ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.316
Committed: Wed Jun 8 19:44:32 2016 UTC (7 years, 11 months ago) by dl
Branch: MAIN
Changes since 1.315: +7 -7 lines
Log Message:
Use acquire/release access when applicable

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.lang.Thread.UncaughtExceptionHandler;
10 import java.lang.invoke.MethodHandles;
11 import java.lang.invoke.VarHandle;
12 import java.security.AccessControlContext;
13 import java.security.Permissions;
14 import java.security.ProtectionDomain;
15 import java.util.ArrayList;
16 import java.util.Arrays;
17 import java.util.Collection;
18 import java.util.Collections;
19 import java.util.List;
20 import java.util.function.Predicate;
21 import java.util.concurrent.TimeUnit;
22 import java.util.concurrent.CountedCompleter;
23 import java.util.concurrent.ForkJoinTask;
24 import java.util.concurrent.ForkJoinWorkerThread;
25 import java.util.concurrent.locks.LockSupport;
26
27 /**
28 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
29 * A {@code ForkJoinPool} provides the entry point for submissions
30 * from non-{@code ForkJoinTask} clients, as well as management and
31 * monitoring operations.
32 *
33 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
34 * ExecutorService} mainly by virtue of employing
35 * <em>work-stealing</em>: all threads in the pool attempt to find and
36 * execute tasks submitted to the pool and/or created by other active
37 * tasks (eventually blocking waiting for work if none exist). This
38 * enables efficient processing when most tasks spawn other subtasks
39 * (as do most {@code ForkJoinTask}s), as well as when many small
40 * tasks are submitted to the pool from external clients. Especially
41 * when setting <em>asyncMode</em> to true in constructors, {@code
42 * ForkJoinPool}s may also be appropriate for use with event-style
43 * tasks that are never joined.
44 *
45 * <p>A static {@link #commonPool()} is available and appropriate for
46 * most applications. The common pool is used by any ForkJoinTask that
47 * is not explicitly submitted to a specified pool. Using the common
48 * pool normally reduces resource usage (its threads are slowly
49 * reclaimed during periods of non-use, and reinstated upon subsequent
50 * use).
51 *
52 * <p>For applications that require separate or custom pools, a {@code
53 * ForkJoinPool} may be constructed with a given target parallelism
54 * level; by default, equal to the number of available processors.
55 * The pool attempts to maintain enough active (or available) threads
56 * by dynamically adding, suspending, or resuming internal worker
57 * threads, even if some tasks are stalled waiting to join others.
58 * However, no such adjustments are guaranteed in the face of blocked
59 * I/O or other unmanaged synchronization. The nested {@link
60 * ManagedBlocker} interface enables extension of the kinds of
61 * synchronization accommodated. The default policies may be
62 * overridden using a constructor with parameters corresponding to
63 * those documented in class {@link ThreadPoolExecutor}.
64 *
65 * <p>In addition to execution and lifecycle control methods, this
66 * class provides status check methods (for example
67 * {@link #getStealCount}) that are intended to aid in developing,
68 * tuning, and monitoring fork/join applications. Also, method
69 * {@link #toString} returns indications of pool state in a
70 * convenient form for informal monitoring.
71 *
72 * <p>As is the case with other ExecutorServices, there are three
73 * main task execution methods summarized in the following table.
74 * These are designed to be used primarily by clients not already
75 * engaged in fork/join computations in the current pool. The main
76 * forms of these methods accept instances of {@code ForkJoinTask},
77 * but overloaded forms also allow mixed execution of plain {@code
78 * Runnable}- or {@code Callable}- based activities as well. However,
79 * tasks that are already executing in a pool should normally instead
80 * use the within-computation forms listed in the table unless using
81 * async event-style tasks that are not usually joined, in which case
82 * there is little difference among choice of methods.
83 *
84 * <table BORDER CELLPADDING=3 CELLSPACING=1>
85 * <caption>Summary of task execution methods</caption>
86 * <tr>
87 * <td></td>
88 * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
89 * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
90 * </tr>
91 * <tr>
92 * <td> <b>Arrange async execution</b></td>
93 * <td> {@link #execute(ForkJoinTask)}</td>
94 * <td> {@link ForkJoinTask#fork}</td>
95 * </tr>
96 * <tr>
97 * <td> <b>Await and obtain result</b></td>
98 * <td> {@link #invoke(ForkJoinTask)}</td>
99 * <td> {@link ForkJoinTask#invoke}</td>
100 * </tr>
101 * <tr>
102 * <td> <b>Arrange exec and obtain Future</b></td>
103 * <td> {@link #submit(ForkJoinTask)}</td>
104 * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
105 * </tr>
106 * </table>
107 *
108 * <p>The common pool is by default constructed with default
109 * parameters, but these may be controlled by setting three
110 * {@linkplain System#getProperty system properties}:
111 * <ul>
112 * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
113 * - the parallelism level, a non-negative integer
114 * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
115 * - the class name of a {@link ForkJoinWorkerThreadFactory}
116 * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
117 * - the class name of a {@link UncaughtExceptionHandler}
118 * <li>{@code java.util.concurrent.ForkJoinPool.common.maximumSpares}
119 * - the maximum number of allowed extra threads to maintain target
120 * parallelism (default 256).
121 * </ul>
122 * If a {@link SecurityManager} is present and no factory is
123 * specified, then the default pool uses a factory supplying
124 * threads that have no {@link Permissions} enabled.
125 * The system class loader is used to load these classes.
126 * Upon any error in establishing these settings, default parameters
127 * are used. It is possible to disable or limit the use of threads in
128 * the common pool by setting the parallelism property to zero, and/or
129 * using a factory that may return {@code null}. However doing so may
130 * cause unjoined tasks to never be executed.
131 *
132 * <p><b>Implementation notes</b>: This implementation restricts the
133 * maximum number of running threads to 32767. Attempts to create
134 * pools with greater than the maximum number result in
135 * {@code IllegalArgumentException}.
136 *
137 * <p>This implementation rejects submitted tasks (that is, by throwing
138 * {@link RejectedExecutionException}) only when the pool is shut down
139 * or internal resources have been exhausted.
140 *
141 * @since 1.7
142 * @author Doug Lea
143 */
144 public class ForkJoinPool extends AbstractExecutorService {
145
146 /*
147 * Implementation Overview
148 *
149 * This class and its nested classes provide the main
150 * functionality and control for a set of worker threads:
151 * Submissions from non-FJ threads enter into submission queues.
152 * Workers take these tasks and typically split them into subtasks
153 * that may be stolen by other workers. Preference rules give
154 * first priority to processing tasks from their own queues (LIFO
155 * or FIFO, depending on mode), then to randomized FIFO steals of
156 * tasks in other queues. This framework began as vehicle for
157 * supporting tree-structured parallelism using work-stealing.
158 * Over time, its scalability advantages led to extensions and
159 * changes to better support more diverse usage contexts. Because
160 * most internal methods and nested classes are interrelated,
161 * their main rationale and descriptions are presented here;
162 * individual methods and nested classes contain only brief
163 * comments about details.
164 *
165 * WorkQueues
166 * ==========
167 *
168 * Most operations occur within work-stealing queues (in nested
169 * class WorkQueue). These are special forms of Deques that
170 * support only three of the four possible end-operations -- push,
171 * pop, and poll (aka steal), under the further constraints that
172 * push and pop are called only from the owning thread (or, as
173 * extended here, under a lock), while poll may be called from
174 * other threads. (If you are unfamiliar with them, you probably
175 * want to read Herlihy and Shavit's book "The Art of
176 * Multiprocessor programming", chapter 16 describing these in
177 * more detail before proceeding.) The main work-stealing queue
178 * design is roughly similar to those in the papers "Dynamic
179 * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
180 * (http://research.sun.com/scalable/pubs/index.html) and
181 * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
182 * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
183 * The main differences ultimately stem from GC requirements that
184 * we null out taken slots as soon as we can, to maintain as small
185 * a footprint as possible even in programs generating huge
186 * numbers of tasks. To accomplish this, we shift the CAS
187 * arbitrating pop vs poll (steal) from being on the indices
188 * ("base" and "top") to the slots themselves.
189 *
190 * Adding tasks then takes the form of a classic array push(task)
191 * in a circular buffer:
192 * q.array[q.top++ % length] = task;
193 *
194 * (The actual code needs to null-check and size-check the array,
195 * uses masking, not mod, for indexing a power-of-two-sized array,
196 * properly fences accesses, and possibly signals waiting workers
197 * to start scanning -- see below.) Both a successful pop and
198 * poll mainly entail a CAS of a slot from non-null to null.
199 *
200 * The pop operation (always performed by owner) is:
201 * if ((the task at top slot is not null) and
202 * (CAS slot to null))
203 * decrement top and return task;
204 *
205 * And the poll operation (usually by a stealer) is
206 * if ((the task at base slot is not null) and
207 * (CAS slot to null))
208 * increment base and return task;
209 *
210 * There are several variants of each of these. In particular,
211 * almost all uses of poll occur within scan operations that also
212 * interleave contention tracking (with associated code sprawl.)
213 *
214 * Memory ordering. See "Correct and Efficient Work-Stealing for
215 * Weak Memory Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
216 * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
217 * analysis of memory ordering requirements in work-stealing
218 * algorithms similar to (but different than) the one used here.
219 * Extracting tasks in array slots via (fully fenced) CAS provides
220 * primary synchronization. The base and top indices imprecisely
221 * guide where to extract from. We do not always require strict
222 * orderings of array and index updates, so sometimes let them be
223 * subject to compiler and processor reorderings. However, the
224 * volatile "base" index also serves as a basis for memory
225 * ordering: Slot accesses are preceded by a read of base,
226 * ensuring happens-before ordering with respect to stealers (so
227 * the slots themselves can be read via plain array reads.) The
228 * only other memory orderings relied on are maintained in the
229 * course of signalling and activation (see below). A check that
230 * base == top indicates (momentary) emptiness, but otherwise may
231 * err on the side of possibly making the queue appear nonempty
232 * when a push, pop, or poll have not fully committed, or making
233 * it appear empty when an update of top has not yet been visibly
234 * written. (Method isEmpty() checks the case of a partially
235 * completed removal of the last element.) Because of this, the
236 * poll operation, considered individually, is not wait-free. One
237 * thief cannot successfully continue until another in-progress
238 * one (or, if previously empty, a push) visibly completes.
239 * However, in the aggregate, we ensure at least probabilistic
240 * non-blockingness. If an attempted steal fails, a scanning
241 * thief chooses a different random victim target to try next. So,
242 * in order for one thief to progress, it suffices for any
243 * in-progress poll or new push on any empty queue to
244 * complete.
245 *
246 * This approach also enables support of a user mode in which
247 * local task processing is in FIFO, not LIFO order, simply by
248 * using poll rather than pop. This can be useful in
249 * message-passing frameworks in which tasks are never joined.
250 *
251 * WorkQueues are also used in a similar way for tasks submitted
252 * to the pool. We cannot mix these tasks in the same queues used
253 * by workers. Instead, we randomly associate submission queues
254 * with submitting threads, using a form of hashing. The
255 * ThreadLocalRandom probe value serves as a hash code for
256 * choosing existing queues, and may be randomly repositioned upon
257 * contention with other submitters. In essence, submitters act
258 * like workers except that they are restricted to executing local
259 * tasks that they submitted. Insertion of tasks in shared mode
260 * requires a lock but we use only a simple spinlock (using field
261 * phase), because submitters encountering a busy queue move to a
262 * different position to use or create other queues -- they block
263 * only when creating and registering new queues. Because it is
264 * used only as a spinlock, unlocking requires only a "releasing"
265 * store (using setRelease).
266 *
267 * Management
268 * ==========
269 *
270 * The main throughput advantages of work-stealing stem from
271 * decentralized control -- workers mostly take tasks from
272 * themselves or each other, at rates that can exceed a billion
273 * per second. The pool itself creates, activates (enables
274 * scanning for and running tasks), deactivates, blocks, and
275 * terminates threads, all with minimal central information.
276 * There are only a few properties that we can globally track or
277 * maintain, so we pack them into a small number of variables,
278 * often maintaining atomicity without blocking or locking.
279 * Nearly all essentially atomic control state is held in a few
280 * volatile variables that are by far most often read (not
281 * written) as status and consistency checks. We pack as much
282 * information into them as we can.
283 *
284 * Field "ctl" contains 64 bits holding information needed to
285 * atomically decide to add, enqueue (on an event queue), and
286 * dequeue (and release)-activate workers. To enable this
287 * packing, we restrict maximum parallelism to (1<<15)-1 (which is
288 * far in excess of normal operating range) to allow ids, counts,
289 * and their negations (used for thresholding) to fit into 16bit
290 * subfields.
291 *
292 * Field "mode" holds configuration parameters as well as lifetime
293 * status, atomically and monotonically setting SHUTDOWN, STOP,
294 * and finally TERMINATED bits.
295 *
296 * Field "workQueues" holds references to WorkQueues. It is
297 * updated (only during worker creation and termination) under
298 * lock (using field workerNamePrefix as lock), but is otherwise
299 * concurrently readable, and accessed directly. We also ensure
300 * that uses of the array reference itself never become too stale
301 * in case of resizing. To simplify index-based operations, the
302 * array size is always a power of two, and all readers must
303 * tolerate null slots. Worker queues are at odd indices. Shared
304 * (submission) queues are at even indices, up to a maximum of 64
305 * slots, to limit growth even if array needs to expand to add
306 * more workers. Grouping them together in this way simplifies and
307 * speeds up task scanning.
308 *
309 * All worker thread creation is on-demand, triggered by task
310 * submissions, replacement of terminated workers, and/or
311 * compensation for blocked workers. However, all other support
312 * code is set up to work with other policies. To ensure that we
313 * do not hold on to worker references that would prevent GC, all
314 * accesses to workQueues are via indices into the workQueues
315 * array (which is one source of some of the messy code
316 * constructions here). In essence, the workQueues array serves as
317 * a weak reference mechanism. Thus for example the stack top
318 * subfield of ctl stores indices, not references.
319 *
320 * Queuing Idle Workers. Unlike HPC work-stealing frameworks, we
321 * cannot let workers spin indefinitely scanning for tasks when
322 * none can be found immediately, and we cannot start/resume
323 * workers unless there appear to be tasks available. On the
324 * other hand, we must quickly prod them into action when new
325 * tasks are submitted or generated. In many usages, ramp-up time
326 * is the main limiting factor in overall performance, which is
327 * compounded at program start-up by JIT compilation and
328 * allocation. So we streamline this as much as possible.
329 *
330 * The "ctl" field atomically maintains total worker and
331 * "released" worker counts, plus the head of the available worker
332 * queue (actually stack, represented by the lower 32bit subfield
333 * of ctl). Released workers are those known to be scanning for
334 * and/or running tasks. Unreleased ("available") workers are
335 * recorded in the ctl stack. These workers are made available for
336 * signalling by enqueuing in ctl (see method runWorker). The
337 * "queue" is a form of Treiber stack. This is ideal for
338 * activating threads in most-recently used order, and improves
339 * performance and locality, outweighing the disadvantages of
340 * being prone to contention and inability to release a worker
341 * unless it is topmost on stack. To avoid missed signal problems
342 * inherent in any wait/signal design, available workers rescan
343 * for (and if found run) tasks after enqueuing. Normally their
344 * release status will be updated while doing so, but the released
345 * worker ctl count may underestimate the number of active
346 * threads. (However, it is still possible to determine quiescence
347 * via a validation traversal -- see isQuiescent). After an
348 * unsuccessful rescan, available workers are blocked until
349 * signalled (see signalWork). The top stack state holds the
350 * value of the "phase" field of the worker: its index and status,
351 * plus a version counter that, in addition to the count subfields
352 * (also serving as version stamps) provide protection against
353 * Treiber stack ABA effects.
354 *
355 * Creating workers. To create a worker, we pre-increment counts
356 * (serving as a reservation), and attempt to construct a
357 * ForkJoinWorkerThread via its factory. Upon construction, the
358 * new thread invokes registerWorker, where it constructs a
359 * WorkQueue and is assigned an index in the workQueues array
360 * (expanding the array if necessary). The thread is then started.
361 * Upon any exception across these steps, or null return from
362 * factory, deregisterWorker adjusts counts and records
363 * accordingly. If a null return, the pool continues running with
364 * fewer than the target number workers. If exceptional, the
365 * exception is propagated, generally to some external caller.
366 * Worker index assignment avoids the bias in scanning that would
367 * occur if entries were sequentially packed starting at the front
368 * of the workQueues array. We treat the array as a simple
369 * power-of-two hash table, expanding as needed. The seedIndex
370 * increment ensures no collisions until a resize is needed or a
371 * worker is deregistered and replaced, and thereafter keeps
372 * probability of collision low. We cannot use
373 * ThreadLocalRandom.getProbe() for similar purposes here because
374 * the thread has not started yet, but do so for creating
375 * submission queues for existing external threads (see
376 * externalPush).
377 *
378 * WorkQueue field "phase" is used by both workers and the pool to
379 * manage and track whether a worker is UNSIGNALLED (possibly
380 * blocked waiting for a signal). When a worker is enqueued its
381 * phase field is set. Note that phase field updates lag queue CAS
382 * releases so usage requires care -- seeing a negative phase does
383 * not guarantee that the worker is available. When queued, the
384 * lower 16 bits of scanState must hold its pool index. So we
385 * place the index there upon initialization (see registerWorker)
386 * and otherwise keep it there or restore it when necessary.
387 *
388 * The ctl field also serves as the basis for memory
389 * synchronization surrounding activation. This uses a more
390 * efficient version of a Dekker-like rule that task producers and
391 * consumers sync with each other by both writing/CASing ctl (even
392 * if to its current value). This would be extremely costly. So
393 * we relax it in several ways: (1) Producers only signal when
394 * their queue is empty. Other workers propagate this signal (in
395 * method scan) when they find tasks; to further reduce flailing,
396 * each worker signals only one other per activation. (2) Workers
397 * only enqueue after scanning (see below) and not finding any
398 * tasks. (3) Rather than CASing ctl to its current value in the
399 * common case where no action is required, we reduce write
400 * contention by equivalently prefacing signalWork when called by
401 * an external task producer using a memory access with
402 * full-volatile semantics or a "fullFence".
403 *
404 * Almost always, too many signals are issued. A task producer
405 * cannot in general tell if some existing worker is in the midst
406 * of finishing one task (or already scanning) and ready to take
407 * another without being signalled. So the producer might instead
408 * activate a different worker that does not find any work, and
409 * then inactivates. This scarcely matters in steady-state
410 * computations involving all workers, but can create contention
411 * and bookkeeping bottlenecks during ramp-up, ramp-down, and small
412 * computations involving only a few workers.
413 *
414 * Scanning. Method runWorker performs top-level scanning for
415 * tasks. Each scan traverses and tries to poll from each queue
416 * starting at a random index and circularly stepping. Scans are
417 * not performed in ideal random permutation order, to reduce
418 * cacheline contention. The pseudorandom generator need not have
419 * high-quality statistical properties in the long term, but just
420 * within computations; We use Marsaglia XorShifts (often via
421 * ThreadLocalRandom.nextSecondarySeed), which are cheap and
422 * suffice. Scanning also employs contention reduction: When
423 * scanning workers fail to extract an apparently existing task,
424 * they soon restart at a different pseudorandom index. This
425 * improves throughput when many threads are trying to take tasks
426 * from few queues, which can be common in some usages. Scans do
427 * not otherwise explicitly take into account core affinities,
428 * loads, cache localities, etc, However, they do exploit temporal
429 * locality (which usually approximates these) by preferring to
430 * re-poll (at most #workers times) from the same queue after a
431 * successful poll before trying others.
432 *
433 * Trimming workers. To release resources after periods of lack of
434 * use, a worker starting to wait when the pool is quiescent will
435 * time out and terminate (see method scan) if the pool has
436 * remained quiescent for period given by field keepAlive.
437 *
438 * Shutdown and Termination. A call to shutdownNow invokes
439 * tryTerminate to atomically set a runState bit. The calling
440 * thread, as well as every other worker thereafter terminating,
441 * helps terminate others by cancelling their unprocessed tasks,
442 * and waking them up, doing so repeatedly until stable. Calls to
443 * non-abrupt shutdown() preface this by checking whether
444 * termination should commence by sweeping through queues (until
445 * stable) to ensure lack of in-flight submissions and workers
446 * about to process them before triggering the "STOP" phase of
447 * termination.
448 *
449 * Joining Tasks
450 * =============
451 *
452 * Any of several actions may be taken when one worker is waiting
453 * to join a task stolen (or always held) by another. Because we
454 * are multiplexing many tasks on to a pool of workers, we can't
455 * always just let them block (as in Thread.join). We also cannot
456 * just reassign the joiner's run-time stack with another and
457 * replace it later, which would be a form of "continuation", that
458 * even if possible is not necessarily a good idea since we may
459 * need both an unblocked task and its continuation to progress.
460 * Instead we combine two tactics:
461 *
462 * Helping: Arranging for the joiner to execute some task that it
463 * would be running if the steal had not occurred.
464 *
465 * Compensating: Unless there are already enough live threads,
466 * method tryCompensate() may create or re-activate a spare
467 * thread to compensate for blocked joiners until they unblock.
468 *
469 * A third form (implemented in tryRemoveAndExec) amounts to
470 * helping a hypothetical compensator: If we can readily tell that
471 * a possible action of a compensator is to steal and execute the
472 * task being joined, the joining thread can do so directly,
473 * without the need for a compensation thread.
474 *
475 * The ManagedBlocker extension API can't use helping so relies
476 * only on compensation in method awaitBlocker.
477 *
478 * The algorithm in awaitJoin entails a form of "linear helping".
479 * Each worker records (in field source) the id of the queue from
480 * which it last stole a task. The scan in method awaitJoin uses
481 * these markers to try to find a worker to help (i.e., steal back
482 * a task from and execute it) that could hasten completion of the
483 * actively joined task. Thus, the joiner executes a task that
484 * would be on its own local deque if the to-be-joined task had
485 * not been stolen. This is a conservative variant of the approach
486 * described in Wagner & Calder "Leapfrogging: a portable
487 * technique for implementing efficient futures" SIGPLAN Notices,
488 * 1993 (http://portal.acm.org/citation.cfm?id=155354). It differs
489 * mainly in that we only record queue ids, not full dependency
490 * links. This requires a linear scan of the workQueues array to
491 * locate stealers, but isolates cost to when it is needed, rather
492 * than adding to per-task overhead. Searches can fail to locate
493 * stealers GC stalls and the like delay recording sources.
494 * Further, even when accurately identified, stealers might not
495 * ever produce a task that the joiner can in turn help with. So,
496 * compensation is tried upon failure to find tasks to run.
497 *
498 * Compensation does not by default aim to keep exactly the target
499 * parallelism number of unblocked threads running at any given
500 * time. Some previous versions of this class employed immediate
501 * compensations for any blocked join. However, in practice, the
502 * vast majority of blockages are transient byproducts of GC and
503 * other JVM or OS activities that are made worse by replacement.
504 * Rather than impose arbitrary policies, we allow users to
505 * override the default of only adding threads upon apparent
506 * starvation. The compensation mechanism may also be bounded.
507 * Bounds for the commonPool (see COMMON_MAX_SPARES) better enable
508 * JVMs to cope with programming errors and abuse before running
509 * out of resources to do so.
510 *
511 * Common Pool
512 * ===========
513 *
514 * The static common pool always exists after static
515 * initialization. Since it (or any other created pool) need
516 * never be used, we minimize initial construction overhead and
517 * footprint to the setup of about a dozen fields.
518 *
519 * When external threads submit to the common pool, they can
520 * perform subtask processing (see externalHelpComplete and
521 * related methods) upon joins. This caller-helps policy makes it
522 * sensible to set common pool parallelism level to one (or more)
523 * less than the total number of available cores, or even zero for
524 * pure caller-runs. We do not need to record whether external
525 * submissions are to the common pool -- if not, external help
526 * methods return quickly. These submitters would otherwise be
527 * blocked waiting for completion, so the extra effort (with
528 * liberally sprinkled task status checks) in inapplicable cases
529 * amounts to an odd form of limited spin-wait before blocking in
530 * ForkJoinTask.join.
531 *
532 * As a more appropriate default in managed environments, unless
533 * overridden by system properties, we use workers of subclass
534 * InnocuousForkJoinWorkerThread when there is a SecurityManager
535 * present. These workers have no permissions set, do not belong
536 * to any user-defined ThreadGroup, and erase all ThreadLocals
537 * after executing any top-level task (see
538 * WorkQueue.afterTopLevelExec). The associated mechanics (mainly
539 * in ForkJoinWorkerThread) may be JVM-dependent and must access
540 * particular Thread class fields to achieve this effect.
541 *
542 * Style notes
543 * ===========
544 *
545 * Memory ordering relies mainly on VarHandles. This can be
546 * awkward and ugly, but also reflects the need to control
547 * outcomes across the unusual cases that arise in very racy code
548 * with very few invariants. So these explicit checks would exist
549 * in some form anyway. All fields are read into locals before
550 * use, and null-checked if they are references. This is usually
551 * done in a "C"-like style of listing declarations at the heads
552 * of methods or blocks, and using inline assignments on first
553 * encounter. Nearly all explicit checks lead to bypass/return,
554 * not exception throws, because they may legitimately arise due
555 * to cancellation/revocation during shutdown.
556 *
557 * There is a lot of representation-level coupling among classes
558 * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
559 * fields of WorkQueue maintain data structures managed by
560 * ForkJoinPool, so are directly accessed. There is little point
561 * trying to reduce this, since any associated future changes in
562 * representations will need to be accompanied by algorithmic
563 * changes anyway. Several methods intrinsically sprawl because
564 * they must accumulate sets of consistent reads of fields held in
565 * local variables. There are also other coding oddities
566 * (including several unnecessary-looking hoisted null checks)
567 * that help some methods perform reasonably even when interpreted
568 * (not compiled).
569 *
570 * The order of declarations in this file is (with a few exceptions):
571 * (1) Static utility functions
572 * (2) Nested (static) classes
573 * (3) Static fields
574 * (4) Fields, along with constants used when unpacking some of them
575 * (5) Internal control methods
576 * (6) Callbacks and other support for ForkJoinTask methods
577 * (7) Exported methods
578 * (8) Static block initializing statics in minimally dependent order
579 */
580
581 // Static utilities
582
583 /**
584 * If there is a security manager, makes sure caller has
585 * permission to modify threads.
586 */
587 private static void checkPermission() {
588 SecurityManager security = System.getSecurityManager();
589 if (security != null)
590 security.checkPermission(modifyThreadPermission);
591 }
592
593 // Nested classes
594
595 /**
596 * Factory for creating new {@link ForkJoinWorkerThread}s.
597 * A {@code ForkJoinWorkerThreadFactory} must be defined and used
598 * for {@code ForkJoinWorkerThread} subclasses that extend base
599 * functionality or initialize threads with different contexts.
600 */
601 public static interface ForkJoinWorkerThreadFactory {
602 /**
603 * Returns a new worker thread operating in the given pool.
604 * Returning null or throwing an exception may result in tasks
605 * never being executed. If this method throws an exception,
606 * it is relayed to the caller of the method (for example
607 * {@code execute}) causing attempted thread creation. If this
608 * method returns null or throws an exception, it is not
609 * retried until the next attempted creation (for example
610 * another call to {@code execute}).
611 *
612 * @param pool the pool this thread works in
613 * @return the new worker thread, or {@code null} if the request
614 * to create a thread is rejected.
615 * @throws NullPointerException if the pool is null
616 */
617 public ForkJoinWorkerThread newThread(ForkJoinPool pool);
618 }
619
620 /**
621 * Default ForkJoinWorkerThreadFactory implementation; creates a
622 * new ForkJoinWorkerThread.
623 */
624 private static final class DefaultForkJoinWorkerThreadFactory
625 implements ForkJoinWorkerThreadFactory {
626 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
627 return new ForkJoinWorkerThread(pool);
628 }
629 }
630
631 // Constants shared across ForkJoinPool and WorkQueue
632
633 // Bounds
634 static final int SWIDTH = 16; // width of short
635 static final int SMASK = 0xffff; // short bits == max index
636 static final int MAX_CAP = 0x7fff; // max #workers - 1
637 static final int SQMASK = 0x007e; // max 64 (even) slots
638
639 // Masks and units for WorkQueue.phase and ctl sp subfield
640 static final int UNSIGNALLED = 1 << 31; // must be negative
641 static final int SS_SEQ = 1 << 16; // version count
642 static final int QLOCK = 1; // must be 1
643
644 // Mode bits and sentinels, some also used in WorkQueue id and.source fields
645 static final int OWNED = 1; // queue has owner thread
646 static final int FIFO = 1 << 16; // fifo queue or access mode
647 static final int SHUTDOWN = 1 << 18;
648 static final int TERMINATED = 1 << 19;
649 static final int STOP = 1 << 31; // must be negative
650 static final int QUIET = 1 << 30; // not scanning or working
651 static final int DORMANT = QUIET | UNSIGNALLED;
652
653 /**
654 * The maximum number of local polls from the same queue before
655 * checking others. This is a safeguard against infinitely unfair
656 * looping under unbounded user task recursion, and must be larger
657 * than plausible cases of intentional bounded task recursion.
658 */
659 static final int POLL_LIMIT = 1 << 10;
660
661 /**
662 * Queues supporting work-stealing as well as external task
663 * submission. See above for descriptions and algorithms.
664 * Performance on most platforms is very sensitive to placement of
665 * instances of both WorkQueues and their arrays -- we absolutely
666 * do not want multiple WorkQueue instances or multiple queue
667 * arrays sharing cache lines. The @Contended annotation alerts
668 * JVMs to try to keep instances apart.
669 */
670 @jdk.internal.vm.annotation.Contended
671 static final class WorkQueue {
672
673 /**
674 * Capacity of work-stealing queue array upon initialization.
675 * Must be a power of two; at least 4, but should be larger to
676 * reduce or eliminate cacheline sharing among queues.
677 * Currently, it is much larger, as a partial workaround for
678 * the fact that JVMs often place arrays in locations that
679 * share GC bookkeeping (especially cardmarks) such that
680 * per-write accesses encounter serious memory contention.
681 */
682 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
683
684 /**
685 * Maximum size for queue arrays. Must be a power of two less
686 * than or equal to 1 << (31 - width of array entry) to ensure
687 * lack of wraparound of index calculations, but defined to a
688 * value a bit less than this to help users trap runaway
689 * programs before saturating systems.
690 */
691 static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
692
693 // Instance fields
694 volatile int phase; // versioned, negative: queued, 1: locked
695 int stackPred; // pool stack (ctl) predecessor link
696 int nsteals; // number of steals
697 int id; // index, mode, tag
698 volatile int source; // source queue id, or sentinel
699 volatile int base; // index of next slot for poll
700 int top; // index of next slot for push
701 ForkJoinTask<?>[] array; // the elements (initially unallocated)
702 final ForkJoinPool pool; // the containing pool (may be null)
703 final ForkJoinWorkerThread owner; // owning thread or null if shared
704
705 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner) {
706 this.pool = pool;
707 this.owner = owner;
708 // Place indices in the center of array (that is not yet allocated)
709 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
710 }
711
712 /**
713 * Returns an exportable index (used by ForkJoinWorkerThread).
714 */
715 final int getPoolIndex() {
716 return (id & 0xffff) >>> 1; // ignore odd/even tag bit
717 }
718
719 /**
720 * Returns the approximate number of tasks in the queue.
721 */
722 final int queueSize() {
723 int n = base - top; // read base first
724 return (n >= 0) ? 0 : -n; // ignore transient negative
725 }
726
727 /**
728 * Provides a more accurate estimate of whether this queue has
729 * any tasks than does queueSize, by checking whether a
730 * near-empty queue has at least one unclaimed task.
731 */
732 final boolean isEmpty() {
733 ForkJoinTask<?>[] a; int n, al, b;
734 return ((n = (b = base) - top) >= 0 || // possibly one task
735 (n == -1 && ((a = array) == null ||
736 (al = a.length) == 0 ||
737 a[(al - 1) & b] == null)));
738 }
739
740
741 /**
742 * Pushes a task. Call only by owner in unshared queues.
743 *
744 * @param task the task. Caller must ensure non-null.
745 * @throws RejectedExecutionException if array cannot be resized
746 */
747 final void push(ForkJoinTask<?> task) {
748 int s = top; ForkJoinTask<?>[] a; int al, d;
749 if ((a = array) != null && (al = a.length) > 0) {
750 int index = (al - 1) & s;
751 ForkJoinPool p = pool;
752 top = s + 1;
753 QA.setRelease(a, index, task);
754 if ((d = base - s) == 0 && p != null) {
755 VarHandle.fullFence();
756 p.signalWork();
757 }
758 else if (d + al == 1)
759 growArray();
760 }
761 }
762
763 /**
764 * Initializes or doubles the capacity of array. Call either
765 * by owner or with lock held -- it is OK for base, but not
766 * top, to move while resizings are in progress.
767 */
768 final ForkJoinTask<?>[] growArray() {
769 ForkJoinTask<?>[] oldA = array;
770 int oldSize = oldA != null ? oldA.length : 0;
771 int size = oldSize > 0 ? oldSize << 1 : INITIAL_QUEUE_CAPACITY;
772 if (size < INITIAL_QUEUE_CAPACITY || size > MAXIMUM_QUEUE_CAPACITY)
773 throw new RejectedExecutionException("Queue capacity exceeded");
774 int oldMask, t, b;
775 ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
776 if (oldA != null && (oldMask = oldSize - 1) > 0 &&
777 (t = top) - (b = base) > 0) {
778 int mask = size - 1;
779 do { // emulate poll from old array, push to new array
780 int index = b & oldMask;
781 ForkJoinTask<?> x = (ForkJoinTask<?>)
782 QA.getAcquire(oldA, index);
783 if (x != null &&
784 QA.compareAndSet(oldA, index, x, null))
785 a[b & mask] = x;
786 } while (++b != t);
787 VarHandle.releaseFence();
788 }
789 return a;
790 }
791
792 /**
793 * Takes next task, if one exists, in LIFO order. Call only
794 * by owner in unshared queues.
795 */
796 final ForkJoinTask<?> pop() {
797 int b = base, s = top, al, i; ForkJoinTask<?>[] a;
798 if ((a = array) != null && b != s && (al = a.length) > 0) {
799 int index = (al - 1) & --s;
800 ForkJoinTask<?> t = (ForkJoinTask<?>)
801 QA.get(a, index);
802 if (t != null &&
803 QA.compareAndSet(a, index, t, null)) {
804 top = s;
805 VarHandle.releaseFence();
806 return t;
807 }
808 }
809 return null;
810 }
811
812 /**
813 * Takes next task, if one exists, in FIFO order.
814 */
815 final ForkJoinTask<?> poll() {
816 for (;;) {
817 int b = base, s = top, d, al; ForkJoinTask<?>[] a;
818 if ((a = array) != null && (d = b - s) < 0 &&
819 (al = a.length) > 0) {
820 int index = (al - 1) & b;
821 ForkJoinTask<?> t = (ForkJoinTask<?>)
822 QA.getAcquire(a, index);
823 if (b++ == base) {
824 if (t != null) {
825 if (QA.compareAndSet(a, index, t, null)) {
826 base = b;
827 return t;
828 }
829 }
830 else if (d == -1)
831 break; // now empty
832 }
833 }
834 else
835 break;
836 }
837 return null;
838 }
839
840 /**
841 * Takes next task, if one exists, in order specified by mode.
842 */
843 final ForkJoinTask<?> nextLocalTask() {
844 return ((id & FIFO) != 0) ? poll() : pop();
845 }
846
847 /**
848 * Returns next task, if one exists, in order specified by mode.
849 */
850 final ForkJoinTask<?> peek() {
851 int al; ForkJoinTask<?>[] a;
852 return ((a = array) != null && (al = a.length) > 0) ?
853 a[(al - 1) &
854 ((id & FIFO) != 0 ? base : top - 1)] : null;
855 }
856
857 /**
858 * Pops the given task only if it is at the current top.
859 */
860 final boolean tryUnpush(ForkJoinTask<?> task) {
861 int b = base, s = top, al; ForkJoinTask<?>[] a;
862 if ((a = array) != null && b != s && (al = a.length) > 0) {
863 int index = (al - 1) & --s;
864 if (QA.compareAndSet(a, index, task, null)) {
865 top = s;
866 VarHandle.releaseFence();
867 return true;
868 }
869 }
870 return false;
871 }
872
873 /**
874 * Removes and cancels all known tasks, ignoring any exceptions.
875 */
876 final void cancelAll() {
877 for (ForkJoinTask<?> t; (t = poll()) != null; )
878 ForkJoinTask.cancelIgnoringExceptions(t);
879 }
880
881 // Specialized execution methods
882
883 /**
884 * Pops and executes up to limit consecutive tasks or until empty.
885 *
886 * @param limit max runs, or zero for no limit
887 */
888 final void localPopAndExec(int limit) {
889 for (;;) {
890 int b = base, s = top, al; ForkJoinTask<?>[] a;
891 if ((a = array) != null && b != s && (al = a.length) > 0) {
892 int index = (al - 1) & --s;
893 ForkJoinTask<?> t = (ForkJoinTask<?>)
894 QA.getAndSet(a, index, null);
895 if (t != null) {
896 top = s;
897 VarHandle.releaseFence();
898 t.doExec();
899 if (limit != 0 && --limit == 0)
900 break;
901 }
902 else
903 break;
904 }
905 else
906 break;
907 }
908 }
909
910 /**
911 * Polls and executes up to limit consecutive tasks or until empty.
912 *
913 * @param limit, or zero for no limit
914 */
915 final void localPollAndExec(int limit) {
916 for (int polls = 0;;) {
917 int b = base, s = top, d, al; ForkJoinTask<?>[] a;
918 if ((a = array) != null && (d = b - s) < 0 &&
919 (al = a.length) > 0) {
920 int index = (al - 1) & b++;
921 ForkJoinTask<?> t = (ForkJoinTask<?>)
922 QA.getAndSet(a, index, null);
923 if (t != null) {
924 base = b;
925 t.doExec();
926 if (limit != 0 && ++polls == limit)
927 break;
928 }
929 else if (d == -1)
930 break; // now empty
931 else
932 polls = 0; // stolen; reset
933 }
934 else
935 break;
936 }
937 }
938
939 /**
940 * If present, removes task from queue and executes it.
941 */
942 final void tryRemoveAndExec(ForkJoinTask<?> task) {
943 ForkJoinTask<?>[] wa; int s, wal;
944 if (base - (s = top) < 0 && // traverse from top
945 (wa = array) != null && (wal = wa.length) > 0) {
946 for (int m = wal - 1, ns = s - 1, i = ns; ; --i) {
947 int index = i & m;
948 ForkJoinTask<?> t = (ForkJoinTask<?>)
949 QA.get(wa, index);
950 if (t == null)
951 break;
952 else if (t == task) {
953 if (QA.compareAndSet(wa, index, t, null)) {
954 top = ns; // safely shift down
955 for (int j = i; j != ns; ++j) {
956 ForkJoinTask<?> f;
957 int pindex = (j + 1) & m;
958 f = (ForkJoinTask<?>)QA.get(wa, pindex);
959 QA.setVolatile(wa, pindex, null);
960 int jindex = j & m;
961 QA.setRelease(wa, jindex, f);
962 }
963 VarHandle.releaseFence();
964 t.doExec();
965 }
966 break;
967 }
968 }
969 }
970 }
971
972 /**
973 * Tries to steal and run tasks within the target's
974 * computation until done, not found, or limit exceeded.
975 *
976 * @param task root of CountedCompleter computation
977 * @param limit max runs, or zero for no limit
978 * @return task status on exit
979 */
980 final int localHelpCC(CountedCompleter<?> task, int limit) {
981 int status = 0;
982 if (task != null && (status = task.status) >= 0) {
983 for (;;) {
984 boolean help = false;
985 int b = base, s = top, al; ForkJoinTask<?>[] a;
986 if ((a = array) != null && b != s && (al = a.length) > 0) {
987 int index = (al - 1) & (s - 1);
988 ForkJoinTask<?> o = (ForkJoinTask<?>)
989 QA.get(a, index);
990 if (o instanceof CountedCompleter) {
991 CountedCompleter<?> t = (CountedCompleter<?>)o;
992 for (CountedCompleter<?> f = t;;) {
993 if (f != task) {
994 if ((f = f.completer) == null) // try parent
995 break;
996 }
997 else {
998 if (QA.compareAndSet(a, index, t, null)) {
999 top = s - 1;
1000 VarHandle.releaseFence();
1001 t.doExec();
1002 help = true;
1003 }
1004 break;
1005 }
1006 }
1007 }
1008 }
1009 if ((status = task.status) < 0 || !help ||
1010 (limit != 0 && --limit == 0))
1011 break;
1012 }
1013 }
1014 return status;
1015 }
1016
1017 // Operations on shared queues
1018
1019 /**
1020 * Tries to lock shared queue by CASing phase field.
1021 */
1022 final boolean tryLockSharedQueue() {
1023 return PHASE.compareAndSet(this, 0, QLOCK);
1024 }
1025
1026 /**
1027 * Shared version of tryUnpush.
1028 */
1029 final boolean trySharedUnpush(ForkJoinTask<?> task) {
1030 boolean popped = false;
1031 int s = top - 1, al; ForkJoinTask<?>[] a;
1032 if ((a = array) != null && (al = a.length) > 0) {
1033 int index = (al - 1) & s;
1034 ForkJoinTask<?> t = (ForkJoinTask<?>) QA.get(a, index);
1035 if (t == task &&
1036 PHASE.compareAndSet(this, 0, QLOCK)) {
1037 if (top == s + 1 && array == a &&
1038 QA.compareAndSet(a, index, task, null)) {
1039 popped = true;
1040 top = s;
1041 }
1042 PHASE.setRelease(this, 0);
1043 }
1044 }
1045 return popped;
1046 }
1047
1048 /**
1049 * Shared version of localHelpCC.
1050 */
1051 final int sharedHelpCC(CountedCompleter<?> task, int limit) {
1052 int status = 0;
1053 if (task != null && (status = task.status) >= 0) {
1054 for (;;) {
1055 boolean help = false;
1056 int b = base, s = top, al; ForkJoinTask<?>[] a;
1057 if ((a = array) != null && b != s && (al = a.length) > 0) {
1058 int index = (al - 1) & (s - 1);
1059 ForkJoinTask<?> o = (ForkJoinTask<?>)
1060 QA.get(a, index);
1061 if (o instanceof CountedCompleter) {
1062 CountedCompleter<?> t = (CountedCompleter<?>)o;
1063 for (CountedCompleter<?> f = t;;) {
1064 if (f != task) {
1065 if ((f = f.completer) == null)
1066 break;
1067 }
1068 else {
1069 if (PHASE.compareAndSet(this, 0, QLOCK)) {
1070 if (top == s && array == a &&
1071 QA.compareAndSet(a, index, t, null)) {
1072 help = true;
1073 top = s - 1;
1074 }
1075 PHASE.setRelease(this, 0);
1076 if (help)
1077 t.doExec();
1078 }
1079 break;
1080 }
1081 }
1082 }
1083 }
1084 if ((status = task.status) < 0 || !help ||
1085 (limit != 0 && --limit == 0))
1086 break;
1087 }
1088 }
1089 return status;
1090 }
1091
1092 /**
1093 * Returns true if owned and not known to be blocked.
1094 */
1095 final boolean isApparentlyUnblocked() {
1096 Thread wt; Thread.State s;
1097 return ((wt = owner) != null &&
1098 (s = wt.getState()) != Thread.State.BLOCKED &&
1099 s != Thread.State.WAITING &&
1100 s != Thread.State.TIMED_WAITING);
1101 }
1102
1103 // VarHandle mechanics.
1104 private static final VarHandle PHASE;
1105 static {
1106 try {
1107 MethodHandles.Lookup l = MethodHandles.lookup();
1108 PHASE = l.findVarHandle(WorkQueue.class, "phase", int.class);
1109 } catch (ReflectiveOperationException e) {
1110 throw new Error(e);
1111 }
1112 }
1113 }
1114
1115 // static fields (initialized in static initializer below)
1116
1117 /**
1118 * Creates a new ForkJoinWorkerThread. This factory is used unless
1119 * overridden in ForkJoinPool constructors.
1120 */
1121 public static final ForkJoinWorkerThreadFactory
1122 defaultForkJoinWorkerThreadFactory;
1123
1124 /**
1125 * Permission required for callers of methods that may start or
1126 * kill threads.
1127 */
1128 static final RuntimePermission modifyThreadPermission;
1129
1130 /**
1131 * Common (static) pool. Non-null for public use unless a static
1132 * construction exception, but internal usages null-check on use
1133 * to paranoically avoid potential initialization circularities
1134 * as well as to simplify generated code.
1135 */
1136 static final ForkJoinPool common;
1137
1138 /**
1139 * Common pool parallelism. To allow simpler use and management
1140 * when common pool threads are disabled, we allow the underlying
1141 * common.parallelism field to be zero, but in that case still report
1142 * parallelism as 1 to reflect resulting caller-runs mechanics.
1143 */
1144 static final int COMMON_PARALLELISM;
1145
1146 /**
1147 * Limit on spare thread construction in tryCompensate.
1148 */
1149 private static final int COMMON_MAX_SPARES;
1150
1151 /**
1152 * Sequence number for creating workerNamePrefix.
1153 */
1154 private static int poolNumberSequence;
1155
1156 /**
1157 * Returns the next sequence number. We don't expect this to
1158 * ever contend, so use simple builtin sync.
1159 */
1160 private static final synchronized int nextPoolId() {
1161 return ++poolNumberSequence;
1162 }
1163
1164 // static configuration constants
1165
1166 /**
1167 * Default idle timeout value (in milliseconds) for the thread
1168 * triggering quiescence to park waiting for new work
1169 */
1170 private static final long DEFAULT_KEEPALIVE = 60000L;
1171
1172 /**
1173 * Undershoot tolerance for idle timeouts
1174 */
1175 private static final long TIMEOUT_SLOP = 20L;
1176
1177 /**
1178 * The default value for COMMON_MAX_SPARES. Overridable using the
1179 * "java.util.concurrent.ForkJoinPool.common.maximumSpares" system
1180 * property. The default value is far in excess of normal
1181 * requirements, but also far short of MAX_CAP and typical OS
1182 * thread limits, so allows JVMs to catch misuse/abuse before
1183 * running out of resources needed to do so.
1184 */
1185 private static final int DEFAULT_COMMON_MAX_SPARES = 256;
1186
1187 /**
1188 * Increment for seed generators. See class ThreadLocal for
1189 * explanation.
1190 */
1191 private static final int SEED_INCREMENT = 0x9e3779b9;
1192
1193 /*
1194 * Bits and masks for field ctl, packed with 4 16 bit subfields:
1195 * RC: Number of released (unqueued) workers minus target parallelism
1196 * TC: Number of total workers minus target parallelism
1197 * SS: version count and status of top waiting thread
1198 * ID: poolIndex of top of Treiber stack of waiters
1199 *
1200 * When convenient, we can extract the lower 32 stack top bits
1201 * (including version bits) as sp=(int)ctl. The offsets of counts
1202 * by the target parallelism and the positionings of fields makes
1203 * it possible to perform the most common checks via sign tests of
1204 * fields: When ac is negative, there are not enough unqueued
1205 * workers, when tc is negative, there are not enough total
1206 * workers. When sp is non-zero, there are waiting workers. To
1207 * deal with possibly negative fields, we use casts in and out of
1208 * "short" and/or signed shifts to maintain signedness.
1209 *
1210 * Because it occupies uppermost bits, we can add one release count
1211 * using getAndAddLong of RC_UNIT, rather than CAS, when returning
1212 * from a blocked join. Other updates entail multiple subfields
1213 * and masking, requiring CAS.
1214 *
1215 * The limits packed in field "bounds" are also offset by the
1216 * parallelism level to make them comparable to the ctl rc and tc
1217 * fields.
1218 */
1219
1220 // Lower and upper word masks
1221 private static final long SP_MASK = 0xffffffffL;
1222 private static final long UC_MASK = ~SP_MASK;
1223
1224 // Release counts
1225 private static final int RC_SHIFT = 48;
1226 private static final long RC_UNIT = 0x0001L << RC_SHIFT;
1227 private static final long RC_MASK = 0xffffL << RC_SHIFT;
1228
1229 // Total counts
1230 private static final int TC_SHIFT = 32;
1231 private static final long TC_UNIT = 0x0001L << TC_SHIFT;
1232 private static final long TC_MASK = 0xffffL << TC_SHIFT;
1233 private static final long ADD_WORKER = 0x0001L << (TC_SHIFT + 15); // sign
1234
1235 // Instance fields
1236
1237 volatile long stealCount; // collects worker nsteals
1238 final long keepAlive; // milliseconds before dropping if idle
1239 int indexSeed; // next worker index
1240 final int bounds; // min, max threads packed as shorts
1241 volatile int mode; // parallelism, runstate, queue mode
1242 WorkQueue[] workQueues; // main registry
1243 final String workerNamePrefix; // for worker thread string; sync lock
1244 final ForkJoinWorkerThreadFactory factory;
1245 final UncaughtExceptionHandler ueh; // per-worker UEH
1246 final Predicate<? super ForkJoinPool> saturate;
1247
1248 @jdk.internal.vm.annotation.Contended("fjpctl") // segregate
1249 volatile long ctl; // main pool control
1250
1251 // Creating, registering and deregistering workers
1252
1253 /**
1254 * Tries to construct and start one worker. Assumes that total
1255 * count has already been incremented as a reservation. Invokes
1256 * deregisterWorker on any failure.
1257 *
1258 * @return true if successful
1259 */
1260 private boolean createWorker() {
1261 ForkJoinWorkerThreadFactory fac = factory;
1262 Throwable ex = null;
1263 ForkJoinWorkerThread wt = null;
1264 try {
1265 if (fac != null && (wt = fac.newThread(this)) != null) {
1266 wt.start();
1267 return true;
1268 }
1269 } catch (Throwable rex) {
1270 ex = rex;
1271 }
1272 deregisterWorker(wt, ex);
1273 return false;
1274 }
1275
1276 /**
1277 * Tries to add one worker, incrementing ctl counts before doing
1278 * so, relying on createWorker to back out on failure.
1279 *
1280 * @param c incoming ctl value, with total count negative and no
1281 * idle workers. On CAS failure, c is refreshed and retried if
1282 * this holds (otherwise, a new worker is not needed).
1283 */
1284 private void tryAddWorker(long c) {
1285 do {
1286 long nc = ((RC_MASK & (c + RC_UNIT)) |
1287 (TC_MASK & (c + TC_UNIT)));
1288 if (ctl == c && CTL.compareAndSet(this, c, nc)) {
1289 createWorker();
1290 break;
1291 }
1292 } while (((c = ctl) & ADD_WORKER) != 0L && (int)c == 0);
1293 }
1294
1295 /**
1296 * Callback from ForkJoinWorkerThread constructor to establish and
1297 * record its WorkQueue.
1298 *
1299 * @param wt the worker thread
1300 * @return the worker's queue
1301 */
1302 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1303 UncaughtExceptionHandler handler;
1304 wt.setDaemon(true); // configure thread
1305 if ((handler = ueh) != null)
1306 wt.setUncaughtExceptionHandler(handler);
1307 WorkQueue w = new WorkQueue(this, wt);
1308 int tid = 0; // for thread name
1309 int fifo = mode & FIFO;
1310 String prefix = workerNamePrefix;
1311 if (prefix != null) {
1312 synchronized (prefix) {
1313 WorkQueue[] ws = workQueues; int n;
1314 int s = indexSeed += SEED_INCREMENT;
1315 if (ws != null && (n = ws.length) > 1) {
1316 int m = n - 1;
1317 tid = s & m;
1318 int i = m & ((s << 1) | 1); // odd-numbered indices
1319 for (int probes = n >>> 1;;) { // find empty slot
1320 WorkQueue q;
1321 if ((q = ws[i]) == null || q.phase == QUIET)
1322 break;
1323 else if (--probes == 0) {
1324 i = n | 1; // resize below
1325 break;
1326 }
1327 else
1328 i = (i + 2) & m;
1329 }
1330
1331 int id = i | fifo | (s & ~(SMASK | FIFO | DORMANT));
1332 w.phase = w.id = id; // now publishable
1333
1334 if (i < n)
1335 ws[i] = w;
1336 else { // expand array
1337 int an = n << 1;
1338 WorkQueue[] as = new WorkQueue[an];
1339 as[i] = w;
1340 int am = an - 1;
1341 for (int j = 0; j < n; ++j) {
1342 WorkQueue v; // copy external queue
1343 if ((v = ws[j]) != null) // position may change
1344 as[v.id & am & SQMASK] = v;
1345 if (++j >= n)
1346 break;
1347 as[j] = ws[j]; // copy worker
1348 }
1349 workQueues = as;
1350 }
1351 }
1352 }
1353 wt.setName(prefix.concat(Integer.toString(tid)));
1354 }
1355 return w;
1356 }
1357
1358 /**
1359 * Final callback from terminating worker, as well as upon failure
1360 * to construct or start a worker. Removes record of worker from
1361 * array, and adjusts counts. If pool is shutting down, tries to
1362 * complete termination.
1363 *
1364 * @param wt the worker thread, or null if construction failed
1365 * @param ex the exception causing failure, or null if none
1366 */
1367 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1368 WorkQueue w = null;
1369 int phase = 0;
1370 if (wt != null && (w = wt.workQueue) != null) {
1371 Object lock = workerNamePrefix;
1372 long ns = (long)w.nsteals & 0xffffffffL;
1373 int idx = w.id & SMASK;
1374 if (lock != null) {
1375 WorkQueue[] ws; // remove index from array
1376 synchronized (lock) {
1377 if ((ws = workQueues) != null && ws.length > idx &&
1378 ws[idx] == w)
1379 ws[idx] = null;
1380 stealCount += ns;
1381 }
1382 }
1383 phase = w.phase;
1384 }
1385 if (phase != QUIET) { // else pre-adjusted
1386 long c; // decrement counts
1387 do {} while (!CTL.compareAndSet
1388 (this, c = ctl, ((RC_MASK & (c - RC_UNIT)) |
1389 (TC_MASK & (c - TC_UNIT)) |
1390 (SP_MASK & c))));
1391 }
1392 if (w != null)
1393 w.cancelAll(); // cancel remaining tasks
1394
1395 if (!tryTerminate(false, false) && // possibly replace worker
1396 w != null && w.array != null) // avoid repeated failures
1397 signalWork();
1398
1399 if (ex == null) // help clean on way out
1400 ForkJoinTask.helpExpungeStaleExceptions();
1401 else // rethrow
1402 ForkJoinTask.rethrow(ex);
1403 }
1404
1405 /**
1406 * Tries to create or release a worker if too few are running.
1407 */
1408 final void signalWork() {
1409 for (;;) {
1410 long c; int sp; WorkQueue[] ws; int i; WorkQueue v;
1411 if ((c = ctl) >= 0L) // enough workers
1412 break;
1413 else if ((sp = (int)c) == 0) { // no idle workers
1414 if ((c & ADD_WORKER) != 0L) // too few workers
1415 tryAddWorker(c);
1416 break;
1417 }
1418 else if ((ws = workQueues) == null)
1419 break; // unstarted/terminated
1420 else if (ws.length <= (i = sp & SMASK))
1421 break; // terminated
1422 else if ((v = ws[i]) == null)
1423 break; // terminating
1424 else {
1425 int np = sp & ~UNSIGNALLED;
1426 int vp = v.phase;
1427 long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + RC_UNIT));
1428 Thread vt = v.owner;
1429 if (sp == vp && CTL.compareAndSet(this, c, nc)) {
1430 v.phase = np;
1431 if (v.source < 0)
1432 LockSupport.unpark(vt);
1433 break;
1434 }
1435 }
1436 }
1437 }
1438
1439 /**
1440 * Tries to decrement counts (sometimes implicitly) and possibly
1441 * arrange for a compensating worker in preparation for blocking:
1442 * If not all core workers yet exist, creates one, else if any are
1443 * unreleased (possibly including caller) releases one, else if
1444 * fewer than the minimum allowed number of workers running,
1445 * checks to see that they are all active, and if so creates an
1446 * extra worker unless over maximum limit and policy is to
1447 * saturate. Most of these steps can fail due to interference, in
1448 * which case 0 is returned so caller will retry. A negative
1449 * return value indicates that the caller doesn't need to
1450 * re-adjust counts when later unblocked.
1451 *
1452 * @return 1: block then adjust, -1: block without adjust, 0 : retry
1453 */
1454 private int tryCompensate(WorkQueue w) {
1455 int t, n, sp;
1456 long c = ctl;
1457 WorkQueue[] ws = workQueues;
1458 if ((t = (short)(c >>> TC_SHIFT)) >= 0) {
1459 if (ws == null || (n = ws.length) <= 0 || w == null)
1460 return 0; // disabled
1461 else if ((sp = (int)c) != 0) { // replace or release
1462 WorkQueue v = ws[sp & (n - 1)];
1463 int wp = w.phase;
1464 long uc = UC_MASK & ((wp < 0) ? c + RC_UNIT : c);
1465 int np = sp & ~UNSIGNALLED;
1466 if (v != null) {
1467 int vp = v.phase;
1468 Thread vt = v.owner;
1469 long nc = ((long)v.stackPred & SP_MASK) | uc;
1470 if (vp == sp && CTL.compareAndSet(this, c, nc)) {
1471 v.phase = np;
1472 if (v.source < 0)
1473 LockSupport.unpark(vt);
1474 return (wp < 0) ? -1 : 1;
1475 }
1476 }
1477 return 0;
1478 }
1479 else if ((int)(c >> RC_SHIFT) - // reduce parallelism
1480 (short)(bounds & SMASK) > 0) {
1481 long nc = ((RC_MASK & (c - RC_UNIT)) | (~RC_MASK & c));
1482 return CTL.compareAndSet(this, c, nc) ? 1 : 0;
1483 }
1484 else { // validate
1485 int md = mode, pc = md & SMASK, tc = pc + t, bc = 0;
1486 boolean unstable = false;
1487 for (int i = 1; i < n; i += 2) {
1488 WorkQueue q; Thread wt; Thread.State ts;
1489 if ((q = ws[i]) != null) {
1490 if (q.source == 0) {
1491 unstable = true;
1492 break;
1493 }
1494 else {
1495 --tc;
1496 if ((wt = q.owner) != null &&
1497 ((ts = wt.getState()) == Thread.State.BLOCKED ||
1498 ts == Thread.State.WAITING))
1499 ++bc; // worker is blocking
1500 }
1501 }
1502 }
1503 if (unstable || tc != 0 || ctl != c)
1504 return 0; // inconsistent
1505 else if (t + pc >= MAX_CAP || t >= (bounds >>> SWIDTH)) {
1506 Predicate<? super ForkJoinPool> sat;
1507 if ((sat = saturate) != null && sat.test(this))
1508 return -1;
1509 else if (bc < pc) { // lagging
1510 Thread.yield(); // for retry spins
1511 return 0;
1512 }
1513 else
1514 throw new RejectedExecutionException(
1515 "Thread limit exceeded replacing blocked worker");
1516 }
1517 }
1518 }
1519
1520 long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK); // expand pool
1521 return CTL.compareAndSet(this, c, nc) && createWorker() ? 1 : 0;
1522 }
1523
1524 /**
1525 * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1526 * See above for explanation.
1527 */
1528 final void runWorker(WorkQueue w) {
1529 WorkQueue[] ws;
1530 w.growArray(); // allocate queue
1531 int r = w.id ^ ThreadLocalRandom.nextSecondarySeed();
1532 if (r == 0) // initial nonzero seed
1533 r = 1;
1534 int lastSignalId = 0; // avoid unneeded signals
1535 while ((ws = workQueues) != null) {
1536 boolean nonempty = false; // scan
1537 for (int n = ws.length, j = n, m = n - 1; j > 0; --j) {
1538 WorkQueue q; int i, b, al; ForkJoinTask<?>[] a;
1539 if ((i = r & m) >= 0 && i < n && // always true
1540 (q = ws[i]) != null && (b = q.base) - q.top < 0 &&
1541 (a = q.array) != null && (al = a.length) > 0) {
1542 int qid = q.id; // (never zero)
1543 int index = (al - 1) & b;
1544 ForkJoinTask<?> t = (ForkJoinTask<?>)
1545 QA.getAcquire(a, index);
1546 if (t != null && b++ == q.base &&
1547 QA.compareAndSet(a, index, t, null)) {
1548 if ((q.base = b) - q.top < 0 && qid != lastSignalId)
1549 signalWork(); // propagate signal
1550 w.source = lastSignalId = qid;
1551 t.doExec();
1552 if ((w.id & FIFO) != 0) // run remaining locals
1553 w.localPollAndExec(POLL_LIMIT);
1554 else
1555 w.localPopAndExec(POLL_LIMIT);
1556 ForkJoinWorkerThread thread = w.owner;
1557 ++w.nsteals;
1558 w.source = 0; // now idle
1559 if (thread != null)
1560 thread.afterTopLevelExec();
1561 }
1562 nonempty = true;
1563 }
1564 else if (nonempty)
1565 break;
1566 else
1567 ++r;
1568 }
1569
1570 if (nonempty) { // move (xorshift)
1571 r ^= r << 13; r ^= r >>> 17; r ^= r << 5;
1572 }
1573 else {
1574 int phase;
1575 lastSignalId = 0; // clear for next scan
1576 if ((phase = w.phase) >= 0) { // enqueue
1577 int np = w.phase = (phase + SS_SEQ) | UNSIGNALLED;
1578 long c, nc;
1579 do {
1580 w.stackPred = (int)(c = ctl);
1581 nc = ((c - RC_UNIT) & UC_MASK) | (SP_MASK & np);
1582 } while (!CTL.compareAndSet(this, c, nc));
1583 }
1584 else { // already queued
1585 int pred = w.stackPred;
1586 w.source = DORMANT; // enable signal
1587 for (int steps = 0;;) {
1588 int md, rc; long c;
1589 if (w.phase >= 0) {
1590 w.source = 0;
1591 break;
1592 }
1593 else if ((md = mode) < 0) // shutting down
1594 return;
1595 else if ((rc = ((md & SMASK) + // possibly quiescent
1596 (int)((c = ctl) >> RC_SHIFT))) <= 0 &&
1597 (md & SHUTDOWN) != 0 &&
1598 tryTerminate(false, false))
1599 return; // help terminate
1600 else if ((++steps & 1) == 0)
1601 Thread.interrupted(); // clear between parks
1602 else if (rc <= 0 && pred != 0 && phase == (int)c) {
1603 long d = keepAlive + System.currentTimeMillis();
1604 LockSupport.parkUntil(this, d);
1605 if (ctl == c &&
1606 d - System.currentTimeMillis() <= TIMEOUT_SLOP) {
1607 long nc = ((UC_MASK & (c - TC_UNIT)) |
1608 (SP_MASK & pred));
1609 if (CTL.compareAndSet(this, c, nc)) {
1610 w.phase = QUIET;
1611 return; // drop on timeout
1612 }
1613 }
1614 }
1615 else
1616 LockSupport.park(this);
1617 }
1618 }
1619 }
1620 }
1621 }
1622
1623 /**
1624 * Helps and/or blocks until the given task is done or timeout.
1625 * First tries locally helping, then scans other queues for a task
1626 * produced by one of w's stealers; compensating and blocking if
1627 * none are found (rescanning if tryCompensate fails).
1628 *
1629 * @param w caller
1630 * @param task the task
1631 * @param deadline for timed waits, if nonzero
1632 * @return task status on exit
1633 */
1634 final int awaitJoin(WorkQueue w, ForkJoinTask<?> task, long deadline) {
1635 int s = 0;
1636 if (w != null && task != null &&
1637 (!(task instanceof CountedCompleter) ||
1638 (s = w.localHelpCC((CountedCompleter<?>)task, 0)) >= 0)) {
1639 w.tryRemoveAndExec(task);
1640 int src = w.source, id = w.id;
1641 s = task.status;
1642 while (s >= 0) {
1643 WorkQueue[] ws;
1644 boolean nonempty = false;
1645 int r = ThreadLocalRandom.nextSecondarySeed() | 1; // odd indices
1646 if ((ws = workQueues) != null) { // scan for matching id
1647 for (int n = ws.length, m = n - 1, j = -n; j < n; j += 2) {
1648 WorkQueue q; int i, b, al; ForkJoinTask<?>[] a;
1649 if ((i = (r + j) & m) >= 0 && i < n &&
1650 (q = ws[i]) != null && q.source == id &&
1651 (b = q.base) - q.top < 0 &&
1652 (a = q.array) != null && (al = a.length) > 0) {
1653 int qid = q.id;
1654 int index = (al - 1) & b;
1655 ForkJoinTask<?> t = (ForkJoinTask<?>)
1656 QA.getAcquire(a, index);
1657 if (t != null && b++ == q.base && id == q.source &&
1658 QA.compareAndSet(a, index, t, null)) {
1659 q.base = b;
1660 w.source = qid;
1661 t.doExec();
1662 w.source = src;
1663 }
1664 nonempty = true;
1665 break;
1666 }
1667 }
1668 }
1669 if ((s = task.status) < 0)
1670 break;
1671 else if (!nonempty) {
1672 long ms, ns; int block;
1673 if (deadline == 0L)
1674 ms = 0L; // untimed
1675 else if ((ns = deadline - System.nanoTime()) <= 0L)
1676 break; // timeout
1677 else if ((ms = TimeUnit.NANOSECONDS.toMillis(ns)) <= 0L)
1678 ms = 1L; // avoid 0 for timed wait
1679 if ((block = tryCompensate(w)) != 0) {
1680 task.internalWait(ms);
1681 CTL.getAndAdd(this, (block > 0) ? RC_UNIT : 0L);
1682 }
1683 s = task.status;
1684 }
1685 }
1686 }
1687 return s;
1688 }
1689
1690 /**
1691 * Runs tasks until {@code isQuiescent()}. Rather than blocking
1692 * when tasks cannot be found, rescans until all others cannot
1693 * find tasks either.
1694 */
1695 final void helpQuiescePool(WorkQueue w) {
1696 int prevSrc = w.source, fifo = w.id & FIFO;
1697 for (int source = prevSrc, released = -1;;) { // -1 until known
1698 WorkQueue[] ws;
1699 if (fifo != 0)
1700 w.localPollAndExec(0);
1701 else
1702 w.localPopAndExec(0);
1703 if (released == -1 && w.phase >= 0)
1704 released = 1;
1705 boolean quiet = true, empty = true;
1706 int r = ThreadLocalRandom.nextSecondarySeed();
1707 if ((ws = workQueues) != null) {
1708 for (int n = ws.length, j = n, m = n - 1; j > 0; --j) {
1709 WorkQueue q; int i, b, al; ForkJoinTask<?>[] a;
1710 if ((i = (r - j) & m) >= 0 && i < n && (q = ws[i]) != null) {
1711 if ((b = q.base) - q.top < 0 &&
1712 (a = q.array) != null && (al = a.length) > 0) {
1713 int qid = q.id;
1714 if (released == 0) { // increment
1715 released = 1;
1716 CTL.getAndAdd(this, RC_UNIT);
1717 }
1718 int index = (al - 1) & b;
1719 ForkJoinTask<?> t = (ForkJoinTask<?>)
1720 QA.getAcquire(a, index);
1721 if (t != null && b++ == q.base &&
1722 QA.compareAndSet(a, index, t, null)) {
1723 q.base = b;
1724 w.source = source = q.id;
1725 t.doExec();
1726 w.source = source = prevSrc;
1727 }
1728 quiet = empty = false;
1729 break;
1730 }
1731 else if ((q.source & QUIET) == 0)
1732 quiet = false;
1733 }
1734 }
1735 }
1736 if (quiet) {
1737 if (released == 0)
1738 CTL.getAndAdd(this, RC_UNIT);
1739 w.source = prevSrc;
1740 break;
1741 }
1742 else if (empty) {
1743 if (source != QUIET)
1744 w.source = source = QUIET;
1745 if (released == 1) { // decrement
1746 released = 0;
1747 CTL.getAndAdd(this, RC_MASK & -RC_UNIT);
1748 }
1749 }
1750 }
1751 }
1752
1753 /**
1754 * Scans for and returns a polled task, if available.
1755 * Used only for untracked polls.
1756 *
1757 * @param submissionsOnly if true, only scan submission queues
1758 */
1759 private ForkJoinTask<?> pollScan(boolean submissionsOnly) {
1760 WorkQueue[] ws; int n;
1761 rescan: while ((mode & STOP) == 0 && (ws = workQueues) != null &&
1762 (n = ws.length) > 0) {
1763 int m = n - 1;
1764 int r = ThreadLocalRandom.nextSecondarySeed();
1765 int h = r >>> 16;
1766 int origin, step;
1767 if (submissionsOnly) {
1768 origin = (r & ~1) & m; // even indices and steps
1769 step = (h & ~1) | 2;
1770 }
1771 else {
1772 origin = r & m;
1773 step = h | 1;
1774 }
1775 for (int k = origin, oldSum = 0, checkSum = 0;;) {
1776 WorkQueue q; int b, al; ForkJoinTask<?>[] a;
1777 if ((q = ws[k]) != null) {
1778 checkSum += b = q.base;
1779 if (b - q.top < 0 &&
1780 (a = q.array) != null && (al = a.length) > 0) {
1781 int index = (al - 1) & b;
1782 ForkJoinTask<?> t = (ForkJoinTask<?>)
1783 QA.getAcquire(a, index);
1784 if (t != null && b++ == q.base &&
1785 QA.compareAndSet(a, index, t, null)) {
1786 q.base = b;
1787 return t;
1788 }
1789 else
1790 break; // restart
1791 }
1792 }
1793 if ((k = (k + step) & m) == origin) {
1794 if (oldSum == (oldSum = checkSum))
1795 break rescan;
1796 checkSum = 0;
1797 }
1798 }
1799 }
1800 return null;
1801 }
1802
1803 /**
1804 * Gets and removes a local or stolen task for the given worker.
1805 *
1806 * @return a task, if available
1807 */
1808 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
1809 ForkJoinTask<?> t;
1810 if (w != null &&
1811 (t = (w.id & FIFO) != 0 ? w.poll() : w.pop()) != null)
1812 return t;
1813 else
1814 return pollScan(false);
1815 }
1816
1817 // External operations
1818
1819 /**
1820 * Adds the given task to a submission queue at submitter's
1821 * current queue, creating one if null or contended.
1822 *
1823 * @param task the task. Caller must ensure non-null.
1824 */
1825 final void externalPush(ForkJoinTask<?> task) {
1826 int r; // initialize caller's probe
1827 if ((r = ThreadLocalRandom.getProbe()) == 0) {
1828 ThreadLocalRandom.localInit();
1829 r = ThreadLocalRandom.getProbe();
1830 }
1831 for (;;) {
1832 int md = mode, n;
1833 WorkQueue[] ws = workQueues;
1834 if ((md & SHUTDOWN) != 0 || ws == null || (n = ws.length) <= 0)
1835 throw new RejectedExecutionException();
1836 else {
1837 WorkQueue q;
1838 boolean push = false, grow = false;
1839 if ((q = ws[(n - 1) & r & SQMASK]) == null) {
1840 Object lock = workerNamePrefix;
1841 int qid = (r | QUIET) & ~(FIFO | OWNED);
1842 q = new WorkQueue(this, null);
1843 q.id = qid;
1844 q.source = QUIET;
1845 q.phase = QLOCK; // lock queue
1846 if (lock != null) {
1847 synchronized (lock) { // lock pool to install
1848 int i;
1849 if ((ws = workQueues) != null &&
1850 (n = ws.length) > 0 &&
1851 ws[i = qid & (n - 1) & SQMASK] == null) {
1852 ws[i] = q;
1853 push = grow = true;
1854 }
1855 }
1856 }
1857 }
1858 else if (q.tryLockSharedQueue()) {
1859 int b = q.base, s = q.top, al, d; ForkJoinTask<?>[] a;
1860 if ((a = q.array) != null && (al = a.length) > 0 &&
1861 al - 1 + (d = b - s) > 0) {
1862 a[(al - 1) & s] = task;
1863 q.top = s + 1; // relaxed writes OK here
1864 q.phase = 0;
1865 if (d < 0 && q.base - s < -1)
1866 break; // no signal needed
1867 }
1868 else
1869 grow = true;
1870 push = true;
1871 }
1872 if (push) {
1873 if (grow) {
1874 try {
1875 q.growArray();
1876 int s = q.top, al; ForkJoinTask<?>[] a;
1877 if ((a = q.array) != null && (al = a.length) > 0) {
1878 a[(al - 1) & s] = task;
1879 q.top = s + 1;
1880 }
1881 } finally {
1882 q.phase = 0;
1883 }
1884 }
1885 signalWork();
1886 break;
1887 }
1888 else // move if busy
1889 r = ThreadLocalRandom.advanceProbe(r);
1890 }
1891 }
1892 }
1893
1894 /**
1895 * Pushes a possibly-external submission.
1896 */
1897 private <T> ForkJoinTask<T> externalSubmit(ForkJoinTask<T> task) {
1898 Thread t; ForkJoinWorkerThread w; WorkQueue q;
1899 if (task == null)
1900 throw new NullPointerException();
1901 if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) &&
1902 (w = (ForkJoinWorkerThread)t).pool == this &&
1903 (q = w.workQueue) != null)
1904 q.push(task);
1905 else
1906 externalPush(task);
1907 return task;
1908 }
1909
1910 /**
1911 * Returns common pool queue for an external thread.
1912 */
1913 static WorkQueue commonSubmitterQueue() {
1914 ForkJoinPool p = common;
1915 int r = ThreadLocalRandom.getProbe();
1916 WorkQueue[] ws; int n;
1917 return (p != null && (ws = p.workQueues) != null &&
1918 (n = ws.length) > 0) ?
1919 ws[(n - 1) & r & SQMASK] : null;
1920 }
1921
1922 /**
1923 * Performs tryUnpush for an external submitter.
1924 */
1925 final boolean tryExternalUnpush(ForkJoinTask<?> task) {
1926 int r = ThreadLocalRandom.getProbe();
1927 WorkQueue[] ws; WorkQueue w; int n;
1928 return ((ws = workQueues) != null &&
1929 (n = ws.length) > 0 &&
1930 (w = ws[(n - 1) & r & SQMASK]) != null &&
1931 w.trySharedUnpush(task));
1932 }
1933
1934 /**
1935 * Performs helpComplete for an external submitter.
1936 */
1937 final int externalHelpComplete(CountedCompleter<?> task, int maxTasks) {
1938 int r = ThreadLocalRandom.getProbe();
1939 WorkQueue[] ws; WorkQueue w; int n;
1940 return ((ws = workQueues) != null && (n = ws.length) > 0 &&
1941 (w = ws[(n - 1) & r & SQMASK]) != null) ?
1942 w.sharedHelpCC(task, maxTasks) : 0;
1943 }
1944
1945 /**
1946 * Tries to steal and run tasks within the target's computation.
1947 * The maxTasks argument supports external usages; internal calls
1948 * use zero, allowing unbounded steps (external calls trap
1949 * non-positive values).
1950 *
1951 * @param w caller
1952 * @param maxTasks if non-zero, the maximum number of other tasks to run
1953 * @return task status on exit
1954 */
1955 final int helpComplete(WorkQueue w, CountedCompleter<?> task,
1956 int maxTasks) {
1957 return (w == null) ? 0 : w.localHelpCC(task, maxTasks);
1958 }
1959
1960 /**
1961 * Returns a cheap heuristic guide for task partitioning when
1962 * programmers, frameworks, tools, or languages have little or no
1963 * idea about task granularity. In essence, by offering this
1964 * method, we ask users only about tradeoffs in overhead vs
1965 * expected throughput and its variance, rather than how finely to
1966 * partition tasks.
1967 *
1968 * In a steady state strict (tree-structured) computation, each
1969 * thread makes available for stealing enough tasks for other
1970 * threads to remain active. Inductively, if all threads play by
1971 * the same rules, each thread should make available only a
1972 * constant number of tasks.
1973 *
1974 * The minimum useful constant is just 1. But using a value of 1
1975 * would require immediate replenishment upon each steal to
1976 * maintain enough tasks, which is infeasible. Further,
1977 * partitionings/granularities of offered tasks should minimize
1978 * steal rates, which in general means that threads nearer the top
1979 * of computation tree should generate more than those nearer the
1980 * bottom. In perfect steady state, each thread is at
1981 * approximately the same level of computation tree. However,
1982 * producing extra tasks amortizes the uncertainty of progress and
1983 * diffusion assumptions.
1984 *
1985 * So, users will want to use values larger (but not much larger)
1986 * than 1 to both smooth over transient shortages and hedge
1987 * against uneven progress; as traded off against the cost of
1988 * extra task overhead. We leave the user to pick a threshold
1989 * value to compare with the results of this call to guide
1990 * decisions, but recommend values such as 3.
1991 *
1992 * When all threads are active, it is on average OK to estimate
1993 * surplus strictly locally. In steady-state, if one thread is
1994 * maintaining say 2 surplus tasks, then so are others. So we can
1995 * just use estimated queue length. However, this strategy alone
1996 * leads to serious mis-estimates in some non-steady-state
1997 * conditions (ramp-up, ramp-down, other stalls). We can detect
1998 * many of these by further considering the number of "idle"
1999 * threads, that are known to have zero queued tasks, so
2000 * compensate by a factor of (#idle/#active) threads.
2001 */
2002 static int getSurplusQueuedTaskCount() {
2003 Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2004 if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) &&
2005 (pool = (wt = (ForkJoinWorkerThread)t).pool) != null &&
2006 (q = wt.workQueue) != null) {
2007 int p = pool.mode & SMASK;
2008 int a = p + (int)(pool.ctl >> RC_SHIFT);
2009 int n = q.top - q.base;
2010 return n - (a > (p >>>= 1) ? 0 :
2011 a > (p >>>= 1) ? 1 :
2012 a > (p >>>= 1) ? 2 :
2013 a > (p >>>= 1) ? 4 :
2014 8);
2015 }
2016 return 0;
2017 }
2018
2019 // Termination
2020
2021 /**
2022 * Possibly initiates and/or completes termination.
2023 *
2024 * @param now if true, unconditionally terminate, else only
2025 * if no work and no active workers
2026 * @param enable if true, terminate when next possible
2027 * @return true if terminating or terminated
2028 */
2029 private boolean tryTerminate(boolean now, boolean enable) {
2030 int md; // 3 phases: try to set SHUTDOWN, then STOP, then TERMINATED
2031
2032 while (((md = mode) & SHUTDOWN) == 0) {
2033 if (!enable || this == common) // cannot shutdown
2034 return false;
2035 else
2036 MODE.compareAndSet(this, md, md | SHUTDOWN);
2037 }
2038
2039 while (((md = mode) & STOP) == 0) { // try to initiate termination
2040 if (!now) { // check if quiescent & empty
2041 for (long oldSum = 0L;;) { // repeat until stable
2042 boolean running = false;
2043 long checkSum = ctl;
2044 WorkQueue[] ws = workQueues;
2045 if ((md & SMASK) + (int)(checkSum >> RC_SHIFT) > 0)
2046 running = true;
2047 else if (ws != null) {
2048 WorkQueue w; int b;
2049 for (int i = 0; i < ws.length; ++i) {
2050 if ((w = ws[i]) != null) {
2051 checkSum += (b = w.base) + w.id;
2052 if (b != w.top ||
2053 ((i & 1) == 1 && w.source >= 0)) {
2054 running = true;
2055 break;
2056 }
2057 }
2058 }
2059 }
2060 if (((md = mode) & STOP) != 0)
2061 break; // already triggered
2062 else if (running)
2063 return false;
2064 else if (workQueues == ws && oldSum == (oldSum = checkSum))
2065 break;
2066 }
2067 }
2068 if ((md & STOP) == 0)
2069 MODE.compareAndSet(this, md, md | STOP);
2070 }
2071
2072 while (((md = mode) & TERMINATED) == 0) { // help terminate others
2073 for (long oldSum = 0L;;) { // repeat until stable
2074 WorkQueue[] ws; WorkQueue w;
2075 long checkSum = ctl;
2076 if ((ws = workQueues) != null) {
2077 for (int i = 0; i < ws.length; ++i) {
2078 if ((w = ws[i]) != null) {
2079 ForkJoinWorkerThread wt = w.owner;
2080 w.cancelAll(); // clear queues
2081 if (wt != null) {
2082 try { // unblock join or park
2083 wt.interrupt();
2084 } catch (Throwable ignore) {
2085 }
2086 }
2087 checkSum += w.base + w.id;
2088 }
2089 }
2090 }
2091 if (((md = mode) & TERMINATED) != 0 ||
2092 (workQueues == ws && oldSum == (oldSum = checkSum)))
2093 break;
2094 }
2095 if ((md & TERMINATED) != 0)
2096 break;
2097 else if ((md & SMASK) + (short)(ctl >>> TC_SHIFT) > 0)
2098 break;
2099 else if (MODE.compareAndSet(this, md, md | TERMINATED)) {
2100 synchronized (this) {
2101 notifyAll(); // for awaitTermination
2102 }
2103 break;
2104 }
2105 }
2106 return true;
2107 }
2108
2109 // Exported methods
2110
2111 // Constructors
2112
2113 /**
2114 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2115 * java.lang.Runtime#availableProcessors}, using defaults for all
2116 * other parameters.
2117 *
2118 * @throws SecurityException if a security manager exists and
2119 * the caller is not permitted to modify threads
2120 * because it does not hold {@link
2121 * java.lang.RuntimePermission}{@code ("modifyThread")}
2122 */
2123 public ForkJoinPool() {
2124 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2125 defaultForkJoinWorkerThreadFactory, null, false,
2126 0, MAX_CAP, 1, null, DEFAULT_KEEPALIVE, TimeUnit.MILLISECONDS);
2127 }
2128
2129 /**
2130 * Creates a {@code ForkJoinPool} with the indicated parallelism
2131 * level, using defaults for all other parameters.
2132 *
2133 * @param parallelism the parallelism level
2134 * @throws IllegalArgumentException if parallelism less than or
2135 * equal to zero, or greater than implementation limit
2136 * @throws SecurityException if a security manager exists and
2137 * the caller is not permitted to modify threads
2138 * because it does not hold {@link
2139 * java.lang.RuntimePermission}{@code ("modifyThread")}
2140 */
2141 public ForkJoinPool(int parallelism) {
2142 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false,
2143 0, MAX_CAP, 1, null, DEFAULT_KEEPALIVE, TimeUnit.MILLISECONDS);
2144 }
2145
2146 /**
2147 * Creates a {@code ForkJoinPool} with the given parameters (using
2148 * defaults for others).
2149 *
2150 * @param parallelism the parallelism level. For default value,
2151 * use {@link java.lang.Runtime#availableProcessors}.
2152 * @param factory the factory for creating new threads. For default value,
2153 * use {@link #defaultForkJoinWorkerThreadFactory}.
2154 * @param handler the handler for internal worker threads that
2155 * terminate due to unrecoverable errors encountered while executing
2156 * tasks. For default value, use {@code null}.
2157 * @param asyncMode if true,
2158 * establishes local first-in-first-out scheduling mode for forked
2159 * tasks that are never joined. This mode may be more appropriate
2160 * than default locally stack-based mode in applications in which
2161 * worker threads only process event-style asynchronous tasks.
2162 * For default value, use {@code false}.
2163 * @throws IllegalArgumentException if parallelism less than or
2164 * equal to zero, or greater than implementation limit
2165 * @throws NullPointerException if the factory is null
2166 * @throws SecurityException if a security manager exists and
2167 * the caller is not permitted to modify threads
2168 * because it does not hold {@link
2169 * java.lang.RuntimePermission}{@code ("modifyThread")}
2170 */
2171 public ForkJoinPool(int parallelism,
2172 ForkJoinWorkerThreadFactory factory,
2173 UncaughtExceptionHandler handler,
2174 boolean asyncMode) {
2175 this(parallelism, factory, handler, asyncMode,
2176 0, MAX_CAP, 1, null, DEFAULT_KEEPALIVE, TimeUnit.MILLISECONDS);
2177 }
2178
2179 /**
2180 * Creates a {@code ForkJoinPool} with the given parameters.
2181 *
2182 * @param parallelism the parallelism level. For default value,
2183 * use {@link java.lang.Runtime#availableProcessors}.
2184 *
2185 * @param factory the factory for creating new threads. For
2186 * default value, use {@link #defaultForkJoinWorkerThreadFactory}.
2187 *
2188 * @param handler the handler for internal worker threads that
2189 * terminate due to unrecoverable errors encountered while
2190 * executing tasks. For default value, use {@code null}.
2191 *
2192 * @param asyncMode if true, establishes local first-in-first-out
2193 * scheduling mode for forked tasks that are never joined. This
2194 * mode may be more appropriate than default locally stack-based
2195 * mode in applications in which worker threads only process
2196 * event-style asynchronous tasks. For default value, use {@code
2197 * false}.
2198 *
2199 * @param corePoolSize the number of threads to keep in the pool
2200 * (unless timed out after an elapsed keep-alive). Normally (and
2201 * by default) this is the same value as the parallelism level,
2202 * but may be set to a larger value to reduce dynamic overhead if
2203 * tasks regularly block. Using a smaller value (for example
2204 * {@code 0}) has the same effect as the default.
2205 *
2206 * @param maximumPoolSize the maximum number of threads allowed.
2207 * When the maximum is reached, attempts to replace blocked
2208 * threads fail. (However, because creation and termination of
2209 * different threads may overlap, and may be managed by the given
2210 * thread factory, this value may be transiently exceeded.) To
2211 * arrange the same value as is used by default for the common
2212 * pool, use {@code 256} plus the parallelism level. Using a value
2213 * (for example {@code Integer.MAX_VALUE}) larger than the
2214 * implementation's total thread limit has the same effect as
2215 * using this limit (which is the default).
2216 *
2217 * @param minimumRunnable the minimum allowed number of core
2218 * threads not blocked by a join or {@link ManagedBlocker}. To
2219 * ensure progress, when too few unblocked threads exist and
2220 * unexecuted tasks may exist, new threads are constructed, up to
2221 * the given maximumPoolSize. For the default value, use {@code
2222 * 1}, that ensures liveness. A larger value might improve
2223 * throughput in the presence of blocked activities, but might
2224 * not, due to increased overhead. A value of zero may be
2225 * acceptable when submitted tasks cannot have dependencies
2226 * requiring additional threads.
2227 *
2228 * @param saturate if nonnull, a predicate invoked upon attempts
2229 * to create more than the maximum total allowed threads. By
2230 * default, when a thread is about to block on a join or {@link
2231 * ManagedBlocker}, but cannot be replaced because the
2232 * maximumPoolSize would be exceeded, a {@link
2233 * RejectedExecutionException} is thrown. But if this predicate
2234 * returns {@code true}, then no exception is thrown, so the pool
2235 * continues to operate with fewer than the target number of
2236 * runnable threads, which might not ensure progress.
2237 *
2238 * @param keepAliveTime the elapsed time since last use before
2239 * a thread is terminated (and then later replaced if needed).
2240 * For the default value, use {@code 60, TimeUnit.SECONDS}.
2241 *
2242 * @param unit the time unit for the {@code keepAliveTime} argument
2243 *
2244 * @throws IllegalArgumentException if parallelism is less than or
2245 * equal to zero, or is greater than implementation limit,
2246 * or if maximumPoolSize is less than parallelism,
2247 * of if the keepAliveTime is less than or equal to zero.
2248 * @throws NullPointerException if the factory is null
2249 * @throws SecurityException if a security manager exists and
2250 * the caller is not permitted to modify threads
2251 * because it does not hold {@link
2252 * java.lang.RuntimePermission}{@code ("modifyThread")}
2253 * @since 9
2254 */
2255 public ForkJoinPool(int parallelism,
2256 ForkJoinWorkerThreadFactory factory,
2257 UncaughtExceptionHandler handler,
2258 boolean asyncMode,
2259 int corePoolSize,
2260 int maximumPoolSize,
2261 int minimumRunnable,
2262 Predicate<? super ForkJoinPool> saturate,
2263 long keepAliveTime,
2264 TimeUnit unit) {
2265 // check, encode, pack parameters
2266 if (parallelism <= 0 || parallelism > MAX_CAP ||
2267 maximumPoolSize < parallelism || keepAliveTime <= 0L)
2268 throw new IllegalArgumentException();
2269 if (factory == null)
2270 throw new NullPointerException();
2271 long ms = Math.max(unit.toMillis(keepAliveTime), TIMEOUT_SLOP);
2272
2273 String prefix = "ForkJoinPool-" + nextPoolId() + "-worker-";
2274 int corep = Math.min(Math.max(corePoolSize, parallelism), MAX_CAP);
2275 long c = ((((long)(-corep) << TC_SHIFT) & TC_MASK) |
2276 (((long)(-parallelism) << RC_SHIFT) & RC_MASK));
2277 int m = parallelism | (asyncMode ? FIFO : 0);
2278 int maxSpares = Math.min(maximumPoolSize, MAX_CAP) - parallelism;
2279 int minAvail = Math.min(Math.max(minimumRunnable, 0), MAX_CAP);
2280 int b = ((minAvail - parallelism) & SMASK) | (maxSpares << SWIDTH);
2281 int n = (parallelism > 1) ? parallelism - 1 : 1; // at least 2 slots
2282 n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
2283 n = (n + 1) << 1; // power of two, including space for submission queues
2284
2285 this.workQueues = new WorkQueue[n];
2286 this.workerNamePrefix = prefix;
2287 this.factory = factory;
2288 this.ueh = handler;
2289 this.saturate = saturate;
2290 this.keepAlive = ms;
2291 this.bounds = b;
2292 this.mode = m;
2293 this.ctl = c;
2294 checkPermission();
2295 }
2296
2297 /**
2298 * Constructor for common pool using parameters possibly
2299 * overridden by system properties
2300 */
2301 @SuppressWarnings("deprecation") // Class.newInstance
2302 private ForkJoinPool(byte forCommonPoolOnly) {
2303 int parallelism = -1;
2304 ForkJoinWorkerThreadFactory fac = null;
2305 UncaughtExceptionHandler handler = null;
2306 try { // ignore exceptions in accessing/parsing properties
2307 String pp = System.getProperty
2308 ("java.util.concurrent.ForkJoinPool.common.parallelism");
2309 String fp = System.getProperty
2310 ("java.util.concurrent.ForkJoinPool.common.threadFactory");
2311 String hp = System.getProperty
2312 ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
2313 if (pp != null)
2314 parallelism = Integer.parseInt(pp);
2315 if (fp != null)
2316 fac = ((ForkJoinWorkerThreadFactory)ClassLoader.
2317 getSystemClassLoader().loadClass(fp).newInstance());
2318 if (hp != null)
2319 handler = ((UncaughtExceptionHandler)ClassLoader.
2320 getSystemClassLoader().loadClass(hp).newInstance());
2321 } catch (Exception ignore) {
2322 }
2323
2324 if (fac == null) {
2325 if (System.getSecurityManager() == null)
2326 fac = defaultForkJoinWorkerThreadFactory;
2327 else // use security-managed default
2328 fac = new InnocuousForkJoinWorkerThreadFactory();
2329 }
2330 if (parallelism < 0 && // default 1 less than #cores
2331 (parallelism = Runtime.getRuntime().availableProcessors() - 1) <= 0)
2332 parallelism = 1;
2333 if (parallelism > MAX_CAP)
2334 parallelism = MAX_CAP;
2335
2336 long c = ((((long)(-parallelism) << TC_SHIFT) & TC_MASK) |
2337 (((long)(-parallelism) << RC_SHIFT) & RC_MASK));
2338 int b = ((1 - parallelism) & SMASK) | (COMMON_MAX_SPARES << SWIDTH);
2339 int n = (parallelism > 1) ? parallelism - 1 : 1;
2340 n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
2341 n = (n + 1) << 1;
2342
2343 this.workQueues = new WorkQueue[n];
2344 this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2345 this.factory = fac;
2346 this.ueh = handler;
2347 this.saturate = null;
2348 this.keepAlive = DEFAULT_KEEPALIVE;
2349 this.bounds = b;
2350 this.mode = parallelism;
2351 this.ctl = c;
2352 }
2353
2354 /**
2355 * Returns the common pool instance. This pool is statically
2356 * constructed; its run state is unaffected by attempts to {@link
2357 * #shutdown} or {@link #shutdownNow}. However this pool and any
2358 * ongoing processing are automatically terminated upon program
2359 * {@link System#exit}. Any program that relies on asynchronous
2360 * task processing to complete before program termination should
2361 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2362 * before exit.
2363 *
2364 * @return the common pool instance
2365 * @since 1.8
2366 */
2367 public static ForkJoinPool commonPool() {
2368 // assert common != null : "static init error";
2369 return common;
2370 }
2371
2372 // Execution methods
2373
2374 /**
2375 * Performs the given task, returning its result upon completion.
2376 * If the computation encounters an unchecked Exception or Error,
2377 * it is rethrown as the outcome of this invocation. Rethrown
2378 * exceptions behave in the same way as regular exceptions, but,
2379 * when possible, contain stack traces (as displayed for example
2380 * using {@code ex.printStackTrace()}) of both the current thread
2381 * as well as the thread actually encountering the exception;
2382 * minimally only the latter.
2383 *
2384 * @param task the task
2385 * @param <T> the type of the task's result
2386 * @return the task's result
2387 * @throws NullPointerException if the task is null
2388 * @throws RejectedExecutionException if the task cannot be
2389 * scheduled for execution
2390 */
2391 public <T> T invoke(ForkJoinTask<T> task) {
2392 if (task == null)
2393 throw new NullPointerException();
2394 externalSubmit(task);
2395 return task.join();
2396 }
2397
2398 /**
2399 * Arranges for (asynchronous) execution of the given task.
2400 *
2401 * @param task the task
2402 * @throws NullPointerException if the task is null
2403 * @throws RejectedExecutionException if the task cannot be
2404 * scheduled for execution
2405 */
2406 public void execute(ForkJoinTask<?> task) {
2407 externalSubmit(task);
2408 }
2409
2410 // AbstractExecutorService methods
2411
2412 /**
2413 * @throws NullPointerException if the task is null
2414 * @throws RejectedExecutionException if the task cannot be
2415 * scheduled for execution
2416 */
2417 public void execute(Runnable task) {
2418 if (task == null)
2419 throw new NullPointerException();
2420 ForkJoinTask<?> job;
2421 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2422 job = (ForkJoinTask<?>) task;
2423 else
2424 job = new ForkJoinTask.RunnableExecuteAction(task);
2425 externalSubmit(job);
2426 }
2427
2428 /**
2429 * Submits a ForkJoinTask for execution.
2430 *
2431 * @param task the task to submit
2432 * @param <T> the type of the task's result
2433 * @return the task
2434 * @throws NullPointerException if the task is null
2435 * @throws RejectedExecutionException if the task cannot be
2436 * scheduled for execution
2437 */
2438 public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2439 return externalSubmit(task);
2440 }
2441
2442 /**
2443 * @throws NullPointerException if the task is null
2444 * @throws RejectedExecutionException if the task cannot be
2445 * scheduled for execution
2446 */
2447 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2448 return externalSubmit(new ForkJoinTask.AdaptedCallable<T>(task));
2449 }
2450
2451 /**
2452 * @throws NullPointerException if the task is null
2453 * @throws RejectedExecutionException if the task cannot be
2454 * scheduled for execution
2455 */
2456 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2457 return externalSubmit(new ForkJoinTask.AdaptedRunnable<T>(task, result));
2458 }
2459
2460 /**
2461 * @throws NullPointerException if the task is null
2462 * @throws RejectedExecutionException if the task cannot be
2463 * scheduled for execution
2464 */
2465 public ForkJoinTask<?> submit(Runnable task) {
2466 if (task == null)
2467 throw new NullPointerException();
2468 ForkJoinTask<?> job;
2469 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2470 job = (ForkJoinTask<?>) task;
2471 else
2472 job = new ForkJoinTask.AdaptedRunnableAction(task);
2473 return externalSubmit(job);
2474 }
2475
2476 /**
2477 * @throws NullPointerException {@inheritDoc}
2478 * @throws RejectedExecutionException {@inheritDoc}
2479 */
2480 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2481 // In previous versions of this class, this method constructed
2482 // a task to run ForkJoinTask.invokeAll, but now external
2483 // invocation of multiple tasks is at least as efficient.
2484 ArrayList<Future<T>> futures = new ArrayList<>(tasks.size());
2485
2486 try {
2487 for (Callable<T> t : tasks) {
2488 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2489 futures.add(f);
2490 externalSubmit(f);
2491 }
2492 for (int i = 0, size = futures.size(); i < size; i++)
2493 ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2494 return futures;
2495 } catch (Throwable t) {
2496 for (int i = 0, size = futures.size(); i < size; i++)
2497 futures.get(i).cancel(false);
2498 throw t;
2499 }
2500 }
2501
2502 /**
2503 * Returns the factory used for constructing new workers.
2504 *
2505 * @return the factory used for constructing new workers
2506 */
2507 public ForkJoinWorkerThreadFactory getFactory() {
2508 return factory;
2509 }
2510
2511 /**
2512 * Returns the handler for internal worker threads that terminate
2513 * due to unrecoverable errors encountered while executing tasks.
2514 *
2515 * @return the handler, or {@code null} if none
2516 */
2517 public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2518 return ueh;
2519 }
2520
2521 /**
2522 * Returns the targeted parallelism level of this pool.
2523 *
2524 * @return the targeted parallelism level of this pool
2525 */
2526 public int getParallelism() {
2527 int par = mode & SMASK;
2528 return (par > 0) ? par : 1;
2529 }
2530
2531 /**
2532 * Returns the targeted parallelism level of the common pool.
2533 *
2534 * @return the targeted parallelism level of the common pool
2535 * @since 1.8
2536 */
2537 public static int getCommonPoolParallelism() {
2538 return COMMON_PARALLELISM;
2539 }
2540
2541 /**
2542 * Returns the number of worker threads that have started but not
2543 * yet terminated. The result returned by this method may differ
2544 * from {@link #getParallelism} when threads are created to
2545 * maintain parallelism when others are cooperatively blocked.
2546 *
2547 * @return the number of worker threads
2548 */
2549 public int getPoolSize() {
2550 return ((mode & SMASK) + (short)(ctl >>> TC_SHIFT));
2551 }
2552
2553 /**
2554 * Returns {@code true} if this pool uses local first-in-first-out
2555 * scheduling mode for forked tasks that are never joined.
2556 *
2557 * @return {@code true} if this pool uses async mode
2558 */
2559 public boolean getAsyncMode() {
2560 return (mode & FIFO) != 0;
2561 }
2562
2563 /**
2564 * Returns an estimate of the number of worker threads that are
2565 * not blocked waiting to join tasks or for other managed
2566 * synchronization. This method may overestimate the
2567 * number of running threads.
2568 *
2569 * @return the number of worker threads
2570 */
2571 public int getRunningThreadCount() {
2572 int rc = 0;
2573 WorkQueue[] ws; WorkQueue w;
2574 if ((ws = workQueues) != null) {
2575 for (int i = 1; i < ws.length; i += 2) {
2576 if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2577 ++rc;
2578 }
2579 }
2580 return rc;
2581 }
2582
2583 /**
2584 * Returns an estimate of the number of threads that are currently
2585 * stealing or executing tasks. This method may overestimate the
2586 * number of active threads.
2587 *
2588 * @return the number of active threads
2589 */
2590 public int getActiveThreadCount() {
2591 int r = (mode & SMASK) + (int)(ctl >> RC_SHIFT);
2592 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2593 }
2594
2595 /**
2596 * Returns {@code true} if all worker threads are currently idle.
2597 * An idle worker is one that cannot obtain a task to execute
2598 * because none are available to steal from other threads, and
2599 * there are no pending submissions to the pool. This method is
2600 * conservative; it might not return {@code true} immediately upon
2601 * idleness of all threads, but will eventually become true if
2602 * threads remain inactive.
2603 *
2604 * @return {@code true} if all threads are currently idle
2605 */
2606 public boolean isQuiescent() {
2607 for (;;) {
2608 long c = ctl;
2609 int md = mode, pc = md & SMASK;
2610 int tc = pc + (short)(c >>> TC_SHIFT);
2611 int rc = pc + (int)(c >> RC_SHIFT);
2612 if ((md & (STOP | TERMINATED)) != 0)
2613 return true;
2614 else if (rc > 0)
2615 return false;
2616 else {
2617 WorkQueue[] ws; WorkQueue v;
2618 if ((ws = workQueues) != null) {
2619 for (int i = 1; i < ws.length; i += 2) {
2620 if ((v = ws[i]) != null) {
2621 if ((v.source & QUIET) == 0)
2622 return false;
2623 --tc;
2624 }
2625 }
2626 }
2627 if (tc == 0 && ctl == c)
2628 return true;
2629 }
2630 }
2631 }
2632
2633 /**
2634 * Returns an estimate of the total number of tasks stolen from
2635 * one thread's work queue by another. The reported value
2636 * underestimates the actual total number of steals when the pool
2637 * is not quiescent. This value may be useful for monitoring and
2638 * tuning fork/join programs: in general, steal counts should be
2639 * high enough to keep threads busy, but low enough to avoid
2640 * overhead and contention across threads.
2641 *
2642 * @return the number of steals
2643 */
2644 public long getStealCount() {
2645 long count = stealCount;
2646 WorkQueue[] ws; WorkQueue w;
2647 if ((ws = workQueues) != null) {
2648 for (int i = 1; i < ws.length; i += 2) {
2649 if ((w = ws[i]) != null)
2650 count += (long)w.nsteals & 0xffffffffL;
2651 }
2652 }
2653 return count;
2654 }
2655
2656 /**
2657 * Returns an estimate of the total number of tasks currently held
2658 * in queues by worker threads (but not including tasks submitted
2659 * to the pool that have not begun executing). This value is only
2660 * an approximation, obtained by iterating across all threads in
2661 * the pool. This method may be useful for tuning task
2662 * granularities.
2663 *
2664 * @return the number of queued tasks
2665 */
2666 public long getQueuedTaskCount() {
2667 long count = 0;
2668 WorkQueue[] ws; WorkQueue w;
2669 if ((ws = workQueues) != null) {
2670 for (int i = 1; i < ws.length; i += 2) {
2671 if ((w = ws[i]) != null)
2672 count += w.queueSize();
2673 }
2674 }
2675 return count;
2676 }
2677
2678 /**
2679 * Returns an estimate of the number of tasks submitted to this
2680 * pool that have not yet begun executing. This method may take
2681 * time proportional to the number of submissions.
2682 *
2683 * @return the number of queued submissions
2684 */
2685 public int getQueuedSubmissionCount() {
2686 int count = 0;
2687 WorkQueue[] ws; WorkQueue w;
2688 if ((ws = workQueues) != null) {
2689 for (int i = 0; i < ws.length; i += 2) {
2690 if ((w = ws[i]) != null)
2691 count += w.queueSize();
2692 }
2693 }
2694 return count;
2695 }
2696
2697 /**
2698 * Returns {@code true} if there are any tasks submitted to this
2699 * pool that have not yet begun executing.
2700 *
2701 * @return {@code true} if there are any queued submissions
2702 */
2703 public boolean hasQueuedSubmissions() {
2704 WorkQueue[] ws; WorkQueue w;
2705 if ((ws = workQueues) != null) {
2706 for (int i = 0; i < ws.length; i += 2) {
2707 if ((w = ws[i]) != null && !w.isEmpty())
2708 return true;
2709 }
2710 }
2711 return false;
2712 }
2713
2714 /**
2715 * Removes and returns the next unexecuted submission if one is
2716 * available. This method may be useful in extensions to this
2717 * class that re-assign work in systems with multiple pools.
2718 *
2719 * @return the next submission, or {@code null} if none
2720 */
2721 protected ForkJoinTask<?> pollSubmission() {
2722 return pollScan(true);
2723 }
2724
2725 /**
2726 * Removes all available unexecuted submitted and forked tasks
2727 * from scheduling queues and adds them to the given collection,
2728 * without altering their execution status. These may include
2729 * artificially generated or wrapped tasks. This method is
2730 * designed to be invoked only when the pool is known to be
2731 * quiescent. Invocations at other times may not remove all
2732 * tasks. A failure encountered while attempting to add elements
2733 * to collection {@code c} may result in elements being in
2734 * neither, either or both collections when the associated
2735 * exception is thrown. The behavior of this operation is
2736 * undefined if the specified collection is modified while the
2737 * operation is in progress.
2738 *
2739 * @param c the collection to transfer elements into
2740 * @return the number of elements transferred
2741 */
2742 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2743 int count = 0;
2744 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2745 if ((ws = workQueues) != null) {
2746 for (int i = 0; i < ws.length; ++i) {
2747 if ((w = ws[i]) != null) {
2748 while ((t = w.poll()) != null) {
2749 c.add(t);
2750 ++count;
2751 }
2752 }
2753 }
2754 }
2755 return count;
2756 }
2757
2758 /**
2759 * Returns a string identifying this pool, as well as its state,
2760 * including indications of run state, parallelism level, and
2761 * worker and task counts.
2762 *
2763 * @return a string identifying this pool, as well as its state
2764 */
2765 public String toString() {
2766 // Use a single pass through workQueues to collect counts
2767 long qt = 0L, qs = 0L; int rc = 0;
2768 long st = stealCount;
2769 WorkQueue[] ws; WorkQueue w;
2770 if ((ws = workQueues) != null) {
2771 for (int i = 0; i < ws.length; ++i) {
2772 if ((w = ws[i]) != null) {
2773 int size = w.queueSize();
2774 if ((i & 1) == 0)
2775 qs += size;
2776 else {
2777 qt += size;
2778 st += (long)w.nsteals & 0xffffffffL;
2779 if (w.isApparentlyUnblocked())
2780 ++rc;
2781 }
2782 }
2783 }
2784 }
2785
2786 int md = mode;
2787 int pc = (md & SMASK);
2788 long c = ctl;
2789 int tc = pc + (short)(c >>> TC_SHIFT);
2790 int ac = pc + (int)(c >> RC_SHIFT);
2791 if (ac < 0) // ignore transient negative
2792 ac = 0;
2793 String level = ((md & TERMINATED) != 0 ? "Terminated" :
2794 (md & STOP) != 0 ? "Terminating" :
2795 (md & SHUTDOWN) != 0 ? "Shutting down" :
2796 "Running");
2797 return super.toString() +
2798 "[" + level +
2799 ", parallelism = " + pc +
2800 ", size = " + tc +
2801 ", active = " + ac +
2802 ", running = " + rc +
2803 ", steals = " + st +
2804 ", tasks = " + qt +
2805 ", submissions = " + qs +
2806 "]";
2807 }
2808
2809 /**
2810 * Possibly initiates an orderly shutdown in which previously
2811 * submitted tasks are executed, but no new tasks will be
2812 * accepted. Invocation has no effect on execution state if this
2813 * is the {@link #commonPool()}, and no additional effect if
2814 * already shut down. Tasks that are in the process of being
2815 * submitted concurrently during the course of this method may or
2816 * may not be rejected.
2817 *
2818 * @throws SecurityException if a security manager exists and
2819 * the caller is not permitted to modify threads
2820 * because it does not hold {@link
2821 * java.lang.RuntimePermission}{@code ("modifyThread")}
2822 */
2823 public void shutdown() {
2824 checkPermission();
2825 tryTerminate(false, true);
2826 }
2827
2828 /**
2829 * Possibly attempts to cancel and/or stop all tasks, and reject
2830 * all subsequently submitted tasks. Invocation has no effect on
2831 * execution state if this is the {@link #commonPool()}, and no
2832 * additional effect if already shut down. Otherwise, tasks that
2833 * are in the process of being submitted or executed concurrently
2834 * during the course of this method may or may not be
2835 * rejected. This method cancels both existing and unexecuted
2836 * tasks, in order to permit termination in the presence of task
2837 * dependencies. So the method always returns an empty list
2838 * (unlike the case for some other Executors).
2839 *
2840 * @return an empty list
2841 * @throws SecurityException if a security manager exists and
2842 * the caller is not permitted to modify threads
2843 * because it does not hold {@link
2844 * java.lang.RuntimePermission}{@code ("modifyThread")}
2845 */
2846 public List<Runnable> shutdownNow() {
2847 checkPermission();
2848 tryTerminate(true, true);
2849 return Collections.emptyList();
2850 }
2851
2852 /**
2853 * Returns {@code true} if all tasks have completed following shut down.
2854 *
2855 * @return {@code true} if all tasks have completed following shut down
2856 */
2857 public boolean isTerminated() {
2858 return (mode & TERMINATED) != 0;
2859 }
2860
2861 /**
2862 * Returns {@code true} if the process of termination has
2863 * commenced but not yet completed. This method may be useful for
2864 * debugging. A return of {@code true} reported a sufficient
2865 * period after shutdown may indicate that submitted tasks have
2866 * ignored or suppressed interruption, or are waiting for I/O,
2867 * causing this executor not to properly terminate. (See the
2868 * advisory notes for class {@link ForkJoinTask} stating that
2869 * tasks should not normally entail blocking operations. But if
2870 * they do, they must abort them on interrupt.)
2871 *
2872 * @return {@code true} if terminating but not yet terminated
2873 */
2874 public boolean isTerminating() {
2875 int md = mode;
2876 return (md & STOP) != 0 && (md & TERMINATED) == 0;
2877 }
2878
2879 /**
2880 * Returns {@code true} if this pool has been shut down.
2881 *
2882 * @return {@code true} if this pool has been shut down
2883 */
2884 public boolean isShutdown() {
2885 return (mode & SHUTDOWN) != 0;
2886 }
2887
2888 /**
2889 * Blocks until all tasks have completed execution after a
2890 * shutdown request, or the timeout occurs, or the current thread
2891 * is interrupted, whichever happens first. Because the {@link
2892 * #commonPool()} never terminates until program shutdown, when
2893 * applied to the common pool, this method is equivalent to {@link
2894 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
2895 *
2896 * @param timeout the maximum time to wait
2897 * @param unit the time unit of the timeout argument
2898 * @return {@code true} if this executor terminated and
2899 * {@code false} if the timeout elapsed before termination
2900 * @throws InterruptedException if interrupted while waiting
2901 */
2902 public boolean awaitTermination(long timeout, TimeUnit unit)
2903 throws InterruptedException {
2904 if (Thread.interrupted())
2905 throw new InterruptedException();
2906 if (this == common) {
2907 awaitQuiescence(timeout, unit);
2908 return false;
2909 }
2910 long nanos = unit.toNanos(timeout);
2911 if (isTerminated())
2912 return true;
2913 if (nanos <= 0L)
2914 return false;
2915 long deadline = System.nanoTime() + nanos;
2916 synchronized (this) {
2917 for (;;) {
2918 if (isTerminated())
2919 return true;
2920 if (nanos <= 0L)
2921 return false;
2922 long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
2923 wait(millis > 0L ? millis : 1L);
2924 nanos = deadline - System.nanoTime();
2925 }
2926 }
2927 }
2928
2929 /**
2930 * If called by a ForkJoinTask operating in this pool, equivalent
2931 * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
2932 * waits and/or attempts to assist performing tasks until this
2933 * pool {@link #isQuiescent} or the indicated timeout elapses.
2934 *
2935 * @param timeout the maximum time to wait
2936 * @param unit the time unit of the timeout argument
2937 * @return {@code true} if quiescent; {@code false} if the
2938 * timeout elapsed.
2939 */
2940 public boolean awaitQuiescence(long timeout, TimeUnit unit) {
2941 long nanos = unit.toNanos(timeout);
2942 ForkJoinWorkerThread wt;
2943 Thread thread = Thread.currentThread();
2944 if ((thread instanceof ForkJoinWorkerThread) &&
2945 (wt = (ForkJoinWorkerThread)thread).pool == this) {
2946 helpQuiescePool(wt.workQueue);
2947 return true;
2948 }
2949 else {
2950 for (long startTime = System.nanoTime();;) {
2951 ForkJoinTask<?> t;
2952 if ((t = pollScan(false)) != null)
2953 t.doExec();
2954 else if (isQuiescent())
2955 return true;
2956 else if ((System.nanoTime() - startTime) > nanos)
2957 return false;
2958 else
2959 Thread.yield(); // cannot block
2960 }
2961 }
2962 }
2963
2964 /**
2965 * Waits and/or attempts to assist performing tasks indefinitely
2966 * until the {@link #commonPool()} {@link #isQuiescent}.
2967 */
2968 static void quiesceCommonPool() {
2969 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
2970 }
2971
2972 /**
2973 * Interface for extending managed parallelism for tasks running
2974 * in {@link ForkJoinPool}s.
2975 *
2976 * <p>A {@code ManagedBlocker} provides two methods. Method
2977 * {@link #isReleasable} must return {@code true} if blocking is
2978 * not necessary. Method {@link #block} blocks the current thread
2979 * if necessary (perhaps internally invoking {@code isReleasable}
2980 * before actually blocking). These actions are performed by any
2981 * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
2982 * The unusual methods in this API accommodate synchronizers that
2983 * may, but don't usually, block for long periods. Similarly, they
2984 * allow more efficient internal handling of cases in which
2985 * additional workers may be, but usually are not, needed to
2986 * ensure sufficient parallelism. Toward this end,
2987 * implementations of method {@code isReleasable} must be amenable
2988 * to repeated invocation.
2989 *
2990 * <p>For example, here is a ManagedBlocker based on a
2991 * ReentrantLock:
2992 * <pre> {@code
2993 * class ManagedLocker implements ManagedBlocker {
2994 * final ReentrantLock lock;
2995 * boolean hasLock = false;
2996 * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
2997 * public boolean block() {
2998 * if (!hasLock)
2999 * lock.lock();
3000 * return true;
3001 * }
3002 * public boolean isReleasable() {
3003 * return hasLock || (hasLock = lock.tryLock());
3004 * }
3005 * }}</pre>
3006 *
3007 * <p>Here is a class that possibly blocks waiting for an
3008 * item on a given queue:
3009 * <pre> {@code
3010 * class QueueTaker<E> implements ManagedBlocker {
3011 * final BlockingQueue<E> queue;
3012 * volatile E item = null;
3013 * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3014 * public boolean block() throws InterruptedException {
3015 * if (item == null)
3016 * item = queue.take();
3017 * return true;
3018 * }
3019 * public boolean isReleasable() {
3020 * return item != null || (item = queue.poll()) != null;
3021 * }
3022 * public E getItem() { // call after pool.managedBlock completes
3023 * return item;
3024 * }
3025 * }}</pre>
3026 */
3027 public static interface ManagedBlocker {
3028 /**
3029 * Possibly blocks the current thread, for example waiting for
3030 * a lock or condition.
3031 *
3032 * @return {@code true} if no additional blocking is necessary
3033 * (i.e., if isReleasable would return true)
3034 * @throws InterruptedException if interrupted while waiting
3035 * (the method is not required to do so, but is allowed to)
3036 */
3037 boolean block() throws InterruptedException;
3038
3039 /**
3040 * Returns {@code true} if blocking is unnecessary.
3041 * @return {@code true} if blocking is unnecessary
3042 */
3043 boolean isReleasable();
3044 }
3045
3046 /**
3047 * Runs the given possibly blocking task. When {@linkplain
3048 * ForkJoinTask#inForkJoinPool() running in a ForkJoinPool}, this
3049 * method possibly arranges for a spare thread to be activated if
3050 * necessary to ensure sufficient parallelism while the current
3051 * thread is blocked in {@link ManagedBlocker#block blocker.block()}.
3052 *
3053 * <p>This method repeatedly calls {@code blocker.isReleasable()} and
3054 * {@code blocker.block()} until either method returns {@code true}.
3055 * Every call to {@code blocker.block()} is preceded by a call to
3056 * {@code blocker.isReleasable()} that returned {@code false}.
3057 *
3058 * <p>If not running in a ForkJoinPool, this method is
3059 * behaviorally equivalent to
3060 * <pre> {@code
3061 * while (!blocker.isReleasable())
3062 * if (blocker.block())
3063 * break;}</pre>
3064 *
3065 * If running in a ForkJoinPool, the pool may first be expanded to
3066 * ensure sufficient parallelism available during the call to
3067 * {@code blocker.block()}.
3068 *
3069 * @param blocker the blocker task
3070 * @throws InterruptedException if {@code blocker.block()} did so
3071 */
3072 public static void managedBlock(ManagedBlocker blocker)
3073 throws InterruptedException {
3074 ForkJoinPool p;
3075 ForkJoinWorkerThread wt;
3076 WorkQueue w;
3077 Thread t = Thread.currentThread();
3078 if ((t instanceof ForkJoinWorkerThread) &&
3079 (p = (wt = (ForkJoinWorkerThread)t).pool) != null &&
3080 (w = wt.workQueue) != null) {
3081 int block;
3082 while (!blocker.isReleasable()) {
3083 if ((block = p.tryCompensate(w)) != 0) {
3084 try {
3085 do {} while (!blocker.isReleasable() &&
3086 !blocker.block());
3087 } finally {
3088 CTL.getAndAdd(p, (block > 0) ? RC_UNIT : 0L);
3089 }
3090 break;
3091 }
3092 }
3093 }
3094 else {
3095 do {} while (!blocker.isReleasable() &&
3096 !blocker.block());
3097 }
3098 }
3099
3100 /**
3101 * If the given executor is a ForkJoinPool, poll and execute
3102 * AsynchronousCompletionTasks from worker's queue until none are
3103 * available or blocker is released.
3104 */
3105 static void helpAsyncBlocker(Executor e, ManagedBlocker blocker) {
3106 if (blocker != null && (e instanceof ForkJoinPool)) {
3107 WorkQueue w; ForkJoinWorkerThread wt; WorkQueue[] ws; int r, n;
3108 ForkJoinPool p = (ForkJoinPool)e;
3109 Thread thread = Thread.currentThread();
3110 if (thread instanceof ForkJoinWorkerThread &&
3111 (wt = (ForkJoinWorkerThread)thread).pool == p)
3112 w = wt.workQueue;
3113 else if ((r = ThreadLocalRandom.getProbe()) != 0 &&
3114 (ws = p.workQueues) != null && (n = ws.length) > 0)
3115 w = ws[(n - 1) & r & SQMASK];
3116 else
3117 w = null;
3118 if (w != null) {
3119 for (;;) {
3120 int b = w.base, s = w.top, d, al; ForkJoinTask<?>[] a;
3121 if ((a = w.array) != null && (d = b - s) < 0 &&
3122 (al = a.length) > 0) {
3123 int index = (al - 1) & b;
3124 ForkJoinTask<?> t = (ForkJoinTask<?>)
3125 QA.getAcquire(a, index);
3126 if (blocker.isReleasable())
3127 break;
3128 else if (b++ == w.base) {
3129 if (t == null) {
3130 if (d == -1)
3131 break;
3132 }
3133 else if (!(t instanceof CompletableFuture.
3134 AsynchronousCompletionTask))
3135 break;
3136 else if (QA.compareAndSet(a, index, t, null)) {
3137 w.base = b;
3138 t.doExec();
3139 }
3140 }
3141 }
3142 else
3143 break;
3144 }
3145 }
3146 }
3147 }
3148
3149 // AbstractExecutorService overrides. These rely on undocumented
3150 // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3151 // implement RunnableFuture.
3152
3153 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3154 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3155 }
3156
3157 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3158 return new ForkJoinTask.AdaptedCallable<T>(callable);
3159 }
3160
3161 // VarHandle mechanics
3162 private static final VarHandle CTL;
3163 private static final VarHandle MODE;
3164 private static final VarHandle QA;
3165
3166 static {
3167 try {
3168 MethodHandles.Lookup l = MethodHandles.lookup();
3169 CTL = l.findVarHandle(ForkJoinPool.class, "ctl", long.class);
3170 MODE = l.findVarHandle(ForkJoinPool.class, "mode", int.class);
3171 QA = MethodHandles.arrayElementVarHandle(ForkJoinTask[].class);
3172 } catch (ReflectiveOperationException e) {
3173 throw new Error(e);
3174 }
3175
3176 // Reduce the risk of rare disastrous classloading in first call to
3177 // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
3178 Class<?> ensureLoaded = LockSupport.class;
3179
3180 int commonMaxSpares = DEFAULT_COMMON_MAX_SPARES;
3181 try {
3182 String p = System.getProperty
3183 ("java.util.concurrent.ForkJoinPool.common.maximumSpares");
3184 if (p != null)
3185 commonMaxSpares = Integer.parseInt(p);
3186 } catch (Exception ignore) {}
3187 COMMON_MAX_SPARES = commonMaxSpares;
3188
3189 defaultForkJoinWorkerThreadFactory =
3190 new DefaultForkJoinWorkerThreadFactory();
3191 modifyThreadPermission = new RuntimePermission("modifyThread");
3192
3193 common = java.security.AccessController.doPrivileged
3194 (new java.security.PrivilegedAction<ForkJoinPool>() {
3195 public ForkJoinPool run() {
3196 return new ForkJoinPool((byte)0); }});
3197
3198 COMMON_PARALLELISM = Math.max(common.mode & SMASK, 1);
3199 }
3200
3201 /**
3202 * Factory for innocuous worker threads.
3203 */
3204 private static final class InnocuousForkJoinWorkerThreadFactory
3205 implements ForkJoinWorkerThreadFactory {
3206
3207 /**
3208 * An ACC to restrict permissions for the factory itself.
3209 * The constructed workers have no permissions set.
3210 */
3211 private static final AccessControlContext innocuousAcc;
3212 static {
3213 Permissions innocuousPerms = new Permissions();
3214 innocuousPerms.add(modifyThreadPermission);
3215 innocuousPerms.add(new RuntimePermission(
3216 "enableContextClassLoaderOverride"));
3217 innocuousPerms.add(new RuntimePermission(
3218 "modifyThreadGroup"));
3219 innocuousAcc = new AccessControlContext(new ProtectionDomain[] {
3220 new ProtectionDomain(null, innocuousPerms)
3221 });
3222 }
3223
3224 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
3225 return java.security.AccessController.doPrivileged(
3226 new java.security.PrivilegedAction<ForkJoinWorkerThread>() {
3227 public ForkJoinWorkerThread run() {
3228 return new ForkJoinWorkerThread.
3229 InnocuousForkJoinWorkerThread(pool);
3230 }}, innocuousAcc);
3231 }
3232 }
3233
3234 }