ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.3
Committed: Sun Jul 26 17:48:58 2009 UTC (14 years, 10 months ago) by jsr166
Branch: MAIN
Changes since 1.2: +20 -20 lines
Log Message:
sync with jsr166y package

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package java.util.concurrent;
8
9 import java.util.ArrayList;
10 import java.util.Arrays;
11 import java.util.Collection;
12 import java.util.Collections;
13 import java.util.List;
14 import java.util.concurrent.locks.Condition;
15 import java.util.concurrent.locks.LockSupport;
16 import java.util.concurrent.locks.ReentrantLock;
17 import java.util.concurrent.atomic.AtomicInteger;
18 import java.util.concurrent.atomic.AtomicLong;
19
20 /**
21 * An {@link ExecutorService} for running {@link ForkJoinTask}s. A
22 * ForkJoinPool provides the entry point for submissions from
23 * non-ForkJoinTasks, as well as management and monitoring operations.
24 * Normally a single ForkJoinPool is used for a large number of
25 * submitted tasks. Otherwise, use would not usually outweigh the
26 * construction and bookkeeping overhead of creating a large set of
27 * threads.
28 *
29 * <p>ForkJoinPools differ from other kinds of Executors mainly in
30 * that they provide <em>work-stealing</em>: all threads in the pool
31 * attempt to find and execute subtasks created by other active tasks
32 * (eventually blocking if none exist). This makes them efficient when
33 * most tasks spawn other subtasks (as do most ForkJoinTasks), as well
34 * as the mixed execution of some plain Runnable- or Callable- based
35 * activities along with ForkJoinTasks. When setting
36 * {@code setAsyncMode}, a ForkJoinPools may also be appropriate for
37 * use with fine-grained tasks that are never joined. Otherwise, other
38 * ExecutorService implementations are typically more appropriate
39 * choices.
40 *
41 * <p>A ForkJoinPool may be constructed with a given parallelism level
42 * (target pool size), which it attempts to maintain by dynamically
43 * adding, suspending, or resuming threads, even if some tasks are
44 * waiting to join others. However, no such adjustments are performed
45 * in the face of blocked IO or other unmanaged synchronization. The
46 * nested {@code ManagedBlocker} interface enables extension of
47 * the kinds of synchronization accommodated. The target parallelism
48 * level may also be changed dynamically ({@code setParallelism})
49 * and thread construction can be limited using methods
50 * {@code setMaximumPoolSize} and/or
51 * {@code setMaintainsParallelism}.
52 *
53 * <p>In addition to execution and lifecycle control methods, this
54 * class provides status check methods (for example
55 * {@code getStealCount}) that are intended to aid in developing,
56 * tuning, and monitoring fork/join applications. Also, method
57 * {@code toString} returns indications of pool state in a
58 * convenient form for informal monitoring.
59 *
60 * <p><b>Implementation notes</b>: This implementation restricts the
61 * maximum number of running threads to 32767. Attempts to create
62 * pools with greater than the maximum result in
63 * IllegalArgumentExceptions.
64 *
65 * @since 1.7
66 * @author Doug Lea
67 */
68 public class ForkJoinPool extends AbstractExecutorService {
69
70 /*
71 * See the extended comments interspersed below for design,
72 * rationale, and walkthroughs.
73 */
74
75 /** Mask for packing and unpacking shorts */
76 private static final int shortMask = 0xffff;
77
78 /** Max pool size -- must be a power of two minus 1 */
79 private static final int MAX_THREADS = 0x7FFF;
80
81 /**
82 * Factory for creating new ForkJoinWorkerThreads. A
83 * ForkJoinWorkerThreadFactory must be defined and used for
84 * ForkJoinWorkerThread subclasses that extend base functionality
85 * or initialize threads with different contexts.
86 */
87 public static interface ForkJoinWorkerThreadFactory {
88 /**
89 * Returns a new worker thread operating in the given pool.
90 *
91 * @param pool the pool this thread works in
92 * @throws NullPointerException if pool is null
93 */
94 public ForkJoinWorkerThread newThread(ForkJoinPool pool);
95 }
96
97 /**
98 * Default ForkJoinWorkerThreadFactory implementation; creates a
99 * new ForkJoinWorkerThread.
100 */
101 static class DefaultForkJoinWorkerThreadFactory
102 implements ForkJoinWorkerThreadFactory {
103 public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
104 try {
105 return new ForkJoinWorkerThread(pool);
106 } catch (OutOfMemoryError oom) {
107 return null;
108 }
109 }
110 }
111
112 /**
113 * Creates a new ForkJoinWorkerThread. This factory is used unless
114 * overridden in ForkJoinPool constructors.
115 */
116 public static final ForkJoinWorkerThreadFactory
117 defaultForkJoinWorkerThreadFactory =
118 new DefaultForkJoinWorkerThreadFactory();
119
120 /**
121 * Permission required for callers of methods that may start or
122 * kill threads.
123 */
124 private static final RuntimePermission modifyThreadPermission =
125 new RuntimePermission("modifyThread");
126
127 /**
128 * If there is a security manager, makes sure caller has
129 * permission to modify threads.
130 */
131 private static void checkPermission() {
132 SecurityManager security = System.getSecurityManager();
133 if (security != null)
134 security.checkPermission(modifyThreadPermission);
135 }
136
137 /**
138 * Generator for assigning sequence numbers as pool names.
139 */
140 private static final AtomicInteger poolNumberGenerator =
141 new AtomicInteger();
142
143 /**
144 * Array holding all worker threads in the pool. Initialized upon
145 * first use. Array size must be a power of two. Updates and
146 * replacements are protected by workerLock, but it is always kept
147 * in a consistent enough state to be randomly accessed without
148 * locking by workers performing work-stealing.
149 */
150 volatile ForkJoinWorkerThread[] workers;
151
152 /**
153 * Lock protecting access to workers.
154 */
155 private final ReentrantLock workerLock;
156
157 /**
158 * Condition for awaitTermination.
159 */
160 private final Condition termination;
161
162 /**
163 * The uncaught exception handler used when any worker
164 * abruptly terminates
165 */
166 private Thread.UncaughtExceptionHandler ueh;
167
168 /**
169 * Creation factory for worker threads.
170 */
171 private final ForkJoinWorkerThreadFactory factory;
172
173 /**
174 * Head of stack of threads that were created to maintain
175 * parallelism when other threads blocked, but have since
176 * suspended when the parallelism level rose.
177 */
178 private volatile WaitQueueNode spareStack;
179
180 /**
181 * Sum of per-thread steal counts, updated only when threads are
182 * idle or terminating.
183 */
184 private final AtomicLong stealCount;
185
186 /**
187 * Queue for external submissions.
188 */
189 private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
190
191 /**
192 * Head of Treiber stack for barrier sync. See below for explanation.
193 */
194 private volatile WaitQueueNode syncStack;
195
196 /**
197 * The count for event barrier
198 */
199 private volatile long eventCount;
200
201 /**
202 * Pool number, just for assigning useful names to worker threads
203 */
204 private final int poolNumber;
205
206 /**
207 * The maximum allowed pool size
208 */
209 private volatile int maxPoolSize;
210
211 /**
212 * The desired parallelism level, updated only under workerLock.
213 */
214 private volatile int parallelism;
215
216 /**
217 * True if use local fifo, not default lifo, for local polling
218 */
219 private volatile boolean locallyFifo;
220
221 /**
222 * Holds number of total (i.e., created and not yet terminated)
223 * and running (i.e., not blocked on joins or other managed sync)
224 * threads, packed into one int to ensure consistent snapshot when
225 * making decisions about creating and suspending spare
226 * threads. Updated only by CAS. Note: CASes in
227 * updateRunningCount and preJoin assume that running active count
228 * is in low word, so need to be modified if this changes.
229 */
230 private volatile int workerCounts;
231
232 private static int totalCountOf(int s) { return s >>> 16; }
233 private static int runningCountOf(int s) { return s & shortMask; }
234 private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
235
236 /**
237 * Adds delta (which may be negative) to running count. This must
238 * be called before (with negative arg) and after (with positive)
239 * any managed synchronization (i.e., mainly, joins).
240 *
241 * @param delta the number to add
242 */
243 final void updateRunningCount(int delta) {
244 int s;
245 do {} while (!casWorkerCounts(s = workerCounts, s + delta));
246 }
247
248 /**
249 * Adds delta (which may be negative) to both total and running
250 * count. This must be called upon creation and termination of
251 * worker threads.
252 *
253 * @param delta the number to add
254 */
255 private void updateWorkerCount(int delta) {
256 int d = delta + (delta << 16); // add to both lo and hi parts
257 int s;
258 do {} while (!casWorkerCounts(s = workerCounts, s + d));
259 }
260
261 /**
262 * Lifecycle control. High word contains runState, low word
263 * contains the number of workers that are (probably) executing
264 * tasks. This value is atomically incremented before a worker
265 * gets a task to run, and decremented when worker has no tasks
266 * and cannot find any. These two fields are bundled together to
267 * support correct termination triggering. Note: activeCount
268 * CAS'es cheat by assuming active count is in low word, so need
269 * to be modified if this changes
270 */
271 private volatile int runControl;
272
273 // RunState values. Order among values matters
274 private static final int RUNNING = 0;
275 private static final int SHUTDOWN = 1;
276 private static final int TERMINATING = 2;
277 private static final int TERMINATED = 3;
278
279 private static int runStateOf(int c) { return c >>> 16; }
280 private static int activeCountOf(int c) { return c & shortMask; }
281 private static int runControlFor(int r, int a) { return (r << 16) + a; }
282
283 /**
284 * Tries incrementing active count; fails on contention.
285 * Called by workers before/during executing tasks.
286 *
287 * @return true on success
288 */
289 final boolean tryIncrementActiveCount() {
290 int c = runControl;
291 return casRunControl(c, c+1);
292 }
293
294 /**
295 * Tries decrementing active count; fails on contention.
296 * Possibly triggers termination on success.
297 * Called by workers when they can't find tasks.
298 *
299 * @return true on success
300 */
301 final boolean tryDecrementActiveCount() {
302 int c = runControl;
303 int nextc = c - 1;
304 if (!casRunControl(c, nextc))
305 return false;
306 if (canTerminateOnShutdown(nextc))
307 terminateOnShutdown();
308 return true;
309 }
310
311 /**
312 * Returns true if argument represents zero active count and
313 * nonzero runstate, which is the triggering condition for
314 * terminating on shutdown.
315 */
316 private static boolean canTerminateOnShutdown(int c) {
317 // i.e. least bit is nonzero runState bit
318 return ((c & -c) >>> 16) != 0;
319 }
320
321 /**
322 * Transition run state to at least the given state. Return true
323 * if not already at least given state.
324 */
325 private boolean transitionRunStateTo(int state) {
326 for (;;) {
327 int c = runControl;
328 if (runStateOf(c) >= state)
329 return false;
330 if (casRunControl(c, runControlFor(state, activeCountOf(c))))
331 return true;
332 }
333 }
334
335 /**
336 * Controls whether to add spares to maintain parallelism
337 */
338 private volatile boolean maintainsParallelism;
339
340 // Constructors
341
342 /**
343 * Creates a ForkJoinPool with a pool size equal to the number of
344 * processors available on the system, using the default
345 * ForkJoinWorkerThreadFactory.
346 *
347 * @throws SecurityException if a security manager exists and
348 * the caller is not permitted to modify threads
349 * because it does not hold {@link
350 * java.lang.RuntimePermission}{@code ("modifyThread")}
351 */
352 public ForkJoinPool() {
353 this(Runtime.getRuntime().availableProcessors(),
354 defaultForkJoinWorkerThreadFactory);
355 }
356
357 /**
358 * Creates a ForkJoinPool with the indicated parallelism level
359 * threads and using the default ForkJoinWorkerThreadFactory.
360 *
361 * @param parallelism the number of worker threads
362 * @throws IllegalArgumentException if parallelism less than or
363 * equal to zero
364 * @throws SecurityException if a security manager exists and
365 * the caller is not permitted to modify threads
366 * because it does not hold {@link
367 * java.lang.RuntimePermission}{@code ("modifyThread")}
368 */
369 public ForkJoinPool(int parallelism) {
370 this(parallelism, defaultForkJoinWorkerThreadFactory);
371 }
372
373 /**
374 * Creates a ForkJoinPool with parallelism equal to the number of
375 * processors available on the system and using the given
376 * ForkJoinWorkerThreadFactory.
377 *
378 * @param factory the factory for creating new threads
379 * @throws NullPointerException if factory is null
380 * @throws SecurityException if a security manager exists and
381 * the caller is not permitted to modify threads
382 * because it does not hold {@link
383 * java.lang.RuntimePermission}{@code ("modifyThread")}
384 */
385 public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
386 this(Runtime.getRuntime().availableProcessors(), factory);
387 }
388
389 /**
390 * Creates a ForkJoinPool with the given parallelism and factory.
391 *
392 * @param parallelism the targeted number of worker threads
393 * @param factory the factory for creating new threads
394 * @throws IllegalArgumentException if parallelism less than or
395 * equal to zero, or greater than implementation limit
396 * @throws NullPointerException if factory is null
397 * @throws SecurityException if a security manager exists and
398 * the caller is not permitted to modify threads
399 * because it does not hold {@link
400 * java.lang.RuntimePermission}{@code ("modifyThread")}
401 */
402 public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
403 if (parallelism <= 0 || parallelism > MAX_THREADS)
404 throw new IllegalArgumentException();
405 if (factory == null)
406 throw new NullPointerException();
407 checkPermission();
408 this.factory = factory;
409 this.parallelism = parallelism;
410 this.maxPoolSize = MAX_THREADS;
411 this.maintainsParallelism = true;
412 this.poolNumber = poolNumberGenerator.incrementAndGet();
413 this.workerLock = new ReentrantLock();
414 this.termination = workerLock.newCondition();
415 this.stealCount = new AtomicLong();
416 this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
417 // worker array and workers are lazily constructed
418 }
419
420 /**
421 * Creates a new worker thread using factory.
422 *
423 * @param index the index to assign worker
424 * @return new worker, or null of factory failed
425 */
426 private ForkJoinWorkerThread createWorker(int index) {
427 Thread.UncaughtExceptionHandler h = ueh;
428 ForkJoinWorkerThread w = factory.newThread(this);
429 if (w != null) {
430 w.poolIndex = index;
431 w.setDaemon(true);
432 w.setAsyncMode(locallyFifo);
433 w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
434 if (h != null)
435 w.setUncaughtExceptionHandler(h);
436 }
437 return w;
438 }
439
440 /**
441 * Returns a good size for worker array given pool size.
442 * Currently requires size to be a power of two.
443 */
444 private static int arraySizeFor(int poolSize) {
445 return (poolSize <= 1) ? 1 :
446 (1 << (32 - Integer.numberOfLeadingZeros(poolSize-1)));
447 }
448
449 /**
450 * Creates or resizes array if necessary to hold newLength.
451 * Call only under exclusion.
452 *
453 * @return the array
454 */
455 private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
456 ForkJoinWorkerThread[] ws = workers;
457 if (ws == null)
458 return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
459 else if (newLength > ws.length)
460 return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
461 else
462 return ws;
463 }
464
465 /**
466 * Tries to shrink workers into smaller array after one or more terminate.
467 */
468 private void tryShrinkWorkerArray() {
469 ForkJoinWorkerThread[] ws = workers;
470 if (ws != null) {
471 int len = ws.length;
472 int last = len - 1;
473 while (last >= 0 && ws[last] == null)
474 --last;
475 int newLength = arraySizeFor(last+1);
476 if (newLength < len)
477 workers = Arrays.copyOf(ws, newLength);
478 }
479 }
480
481 /**
482 * Initializes workers if necessary.
483 */
484 final void ensureWorkerInitialization() {
485 ForkJoinWorkerThread[] ws = workers;
486 if (ws == null) {
487 final ReentrantLock lock = this.workerLock;
488 lock.lock();
489 try {
490 ws = workers;
491 if (ws == null) {
492 int ps = parallelism;
493 ws = ensureWorkerArrayCapacity(ps);
494 for (int i = 0; i < ps; ++i) {
495 ForkJoinWorkerThread w = createWorker(i);
496 if (w != null) {
497 ws[i] = w;
498 w.start();
499 updateWorkerCount(1);
500 }
501 }
502 }
503 } finally {
504 lock.unlock();
505 }
506 }
507 }
508
509 /**
510 * Worker creation and startup for threads added via setParallelism.
511 */
512 private void createAndStartAddedWorkers() {
513 resumeAllSpares(); // Allow spares to convert to nonspare
514 int ps = parallelism;
515 ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
516 int len = ws.length;
517 // Sweep through slots, to keep lowest indices most populated
518 int k = 0;
519 while (k < len) {
520 if (ws[k] != null) {
521 ++k;
522 continue;
523 }
524 int s = workerCounts;
525 int tc = totalCountOf(s);
526 int rc = runningCountOf(s);
527 if (rc >= ps || tc >= ps)
528 break;
529 if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
530 ForkJoinWorkerThread w = createWorker(k);
531 if (w != null) {
532 ws[k++] = w;
533 w.start();
534 }
535 else {
536 updateWorkerCount(-1); // back out on failed creation
537 break;
538 }
539 }
540 }
541 }
542
543 // Execution methods
544
545 /**
546 * Common code for execute, invoke and submit
547 */
548 private <T> void doSubmit(ForkJoinTask<T> task) {
549 if (task == null)
550 throw new NullPointerException();
551 if (isShutdown())
552 throw new RejectedExecutionException();
553 if (workers == null)
554 ensureWorkerInitialization();
555 submissionQueue.offer(task);
556 signalIdleWorkers();
557 }
558
559 /**
560 * Performs the given task, returning its result upon completion.
561 *
562 * @param task the task
563 * @return the task's result
564 * @throws NullPointerException if task is null
565 * @throws RejectedExecutionException if pool is shut down
566 */
567 public <T> T invoke(ForkJoinTask<T> task) {
568 doSubmit(task);
569 return task.join();
570 }
571
572 /**
573 * Arranges for (asynchronous) execution of the given task.
574 *
575 * @param task the task
576 * @throws NullPointerException if task is null
577 * @throws RejectedExecutionException if pool is shut down
578 */
579 public <T> void execute(ForkJoinTask<T> task) {
580 doSubmit(task);
581 }
582
583 // AbstractExecutorService methods
584
585 public void execute(Runnable task) {
586 ForkJoinTask<?> job;
587 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
588 job = (ForkJoinTask<?>) task;
589 else
590 job = new AdaptedRunnable<Void>(task, null);
591 doSubmit(job);
592 }
593
594 public <T> ForkJoinTask<T> submit(Callable<T> task) {
595 ForkJoinTask<T> job = new AdaptedCallable<T>(task);
596 doSubmit(job);
597 return job;
598 }
599
600 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
601 ForkJoinTask<T> job = new AdaptedRunnable<T>(task, result);
602 doSubmit(job);
603 return job;
604 }
605
606 public ForkJoinTask<?> submit(Runnable task) {
607 ForkJoinTask<?> job;
608 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
609 job = (ForkJoinTask<?>) task;
610 else
611 job = new AdaptedRunnable<Void>(task, null);
612 doSubmit(job);
613 return job;
614 }
615
616 /**
617 * Submits a ForkJoinTask for execution.
618 *
619 * @param task the task to submit
620 * @return the task
621 * @throws RejectedExecutionException if the task cannot be
622 * scheduled for execution
623 * @throws NullPointerException if the task is null
624 */
625 public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
626 doSubmit(task);
627 return task;
628 }
629
630 /**
631 * Adaptor for Runnables. This implements RunnableFuture
632 * to be compliant with AbstractExecutorService constraints.
633 */
634 static final class AdaptedRunnable<T> extends ForkJoinTask<T>
635 implements RunnableFuture<T> {
636 final Runnable runnable;
637 final T resultOnCompletion;
638 T result;
639 AdaptedRunnable(Runnable runnable, T result) {
640 if (runnable == null) throw new NullPointerException();
641 this.runnable = runnable;
642 this.resultOnCompletion = result;
643 }
644 public T getRawResult() { return result; }
645 public void setRawResult(T v) { result = v; }
646 public boolean exec() {
647 runnable.run();
648 result = resultOnCompletion;
649 return true;
650 }
651 public void run() { invoke(); }
652 private static final long serialVersionUID = 5232453952276885070L;
653 }
654
655 /**
656 * Adaptor for Callables
657 */
658 static final class AdaptedCallable<T> extends ForkJoinTask<T>
659 implements RunnableFuture<T> {
660 final Callable<T> callable;
661 T result;
662 AdaptedCallable(Callable<T> callable) {
663 if (callable == null) throw new NullPointerException();
664 this.callable = callable;
665 }
666 public T getRawResult() { return result; }
667 public void setRawResult(T v) { result = v; }
668 public boolean exec() {
669 try {
670 result = callable.call();
671 return true;
672 } catch (Error err) {
673 throw err;
674 } catch (RuntimeException rex) {
675 throw rex;
676 } catch (Exception ex) {
677 throw new RuntimeException(ex);
678 }
679 }
680 public void run() { invoke(); }
681 private static final long serialVersionUID = 2838392045355241008L;
682 }
683
684 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
685 ArrayList<ForkJoinTask<T>> forkJoinTasks =
686 new ArrayList<ForkJoinTask<T>>(tasks.size());
687 for (Callable<T> task : tasks)
688 forkJoinTasks.add(new AdaptedCallable<T>(task));
689 invoke(new InvokeAll<T>(forkJoinTasks));
690
691 @SuppressWarnings({"unchecked", "rawtypes"})
692 List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
693 return futures;
694 }
695
696 static final class InvokeAll<T> extends RecursiveAction {
697 final ArrayList<ForkJoinTask<T>> tasks;
698 InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
699 public void compute() {
700 try { invokeAll(tasks); }
701 catch (Exception ignore) {}
702 }
703 private static final long serialVersionUID = -7914297376763021607L;
704 }
705
706 // Configuration and status settings and queries
707
708 /**
709 * Returns the factory used for constructing new workers.
710 *
711 * @return the factory used for constructing new workers
712 */
713 public ForkJoinWorkerThreadFactory getFactory() {
714 return factory;
715 }
716
717 /**
718 * Returns the handler for internal worker threads that terminate
719 * due to unrecoverable errors encountered while executing tasks.
720 *
721 * @return the handler, or null if none
722 */
723 public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
724 Thread.UncaughtExceptionHandler h;
725 final ReentrantLock lock = this.workerLock;
726 lock.lock();
727 try {
728 h = ueh;
729 } finally {
730 lock.unlock();
731 }
732 return h;
733 }
734
735 /**
736 * Sets the handler for internal worker threads that terminate due
737 * to unrecoverable errors encountered while executing tasks.
738 * Unless set, the current default or ThreadGroup handler is used
739 * as handler.
740 *
741 * @param h the new handler
742 * @return the old handler, or null if none
743 * @throws SecurityException if a security manager exists and
744 * the caller is not permitted to modify threads
745 * because it does not hold {@link
746 * java.lang.RuntimePermission}{@code ("modifyThread")}
747 */
748 public Thread.UncaughtExceptionHandler
749 setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
750 checkPermission();
751 Thread.UncaughtExceptionHandler old = null;
752 final ReentrantLock lock = this.workerLock;
753 lock.lock();
754 try {
755 old = ueh;
756 ueh = h;
757 ForkJoinWorkerThread[] ws = workers;
758 if (ws != null) {
759 for (int i = 0; i < ws.length; ++i) {
760 ForkJoinWorkerThread w = ws[i];
761 if (w != null)
762 w.setUncaughtExceptionHandler(h);
763 }
764 }
765 } finally {
766 lock.unlock();
767 }
768 return old;
769 }
770
771
772 /**
773 * Sets the target parallelism level of this pool.
774 *
775 * @param parallelism the target parallelism
776 * @throws IllegalArgumentException if parallelism less than or
777 * equal to zero or greater than maximum size bounds
778 * @throws SecurityException if a security manager exists and
779 * the caller is not permitted to modify threads
780 * because it does not hold {@link
781 * java.lang.RuntimePermission}{@code ("modifyThread")}
782 */
783 public void setParallelism(int parallelism) {
784 checkPermission();
785 if (parallelism <= 0 || parallelism > maxPoolSize)
786 throw new IllegalArgumentException();
787 final ReentrantLock lock = this.workerLock;
788 lock.lock();
789 try {
790 if (!isTerminating()) {
791 int p = this.parallelism;
792 this.parallelism = parallelism;
793 if (parallelism > p)
794 createAndStartAddedWorkers();
795 else
796 trimSpares();
797 }
798 } finally {
799 lock.unlock();
800 }
801 signalIdleWorkers();
802 }
803
804 /**
805 * Returns the targeted number of worker threads in this pool.
806 *
807 * @return the targeted number of worker threads in this pool
808 */
809 public int getParallelism() {
810 return parallelism;
811 }
812
813 /**
814 * Returns the number of worker threads that have started but not
815 * yet terminated. This result returned by this method may differ
816 * from {@code getParallelism} when threads are created to
817 * maintain parallelism when others are cooperatively blocked.
818 *
819 * @return the number of worker threads
820 */
821 public int getPoolSize() {
822 return totalCountOf(workerCounts);
823 }
824
825 /**
826 * Returns the maximum number of threads allowed to exist in the
827 * pool, even if there are insufficient unblocked running threads.
828 *
829 * @return the maximum
830 */
831 public int getMaximumPoolSize() {
832 return maxPoolSize;
833 }
834
835 /**
836 * Sets the maximum number of threads allowed to exist in the
837 * pool, even if there are insufficient unblocked running threads.
838 * Setting this value has no effect on current pool size. It
839 * controls construction of new threads.
840 *
841 * @throws IllegalArgumentException if negative or greater then
842 * internal implementation limit
843 */
844 public void setMaximumPoolSize(int newMax) {
845 if (newMax < 0 || newMax > MAX_THREADS)
846 throw new IllegalArgumentException();
847 maxPoolSize = newMax;
848 }
849
850
851 /**
852 * Returns true if this pool dynamically maintains its target
853 * parallelism level. If false, new threads are added only to
854 * avoid possible starvation.
855 * This setting is by default true.
856 *
857 * @return true if maintains parallelism
858 */
859 public boolean getMaintainsParallelism() {
860 return maintainsParallelism;
861 }
862
863 /**
864 * Sets whether this pool dynamically maintains its target
865 * parallelism level. If false, new threads are added only to
866 * avoid possible starvation.
867 *
868 * @param enable true to maintains parallelism
869 */
870 public void setMaintainsParallelism(boolean enable) {
871 maintainsParallelism = enable;
872 }
873
874 /**
875 * Establishes local first-in-first-out scheduling mode for forked
876 * tasks that are never joined. This mode may be more appropriate
877 * than default locally stack-based mode in applications in which
878 * worker threads only process asynchronous tasks. This method is
879 * designed to be invoked only when pool is quiescent, and
880 * typically only before any tasks are submitted. The effects of
881 * invocations at other times may be unpredictable.
882 *
883 * @param async if true, use locally FIFO scheduling
884 * @return the previous mode
885 */
886 public boolean setAsyncMode(boolean async) {
887 boolean oldMode = locallyFifo;
888 locallyFifo = async;
889 ForkJoinWorkerThread[] ws = workers;
890 if (ws != null) {
891 for (int i = 0; i < ws.length; ++i) {
892 ForkJoinWorkerThread t = ws[i];
893 if (t != null)
894 t.setAsyncMode(async);
895 }
896 }
897 return oldMode;
898 }
899
900 /**
901 * Returns true if this pool uses local first-in-first-out
902 * scheduling mode for forked tasks that are never joined.
903 *
904 * @return true if this pool uses async mode
905 */
906 public boolean getAsyncMode() {
907 return locallyFifo;
908 }
909
910 /**
911 * Returns an estimate of the number of worker threads that are
912 * not blocked waiting to join tasks or for other managed
913 * synchronization.
914 *
915 * @return the number of worker threads
916 */
917 public int getRunningThreadCount() {
918 return runningCountOf(workerCounts);
919 }
920
921 /**
922 * Returns an estimate of the number of threads that are currently
923 * stealing or executing tasks. This method may overestimate the
924 * number of active threads.
925 *
926 * @return the number of active threads
927 */
928 public int getActiveThreadCount() {
929 return activeCountOf(runControl);
930 }
931
932 /**
933 * Returns an estimate of the number of threads that are currently
934 * idle waiting for tasks. This method may underestimate the
935 * number of idle threads.
936 *
937 * @return the number of idle threads
938 */
939 final int getIdleThreadCount() {
940 int c = runningCountOf(workerCounts) - activeCountOf(runControl);
941 return (c <= 0) ? 0 : c;
942 }
943
944 /**
945 * Returns true if all worker threads are currently idle. An idle
946 * worker is one that cannot obtain a task to execute because none
947 * are available to steal from other threads, and there are no
948 * pending submissions to the pool. This method is conservative;
949 * it might not return true immediately upon idleness of all
950 * threads, but will eventually become true if threads remain
951 * inactive.
952 *
953 * @return true if all threads are currently idle
954 */
955 public boolean isQuiescent() {
956 return activeCountOf(runControl) == 0;
957 }
958
959 /**
960 * Returns an estimate of the total number of tasks stolen from
961 * one thread's work queue by another. The reported value
962 * underestimates the actual total number of steals when the pool
963 * is not quiescent. This value may be useful for monitoring and
964 * tuning fork/join programs: in general, steal counts should be
965 * high enough to keep threads busy, but low enough to avoid
966 * overhead and contention across threads.
967 *
968 * @return the number of steals
969 */
970 public long getStealCount() {
971 return stealCount.get();
972 }
973
974 /**
975 * Accumulates steal count from a worker.
976 * Call only when worker known to be idle.
977 */
978 private void updateStealCount(ForkJoinWorkerThread w) {
979 int sc = w.getAndClearStealCount();
980 if (sc != 0)
981 stealCount.addAndGet(sc);
982 }
983
984 /**
985 * Returns an estimate of the total number of tasks currently held
986 * in queues by worker threads (but not including tasks submitted
987 * to the pool that have not begun executing). This value is only
988 * an approximation, obtained by iterating across all threads in
989 * the pool. This method may be useful for tuning task
990 * granularities.
991 *
992 * @return the number of queued tasks
993 */
994 public long getQueuedTaskCount() {
995 long count = 0;
996 ForkJoinWorkerThread[] ws = workers;
997 if (ws != null) {
998 for (int i = 0; i < ws.length; ++i) {
999 ForkJoinWorkerThread t = ws[i];
1000 if (t != null)
1001 count += t.getQueueSize();
1002 }
1003 }
1004 return count;
1005 }
1006
1007 /**
1008 * Returns an estimate of the number tasks submitted to this pool
1009 * that have not yet begun executing. This method takes time
1010 * proportional to the number of submissions.
1011 *
1012 * @return the number of queued submissions
1013 */
1014 public int getQueuedSubmissionCount() {
1015 return submissionQueue.size();
1016 }
1017
1018 /**
1019 * Returns true if there are any tasks submitted to this pool
1020 * that have not yet begun executing.
1021 *
1022 * @return {@code true} if there are any queued submissions
1023 */
1024 public boolean hasQueuedSubmissions() {
1025 return !submissionQueue.isEmpty();
1026 }
1027
1028 /**
1029 * Removes and returns the next unexecuted submission if one is
1030 * available. This method may be useful in extensions to this
1031 * class that re-assign work in systems with multiple pools.
1032 *
1033 * @return the next submission, or null if none
1034 */
1035 protected ForkJoinTask<?> pollSubmission() {
1036 return submissionQueue.poll();
1037 }
1038
1039 /**
1040 * Removes all available unexecuted submitted and forked tasks
1041 * from scheduling queues and adds them to the given collection,
1042 * without altering their execution status. These may include
1043 * artificially generated or wrapped tasks. This method is designed
1044 * to be invoked only when the pool is known to be
1045 * quiescent. Invocations at other times may not remove all
1046 * tasks. A failure encountered while attempting to add elements
1047 * to collection {@code c} may result in elements being in
1048 * neither, either or both collections when the associated
1049 * exception is thrown. The behavior of this operation is
1050 * undefined if the specified collection is modified while the
1051 * operation is in progress.
1052 *
1053 * @param c the collection to transfer elements into
1054 * @return the number of elements transferred
1055 */
1056 protected int drainTasksTo(Collection<ForkJoinTask<?>> c) {
1057 int n = submissionQueue.drainTo(c);
1058 ForkJoinWorkerThread[] ws = workers;
1059 if (ws != null) {
1060 for (int i = 0; i < ws.length; ++i) {
1061 ForkJoinWorkerThread w = ws[i];
1062 if (w != null)
1063 n += w.drainTasksTo(c);
1064 }
1065 }
1066 return n;
1067 }
1068
1069 /**
1070 * Returns a string identifying this pool, as well as its state,
1071 * including indications of run state, parallelism level, and
1072 * worker and task counts.
1073 *
1074 * @return a string identifying this pool, as well as its state
1075 */
1076 public String toString() {
1077 int ps = parallelism;
1078 int wc = workerCounts;
1079 int rc = runControl;
1080 long st = getStealCount();
1081 long qt = getQueuedTaskCount();
1082 long qs = getQueuedSubmissionCount();
1083 return super.toString() +
1084 "[" + runStateToString(runStateOf(rc)) +
1085 ", parallelism = " + ps +
1086 ", size = " + totalCountOf(wc) +
1087 ", active = " + activeCountOf(rc) +
1088 ", running = " + runningCountOf(wc) +
1089 ", steals = " + st +
1090 ", tasks = " + qt +
1091 ", submissions = " + qs +
1092 "]";
1093 }
1094
1095 private static String runStateToString(int rs) {
1096 switch(rs) {
1097 case RUNNING: return "Running";
1098 case SHUTDOWN: return "Shutting down";
1099 case TERMINATING: return "Terminating";
1100 case TERMINATED: return "Terminated";
1101 default: throw new Error("Unknown run state");
1102 }
1103 }
1104
1105 // lifecycle control
1106
1107 /**
1108 * Initiates an orderly shutdown in which previously submitted
1109 * tasks are executed, but no new tasks will be accepted.
1110 * Invocation has no additional effect if already shut down.
1111 * Tasks that are in the process of being submitted concurrently
1112 * during the course of this method may or may not be rejected.
1113 *
1114 * @throws SecurityException if a security manager exists and
1115 * the caller is not permitted to modify threads
1116 * because it does not hold {@link
1117 * java.lang.RuntimePermission}{@code ("modifyThread")}
1118 */
1119 public void shutdown() {
1120 checkPermission();
1121 transitionRunStateTo(SHUTDOWN);
1122 if (canTerminateOnShutdown(runControl))
1123 terminateOnShutdown();
1124 }
1125
1126 /**
1127 * Attempts to stop all actively executing tasks, and cancels all
1128 * waiting tasks. Tasks that are in the process of being
1129 * submitted or executed concurrently during the course of this
1130 * method may or may not be rejected. Unlike some other executors,
1131 * this method cancels rather than collects non-executed tasks
1132 * upon termination, so always returns an empty list. However, you
1133 * can use method {@code drainTasksTo} before invoking this
1134 * method to transfer unexecuted tasks to another collection.
1135 *
1136 * @return an empty list
1137 * @throws SecurityException if a security manager exists and
1138 * the caller is not permitted to modify threads
1139 * because it does not hold {@link
1140 * java.lang.RuntimePermission}{@code ("modifyThread")}
1141 */
1142 public List<Runnable> shutdownNow() {
1143 checkPermission();
1144 terminate();
1145 return Collections.emptyList();
1146 }
1147
1148 /**
1149 * Returns {@code true} if all tasks have completed following shut down.
1150 *
1151 * @return {@code true} if all tasks have completed following shut down
1152 */
1153 public boolean isTerminated() {
1154 return runStateOf(runControl) == TERMINATED;
1155 }
1156
1157 /**
1158 * Returns {@code true} if the process of termination has
1159 * commenced but possibly not yet completed.
1160 *
1161 * @return {@code true} if terminating
1162 */
1163 public boolean isTerminating() {
1164 return runStateOf(runControl) >= TERMINATING;
1165 }
1166
1167 /**
1168 * Returns {@code true} if this pool has been shut down.
1169 *
1170 * @return {@code true} if this pool has been shut down
1171 */
1172 public boolean isShutdown() {
1173 return runStateOf(runControl) >= SHUTDOWN;
1174 }
1175
1176 /**
1177 * Blocks until all tasks have completed execution after a shutdown
1178 * request, or the timeout occurs, or the current thread is
1179 * interrupted, whichever happens first.
1180 *
1181 * @param timeout the maximum time to wait
1182 * @param unit the time unit of the timeout argument
1183 * @return {@code true} if this executor terminated and
1184 * {@code false} if the timeout elapsed before termination
1185 * @throws InterruptedException if interrupted while waiting
1186 */
1187 public boolean awaitTermination(long timeout, TimeUnit unit)
1188 throws InterruptedException {
1189 long nanos = unit.toNanos(timeout);
1190 final ReentrantLock lock = this.workerLock;
1191 lock.lock();
1192 try {
1193 for (;;) {
1194 if (isTerminated())
1195 return true;
1196 if (nanos <= 0)
1197 return false;
1198 nanos = termination.awaitNanos(nanos);
1199 }
1200 } finally {
1201 lock.unlock();
1202 }
1203 }
1204
1205 // Shutdown and termination support
1206
1207 /**
1208 * Callback from terminating worker. Nulls out the corresponding
1209 * workers slot, and if terminating, tries to terminate; else
1210 * tries to shrink workers array.
1211 *
1212 * @param w the worker
1213 */
1214 final void workerTerminated(ForkJoinWorkerThread w) {
1215 updateStealCount(w);
1216 updateWorkerCount(-1);
1217 final ReentrantLock lock = this.workerLock;
1218 lock.lock();
1219 try {
1220 ForkJoinWorkerThread[] ws = workers;
1221 if (ws != null) {
1222 int idx = w.poolIndex;
1223 if (idx >= 0 && idx < ws.length && ws[idx] == w)
1224 ws[idx] = null;
1225 if (totalCountOf(workerCounts) == 0) {
1226 terminate(); // no-op if already terminating
1227 transitionRunStateTo(TERMINATED);
1228 termination.signalAll();
1229 }
1230 else if (!isTerminating()) {
1231 tryShrinkWorkerArray();
1232 tryResumeSpare(true); // allow replacement
1233 }
1234 }
1235 } finally {
1236 lock.unlock();
1237 }
1238 signalIdleWorkers();
1239 }
1240
1241 /**
1242 * Initiates termination.
1243 */
1244 private void terminate() {
1245 if (transitionRunStateTo(TERMINATING)) {
1246 stopAllWorkers();
1247 resumeAllSpares();
1248 signalIdleWorkers();
1249 cancelQueuedSubmissions();
1250 cancelQueuedWorkerTasks();
1251 interruptUnterminatedWorkers();
1252 signalIdleWorkers(); // resignal after interrupt
1253 }
1254 }
1255
1256 /**
1257 * Possibly terminates when on shutdown state.
1258 */
1259 private void terminateOnShutdown() {
1260 if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1261 terminate();
1262 }
1263
1264 /**
1265 * Clears out and cancels submissions.
1266 */
1267 private void cancelQueuedSubmissions() {
1268 ForkJoinTask<?> task;
1269 while ((task = pollSubmission()) != null)
1270 task.cancel(false);
1271 }
1272
1273 /**
1274 * Cleans out worker queues.
1275 */
1276 private void cancelQueuedWorkerTasks() {
1277 final ReentrantLock lock = this.workerLock;
1278 lock.lock();
1279 try {
1280 ForkJoinWorkerThread[] ws = workers;
1281 if (ws != null) {
1282 for (int i = 0; i < ws.length; ++i) {
1283 ForkJoinWorkerThread t = ws[i];
1284 if (t != null)
1285 t.cancelTasks();
1286 }
1287 }
1288 } finally {
1289 lock.unlock();
1290 }
1291 }
1292
1293 /**
1294 * Sets each worker's status to terminating. Requires lock to avoid
1295 * conflicts with add/remove.
1296 */
1297 private void stopAllWorkers() {
1298 final ReentrantLock lock = this.workerLock;
1299 lock.lock();
1300 try {
1301 ForkJoinWorkerThread[] ws = workers;
1302 if (ws != null) {
1303 for (int i = 0; i < ws.length; ++i) {
1304 ForkJoinWorkerThread t = ws[i];
1305 if (t != null)
1306 t.shutdownNow();
1307 }
1308 }
1309 } finally {
1310 lock.unlock();
1311 }
1312 }
1313
1314 /**
1315 * Interrupts all unterminated workers. This is not required for
1316 * sake of internal control, but may help unstick user code during
1317 * shutdown.
1318 */
1319 private void interruptUnterminatedWorkers() {
1320 final ReentrantLock lock = this.workerLock;
1321 lock.lock();
1322 try {
1323 ForkJoinWorkerThread[] ws = workers;
1324 if (ws != null) {
1325 for (int i = 0; i < ws.length; ++i) {
1326 ForkJoinWorkerThread t = ws[i];
1327 if (t != null && !t.isTerminated()) {
1328 try {
1329 t.interrupt();
1330 } catch (SecurityException ignore) {
1331 }
1332 }
1333 }
1334 }
1335 } finally {
1336 lock.unlock();
1337 }
1338 }
1339
1340
1341 /*
1342 * Nodes for event barrier to manage idle threads. Queue nodes
1343 * are basic Treiber stack nodes, also used for spare stack.
1344 *
1345 * The event barrier has an event count and a wait queue (actually
1346 * a Treiber stack). Workers are enabled to look for work when
1347 * the eventCount is incremented. If they fail to find work, they
1348 * may wait for next count. Upon release, threads help others wake
1349 * up.
1350 *
1351 * Synchronization events occur only in enough contexts to
1352 * maintain overall liveness:
1353 *
1354 * - Submission of a new task to the pool
1355 * - Resizes or other changes to the workers array
1356 * - pool termination
1357 * - A worker pushing a task on an empty queue
1358 *
1359 * The case of pushing a task occurs often enough, and is heavy
1360 * enough compared to simple stack pushes, to require special
1361 * handling: Method signalWork returns without advancing count if
1362 * the queue appears to be empty. This would ordinarily result in
1363 * races causing some queued waiters not to be woken up. To avoid
1364 * this, the first worker enqueued in method sync (see
1365 * syncIsReleasable) rescans for tasks after being enqueued, and
1366 * helps signal if any are found. This works well because the
1367 * worker has nothing better to do, and so might as well help
1368 * alleviate the overhead and contention on the threads actually
1369 * doing work. Also, since event counts increments on task
1370 * availability exist to maintain liveness (rather than to force
1371 * refreshes etc), it is OK for callers to exit early if
1372 * contending with another signaller.
1373 */
1374 static final class WaitQueueNode {
1375 WaitQueueNode next; // only written before enqueued
1376 volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1377 final long count; // unused for spare stack
1378
1379 WaitQueueNode(long c, ForkJoinWorkerThread w) {
1380 count = c;
1381 thread = w;
1382 }
1383
1384 /**
1385 * Wakes up waiter, returning false if known to already
1386 */
1387 boolean signal() {
1388 ForkJoinWorkerThread t = thread;
1389 if (t == null)
1390 return false;
1391 thread = null;
1392 LockSupport.unpark(t);
1393 return true;
1394 }
1395
1396 /**
1397 * Awaits release on sync.
1398 */
1399 void awaitSyncRelease(ForkJoinPool p) {
1400 while (thread != null && !p.syncIsReleasable(this))
1401 LockSupport.park(this);
1402 }
1403
1404 /**
1405 * Awaits resumption as spare.
1406 */
1407 void awaitSpareRelease() {
1408 while (thread != null) {
1409 if (!Thread.interrupted())
1410 LockSupport.park(this);
1411 }
1412 }
1413 }
1414
1415 /**
1416 * Ensures that no thread is waiting for count to advance from the
1417 * current value of eventCount read on entry to this method, by
1418 * releasing waiting threads if necessary.
1419 *
1420 * @return the count
1421 */
1422 final long ensureSync() {
1423 long c = eventCount;
1424 WaitQueueNode q;
1425 while ((q = syncStack) != null && q.count < c) {
1426 if (casBarrierStack(q, null)) {
1427 do {
1428 q.signal();
1429 } while ((q = q.next) != null);
1430 break;
1431 }
1432 }
1433 return c;
1434 }
1435
1436 /**
1437 * Increments event count and releases waiting threads.
1438 */
1439 private void signalIdleWorkers() {
1440 long c;
1441 do {} while (!casEventCount(c = eventCount, c+1));
1442 ensureSync();
1443 }
1444
1445 /**
1446 * Signals threads waiting to poll a task. Because method sync
1447 * rechecks availability, it is OK to only proceed if queue
1448 * appears to be non-empty, and OK to skip under contention to
1449 * increment count (since some other thread succeeded).
1450 */
1451 final void signalWork() {
1452 long c;
1453 WaitQueueNode q;
1454 if (syncStack != null &&
1455 casEventCount(c = eventCount, c+1) &&
1456 (((q = syncStack) != null && q.count <= c) &&
1457 (!casBarrierStack(q, q.next) || !q.signal())))
1458 ensureSync();
1459 }
1460
1461 /**
1462 * Waits until event count advances from last value held by
1463 * caller, or if excess threads, caller is resumed as spare, or
1464 * caller or pool is terminating. Updates caller's event on exit.
1465 *
1466 * @param w the calling worker thread
1467 */
1468 final void sync(ForkJoinWorkerThread w) {
1469 updateStealCount(w); // Transfer w's count while it is idle
1470
1471 while (!w.isShutdown() && !isTerminating() && !suspendIfSpare(w)) {
1472 long prev = w.lastEventCount;
1473 WaitQueueNode node = null;
1474 WaitQueueNode h;
1475 while (eventCount == prev &&
1476 ((h = syncStack) == null || h.count == prev)) {
1477 if (node == null)
1478 node = new WaitQueueNode(prev, w);
1479 if (casBarrierStack(node.next = h, node)) {
1480 node.awaitSyncRelease(this);
1481 break;
1482 }
1483 }
1484 long ec = ensureSync();
1485 if (ec != prev) {
1486 w.lastEventCount = ec;
1487 break;
1488 }
1489 }
1490 }
1491
1492 /**
1493 * Returns true if worker waiting on sync can proceed:
1494 * - on signal (thread == null)
1495 * - on event count advance (winning race to notify vs signaller)
1496 * - on interrupt
1497 * - if the first queued node, we find work available
1498 * If node was not signalled and event count not advanced on exit,
1499 * then we also help advance event count.
1500 *
1501 * @return true if node can be released
1502 */
1503 final boolean syncIsReleasable(WaitQueueNode node) {
1504 long prev = node.count;
1505 if (!Thread.interrupted() && node.thread != null &&
1506 (node.next != null ||
1507 !ForkJoinWorkerThread.hasQueuedTasks(workers)) &&
1508 eventCount == prev)
1509 return false;
1510 if (node.thread != null) {
1511 node.thread = null;
1512 long ec = eventCount;
1513 if (prev <= ec) // help signal
1514 casEventCount(ec, ec+1);
1515 }
1516 return true;
1517 }
1518
1519 /**
1520 * Returns true if a new sync event occurred since last call to
1521 * sync or this method, if so, updating caller's count.
1522 */
1523 final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
1524 long lc = w.lastEventCount;
1525 long ec = ensureSync();
1526 if (ec == lc)
1527 return false;
1528 w.lastEventCount = ec;
1529 return true;
1530 }
1531
1532 // Parallelism maintenance
1533
1534 /**
1535 * Decrements running count; if too low, adds spare.
1536 *
1537 * Conceptually, all we need to do here is add or resume a
1538 * spare thread when one is about to block (and remove or
1539 * suspend it later when unblocked -- see suspendIfSpare).
1540 * However, implementing this idea requires coping with
1541 * several problems: we have imperfect information about the
1542 * states of threads. Some count updates can and usually do
1543 * lag run state changes, despite arrangements to keep them
1544 * accurate (for example, when possible, updating counts
1545 * before signalling or resuming), especially when running on
1546 * dynamic JVMs that don't optimize the infrequent paths that
1547 * update counts. Generating too many threads can make these
1548 * problems become worse, because excess threads are more
1549 * likely to be context-switched with others, slowing them all
1550 * down, especially if there is no work available, so all are
1551 * busy scanning or idling. Also, excess spare threads can
1552 * only be suspended or removed when they are idle, not
1553 * immediately when they aren't needed. So adding threads will
1554 * raise parallelism level for longer than necessary. Also,
1555 * FJ applications often encounter highly transient peaks when
1556 * many threads are blocked joining, but for less time than it
1557 * takes to create or resume spares.
1558 *
1559 * @param joinMe if non-null, return early if done
1560 * @param maintainParallelism if true, try to stay within
1561 * target counts, else create only to avoid starvation
1562 * @return true if joinMe known to be done
1563 */
1564 final boolean preJoin(ForkJoinTask<?> joinMe,
1565 boolean maintainParallelism) {
1566 maintainParallelism &= maintainsParallelism; // overrride
1567 boolean dec = false; // true when running count decremented
1568 while (spareStack == null || !tryResumeSpare(dec)) {
1569 int counts = workerCounts;
1570 if (dec || (dec = casWorkerCounts(counts, --counts))) {
1571 // CAS cheat
1572 if (!needSpare(counts, maintainParallelism))
1573 break;
1574 if (joinMe.status < 0)
1575 return true;
1576 if (tryAddSpare(counts))
1577 break;
1578 }
1579 }
1580 return false;
1581 }
1582
1583 /**
1584 * Same idea as preJoin
1585 */
1586 final boolean preBlock(ManagedBlocker blocker,
1587 boolean maintainParallelism) {
1588 maintainParallelism &= maintainsParallelism;
1589 boolean dec = false;
1590 while (spareStack == null || !tryResumeSpare(dec)) {
1591 int counts = workerCounts;
1592 if (dec || (dec = casWorkerCounts(counts, --counts))) {
1593 if (!needSpare(counts, maintainParallelism))
1594 break;
1595 if (blocker.isReleasable())
1596 return true;
1597 if (tryAddSpare(counts))
1598 break;
1599 }
1600 }
1601 return false;
1602 }
1603
1604 /**
1605 * Returns true if a spare thread appears to be needed. If
1606 * maintaining parallelism, returns true when the deficit in
1607 * running threads is more than the surplus of total threads, and
1608 * there is apparently some work to do. This self-limiting rule
1609 * means that the more threads that have already been added, the
1610 * less parallelism we will tolerate before adding another.
1611 *
1612 * @param counts current worker counts
1613 * @param maintainParallelism try to maintain parallelism
1614 */
1615 private boolean needSpare(int counts, boolean maintainParallelism) {
1616 int ps = parallelism;
1617 int rc = runningCountOf(counts);
1618 int tc = totalCountOf(counts);
1619 int runningDeficit = ps - rc;
1620 int totalSurplus = tc - ps;
1621 return (tc < maxPoolSize &&
1622 (rc == 0 || totalSurplus < 0 ||
1623 (maintainParallelism &&
1624 runningDeficit > totalSurplus &&
1625 ForkJoinWorkerThread.hasQueuedTasks(workers))));
1626 }
1627
1628 /**
1629 * Adds a spare worker if lock available and no more than the
1630 * expected numbers of threads exist.
1631 *
1632 * @return true if successful
1633 */
1634 private boolean tryAddSpare(int expectedCounts) {
1635 final ReentrantLock lock = this.workerLock;
1636 int expectedRunning = runningCountOf(expectedCounts);
1637 int expectedTotal = totalCountOf(expectedCounts);
1638 boolean success = false;
1639 boolean locked = false;
1640 // confirm counts while locking; CAS after obtaining lock
1641 try {
1642 for (;;) {
1643 int s = workerCounts;
1644 int tc = totalCountOf(s);
1645 int rc = runningCountOf(s);
1646 if (rc > expectedRunning || tc > expectedTotal)
1647 break;
1648 if (!locked && !(locked = lock.tryLock()))
1649 break;
1650 if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1651 createAndStartSpare(tc);
1652 success = true;
1653 break;
1654 }
1655 }
1656 } finally {
1657 if (locked)
1658 lock.unlock();
1659 }
1660 return success;
1661 }
1662
1663 /**
1664 * Adds the kth spare worker. On entry, pool counts are already
1665 * adjusted to reflect addition.
1666 */
1667 private void createAndStartSpare(int k) {
1668 ForkJoinWorkerThread w = null;
1669 ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1670 int len = ws.length;
1671 // Probably, we can place at slot k. If not, find empty slot
1672 if (k < len && ws[k] != null) {
1673 for (k = 0; k < len && ws[k] != null; ++k)
1674 ;
1675 }
1676 if (k < len && !isTerminating() && (w = createWorker(k)) != null) {
1677 ws[k] = w;
1678 w.start();
1679 }
1680 else
1681 updateWorkerCount(-1); // adjust on failure
1682 signalIdleWorkers();
1683 }
1684
1685 /**
1686 * Suspends calling thread w if there are excess threads. Called
1687 * only from sync. Spares are enqueued in a Treiber stack using
1688 * the same WaitQueueNodes as barriers. They are resumed mainly
1689 * in preJoin, but are also woken on pool events that require all
1690 * threads to check run state.
1691 *
1692 * @param w the caller
1693 */
1694 private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1695 WaitQueueNode node = null;
1696 int s;
1697 while (parallelism < runningCountOf(s = workerCounts)) {
1698 if (node == null)
1699 node = new WaitQueueNode(0, w);
1700 if (casWorkerCounts(s, s-1)) { // representation-dependent
1701 // push onto stack
1702 do {} while (!casSpareStack(node.next = spareStack, node));
1703 // block until released by resumeSpare
1704 node.awaitSpareRelease();
1705 return true;
1706 }
1707 }
1708 return false;
1709 }
1710
1711 /**
1712 * Tries to pop and resume a spare thread.
1713 *
1714 * @param updateCount if true, increment running count on success
1715 * @return true if successful
1716 */
1717 private boolean tryResumeSpare(boolean updateCount) {
1718 WaitQueueNode q;
1719 while ((q = spareStack) != null) {
1720 if (casSpareStack(q, q.next)) {
1721 if (updateCount)
1722 updateRunningCount(1);
1723 q.signal();
1724 return true;
1725 }
1726 }
1727 return false;
1728 }
1729
1730 /**
1731 * Pops and resumes all spare threads. Same idea as ensureSync.
1732 *
1733 * @return true if any spares released
1734 */
1735 private boolean resumeAllSpares() {
1736 WaitQueueNode q;
1737 while ( (q = spareStack) != null) {
1738 if (casSpareStack(q, null)) {
1739 do {
1740 updateRunningCount(1);
1741 q.signal();
1742 } while ((q = q.next) != null);
1743 return true;
1744 }
1745 }
1746 return false;
1747 }
1748
1749 /**
1750 * Pops and shuts down excessive spare threads. Call only while
1751 * holding lock. This is not guaranteed to eliminate all excess
1752 * threads, only those suspended as spares, which are the ones
1753 * unlikely to be needed in the future.
1754 */
1755 private void trimSpares() {
1756 int surplus = totalCountOf(workerCounts) - parallelism;
1757 WaitQueueNode q;
1758 while (surplus > 0 && (q = spareStack) != null) {
1759 if (casSpareStack(q, null)) {
1760 do {
1761 updateRunningCount(1);
1762 ForkJoinWorkerThread w = q.thread;
1763 if (w != null && surplus > 0 &&
1764 runningCountOf(workerCounts) > 0 && w.shutdown())
1765 --surplus;
1766 q.signal();
1767 } while ((q = q.next) != null);
1768 }
1769 }
1770 }
1771
1772 /**
1773 * Interface for extending managed parallelism for tasks running
1774 * in ForkJoinPools. A ManagedBlocker provides two methods.
1775 * Method {@code isReleasable} must return true if blocking is not
1776 * necessary. Method {@code block} blocks the current thread if
1777 * necessary (perhaps internally invoking {@code isReleasable}
1778 * before actually blocking.).
1779 *
1780 * <p>For example, here is a ManagedBlocker based on a
1781 * ReentrantLock:
1782 * <pre> {@code
1783 * class ManagedLocker implements ManagedBlocker {
1784 * final ReentrantLock lock;
1785 * boolean hasLock = false;
1786 * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
1787 * public boolean block() {
1788 * if (!hasLock)
1789 * lock.lock();
1790 * return true;
1791 * }
1792 * public boolean isReleasable() {
1793 * return hasLock || (hasLock = lock.tryLock());
1794 * }
1795 * }}</pre>
1796 */
1797 public static interface ManagedBlocker {
1798 /**
1799 * Possibly blocks the current thread, for example waiting for
1800 * a lock or condition.
1801 *
1802 * @return true if no additional blocking is necessary (i.e.,
1803 * if isReleasable would return true)
1804 * @throws InterruptedException if interrupted while waiting
1805 * (the method is not required to do so, but is allowed to)
1806 */
1807 boolean block() throws InterruptedException;
1808
1809 /**
1810 * Returns true if blocking is unnecessary.
1811 */
1812 boolean isReleasable();
1813 }
1814
1815 /**
1816 * Blocks in accord with the given blocker. If the current thread
1817 * is a ForkJoinWorkerThread, this method possibly arranges for a
1818 * spare thread to be activated if necessary to ensure parallelism
1819 * while the current thread is blocked. If
1820 * {@code maintainParallelism} is true and the pool supports
1821 * it ({@link #getMaintainsParallelism}), this method attempts to
1822 * maintain the pool's nominal parallelism. Otherwise it activates
1823 * a thread only if necessary to avoid complete starvation. This
1824 * option may be preferable when blockages use timeouts, or are
1825 * almost always brief.
1826 *
1827 * <p> If the caller is not a ForkJoinTask, this method is behaviorally
1828 * equivalent to
1829 * <pre> {@code
1830 * while (!blocker.isReleasable())
1831 * if (blocker.block())
1832 * return;
1833 * }</pre>
1834 * If the caller is a ForkJoinTask, then the pool may first
1835 * be expanded to ensure parallelism, and later adjusted.
1836 *
1837 * @param blocker the blocker
1838 * @param maintainParallelism if true and supported by this pool,
1839 * attempt to maintain the pool's nominal parallelism; otherwise
1840 * activate a thread only if necessary to avoid complete
1841 * starvation.
1842 * @throws InterruptedException if blocker.block did so
1843 */
1844 public static void managedBlock(ManagedBlocker blocker,
1845 boolean maintainParallelism)
1846 throws InterruptedException {
1847 Thread t = Thread.currentThread();
1848 ForkJoinPool pool = ((t instanceof ForkJoinWorkerThread) ?
1849 ((ForkJoinWorkerThread) t).pool : null);
1850 if (!blocker.isReleasable()) {
1851 try {
1852 if (pool == null ||
1853 !pool.preBlock(blocker, maintainParallelism))
1854 awaitBlocker(blocker);
1855 } finally {
1856 if (pool != null)
1857 pool.updateRunningCount(1);
1858 }
1859 }
1860 }
1861
1862 private static void awaitBlocker(ManagedBlocker blocker)
1863 throws InterruptedException {
1864 do {} while (!blocker.isReleasable() && !blocker.block());
1865 }
1866
1867 // AbstractExecutorService overrides
1868
1869 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
1870 return new AdaptedRunnable<T>(runnable, value);
1871 }
1872
1873 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
1874 return new AdaptedCallable<T>(callable);
1875 }
1876
1877 // Unsafe mechanics
1878
1879 private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
1880 private static final long eventCountOffset =
1881 objectFieldOffset("eventCount", ForkJoinPool.class);
1882 private static final long workerCountsOffset =
1883 objectFieldOffset("workerCounts", ForkJoinPool.class);
1884 private static final long runControlOffset =
1885 objectFieldOffset("runControl", ForkJoinPool.class);
1886 private static final long syncStackOffset =
1887 objectFieldOffset("syncStack",ForkJoinPool.class);
1888 private static final long spareStackOffset =
1889 objectFieldOffset("spareStack", ForkJoinPool.class);
1890
1891 private boolean casEventCount(long cmp, long val) {
1892 return UNSAFE.compareAndSwapLong(this, eventCountOffset, cmp, val);
1893 }
1894 private boolean casWorkerCounts(int cmp, int val) {
1895 return UNSAFE.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1896 }
1897 private boolean casRunControl(int cmp, int val) {
1898 return UNSAFE.compareAndSwapInt(this, runControlOffset, cmp, val);
1899 }
1900 private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1901 return UNSAFE.compareAndSwapObject(this, spareStackOffset, cmp, val);
1902 }
1903 private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1904 return UNSAFE.compareAndSwapObject(this, syncStackOffset, cmp, val);
1905 }
1906
1907 private static long objectFieldOffset(String field, Class<?> klazz) {
1908 try {
1909 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1910 } catch (NoSuchFieldException e) {
1911 // Convert Exception to corresponding Error
1912 NoSuchFieldError error = new NoSuchFieldError(field);
1913 error.initCause(e);
1914 throw error;
1915 }
1916 }
1917 }