ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.299
Committed: Wed Dec 16 02:29:06 2015 UTC (8 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.298: +5 -4 lines
Log Message:
handle jdk9 move: sun.misc.Contended -> jdk.internal.vm.annotation.Contended

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.lang.Thread.UncaughtExceptionHandler;
10 import java.security.AccessControlContext;
11 import java.security.Permissions;
12 import java.security.ProtectionDomain;
13 import java.util.ArrayList;
14 import java.util.Arrays;
15 import java.util.Collection;
16 import java.util.Collections;
17 import java.util.List;
18 import java.util.concurrent.locks.ReentrantLock;
19 import java.util.concurrent.locks.LockSupport;
20
21 /**
22 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
23 * A {@code ForkJoinPool} provides the entry point for submissions
24 * from non-{@code ForkJoinTask} clients, as well as management and
25 * monitoring operations.
26 *
27 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
28 * ExecutorService} mainly by virtue of employing
29 * <em>work-stealing</em>: all threads in the pool attempt to find and
30 * execute tasks submitted to the pool and/or created by other active
31 * tasks (eventually blocking waiting for work if none exist). This
32 * enables efficient processing when most tasks spawn other subtasks
33 * (as do most {@code ForkJoinTask}s), as well as when many small
34 * tasks are submitted to the pool from external clients. Especially
35 * when setting <em>asyncMode</em> to true in constructors, {@code
36 * ForkJoinPool}s may also be appropriate for use with event-style
37 * tasks that are never joined.
38 *
39 * <p>A static {@link #commonPool()} is available and appropriate for
40 * most applications. The common pool is used by any ForkJoinTask that
41 * is not explicitly submitted to a specified pool. Using the common
42 * pool normally reduces resource usage (its threads are slowly
43 * reclaimed during periods of non-use, and reinstated upon subsequent
44 * use).
45 *
46 * <p>For applications that require separate or custom pools, a {@code
47 * ForkJoinPool} may be constructed with a given target parallelism
48 * level; by default, equal to the number of available processors.
49 * The pool attempts to maintain enough active (or available) threads
50 * by dynamically adding, suspending, or resuming internal worker
51 * threads, even if some tasks are stalled waiting to join others.
52 * However, no such adjustments are guaranteed in the face of blocked
53 * I/O or other unmanaged synchronization. The nested {@link
54 * ManagedBlocker} interface enables extension of the kinds of
55 * synchronization accommodated.
56 *
57 * <p>In addition to execution and lifecycle control methods, this
58 * class provides status check methods (for example
59 * {@link #getStealCount}) that are intended to aid in developing,
60 * tuning, and monitoring fork/join applications. Also, method
61 * {@link #toString} returns indications of pool state in a
62 * convenient form for informal monitoring.
63 *
64 * <p>As is the case with other ExecutorServices, there are three
65 * main task execution methods summarized in the following table.
66 * These are designed to be used primarily by clients not already
67 * engaged in fork/join computations in the current pool. The main
68 * forms of these methods accept instances of {@code ForkJoinTask},
69 * but overloaded forms also allow mixed execution of plain {@code
70 * Runnable}- or {@code Callable}- based activities as well. However,
71 * tasks that are already executing in a pool should normally instead
72 * use the within-computation forms listed in the table unless using
73 * async event-style tasks that are not usually joined, in which case
74 * there is little difference among choice of methods.
75 *
76 * <table BORDER CELLPADDING=3 CELLSPACING=1>
77 * <caption>Summary of task execution methods</caption>
78 * <tr>
79 * <td></td>
80 * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
81 * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
82 * </tr>
83 * <tr>
84 * <td> <b>Arrange async execution</b></td>
85 * <td> {@link #execute(ForkJoinTask)}</td>
86 * <td> {@link ForkJoinTask#fork}</td>
87 * </tr>
88 * <tr>
89 * <td> <b>Await and obtain result</b></td>
90 * <td> {@link #invoke(ForkJoinTask)}</td>
91 * <td> {@link ForkJoinTask#invoke}</td>
92 * </tr>
93 * <tr>
94 * <td> <b>Arrange exec and obtain Future</b></td>
95 * <td> {@link #submit(ForkJoinTask)}</td>
96 * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
97 * </tr>
98 * </table>
99 *
100 * <p>The common pool is by default constructed with default
101 * parameters, but these may be controlled by setting three
102 * {@linkplain System#getProperty system properties}:
103 * <ul>
104 * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
105 * - the parallelism level, a non-negative integer
106 * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
107 * - the class name of a {@link ForkJoinWorkerThreadFactory}
108 * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
109 * - the class name of a {@link UncaughtExceptionHandler}
110 * <li>{@code java.util.concurrent.ForkJoinPool.common.maximumSpares}
111 * - the maximum number of allowed extra threads to maintain target
112 * parallelism (default 256).
113 * </ul>
114 * If a {@link SecurityManager} is present and no factory is
115 * specified, then the default pool uses a factory supplying
116 * threads that have no {@link Permissions} enabled.
117 * The system class loader is used to load these classes.
118 * Upon any error in establishing these settings, default parameters
119 * are used. It is possible to disable or limit the use of threads in
120 * the common pool by setting the parallelism property to zero, and/or
121 * using a factory that may return {@code null}. However doing so may
122 * cause unjoined tasks to never be executed.
123 *
124 * <p><b>Implementation notes</b>: This implementation restricts the
125 * maximum number of running threads to 32767. Attempts to create
126 * pools with greater than the maximum number result in
127 * {@code IllegalArgumentException}.
128 *
129 * <p>This implementation rejects submitted tasks (that is, by throwing
130 * {@link RejectedExecutionException}) only when the pool is shut down
131 * or internal resources have been exhausted.
132 *
133 * @since 1.7
134 * @author Doug Lea
135 */
136 @jdk.internal.vm.annotation.Contended
137 public class ForkJoinPool extends AbstractExecutorService {
138
139 /*
140 * Implementation Overview
141 *
142 * This class and its nested classes provide the main
143 * functionality and control for a set of worker threads:
144 * Submissions from non-FJ threads enter into submission queues.
145 * Workers take these tasks and typically split them into subtasks
146 * that may be stolen by other workers. Preference rules give
147 * first priority to processing tasks from their own queues (LIFO
148 * or FIFO, depending on mode), then to randomized FIFO steals of
149 * tasks in other queues. This framework began as vehicle for
150 * supporting tree-structured parallelism using work-stealing.
151 * Over time, its scalability advantages led to extensions and
152 * changes to better support more diverse usage contexts. Because
153 * most internal methods and nested classes are interrelated,
154 * their main rationale and descriptions are presented here;
155 * individual methods and nested classes contain only brief
156 * comments about details.
157 *
158 * WorkQueues
159 * ==========
160 *
161 * Most operations occur within work-stealing queues (in nested
162 * class WorkQueue). These are special forms of Deques that
163 * support only three of the four possible end-operations -- push,
164 * pop, and poll (aka steal), under the further constraints that
165 * push and pop are called only from the owning thread (or, as
166 * extended here, under a lock), while poll may be called from
167 * other threads. (If you are unfamiliar with them, you probably
168 * want to read Herlihy and Shavit's book "The Art of
169 * Multiprocessor programming", chapter 16 describing these in
170 * more detail before proceeding.) The main work-stealing queue
171 * design is roughly similar to those in the papers "Dynamic
172 * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
173 * (http://research.sun.com/scalable/pubs/index.html) and
174 * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
175 * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
176 * The main differences ultimately stem from GC requirements that
177 * we null out taken slots as soon as we can, to maintain as small
178 * a footprint as possible even in programs generating huge
179 * numbers of tasks. To accomplish this, we shift the CAS
180 * arbitrating pop vs poll (steal) from being on the indices
181 * ("base" and "top") to the slots themselves.
182 *
183 * Adding tasks then takes the form of a classic array push(task)
184 * in a circular buffer:
185 * q.array[q.top++ % length] = task;
186 *
187 * (The actual code needs to null-check and size-check the array,
188 * uses masking, not mod, for indexing a power-of-two-sized array,
189 * properly fences accesses, and possibly signals waiting workers
190 * to start scanning -- see below.) Both a successful pop and
191 * poll mainly entail a CAS of a slot from non-null to null.
192 *
193 * The pop operation (always performed by owner) is:
194 * if ((the task at top slot is not null) and
195 * (CAS slot to null))
196 * decrement top and return task;
197 *
198 * And the poll operation (usually by a stealer) is
199 * if ((the task at base slot is not null) and
200 * (CAS slot to null))
201 * increment base and return task;
202 *
203 * There are several variants of each of these; for example most
204 * versions of poll pre-screen the CAS by rechecking that the base
205 * has not changed since reading the slot, and most methods only
206 * attempt the CAS if base appears not to be equal to top.
207 *
208 * Memory ordering. See "Correct and Efficient Work-Stealing for
209 * Weak Memory Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
210 * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
211 * analysis of memory ordering requirements in work-stealing
212 * algorithms similar to (but different than) the one used here.
213 * Extracting tasks in array slots via (fully fenced) CAS provides
214 * primary synchronization. The base and top indices imprecisely
215 * guide where to extract from. We do not always require strict
216 * orderings of array and index updates, so sometimes let them be
217 * subject to compiler and processor reorderings. However, the
218 * volatile "base" index also serves as a basis for memory
219 * ordering: Slot accesses are preceded by a read of base,
220 * ensuring happens-before ordering with respect to stealers (so
221 * the slots themselves can be read via plain array reads.) The
222 * only other memory orderings relied on are maintained in the
223 * course of signalling and activation (see below). A check that
224 * base == top indicates (momentary) emptiness, but otherwise may
225 * err on the side of possibly making the queue appear nonempty
226 * when a push, pop, or poll have not fully committed, or making
227 * it appear empty when an update of top has not yet been visibly
228 * written. (Method isEmpty() checks the case of a partially
229 * completed removal of the last element.) Because of this, the
230 * poll operation, considered individually, is not wait-free. One
231 * thief cannot successfully continue until another in-progress
232 * one (or, if previously empty, a push) visibly completes.
233 * However, in the aggregate, we ensure at least probabilistic
234 * non-blockingness. If an attempted steal fails, a scanning
235 * thief chooses a different random victim target to try next. So,
236 * in order for one thief to progress, it suffices for any
237 * in-progress poll or new push on any empty queue to
238 * complete. (This is why we normally use method pollAt and its
239 * variants that try once at the apparent base index, else
240 * consider alternative actions, rather than method poll, which
241 * retries.)
242 *
243 * This approach also enables support of a user mode in which
244 * local task processing is in FIFO, not LIFO order, simply by
245 * using poll rather than pop. This can be useful in
246 * message-passing frameworks in which tasks are never joined.
247 *
248 * WorkQueues are also used in a similar way for tasks submitted
249 * to the pool. We cannot mix these tasks in the same queues used
250 * by workers. Instead, we randomly associate submission queues
251 * with submitting threads, using a form of hashing. The
252 * ThreadLocalRandom probe value serves as a hash code for
253 * choosing existing queues, and may be randomly repositioned upon
254 * contention with other submitters. In essence, submitters act
255 * like workers except that they are restricted to executing local
256 * tasks that they submitted (or in the case of CountedCompleters,
257 * others with the same root task). Insertion of tasks in shared
258 * mode requires a lock but we use only a simple spinlock (using
259 * field qlock), because submitters encountering a busy queue move
260 * on to try or create other queues -- they block only when
261 * creating and registering new queues. Because it is used only as
262 * a spinlock, unlocking requires only a "releasing" store (using
263 * putOrderedInt). The qlock is also used during termination
264 * detection, in which case it is forced to a negative
265 * non-lockable value.
266 *
267 * Management
268 * ==========
269 *
270 * The main throughput advantages of work-stealing stem from
271 * decentralized control -- workers mostly take tasks from
272 * themselves or each other, at rates that can exceed a billion
273 * per second. The pool itself creates, activates (enables
274 * scanning for and running tasks), deactivates, blocks, and
275 * terminates threads, all with minimal central information.
276 * There are only a few properties that we can globally track or
277 * maintain, so we pack them into a small number of variables,
278 * often maintaining atomicity without blocking or locking.
279 * Nearly all essentially atomic control state is held in two
280 * volatile variables that are by far most often read (not
281 * written) as status and consistency checks. (Also, field
282 * "config" holds unchanging configuration state.)
283 *
284 * Field "ctl" contains 64 bits holding information needed to
285 * atomically decide to add, inactivate, enqueue (on an event
286 * queue), dequeue, and/or re-activate workers. To enable this
287 * packing, we restrict maximum parallelism to (1<<15)-1 (which is
288 * far in excess of normal operating range) to allow ids, counts,
289 * and their negations (used for thresholding) to fit into 16bit
290 * subfields.
291 *
292 * Field "runState" holds lifetime status, atomically and
293 * monotonically setting STARTED, SHUTDOWN, STOP, and finally
294 * TERMINATED bits.
295 *
296 * Field "auxState" is a ReentrantLock subclass that also
297 * opportunistically holds some other bookkeeping fields accessed
298 * only when locked. It is mainly used to lock (infrequent)
299 * updates to workQueues. The auxState instance is itself lazily
300 * constructed (see tryInitialize), requiring a double-check-style
301 * bootstrapping use of field runState, and locking a private
302 * static.
303 *
304 * Field "workQueues" holds references to WorkQueues. It is
305 * updated (only during worker creation and termination) under the
306 * lock, but is otherwise concurrently readable, and accessed
307 * directly. We also ensure that reads of the array reference
308 * itself never become too stale (for example, re-reading before
309 * each scan). To simplify index-based operations, the array size
310 * is always a power of two, and all readers must tolerate null
311 * slots. Worker queues are at odd indices. Shared (submission)
312 * queues are at even indices, up to a maximum of 64 slots, to
313 * limit growth even if array needs to expand to add more
314 * workers. Grouping them together in this way simplifies and
315 * speeds up task scanning.
316 *
317 * All worker thread creation is on-demand, triggered by task
318 * submissions, replacement of terminated workers, and/or
319 * compensation for blocked workers. However, all other support
320 * code is set up to work with other policies. To ensure that we
321 * do not hold on to worker references that would prevent GC, all
322 * accesses to workQueues are via indices into the workQueues
323 * array (which is one source of some of the messy code
324 * constructions here). In essence, the workQueues array serves as
325 * a weak reference mechanism. Thus for example the stack top
326 * subfield of ctl stores indices, not references.
327 *
328 * Queuing Idle Workers. Unlike HPC work-stealing frameworks, we
329 * cannot let workers spin indefinitely scanning for tasks when
330 * none can be found immediately, and we cannot start/resume
331 * workers unless there appear to be tasks available. On the
332 * other hand, we must quickly prod them into action when new
333 * tasks are submitted or generated. In many usages, ramp-up time
334 * to activate workers is the main limiting factor in overall
335 * performance, which is compounded at program start-up by JIT
336 * compilation and allocation. So we streamline this as much as
337 * possible.
338 *
339 * The "ctl" field atomically maintains active and total worker
340 * counts as well as a queue to place waiting threads so they can
341 * be located for signalling. Active counts also play the role of
342 * quiescence indicators, so are decremented when workers believe
343 * that there are no more tasks to execute. The "queue" is
344 * actually a form of Treiber stack. A stack is ideal for
345 * activating threads in most-recently used order. This improves
346 * performance and locality, outweighing the disadvantages of
347 * being prone to contention and inability to release a worker
348 * unless it is topmost on stack. We block/unblock workers after
349 * pushing on the idle worker stack (represented by the lower
350 * 32bit subfield of ctl) when they cannot find work. The top
351 * stack state holds the value of the "scanState" field of the
352 * worker: its index and status, plus a version counter that, in
353 * addition to the count subfields (also serving as version
354 * stamps) provide protection against Treiber stack ABA effects.
355 *
356 * Creating workers. To create a worker, we pre-increment total
357 * count (serving as a reservation), and attempt to construct a
358 * ForkJoinWorkerThread via its factory. Upon construction, the
359 * new thread invokes registerWorker, where it constructs a
360 * WorkQueue and is assigned an index in the workQueues array
361 * (expanding the array if necessary). The thread is then started.
362 * Upon any exception across these steps, or null return from
363 * factory, deregisterWorker adjusts counts and records
364 * accordingly. If a null return, the pool continues running with
365 * fewer than the target number workers. If exceptional, the
366 * exception is propagated, generally to some external caller.
367 * Worker index assignment avoids the bias in scanning that would
368 * occur if entries were sequentially packed starting at the front
369 * of the workQueues array. We treat the array as a simple
370 * power-of-two hash table, expanding as needed. The seedIndex
371 * increment ensures no collisions until a resize is needed or a
372 * worker is deregistered and replaced, and thereafter keeps
373 * probability of collision low. We cannot use
374 * ThreadLocalRandom.getProbe() for similar purposes here because
375 * the thread has not started yet, but do so for creating
376 * submission queues for existing external threads (see
377 * externalPush).
378 *
379 * WorkQueue field scanState is used by both workers and the pool
380 * to manage and track whether a worker is UNSIGNALLED (possibly
381 * blocked waiting for a signal). When a worker is inactivated,
382 * its scanState field is set, and is prevented from executing
383 * tasks, even though it must scan once for them to avoid queuing
384 * races. Note that scanState updates lag queue CAS releases so
385 * usage requires care. When queued, the lower 16 bits of
386 * scanState must hold its pool index. So we place the index there
387 * upon initialization (see registerWorker) and otherwise keep it
388 * there or restore it when necessary.
389 *
390 * The ctl field also serves as the basis for memory
391 * synchronization surrounding activation. This uses a more
392 * efficient version of a Dekker-like rule that task producers and
393 * consumers sync with each other by both writing/CASing ctl (even
394 * if to its current value). This would be extremely costly. So
395 * we relax it in several ways: (1) Producers only signal when
396 * their queue is empty. Other workers propagate this signal (in
397 * method scan) when they find tasks. (2) Workers only enqueue
398 * after scanning (see below) and not finding any tasks. (3)
399 * Rather than CASing ctl to its current value in the common case
400 * where no action is required, we reduce write contention by
401 * equivalently prefacing signalWork when called by an external
402 * task producer using a memory access with full-volatile
403 * semantics or a "fullFence". (4) For internal task producers we
404 * rely on the fact that even if no other workers awaken, the
405 * producer itself will eventually see the task and execute it.
406 *
407 * Almost always, too many signals are issued. A task producer
408 * cannot in general tell if some existing worker is in the midst
409 * of finishing one task (or already scanning) and ready to take
410 * another without being signalled. So the producer might instead
411 * activate a different worker that does not find any work, and
412 * then inactivates. This scarcely matters in steady-state
413 * computations involving all workers, but can create contention
414 * and bookkeeping bottlenecks during ramp-up, ramp-down, and small
415 * computations involving only a few workers.
416 *
417 * Scanning. Method scan() performs top-level scanning for tasks.
418 * Each scan traverses (and tries to poll from) each queue in
419 * pseudorandom permutation order by randomly selecting an origin
420 * index and a step value. (The pseudorandom generator need not
421 * have high-quality statistical properties in the long term, but
422 * just within computations; We use 64bit and 32bit Marsaglia
423 * XorShifts, which are cheap and suffice here.) Scanning also
424 * employs contention reduction: When scanning workers fail a CAS
425 * polling for work, they soon restart with a different
426 * pseudorandom scan order (thus likely retrying at different
427 * intervals). This improves throughput when many threads are
428 * trying to take tasks from few queues. Scans do not otherwise
429 * explicitly take into account core affinities, loads, cache
430 * localities, etc, However, they do exploit temporal locality
431 * (which usually approximates these) by preferring to re-poll (up
432 * to POLL_LIMIT times) from the same queue after a successful
433 * poll before trying others. Restricted forms of scanning occur
434 * in methods helpComplete and findNonEmptyStealQueue, and take
435 * similar but simpler forms.
436 *
437 * Deactivation and waiting. Queuing encounters several intrinsic
438 * races; most notably that an inactivating scanning worker can
439 * miss seeing a task produced during a scan. So when a worker
440 * cannot find a task to steal, it inactivates and enqueues, and
441 * then rescans to ensure that it didn't miss one, reactivating
442 * upon seeing one with probability approximately proportional to
443 * probability of a miss. (In most cases, the worker will be
444 * signalled before self-signalling, avoiding cascades of multiple
445 * signals for the same task).
446 *
447 * Workers block (in method awaitWork) using park/unpark;
448 * advertising the need for signallers to unpark by setting their
449 * "parker" fields.
450 *
451 * Trimming workers. To release resources after periods of lack of
452 * use, a worker starting to wait when the pool is quiescent will
453 * time out and terminate (see awaitWork) if the pool has remained
454 * quiescent for period given by IDLE_TIMEOUT_MS, increasing the
455 * period as the number of threads decreases, eventually removing
456 * all workers.
457 *
458 * Shutdown and Termination. A call to shutdownNow invokes
459 * tryTerminate to atomically set a runState bit. The calling
460 * thread, as well as every other worker thereafter terminating,
461 * helps terminate others by setting their (qlock) status,
462 * cancelling their unprocessed tasks, and waking them up, doing
463 * so repeatedly until stable. Calls to non-abrupt shutdown()
464 * preface this by checking whether termination should commence.
465 * This relies primarily on the active count bits of "ctl"
466 * maintaining consensus -- tryTerminate is called from awaitWork
467 * whenever quiescent. However, external submitters do not take
468 * part in this consensus. So, tryTerminate sweeps through queues
469 * (until stable) to ensure lack of in-flight submissions and
470 * workers about to process them before triggering the "STOP"
471 * phase of termination. (Note: there is an intrinsic conflict if
472 * helpQuiescePool is called when shutdown is enabled. Both wait
473 * for quiescence, but tryTerminate is biased to not trigger until
474 * helpQuiescePool completes.)
475 *
476 * Joining Tasks
477 * =============
478 *
479 * Any of several actions may be taken when one worker is waiting
480 * to join a task stolen (or always held) by another. Because we
481 * are multiplexing many tasks on to a pool of workers, we can't
482 * just let them block (as in Thread.join). We also cannot just
483 * reassign the joiner's run-time stack with another and replace
484 * it later, which would be a form of "continuation", that even if
485 * possible is not necessarily a good idea since we may need both
486 * an unblocked task and its continuation to progress. Instead we
487 * combine two tactics:
488 *
489 * Helping: Arranging for the joiner to execute some task that it
490 * would be running if the steal had not occurred.
491 *
492 * Compensating: Unless there are already enough live threads,
493 * method tryCompensate() may create or re-activate a spare
494 * thread to compensate for blocked joiners until they unblock.
495 *
496 * A third form (implemented in tryRemoveAndExec) amounts to
497 * helping a hypothetical compensator: If we can readily tell that
498 * a possible action of a compensator is to steal and execute the
499 * task being joined, the joining thread can do so directly,
500 * without the need for a compensation thread (although at the
501 * expense of larger run-time stacks, but the tradeoff is
502 * typically worthwhile).
503 *
504 * The ManagedBlocker extension API can't use helping so relies
505 * only on compensation in method awaitBlocker.
506 *
507 * The algorithm in helpStealer entails a form of "linear
508 * helping". Each worker records (in field currentSteal) the most
509 * recent task it stole from some other worker (or a submission).
510 * It also records (in field currentJoin) the task it is currently
511 * actively joining. Method helpStealer uses these markers to try
512 * to find a worker to help (i.e., steal back a task from and
513 * execute it) that could hasten completion of the actively joined
514 * task. Thus, the joiner executes a task that would be on its
515 * own local deque had the to-be-joined task not been stolen. This
516 * is a conservative variant of the approach described in Wagner &
517 * Calder "Leapfrogging: a portable technique for implementing
518 * efficient futures" SIGPLAN Notices, 1993
519 * (http://portal.acm.org/citation.cfm?id=155354). It differs in
520 * that: (1) We only maintain dependency links across workers upon
521 * steals, rather than use per-task bookkeeping. This sometimes
522 * requires a linear scan of workQueues array to locate stealers,
523 * but often doesn't because stealers leave hints (that may become
524 * stale/wrong) of where to locate them. It is only a hint
525 * because a worker might have had multiple steals and the hint
526 * records only one of them (usually the most current). Hinting
527 * isolates cost to when it is needed, rather than adding to
528 * per-task overhead. (2) It is "shallow", ignoring nesting and
529 * potentially cyclic mutual steals. (3) It is intentionally
530 * racy: field currentJoin is updated only while actively joining,
531 * which means that we miss links in the chain during long-lived
532 * tasks, GC stalls etc (which is OK since blocking in such cases
533 * is usually a good idea). (4) We bound the number of attempts
534 * to find work using checksums and fall back to suspending the
535 * worker and if necessary replacing it with another.
536 *
537 * Helping actions for CountedCompleters do not require tracking
538 * currentJoins: Method helpComplete takes and executes any task
539 * with the same root as the task being waited on (preferring
540 * local pops to non-local polls). However, this still entails
541 * some traversal of completer chains, so is less efficient than
542 * using CountedCompleters without explicit joins.
543 *
544 * Compensation does not aim to keep exactly the target
545 * parallelism number of unblocked threads running at any given
546 * time. Some previous versions of this class employed immediate
547 * compensations for any blocked join. However, in practice, the
548 * vast majority of blockages are transient byproducts of GC and
549 * other JVM or OS activities that are made worse by replacement.
550 * Currently, compensation is attempted only after validating that
551 * all purportedly active threads are processing tasks by checking
552 * field WorkQueue.scanState, which eliminates most false
553 * positives. Also, compensation is bypassed (tolerating fewer
554 * threads) in the most common case in which it is rarely
555 * beneficial: when a worker with an empty queue (thus no
556 * continuation tasks) blocks on a join and there still remain
557 * enough threads to ensure liveness.
558 *
559 * Spare threads are removed as soon as they notice that the
560 * target parallelism level has been exceeded, in method
561 * tryDropSpare. (Method scan arranges returns for rechecks upon
562 * each probe via the "bound" parameter.)
563 *
564 * The compensation mechanism may be bounded. Bounds for the
565 * commonPool (see COMMON_MAX_SPARES) better enable JVMs to cope
566 * with programming errors and abuse before running out of
567 * resources to do so. In other cases, users may supply factories
568 * that limit thread construction. The effects of bounding in this
569 * pool (like all others) is imprecise. Total worker counts are
570 * decremented when threads deregister, not when they exit and
571 * resources are reclaimed by the JVM and OS. So the number of
572 * simultaneously live threads may transiently exceed bounds.
573 *
574 * Common Pool
575 * ===========
576 *
577 * The static common pool always exists after static
578 * initialization. Since it (or any other created pool) need
579 * never be used, we minimize initial construction overhead and
580 * footprint to the setup of about a dozen fields, with no nested
581 * allocation. Most bootstrapping occurs within method
582 * externalSubmit during the first submission to the pool.
583 *
584 * When external threads submit to the common pool, they can
585 * perform subtask processing (see externalHelpComplete and
586 * related methods) upon joins. This caller-helps policy makes it
587 * sensible to set common pool parallelism level to one (or more)
588 * less than the total number of available cores, or even zero for
589 * pure caller-runs. We do not need to record whether external
590 * submissions are to the common pool -- if not, external help
591 * methods return quickly. These submitters would otherwise be
592 * blocked waiting for completion, so the extra effort (with
593 * liberally sprinkled task status checks) in inapplicable cases
594 * amounts to an odd form of limited spin-wait before blocking in
595 * ForkJoinTask.join.
596 *
597 * As a more appropriate default in managed environments, unless
598 * overridden by system properties, we use workers of subclass
599 * InnocuousForkJoinWorkerThread when there is a SecurityManager
600 * present. These workers have no permissions set, do not belong
601 * to any user-defined ThreadGroup, and erase all ThreadLocals
602 * after executing any top-level task (see WorkQueue.runTask).
603 * The associated mechanics (mainly in ForkJoinWorkerThread) may
604 * be JVM-dependent and must access particular Thread class fields
605 * to achieve this effect.
606 *
607 * Style notes
608 * ===========
609 *
610 * Memory ordering relies mainly on Unsafe intrinsics that carry
611 * the further responsibility of explicitly performing null- and
612 * bounds- checks otherwise carried out implicitly by JVMs. This
613 * can be awkward and ugly, but also reflects the need to control
614 * outcomes across the unusual cases that arise in very racy code
615 * with very few invariants. So these explicit checks would exist
616 * in some form anyway. All fields are read into locals before
617 * use, and null-checked if they are references. This is usually
618 * done in a "C"-like style of listing declarations at the heads
619 * of methods or blocks, and using inline assignments on first
620 * encounter. Array bounds-checks are usually performed by
621 * masking with array.length-1, which relies on the invariant that
622 * these arrays are created with positive lengths, which is itself
623 * paranoically checked. Nearly all explicit checks lead to
624 * bypass/return, not exception throws, because they may
625 * legitimately arise due to cancellation/revocation during
626 * shutdown.
627 *
628 * There is a lot of representation-level coupling among classes
629 * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
630 * fields of WorkQueue maintain data structures managed by
631 * ForkJoinPool, so are directly accessed. There is little point
632 * trying to reduce this, since any associated future changes in
633 * representations will need to be accompanied by algorithmic
634 * changes anyway. Several methods intrinsically sprawl because
635 * they must accumulate sets of consistent reads of fields held in
636 * local variables. There are also other coding oddities
637 * (including several unnecessary-looking hoisted null checks)
638 * that help some methods perform reasonably even when interpreted
639 * (not compiled).
640 *
641 * The order of declarations in this file is (with a few exceptions):
642 * (1) Static utility functions
643 * (2) Nested (static) classes
644 * (3) Static fields
645 * (4) Fields, along with constants used when unpacking some of them
646 * (5) Internal control methods
647 * (6) Callbacks and other support for ForkJoinTask methods
648 * (7) Exported methods
649 * (8) Static block initializing statics in minimally dependent order
650 */
651
652 // Static utilities
653
654 /**
655 * If there is a security manager, makes sure caller has
656 * permission to modify threads.
657 */
658 private static void checkPermission() {
659 SecurityManager security = System.getSecurityManager();
660 if (security != null)
661 security.checkPermission(modifyThreadPermission);
662 }
663
664 // Nested classes
665
666 /**
667 * Factory for creating new {@link ForkJoinWorkerThread}s.
668 * A {@code ForkJoinWorkerThreadFactory} must be defined and used
669 * for {@code ForkJoinWorkerThread} subclasses that extend base
670 * functionality or initialize threads with different contexts.
671 */
672 public static interface ForkJoinWorkerThreadFactory {
673 /**
674 * Returns a new worker thread operating in the given pool.
675 *
676 * @param pool the pool this thread works in
677 * @return the new worker thread, or {@code null} if the request
678 * to create a thread is rejected
679 * @throws NullPointerException if the pool is null
680 */
681 public ForkJoinWorkerThread newThread(ForkJoinPool pool);
682 }
683
684 /**
685 * Default ForkJoinWorkerThreadFactory implementation; creates a
686 * new ForkJoinWorkerThread.
687 */
688 private static final class DefaultForkJoinWorkerThreadFactory
689 implements ForkJoinWorkerThreadFactory {
690 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
691 return new ForkJoinWorkerThread(pool);
692 }
693 }
694
695 /**
696 * Class for artificial tasks that are used to replace the target
697 * of local joins if they are removed from an interior queue slot
698 * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
699 * actually do anything beyond having a unique identity.
700 */
701 private static final class EmptyTask extends ForkJoinTask<Void> {
702 private static final long serialVersionUID = -7721805057305804111L;
703 EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
704 public final Void getRawResult() { return null; }
705 public final void setRawResult(Void x) {}
706 public final boolean exec() { return true; }
707 }
708
709 /**
710 * Additional fields and lock created upon initialization.
711 */
712 private static final class AuxState extends ReentrantLock {
713 private static final long serialVersionUID = -6001602636862214147L;
714 volatile long stealCount; // cumulative steal count
715 long indexSeed; // index bits for registerWorker
716 AuxState() {}
717 }
718
719 // Constants shared across ForkJoinPool and WorkQueue
720
721 // Bounds
722 static final int SMASK = 0xffff; // short bits == max index
723 static final int MAX_CAP = 0x7fff; // max #workers - 1
724 static final int EVENMASK = 0xfffe; // even short bits
725 static final int SQMASK = 0x007e; // max 64 (even) slots
726
727 // Masks and units for WorkQueue.scanState and ctl sp subfield
728 static final int UNSIGNALLED = 1 << 31; // must be negative
729 static final int SS_SEQ = 1 << 16; // version count
730
731 // Mode bits for ForkJoinPool.config and WorkQueue.config
732 static final int MODE_MASK = 0xffff << 16; // top half of int
733 static final int SPARE_WORKER = 1 << 17; // set if tc > 0 on creation
734 static final int UNREGISTERED = 1 << 18; // to skip some of deregister
735 static final int FIFO_QUEUE = 1 << 31; // must be negative
736 static final int LIFO_QUEUE = 0; // for clarity
737 static final int IS_OWNED = 1; // low bit 0 if shared
738
739 /**
740 * The maximum number of task executions from the same queue
741 * before checking other queues, bounding unfairness and impact of
742 * infinite user task recursion. Must be a power of two minus 1.
743 */
744 static final int POLL_LIMIT = (1 << 10) - 1;
745
746 /**
747 * Queues supporting work-stealing as well as external task
748 * submission. See above for descriptions and algorithms.
749 * Performance on most platforms is very sensitive to placement of
750 * instances of both WorkQueues and their arrays -- we absolutely
751 * do not want multiple WorkQueue instances or multiple queue
752 * arrays sharing cache lines. The @Contended annotation alerts
753 * JVMs to try to keep instances apart.
754 */
755 @jdk.internal.vm.annotation.Contended
756 static final class WorkQueue {
757
758 /**
759 * Capacity of work-stealing queue array upon initialization.
760 * Must be a power of two; at least 4, but should be larger to
761 * reduce or eliminate cacheline sharing among queues.
762 * Currently, it is much larger, as a partial workaround for
763 * the fact that JVMs often place arrays in locations that
764 * share GC bookkeeping (especially cardmarks) such that
765 * per-write accesses encounter serious memory contention.
766 */
767 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
768
769 /**
770 * Maximum size for queue arrays. Must be a power of two less
771 * than or equal to 1 << (31 - width of array entry) to ensure
772 * lack of wraparound of index calculations, but defined to a
773 * value a bit less than this to help users trap runaway
774 * programs before saturating systems.
775 */
776 static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
777
778 // Instance fields
779
780 volatile int scanState; // versioned, negative if inactive
781 int stackPred; // pool stack (ctl) predecessor
782 int nsteals; // number of steals
783 int hint; // randomization and stealer index hint
784 int config; // pool index and mode
785 volatile int qlock; // 1: locked, < 0: terminate; else 0
786 volatile int base; // index of next slot for poll
787 int top; // index of next slot for push
788 ForkJoinTask<?>[] array; // the elements (initially unallocated)
789 final ForkJoinPool pool; // the containing pool (may be null)
790 final ForkJoinWorkerThread owner; // owning thread or null if shared
791 volatile Thread parker; // == owner during call to park; else null
792 volatile ForkJoinTask<?> currentJoin; // task being joined in awaitJoin
793
794 @jdk.internal.vm.annotation.Contended("group2") // segregate
795 volatile ForkJoinTask<?> currentSteal; // nonnull when running some task
796
797 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner) {
798 this.pool = pool;
799 this.owner = owner;
800 // Place indices in the center of array (that is not yet allocated)
801 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
802 }
803
804 /**
805 * Returns an exportable index (used by ForkJoinWorkerThread).
806 */
807 final int getPoolIndex() {
808 return (config & 0xffff) >>> 1; // ignore odd/even tag bit
809 }
810
811 /**
812 * Returns the approximate number of tasks in the queue.
813 */
814 final int queueSize() {
815 int n = base - top; // read base first
816 return (n >= 0) ? 0 : -n; // ignore transient negative
817 }
818
819 /**
820 * Provides a more accurate estimate of whether this queue has
821 * any tasks than does queueSize, by checking whether a
822 * near-empty queue has at least one unclaimed task.
823 */
824 final boolean isEmpty() {
825 ForkJoinTask<?>[] a; int n, al, s;
826 return ((n = base - (s = top)) >= 0 || // possibly one task
827 (n == -1 && ((a = array) == null ||
828 (al = a.length) == 0 ||
829 a[(al - 1) & (s - 1)] == null)));
830 }
831
832 /**
833 * Pushes a task. Call only by owner in unshared queues.
834 *
835 * @param task the task. Caller must ensure non-null.
836 * @throws RejectedExecutionException if array cannot be resized
837 */
838 final void push(ForkJoinTask<?> task) {
839 U.storeFence(); // ensure safe publication
840 int s = top, al, d; ForkJoinTask<?>[] a;
841 if ((a = array) != null && (al = a.length) > 0) {
842 a[(al - 1) & s] = task; // relaxed writes OK
843 top = s + 1;
844 ForkJoinPool p = pool;
845 if ((d = base - s) == 0 && p != null) {
846 U.fullFence();
847 p.signalWork();
848 }
849 else if (al + d == 1)
850 growArray();
851 }
852 }
853
854 /**
855 * Initializes or doubles the capacity of array. Call either
856 * by owner or with lock held -- it is OK for base, but not
857 * top, to move while resizings are in progress.
858 */
859 final ForkJoinTask<?>[] growArray() {
860 ForkJoinTask<?>[] oldA = array;
861 int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
862 if (size < INITIAL_QUEUE_CAPACITY || size > MAXIMUM_QUEUE_CAPACITY)
863 throw new RejectedExecutionException("Queue capacity exceeded");
864 int oldMask, t, b;
865 ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
866 if (oldA != null && (oldMask = oldA.length - 1) > 0 &&
867 (t = top) - (b = base) > 0) {
868 int mask = size - 1;
869 do { // emulate poll from old array, push to new array
870 int index = b & oldMask;
871 long offset = ((long)index << ASHIFT) + ABASE;
872 ForkJoinTask<?> x = (ForkJoinTask<?>)
873 U.getObjectVolatile(oldA, offset);
874 if (x != null &&
875 U.compareAndSwapObject(oldA, offset, x, null))
876 a[b & mask] = x;
877 } while (++b != t);
878 U.storeFence();
879 }
880 return a;
881 }
882
883 /**
884 * Takes next task, if one exists, in LIFO order. Call only
885 * by owner in unshared queues.
886 */
887 final ForkJoinTask<?> pop() {
888 int b = base, s = top, al, i; ForkJoinTask<?>[] a;
889 if ((a = array) != null && b != s && (al = a.length) > 0) {
890 int index = (al - 1) & --s;
891 long offset = ((long)index << ASHIFT) + ABASE;
892 ForkJoinTask<?> t = (ForkJoinTask<?>)
893 U.getObject(a, offset);
894 if (t != null &&
895 U.compareAndSwapObject(a, offset, t, null)) {
896 top = s;
897 return t;
898 }
899 }
900 return null;
901 }
902
903 /**
904 * Takes a task in FIFO order if b is base of queue and a task
905 * can be claimed without contention. Specialized versions
906 * appear in ForkJoinPool methods scan and helpStealer.
907 */
908 final ForkJoinTask<?> pollAt(int b) {
909 ForkJoinTask<?>[] a; int al;
910 if ((a = array) != null && (al = a.length) > 0) {
911 int index = (al - 1) & b;
912 long offset = ((long)index << ASHIFT) + ABASE;
913 ForkJoinTask<?> t = (ForkJoinTask<?>)
914 U.getObjectVolatile(a, offset);
915 if (t != null && b++ == base &&
916 U.compareAndSwapObject(a, offset, t, null)) {
917 base = b;
918 return t;
919 }
920 }
921 return null;
922 }
923
924 /**
925 * Takes next task, if one exists, in FIFO order.
926 */
927 final ForkJoinTask<?> poll() {
928 for (;;) {
929 int b = base, s = top, d, al; ForkJoinTask<?>[] a;
930 if ((a = array) != null && (d = b - s) < 0 &&
931 (al = a.length) > 0) {
932 int index = (al - 1) & b;
933 long offset = ((long)index << ASHIFT) + ABASE;
934 ForkJoinTask<?> t = (ForkJoinTask<?>)
935 U.getObjectVolatile(a, offset);
936 if (b++ == base) {
937 if (t != null) {
938 if (U.compareAndSwapObject(a, offset, t, null)) {
939 base = b;
940 return t;
941 }
942 }
943 else if (d == -1)
944 break; // now empty
945 }
946 }
947 else
948 break;
949 }
950 return null;
951 }
952
953 /**
954 * Takes next task, if one exists, in order specified by mode.
955 */
956 final ForkJoinTask<?> nextLocalTask() {
957 return (config < 0) ? poll() : pop();
958 }
959
960 /**
961 * Returns next task, if one exists, in order specified by mode.
962 */
963 final ForkJoinTask<?> peek() {
964 int al; ForkJoinTask<?>[] a;
965 return ((a = array) != null && (al = a.length) > 0) ?
966 a[(al - 1) & (config < 0 ? base : top - 1)] : null;
967 }
968
969 /**
970 * Pops the given task only if it is at the current top.
971 */
972 final boolean tryUnpush(ForkJoinTask<?> task) {
973 int b = base, s = top, al; ForkJoinTask<?>[] a;
974 if ((a = array) != null && b != s && (al = a.length) > 0) {
975 int index = (al - 1) & --s;
976 long offset = ((long)index << ASHIFT) + ABASE;
977 if (U.compareAndSwapObject(a, offset, task, null)) {
978 top = s;
979 return true;
980 }
981 }
982 return false;
983 }
984
985 /**
986 * Shared version of push. Fails if already locked.
987 *
988 * @return status: > 0 locked, 0 possibly was empty, < 0 was nonempty
989 */
990 final int sharedPush(ForkJoinTask<?> task) {
991 int stat;
992 if (U.compareAndSwapInt(this, QLOCK, 0, 1)) {
993 int b = base, s = top, al, d; ForkJoinTask<?>[] a;
994 if ((a = array) != null && (al = a.length) > 0 &&
995 al - 1 + (d = b - s) > 0) {
996 a[(al - 1) & s] = task;
997 top = s + 1; // relaxed writes OK here
998 qlock = 0;
999 stat = (d < 0 && b == base) ? d : 0;
1000 }
1001 else {
1002 growAndSharedPush(task);
1003 stat = 0;
1004 }
1005 }
1006 else
1007 stat = 1;
1008 return stat;
1009 }
1010
1011 /**
1012 * Helper for sharedPush; called only when locked and resize
1013 * needed.
1014 */
1015 private void growAndSharedPush(ForkJoinTask<?> task) {
1016 try {
1017 growArray();
1018 int s = top, al; ForkJoinTask<?>[] a;
1019 if ((a = array) != null && (al = a.length) > 0) {
1020 a[(al - 1) & s] = task;
1021 top = s + 1;
1022 }
1023 } finally {
1024 qlock = 0;
1025 }
1026 }
1027
1028 /**
1029 * Shared version of tryUnpush.
1030 */
1031 final boolean trySharedUnpush(ForkJoinTask<?> task) {
1032 boolean popped = false;
1033 int s = top - 1, al; ForkJoinTask<?>[] a;
1034 if ((a = array) != null && (al = a.length) > 0) {
1035 int index = (al - 1) & s;
1036 long offset = ((long)index << ASHIFT) + ABASE;
1037 ForkJoinTask<?> t = (ForkJoinTask<?>) U.getObject(a, offset);
1038 if (t == task &&
1039 U.compareAndSwapInt(this, QLOCK, 0, 1)) {
1040 if (top == s + 1 && array == a &&
1041 U.compareAndSwapObject(a, offset, task, null)) {
1042 popped = true;
1043 top = s;
1044 }
1045 U.putOrderedInt(this, QLOCK, 0);
1046 }
1047 }
1048 return popped;
1049 }
1050
1051 /**
1052 * Removes and cancels all known tasks, ignoring any exceptions.
1053 */
1054 final void cancelAll() {
1055 ForkJoinTask<?> t;
1056 if ((t = currentJoin) != null) {
1057 currentJoin = null;
1058 ForkJoinTask.cancelIgnoringExceptions(t);
1059 }
1060 if ((t = currentSteal) != null) {
1061 currentSteal = null;
1062 ForkJoinTask.cancelIgnoringExceptions(t);
1063 }
1064 while ((t = poll()) != null)
1065 ForkJoinTask.cancelIgnoringExceptions(t);
1066 }
1067
1068 // Specialized execution methods
1069
1070 /**
1071 * Pops and executes up to POLL_LIMIT tasks or until empty.
1072 */
1073 final void localPopAndExec() {
1074 for (int nexec = 0;;) {
1075 int b = base, s = top, al; ForkJoinTask<?>[] a;
1076 if ((a = array) != null && b != s && (al = a.length) > 0) {
1077 int index = (al - 1) & --s;
1078 long offset = ((long)index << ASHIFT) + ABASE;
1079 ForkJoinTask<?> t = (ForkJoinTask<?>)
1080 U.getAndSetObject(a, offset, null);
1081 if (t != null) {
1082 top = s;
1083 (currentSteal = t).doExec();
1084 if (++nexec > POLL_LIMIT)
1085 break;
1086 }
1087 else
1088 break;
1089 }
1090 else
1091 break;
1092 }
1093 }
1094
1095 /**
1096 * Polls and executes up to POLL_LIMIT tasks or until empty.
1097 */
1098 final void localPollAndExec() {
1099 for (int nexec = 0;;) {
1100 int b = base, s = top, al; ForkJoinTask<?>[] a;
1101 if ((a = array) != null && b != s && (al = a.length) > 0) {
1102 int index = (al - 1) & b++;
1103 long offset = ((long)index << ASHIFT) + ABASE;
1104 ForkJoinTask<?> t = (ForkJoinTask<?>)
1105 U.getAndSetObject(a, offset, null);
1106 if (t != null) {
1107 base = b;
1108 t.doExec();
1109 if (++nexec > POLL_LIMIT)
1110 break;
1111 }
1112 }
1113 else
1114 break;
1115 }
1116 }
1117
1118 /**
1119 * Executes the given task and (some) remaining local tasks.
1120 */
1121 final void runTask(ForkJoinTask<?> task) {
1122 if (task != null) {
1123 task.doExec();
1124 if (config < 0)
1125 localPollAndExec();
1126 else
1127 localPopAndExec();
1128 int ns = ++nsteals;
1129 ForkJoinWorkerThread thread = owner;
1130 currentSteal = null;
1131 if (ns < 0) // collect on overflow
1132 transferStealCount(pool);
1133 if (thread != null)
1134 thread.afterTopLevelExec();
1135 }
1136 }
1137
1138 /**
1139 * Adds steal count to pool steal count if it exists, and resets.
1140 */
1141 final void transferStealCount(ForkJoinPool p) {
1142 AuxState aux;
1143 if (p != null && (aux = p.auxState) != null) {
1144 long s = nsteals;
1145 nsteals = 0; // if negative, correct for overflow
1146 if (s < 0) s = Integer.MAX_VALUE;
1147 aux.lock();
1148 try {
1149 aux.stealCount += s;
1150 } finally {
1151 aux.unlock();
1152 }
1153 }
1154 }
1155
1156 /**
1157 * If present, removes from queue and executes the given task,
1158 * or any other cancelled task. Used only by awaitJoin.
1159 *
1160 * @return true if queue empty and task not known to be done
1161 */
1162 final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
1163 if (task != null && task.status >= 0) {
1164 int b, s, d, al; ForkJoinTask<?>[] a;
1165 while ((d = (b = base) - (s = top)) < 0 &&
1166 (a = array) != null && (al = a.length) > 0) {
1167 for (;;) { // traverse from s to b
1168 int index = --s & (al - 1);
1169 long offset = (index << ASHIFT) + ABASE;
1170 ForkJoinTask<?> t = (ForkJoinTask<?>)
1171 U.getObjectVolatile(a, offset);
1172 if (t == null)
1173 break; // restart
1174 else if (t == task) {
1175 boolean removed = false;
1176 if (s + 1 == top) { // pop
1177 if (U.compareAndSwapObject(a, offset, t, null)) {
1178 top = s;
1179 removed = true;
1180 }
1181 }
1182 else if (base == b) // replace with proxy
1183 removed = U.compareAndSwapObject(a, offset, t,
1184 new EmptyTask());
1185 if (removed) {
1186 ForkJoinTask<?> ps = currentSteal;
1187 (currentSteal = task).doExec();
1188 currentSteal = ps;
1189 }
1190 break;
1191 }
1192 else if (t.status < 0 && s + 1 == top) {
1193 if (U.compareAndSwapObject(a, offset, t, null)) {
1194 top = s;
1195 }
1196 break; // was cancelled
1197 }
1198 else if (++d == 0) {
1199 if (base != b) // rescan
1200 break;
1201 return false;
1202 }
1203 }
1204 if (task.status < 0)
1205 return false;
1206 }
1207 }
1208 return true;
1209 }
1210
1211 /**
1212 * Pops task if in the same CC computation as the given task,
1213 * in either shared or owned mode. Used only by helpComplete.
1214 */
1215 final CountedCompleter<?> popCC(CountedCompleter<?> task, int mode) {
1216 int b = base, s = top, al; ForkJoinTask<?>[] a;
1217 if ((a = array) != null && b != s && (al = a.length) > 0) {
1218 int index = (al - 1) & (s - 1);
1219 long offset = ((long)index << ASHIFT) + ABASE;
1220 ForkJoinTask<?> o = (ForkJoinTask<?>)
1221 U.getObjectVolatile(a, offset);
1222 if (o instanceof CountedCompleter) {
1223 CountedCompleter<?> t = (CountedCompleter<?>)o;
1224 for (CountedCompleter<?> r = t;;) {
1225 if (r == task) {
1226 if ((mode & IS_OWNED) == 0) {
1227 boolean popped = false;
1228 if (U.compareAndSwapInt(this, QLOCK, 0, 1)) {
1229 if (top == s && array == a &&
1230 U.compareAndSwapObject(a, offset,
1231 t, null)) {
1232 popped = true;
1233 top = s - 1;
1234 }
1235 U.putOrderedInt(this, QLOCK, 0);
1236 if (popped)
1237 return t;
1238 }
1239 }
1240 else if (U.compareAndSwapObject(a, offset,
1241 t, null)) {
1242 top = s - 1;
1243 return t;
1244 }
1245 break;
1246 }
1247 else if ((r = r.completer) == null) // try parent
1248 break;
1249 }
1250 }
1251 }
1252 return null;
1253 }
1254
1255 /**
1256 * Steals and runs a task in the same CC computation as the
1257 * given task if one exists and can be taken without
1258 * contention. Otherwise returns a checksum/control value for
1259 * use by method helpComplete.
1260 *
1261 * @return 1 if successful, 2 if retryable (lost to another
1262 * stealer), -1 if non-empty but no matching task found, else
1263 * the base index, forced negative.
1264 */
1265 final int pollAndExecCC(CountedCompleter<?> task) {
1266 ForkJoinTask<?>[] a;
1267 int b = base, s = top, al, h;
1268 if ((a = array) != null && b != s && (al = a.length) > 0) {
1269 int index = (al - 1) & b;
1270 long offset = ((long)index << ASHIFT) + ABASE;
1271 ForkJoinTask<?> o = (ForkJoinTask<?>)
1272 U.getObjectVolatile(a, offset);
1273 if (o == null)
1274 h = 2; // retryable
1275 else if (!(o instanceof CountedCompleter))
1276 h = -1; // unmatchable
1277 else {
1278 CountedCompleter<?> t = (CountedCompleter<?>)o;
1279 for (CountedCompleter<?> r = t;;) {
1280 if (r == task) {
1281 if (b++ == base &&
1282 U.compareAndSwapObject(a, offset, t, null)) {
1283 base = b;
1284 t.doExec();
1285 h = 1; // success
1286 }
1287 else
1288 h = 2; // lost CAS
1289 break;
1290 }
1291 else if ((r = r.completer) == null) {
1292 h = -1; // unmatched
1293 break;
1294 }
1295 }
1296 }
1297 }
1298 else
1299 h = b | Integer.MIN_VALUE; // to sense movement on re-poll
1300 return h;
1301 }
1302
1303 /**
1304 * Returns true if owned and not known to be blocked.
1305 */
1306 final boolean isApparentlyUnblocked() {
1307 Thread wt; Thread.State s;
1308 return (scanState >= 0 &&
1309 (wt = owner) != null &&
1310 (s = wt.getState()) != Thread.State.BLOCKED &&
1311 s != Thread.State.WAITING &&
1312 s != Thread.State.TIMED_WAITING);
1313 }
1314
1315 // Unsafe mechanics. Note that some are (and must be) the same as in FJP
1316 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
1317 private static final long QLOCK;
1318 private static final int ABASE;
1319 private static final int ASHIFT;
1320 static {
1321 try {
1322 QLOCK = U.objectFieldOffset
1323 (WorkQueue.class.getDeclaredField("qlock"));
1324 ABASE = U.arrayBaseOffset(ForkJoinTask[].class);
1325 int scale = U.arrayIndexScale(ForkJoinTask[].class);
1326 if ((scale & (scale - 1)) != 0)
1327 throw new Error("array index scale not a power of two");
1328 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1329 } catch (ReflectiveOperationException e) {
1330 throw new Error(e);
1331 }
1332 }
1333 }
1334
1335 // static fields (initialized in static initializer below)
1336
1337 /**
1338 * Creates a new ForkJoinWorkerThread. This factory is used unless
1339 * overridden in ForkJoinPool constructors.
1340 */
1341 public static final ForkJoinWorkerThreadFactory
1342 defaultForkJoinWorkerThreadFactory;
1343
1344 /**
1345 * Permission required for callers of methods that may start or
1346 * kill threads. Also used as a static lock in tryInitialize.
1347 */
1348 static final RuntimePermission modifyThreadPermission;
1349
1350 /**
1351 * Common (static) pool. Non-null for public use unless a static
1352 * construction exception, but internal usages null-check on use
1353 * to paranoically avoid potential initialization circularities
1354 * as well as to simplify generated code.
1355 */
1356 static final ForkJoinPool common;
1357
1358 /**
1359 * Common pool parallelism. To allow simpler use and management
1360 * when common pool threads are disabled, we allow the underlying
1361 * common.parallelism field to be zero, but in that case still report
1362 * parallelism as 1 to reflect resulting caller-runs mechanics.
1363 */
1364 static final int COMMON_PARALLELISM;
1365
1366 /**
1367 * Limit on spare thread construction in tryCompensate.
1368 */
1369 private static final int COMMON_MAX_SPARES;
1370
1371 /**
1372 * Sequence number for creating workerNamePrefix.
1373 */
1374 private static int poolNumberSequence;
1375
1376 /**
1377 * Returns the next sequence number. We don't expect this to
1378 * ever contend, so use simple builtin sync.
1379 */
1380 private static final synchronized int nextPoolId() {
1381 return ++poolNumberSequence;
1382 }
1383
1384 // static configuration constants
1385
1386 /**
1387 * Initial timeout value (in milliseconds) for the thread
1388 * triggering quiescence to park waiting for new work. On timeout,
1389 * the thread will instead try to shrink the number of workers.
1390 * The value should be large enough to avoid overly aggressive
1391 * shrinkage during most transient stalls (long GCs etc).
1392 */
1393 private static final long IDLE_TIMEOUT_MS = 2000L; // 2sec
1394
1395 /**
1396 * Tolerance for idle timeouts, to cope with timer undershoots.
1397 */
1398 private static final long TIMEOUT_SLOP_MS = 20L; // 20ms
1399
1400 /**
1401 * The default value for COMMON_MAX_SPARES. Overridable using the
1402 * "java.util.concurrent.ForkJoinPool.common.maximumSpares" system
1403 * property. The default value is far in excess of normal
1404 * requirements, but also far short of MAX_CAP and typical OS
1405 * thread limits, so allows JVMs to catch misuse/abuse before
1406 * running out of resources needed to do so.
1407 */
1408 private static final int DEFAULT_COMMON_MAX_SPARES = 256;
1409
1410 /**
1411 * Increment for seed generators. See class ThreadLocal for
1412 * explanation.
1413 */
1414 private static final int SEED_INCREMENT = 0x9e3779b9;
1415
1416 /*
1417 * Bits and masks for field ctl, packed with 4 16 bit subfields:
1418 * AC: Number of active running workers minus target parallelism
1419 * TC: Number of total workers minus target parallelism
1420 * SS: version count and status of top waiting thread
1421 * ID: poolIndex of top of Treiber stack of waiters
1422 *
1423 * When convenient, we can extract the lower 32 stack top bits
1424 * (including version bits) as sp=(int)ctl. The offsets of counts
1425 * by the target parallelism and the positionings of fields makes
1426 * it possible to perform the most common checks via sign tests of
1427 * fields: When ac is negative, there are not enough active
1428 * workers, when tc is negative, there are not enough total
1429 * workers. When sp is non-zero, there are waiting workers. To
1430 * deal with possibly negative fields, we use casts in and out of
1431 * "short" and/or signed shifts to maintain signedness.
1432 *
1433 * Because it occupies uppermost bits, we can add one active count
1434 * using getAndAddLong of AC_UNIT, rather than CAS, when returning
1435 * from a blocked join. Other updates entail multiple subfields
1436 * and masking, requiring CAS.
1437 */
1438
1439 // Lower and upper word masks
1440 private static final long SP_MASK = 0xffffffffL;
1441 private static final long UC_MASK = ~SP_MASK;
1442
1443 // Active counts
1444 private static final int AC_SHIFT = 48;
1445 private static final long AC_UNIT = 0x0001L << AC_SHIFT;
1446 private static final long AC_MASK = 0xffffL << AC_SHIFT;
1447
1448 // Total counts
1449 private static final int TC_SHIFT = 32;
1450 private static final long TC_UNIT = 0x0001L << TC_SHIFT;
1451 private static final long TC_MASK = 0xffffL << TC_SHIFT;
1452 private static final long ADD_WORKER = 0x0001L << (TC_SHIFT + 15); // sign
1453
1454 // runState bits: SHUTDOWN must be negative, others arbitrary powers of two
1455 private static final int STARTED = 1;
1456 private static final int STOP = 1 << 1;
1457 private static final int TERMINATED = 1 << 2;
1458 private static final int SHUTDOWN = 1 << 31;
1459
1460 // Instance fields
1461 volatile long ctl; // main pool control
1462 volatile int runState;
1463 final int config; // parallelism, mode
1464 AuxState auxState; // lock, steal counts
1465 volatile WorkQueue[] workQueues; // main registry
1466 final String workerNamePrefix; // to create worker name string
1467 final ForkJoinWorkerThreadFactory factory;
1468 final UncaughtExceptionHandler ueh; // per-worker UEH
1469
1470 /**
1471 * Instantiates fields upon first submission, or upon shutdown if
1472 * no submissions. If checkTermination true, also responds to
1473 * termination by external calls submitting tasks.
1474 */
1475 private void tryInitialize(boolean checkTermination) {
1476 if (runState == 0) { // bootstrap by locking static field
1477 int p = config & SMASK;
1478 int n = (p > 1) ? p - 1 : 1; // ensure at least 2 slots
1479 n |= n >>> 1; // create workQueues array with size a power of two
1480 n |= n >>> 2;
1481 n |= n >>> 4;
1482 n |= n >>> 8;
1483 n |= n >>> 16;
1484 n = ((n + 1) << 1) & SMASK;
1485 AuxState aux = new AuxState();
1486 WorkQueue[] ws = new WorkQueue[n];
1487 synchronized (modifyThreadPermission) { // double-check
1488 if (runState == 0) {
1489 workQueues = ws;
1490 auxState = aux;
1491 runState = STARTED;
1492 }
1493 }
1494 }
1495 if (checkTermination && runState < 0) {
1496 tryTerminate(false, false); // help terminate
1497 throw new RejectedExecutionException();
1498 }
1499 }
1500
1501 // Creating, registering and deregistering workers
1502
1503 /**
1504 * Tries to construct and start one worker. Assumes that total
1505 * count has already been incremented as a reservation. Invokes
1506 * deregisterWorker on any failure.
1507 *
1508 * @param isSpare true if this is a spare thread
1509 * @return true if successful
1510 */
1511 private boolean createWorker(boolean isSpare) {
1512 ForkJoinWorkerThreadFactory fac = factory;
1513 Throwable ex = null;
1514 ForkJoinWorkerThread wt = null;
1515 WorkQueue q;
1516 try {
1517 if (fac != null && (wt = fac.newThread(this)) != null) {
1518 if (isSpare && (q = wt.workQueue) != null)
1519 q.config |= SPARE_WORKER;
1520 wt.start();
1521 return true;
1522 }
1523 } catch (Throwable rex) {
1524 ex = rex;
1525 }
1526 deregisterWorker(wt, ex);
1527 return false;
1528 }
1529
1530 /**
1531 * Tries to add one worker, incrementing ctl counts before doing
1532 * so, relying on createWorker to back out on failure.
1533 *
1534 * @param c incoming ctl value, with total count negative and no
1535 * idle workers. On CAS failure, c is refreshed and retried if
1536 * this holds (otherwise, a new worker is not needed).
1537 */
1538 private void tryAddWorker(long c) {
1539 do {
1540 long nc = ((AC_MASK & (c + AC_UNIT)) |
1541 (TC_MASK & (c + TC_UNIT)));
1542 if (ctl == c && U.compareAndSwapLong(this, CTL, c, nc)) {
1543 createWorker(false);
1544 break;
1545 }
1546 } while (((c = ctl) & ADD_WORKER) != 0L && (int)c == 0);
1547 }
1548
1549 /**
1550 * Callback from ForkJoinWorkerThread constructor to establish and
1551 * record its WorkQueue.
1552 *
1553 * @param wt the worker thread
1554 * @return the worker's queue
1555 */
1556 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1557 UncaughtExceptionHandler handler;
1558 AuxState aux;
1559 wt.setDaemon(true); // configure thread
1560 if ((handler = ueh) != null)
1561 wt.setUncaughtExceptionHandler(handler);
1562 WorkQueue w = new WorkQueue(this, wt);
1563 int i = 0; // assign a pool index
1564 int mode = config & MODE_MASK;
1565 if ((aux = auxState) != null) {
1566 aux.lock();
1567 try {
1568 int s = (int)(aux.indexSeed += SEED_INCREMENT), n, m;
1569 WorkQueue[] ws = workQueues;
1570 if (ws != null && (n = ws.length) > 0) {
1571 i = (m = n - 1) & ((s << 1) | 1); // odd-numbered indices
1572 if (ws[i] != null) { // collision
1573 int probes = 0; // step by approx half n
1574 int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1575 while (ws[i = (i + step) & m] != null) {
1576 if (++probes >= n) {
1577 workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1578 m = n - 1;
1579 probes = 0;
1580 }
1581 }
1582 }
1583 w.hint = s; // use as random seed
1584 w.config = i | mode;
1585 w.scanState = i | (s & 0x7fff0000); // random seq bits
1586 ws[i] = w;
1587 }
1588 } finally {
1589 aux.unlock();
1590 }
1591 }
1592 wt.setName(workerNamePrefix.concat(Integer.toString(i >>> 1)));
1593 return w;
1594 }
1595
1596 /**
1597 * Final callback from terminating worker, as well as upon failure
1598 * to construct or start a worker. Removes record of worker from
1599 * array, and adjusts counts. If pool is shutting down, tries to
1600 * complete termination.
1601 *
1602 * @param wt the worker thread, or null if construction failed
1603 * @param ex the exception causing failure, or null if none
1604 */
1605 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1606 WorkQueue w = null;
1607 if (wt != null && (w = wt.workQueue) != null) {
1608 AuxState aux; WorkQueue[] ws; // remove index from array
1609 int idx = w.config & SMASK;
1610 int ns = w.nsteals;
1611 if ((aux = auxState) != null) {
1612 aux.lock();
1613 try {
1614 if ((ws = workQueues) != null && ws.length > idx &&
1615 ws[idx] == w)
1616 ws[idx] = null;
1617 aux.stealCount += ns;
1618 } finally {
1619 aux.unlock();
1620 }
1621 }
1622 }
1623 if (w == null || (w.config & UNREGISTERED) == 0) { // else pre-adjusted
1624 long c; // decrement counts
1625 do {} while (!U.compareAndSwapLong
1626 (this, CTL, c = ctl, ((AC_MASK & (c - AC_UNIT)) |
1627 (TC_MASK & (c - TC_UNIT)) |
1628 (SP_MASK & c))));
1629 }
1630 if (w != null) {
1631 w.currentSteal = null;
1632 w.qlock = -1; // ensure set
1633 w.cancelAll(); // cancel remaining tasks
1634 }
1635 while (tryTerminate(false, false) >= 0) { // possibly replace
1636 WorkQueue[] ws; int wl, sp; long c;
1637 if (w == null || w.array == null ||
1638 (ws = workQueues) == null || (wl = ws.length) <= 0)
1639 break;
1640 else if ((sp = (int)(c = ctl)) != 0) { // wake up replacement
1641 if (tryRelease(c, ws[(wl - 1) & sp], AC_UNIT))
1642 break;
1643 }
1644 else if (ex != null && (c & ADD_WORKER) != 0L) {
1645 tryAddWorker(c); // create replacement
1646 break;
1647 }
1648 else // don't need replacement
1649 break;
1650 }
1651 if (ex == null) // help clean on way out
1652 ForkJoinTask.helpExpungeStaleExceptions();
1653 else // rethrow
1654 ForkJoinTask.rethrow(ex);
1655 }
1656
1657 // Signalling
1658
1659 /**
1660 * Tries to create or activate a worker if too few are active.
1661 */
1662 final void signalWork() {
1663 for (;;) {
1664 long c; int sp, i; WorkQueue v; WorkQueue[] ws;
1665 if ((c = ctl) >= 0L) // enough workers
1666 break;
1667 else if ((sp = (int)c) == 0) { // no idle workers
1668 if ((c & ADD_WORKER) != 0L) // too few workers
1669 tryAddWorker(c);
1670 break;
1671 }
1672 else if ((ws = workQueues) == null)
1673 break; // unstarted/terminated
1674 else if (ws.length <= (i = sp & SMASK))
1675 break; // terminated
1676 else if ((v = ws[i]) == null)
1677 break; // terminating
1678 else {
1679 int ns = sp & ~UNSIGNALLED;
1680 int vs = v.scanState;
1681 long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + AC_UNIT));
1682 if (sp == vs && U.compareAndSwapLong(this, CTL, c, nc)) {
1683 v.scanState = ns;
1684 LockSupport.unpark(v.parker);
1685 break;
1686 }
1687 }
1688 }
1689 }
1690
1691 /**
1692 * Signals and releases worker v if it is top of idle worker
1693 * stack. This performs a one-shot version of signalWork only if
1694 * there is (apparently) at least one idle worker.
1695 *
1696 * @param c incoming ctl value
1697 * @param v if non-null, a worker
1698 * @param inc the increment to active count (zero when compensating)
1699 * @return true if successful
1700 */
1701 private boolean tryRelease(long c, WorkQueue v, long inc) {
1702 int sp = (int)c, ns = sp & ~UNSIGNALLED;
1703 if (v != null) {
1704 int vs = v.scanState;
1705 long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + inc));
1706 if (sp == vs && U.compareAndSwapLong(this, CTL, c, nc)) {
1707 v.scanState = ns;
1708 LockSupport.unpark(v.parker);
1709 return true;
1710 }
1711 }
1712 return false;
1713 }
1714
1715 /**
1716 * With approx probability of a missed signal, tries (once) to
1717 * reactivate worker w (or some other worker), failing if stale or
1718 * known to be already active.
1719 *
1720 * @param w the worker
1721 * @param ws the workQueue array to use
1722 * @param r random seed
1723 */
1724 private void tryReactivate(WorkQueue w, WorkQueue[] ws, int r) {
1725 long c; int sp, wl; WorkQueue v;
1726 if ((sp = (int)(c = ctl)) != 0 && w != null &&
1727 ws != null && (wl = ws.length) > 0 &&
1728 ((sp ^ r) & SS_SEQ) == 0 &&
1729 (v = ws[(wl - 1) & sp]) != null) {
1730 long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + AC_UNIT));
1731 int ns = sp & ~UNSIGNALLED;
1732 if (w.scanState < 0 &&
1733 v.scanState == sp &&
1734 U.compareAndSwapLong(this, CTL, c, nc)) {
1735 v.scanState = ns;
1736 LockSupport.unpark(v.parker);
1737 }
1738 }
1739 }
1740
1741 /**
1742 * If worker w exists and is active, enqueues and sets status to inactive.
1743 *
1744 * @param w the worker
1745 * @param ss current (non-negative) scanState
1746 */
1747 private void inactivate(WorkQueue w, int ss) {
1748 int ns = (ss + SS_SEQ) | UNSIGNALLED;
1749 long lc = ns & SP_MASK, nc, c;
1750 if (w != null) {
1751 w.scanState = ns;
1752 do {
1753 nc = lc | (UC_MASK & ((c = ctl) - AC_UNIT));
1754 w.stackPred = (int)c;
1755 } while (!U.compareAndSwapLong(this, CTL, c, nc));
1756 }
1757 }
1758
1759 /**
1760 * Possibly blocks worker w waiting for signal, or returns
1761 * negative status if the worker should terminate. May return
1762 * without status change if multiple stale unparks and/or
1763 * interrupts occur.
1764 *
1765 * @param w the calling worker
1766 * @return negative if w should terminate
1767 */
1768 private int awaitWork(WorkQueue w) {
1769 int stat = 0;
1770 if (w != null && w.scanState < 0) {
1771 long c = ctl;
1772 if ((int)(c >> AC_SHIFT) + (config & SMASK) <= 0)
1773 stat = timedAwaitWork(w, c); // possibly quiescent
1774 else if ((runState & STOP) != 0)
1775 stat = w.qlock = -1; // pool terminating
1776 else if (w.scanState < 0) {
1777 w.parker = Thread.currentThread();
1778 if (w.scanState < 0) // recheck after write
1779 LockSupport.park(this);
1780 w.parker = null;
1781 if ((runState & STOP) != 0)
1782 stat = w.qlock = -1; // recheck
1783 else if (w.scanState < 0)
1784 Thread.interrupted(); // clear status
1785 }
1786 }
1787 return stat;
1788 }
1789
1790 /**
1791 * Possibly triggers shutdown and tries (once) to block worker
1792 * when pool is (or may be) quiescent. Waits up to a duration
1793 * determined by number of workers. On timeout, if ctl has not
1794 * changed, terminates the worker, which will in turn wake up
1795 * another worker to possibly repeat this process.
1796 *
1797 * @param w the calling worker
1798 * @return negative if w should terminate
1799 */
1800 private int timedAwaitWork(WorkQueue w, long c) {
1801 int stat = 0;
1802 int scale = 1 - (short)(c >>> TC_SHIFT);
1803 long deadline = (((scale <= 0) ? 1 : scale) * IDLE_TIMEOUT_MS +
1804 System.currentTimeMillis());
1805 if ((runState >= 0 || (stat = tryTerminate(false, false)) > 0) &&
1806 w != null && w.scanState < 0) {
1807 int ss; AuxState aux;
1808 w.parker = Thread.currentThread();
1809 if (w.scanState < 0)
1810 LockSupport.parkUntil(this, deadline);
1811 w.parker = null;
1812 if ((runState & STOP) != 0)
1813 stat = w.qlock = -1; // pool terminating
1814 else if ((ss = w.scanState) < 0 && !Thread.interrupted() &&
1815 (int)c == ss && (aux = auxState) != null && ctl == c &&
1816 deadline - System.currentTimeMillis() <= TIMEOUT_SLOP_MS) {
1817 aux.lock();
1818 try { // pre-deregister
1819 WorkQueue[] ws;
1820 int cfg = w.config, idx = cfg & SMASK;
1821 long nc = ((UC_MASK & (c - TC_UNIT)) |
1822 (SP_MASK & w.stackPred));
1823 if ((runState & STOP) == 0 &&
1824 (ws = workQueues) != null &&
1825 idx < ws.length && idx >= 0 && ws[idx] == w &&
1826 U.compareAndSwapLong(this, CTL, c, nc)) {
1827 ws[idx] = null;
1828 w.config = cfg | UNREGISTERED;
1829 stat = w.qlock = -1;
1830 }
1831 } finally {
1832 aux.unlock();
1833 }
1834 }
1835 }
1836 return stat;
1837 }
1838
1839 /**
1840 * If the given worker is a spare with no queued tasks, and there
1841 * are enough existing workers, drops it from ctl counts and sets
1842 * its state to terminated.
1843 *
1844 * @param w the calling worker -- must be a spare
1845 * @return true if dropped (in which case it must not process more tasks)
1846 */
1847 private boolean tryDropSpare(WorkQueue w) {
1848 if (w != null && w.isEmpty()) { // no local tasks
1849 long c; int sp, wl; WorkQueue[] ws; WorkQueue v;
1850 while ((short)((c = ctl) >> TC_SHIFT) > 0 &&
1851 ((sp = (int)c) != 0 || (int)(c >> AC_SHIFT) > 0) &&
1852 (ws = workQueues) != null && (wl = ws.length) > 0) {
1853 boolean dropped, canDrop;
1854 if (sp == 0) { // no queued workers
1855 long nc = ((AC_MASK & (c - AC_UNIT)) |
1856 (TC_MASK & (c - TC_UNIT)) | (SP_MASK & c));
1857 dropped = U.compareAndSwapLong(this, CTL, c, nc);
1858 }
1859 else if (
1860 (v = ws[(wl - 1) & sp]) == null || v.scanState != sp)
1861 dropped = false; // stale; retry
1862 else {
1863 long nc = v.stackPred & SP_MASK;
1864 if (w == v || w.scanState >= 0) {
1865 canDrop = true; // w unqueued or topmost
1866 nc |= ((AC_MASK & c) | // ensure replacement
1867 (TC_MASK & (c - TC_UNIT)));
1868 }
1869 else { // w may be queued
1870 canDrop = false; // help uncover
1871 nc |= ((AC_MASK & (c + AC_UNIT)) |
1872 (TC_MASK & c));
1873 }
1874 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1875 v.scanState = sp & ~UNSIGNALLED;
1876 LockSupport.unpark(v.parker);
1877 dropped = canDrop;
1878 }
1879 else
1880 dropped = false;
1881 }
1882 if (dropped) { // pre-deregister
1883 int cfg = w.config, idx = cfg & SMASK;
1884 if (idx >= 0 && idx < ws.length && ws[idx] == w)
1885 ws[idx] = null;
1886 w.config = cfg | UNREGISTERED;
1887 w.qlock = -1;
1888 return true;
1889 }
1890 }
1891 }
1892 return false;
1893 }
1894
1895 /**
1896 * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1897 */
1898 final void runWorker(WorkQueue w) {
1899 w.growArray(); // allocate queue
1900 int bound = (w.config & SPARE_WORKER) != 0 ? 0 : POLL_LIMIT;
1901 long seed = w.hint * 0xdaba0b6eb09322e3L; // initial random seed
1902 if ((runState & STOP) == 0) {
1903 for (long r = (seed == 0L) ? 1L : seed;;) { // ensure nonzero
1904 if (bound == 0 && tryDropSpare(w))
1905 break;
1906 // high bits of prev seed for step; current low bits for idx
1907 int step = (int)(r >>> 48) | 1;
1908 r ^= r >>> 12; r ^= r << 25; r ^= r >>> 27; // xorshift
1909 if (scan(w, bound, step, (int)r) < 0 && awaitWork(w) < 0)
1910 break;
1911 }
1912 }
1913 }
1914
1915 // Scanning for tasks
1916
1917 /**
1918 * Repeatedly scans for and tries to steal and execute (via
1919 * workQueue.runTask) a queued task. Each scan traverses queues in
1920 * pseudorandom permutation. Upon finding a non-empty queue, makes
1921 * at most the given bound attempts to re-poll (fewer if
1922 * contended) on the same queue before returning (impossible
1923 * scanState value) 0 to restart scan. Else returns after at least
1924 * 1 and at most 32 full scans.
1925 *
1926 * @param w the worker (via its WorkQueue)
1927 * @param bound repoll bound as bitmask (0 if spare)
1928 * @param step (circular) index increment per iteration (must be odd)
1929 * @param r a random seed for origin index
1930 * @return negative if should await signal
1931 */
1932 private int scan(WorkQueue w, int bound, int step, int r) {
1933 int stat = 0, wl; WorkQueue[] ws;
1934 if ((ws = workQueues) != null && w != null && (wl = ws.length) > 0) {
1935 for (int m = wl - 1,
1936 origin = m & r, idx = origin,
1937 npolls = 0,
1938 ss = w.scanState;;) { // negative if inactive
1939 WorkQueue q; ForkJoinTask<?>[] a; int b, al;
1940 if ((q = ws[idx]) != null && (b = q.base) - q.top < 0 &&
1941 (a = q.array) != null && (al = a.length) > 0) {
1942 int index = (al - 1) & b;
1943 long offset = ((long)index << ASHIFT) + ABASE;
1944 ForkJoinTask<?> t = (ForkJoinTask<?>)
1945 U.getObjectVolatile(a, offset);
1946 if (t == null)
1947 break; // empty or busy
1948 else if (b++ != q.base)
1949 break; // busy
1950 else if (ss < 0) {
1951 tryReactivate(w, ws, r);
1952 break; // retry upon rescan
1953 }
1954 else if (!U.compareAndSwapObject(a, offset, t, null))
1955 break; // contended
1956 else {
1957 q.base = b;
1958 w.currentSteal = t;
1959 if (b != q.top) // propagate signal
1960 signalWork();
1961 w.runTask(t);
1962 if (++npolls > bound)
1963 break;
1964 }
1965 }
1966 else if (npolls != 0) // rescan
1967 break;
1968 else if ((idx = (idx + step) & m) == origin) {
1969 if (ss < 0) { // await signal
1970 stat = ss;
1971 break;
1972 }
1973 else if (r >= 0) {
1974 inactivate(w, ss);
1975 break;
1976 }
1977 else
1978 r <<= 1; // at most 31 rescans
1979 }
1980 }
1981 }
1982 return stat;
1983 }
1984
1985 // Joining tasks
1986
1987 /**
1988 * Tries to steal and run tasks within the target's computation.
1989 * Uses a variant of the top-level algorithm, restricted to tasks
1990 * with the given task as ancestor: It prefers taking and running
1991 * eligible tasks popped from the worker's own queue (via
1992 * popCC). Otherwise it scans others, randomly moving on
1993 * contention or execution, deciding to give up based on a
1994 * checksum (via return codes from pollAndExecCC). The maxTasks
1995 * argument supports external usages; internal calls use zero,
1996 * allowing unbounded steps (external calls trap non-positive
1997 * values).
1998 *
1999 * @param w caller
2000 * @param maxTasks if non-zero, the maximum number of other tasks to run
2001 * @return task status on exit
2002 */
2003 final int helpComplete(WorkQueue w, CountedCompleter<?> task,
2004 int maxTasks) {
2005 WorkQueue[] ws; int s = 0, wl;
2006 if ((ws = workQueues) != null && (wl = ws.length) > 1 &&
2007 task != null && w != null) {
2008 for (int m = wl - 1,
2009 mode = w.config,
2010 r = ~mode, // scanning seed
2011 origin = r & m, k = origin, // first queue to scan
2012 step = 3, // first scan step
2013 h = 1, // 1:ran, >1:contended, <0:hash
2014 oldSum = 0, checkSum = 0;;) {
2015 CountedCompleter<?> p; WorkQueue q; int i;
2016 if ((s = task.status) < 0)
2017 break;
2018 if (h == 1 && (p = w.popCC(task, mode)) != null) {
2019 p.doExec(); // run local task
2020 if (maxTasks != 0 && --maxTasks == 0)
2021 break;
2022 origin = k; // reset
2023 oldSum = checkSum = 0;
2024 }
2025 else { // poll other worker queues
2026 if ((i = k | 1) < 0 || i > m || (q = ws[i]) == null)
2027 h = 0;
2028 else if ((h = q.pollAndExecCC(task)) < 0)
2029 checkSum += h;
2030 if (h > 0) {
2031 if (h == 1 && maxTasks != 0 && --maxTasks == 0)
2032 break;
2033 step = (r >>> 16) | 3;
2034 r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
2035 k = origin = r & m; // move and restart
2036 oldSum = checkSum = 0;
2037 }
2038 else if ((k = (k + step) & m) == origin) {
2039 if (oldSum == (oldSum = checkSum))
2040 break;
2041 checkSum = 0;
2042 }
2043 }
2044 }
2045 }
2046 return s;
2047 }
2048
2049 /**
2050 * Tries to locate and execute tasks for a stealer of the given
2051 * task, or in turn one of its stealers. Traces currentSteal ->
2052 * currentJoin links looking for a thread working on a descendant
2053 * of the given task and with a non-empty queue to steal back and
2054 * execute tasks from. The first call to this method upon a
2055 * waiting join will often entail scanning/search, (which is OK
2056 * because the joiner has nothing better to do), but this method
2057 * leaves hints in workers to speed up subsequent calls.
2058 *
2059 * @param w caller
2060 * @param task the task to join
2061 */
2062 private void helpStealer(WorkQueue w, ForkJoinTask<?> task) {
2063 if (task != null && w != null) {
2064 ForkJoinTask<?> ps = w.currentSteal;
2065 WorkQueue[] ws; int wl, oldSum = 0;
2066 outer: while (w.tryRemoveAndExec(task) && task.status >= 0 &&
2067 (ws = workQueues) != null && (wl = ws.length) > 0) {
2068 ForkJoinTask<?> subtask;
2069 int m = wl - 1, checkSum = 0; // for stability check
2070 WorkQueue j = w, v; // v is subtask stealer
2071 descent: for (subtask = task; subtask.status >= 0; ) {
2072 for (int h = j.hint | 1, k = 0, i;;) {
2073 if ((v = ws[i = (h + (k << 1)) & m]) != null) {
2074 if (v.currentSteal == subtask) {
2075 j.hint = i;
2076 break;
2077 }
2078 checkSum += v.base;
2079 }
2080 if (++k > m) // can't find stealer
2081 break outer;
2082 }
2083
2084 for (;;) { // help v or descend
2085 ForkJoinTask<?>[] a; int b, al;
2086 if (subtask.status < 0) // too late to help
2087 break descent;
2088 checkSum += (b = v.base);
2089 ForkJoinTask<?> next = v.currentJoin;
2090 ForkJoinTask<?> t = null;
2091 if ((a = v.array) != null && (al = a.length) > 0) {
2092 int index = (al - 1) & b;
2093 long offset = ((long)index << ASHIFT) + ABASE;
2094 t = (ForkJoinTask<?>)
2095 U.getObjectVolatile(a, offset);
2096 if (t != null && b++ == v.base) {
2097 if (j.currentJoin != subtask ||
2098 v.currentSteal != subtask ||
2099 subtask.status < 0)
2100 break descent; // stale
2101 if (U.compareAndSwapObject(a, offset, t, null)) {
2102 v.base = b;
2103 w.currentSteal = t;
2104 for (int top = w.top;;) {
2105 t.doExec(); // help
2106 w.currentSteal = ps;
2107 if (task.status < 0)
2108 break outer;
2109 if (w.top == top)
2110 break; // run local tasks
2111 if ((t = w.pop()) == null)
2112 break descent;
2113 w.currentSteal = t;
2114 }
2115 }
2116 }
2117 }
2118 if (t == null && b == v.base && b - v.top >= 0) {
2119 if ((subtask = next) == null) { // try to descend
2120 if (next == v.currentJoin &&
2121 oldSum == (oldSum = checkSum))
2122 break outer;
2123 break descent;
2124 }
2125 j = v;
2126 break;
2127 }
2128 }
2129 }
2130 }
2131 }
2132 }
2133
2134 /**
2135 * Tries to decrement active count (sometimes implicitly) and
2136 * possibly release or create a compensating worker in preparation
2137 * for blocking. Returns false (retryable by caller), on
2138 * contention, detected staleness, instability, or termination.
2139 *
2140 * @param w caller
2141 */
2142 private boolean tryCompensate(WorkQueue w) {
2143 boolean canBlock; int wl;
2144 long c = ctl;
2145 WorkQueue[] ws = workQueues;
2146 int pc = config & SMASK;
2147 int ac = pc + (int)(c >> AC_SHIFT);
2148 int tc = pc + (short)(c >> TC_SHIFT);
2149 if (w == null || w.qlock < 0 || pc == 0 || // terminating or disabled
2150 ws == null || (wl = ws.length) <= 0)
2151 canBlock = false;
2152 else {
2153 int m = wl - 1, sp;
2154 boolean busy = true; // validate ac
2155 for (int i = 0; i <= m; ++i) {
2156 int k; WorkQueue v;
2157 if ((k = (i << 1) | 1) <= m && k >= 0 && (v = ws[k]) != null &&
2158 v.scanState >= 0 && v.currentSteal == null) {
2159 busy = false;
2160 break;
2161 }
2162 }
2163 if (!busy || ctl != c)
2164 canBlock = false; // unstable or stale
2165 else if ((sp = (int)c) != 0) // release idle worker
2166 canBlock = tryRelease(c, ws[m & sp], 0L);
2167 else if (tc >= pc && ac > 1 && w.isEmpty()) {
2168 long nc = ((AC_MASK & (c - AC_UNIT)) |
2169 (~AC_MASK & c)); // uncompensated
2170 canBlock = U.compareAndSwapLong(this, CTL, c, nc);
2171 }
2172 else if (tc >= MAX_CAP ||
2173 (this == common && tc >= pc + COMMON_MAX_SPARES))
2174 throw new RejectedExecutionException(
2175 "Thread limit exceeded replacing blocked worker");
2176 else { // similar to tryAddWorker
2177 boolean isSpare = (tc >= pc);
2178 long nc = (AC_MASK & c) | (TC_MASK & (c + TC_UNIT));
2179 canBlock = (U.compareAndSwapLong(this, CTL, c, nc) &&
2180 createWorker(isSpare)); // throws on exception
2181 }
2182 }
2183 return canBlock;
2184 }
2185
2186 /**
2187 * Helps and/or blocks until the given task is done or timeout.
2188 *
2189 * @param w caller
2190 * @param task the task
2191 * @param deadline for timed waits, if nonzero
2192 * @return task status on exit
2193 */
2194 final int awaitJoin(WorkQueue w, ForkJoinTask<?> task, long deadline) {
2195 int s = 0;
2196 if (w != null) {
2197 ForkJoinTask<?> prevJoin = w.currentJoin;
2198 if (task != null && (s = task.status) >= 0) {
2199 w.currentJoin = task;
2200 CountedCompleter<?> cc = (task instanceof CountedCompleter) ?
2201 (CountedCompleter<?>)task : null;
2202 for (;;) {
2203 if (cc != null)
2204 helpComplete(w, cc, 0);
2205 else
2206 helpStealer(w, task);
2207 if ((s = task.status) < 0)
2208 break;
2209 long ms, ns;
2210 if (deadline == 0L)
2211 ms = 0L;
2212 else if ((ns = deadline - System.nanoTime()) <= 0L)
2213 break;
2214 else if ((ms = TimeUnit.NANOSECONDS.toMillis(ns)) <= 0L)
2215 ms = 1L;
2216 if (tryCompensate(w)) {
2217 task.internalWait(ms);
2218 U.getAndAddLong(this, CTL, AC_UNIT);
2219 }
2220 if ((s = task.status) < 0)
2221 break;
2222 }
2223 w.currentJoin = prevJoin;
2224 }
2225 }
2226 return s;
2227 }
2228
2229 // Specialized scanning
2230
2231 /**
2232 * Returns a (probably) non-empty steal queue, if one is found
2233 * during a scan, else null. This method must be retried by
2234 * caller if, by the time it tries to use the queue, it is empty.
2235 */
2236 private WorkQueue findNonEmptyStealQueue() {
2237 WorkQueue[] ws; int wl; // one-shot version of scan loop
2238 int r = ThreadLocalRandom.nextSecondarySeed();
2239 if ((ws = workQueues) != null && (wl = ws.length) > 0) {
2240 int m = wl - 1, origin = r & m;
2241 for (int k = origin, oldSum = 0, checkSum = 0;;) {
2242 WorkQueue q; int b;
2243 if ((q = ws[k]) != null) {
2244 if ((b = q.base) - q.top < 0)
2245 return q;
2246 checkSum += b;
2247 }
2248 if ((k = (k + 1) & m) == origin) {
2249 if (oldSum == (oldSum = checkSum))
2250 break;
2251 checkSum = 0;
2252 }
2253 }
2254 }
2255 return null;
2256 }
2257
2258 /**
2259 * Runs tasks until {@code isQuiescent()}. We piggyback on
2260 * active count ctl maintenance, but rather than blocking
2261 * when tasks cannot be found, we rescan until all others cannot
2262 * find tasks either.
2263 */
2264 final void helpQuiescePool(WorkQueue w) {
2265 ForkJoinTask<?> ps = w.currentSteal; // save context
2266 int wc = w.config;
2267 for (boolean active = true;;) {
2268 long c; WorkQueue q; ForkJoinTask<?> t;
2269 if (wc >= 0 && (t = w.pop()) != null) { // run locals if LIFO
2270 (w.currentSteal = t).doExec();
2271 w.currentSteal = ps;
2272 }
2273 else if ((q = findNonEmptyStealQueue()) != null) {
2274 if (!active) { // re-establish active count
2275 active = true;
2276 U.getAndAddLong(this, CTL, AC_UNIT);
2277 }
2278 if ((t = q.pollAt(q.base)) != null) {
2279 (w.currentSteal = t).doExec();
2280 w.currentSteal = ps;
2281 if (++w.nsteals < 0)
2282 w.transferStealCount(this);
2283 }
2284 }
2285 else if (active) { // decrement active count without queuing
2286 long nc = (AC_MASK & ((c = ctl) - AC_UNIT)) | (~AC_MASK & c);
2287 if (U.compareAndSwapLong(this, CTL, c, nc))
2288 active = false;
2289 }
2290 else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) <= 0 &&
2291 U.compareAndSwapLong(this, CTL, c, c + AC_UNIT))
2292 break;
2293 }
2294 }
2295
2296 /**
2297 * Gets and removes a local or stolen task for the given worker.
2298 *
2299 * @return a task, if available
2300 */
2301 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2302 for (ForkJoinTask<?> t;;) {
2303 WorkQueue q;
2304 if ((t = w.nextLocalTask()) != null)
2305 return t;
2306 if ((q = findNonEmptyStealQueue()) == null)
2307 return null;
2308 if ((t = q.pollAt(q.base)) != null)
2309 return t;
2310 }
2311 }
2312
2313 /**
2314 * Returns a cheap heuristic guide for task partitioning when
2315 * programmers, frameworks, tools, or languages have little or no
2316 * idea about task granularity. In essence, by offering this
2317 * method, we ask users only about tradeoffs in overhead vs
2318 * expected throughput and its variance, rather than how finely to
2319 * partition tasks.
2320 *
2321 * In a steady state strict (tree-structured) computation, each
2322 * thread makes available for stealing enough tasks for other
2323 * threads to remain active. Inductively, if all threads play by
2324 * the same rules, each thread should make available only a
2325 * constant number of tasks.
2326 *
2327 * The minimum useful constant is just 1. But using a value of 1
2328 * would require immediate replenishment upon each steal to
2329 * maintain enough tasks, which is infeasible. Further,
2330 * partitionings/granularities of offered tasks should minimize
2331 * steal rates, which in general means that threads nearer the top
2332 * of computation tree should generate more than those nearer the
2333 * bottom. In perfect steady state, each thread is at
2334 * approximately the same level of computation tree. However,
2335 * producing extra tasks amortizes the uncertainty of progress and
2336 * diffusion assumptions.
2337 *
2338 * So, users will want to use values larger (but not much larger)
2339 * than 1 to both smooth over transient shortages and hedge
2340 * against uneven progress; as traded off against the cost of
2341 * extra task overhead. We leave the user to pick a threshold
2342 * value to compare with the results of this call to guide
2343 * decisions, but recommend values such as 3.
2344 *
2345 * When all threads are active, it is on average OK to estimate
2346 * surplus strictly locally. In steady-state, if one thread is
2347 * maintaining say 2 surplus tasks, then so are others. So we can
2348 * just use estimated queue length. However, this strategy alone
2349 * leads to serious mis-estimates in some non-steady-state
2350 * conditions (ramp-up, ramp-down, other stalls). We can detect
2351 * many of these by further considering the number of "idle"
2352 * threads, that are known to have zero queued tasks, so
2353 * compensate by a factor of (#idle/#active) threads.
2354 */
2355 static int getSurplusQueuedTaskCount() {
2356 Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2357 if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) {
2358 int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2359 int n = (q = wt.workQueue).top - q.base;
2360 int a = (int)(pool.ctl >> AC_SHIFT) + p;
2361 return n - (a > (p >>>= 1) ? 0 :
2362 a > (p >>>= 1) ? 1 :
2363 a > (p >>>= 1) ? 2 :
2364 a > (p >>>= 1) ? 4 :
2365 8);
2366 }
2367 return 0;
2368 }
2369
2370 // Termination
2371
2372 /**
2373 * Possibly initiates and/or completes termination.
2374 *
2375 * @param now if true, unconditionally terminate, else only
2376 * if no work and no active workers
2377 * @param enable if true, terminate when next possible
2378 * @return -1: terminating/terminated, 0: retry if internal caller, else 1
2379 */
2380 private int tryTerminate(boolean now, boolean enable) {
2381 int rs; // 3 phases: try to set SHUTDOWN, then STOP, then TERMINATED
2382
2383 while ((rs = runState) >= 0) {
2384 if (!enable || this == common) // cannot shutdown
2385 return 1;
2386 else if (rs == 0)
2387 tryInitialize(false); // ensure initialized
2388 else
2389 U.compareAndSwapInt(this, RUNSTATE, rs, rs | SHUTDOWN);
2390 }
2391
2392 if ((rs & STOP) == 0) { // try to initiate termination
2393 if (!now) { // check quiescence
2394 for (long oldSum = 0L;;) { // repeat until stable
2395 WorkQueue[] ws; WorkQueue w; int b;
2396 long checkSum = ctl;
2397 if ((int)(checkSum >> AC_SHIFT) + (config & SMASK) > 0)
2398 return 0; // still active workers
2399 if ((ws = workQueues) != null) {
2400 for (int i = 0; i < ws.length; ++i) {
2401 if ((w = ws[i]) != null) {
2402 checkSum += (b = w.base);
2403 if (w.currentSteal != null || b != w.top)
2404 return 0; // retry if internal caller
2405 }
2406 }
2407 }
2408 if (oldSum == (oldSum = checkSum))
2409 break;
2410 }
2411 }
2412 do {} while (!U.compareAndSwapInt(this, RUNSTATE,
2413 rs = runState, rs | STOP));
2414 }
2415
2416 for (long oldSum = 0L;;) { // repeat until stable
2417 WorkQueue[] ws; WorkQueue w; ForkJoinWorkerThread wt;
2418 long checkSum = ctl;
2419 if ((ws = workQueues) != null) { // help terminate others
2420 for (int i = 0; i < ws.length; ++i) {
2421 if ((w = ws[i]) != null) {
2422 w.cancelAll(); // clear queues
2423 checkSum += w.base;
2424 if (w.qlock >= 0) {
2425 w.qlock = -1; // racy set OK
2426 if ((wt = w.owner) != null) {
2427 try { // unblock join or park
2428 wt.interrupt();
2429 } catch (Throwable ignore) {
2430 }
2431 }
2432 }
2433 }
2434 }
2435 }
2436 if (oldSum == (oldSum = checkSum))
2437 break;
2438 }
2439
2440 if ((short)(ctl >>> TC_SHIFT) + (config & SMASK) <= 0) {
2441 runState = (STARTED | SHUTDOWN | STOP | TERMINATED); // final write
2442 synchronized (this) {
2443 notifyAll(); // for awaitTermination
2444 }
2445 }
2446
2447 return -1;
2448 }
2449
2450 // External operations
2451
2452 /**
2453 * Constructs and tries to install a new external queue,
2454 * failing if the workQueues array already has a queue at
2455 * the given index.
2456 *
2457 * @param index the index of the new queue
2458 */
2459 private void tryCreateExternalQueue(int index) {
2460 AuxState aux;
2461 if ((aux = auxState) != null && index >= 0) {
2462 WorkQueue q = new WorkQueue(this, null);
2463 q.config = index;
2464 q.scanState = ~UNSIGNALLED;
2465 q.qlock = 1; // lock queue
2466 boolean installed = false;
2467 aux.lock();
2468 try { // lock pool to install
2469 WorkQueue[] ws;
2470 if ((ws = workQueues) != null && index < ws.length &&
2471 ws[index] == null) {
2472 ws[index] = q; // else throw away
2473 installed = true;
2474 }
2475 } finally {
2476 aux.unlock();
2477 }
2478 if (installed) {
2479 try {
2480 q.growArray();
2481 } finally {
2482 q.qlock = 0;
2483 }
2484 }
2485 }
2486 }
2487
2488 /**
2489 * Adds the given task to a submission queue at submitter's
2490 * current queue. Also performs secondary initialization upon the
2491 * first submission of the first task to the pool, and detects
2492 * first submission by an external thread and creates a new shared
2493 * queue if the one at index if empty or contended.
2494 *
2495 * @param task the task. Caller must ensure non-null.
2496 */
2497 final void externalPush(ForkJoinTask<?> task) {
2498 int r; // initialize caller's probe
2499 if ((r = ThreadLocalRandom.getProbe()) == 0) {
2500 ThreadLocalRandom.localInit();
2501 r = ThreadLocalRandom.getProbe();
2502 }
2503 for (;;) {
2504 WorkQueue q; int wl, k, stat;
2505 int rs = runState;
2506 WorkQueue[] ws = workQueues;
2507 if (rs <= 0 || ws == null || (wl = ws.length) <= 0)
2508 tryInitialize(true);
2509 else if ((q = ws[k = (wl - 1) & r & SQMASK]) == null)
2510 tryCreateExternalQueue(k);
2511 else if ((stat = q.sharedPush(task)) < 0)
2512 break;
2513 else if (stat == 0) {
2514 signalWork();
2515 break;
2516 }
2517 else // move if busy
2518 r = ThreadLocalRandom.advanceProbe(r);
2519 }
2520 }
2521
2522 /**
2523 * Pushes a possibly-external submission.
2524 */
2525 private <T> ForkJoinTask<T> externalSubmit(ForkJoinTask<T> task) {
2526 Thread t; ForkJoinWorkerThread w; WorkQueue q;
2527 if (task == null)
2528 throw new NullPointerException();
2529 if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) &&
2530 (w = (ForkJoinWorkerThread)t).pool == this &&
2531 (q = w.workQueue) != null)
2532 q.push(task);
2533 else
2534 externalPush(task);
2535 return task;
2536 }
2537
2538 /**
2539 * Returns common pool queue for an external thread.
2540 */
2541 static WorkQueue commonSubmitterQueue() {
2542 ForkJoinPool p = common;
2543 int r = ThreadLocalRandom.getProbe();
2544 WorkQueue[] ws; int wl;
2545 return (p != null && (ws = p.workQueues) != null &&
2546 (wl = ws.length) > 0) ?
2547 ws[(wl - 1) & r & SQMASK] : null;
2548 }
2549
2550 /**
2551 * Performs tryUnpush for an external submitter.
2552 */
2553 final boolean tryExternalUnpush(ForkJoinTask<?> task) {
2554 int r = ThreadLocalRandom.getProbe();
2555 WorkQueue[] ws; WorkQueue w; int wl;
2556 return ((ws = workQueues) != null &&
2557 (wl = ws.length) > 0 &&
2558 (w = ws[(wl - 1) & r & SQMASK]) != null &&
2559 w.trySharedUnpush(task));
2560 }
2561
2562 /**
2563 * Performs helpComplete for an external submitter.
2564 */
2565 final int externalHelpComplete(CountedCompleter<?> task, int maxTasks) {
2566 WorkQueue[] ws; int wl;
2567 int r = ThreadLocalRandom.getProbe();
2568 return ((ws = workQueues) != null && (wl = ws.length) > 0) ?
2569 helpComplete(ws[(wl - 1) & r & SQMASK], task, maxTasks) : 0;
2570 }
2571
2572 // Exported methods
2573
2574 // Constructors
2575
2576 /**
2577 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2578 * java.lang.Runtime#availableProcessors}, using the {@linkplain
2579 * #defaultForkJoinWorkerThreadFactory default thread factory},
2580 * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2581 *
2582 * @throws SecurityException if a security manager exists and
2583 * the caller is not permitted to modify threads
2584 * because it does not hold {@link
2585 * java.lang.RuntimePermission}{@code ("modifyThread")}
2586 */
2587 public ForkJoinPool() {
2588 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2589 defaultForkJoinWorkerThreadFactory, null, false);
2590 }
2591
2592 /**
2593 * Creates a {@code ForkJoinPool} with the indicated parallelism
2594 * level, the {@linkplain
2595 * #defaultForkJoinWorkerThreadFactory default thread factory},
2596 * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2597 *
2598 * @param parallelism the parallelism level
2599 * @throws IllegalArgumentException if parallelism less than or
2600 * equal to zero, or greater than implementation limit
2601 * @throws SecurityException if a security manager exists and
2602 * the caller is not permitted to modify threads
2603 * because it does not hold {@link
2604 * java.lang.RuntimePermission}{@code ("modifyThread")}
2605 */
2606 public ForkJoinPool(int parallelism) {
2607 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2608 }
2609
2610 /**
2611 * Creates a {@code ForkJoinPool} with the given parameters.
2612 *
2613 * @param parallelism the parallelism level. For default value,
2614 * use {@link java.lang.Runtime#availableProcessors}.
2615 * @param factory the factory for creating new threads. For default value,
2616 * use {@link #defaultForkJoinWorkerThreadFactory}.
2617 * @param handler the handler for internal worker threads that
2618 * terminate due to unrecoverable errors encountered while executing
2619 * tasks. For default value, use {@code null}.
2620 * @param asyncMode if true,
2621 * establishes local first-in-first-out scheduling mode for forked
2622 * tasks that are never joined. This mode may be more appropriate
2623 * than default locally stack-based mode in applications in which
2624 * worker threads only process event-style asynchronous tasks.
2625 * For default value, use {@code false}.
2626 * @throws IllegalArgumentException if parallelism less than or
2627 * equal to zero, or greater than implementation limit
2628 * @throws NullPointerException if the factory is null
2629 * @throws SecurityException if a security manager exists and
2630 * the caller is not permitted to modify threads
2631 * because it does not hold {@link
2632 * java.lang.RuntimePermission}{@code ("modifyThread")}
2633 */
2634 public ForkJoinPool(int parallelism,
2635 ForkJoinWorkerThreadFactory factory,
2636 UncaughtExceptionHandler handler,
2637 boolean asyncMode) {
2638 this(checkParallelism(parallelism),
2639 checkFactory(factory),
2640 handler,
2641 asyncMode ? FIFO_QUEUE : LIFO_QUEUE,
2642 "ForkJoinPool-" + nextPoolId() + "-worker-");
2643 checkPermission();
2644 }
2645
2646 private static int checkParallelism(int parallelism) {
2647 if (parallelism <= 0 || parallelism > MAX_CAP)
2648 throw new IllegalArgumentException();
2649 return parallelism;
2650 }
2651
2652 private static ForkJoinWorkerThreadFactory checkFactory
2653 (ForkJoinWorkerThreadFactory factory) {
2654 if (factory == null)
2655 throw new NullPointerException();
2656 return factory;
2657 }
2658
2659 /**
2660 * Creates a {@code ForkJoinPool} with the given parameters, without
2661 * any security checks or parameter validation. Invoked directly by
2662 * makeCommonPool.
2663 */
2664 private ForkJoinPool(int parallelism,
2665 ForkJoinWorkerThreadFactory factory,
2666 UncaughtExceptionHandler handler,
2667 int mode,
2668 String workerNamePrefix) {
2669 this.workerNamePrefix = workerNamePrefix;
2670 this.factory = factory;
2671 this.ueh = handler;
2672 this.config = (parallelism & SMASK) | mode;
2673 long np = (long)(-parallelism); // offset ctl counts
2674 this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2675 }
2676
2677 /**
2678 * Returns the common pool instance. This pool is statically
2679 * constructed; its run state is unaffected by attempts to {@link
2680 * #shutdown} or {@link #shutdownNow}. However this pool and any
2681 * ongoing processing are automatically terminated upon program
2682 * {@link System#exit}. Any program that relies on asynchronous
2683 * task processing to complete before program termination should
2684 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2685 * before exit.
2686 *
2687 * @return the common pool instance
2688 * @since 1.8
2689 */
2690 public static ForkJoinPool commonPool() {
2691 // assert common != null : "static init error";
2692 return common;
2693 }
2694
2695 // Execution methods
2696
2697 /**
2698 * Performs the given task, returning its result upon completion.
2699 * If the computation encounters an unchecked Exception or Error,
2700 * it is rethrown as the outcome of this invocation. Rethrown
2701 * exceptions behave in the same way as regular exceptions, but,
2702 * when possible, contain stack traces (as displayed for example
2703 * using {@code ex.printStackTrace()}) of both the current thread
2704 * as well as the thread actually encountering the exception;
2705 * minimally only the latter.
2706 *
2707 * @param task the task
2708 * @param <T> the type of the task's result
2709 * @return the task's result
2710 * @throws NullPointerException if the task is null
2711 * @throws RejectedExecutionException if the task cannot be
2712 * scheduled for execution
2713 */
2714 public <T> T invoke(ForkJoinTask<T> task) {
2715 if (task == null)
2716 throw new NullPointerException();
2717 externalSubmit(task);
2718 return task.join();
2719 }
2720
2721 /**
2722 * Arranges for (asynchronous) execution of the given task.
2723 *
2724 * @param task the task
2725 * @throws NullPointerException if the task is null
2726 * @throws RejectedExecutionException if the task cannot be
2727 * scheduled for execution
2728 */
2729 public void execute(ForkJoinTask<?> task) {
2730 externalSubmit(task);
2731 }
2732
2733 // AbstractExecutorService methods
2734
2735 /**
2736 * @throws NullPointerException if the task is null
2737 * @throws RejectedExecutionException if the task cannot be
2738 * scheduled for execution
2739 */
2740 public void execute(Runnable task) {
2741 if (task == null)
2742 throw new NullPointerException();
2743 ForkJoinTask<?> job;
2744 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2745 job = (ForkJoinTask<?>) task;
2746 else
2747 job = new ForkJoinTask.RunnableExecuteAction(task);
2748 externalSubmit(job);
2749 }
2750
2751 /**
2752 * Submits a ForkJoinTask for execution.
2753 *
2754 * @param task the task to submit
2755 * @param <T> the type of the task's result
2756 * @return the task
2757 * @throws NullPointerException if the task is null
2758 * @throws RejectedExecutionException if the task cannot be
2759 * scheduled for execution
2760 */
2761 public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2762 return externalSubmit(task);
2763 }
2764
2765 /**
2766 * @throws NullPointerException if the task is null
2767 * @throws RejectedExecutionException if the task cannot be
2768 * scheduled for execution
2769 */
2770 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2771 return externalSubmit(new ForkJoinTask.AdaptedCallable<T>(task));
2772 }
2773
2774 /**
2775 * @throws NullPointerException if the task is null
2776 * @throws RejectedExecutionException if the task cannot be
2777 * scheduled for execution
2778 */
2779 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2780 return externalSubmit(new ForkJoinTask.AdaptedRunnable<T>(task, result));
2781 }
2782
2783 /**
2784 * @throws NullPointerException if the task is null
2785 * @throws RejectedExecutionException if the task cannot be
2786 * scheduled for execution
2787 */
2788 public ForkJoinTask<?> submit(Runnable task) {
2789 if (task == null)
2790 throw new NullPointerException();
2791 ForkJoinTask<?> job;
2792 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2793 job = (ForkJoinTask<?>) task;
2794 else
2795 job = new ForkJoinTask.AdaptedRunnableAction(task);
2796 return externalSubmit(job);
2797 }
2798
2799 /**
2800 * @throws NullPointerException {@inheritDoc}
2801 * @throws RejectedExecutionException {@inheritDoc}
2802 */
2803 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2804 // In previous versions of this class, this method constructed
2805 // a task to run ForkJoinTask.invokeAll, but now external
2806 // invocation of multiple tasks is at least as efficient.
2807 ArrayList<Future<T>> futures = new ArrayList<>(tasks.size());
2808
2809 try {
2810 for (Callable<T> t : tasks) {
2811 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2812 futures.add(f);
2813 externalSubmit(f);
2814 }
2815 for (int i = 0, size = futures.size(); i < size; i++)
2816 ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2817 return futures;
2818 } catch (Throwable t) {
2819 for (int i = 0, size = futures.size(); i < size; i++)
2820 futures.get(i).cancel(false);
2821 throw t;
2822 }
2823 }
2824
2825 /**
2826 * Returns the factory used for constructing new workers.
2827 *
2828 * @return the factory used for constructing new workers
2829 */
2830 public ForkJoinWorkerThreadFactory getFactory() {
2831 return factory;
2832 }
2833
2834 /**
2835 * Returns the handler for internal worker threads that terminate
2836 * due to unrecoverable errors encountered while executing tasks.
2837 *
2838 * @return the handler, or {@code null} if none
2839 */
2840 public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2841 return ueh;
2842 }
2843
2844 /**
2845 * Returns the targeted parallelism level of this pool.
2846 *
2847 * @return the targeted parallelism level of this pool
2848 */
2849 public int getParallelism() {
2850 int par;
2851 return ((par = config & SMASK) > 0) ? par : 1;
2852 }
2853
2854 /**
2855 * Returns the targeted parallelism level of the common pool.
2856 *
2857 * @return the targeted parallelism level of the common pool
2858 * @since 1.8
2859 */
2860 public static int getCommonPoolParallelism() {
2861 return COMMON_PARALLELISM;
2862 }
2863
2864 /**
2865 * Returns the number of worker threads that have started but not
2866 * yet terminated. The result returned by this method may differ
2867 * from {@link #getParallelism} when threads are created to
2868 * maintain parallelism when others are cooperatively blocked.
2869 *
2870 * @return the number of worker threads
2871 */
2872 public int getPoolSize() {
2873 return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2874 }
2875
2876 /**
2877 * Returns {@code true} if this pool uses local first-in-first-out
2878 * scheduling mode for forked tasks that are never joined.
2879 *
2880 * @return {@code true} if this pool uses async mode
2881 */
2882 public boolean getAsyncMode() {
2883 return (config & FIFO_QUEUE) != 0;
2884 }
2885
2886 /**
2887 * Returns an estimate of the number of worker threads that are
2888 * not blocked waiting to join tasks or for other managed
2889 * synchronization. This method may overestimate the
2890 * number of running threads.
2891 *
2892 * @return the number of worker threads
2893 */
2894 public int getRunningThreadCount() {
2895 int rc = 0;
2896 WorkQueue[] ws; WorkQueue w;
2897 if ((ws = workQueues) != null) {
2898 for (int i = 1; i < ws.length; i += 2) {
2899 if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2900 ++rc;
2901 }
2902 }
2903 return rc;
2904 }
2905
2906 /**
2907 * Returns an estimate of the number of threads that are currently
2908 * stealing or executing tasks. This method may overestimate the
2909 * number of active threads.
2910 *
2911 * @return the number of active threads
2912 */
2913 public int getActiveThreadCount() {
2914 int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2915 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2916 }
2917
2918 /**
2919 * Returns {@code true} if all worker threads are currently idle.
2920 * An idle worker is one that cannot obtain a task to execute
2921 * because none are available to steal from other threads, and
2922 * there are no pending submissions to the pool. This method is
2923 * conservative; it might not return {@code true} immediately upon
2924 * idleness of all threads, but will eventually become true if
2925 * threads remain inactive.
2926 *
2927 * @return {@code true} if all threads are currently idle
2928 */
2929 public boolean isQuiescent() {
2930 return (config & SMASK) + (int)(ctl >> AC_SHIFT) <= 0;
2931 }
2932
2933 /**
2934 * Returns an estimate of the total number of tasks stolen from
2935 * one thread's work queue by another. The reported value
2936 * underestimates the actual total number of steals when the pool
2937 * is not quiescent. This value may be useful for monitoring and
2938 * tuning fork/join programs: in general, steal counts should be
2939 * high enough to keep threads busy, but low enough to avoid
2940 * overhead and contention across threads.
2941 *
2942 * @return the number of steals
2943 */
2944 public long getStealCount() {
2945 AuxState sc = auxState;
2946 long count = (sc == null) ? 0L : sc.stealCount;
2947 WorkQueue[] ws; WorkQueue w;
2948 if ((ws = workQueues) != null) {
2949 for (int i = 1; i < ws.length; i += 2) {
2950 if ((w = ws[i]) != null)
2951 count += w.nsteals;
2952 }
2953 }
2954 return count;
2955 }
2956
2957 /**
2958 * Returns an estimate of the total number of tasks currently held
2959 * in queues by worker threads (but not including tasks submitted
2960 * to the pool that have not begun executing). This value is only
2961 * an approximation, obtained by iterating across all threads in
2962 * the pool. This method may be useful for tuning task
2963 * granularities.
2964 *
2965 * @return the number of queued tasks
2966 */
2967 public long getQueuedTaskCount() {
2968 long count = 0;
2969 WorkQueue[] ws; WorkQueue w;
2970 if ((ws = workQueues) != null) {
2971 for (int i = 1; i < ws.length; i += 2) {
2972 if ((w = ws[i]) != null)
2973 count += w.queueSize();
2974 }
2975 }
2976 return count;
2977 }
2978
2979 /**
2980 * Returns an estimate of the number of tasks submitted to this
2981 * pool that have not yet begun executing. This method may take
2982 * time proportional to the number of submissions.
2983 *
2984 * @return the number of queued submissions
2985 */
2986 public int getQueuedSubmissionCount() {
2987 int count = 0;
2988 WorkQueue[] ws; WorkQueue w;
2989 if ((ws = workQueues) != null) {
2990 for (int i = 0; i < ws.length; i += 2) {
2991 if ((w = ws[i]) != null)
2992 count += w.queueSize();
2993 }
2994 }
2995 return count;
2996 }
2997
2998 /**
2999 * Returns {@code true} if there are any tasks submitted to this
3000 * pool that have not yet begun executing.
3001 *
3002 * @return {@code true} if there are any queued submissions
3003 */
3004 public boolean hasQueuedSubmissions() {
3005 WorkQueue[] ws; WorkQueue w;
3006 if ((ws = workQueues) != null) {
3007 for (int i = 0; i < ws.length; i += 2) {
3008 if ((w = ws[i]) != null && !w.isEmpty())
3009 return true;
3010 }
3011 }
3012 return false;
3013 }
3014
3015 /**
3016 * Removes and returns the next unexecuted submission if one is
3017 * available. This method may be useful in extensions to this
3018 * class that re-assign work in systems with multiple pools.
3019 *
3020 * @return the next submission, or {@code null} if none
3021 */
3022 protected ForkJoinTask<?> pollSubmission() {
3023 WorkQueue[] ws; int wl; WorkQueue w; ForkJoinTask<?> t;
3024 int r = ThreadLocalRandom.nextSecondarySeed();
3025 if ((ws = workQueues) != null && (wl = ws.length) > 0) {
3026 for (int m = wl - 1, i = 0; i < wl; ++i) {
3027 if ((w = ws[(i << 1) & m]) != null && (t = w.poll()) != null)
3028 return t;
3029 }
3030 }
3031 return null;
3032 }
3033
3034 /**
3035 * Removes all available unexecuted submitted and forked tasks
3036 * from scheduling queues and adds them to the given collection,
3037 * without altering their execution status. These may include
3038 * artificially generated or wrapped tasks. This method is
3039 * designed to be invoked only when the pool is known to be
3040 * quiescent. Invocations at other times may not remove all
3041 * tasks. A failure encountered while attempting to add elements
3042 * to collection {@code c} may result in elements being in
3043 * neither, either or both collections when the associated
3044 * exception is thrown. The behavior of this operation is
3045 * undefined if the specified collection is modified while the
3046 * operation is in progress.
3047 *
3048 * @param c the collection to transfer elements into
3049 * @return the number of elements transferred
3050 */
3051 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
3052 int count = 0;
3053 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
3054 if ((ws = workQueues) != null) {
3055 for (int i = 0; i < ws.length; ++i) {
3056 if ((w = ws[i]) != null) {
3057 while ((t = w.poll()) != null) {
3058 c.add(t);
3059 ++count;
3060 }
3061 }
3062 }
3063 }
3064 return count;
3065 }
3066
3067 /**
3068 * Returns a string identifying this pool, as well as its state,
3069 * including indications of run state, parallelism level, and
3070 * worker and task counts.
3071 *
3072 * @return a string identifying this pool, as well as its state
3073 */
3074 public String toString() {
3075 // Use a single pass through workQueues to collect counts
3076 long qt = 0L, qs = 0L; int rc = 0;
3077 AuxState sc = auxState;
3078 long st = (sc == null) ? 0L : sc.stealCount;
3079 long c = ctl;
3080 WorkQueue[] ws; WorkQueue w;
3081 if ((ws = workQueues) != null) {
3082 for (int i = 0; i < ws.length; ++i) {
3083 if ((w = ws[i]) != null) {
3084 int size = w.queueSize();
3085 if ((i & 1) == 0)
3086 qs += size;
3087 else {
3088 qt += size;
3089 st += w.nsteals;
3090 if (w.isApparentlyUnblocked())
3091 ++rc;
3092 }
3093 }
3094 }
3095 }
3096 int pc = (config & SMASK);
3097 int tc = pc + (short)(c >>> TC_SHIFT);
3098 int ac = pc + (int)(c >> AC_SHIFT);
3099 if (ac < 0) // ignore transient negative
3100 ac = 0;
3101 int rs = runState;
3102 String level = ((rs & TERMINATED) != 0 ? "Terminated" :
3103 (rs & STOP) != 0 ? "Terminating" :
3104 (rs & SHUTDOWN) != 0 ? "Shutting down" :
3105 "Running");
3106 return super.toString() +
3107 "[" + level +
3108 ", parallelism = " + pc +
3109 ", size = " + tc +
3110 ", active = " + ac +
3111 ", running = " + rc +
3112 ", steals = " + st +
3113 ", tasks = " + qt +
3114 ", submissions = " + qs +
3115 "]";
3116 }
3117
3118 /**
3119 * Possibly initiates an orderly shutdown in which previously
3120 * submitted tasks are executed, but no new tasks will be
3121 * accepted. Invocation has no effect on execution state if this
3122 * is the {@link #commonPool()}, and no additional effect if
3123 * already shut down. Tasks that are in the process of being
3124 * submitted concurrently during the course of this method may or
3125 * may not be rejected.
3126 *
3127 * @throws SecurityException if a security manager exists and
3128 * the caller is not permitted to modify threads
3129 * because it does not hold {@link
3130 * java.lang.RuntimePermission}{@code ("modifyThread")}
3131 */
3132 public void shutdown() {
3133 checkPermission();
3134 tryTerminate(false, true);
3135 }
3136
3137 /**
3138 * Possibly attempts to cancel and/or stop all tasks, and reject
3139 * all subsequently submitted tasks. Invocation has no effect on
3140 * execution state if this is the {@link #commonPool()}, and no
3141 * additional effect if already shut down. Otherwise, tasks that
3142 * are in the process of being submitted or executed concurrently
3143 * during the course of this method may or may not be
3144 * rejected. This method cancels both existing and unexecuted
3145 * tasks, in order to permit termination in the presence of task
3146 * dependencies. So the method always returns an empty list
3147 * (unlike the case for some other Executors).
3148 *
3149 * @return an empty list
3150 * @throws SecurityException if a security manager exists and
3151 * the caller is not permitted to modify threads
3152 * because it does not hold {@link
3153 * java.lang.RuntimePermission}{@code ("modifyThread")}
3154 */
3155 public List<Runnable> shutdownNow() {
3156 checkPermission();
3157 tryTerminate(true, true);
3158 return Collections.emptyList();
3159 }
3160
3161 /**
3162 * Returns {@code true} if all tasks have completed following shut down.
3163 *
3164 * @return {@code true} if all tasks have completed following shut down
3165 */
3166 public boolean isTerminated() {
3167 return (runState & TERMINATED) != 0;
3168 }
3169
3170 /**
3171 * Returns {@code true} if the process of termination has
3172 * commenced but not yet completed. This method may be useful for
3173 * debugging. A return of {@code true} reported a sufficient
3174 * period after shutdown may indicate that submitted tasks have
3175 * ignored or suppressed interruption, or are waiting for I/O,
3176 * causing this executor not to properly terminate. (See the
3177 * advisory notes for class {@link ForkJoinTask} stating that
3178 * tasks should not normally entail blocking operations. But if
3179 * they do, they must abort them on interrupt.)
3180 *
3181 * @return {@code true} if terminating but not yet terminated
3182 */
3183 public boolean isTerminating() {
3184 int rs = runState;
3185 return (rs & STOP) != 0 && (rs & TERMINATED) == 0;
3186 }
3187
3188 /**
3189 * Returns {@code true} if this pool has been shut down.
3190 *
3191 * @return {@code true} if this pool has been shut down
3192 */
3193 public boolean isShutdown() {
3194 return (runState & SHUTDOWN) != 0;
3195 }
3196
3197 /**
3198 * Blocks until all tasks have completed execution after a
3199 * shutdown request, or the timeout occurs, or the current thread
3200 * is interrupted, whichever happens first. Because the {@link
3201 * #commonPool()} never terminates until program shutdown, when
3202 * applied to the common pool, this method is equivalent to {@link
3203 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
3204 *
3205 * @param timeout the maximum time to wait
3206 * @param unit the time unit of the timeout argument
3207 * @return {@code true} if this executor terminated and
3208 * {@code false} if the timeout elapsed before termination
3209 * @throws InterruptedException if interrupted while waiting
3210 */
3211 public boolean awaitTermination(long timeout, TimeUnit unit)
3212 throws InterruptedException {
3213 if (Thread.interrupted())
3214 throw new InterruptedException();
3215 if (this == common) {
3216 awaitQuiescence(timeout, unit);
3217 return false;
3218 }
3219 long nanos = unit.toNanos(timeout);
3220 if (isTerminated())
3221 return true;
3222 if (nanos <= 0L)
3223 return false;
3224 long deadline = System.nanoTime() + nanos;
3225 synchronized (this) {
3226 for (;;) {
3227 if (isTerminated())
3228 return true;
3229 if (nanos <= 0L)
3230 return false;
3231 long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
3232 wait(millis > 0L ? millis : 1L);
3233 nanos = deadline - System.nanoTime();
3234 }
3235 }
3236 }
3237
3238 /**
3239 * If called by a ForkJoinTask operating in this pool, equivalent
3240 * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3241 * waits and/or attempts to assist performing tasks until this
3242 * pool {@link #isQuiescent} or the indicated timeout elapses.
3243 *
3244 * @param timeout the maximum time to wait
3245 * @param unit the time unit of the timeout argument
3246 * @return {@code true} if quiescent; {@code false} if the
3247 * timeout elapsed.
3248 */
3249 public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3250 long nanos = unit.toNanos(timeout);
3251 ForkJoinWorkerThread wt;
3252 Thread thread = Thread.currentThread();
3253 if ((thread instanceof ForkJoinWorkerThread) &&
3254 (wt = (ForkJoinWorkerThread)thread).pool == this) {
3255 helpQuiescePool(wt.workQueue);
3256 return true;
3257 }
3258 long startTime = System.nanoTime();
3259 WorkQueue[] ws;
3260 int r = 0, wl;
3261 boolean found = true;
3262 while (!isQuiescent() && (ws = workQueues) != null &&
3263 (wl = ws.length) > 0) {
3264 if (!found) {
3265 if ((System.nanoTime() - startTime) > nanos)
3266 return false;
3267 Thread.yield(); // cannot block
3268 }
3269 found = false;
3270 for (int m = wl - 1, j = (m + 1) << 2; j >= 0; --j) {
3271 ForkJoinTask<?> t; WorkQueue q; int b, k;
3272 if ((k = r++ & m) <= m && k >= 0 && (q = ws[k]) != null &&
3273 (b = q.base) - q.top < 0) {
3274 found = true;
3275 if ((t = q.pollAt(b)) != null)
3276 t.doExec();
3277 break;
3278 }
3279 }
3280 }
3281 return true;
3282 }
3283
3284 /**
3285 * Waits and/or attempts to assist performing tasks indefinitely
3286 * until the {@link #commonPool()} {@link #isQuiescent}.
3287 */
3288 static void quiesceCommonPool() {
3289 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3290 }
3291
3292 /**
3293 * Interface for extending managed parallelism for tasks running
3294 * in {@link ForkJoinPool}s.
3295 *
3296 * <p>A {@code ManagedBlocker} provides two methods. Method
3297 * {@link #isReleasable} must return {@code true} if blocking is
3298 * not necessary. Method {@link #block} blocks the current thread
3299 * if necessary (perhaps internally invoking {@code isReleasable}
3300 * before actually blocking). These actions are performed by any
3301 * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
3302 * The unusual methods in this API accommodate synchronizers that
3303 * may, but don't usually, block for long periods. Similarly, they
3304 * allow more efficient internal handling of cases in which
3305 * additional workers may be, but usually are not, needed to
3306 * ensure sufficient parallelism. Toward this end,
3307 * implementations of method {@code isReleasable} must be amenable
3308 * to repeated invocation.
3309 *
3310 * <p>For example, here is a ManagedBlocker based on a
3311 * ReentrantLock:
3312 * <pre> {@code
3313 * class ManagedLocker implements ManagedBlocker {
3314 * final ReentrantLock lock;
3315 * boolean hasLock = false;
3316 * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3317 * public boolean block() {
3318 * if (!hasLock)
3319 * lock.lock();
3320 * return true;
3321 * }
3322 * public boolean isReleasable() {
3323 * return hasLock || (hasLock = lock.tryLock());
3324 * }
3325 * }}</pre>
3326 *
3327 * <p>Here is a class that possibly blocks waiting for an
3328 * item on a given queue:
3329 * <pre> {@code
3330 * class QueueTaker<E> implements ManagedBlocker {
3331 * final BlockingQueue<E> queue;
3332 * volatile E item = null;
3333 * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3334 * public boolean block() throws InterruptedException {
3335 * if (item == null)
3336 * item = queue.take();
3337 * return true;
3338 * }
3339 * public boolean isReleasable() {
3340 * return item != null || (item = queue.poll()) != null;
3341 * }
3342 * public E getItem() { // call after pool.managedBlock completes
3343 * return item;
3344 * }
3345 * }}</pre>
3346 */
3347 public static interface ManagedBlocker {
3348 /**
3349 * Possibly blocks the current thread, for example waiting for
3350 * a lock or condition.
3351 *
3352 * @return {@code true} if no additional blocking is necessary
3353 * (i.e., if isReleasable would return true)
3354 * @throws InterruptedException if interrupted while waiting
3355 * (the method is not required to do so, but is allowed to)
3356 */
3357 boolean block() throws InterruptedException;
3358
3359 /**
3360 * Returns {@code true} if blocking is unnecessary.
3361 * @return {@code true} if blocking is unnecessary
3362 */
3363 boolean isReleasable();
3364 }
3365
3366 /**
3367 * Runs the given possibly blocking task. When {@linkplain
3368 * ForkJoinTask#inForkJoinPool() running in a ForkJoinPool}, this
3369 * method possibly arranges for a spare thread to be activated if
3370 * necessary to ensure sufficient parallelism while the current
3371 * thread is blocked in {@link ManagedBlocker#block blocker.block()}.
3372 *
3373 * <p>This method repeatedly calls {@code blocker.isReleasable()} and
3374 * {@code blocker.block()} until either method returns {@code true}.
3375 * Every call to {@code blocker.block()} is preceded by a call to
3376 * {@code blocker.isReleasable()} that returned {@code false}.
3377 *
3378 * <p>If not running in a ForkJoinPool, this method is
3379 * behaviorally equivalent to
3380 * <pre> {@code
3381 * while (!blocker.isReleasable())
3382 * if (blocker.block())
3383 * break;}</pre>
3384 *
3385 * If running in a ForkJoinPool, the pool may first be expanded to
3386 * ensure sufficient parallelism available during the call to
3387 * {@code blocker.block()}.
3388 *
3389 * @param blocker the blocker task
3390 * @throws InterruptedException if {@code blocker.block()} did so
3391 */
3392 public static void managedBlock(ManagedBlocker blocker)
3393 throws InterruptedException {
3394 ForkJoinPool p;
3395 ForkJoinWorkerThread wt;
3396 Thread t = Thread.currentThread();
3397 if ((t instanceof ForkJoinWorkerThread) &&
3398 (p = (wt = (ForkJoinWorkerThread)t).pool) != null) {
3399 WorkQueue w = wt.workQueue;
3400 while (!blocker.isReleasable()) {
3401 if (p.tryCompensate(w)) {
3402 try {
3403 do {} while (!blocker.isReleasable() &&
3404 !blocker.block());
3405 } finally {
3406 U.getAndAddLong(p, CTL, AC_UNIT);
3407 }
3408 break;
3409 }
3410 }
3411 }
3412 else {
3413 do {} while (!blocker.isReleasable() &&
3414 !blocker.block());
3415 }
3416 }
3417
3418 // AbstractExecutorService overrides. These rely on undocumented
3419 // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3420 // implement RunnableFuture.
3421
3422 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3423 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3424 }
3425
3426 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3427 return new ForkJoinTask.AdaptedCallable<T>(callable);
3428 }
3429
3430 // Unsafe mechanics
3431 private static final sun.misc.Unsafe U = sun.misc.Unsafe.getUnsafe();
3432 private static final long CTL;
3433 private static final long RUNSTATE;
3434 private static final int ABASE;
3435 private static final int ASHIFT;
3436
3437 static {
3438 try {
3439 CTL = U.objectFieldOffset
3440 (ForkJoinPool.class.getDeclaredField("ctl"));
3441 RUNSTATE = U.objectFieldOffset
3442 (ForkJoinPool.class.getDeclaredField("runState"));
3443 ABASE = U.arrayBaseOffset(ForkJoinTask[].class);
3444 int scale = U.arrayIndexScale(ForkJoinTask[].class);
3445 if ((scale & (scale - 1)) != 0)
3446 throw new Error("array index scale not a power of two");
3447 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3448 } catch (ReflectiveOperationException e) {
3449 throw new Error(e);
3450 }
3451
3452 // Reduce the risk of rare disastrous classloading in first call to
3453 // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
3454 Class<?> ensureLoaded = LockSupport.class;
3455
3456 int commonMaxSpares = DEFAULT_COMMON_MAX_SPARES;
3457 try {
3458 String p = System.getProperty
3459 ("java.util.concurrent.ForkJoinPool.common.maximumSpares");
3460 if (p != null)
3461 commonMaxSpares = Integer.parseInt(p);
3462 } catch (Exception ignore) {}
3463 COMMON_MAX_SPARES = commonMaxSpares;
3464
3465 defaultForkJoinWorkerThreadFactory =
3466 new DefaultForkJoinWorkerThreadFactory();
3467 modifyThreadPermission = new RuntimePermission("modifyThread");
3468
3469 common = java.security.AccessController.doPrivileged
3470 (new java.security.PrivilegedAction<ForkJoinPool>() {
3471 public ForkJoinPool run() { return makeCommonPool(); }});
3472
3473 // report 1 even if threads disabled
3474 COMMON_PARALLELISM = Math.max(common.config & SMASK, 1);
3475 }
3476
3477 /**
3478 * Creates and returns the common pool, respecting user settings
3479 * specified via system properties.
3480 */
3481 static ForkJoinPool makeCommonPool() {
3482 int parallelism = -1;
3483 ForkJoinWorkerThreadFactory factory = null;
3484 UncaughtExceptionHandler handler = null;
3485 try { // ignore exceptions in accessing/parsing properties
3486 String pp = System.getProperty
3487 ("java.util.concurrent.ForkJoinPool.common.parallelism");
3488 String fp = System.getProperty
3489 ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3490 String hp = System.getProperty
3491 ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3492 if (pp != null)
3493 parallelism = Integer.parseInt(pp);
3494 if (fp != null)
3495 factory = ((ForkJoinWorkerThreadFactory)ClassLoader.
3496 getSystemClassLoader().loadClass(fp).newInstance());
3497 if (hp != null)
3498 handler = ((UncaughtExceptionHandler)ClassLoader.
3499 getSystemClassLoader().loadClass(hp).newInstance());
3500 } catch (Exception ignore) {
3501 }
3502 if (factory == null) {
3503 if (System.getSecurityManager() == null)
3504 factory = defaultForkJoinWorkerThreadFactory;
3505 else // use security-managed default
3506 factory = new InnocuousForkJoinWorkerThreadFactory();
3507 }
3508 if (parallelism < 0 && // default 1 less than #cores
3509 (parallelism = Runtime.getRuntime().availableProcessors() - 1) <= 0)
3510 parallelism = 1;
3511 if (parallelism > MAX_CAP)
3512 parallelism = MAX_CAP;
3513 return new ForkJoinPool(parallelism, factory, handler, LIFO_QUEUE,
3514 "ForkJoinPool.commonPool-worker-");
3515 }
3516
3517 /**
3518 * Factory for innocuous worker threads.
3519 */
3520 private static final class InnocuousForkJoinWorkerThreadFactory
3521 implements ForkJoinWorkerThreadFactory {
3522
3523 /**
3524 * An ACC to restrict permissions for the factory itself.
3525 * The constructed workers have no permissions set.
3526 */
3527 private static final AccessControlContext innocuousAcc;
3528 static {
3529 Permissions innocuousPerms = new Permissions();
3530 innocuousPerms.add(modifyThreadPermission);
3531 innocuousPerms.add(new RuntimePermission(
3532 "enableContextClassLoaderOverride"));
3533 innocuousPerms.add(new RuntimePermission(
3534 "modifyThreadGroup"));
3535 innocuousAcc = new AccessControlContext(new ProtectionDomain[] {
3536 new ProtectionDomain(null, innocuousPerms)
3537 });
3538 }
3539
3540 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
3541 return java.security.AccessController.doPrivileged(
3542 new java.security.PrivilegedAction<ForkJoinWorkerThread>() {
3543 public ForkJoinWorkerThread run() {
3544 return new ForkJoinWorkerThread.
3545 InnocuousForkJoinWorkerThread(pool);
3546 }}, innocuousAcc);
3547 }
3548 }
3549
3550 }