1; i < ws.length; i += 2) {
2967 if ((w = ws[i]) != null)
2968 count += w.queueSize();
2969 }
2970 }
2971 return count;
2972 }
2973
2974 /**
2975 * Returns an estimate of the number of tasks submitted to this
2976 * pool that have not yet begun executing. This method may take
2977 * time proportional to the number of submissions.
2978 *
2979 * @return the number of queued submissions
2980 */
2981 public int getQueuedSubmissionCount() {
2982 int count = 0;
2983 WorkQueue[] ws; WorkQueue w;
2984 if ((ws = workQueues) != null) {
2985 for (int i = 0; i < ws.length; i += 2) {
2986 if ((w = ws[i]) != null)
2987 count += w.queueSize();
2988 }
2989 }
2990 return count;
2991 }
2992
2993 /**
2994 * Returns {@code true} if there are any tasks submitted to this
2995 * pool that have not yet begun executing.
2996 *
2997 * @return {@code true} if there are any queued submissions
2998 */
2999 public boolean hasQueuedSubmissions() {
3000 WorkQueue[] ws; WorkQueue w;
3001 if ((ws = workQueues) != null) {
3002 for (int i = 0; i < ws.length; i += 2) {
3003 if ((w = ws[i]) != null && !w.isEmpty())
3004 return true;
3005 }
3006 }
3007 return false;
3008 }
3009
3010 /**
3011 * Removes and returns the next unexecuted submission if one is
3012 * available. This method may be useful in extensions to this
3013 * class that re-assign work in systems with multiple pools.
3014 *
3015 * @return the next submission, or {@code null} if none
3016 */
3017 protected ForkJoinTask<?> pollSubmission() {
3018 WorkQueue[] ws; int wl; WorkQueue w; ForkJoinTask<?> t;
3019 int r = ThreadLocalRandom.nextSecondarySeed();
3020 if ((ws = workQueues) != null && (wl = ws.length) > 0) {
3021 for (int m = wl - 1, i = 0; i < wl; ++i) {
3022 if ((w = ws[(i << 1) & m]) != null && (t = w.poll()) != null)
3023 return t;
3024 }
3025 }
3026 return null;
3027 }
3028
3029 /**
3030 * Removes all available unexecuted submitted and forked tasks
3031 * from scheduling queues and adds them to the given collection,
3032 * without altering their execution status. These may include
3033 * artificially generated or wrapped tasks. This method is
3034 * designed to be invoked only when the pool is known to be
3035 * quiescent. Invocations at other times may not remove all
3036 * tasks. A failure encountered while attempting to add elements
3037 * to collection {@code c} may result in elements being in
3038 * neither, either or both collections when the associated
3039 * exception is thrown. The behavior of this operation is
3040 * undefined if the specified collection is modified while the
3041 * operation is in progress.
3042 *
3043 * @param c the collection to transfer elements into
3044 * @return the number of elements transferred
3045 */
3046 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
3047 int count = 0;
3048 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
3049 if ((ws = workQueues) != null) {
3050 for (int i = 0; i < ws.length; ++i) {
3051 if ((w = ws[i]) != null) {
3052 while ((t = w.poll()) != null) {
3053 c.add(t);
3054 ++count;
3055 }
3056 }
3057 }
3058 }
3059 return count;
3060 }
3061
3062 /**
3063 * Returns a string identifying this pool, as well as its state,
3064 * including indications of run state, parallelism level, and
3065 * worker and task counts.
3066 *
3067 * @return a string identifying this pool, as well as its state
3068 */
3069 public String toString() {
3070 // Use a single pass through workQueues to collect counts
3071 long qt = 0L, qs = 0L; int rc = 0;
3072 AuxState sc = auxState;
3073 long st = (sc == null) ? 0L : sc.stealCount;
3074 long c = ctl;
3075 WorkQueue[] ws; WorkQueue w;
3076 if ((ws = workQueues) != null) {
3077 for (int i = 0; i < ws.length; ++i) {
3078 if ((w = ws[i]) != null) {
3079 int size = w.queueSize();
3080 if ((i & 1) == 0)
3081 qs += size;
3082 else {
3083 qt += size;
3084 st += w.nsteals;
3085 if (w.isApparentlyUnblocked())
3086 ++rc;
3087 }
3088 }
3089 }
3090 }
3091 int pc = (config & SMASK);
3092 int tc = pc + (short)(c >>> TC_SHIFT);
3093 int ac = pc + (int)(c >> AC_SHIFT);
3094 if (ac < 0) // ignore transient negative
3095 ac = 0;
3096 int rs = runState;
3097 String level = ((rs & TERMINATED) != 0 ? "Terminated" :
3098 (rs & STOP) != 0 ? "Terminating" :
3099 (rs & SHUTDOWN) != 0 ? "Shutting down" :
3100 "Running");
3101 return super.toString() +
3102 "[" + level +
3103 ", parallelism = " + pc +
3104 ", size = " + tc +
3105 ", active = " + ac +
3106 ", running = " + rc +
3107 ", steals = " + st +
3108 ", tasks = " + qt +
3109 ", submissions = " + qs +
3110 "]";
3111 }
3112
3113 /**
3114 * Possibly initiates an orderly shutdown in which previously
3115 * submitted tasks are executed, but no new tasks will be
3116 * accepted. Invocation has no effect on execution state if this
3117 * is the {@link #commonPool()}, and no additional effect if
3118 * already shut down. Tasks that are in the process of being
3119 * submitted concurrently during the course of this method may or
3120 * may not be rejected.
3121 *
3122 * @throws SecurityException if a security manager exists and
3123 * the caller is not permitted to modify threads
3124 * because it does not hold {@link
3125 * java.lang.RuntimePermission}{@code ("modifyThread")}
3126 */
3127 public void shutdown() {
3128 checkPermission();
3129 tryTerminate(false, true);
3130 }
3131
3132 /**
3133 * Possibly attempts to cancel and/or stop all tasks, and reject
3134 * all subsequently submitted tasks. Invocation has no effect on
3135 * execution state if this is the {@link #commonPool()}, and no
3136 * additional effect if already shut down. Otherwise, tasks that
3137 * are in the process of being submitted or executed concurrently
3138 * during the course of this method may or may not be
3139 * rejected. This method cancels both existing and unexecuted
3140 * tasks, in order to permit termination in the presence of task
3141 * dependencies. So the method always returns an empty list
3142 * (unlike the case for some other Executors).
3143 *
3144 * @return an empty list
3145 * @throws SecurityException if a security manager exists and
3146 * the caller is not permitted to modify threads
3147 * because it does not hold {@link
3148 * java.lang.RuntimePermission}{@code ("modifyThread")}
3149 */
3150 public List<Runnable> shutdownNow() {
3151 checkPermission();
3152 tryTerminate(true, true);
3153 return Collections.emptyList();
3154 }
3155
3156 /**
3157 * Returns {@code true} if all tasks have completed following shut down.
3158 *
3159 * @return {@code true} if all tasks have completed following shut down
3160 */
3161 public boolean isTerminated() {
3162 return (runState & TERMINATED) != 0;
3163 }
3164
3165 /**
3166 * Returns {@code true} if the process of termination has
3167 * commenced but not yet completed. This method may be useful for
3168 * debugging. A return of {@code true} reported a sufficient
3169 * period after shutdown may indicate that submitted tasks have
3170 * ignored or suppressed interruption, or are waiting for I/O,
3171 * causing this executor not to properly terminate. (See the
3172 * advisory notes for class {@link ForkJoinTask} stating that
3173 * tasks should not normally entail blocking operations. But if
3174 * they do, they must abort them on interrupt.)
3175 *
3176 * @return {@code true} if terminating but not yet terminated
3177 */
3178 public boolean isTerminating() {
3179 int rs = runState;
3180 return (rs & STOP) != 0 && (rs & TERMINATED) == 0;
3181 }
3182
3183 /**
3184 * Returns {@code true} if this pool has been shut down.
3185 *
3186 * @return {@code true} if this pool has been shut down
3187 */
3188 public boolean isShutdown() {
3189 return (runState & SHUTDOWN) != 0;
3190 }
3191
3192 /**
3193 * Blocks until all tasks have completed execution after a
3194 * shutdown request, or the timeout occurs, or the current thread
3195 * is interrupted, whichever happens first. Because the {@link
3196 * #commonPool()} never terminates until program shutdown, when
3197 * applied to the common pool, this method is equivalent to {@link
3198 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
3199 *
3200 * @param timeout the maximum time to wait
3201 * @param unit the time unit of the timeout argument
3202 * @return {@code true} if this executor terminated and
3203 * {@code false} if the timeout elapsed before termination
3204 * @throws InterruptedException if interrupted while waiting
3205 */
3206 public boolean awaitTermination(long timeout, TimeUnit unit)
3207 throws InterruptedException {
3208 if (Thread.interrupted())
3209 throw new InterruptedException();
3210 if (this == common) {
3211 awaitQuiescence(timeout, unit);
3212 return false;
3213 }
3214 long nanos = unit.toNanos(timeout);
3215 if (isTerminated())
3216 return true;
3217 if (nanos <= 0L)
3218 return false;
3219 long deadline = System.nanoTime() + nanos;
3220 synchronized (this) {
3221 for (;;) {
3222 if (isTerminated())
3223 return true;
3224 if (nanos <= 0L)
3225 return false;
3226 long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
3227 wait(millis > 0L ? millis : 1L);
3228 nanos = deadline - System.nanoTime();
3229 }
3230 }
3231 }
3232
3233 /**
3234 * If called by a ForkJoinTask operating in this pool, equivalent
3235 * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3236 * waits and/or attempts to assist performing tasks until this
3237 * pool {@link #isQuiescent} or the indicated timeout elapses.
3238 *
3239 * @param timeout the maximum time to wait
3240 * @param unit the time unit of the timeout argument
3241 * @return {@code true} if quiescent; {@code false} if the
3242 * timeout elapsed.
3243 */
3244 public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3245 long nanos = unit.toNanos(timeout);
3246 ForkJoinWorkerThread wt;
3247 Thread thread = Thread.currentThread();
3248 if ((thread instanceof ForkJoinWorkerThread) &&
3249 (wt = (ForkJoinWorkerThread)thread).pool == this) {
3250 helpQuiescePool(wt.workQueue);
3251 return true;
3252 }
3253 long startTime = System.nanoTime();
3254 WorkQueue[] ws;
3255 int r = 0, wl;
3256 boolean found = true;
3257 while (!isQuiescent() && (ws = workQueues) != null &&
3258 (wl = ws.length) > 0) {
3259 if (!found) {
3260 if ((System.nanoTime() - startTime) > nanos)
3261 return false;
3262 Thread.yield(); // cannot block
3263 }
3264 found = false;
3265 for (int m = wl - 1, j = (m + 1) << 2; j >= 0; --j) {
3266 ForkJoinTask<?> t; WorkQueue q; int b, k;
3267 if ((k = r++ & m) <= m && k >= 0 && (q = ws[k]) != null &&
3268 (b = q.base) - q.top < 0) {
3269 found = true;
3270 if ((t = q.pollAt(b)) != null)
3271 t.doExec();
3272 break;
3273 }
3274 }
3275 }
3276 return true;
3277 }
3278
3279 /**
3280 * Waits and/or attempts to assist performing tasks indefinitely
3281 * until the {@link #commonPool()} {@link #isQuiescent}.
3282 */
3283 static void quiesceCommonPool() {
3284 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3285 }
3286
3287 /**
3288 * Interface for extending managed parallelism for tasks running
3289 * in {@link ForkJoinPool}s.
3290 *
3291 * <p>A {@code ManagedBlocker} provides two methods. Method
3292 * {@link #isReleasable} must return {@code true} if blocking is
3293 * not necessary. Method {@link #block} blocks the current thread
3294 * if necessary (perhaps internally invoking {@code isReleasable}
3295 * before actually blocking). These actions are performed by any
3296 * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
3297 * The unusual methods in this API accommodate synchronizers that
3298 * may, but don't usually, block for long periods. Similarly, they
3299 * allow more efficient internal handling of cases in which
3300 * additional workers may be, but usually are not, needed to
3301 * ensure sufficient parallelism. Toward this end,
3302 * implementations of method {@code isReleasable} must be amenable
3303 * to repeated invocation.
3304 *
3305 * <p>For example, here is a ManagedBlocker based on a
3306 * ReentrantLock:
3307 * <pre> {@code
3308 * class ManagedLocker implements ManagedBlocker {
3309 * final ReentrantLock lock;
3310 * boolean hasLock = false;
3311 * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3312 * public boolean block() {
3313 * if (!hasLock)
3314 * lock.lock();
3315 * return true;
3316 * }
3317 * public boolean isReleasable() {
3318 * return hasLock || (hasLock = lock.tryLock());
3319 * }
3320 * }}</pre>
3321 *
3322 * <p>Here is a class that possibly blocks waiting for an
3323 * item on a given queue:
3324 * <pre> {@code
3325 * class QueueTaker<E> implements ManagedBlocker {
3326 * final BlockingQueue<E> queue;
3327 * volatile E item = null;
3328 * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3329 * public boolean block() throws InterruptedException {
3330 * if (item == null)
3331 * item = queue.take();
3332 * return true;
3333 * }
3334 * public boolean isReleasable() {
3335 * return item != null || (item = queue.poll()) != null;
3336 * }
3337 * public E getItem() { // call after pool.managedBlock completes
3338 * return item;
3339 * }
3340 * }}</pre>
3341 */
3342 public static interface ManagedBlocker {
3343 /**
3344 * Possibly blocks the current thread, for example waiting for
3345 * a lock or condition.
3346 *
3347 * @return {@code true} if no additional blocking is necessary
3348 * (i.e., if isReleasable would return true)
3349 * @throws InterruptedException if interrupted while waiting
3350 * (the method is not required to do so, but is allowed to)
3351 */
3352 boolean block() throws InterruptedException;
3353
3354 /**
3355 * Returns {@code true} if blocking is unnecessary.
3356 * @return {@code true} if blocking is unnecessary
3357 */
3358 boolean isReleasable();
3359 }
3360
3361 /**
3362 * Runs the given possibly blocking task. When {@linkplain
3363 * ForkJoinTask#inForkJoinPool() running in a ForkJoinPool}, this
3364 * method possibly arranges for a spare thread to be activated if
3365 * necessary to ensure sufficient parallelism while the current
3366 * thread is blocked in {@link ManagedBlocker#block blocker.block()}.
3367 *
3368 * <p>This method repeatedly calls {@code blocker.isReleasable()} and
3369 * {@code blocker.block()} until either method returns {@code true}.
3370 * Every call to {@code blocker.block()} is preceded by a call to
3371 * {@code blocker.isReleasable()} that returned {@code false}.
3372 *
3373 * <p>If not running in a ForkJoinPool, this method is
3374 * behaviorally equivalent to
3375 * <pre> {@code
3376 * while (!blocker.isReleasable())
3377 * if (blocker.block())
3378 * break;}</pre>
3379 *
3380 * If running in a ForkJoinPool, the pool may first be expanded to
3381 * ensure sufficient parallelism available during the call to
3382 * {@code blocker.block()}.
3383 *
3384 * @param blocker the blocker task
3385 * @throws InterruptedException if {@code blocker.block()} did so
3386 */
3387 public static void managedBlock(ManagedBlocker blocker)
3388 throws InterruptedException {
3389 ForkJoinPool p;
3390 ForkJoinWorkerThread wt;
3391 Thread t = Thread.currentThread();
3392 if ((t instanceof ForkJoinWorkerThread) &&
3393 (p = (wt = (ForkJoinWorkerThread)t).pool) != null) {
3394 WorkQueue w = wt.workQueue;
3395 while (!blocker.isReleasable()) {
3396 if (p.tryCompensate(w)) {
3397 try {
3398 do {} while (!blocker.isReleasable() &&
3399 !blocker.block());
3400 } finally {
3401 U.getAndAddLong(p, CTL, AC_UNIT);
3402 }
3403 break;
3404 }
3405 }
3406 }
3407 else {
3408 do {} while (!blocker.isReleasable() &&
3409 !blocker.block());
3410 }
3411 }
3412
3413 // AbstractExecutorService overrides. These rely on undocumented
3414 // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3415 // implement RunnableFuture.
3416
3417 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3418 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3419 }
3420
3421 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3422 return new ForkJoinTask.AdaptedCallable<T>(callable);
3423 }
3424
3425 // Unsafe mechanics
3426 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
3427 private static final long CTL;
3428 private static final long RUNSTATE;
3429 private static final int ABASE;
3430 private static final int ASHIFT;
3431
3432 static {
3433 try {
3434 CTL = U.objectFieldOffset
3435 (ForkJoinPool.class.getDeclaredField("ctl"));
3436 RUNSTATE = U.objectFieldOffset
3437 (ForkJoinPool.class.getDeclaredField("runState"));
3438 ABASE = U.arrayBaseOffset(ForkJoinTask[].class);
3439 int scale = U.arrayIndexScale(ForkJoinTask[].class);
3440 if ((scale & (scale - 1)) != 0)
3441 throw new Error("array index scale not a power of two");
3442 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3443 } catch (ReflectiveOperationException e) {
3444 throw new Error(e);
3445 }
3446
3447 // Reduce the risk of rare disastrous classloading in first call to
3448 // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
3449 Class<?> ensureLoaded = LockSupport.class;
3450
3451 int commonMaxSpares = DEFAULT_COMMON_MAX_SPARES;
3452 try {
3453 String p = System.getProperty
3454 ("java.util.concurrent.ForkJoinPool.common.maximumSpares");
3455 if (p != null)
3456 commonMaxSpares = Integer.parseInt(p);
3457 } catch (Exception ignore) {}
3458 COMMON_MAX_SPARES = commonMaxSpares;
3459
3460 defaultForkJoinWorkerThreadFactory =
3461 new DefaultForkJoinWorkerThreadFactory();
3462 modifyThreadPermission = new RuntimePermission("modifyThread");
3463
3464 common = java.security.AccessController.doPrivileged
3465 (new java.security.PrivilegedAction<ForkJoinPool>() {
3466 public ForkJoinPool run() { return makeCommonPool(); }});
3467
3468 // report 1 even if threads disabled
3469 COMMON_PARALLELISM = Math.max(common.config & SMASK, 1);
3470 }
3471
3472 /**
3473 * Creates and returns the common pool, respecting user settings
3474 * specified via system properties.
3475 */
3476 static ForkJoinPool makeCommonPool() {
3477 int parallelism = -1;
3478 ForkJoinWorkerThreadFactory factory = null;
3479 UncaughtExceptionHandler handler = null;
3480 try { // ignore exceptions in accessing/parsing properties
3481 String pp = System.getProperty
3482 ("java.util.concurrent.ForkJoinPool.common.parallelism");
3483 String fp = System.getProperty
3484 ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3485 String hp = System.getProperty
3486 ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3487 if (pp != null)
3488 parallelism = Integer.parseInt(pp);
3489 if (fp != null)
3490 factory = ((ForkJoinWorkerThreadFactory)ClassLoader.
3491 getSystemClassLoader().loadClass(fp).newInstance());
3492 if (hp != null)
3493 handler = ((UncaughtExceptionHandler)ClassLoader.
3494 getSystemClassLoader().loadClass(hp).newInstance());
3495 } catch (Exception ignore) {
3496 }
3497 if (factory == null) {
3498 if (System.getSecurityManager() == null)
3499 factory = defaultForkJoinWorkerThreadFactory;
3500 else // use security-managed default
3501 factory = new InnocuousForkJoinWorkerThreadFactory();
3502 }
3503 if (parallelism < 0 && // default 1 less than #cores
3504 (parallelism = Runtime.getRuntime().availableProcessors() - 1) <= 0)
3505 parallelism = 1;
3506 if (parallelism > MAX_CAP)
3507 parallelism = MAX_CAP;
3508 return new ForkJoinPool(parallelism, factory, handler, LIFO_QUEUE,
3509 "ForkJoinPool.commonPool-worker-");
3510 }
3511
3512 /**
3513 * Factory for innocuous worker threads.
3514 */
3515 private static final class InnocuousForkJoinWorkerThreadFactory
3516 implements ForkJoinWorkerThreadFactory {
3517
3518 /**
3519 * An ACC to restrict permissions for the factory itself.
3520 * The constructed workers have no permissions set.
3521 */
3522 private static final AccessControlContext innocuousAcc;
3523 static {
3524 Permissions innocuousPerms = new Permissions();
3525 innocuousPerms.add(modifyThreadPermission);
3526 innocuousPerms.add(new RuntimePermission(
3527 "enableContextClassLoaderOverride"));
3528 innocuousPerms.add(new RuntimePermission(
3529 "modifyThreadGroup"));
3530 innocuousAcc = new AccessControlContext(new ProtectionDomain[] {
3531 new ProtectionDomain(null, innocuousPerms)
3532 });
3533 }
3534
3535 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
3536 return java.security.AccessController.doPrivileged(
3537 new java.security.PrivilegedAction<ForkJoinWorkerThread>() {
3538 public ForkJoinWorkerThread run() {
3539 return new ForkJoinWorkerThread.
3540 InnocuousForkJoinWorkerThread(pool);
3541 }}, innocuousAcc);
3542 }
3543 }
3544
3545 }