ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.327
Committed: Thu Sep 15 16:28:43 2016 UTC (7 years, 8 months ago) by jsr166
Branch: MAIN
Changes since 1.326: +14 -13 lines
Log Message:
switch to non-deprecated Constructor.newInstance

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.lang.Thread.UncaughtExceptionHandler;
10 import java.lang.invoke.MethodHandles;
11 import java.lang.invoke.VarHandle;
12 import java.security.AccessControlContext;
13 import java.security.Permissions;
14 import java.security.ProtectionDomain;
15 import java.util.ArrayList;
16 import java.util.Collection;
17 import java.util.Collections;
18 import java.util.List;
19 import java.util.function.Predicate;
20 import java.util.concurrent.locks.LockSupport;
21
22 /**
23 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
24 * A {@code ForkJoinPool} provides the entry point for submissions
25 * from non-{@code ForkJoinTask} clients, as well as management and
26 * monitoring operations.
27 *
28 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
29 * ExecutorService} mainly by virtue of employing
30 * <em>work-stealing</em>: all threads in the pool attempt to find and
31 * execute tasks submitted to the pool and/or created by other active
32 * tasks (eventually blocking waiting for work if none exist). This
33 * enables efficient processing when most tasks spawn other subtasks
34 * (as do most {@code ForkJoinTask}s), as well as when many small
35 * tasks are submitted to the pool from external clients. Especially
36 * when setting <em>asyncMode</em> to true in constructors, {@code
37 * ForkJoinPool}s may also be appropriate for use with event-style
38 * tasks that are never joined.
39 *
40 * <p>A static {@link #commonPool()} is available and appropriate for
41 * most applications. The common pool is used by any ForkJoinTask that
42 * is not explicitly submitted to a specified pool. Using the common
43 * pool normally reduces resource usage (its threads are slowly
44 * reclaimed during periods of non-use, and reinstated upon subsequent
45 * use).
46 *
47 * <p>For applications that require separate or custom pools, a {@code
48 * ForkJoinPool} may be constructed with a given target parallelism
49 * level; by default, equal to the number of available processors.
50 * The pool attempts to maintain enough active (or available) threads
51 * by dynamically adding, suspending, or resuming internal worker
52 * threads, even if some tasks are stalled waiting to join others.
53 * However, no such adjustments are guaranteed in the face of blocked
54 * I/O or other unmanaged synchronization. The nested {@link
55 * ManagedBlocker} interface enables extension of the kinds of
56 * synchronization accommodated. The default policies may be
57 * overridden using a constructor with parameters corresponding to
58 * those documented in class {@link ThreadPoolExecutor}.
59 *
60 * <p>In addition to execution and lifecycle control methods, this
61 * class provides status check methods (for example
62 * {@link #getStealCount}) that are intended to aid in developing,
63 * tuning, and monitoring fork/join applications. Also, method
64 * {@link #toString} returns indications of pool state in a
65 * convenient form for informal monitoring.
66 *
67 * <p>As is the case with other ExecutorServices, there are three
68 * main task execution methods summarized in the following table.
69 * These are designed to be used primarily by clients not already
70 * engaged in fork/join computations in the current pool. The main
71 * forms of these methods accept instances of {@code ForkJoinTask},
72 * but overloaded forms also allow mixed execution of plain {@code
73 * Runnable}- or {@code Callable}- based activities as well. However,
74 * tasks that are already executing in a pool should normally instead
75 * use the within-computation forms listed in the table unless using
76 * async event-style tasks that are not usually joined, in which case
77 * there is little difference among choice of methods.
78 *
79 * <table BORDER CELLPADDING=3 CELLSPACING=1>
80 * <caption>Summary of task execution methods</caption>
81 * <tr>
82 * <td></td>
83 * <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
84 * <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
85 * </tr>
86 * <tr>
87 * <td> <b>Arrange async execution</b></td>
88 * <td> {@link #execute(ForkJoinTask)}</td>
89 * <td> {@link ForkJoinTask#fork}</td>
90 * </tr>
91 * <tr>
92 * <td> <b>Await and obtain result</b></td>
93 * <td> {@link #invoke(ForkJoinTask)}</td>
94 * <td> {@link ForkJoinTask#invoke}</td>
95 * </tr>
96 * <tr>
97 * <td> <b>Arrange exec and obtain Future</b></td>
98 * <td> {@link #submit(ForkJoinTask)}</td>
99 * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
100 * </tr>
101 * </table>
102 *
103 * <p>The common pool is by default constructed with default
104 * parameters, but these may be controlled by setting the following
105 * {@linkplain System#getProperty system properties}:
106 * <ul>
107 * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
108 * - the parallelism level, a non-negative integer
109 * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
110 * - the class name of a {@link ForkJoinWorkerThreadFactory}
111 * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
112 * - the class name of a {@link UncaughtExceptionHandler}
113 * <li>{@code java.util.concurrent.ForkJoinPool.common.maximumSpares}
114 * - the maximum number of allowed extra threads to maintain target
115 * parallelism (default 256).
116 * </ul>
117 * If a {@link SecurityManager} is present and no factory is
118 * specified, then the default pool uses a factory supplying
119 * threads that have no {@link Permissions} enabled.
120 * The system class loader is used to load these classes.
121 * Upon any error in establishing these settings, default parameters
122 * are used. It is possible to disable or limit the use of threads in
123 * the common pool by setting the parallelism property to zero, and/or
124 * using a factory that may return {@code null}. However doing so may
125 * cause unjoined tasks to never be executed.
126 *
127 * <p><b>Implementation notes</b>: This implementation restricts the
128 * maximum number of running threads to 32767. Attempts to create
129 * pools with greater than the maximum number result in
130 * {@code IllegalArgumentException}.
131 *
132 * <p>This implementation rejects submitted tasks (that is, by throwing
133 * {@link RejectedExecutionException}) only when the pool is shut down
134 * or internal resources have been exhausted.
135 *
136 * @since 1.7
137 * @author Doug Lea
138 */
139 public class ForkJoinPool extends AbstractExecutorService {
140
141 /*
142 * Implementation Overview
143 *
144 * This class and its nested classes provide the main
145 * functionality and control for a set of worker threads:
146 * Submissions from non-FJ threads enter into submission queues.
147 * Workers take these tasks and typically split them into subtasks
148 * that may be stolen by other workers. Preference rules give
149 * first priority to processing tasks from their own queues (LIFO
150 * or FIFO, depending on mode), then to randomized FIFO steals of
151 * tasks in other queues. This framework began as vehicle for
152 * supporting tree-structured parallelism using work-stealing.
153 * Over time, its scalability advantages led to extensions and
154 * changes to better support more diverse usage contexts. Because
155 * most internal methods and nested classes are interrelated,
156 * their main rationale and descriptions are presented here;
157 * individual methods and nested classes contain only brief
158 * comments about details.
159 *
160 * WorkQueues
161 * ==========
162 *
163 * Most operations occur within work-stealing queues (in nested
164 * class WorkQueue). These are special forms of Deques that
165 * support only three of the four possible end-operations -- push,
166 * pop, and poll (aka steal), under the further constraints that
167 * push and pop are called only from the owning thread (or, as
168 * extended here, under a lock), while poll may be called from
169 * other threads. (If you are unfamiliar with them, you probably
170 * want to read Herlihy and Shavit's book "The Art of
171 * Multiprocessor programming", chapter 16 describing these in
172 * more detail before proceeding.) The main work-stealing queue
173 * design is roughly similar to those in the papers "Dynamic
174 * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
175 * (http://research.sun.com/scalable/pubs/index.html) and
176 * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
177 * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
178 * The main differences ultimately stem from GC requirements that
179 * we null out taken slots as soon as we can, to maintain as small
180 * a footprint as possible even in programs generating huge
181 * numbers of tasks. To accomplish this, we shift the CAS
182 * arbitrating pop vs poll (steal) from being on the indices
183 * ("base" and "top") to the slots themselves.
184 *
185 * Adding tasks then takes the form of a classic array push(task)
186 * in a circular buffer:
187 * q.array[q.top++ % length] = task;
188 *
189 * (The actual code needs to null-check and size-check the array,
190 * uses masking, not mod, for indexing a power-of-two-sized array,
191 * properly fences accesses, and possibly signals waiting workers
192 * to start scanning -- see below.) Both a successful pop and
193 * poll mainly entail a CAS of a slot from non-null to null.
194 *
195 * The pop operation (always performed by owner) is:
196 * if ((the task at top slot is not null) and
197 * (CAS slot to null))
198 * decrement top and return task;
199 *
200 * And the poll operation (usually by a stealer) is
201 * if ((the task at base slot is not null) and
202 * (CAS slot to null))
203 * increment base and return task;
204 *
205 * There are several variants of each of these. In particular,
206 * almost all uses of poll occur within scan operations that also
207 * interleave contention tracking (with associated code sprawl.)
208 *
209 * Memory ordering. See "Correct and Efficient Work-Stealing for
210 * Weak Memory Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
211 * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
212 * analysis of memory ordering requirements in work-stealing
213 * algorithms similar to (but different than) the one used here.
214 * Extracting tasks in array slots via (fully fenced) CAS provides
215 * primary synchronization. The base and top indices imprecisely
216 * guide where to extract from. We do not always require strict
217 * orderings of array and index updates, so sometimes let them be
218 * subject to compiler and processor reorderings. However, the
219 * volatile "base" index also serves as a basis for memory
220 * ordering: Slot accesses are preceded by a read of base,
221 * ensuring happens-before ordering with respect to stealers (so
222 * the slots themselves can be read via plain array reads.) The
223 * only other memory orderings relied on are maintained in the
224 * course of signalling and activation (see below). A check that
225 * base == top indicates (momentary) emptiness, but otherwise may
226 * err on the side of possibly making the queue appear nonempty
227 * when a push, pop, or poll have not fully committed, or making
228 * it appear empty when an update of top has not yet been visibly
229 * written. (Method isEmpty() checks the case of a partially
230 * completed removal of the last element.) Because of this, the
231 * poll operation, considered individually, is not wait-free. One
232 * thief cannot successfully continue until another in-progress
233 * one (or, if previously empty, a push) visibly completes.
234 * However, in the aggregate, we ensure at least probabilistic
235 * non-blockingness. If an attempted steal fails, a scanning
236 * thief chooses a different random victim target to try next. So,
237 * in order for one thief to progress, it suffices for any
238 * in-progress poll or new push on any empty queue to
239 * complete.
240 *
241 * This approach also enables support of a user mode in which
242 * local task processing is in FIFO, not LIFO order, simply by
243 * using poll rather than pop. This can be useful in
244 * message-passing frameworks in which tasks are never joined.
245 *
246 * WorkQueues are also used in a similar way for tasks submitted
247 * to the pool. We cannot mix these tasks in the same queues used
248 * by workers. Instead, we randomly associate submission queues
249 * with submitting threads, using a form of hashing. The
250 * ThreadLocalRandom probe value serves as a hash code for
251 * choosing existing queues, and may be randomly repositioned upon
252 * contention with other submitters. In essence, submitters act
253 * like workers except that they are restricted to executing local
254 * tasks that they submitted. Insertion of tasks in shared mode
255 * requires a lock but we use only a simple spinlock (using field
256 * phase), because submitters encountering a busy queue move to a
257 * different position to use or create other queues -- they block
258 * only when creating and registering new queues. Because it is
259 * used only as a spinlock, unlocking requires only a "releasing"
260 * store (using setRelease).
261 *
262 * Management
263 * ==========
264 *
265 * The main throughput advantages of work-stealing stem from
266 * decentralized control -- workers mostly take tasks from
267 * themselves or each other, at rates that can exceed a billion
268 * per second. The pool itself creates, activates (enables
269 * scanning for and running tasks), deactivates, blocks, and
270 * terminates threads, all with minimal central information.
271 * There are only a few properties that we can globally track or
272 * maintain, so we pack them into a small number of variables,
273 * often maintaining atomicity without blocking or locking.
274 * Nearly all essentially atomic control state is held in a few
275 * volatile variables that are by far most often read (not
276 * written) as status and consistency checks. We pack as much
277 * information into them as we can.
278 *
279 * Field "ctl" contains 64 bits holding information needed to
280 * atomically decide to add, enqueue (on an event queue), and
281 * dequeue (and release)-activate workers. To enable this
282 * packing, we restrict maximum parallelism to (1<<15)-1 (which is
283 * far in excess of normal operating range) to allow ids, counts,
284 * and their negations (used for thresholding) to fit into 16bit
285 * subfields.
286 *
287 * Field "mode" holds configuration parameters as well as lifetime
288 * status, atomically and monotonically setting SHUTDOWN, STOP,
289 * and finally TERMINATED bits.
290 *
291 * Field "workQueues" holds references to WorkQueues. It is
292 * updated (only during worker creation and termination) under
293 * lock (using field workerNamePrefix as lock), but is otherwise
294 * concurrently readable, and accessed directly. We also ensure
295 * that uses of the array reference itself never become too stale
296 * in case of resizing. To simplify index-based operations, the
297 * array size is always a power of two, and all readers must
298 * tolerate null slots. Worker queues are at odd indices. Shared
299 * (submission) queues are at even indices, up to a maximum of 64
300 * slots, to limit growth even if array needs to expand to add
301 * more workers. Grouping them together in this way simplifies and
302 * speeds up task scanning.
303 *
304 * All worker thread creation is on-demand, triggered by task
305 * submissions, replacement of terminated workers, and/or
306 * compensation for blocked workers. However, all other support
307 * code is set up to work with other policies. To ensure that we
308 * do not hold on to worker references that would prevent GC, all
309 * accesses to workQueues are via indices into the workQueues
310 * array (which is one source of some of the messy code
311 * constructions here). In essence, the workQueues array serves as
312 * a weak reference mechanism. Thus for example the stack top
313 * subfield of ctl stores indices, not references.
314 *
315 * Queuing Idle Workers. Unlike HPC work-stealing frameworks, we
316 * cannot let workers spin indefinitely scanning for tasks when
317 * none can be found immediately, and we cannot start/resume
318 * workers unless there appear to be tasks available. On the
319 * other hand, we must quickly prod them into action when new
320 * tasks are submitted or generated. In many usages, ramp-up time
321 * is the main limiting factor in overall performance, which is
322 * compounded at program start-up by JIT compilation and
323 * allocation. So we streamline this as much as possible.
324 *
325 * The "ctl" field atomically maintains total worker and
326 * "released" worker counts, plus the head of the available worker
327 * queue (actually stack, represented by the lower 32bit subfield
328 * of ctl). Released workers are those known to be scanning for
329 * and/or running tasks. Unreleased ("available") workers are
330 * recorded in the ctl stack. These workers are made available for
331 * signalling by enqueuing in ctl (see method runWorker). The
332 * "queue" is a form of Treiber stack. This is ideal for
333 * activating threads in most-recently used order, and improves
334 * performance and locality, outweighing the disadvantages of
335 * being prone to contention and inability to release a worker
336 * unless it is topmost on stack. To avoid missed signal problems
337 * inherent in any wait/signal design, available workers rescan
338 * for (and if found run) tasks after enqueuing. Normally their
339 * release status will be updated while doing so, but the released
340 * worker ctl count may underestimate the number of active
341 * threads. (However, it is still possible to determine quiescence
342 * via a validation traversal -- see isQuiescent). After an
343 * unsuccessful rescan, available workers are blocked until
344 * signalled (see signalWork). The top stack state holds the
345 * value of the "phase" field of the worker: its index and status,
346 * plus a version counter that, in addition to the count subfields
347 * (also serving as version stamps) provide protection against
348 * Treiber stack ABA effects.
349 *
350 * Creating workers. To create a worker, we pre-increment counts
351 * (serving as a reservation), and attempt to construct a
352 * ForkJoinWorkerThread via its factory. Upon construction, the
353 * new thread invokes registerWorker, where it constructs a
354 * WorkQueue and is assigned an index in the workQueues array
355 * (expanding the array if necessary). The thread is then started.
356 * Upon any exception across these steps, or null return from
357 * factory, deregisterWorker adjusts counts and records
358 * accordingly. If a null return, the pool continues running with
359 * fewer than the target number workers. If exceptional, the
360 * exception is propagated, generally to some external caller.
361 * Worker index assignment avoids the bias in scanning that would
362 * occur if entries were sequentially packed starting at the front
363 * of the workQueues array. We treat the array as a simple
364 * power-of-two hash table, expanding as needed. The seedIndex
365 * increment ensures no collisions until a resize is needed or a
366 * worker is deregistered and replaced, and thereafter keeps
367 * probability of collision low. We cannot use
368 * ThreadLocalRandom.getProbe() for similar purposes here because
369 * the thread has not started yet, but do so for creating
370 * submission queues for existing external threads (see
371 * externalPush).
372 *
373 * WorkQueue field "phase" is used by both workers and the pool to
374 * manage and track whether a worker is UNSIGNALLED (possibly
375 * blocked waiting for a signal). When a worker is enqueued its
376 * phase field is set. Note that phase field updates lag queue CAS
377 * releases so usage requires care -- seeing a negative phase does
378 * not guarantee that the worker is available. When queued, the
379 * lower 16 bits of scanState must hold its pool index. So we
380 * place the index there upon initialization (see registerWorker)
381 * and otherwise keep it there or restore it when necessary.
382 *
383 * The ctl field also serves as the basis for memory
384 * synchronization surrounding activation. This uses a more
385 * efficient version of a Dekker-like rule that task producers and
386 * consumers sync with each other by both writing/CASing ctl (even
387 * if to its current value). This would be extremely costly. So
388 * we relax it in several ways: (1) Producers only signal when
389 * their queue is empty. Other workers propagate this signal (in
390 * method scan) when they find tasks; to further reduce flailing,
391 * each worker signals only one other per activation. (2) Workers
392 * only enqueue after scanning (see below) and not finding any
393 * tasks. (3) Rather than CASing ctl to its current value in the
394 * common case where no action is required, we reduce write
395 * contention by equivalently prefacing signalWork when called by
396 * an external task producer using a memory access with
397 * full-volatile semantics or a "fullFence".
398 *
399 * Almost always, too many signals are issued. A task producer
400 * cannot in general tell if some existing worker is in the midst
401 * of finishing one task (or already scanning) and ready to take
402 * another without being signalled. So the producer might instead
403 * activate a different worker that does not find any work, and
404 * then inactivates. This scarcely matters in steady-state
405 * computations involving all workers, but can create contention
406 * and bookkeeping bottlenecks during ramp-up, ramp-down, and small
407 * computations involving only a few workers.
408 *
409 * Scanning. Method runWorker performs top-level scanning for
410 * tasks. Each scan traverses and tries to poll from each queue
411 * starting at a random index and circularly stepping. Scans are
412 * not performed in ideal random permutation order, to reduce
413 * cacheline contention. The pseudorandom generator need not have
414 * high-quality statistical properties in the long term, but just
415 * within computations; We use Marsaglia XorShifts (often via
416 * ThreadLocalRandom.nextSecondarySeed), which are cheap and
417 * suffice. Scanning also employs contention reduction: When
418 * scanning workers fail to extract an apparently existing task,
419 * they soon restart at a different pseudorandom index. This
420 * improves throughput when many threads are trying to take tasks
421 * from few queues, which can be common in some usages. Scans do
422 * not otherwise explicitly take into account core affinities,
423 * loads, cache localities, etc, However, they do exploit temporal
424 * locality (which usually approximates these) by preferring to
425 * re-poll (at most #workers times) from the same queue after a
426 * successful poll before trying others.
427 *
428 * Trimming workers. To release resources after periods of lack of
429 * use, a worker starting to wait when the pool is quiescent will
430 * time out and terminate (see method scan) if the pool has
431 * remained quiescent for period given by field keepAlive.
432 *
433 * Shutdown and Termination. A call to shutdownNow invokes
434 * tryTerminate to atomically set a runState bit. The calling
435 * thread, as well as every other worker thereafter terminating,
436 * helps terminate others by cancelling their unprocessed tasks,
437 * and waking them up, doing so repeatedly until stable. Calls to
438 * non-abrupt shutdown() preface this by checking whether
439 * termination should commence by sweeping through queues (until
440 * stable) to ensure lack of in-flight submissions and workers
441 * about to process them before triggering the "STOP" phase of
442 * termination.
443 *
444 * Joining Tasks
445 * =============
446 *
447 * Any of several actions may be taken when one worker is waiting
448 * to join a task stolen (or always held) by another. Because we
449 * are multiplexing many tasks on to a pool of workers, we can't
450 * always just let them block (as in Thread.join). We also cannot
451 * just reassign the joiner's run-time stack with another and
452 * replace it later, which would be a form of "continuation", that
453 * even if possible is not necessarily a good idea since we may
454 * need both an unblocked task and its continuation to progress.
455 * Instead we combine two tactics:
456 *
457 * Helping: Arranging for the joiner to execute some task that it
458 * would be running if the steal had not occurred.
459 *
460 * Compensating: Unless there are already enough live threads,
461 * method tryCompensate() may create or re-activate a spare
462 * thread to compensate for blocked joiners until they unblock.
463 *
464 * A third form (implemented in tryRemoveAndExec) amounts to
465 * helping a hypothetical compensator: If we can readily tell that
466 * a possible action of a compensator is to steal and execute the
467 * task being joined, the joining thread can do so directly,
468 * without the need for a compensation thread.
469 *
470 * The ManagedBlocker extension API can't use helping so relies
471 * only on compensation in method awaitBlocker.
472 *
473 * The algorithm in awaitJoin entails a form of "linear helping".
474 * Each worker records (in field source) the id of the queue from
475 * which it last stole a task. The scan in method awaitJoin uses
476 * these markers to try to find a worker to help (i.e., steal back
477 * a task from and execute it) that could hasten completion of the
478 * actively joined task. Thus, the joiner executes a task that
479 * would be on its own local deque if the to-be-joined task had
480 * not been stolen. This is a conservative variant of the approach
481 * described in Wagner & Calder "Leapfrogging: a portable
482 * technique for implementing efficient futures" SIGPLAN Notices,
483 * 1993 (http://portal.acm.org/citation.cfm?id=155354). It differs
484 * mainly in that we only record queue ids, not full dependency
485 * links. This requires a linear scan of the workQueues array to
486 * locate stealers, but isolates cost to when it is needed, rather
487 * than adding to per-task overhead. Searches can fail to locate
488 * stealers GC stalls and the like delay recording sources.
489 * Further, even when accurately identified, stealers might not
490 * ever produce a task that the joiner can in turn help with. So,
491 * compensation is tried upon failure to find tasks to run.
492 *
493 * Compensation does not by default aim to keep exactly the target
494 * parallelism number of unblocked threads running at any given
495 * time. Some previous versions of this class employed immediate
496 * compensations for any blocked join. However, in practice, the
497 * vast majority of blockages are transient byproducts of GC and
498 * other JVM or OS activities that are made worse by replacement.
499 * Rather than impose arbitrary policies, we allow users to
500 * override the default of only adding threads upon apparent
501 * starvation. The compensation mechanism may also be bounded.
502 * Bounds for the commonPool (see COMMON_MAX_SPARES) better enable
503 * JVMs to cope with programming errors and abuse before running
504 * out of resources to do so.
505 *
506 * Common Pool
507 * ===========
508 *
509 * The static common pool always exists after static
510 * initialization. Since it (or any other created pool) need
511 * never be used, we minimize initial construction overhead and
512 * footprint to the setup of about a dozen fields.
513 *
514 * When external threads submit to the common pool, they can
515 * perform subtask processing (see externalHelpComplete and
516 * related methods) upon joins. This caller-helps policy makes it
517 * sensible to set common pool parallelism level to one (or more)
518 * less than the total number of available cores, or even zero for
519 * pure caller-runs. We do not need to record whether external
520 * submissions are to the common pool -- if not, external help
521 * methods return quickly. These submitters would otherwise be
522 * blocked waiting for completion, so the extra effort (with
523 * liberally sprinkled task status checks) in inapplicable cases
524 * amounts to an odd form of limited spin-wait before blocking in
525 * ForkJoinTask.join.
526 *
527 * As a more appropriate default in managed environments, unless
528 * overridden by system properties, we use workers of subclass
529 * InnocuousForkJoinWorkerThread when there is a SecurityManager
530 * present. These workers have no permissions set, do not belong
531 * to any user-defined ThreadGroup, and erase all ThreadLocals
532 * after executing any top-level task (see
533 * WorkQueue.afterTopLevelExec). The associated mechanics (mainly
534 * in ForkJoinWorkerThread) may be JVM-dependent and must access
535 * particular Thread class fields to achieve this effect.
536 *
537 * Style notes
538 * ===========
539 *
540 * Memory ordering relies mainly on VarHandles. This can be
541 * awkward and ugly, but also reflects the need to control
542 * outcomes across the unusual cases that arise in very racy code
543 * with very few invariants. All fields are read into locals
544 * before use, and null-checked if they are references. This is
545 * usually done in a "C"-like style of listing declarations at the
546 * heads of methods or blocks, and using inline assignments on
547 * first encounter. Nearly all explicit checks lead to
548 * bypass/return, not exception throws, because they may
549 * legitimately arise due to cancellation/revocation during
550 * shutdown.
551 *
552 * There is a lot of representation-level coupling among classes
553 * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
554 * fields of WorkQueue maintain data structures managed by
555 * ForkJoinPool, so are directly accessed. There is little point
556 * trying to reduce this, since any associated future changes in
557 * representations will need to be accompanied by algorithmic
558 * changes anyway. Several methods intrinsically sprawl because
559 * they must accumulate sets of consistent reads of fields held in
560 * local variables. There are also other coding oddities
561 * (including several unnecessary-looking hoisted null checks)
562 * that help some methods perform reasonably even when interpreted
563 * (not compiled).
564 *
565 * The order of declarations in this file is (with a few exceptions):
566 * (1) Static utility functions
567 * (2) Nested (static) classes
568 * (3) Static fields
569 * (4) Fields, along with constants used when unpacking some of them
570 * (5) Internal control methods
571 * (6) Callbacks and other support for ForkJoinTask methods
572 * (7) Exported methods
573 * (8) Static block initializing statics in minimally dependent order
574 */
575
576 // Static utilities
577
578 /**
579 * If there is a security manager, makes sure caller has
580 * permission to modify threads.
581 */
582 private static void checkPermission() {
583 SecurityManager security = System.getSecurityManager();
584 if (security != null)
585 security.checkPermission(modifyThreadPermission);
586 }
587
588 // Nested classes
589
590 /**
591 * Factory for creating new {@link ForkJoinWorkerThread}s.
592 * A {@code ForkJoinWorkerThreadFactory} must be defined and used
593 * for {@code ForkJoinWorkerThread} subclasses that extend base
594 * functionality or initialize threads with different contexts.
595 */
596 public static interface ForkJoinWorkerThreadFactory {
597 /**
598 * Returns a new worker thread operating in the given pool.
599 * Returning null or throwing an exception may result in tasks
600 * never being executed. If this method throws an exception,
601 * it is relayed to the caller of the method (for example
602 * {@code execute}) causing attempted thread creation. If this
603 * method returns null or throws an exception, it is not
604 * retried until the next attempted creation (for example
605 * another call to {@code execute}).
606 *
607 * @param pool the pool this thread works in
608 * @return the new worker thread, or {@code null} if the request
609 * to create a thread is rejected.
610 * @throws NullPointerException if the pool is null
611 */
612 public ForkJoinWorkerThread newThread(ForkJoinPool pool);
613 }
614
615 /**
616 * Default ForkJoinWorkerThreadFactory implementation; creates a
617 * new ForkJoinWorkerThread.
618 */
619 private static final class DefaultForkJoinWorkerThreadFactory
620 implements ForkJoinWorkerThreadFactory {
621 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
622 return new ForkJoinWorkerThread(pool);
623 }
624 }
625
626 // Constants shared across ForkJoinPool and WorkQueue
627
628 // Bounds
629 static final int SWIDTH = 16; // width of short
630 static final int SMASK = 0xffff; // short bits == max index
631 static final int MAX_CAP = 0x7fff; // max #workers - 1
632 static final int SQMASK = 0x007e; // max 64 (even) slots
633
634 // Masks and units for WorkQueue.phase and ctl sp subfield
635 static final int UNSIGNALLED = 1 << 31; // must be negative
636 static final int SS_SEQ = 1 << 16; // version count
637 static final int QLOCK = 1; // must be 1
638
639 // Mode bits and sentinels, some also used in WorkQueue id and.source fields
640 static final int OWNED = 1; // queue has owner thread
641 static final int FIFO = 1 << 16; // fifo queue or access mode
642 static final int SHUTDOWN = 1 << 18;
643 static final int TERMINATED = 1 << 19;
644 static final int STOP = 1 << 31; // must be negative
645 static final int QUIET = 1 << 30; // not scanning or working
646 static final int DORMANT = QUIET | UNSIGNALLED;
647
648 /**
649 * The maximum number of local polls from the same queue before
650 * checking others. This is a safeguard against infinitely unfair
651 * looping under unbounded user task recursion, and must be larger
652 * than plausible cases of intentional bounded task recursion.
653 */
654 static final int POLL_LIMIT = 1 << 10;
655
656 /**
657 * Queues supporting work-stealing as well as external task
658 * submission. See above for descriptions and algorithms.
659 * Performance on most platforms is very sensitive to placement of
660 * instances of both WorkQueues and their arrays -- we absolutely
661 * do not want multiple WorkQueue instances or multiple queue
662 * arrays sharing cache lines. The @Contended annotation alerts
663 * JVMs to try to keep instances apart.
664 */
665 @jdk.internal.vm.annotation.Contended
666 static final class WorkQueue {
667
668 /**
669 * Capacity of work-stealing queue array upon initialization.
670 * Must be a power of two; at least 4, but should be larger to
671 * reduce or eliminate cacheline sharing among queues.
672 * Currently, it is much larger, as a partial workaround for
673 * the fact that JVMs often place arrays in locations that
674 * share GC bookkeeping (especially cardmarks) such that
675 * per-write accesses encounter serious memory contention.
676 */
677 static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
678
679 /**
680 * Maximum size for queue arrays. Must be a power of two less
681 * than or equal to 1 << (31 - width of array entry) to ensure
682 * lack of wraparound of index calculations, but defined to a
683 * value a bit less than this to help users trap runaway
684 * programs before saturating systems.
685 */
686 static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
687
688 // Instance fields
689 volatile int phase; // versioned, negative: queued, 1: locked
690 int stackPred; // pool stack (ctl) predecessor link
691 int nsteals; // number of steals
692 int id; // index, mode, tag
693 volatile int source; // source queue id, or sentinel
694 volatile int base; // index of next slot for poll
695 int top; // index of next slot for push
696 ForkJoinTask<?>[] array; // the elements (initially unallocated)
697 final ForkJoinPool pool; // the containing pool (may be null)
698 final ForkJoinWorkerThread owner; // owning thread or null if shared
699
700 WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner) {
701 this.pool = pool;
702 this.owner = owner;
703 // Place indices in the center of array (that is not yet allocated)
704 base = top = INITIAL_QUEUE_CAPACITY >>> 1;
705 }
706
707 /**
708 * Returns an exportable index (used by ForkJoinWorkerThread).
709 */
710 final int getPoolIndex() {
711 return (id & 0xffff) >>> 1; // ignore odd/even tag bit
712 }
713
714 /**
715 * Returns the approximate number of tasks in the queue.
716 */
717 final int queueSize() {
718 int n = base - top; // read base first
719 return (n >= 0) ? 0 : -n; // ignore transient negative
720 }
721
722 /**
723 * Provides a more accurate estimate of whether this queue has
724 * any tasks than does queueSize, by checking whether a
725 * near-empty queue has at least one unclaimed task.
726 */
727 final boolean isEmpty() {
728 ForkJoinTask<?>[] a; int n, al, b;
729 return ((n = (b = base) - top) >= 0 || // possibly one task
730 (n == -1 && ((a = array) == null ||
731 (al = a.length) == 0 ||
732 a[(al - 1) & b] == null)));
733 }
734
735
736 /**
737 * Pushes a task. Call only by owner in unshared queues.
738 *
739 * @param task the task. Caller must ensure non-null.
740 * @throws RejectedExecutionException if array cannot be resized
741 */
742 final void push(ForkJoinTask<?> task) {
743 int s = top; ForkJoinTask<?>[] a; int al, d;
744 if ((a = array) != null && (al = a.length) > 0) {
745 int index = (al - 1) & s;
746 ForkJoinPool p = pool;
747 top = s + 1;
748 QA.setRelease(a, index, task);
749 if ((d = base - s) == 0 && p != null) {
750 VarHandle.fullFence();
751 p.signalWork();
752 }
753 else if (d + al == 1)
754 growArray();
755 }
756 }
757
758 /**
759 * Initializes or doubles the capacity of array. Call either
760 * by owner or with lock held -- it is OK for base, but not
761 * top, to move while resizings are in progress.
762 */
763 final ForkJoinTask<?>[] growArray() {
764 ForkJoinTask<?>[] oldA = array;
765 int oldSize = oldA != null ? oldA.length : 0;
766 int size = oldSize > 0 ? oldSize << 1 : INITIAL_QUEUE_CAPACITY;
767 if (size < INITIAL_QUEUE_CAPACITY || size > MAXIMUM_QUEUE_CAPACITY)
768 throw new RejectedExecutionException("Queue capacity exceeded");
769 int oldMask, t, b;
770 ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
771 if (oldA != null && (oldMask = oldSize - 1) > 0 &&
772 (t = top) - (b = base) > 0) {
773 int mask = size - 1;
774 do { // emulate poll from old array, push to new array
775 int index = b & oldMask;
776 ForkJoinTask<?> x = (ForkJoinTask<?>)
777 QA.getAcquire(oldA, index);
778 if (x != null &&
779 QA.compareAndSet(oldA, index, x, null))
780 a[b & mask] = x;
781 } while (++b != t);
782 VarHandle.releaseFence();
783 }
784 return a;
785 }
786
787 /**
788 * Takes next task, if one exists, in LIFO order. Call only
789 * by owner in unshared queues.
790 */
791 final ForkJoinTask<?> pop() {
792 int b = base, s = top, al, i; ForkJoinTask<?>[] a;
793 if ((a = array) != null && b != s && (al = a.length) > 0) {
794 int index = (al - 1) & --s;
795 ForkJoinTask<?> t = (ForkJoinTask<?>)
796 QA.get(a, index);
797 if (t != null &&
798 QA.compareAndSet(a, index, t, null)) {
799 top = s;
800 VarHandle.releaseFence();
801 return t;
802 }
803 }
804 return null;
805 }
806
807 /**
808 * Takes next task, if one exists, in FIFO order.
809 */
810 final ForkJoinTask<?> poll() {
811 for (;;) {
812 int b = base, s = top, d, al; ForkJoinTask<?>[] a;
813 if ((a = array) != null && (d = b - s) < 0 &&
814 (al = a.length) > 0) {
815 int index = (al - 1) & b;
816 ForkJoinTask<?> t = (ForkJoinTask<?>)
817 QA.getAcquire(a, index);
818 if (b++ == base) {
819 if (t != null) {
820 if (QA.compareAndSet(a, index, t, null)) {
821 base = b;
822 return t;
823 }
824 }
825 else if (d == -1)
826 break; // now empty
827 }
828 }
829 else
830 break;
831 }
832 return null;
833 }
834
835 /**
836 * Takes next task, if one exists, in order specified by mode.
837 */
838 final ForkJoinTask<?> nextLocalTask() {
839 return ((id & FIFO) != 0) ? poll() : pop();
840 }
841
842 /**
843 * Returns next task, if one exists, in order specified by mode.
844 */
845 final ForkJoinTask<?> peek() {
846 int al; ForkJoinTask<?>[] a;
847 return ((a = array) != null && (al = a.length) > 0) ?
848 a[(al - 1) &
849 ((id & FIFO) != 0 ? base : top - 1)] : null;
850 }
851
852 /**
853 * Pops the given task only if it is at the current top.
854 */
855 final boolean tryUnpush(ForkJoinTask<?> task) {
856 int b = base, s = top, al; ForkJoinTask<?>[] a;
857 if ((a = array) != null && b != s && (al = a.length) > 0) {
858 int index = (al - 1) & --s;
859 if (QA.compareAndSet(a, index, task, null)) {
860 top = s;
861 VarHandle.releaseFence();
862 return true;
863 }
864 }
865 return false;
866 }
867
868 /**
869 * Removes and cancels all known tasks, ignoring any exceptions.
870 */
871 final void cancelAll() {
872 for (ForkJoinTask<?> t; (t = poll()) != null; )
873 ForkJoinTask.cancelIgnoringExceptions(t);
874 }
875
876 // Specialized execution methods
877
878 /**
879 * Pops and executes up to limit consecutive tasks or until empty.
880 *
881 * @param limit max runs, or zero for no limit
882 */
883 final void localPopAndExec(int limit) {
884 for (;;) {
885 int b = base, s = top, al; ForkJoinTask<?>[] a;
886 if ((a = array) != null && b != s && (al = a.length) > 0) {
887 int index = (al - 1) & --s;
888 ForkJoinTask<?> t = (ForkJoinTask<?>)
889 QA.getAndSet(a, index, null);
890 if (t != null) {
891 top = s;
892 VarHandle.releaseFence();
893 t.doExec();
894 if (limit != 0 && --limit == 0)
895 break;
896 }
897 else
898 break;
899 }
900 else
901 break;
902 }
903 }
904
905 /**
906 * Polls and executes up to limit consecutive tasks or until empty.
907 *
908 * @param limit, or zero for no limit
909 */
910 final void localPollAndExec(int limit) {
911 for (int polls = 0;;) {
912 int b = base, s = top, d, al; ForkJoinTask<?>[] a;
913 if ((a = array) != null && (d = b - s) < 0 &&
914 (al = a.length) > 0) {
915 int index = (al - 1) & b++;
916 ForkJoinTask<?> t = (ForkJoinTask<?>)
917 QA.getAndSet(a, index, null);
918 if (t != null) {
919 base = b;
920 t.doExec();
921 if (limit != 0 && ++polls == limit)
922 break;
923 }
924 else if (d == -1)
925 break; // now empty
926 else
927 polls = 0; // stolen; reset
928 }
929 else
930 break;
931 }
932 }
933
934 /**
935 * If present, removes task from queue and executes it.
936 */
937 final void tryRemoveAndExec(ForkJoinTask<?> task) {
938 ForkJoinTask<?>[] wa; int s, wal;
939 if (base - (s = top) < 0 && // traverse from top
940 (wa = array) != null && (wal = wa.length) > 0) {
941 for (int m = wal - 1, ns = s - 1, i = ns; ; --i) {
942 int index = i & m;
943 ForkJoinTask<?> t = (ForkJoinTask<?>)
944 QA.get(wa, index);
945 if (t == null)
946 break;
947 else if (t == task) {
948 if (QA.compareAndSet(wa, index, t, null)) {
949 top = ns; // safely shift down
950 for (int j = i; j != ns; ++j) {
951 ForkJoinTask<?> f;
952 int pindex = (j + 1) & m;
953 f = (ForkJoinTask<?>)QA.get(wa, pindex);
954 QA.setVolatile(wa, pindex, null);
955 int jindex = j & m;
956 QA.setRelease(wa, jindex, f);
957 }
958 VarHandle.releaseFence();
959 t.doExec();
960 }
961 break;
962 }
963 }
964 }
965 }
966
967 /**
968 * Tries to steal and run tasks within the target's
969 * computation until done, not found, or limit exceeded.
970 *
971 * @param task root of CountedCompleter computation
972 * @param limit max runs, or zero for no limit
973 * @return task status on exit
974 */
975 final int localHelpCC(CountedCompleter<?> task, int limit) {
976 int status = 0;
977 if (task != null && (status = task.status) >= 0) {
978 for (;;) {
979 boolean help = false;
980 int b = base, s = top, al; ForkJoinTask<?>[] a;
981 if ((a = array) != null && b != s && (al = a.length) > 0) {
982 int index = (al - 1) & (s - 1);
983 ForkJoinTask<?> o = (ForkJoinTask<?>)
984 QA.get(a, index);
985 if (o instanceof CountedCompleter) {
986 CountedCompleter<?> t = (CountedCompleter<?>)o;
987 for (CountedCompleter<?> f = t;;) {
988 if (f != task) {
989 if ((f = f.completer) == null) // try parent
990 break;
991 }
992 else {
993 if (QA.compareAndSet(a, index, t, null)) {
994 top = s - 1;
995 VarHandle.releaseFence();
996 t.doExec();
997 help = true;
998 }
999 break;
1000 }
1001 }
1002 }
1003 }
1004 if ((status = task.status) < 0 || !help ||
1005 (limit != 0 && --limit == 0))
1006 break;
1007 }
1008 }
1009 return status;
1010 }
1011
1012 // Operations on shared queues
1013
1014 /**
1015 * Tries to lock shared queue by CASing phase field.
1016 */
1017 final boolean tryLockSharedQueue() {
1018 return PHASE.compareAndSet(this, 0, QLOCK);
1019 }
1020
1021 /**
1022 * Shared version of tryUnpush.
1023 */
1024 final boolean trySharedUnpush(ForkJoinTask<?> task) {
1025 boolean popped = false;
1026 int s = top - 1, al; ForkJoinTask<?>[] a;
1027 if ((a = array) != null && (al = a.length) > 0) {
1028 int index = (al - 1) & s;
1029 ForkJoinTask<?> t = (ForkJoinTask<?>) QA.get(a, index);
1030 if (t == task &&
1031 PHASE.compareAndSet(this, 0, QLOCK)) {
1032 if (top == s + 1 && array == a &&
1033 QA.compareAndSet(a, index, task, null)) {
1034 popped = true;
1035 top = s;
1036 }
1037 PHASE.setRelease(this, 0);
1038 }
1039 }
1040 return popped;
1041 }
1042
1043 /**
1044 * Shared version of localHelpCC.
1045 */
1046 final int sharedHelpCC(CountedCompleter<?> task, int limit) {
1047 int status = 0;
1048 if (task != null && (status = task.status) >= 0) {
1049 for (;;) {
1050 boolean help = false;
1051 int b = base, s = top, al; ForkJoinTask<?>[] a;
1052 if ((a = array) != null && b != s && (al = a.length) > 0) {
1053 int index = (al - 1) & (s - 1);
1054 ForkJoinTask<?> o = (ForkJoinTask<?>)
1055 QA.get(a, index);
1056 if (o instanceof CountedCompleter) {
1057 CountedCompleter<?> t = (CountedCompleter<?>)o;
1058 for (CountedCompleter<?> f = t;;) {
1059 if (f != task) {
1060 if ((f = f.completer) == null)
1061 break;
1062 }
1063 else {
1064 if (PHASE.compareAndSet(this, 0, QLOCK)) {
1065 if (top == s && array == a &&
1066 QA.compareAndSet(a, index, t, null)) {
1067 help = true;
1068 top = s - 1;
1069 }
1070 PHASE.setRelease(this, 0);
1071 if (help)
1072 t.doExec();
1073 }
1074 break;
1075 }
1076 }
1077 }
1078 }
1079 if ((status = task.status) < 0 || !help ||
1080 (limit != 0 && --limit == 0))
1081 break;
1082 }
1083 }
1084 return status;
1085 }
1086
1087 /**
1088 * Returns true if owned and not known to be blocked.
1089 */
1090 final boolean isApparentlyUnblocked() {
1091 Thread wt; Thread.State s;
1092 return ((wt = owner) != null &&
1093 (s = wt.getState()) != Thread.State.BLOCKED &&
1094 s != Thread.State.WAITING &&
1095 s != Thread.State.TIMED_WAITING);
1096 }
1097
1098 // VarHandle mechanics.
1099 private static final VarHandle PHASE;
1100 static {
1101 try {
1102 MethodHandles.Lookup l = MethodHandles.lookup();
1103 PHASE = l.findVarHandle(WorkQueue.class, "phase", int.class);
1104 } catch (ReflectiveOperationException e) {
1105 throw new Error(e);
1106 }
1107 }
1108 }
1109
1110 // static fields (initialized in static initializer below)
1111
1112 /**
1113 * Creates a new ForkJoinWorkerThread. This factory is used unless
1114 * overridden in ForkJoinPool constructors.
1115 */
1116 public static final ForkJoinWorkerThreadFactory
1117 defaultForkJoinWorkerThreadFactory;
1118
1119 /**
1120 * Permission required for callers of methods that may start or
1121 * kill threads.
1122 */
1123 static final RuntimePermission modifyThreadPermission;
1124
1125 /**
1126 * Common (static) pool. Non-null for public use unless a static
1127 * construction exception, but internal usages null-check on use
1128 * to paranoically avoid potential initialization circularities
1129 * as well as to simplify generated code.
1130 */
1131 static final ForkJoinPool common;
1132
1133 /**
1134 * Common pool parallelism. To allow simpler use and management
1135 * when common pool threads are disabled, we allow the underlying
1136 * common.parallelism field to be zero, but in that case still report
1137 * parallelism as 1 to reflect resulting caller-runs mechanics.
1138 */
1139 static final int COMMON_PARALLELISM;
1140
1141 /**
1142 * Limit on spare thread construction in tryCompensate.
1143 */
1144 private static final int COMMON_MAX_SPARES;
1145
1146 /**
1147 * Sequence number for creating workerNamePrefix.
1148 */
1149 private static int poolNumberSequence;
1150
1151 /**
1152 * Returns the next sequence number. We don't expect this to
1153 * ever contend, so use simple builtin sync.
1154 */
1155 private static final synchronized int nextPoolId() {
1156 return ++poolNumberSequence;
1157 }
1158
1159 // static configuration constants
1160
1161 /**
1162 * Default idle timeout value (in milliseconds) for the thread
1163 * triggering quiescence to park waiting for new work
1164 */
1165 private static final long DEFAULT_KEEPALIVE = 60_000L;
1166
1167 /**
1168 * Undershoot tolerance for idle timeouts
1169 */
1170 private static final long TIMEOUT_SLOP = 20L;
1171
1172 /**
1173 * The default value for COMMON_MAX_SPARES. Overridable using the
1174 * "java.util.concurrent.ForkJoinPool.common.maximumSpares" system
1175 * property. The default value is far in excess of normal
1176 * requirements, but also far short of MAX_CAP and typical OS
1177 * thread limits, so allows JVMs to catch misuse/abuse before
1178 * running out of resources needed to do so.
1179 */
1180 private static final int DEFAULT_COMMON_MAX_SPARES = 256;
1181
1182 /**
1183 * Increment for seed generators. See class ThreadLocal for
1184 * explanation.
1185 */
1186 private static final int SEED_INCREMENT = 0x9e3779b9;
1187
1188 /*
1189 * Bits and masks for field ctl, packed with 4 16 bit subfields:
1190 * RC: Number of released (unqueued) workers minus target parallelism
1191 * TC: Number of total workers minus target parallelism
1192 * SS: version count and status of top waiting thread
1193 * ID: poolIndex of top of Treiber stack of waiters
1194 *
1195 * When convenient, we can extract the lower 32 stack top bits
1196 * (including version bits) as sp=(int)ctl. The offsets of counts
1197 * by the target parallelism and the positionings of fields makes
1198 * it possible to perform the most common checks via sign tests of
1199 * fields: When ac is negative, there are not enough unqueued
1200 * workers, when tc is negative, there are not enough total
1201 * workers. When sp is non-zero, there are waiting workers. To
1202 * deal with possibly negative fields, we use casts in and out of
1203 * "short" and/or signed shifts to maintain signedness.
1204 *
1205 * Because it occupies uppermost bits, we can add one release count
1206 * using getAndAddLong of RC_UNIT, rather than CAS, when returning
1207 * from a blocked join. Other updates entail multiple subfields
1208 * and masking, requiring CAS.
1209 *
1210 * The limits packed in field "bounds" are also offset by the
1211 * parallelism level to make them comparable to the ctl rc and tc
1212 * fields.
1213 */
1214
1215 // Lower and upper word masks
1216 private static final long SP_MASK = 0xffffffffL;
1217 private static final long UC_MASK = ~SP_MASK;
1218
1219 // Release counts
1220 private static final int RC_SHIFT = 48;
1221 private static final long RC_UNIT = 0x0001L << RC_SHIFT;
1222 private static final long RC_MASK = 0xffffL << RC_SHIFT;
1223
1224 // Total counts
1225 private static final int TC_SHIFT = 32;
1226 private static final long TC_UNIT = 0x0001L << TC_SHIFT;
1227 private static final long TC_MASK = 0xffffL << TC_SHIFT;
1228 private static final long ADD_WORKER = 0x0001L << (TC_SHIFT + 15); // sign
1229
1230 // Instance fields
1231
1232 volatile long stealCount; // collects worker nsteals
1233 final long keepAlive; // milliseconds before dropping if idle
1234 int indexSeed; // next worker index
1235 final int bounds; // min, max threads packed as shorts
1236 volatile int mode; // parallelism, runstate, queue mode
1237 WorkQueue[] workQueues; // main registry
1238 final String workerNamePrefix; // for worker thread string; sync lock
1239 final ForkJoinWorkerThreadFactory factory;
1240 final UncaughtExceptionHandler ueh; // per-worker UEH
1241 final Predicate<? super ForkJoinPool> saturate;
1242
1243 @jdk.internal.vm.annotation.Contended("fjpctl") // segregate
1244 volatile long ctl; // main pool control
1245
1246 // Creating, registering and deregistering workers
1247
1248 /**
1249 * Tries to construct and start one worker. Assumes that total
1250 * count has already been incremented as a reservation. Invokes
1251 * deregisterWorker on any failure.
1252 *
1253 * @return true if successful
1254 */
1255 private boolean createWorker() {
1256 ForkJoinWorkerThreadFactory fac = factory;
1257 Throwable ex = null;
1258 ForkJoinWorkerThread wt = null;
1259 try {
1260 if (fac != null && (wt = fac.newThread(this)) != null) {
1261 wt.start();
1262 return true;
1263 }
1264 } catch (Throwable rex) {
1265 ex = rex;
1266 }
1267 deregisterWorker(wt, ex);
1268 return false;
1269 }
1270
1271 /**
1272 * Tries to add one worker, incrementing ctl counts before doing
1273 * so, relying on createWorker to back out on failure.
1274 *
1275 * @param c incoming ctl value, with total count negative and no
1276 * idle workers. On CAS failure, c is refreshed and retried if
1277 * this holds (otherwise, a new worker is not needed).
1278 */
1279 private void tryAddWorker(long c) {
1280 do {
1281 long nc = ((RC_MASK & (c + RC_UNIT)) |
1282 (TC_MASK & (c + TC_UNIT)));
1283 if (ctl == c && CTL.compareAndSet(this, c, nc)) {
1284 createWorker();
1285 break;
1286 }
1287 } while (((c = ctl) & ADD_WORKER) != 0L && (int)c == 0);
1288 }
1289
1290 /**
1291 * Callback from ForkJoinWorkerThread constructor to establish and
1292 * record its WorkQueue.
1293 *
1294 * @param wt the worker thread
1295 * @return the worker's queue
1296 */
1297 final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1298 UncaughtExceptionHandler handler;
1299 wt.setDaemon(true); // configure thread
1300 if ((handler = ueh) != null)
1301 wt.setUncaughtExceptionHandler(handler);
1302 WorkQueue w = new WorkQueue(this, wt);
1303 int tid = 0; // for thread name
1304 int fifo = mode & FIFO;
1305 String prefix = workerNamePrefix;
1306 if (prefix != null) {
1307 synchronized (prefix) {
1308 WorkQueue[] ws = workQueues; int n;
1309 int s = indexSeed += SEED_INCREMENT;
1310 if (ws != null && (n = ws.length) > 1) {
1311 int m = n - 1;
1312 tid = s & m;
1313 int i = m & ((s << 1) | 1); // odd-numbered indices
1314 for (int probes = n >>> 1;;) { // find empty slot
1315 WorkQueue q;
1316 if ((q = ws[i]) == null || q.phase == QUIET)
1317 break;
1318 else if (--probes == 0) {
1319 i = n | 1; // resize below
1320 break;
1321 }
1322 else
1323 i = (i + 2) & m;
1324 }
1325
1326 int id = i | fifo | (s & ~(SMASK | FIFO | DORMANT));
1327 w.phase = w.id = id; // now publishable
1328
1329 if (i < n)
1330 ws[i] = w;
1331 else { // expand array
1332 int an = n << 1;
1333 WorkQueue[] as = new WorkQueue[an];
1334 as[i] = w;
1335 int am = an - 1;
1336 for (int j = 0; j < n; ++j) {
1337 WorkQueue v; // copy external queue
1338 if ((v = ws[j]) != null) // position may change
1339 as[v.id & am & SQMASK] = v;
1340 if (++j >= n)
1341 break;
1342 as[j] = ws[j]; // copy worker
1343 }
1344 workQueues = as;
1345 }
1346 }
1347 }
1348 wt.setName(prefix.concat(Integer.toString(tid)));
1349 }
1350 return w;
1351 }
1352
1353 /**
1354 * Final callback from terminating worker, as well as upon failure
1355 * to construct or start a worker. Removes record of worker from
1356 * array, and adjusts counts. If pool is shutting down, tries to
1357 * complete termination.
1358 *
1359 * @param wt the worker thread, or null if construction failed
1360 * @param ex the exception causing failure, or null if none
1361 */
1362 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1363 WorkQueue w = null;
1364 int phase = 0;
1365 if (wt != null && (w = wt.workQueue) != null) {
1366 Object lock = workerNamePrefix;
1367 long ns = (long)w.nsteals & 0xffffffffL;
1368 int idx = w.id & SMASK;
1369 if (lock != null) {
1370 WorkQueue[] ws; // remove index from array
1371 synchronized (lock) {
1372 if ((ws = workQueues) != null && ws.length > idx &&
1373 ws[idx] == w)
1374 ws[idx] = null;
1375 stealCount += ns;
1376 }
1377 }
1378 phase = w.phase;
1379 }
1380 if (phase != QUIET) { // else pre-adjusted
1381 long c; // decrement counts
1382 do {} while (!CTL.weakCompareAndSet
1383 (this, c = ctl, ((RC_MASK & (c - RC_UNIT)) |
1384 (TC_MASK & (c - TC_UNIT)) |
1385 (SP_MASK & c))));
1386 }
1387 if (w != null)
1388 w.cancelAll(); // cancel remaining tasks
1389
1390 if (!tryTerminate(false, false) && // possibly replace worker
1391 w != null && w.array != null) // avoid repeated failures
1392 signalWork();
1393
1394 if (ex == null) // help clean on way out
1395 ForkJoinTask.helpExpungeStaleExceptions();
1396 else // rethrow
1397 ForkJoinTask.rethrow(ex);
1398 }
1399
1400 /**
1401 * Tries to create or release a worker if too few are running.
1402 */
1403 final void signalWork() {
1404 for (;;) {
1405 long c; int sp; WorkQueue[] ws; int i; WorkQueue v;
1406 if ((c = ctl) >= 0L) // enough workers
1407 break;
1408 else if ((sp = (int)c) == 0) { // no idle workers
1409 if ((c & ADD_WORKER) != 0L) // too few workers
1410 tryAddWorker(c);
1411 break;
1412 }
1413 else if ((ws = workQueues) == null)
1414 break; // unstarted/terminated
1415 else if (ws.length <= (i = sp & SMASK))
1416 break; // terminated
1417 else if ((v = ws[i]) == null)
1418 break; // terminating
1419 else {
1420 int np = sp & ~UNSIGNALLED;
1421 int vp = v.phase;
1422 long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + RC_UNIT));
1423 Thread vt = v.owner;
1424 if (sp == vp && CTL.compareAndSet(this, c, nc)) {
1425 v.phase = np;
1426 if (v.source < 0)
1427 LockSupport.unpark(vt);
1428 break;
1429 }
1430 }
1431 }
1432 }
1433
1434 /**
1435 * Tries to decrement counts (sometimes implicitly) and possibly
1436 * arrange for a compensating worker in preparation for blocking:
1437 * If not all core workers yet exist, creates one, else if any are
1438 * unreleased (possibly including caller) releases one, else if
1439 * fewer than the minimum allowed number of workers running,
1440 * checks to see that they are all active, and if so creates an
1441 * extra worker unless over maximum limit and policy is to
1442 * saturate. Most of these steps can fail due to interference, in
1443 * which case 0 is returned so caller will retry. A negative
1444 * return value indicates that the caller doesn't need to
1445 * re-adjust counts when later unblocked.
1446 *
1447 * @return 1: block then adjust, -1: block without adjust, 0 : retry
1448 */
1449 private int tryCompensate(WorkQueue w) {
1450 int t, n, sp;
1451 long c = ctl;
1452 WorkQueue[] ws = workQueues;
1453 if ((t = (short)(c >>> TC_SHIFT)) >= 0) {
1454 if (ws == null || (n = ws.length) <= 0 || w == null)
1455 return 0; // disabled
1456 else if ((sp = (int)c) != 0) { // replace or release
1457 WorkQueue v = ws[sp & (n - 1)];
1458 int wp = w.phase;
1459 long uc = UC_MASK & ((wp < 0) ? c + RC_UNIT : c);
1460 int np = sp & ~UNSIGNALLED;
1461 if (v != null) {
1462 int vp = v.phase;
1463 Thread vt = v.owner;
1464 long nc = ((long)v.stackPred & SP_MASK) | uc;
1465 if (vp == sp && CTL.compareAndSet(this, c, nc)) {
1466 v.phase = np;
1467 if (v.source < 0)
1468 LockSupport.unpark(vt);
1469 return (wp < 0) ? -1 : 1;
1470 }
1471 }
1472 return 0;
1473 }
1474 else if ((int)(c >> RC_SHIFT) - // reduce parallelism
1475 (short)(bounds & SMASK) > 0) {
1476 long nc = ((RC_MASK & (c - RC_UNIT)) | (~RC_MASK & c));
1477 return CTL.compareAndSet(this, c, nc) ? 1 : 0;
1478 }
1479 else { // validate
1480 int md = mode, pc = md & SMASK, tc = pc + t, bc = 0;
1481 boolean unstable = false;
1482 for (int i = 1; i < n; i += 2) {
1483 WorkQueue q; Thread wt; Thread.State ts;
1484 if ((q = ws[i]) != null) {
1485 if (q.source == 0) {
1486 unstable = true;
1487 break;
1488 }
1489 else {
1490 --tc;
1491 if ((wt = q.owner) != null &&
1492 ((ts = wt.getState()) == Thread.State.BLOCKED ||
1493 ts == Thread.State.WAITING))
1494 ++bc; // worker is blocking
1495 }
1496 }
1497 }
1498 if (unstable || tc != 0 || ctl != c)
1499 return 0; // inconsistent
1500 else if (t + pc >= MAX_CAP || t >= (bounds >>> SWIDTH)) {
1501 Predicate<? super ForkJoinPool> sat;
1502 if ((sat = saturate) != null && sat.test(this))
1503 return -1;
1504 else if (bc < pc) { // lagging
1505 Thread.yield(); // for retry spins
1506 return 0;
1507 }
1508 else
1509 throw new RejectedExecutionException(
1510 "Thread limit exceeded replacing blocked worker");
1511 }
1512 }
1513 }
1514
1515 long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK); // expand pool
1516 return CTL.compareAndSet(this, c, nc) && createWorker() ? 1 : 0;
1517 }
1518
1519 /**
1520 * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1521 * See above for explanation.
1522 */
1523 final void runWorker(WorkQueue w) {
1524 WorkQueue[] ws;
1525 w.growArray(); // allocate queue
1526 int r = w.id ^ ThreadLocalRandom.nextSecondarySeed();
1527 if (r == 0) // initial nonzero seed
1528 r = 1;
1529 int lastSignalId = 0; // avoid unneeded signals
1530 while ((ws = workQueues) != null) {
1531 boolean nonempty = false; // scan
1532 for (int n = ws.length, j = n, m = n - 1; j > 0; --j) {
1533 WorkQueue q; int i, b, al; ForkJoinTask<?>[] a;
1534 if ((i = r & m) >= 0 && i < n && // always true
1535 (q = ws[i]) != null && (b = q.base) - q.top < 0 &&
1536 (a = q.array) != null && (al = a.length) > 0) {
1537 int qid = q.id; // (never zero)
1538 int index = (al - 1) & b;
1539 ForkJoinTask<?> t = (ForkJoinTask<?>)
1540 QA.getAcquire(a, index);
1541 if (t != null && b++ == q.base &&
1542 QA.compareAndSet(a, index, t, null)) {
1543 if ((q.base = b) - q.top < 0 && qid != lastSignalId)
1544 signalWork(); // propagate signal
1545 w.source = lastSignalId = qid;
1546 t.doExec();
1547 if ((w.id & FIFO) != 0) // run remaining locals
1548 w.localPollAndExec(POLL_LIMIT);
1549 else
1550 w.localPopAndExec(POLL_LIMIT);
1551 ForkJoinWorkerThread thread = w.owner;
1552 ++w.nsteals;
1553 w.source = 0; // now idle
1554 if (thread != null)
1555 thread.afterTopLevelExec();
1556 }
1557 nonempty = true;
1558 }
1559 else if (nonempty)
1560 break;
1561 else
1562 ++r;
1563 }
1564
1565 if (nonempty) { // move (xorshift)
1566 r ^= r << 13; r ^= r >>> 17; r ^= r << 5;
1567 }
1568 else {
1569 int phase;
1570 lastSignalId = 0; // clear for next scan
1571 if ((phase = w.phase) >= 0) { // enqueue
1572 int np = w.phase = (phase + SS_SEQ) | UNSIGNALLED;
1573 long c, nc;
1574 do {
1575 w.stackPred = (int)(c = ctl);
1576 nc = ((c - RC_UNIT) & UC_MASK) | (SP_MASK & np);
1577 } while (!CTL.weakCompareAndSet(this, c, nc));
1578 }
1579 else { // already queued
1580 int pred = w.stackPred;
1581 w.source = DORMANT; // enable signal
1582 for (int steps = 0;;) {
1583 int md, rc; long c;
1584 if (w.phase >= 0) {
1585 w.source = 0;
1586 break;
1587 }
1588 else if ((md = mode) < 0) // shutting down
1589 return;
1590 else if ((rc = ((md & SMASK) + // possibly quiescent
1591 (int)((c = ctl) >> RC_SHIFT))) <= 0 &&
1592 (md & SHUTDOWN) != 0 &&
1593 tryTerminate(false, false))
1594 return; // help terminate
1595 else if ((++steps & 1) == 0)
1596 Thread.interrupted(); // clear between parks
1597 else if (rc <= 0 && pred != 0 && phase == (int)c) {
1598 long d = keepAlive + System.currentTimeMillis();
1599 LockSupport.parkUntil(this, d);
1600 if (ctl == c &&
1601 d - System.currentTimeMillis() <= TIMEOUT_SLOP) {
1602 long nc = ((UC_MASK & (c - TC_UNIT)) |
1603 (SP_MASK & pred));
1604 if (CTL.compareAndSet(this, c, nc)) {
1605 w.phase = QUIET;
1606 return; // drop on timeout
1607 }
1608 }
1609 }
1610 else
1611 LockSupport.park(this);
1612 }
1613 }
1614 }
1615 }
1616 }
1617
1618 /**
1619 * Helps and/or blocks until the given task is done or timeout.
1620 * First tries locally helping, then scans other queues for a task
1621 * produced by one of w's stealers; compensating and blocking if
1622 * none are found (rescanning if tryCompensate fails).
1623 *
1624 * @param w caller
1625 * @param task the task
1626 * @param deadline for timed waits, if nonzero
1627 * @return task status on exit
1628 */
1629 final int awaitJoin(WorkQueue w, ForkJoinTask<?> task, long deadline) {
1630 int s = 0;
1631 if (w != null && task != null &&
1632 (!(task instanceof CountedCompleter) ||
1633 (s = w.localHelpCC((CountedCompleter<?>)task, 0)) >= 0)) {
1634 w.tryRemoveAndExec(task);
1635 int src = w.source, id = w.id;
1636 s = task.status;
1637 while (s >= 0) {
1638 WorkQueue[] ws;
1639 boolean nonempty = false;
1640 int r = ThreadLocalRandom.nextSecondarySeed() | 1; // odd indices
1641 if ((ws = workQueues) != null) { // scan for matching id
1642 for (int n = ws.length, m = n - 1, j = -n; j < n; j += 2) {
1643 WorkQueue q; int i, b, al; ForkJoinTask<?>[] a;
1644 if ((i = (r + j) & m) >= 0 && i < n &&
1645 (q = ws[i]) != null && q.source == id &&
1646 (b = q.base) - q.top < 0 &&
1647 (a = q.array) != null && (al = a.length) > 0) {
1648 int qid = q.id;
1649 int index = (al - 1) & b;
1650 ForkJoinTask<?> t = (ForkJoinTask<?>)
1651 QA.getAcquire(a, index);
1652 if (t != null && b++ == q.base && id == q.source &&
1653 QA.compareAndSet(a, index, t, null)) {
1654 q.base = b;
1655 w.source = qid;
1656 t.doExec();
1657 w.source = src;
1658 }
1659 nonempty = true;
1660 break;
1661 }
1662 }
1663 }
1664 if ((s = task.status) < 0)
1665 break;
1666 else if (!nonempty) {
1667 long ms, ns; int block;
1668 if (deadline == 0L)
1669 ms = 0L; // untimed
1670 else if ((ns = deadline - System.nanoTime()) <= 0L)
1671 break; // timeout
1672 else if ((ms = TimeUnit.NANOSECONDS.toMillis(ns)) <= 0L)
1673 ms = 1L; // avoid 0 for timed wait
1674 if ((block = tryCompensate(w)) != 0) {
1675 task.internalWait(ms);
1676 CTL.getAndAdd(this, (block > 0) ? RC_UNIT : 0L);
1677 }
1678 s = task.status;
1679 }
1680 }
1681 }
1682 return s;
1683 }
1684
1685 /**
1686 * Runs tasks until {@code isQuiescent()}. Rather than blocking
1687 * when tasks cannot be found, rescans until all others cannot
1688 * find tasks either.
1689 */
1690 final void helpQuiescePool(WorkQueue w) {
1691 int prevSrc = w.source, fifo = w.id & FIFO;
1692 for (int source = prevSrc, released = -1;;) { // -1 until known
1693 WorkQueue[] ws;
1694 if (fifo != 0)
1695 w.localPollAndExec(0);
1696 else
1697 w.localPopAndExec(0);
1698 if (released == -1 && w.phase >= 0)
1699 released = 1;
1700 boolean quiet = true, empty = true;
1701 int r = ThreadLocalRandom.nextSecondarySeed();
1702 if ((ws = workQueues) != null) {
1703 for (int n = ws.length, j = n, m = n - 1; j > 0; --j) {
1704 WorkQueue q; int i, b, al; ForkJoinTask<?>[] a;
1705 if ((i = (r - j) & m) >= 0 && i < n && (q = ws[i]) != null) {
1706 if ((b = q.base) - q.top < 0 &&
1707 (a = q.array) != null && (al = a.length) > 0) {
1708 int qid = q.id;
1709 if (released == 0) { // increment
1710 released = 1;
1711 CTL.getAndAdd(this, RC_UNIT);
1712 }
1713 int index = (al - 1) & b;
1714 ForkJoinTask<?> t = (ForkJoinTask<?>)
1715 QA.getAcquire(a, index);
1716 if (t != null && b++ == q.base &&
1717 QA.compareAndSet(a, index, t, null)) {
1718 q.base = b;
1719 w.source = source = q.id;
1720 t.doExec();
1721 w.source = source = prevSrc;
1722 }
1723 quiet = empty = false;
1724 break;
1725 }
1726 else if ((q.source & QUIET) == 0)
1727 quiet = false;
1728 }
1729 }
1730 }
1731 if (quiet) {
1732 if (released == 0)
1733 CTL.getAndAdd(this, RC_UNIT);
1734 w.source = prevSrc;
1735 break;
1736 }
1737 else if (empty) {
1738 if (source != QUIET)
1739 w.source = source = QUIET;
1740 if (released == 1) { // decrement
1741 released = 0;
1742 CTL.getAndAdd(this, RC_MASK & -RC_UNIT);
1743 }
1744 }
1745 }
1746 }
1747
1748 /**
1749 * Scans for and returns a polled task, if available.
1750 * Used only for untracked polls.
1751 *
1752 * @param submissionsOnly if true, only scan submission queues
1753 */
1754 private ForkJoinTask<?> pollScan(boolean submissionsOnly) {
1755 WorkQueue[] ws; int n;
1756 rescan: while ((mode & STOP) == 0 && (ws = workQueues) != null &&
1757 (n = ws.length) > 0) {
1758 int m = n - 1;
1759 int r = ThreadLocalRandom.nextSecondarySeed();
1760 int h = r >>> 16;
1761 int origin, step;
1762 if (submissionsOnly) {
1763 origin = (r & ~1) & m; // even indices and steps
1764 step = (h & ~1) | 2;
1765 }
1766 else {
1767 origin = r & m;
1768 step = h | 1;
1769 }
1770 for (int k = origin, oldSum = 0, checkSum = 0;;) {
1771 WorkQueue q; int b, al; ForkJoinTask<?>[] a;
1772 if ((q = ws[k]) != null) {
1773 checkSum += b = q.base;
1774 if (b - q.top < 0 &&
1775 (a = q.array) != null && (al = a.length) > 0) {
1776 int index = (al - 1) & b;
1777 ForkJoinTask<?> t = (ForkJoinTask<?>)
1778 QA.getAcquire(a, index);
1779 if (t != null && b++ == q.base &&
1780 QA.compareAndSet(a, index, t, null)) {
1781 q.base = b;
1782 return t;
1783 }
1784 else
1785 break; // restart
1786 }
1787 }
1788 if ((k = (k + step) & m) == origin) {
1789 if (oldSum == (oldSum = checkSum))
1790 break rescan;
1791 checkSum = 0;
1792 }
1793 }
1794 }
1795 return null;
1796 }
1797
1798 /**
1799 * Gets and removes a local or stolen task for the given worker.
1800 *
1801 * @return a task, if available
1802 */
1803 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
1804 ForkJoinTask<?> t;
1805 if (w != null &&
1806 (t = (w.id & FIFO) != 0 ? w.poll() : w.pop()) != null)
1807 return t;
1808 else
1809 return pollScan(false);
1810 }
1811
1812 // External operations
1813
1814 /**
1815 * Adds the given task to a submission queue at submitter's
1816 * current queue, creating one if null or contended.
1817 *
1818 * @param task the task. Caller must ensure non-null.
1819 */
1820 final void externalPush(ForkJoinTask<?> task) {
1821 int r; // initialize caller's probe
1822 if ((r = ThreadLocalRandom.getProbe()) == 0) {
1823 ThreadLocalRandom.localInit();
1824 r = ThreadLocalRandom.getProbe();
1825 }
1826 for (;;) {
1827 int md = mode, n;
1828 WorkQueue[] ws = workQueues;
1829 if ((md & SHUTDOWN) != 0 || ws == null || (n = ws.length) <= 0)
1830 throw new RejectedExecutionException();
1831 else {
1832 WorkQueue q;
1833 boolean push = false, grow = false;
1834 if ((q = ws[(n - 1) & r & SQMASK]) == null) {
1835 Object lock = workerNamePrefix;
1836 int qid = (r | QUIET) & ~(FIFO | OWNED);
1837 q = new WorkQueue(this, null);
1838 q.id = qid;
1839 q.source = QUIET;
1840 q.phase = QLOCK; // lock queue
1841 if (lock != null) {
1842 synchronized (lock) { // lock pool to install
1843 int i;
1844 if ((ws = workQueues) != null &&
1845 (n = ws.length) > 0 &&
1846 ws[i = qid & (n - 1) & SQMASK] == null) {
1847 ws[i] = q;
1848 push = grow = true;
1849 }
1850 }
1851 }
1852 }
1853 else if (q.tryLockSharedQueue()) {
1854 int b = q.base, s = q.top, al, d; ForkJoinTask<?>[] a;
1855 if ((a = q.array) != null && (al = a.length) > 0 &&
1856 al - 1 + (d = b - s) > 0) {
1857 a[(al - 1) & s] = task;
1858 q.top = s + 1; // relaxed writes OK here
1859 q.phase = 0;
1860 if (d < 0 && q.base - s < -1)
1861 break; // no signal needed
1862 }
1863 else
1864 grow = true;
1865 push = true;
1866 }
1867 if (push) {
1868 if (grow) {
1869 try {
1870 q.growArray();
1871 int s = q.top, al; ForkJoinTask<?>[] a;
1872 if ((a = q.array) != null && (al = a.length) > 0) {
1873 a[(al - 1) & s] = task;
1874 q.top = s + 1;
1875 }
1876 } finally {
1877 q.phase = 0;
1878 }
1879 }
1880 signalWork();
1881 break;
1882 }
1883 else // move if busy
1884 r = ThreadLocalRandom.advanceProbe(r);
1885 }
1886 }
1887 }
1888
1889 /**
1890 * Pushes a possibly-external submission.
1891 */
1892 private <T> ForkJoinTask<T> externalSubmit(ForkJoinTask<T> task) {
1893 Thread t; ForkJoinWorkerThread w; WorkQueue q;
1894 if (task == null)
1895 throw new NullPointerException();
1896 if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) &&
1897 (w = (ForkJoinWorkerThread)t).pool == this &&
1898 (q = w.workQueue) != null)
1899 q.push(task);
1900 else
1901 externalPush(task);
1902 return task;
1903 }
1904
1905 /**
1906 * Returns common pool queue for an external thread.
1907 */
1908 static WorkQueue commonSubmitterQueue() {
1909 ForkJoinPool p = common;
1910 int r = ThreadLocalRandom.getProbe();
1911 WorkQueue[] ws; int n;
1912 return (p != null && (ws = p.workQueues) != null &&
1913 (n = ws.length) > 0) ?
1914 ws[(n - 1) & r & SQMASK] : null;
1915 }
1916
1917 /**
1918 * Performs tryUnpush for an external submitter.
1919 */
1920 final boolean tryExternalUnpush(ForkJoinTask<?> task) {
1921 int r = ThreadLocalRandom.getProbe();
1922 WorkQueue[] ws; WorkQueue w; int n;
1923 return ((ws = workQueues) != null &&
1924 (n = ws.length) > 0 &&
1925 (w = ws[(n - 1) & r & SQMASK]) != null &&
1926 w.trySharedUnpush(task));
1927 }
1928
1929 /**
1930 * Performs helpComplete for an external submitter.
1931 */
1932 final int externalHelpComplete(CountedCompleter<?> task, int maxTasks) {
1933 int r = ThreadLocalRandom.getProbe();
1934 WorkQueue[] ws; WorkQueue w; int n;
1935 return ((ws = workQueues) != null && (n = ws.length) > 0 &&
1936 (w = ws[(n - 1) & r & SQMASK]) != null) ?
1937 w.sharedHelpCC(task, maxTasks) : 0;
1938 }
1939
1940 /**
1941 * Tries to steal and run tasks within the target's computation.
1942 * The maxTasks argument supports external usages; internal calls
1943 * use zero, allowing unbounded steps (external calls trap
1944 * non-positive values).
1945 *
1946 * @param w caller
1947 * @param maxTasks if non-zero, the maximum number of other tasks to run
1948 * @return task status on exit
1949 */
1950 final int helpComplete(WorkQueue w, CountedCompleter<?> task,
1951 int maxTasks) {
1952 return (w == null) ? 0 : w.localHelpCC(task, maxTasks);
1953 }
1954
1955 /**
1956 * Returns a cheap heuristic guide for task partitioning when
1957 * programmers, frameworks, tools, or languages have little or no
1958 * idea about task granularity. In essence, by offering this
1959 * method, we ask users only about tradeoffs in overhead vs
1960 * expected throughput and its variance, rather than how finely to
1961 * partition tasks.
1962 *
1963 * In a steady state strict (tree-structured) computation, each
1964 * thread makes available for stealing enough tasks for other
1965 * threads to remain active. Inductively, if all threads play by
1966 * the same rules, each thread should make available only a
1967 * constant number of tasks.
1968 *
1969 * The minimum useful constant is just 1. But using a value of 1
1970 * would require immediate replenishment upon each steal to
1971 * maintain enough tasks, which is infeasible. Further,
1972 * partitionings/granularities of offered tasks should minimize
1973 * steal rates, which in general means that threads nearer the top
1974 * of computation tree should generate more than those nearer the
1975 * bottom. In perfect steady state, each thread is at
1976 * approximately the same level of computation tree. However,
1977 * producing extra tasks amortizes the uncertainty of progress and
1978 * diffusion assumptions.
1979 *
1980 * So, users will want to use values larger (but not much larger)
1981 * than 1 to both smooth over transient shortages and hedge
1982 * against uneven progress; as traded off against the cost of
1983 * extra task overhead. We leave the user to pick a threshold
1984 * value to compare with the results of this call to guide
1985 * decisions, but recommend values such as 3.
1986 *
1987 * When all threads are active, it is on average OK to estimate
1988 * surplus strictly locally. In steady-state, if one thread is
1989 * maintaining say 2 surplus tasks, then so are others. So we can
1990 * just use estimated queue length. However, this strategy alone
1991 * leads to serious mis-estimates in some non-steady-state
1992 * conditions (ramp-up, ramp-down, other stalls). We can detect
1993 * many of these by further considering the number of "idle"
1994 * threads, that are known to have zero queued tasks, so
1995 * compensate by a factor of (#idle/#active) threads.
1996 */
1997 static int getSurplusQueuedTaskCount() {
1998 Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
1999 if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) &&
2000 (pool = (wt = (ForkJoinWorkerThread)t).pool) != null &&
2001 (q = wt.workQueue) != null) {
2002 int p = pool.mode & SMASK;
2003 int a = p + (int)(pool.ctl >> RC_SHIFT);
2004 int n = q.top - q.base;
2005 return n - (a > (p >>>= 1) ? 0 :
2006 a > (p >>>= 1) ? 1 :
2007 a > (p >>>= 1) ? 2 :
2008 a > (p >>>= 1) ? 4 :
2009 8);
2010 }
2011 return 0;
2012 }
2013
2014 // Termination
2015
2016 /**
2017 * Possibly initiates and/or completes termination.
2018 *
2019 * @param now if true, unconditionally terminate, else only
2020 * if no work and no active workers
2021 * @param enable if true, terminate when next possible
2022 * @return true if terminating or terminated
2023 */
2024 private boolean tryTerminate(boolean now, boolean enable) {
2025 int md; // 3 phases: try to set SHUTDOWN, then STOP, then TERMINATED
2026
2027 while (((md = mode) & SHUTDOWN) == 0) {
2028 if (!enable || this == common) // cannot shutdown
2029 return false;
2030 else
2031 MODE.compareAndSet(this, md, md | SHUTDOWN);
2032 }
2033
2034 while (((md = mode) & STOP) == 0) { // try to initiate termination
2035 if (!now) { // check if quiescent & empty
2036 for (long oldSum = 0L;;) { // repeat until stable
2037 boolean running = false;
2038 long checkSum = ctl;
2039 WorkQueue[] ws = workQueues;
2040 if ((md & SMASK) + (int)(checkSum >> RC_SHIFT) > 0)
2041 running = true;
2042 else if (ws != null) {
2043 WorkQueue w; int b;
2044 for (int i = 0; i < ws.length; ++i) {
2045 if ((w = ws[i]) != null) {
2046 checkSum += (b = w.base) + w.id;
2047 if (b != w.top ||
2048 ((i & 1) == 1 && w.source >= 0)) {
2049 running = true;
2050 break;
2051 }
2052 }
2053 }
2054 }
2055 if (((md = mode) & STOP) != 0)
2056 break; // already triggered
2057 else if (running)
2058 return false;
2059 else if (workQueues == ws && oldSum == (oldSum = checkSum))
2060 break;
2061 }
2062 }
2063 if ((md & STOP) == 0)
2064 MODE.compareAndSet(this, md, md | STOP);
2065 }
2066
2067 while (((md = mode) & TERMINATED) == 0) { // help terminate others
2068 for (long oldSum = 0L;;) { // repeat until stable
2069 WorkQueue[] ws; WorkQueue w;
2070 long checkSum = ctl;
2071 if ((ws = workQueues) != null) {
2072 for (int i = 0; i < ws.length; ++i) {
2073 if ((w = ws[i]) != null) {
2074 ForkJoinWorkerThread wt = w.owner;
2075 w.cancelAll(); // clear queues
2076 if (wt != null) {
2077 try { // unblock join or park
2078 wt.interrupt();
2079 } catch (Throwable ignore) {
2080 }
2081 }
2082 checkSum += w.base + w.id;
2083 }
2084 }
2085 }
2086 if (((md = mode) & TERMINATED) != 0 ||
2087 (workQueues == ws && oldSum == (oldSum = checkSum)))
2088 break;
2089 }
2090 if ((md & TERMINATED) != 0)
2091 break;
2092 else if ((md & SMASK) + (short)(ctl >>> TC_SHIFT) > 0)
2093 break;
2094 else if (MODE.compareAndSet(this, md, md | TERMINATED)) {
2095 synchronized (this) {
2096 notifyAll(); // for awaitTermination
2097 }
2098 break;
2099 }
2100 }
2101 return true;
2102 }
2103
2104 // Exported methods
2105
2106 // Constructors
2107
2108 /**
2109 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2110 * java.lang.Runtime#availableProcessors}, using defaults for all
2111 * other parameters (see {@link #ForkJoinPool(int,
2112 * ForkJoinWorkerThreadFactory, UncaughtExceptionHandler, boolean,
2113 * int, int, int, Predicate, long, TimeUnit)}).
2114 *
2115 * @throws SecurityException if a security manager exists and
2116 * the caller is not permitted to modify threads
2117 * because it does not hold {@link
2118 * java.lang.RuntimePermission}{@code ("modifyThread")}
2119 */
2120 public ForkJoinPool() {
2121 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2122 defaultForkJoinWorkerThreadFactory, null, false,
2123 0, MAX_CAP, 1, null, DEFAULT_KEEPALIVE, TimeUnit.MILLISECONDS);
2124 }
2125
2126 /**
2127 * Creates a {@code ForkJoinPool} with the indicated parallelism
2128 * level, using defaults for all other parameters (see {@link
2129 * #ForkJoinPool(int, ForkJoinWorkerThreadFactory,
2130 * UncaughtExceptionHandler, boolean, int, int, int, Predicate,
2131 * long, TimeUnit)}).
2132 *
2133 * @param parallelism the parallelism level
2134 * @throws IllegalArgumentException if parallelism less than or
2135 * equal to zero, or greater than implementation limit
2136 * @throws SecurityException if a security manager exists and
2137 * the caller is not permitted to modify threads
2138 * because it does not hold {@link
2139 * java.lang.RuntimePermission}{@code ("modifyThread")}
2140 */
2141 public ForkJoinPool(int parallelism) {
2142 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false,
2143 0, MAX_CAP, 1, null, DEFAULT_KEEPALIVE, TimeUnit.MILLISECONDS);
2144 }
2145
2146 /**
2147 * Creates a {@code ForkJoinPool} with the given parameters (using
2148 * defaults for others -- see {@link #ForkJoinPool(int,
2149 * ForkJoinWorkerThreadFactory, UncaughtExceptionHandler, boolean,
2150 * int, int, int, Predicate, long, TimeUnit)}).
2151 *
2152 * @param parallelism the parallelism level. For default value,
2153 * use {@link java.lang.Runtime#availableProcessors}.
2154 * @param factory the factory for creating new threads. For default value,
2155 * use {@link #defaultForkJoinWorkerThreadFactory}.
2156 * @param handler the handler for internal worker threads that
2157 * terminate due to unrecoverable errors encountered while executing
2158 * tasks. For default value, use {@code null}.
2159 * @param asyncMode if true,
2160 * establishes local first-in-first-out scheduling mode for forked
2161 * tasks that are never joined. This mode may be more appropriate
2162 * than default locally stack-based mode in applications in which
2163 * worker threads only process event-style asynchronous tasks.
2164 * For default value, use {@code false}.
2165 * @throws IllegalArgumentException if parallelism less than or
2166 * equal to zero, or greater than implementation limit
2167 * @throws NullPointerException if the factory is null
2168 * @throws SecurityException if a security manager exists and
2169 * the caller is not permitted to modify threads
2170 * because it does not hold {@link
2171 * java.lang.RuntimePermission}{@code ("modifyThread")}
2172 */
2173 public ForkJoinPool(int parallelism,
2174 ForkJoinWorkerThreadFactory factory,
2175 UncaughtExceptionHandler handler,
2176 boolean asyncMode) {
2177 this(parallelism, factory, handler, asyncMode,
2178 0, MAX_CAP, 1, null, DEFAULT_KEEPALIVE, TimeUnit.MILLISECONDS);
2179 }
2180
2181 /**
2182 * Creates a {@code ForkJoinPool} with the given parameters.
2183 *
2184 * @param parallelism the parallelism level. For default value,
2185 * use {@link java.lang.Runtime#availableProcessors}.
2186 *
2187 * @param factory the factory for creating new threads. For
2188 * default value, use {@link #defaultForkJoinWorkerThreadFactory}.
2189 *
2190 * @param handler the handler for internal worker threads that
2191 * terminate due to unrecoverable errors encountered while
2192 * executing tasks. For default value, use {@code null}.
2193 *
2194 * @param asyncMode if true, establishes local first-in-first-out
2195 * scheduling mode for forked tasks that are never joined. This
2196 * mode may be more appropriate than default locally stack-based
2197 * mode in applications in which worker threads only process
2198 * event-style asynchronous tasks. For default value, use {@code
2199 * false}.
2200 *
2201 * @param corePoolSize the number of threads to keep in the pool
2202 * (unless timed out after an elapsed keep-alive). Normally (and
2203 * by default) this is the same value as the parallelism level,
2204 * but may be set to a larger value to reduce dynamic overhead if
2205 * tasks regularly block. Using a smaller value (for example
2206 * {@code 0}) has the same effect as the default.
2207 *
2208 * @param maximumPoolSize the maximum number of threads allowed.
2209 * When the maximum is reached, attempts to replace blocked
2210 * threads fail. (However, because creation and termination of
2211 * different threads may overlap, and may be managed by the given
2212 * thread factory, this value may be transiently exceeded.) To
2213 * arrange the same value as is used by default for the common
2214 * pool, use {@code 256} plus the {@code parallelism} level. (By
2215 * default, the common pool allows a maximum of 256 spare
2216 * threads.) Using a value (for example {@code
2217 * Integer.MAX_VALUE}) larger than the implementation's total
2218 * thread limit has the same effect as using this limit (which is
2219 * the default).
2220 *
2221 * @param minimumRunnable the minimum allowed number of core
2222 * threads not blocked by a join or {@link ManagedBlocker}. To
2223 * ensure progress, when too few unblocked threads exist and
2224 * unexecuted tasks may exist, new threads are constructed, up to
2225 * the given maximumPoolSize. For the default value, use {@code
2226 * 1}, that ensures liveness. A larger value might improve
2227 * throughput in the presence of blocked activities, but might
2228 * not, due to increased overhead. A value of zero may be
2229 * acceptable when submitted tasks cannot have dependencies
2230 * requiring additional threads.
2231 *
2232 * @param saturate if non-null, a predicate invoked upon attempts
2233 * to create more than the maximum total allowed threads. By
2234 * default, when a thread is about to block on a join or {@link
2235 * ManagedBlocker}, but cannot be replaced because the
2236 * maximumPoolSize would be exceeded, a {@link
2237 * RejectedExecutionException} is thrown. But if this predicate
2238 * returns {@code true}, then no exception is thrown, so the pool
2239 * continues to operate with fewer than the target number of
2240 * runnable threads, which might not ensure progress.
2241 *
2242 * @param keepAliveTime the elapsed time since last use before
2243 * a thread is terminated (and then later replaced if needed).
2244 * For the default value, use {@code 60, TimeUnit.SECONDS}.
2245 *
2246 * @param unit the time unit for the {@code keepAliveTime} argument
2247 *
2248 * @throws IllegalArgumentException if parallelism is less than or
2249 * equal to zero, or is greater than implementation limit,
2250 * or if maximumPoolSize is less than parallelism,
2251 * of if the keepAliveTime is less than or equal to zero.
2252 * @throws NullPointerException if the factory is null
2253 * @throws SecurityException if a security manager exists and
2254 * the caller is not permitted to modify threads
2255 * because it does not hold {@link
2256 * java.lang.RuntimePermission}{@code ("modifyThread")}
2257 * @since 9
2258 */
2259 public ForkJoinPool(int parallelism,
2260 ForkJoinWorkerThreadFactory factory,
2261 UncaughtExceptionHandler handler,
2262 boolean asyncMode,
2263 int corePoolSize,
2264 int maximumPoolSize,
2265 int minimumRunnable,
2266 Predicate<? super ForkJoinPool> saturate,
2267 long keepAliveTime,
2268 TimeUnit unit) {
2269 // check, encode, pack parameters
2270 if (parallelism <= 0 || parallelism > MAX_CAP ||
2271 maximumPoolSize < parallelism || keepAliveTime <= 0L)
2272 throw new IllegalArgumentException();
2273 if (factory == null)
2274 throw new NullPointerException();
2275 long ms = Math.max(unit.toMillis(keepAliveTime), TIMEOUT_SLOP);
2276
2277 int corep = Math.min(Math.max(corePoolSize, parallelism), MAX_CAP);
2278 long c = ((((long)(-corep) << TC_SHIFT) & TC_MASK) |
2279 (((long)(-parallelism) << RC_SHIFT) & RC_MASK));
2280 int m = parallelism | (asyncMode ? FIFO : 0);
2281 int maxSpares = Math.min(maximumPoolSize, MAX_CAP) - parallelism;
2282 int minAvail = Math.min(Math.max(minimumRunnable, 0), MAX_CAP);
2283 int b = ((minAvail - parallelism) & SMASK) | (maxSpares << SWIDTH);
2284 int n = (parallelism > 1) ? parallelism - 1 : 1; // at least 2 slots
2285 n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
2286 n = (n + 1) << 1; // power of two, including space for submission queues
2287
2288 this.workQueues = new WorkQueue[n];
2289 this.workerNamePrefix = "ForkJoinPool-" + nextPoolId() + "-worker-";
2290 this.factory = factory;
2291 this.ueh = handler;
2292 this.saturate = saturate;
2293 this.keepAlive = ms;
2294 this.bounds = b;
2295 this.mode = m;
2296 this.ctl = c;
2297 checkPermission();
2298 }
2299
2300 private Object newInstanceFromSystemProperty(String property)
2301 throws ReflectiveOperationException {
2302 String className = System.getProperty(property);
2303 return (className == null)
2304 ? null
2305 : ClassLoader.getSystemClassLoader().loadClass(className)
2306 .getConstructor().newInstance();
2307 }
2308
2309 /**
2310 * Constructor for common pool using parameters possibly
2311 * overridden by system properties
2312 */
2313 private ForkJoinPool(byte forCommonPoolOnly) {
2314 int parallelism = -1;
2315 ForkJoinWorkerThreadFactory fac = null;
2316 UncaughtExceptionHandler handler = null;
2317 try { // ignore exceptions in accessing/parsing properties
2318 String pp = System.getProperty
2319 ("java.util.concurrent.ForkJoinPool.common.parallelism");
2320 if (pp != null)
2321 parallelism = Integer.parseInt(pp);
2322 fac = (ForkJoinWorkerThreadFactory) newInstanceFromSystemProperty(
2323 "java.util.concurrent.ForkJoinPool.common.threadFactory");
2324 handler = (UncaughtExceptionHandler) newInstanceFromSystemProperty(
2325 "java.util.concurrent.ForkJoinPool.common.exceptionHandler");
2326 } catch (Exception ignore) {
2327 }
2328
2329 if (fac == null) {
2330 if (System.getSecurityManager() == null)
2331 fac = defaultForkJoinWorkerThreadFactory;
2332 else // use security-managed default
2333 fac = new InnocuousForkJoinWorkerThreadFactory();
2334 }
2335 if (parallelism < 0 && // default 1 less than #cores
2336 (parallelism = Runtime.getRuntime().availableProcessors() - 1) <= 0)
2337 parallelism = 1;
2338 if (parallelism > MAX_CAP)
2339 parallelism = MAX_CAP;
2340
2341 long c = ((((long)(-parallelism) << TC_SHIFT) & TC_MASK) |
2342 (((long)(-parallelism) << RC_SHIFT) & RC_MASK));
2343 int b = ((1 - parallelism) & SMASK) | (COMMON_MAX_SPARES << SWIDTH);
2344 int n = (parallelism > 1) ? parallelism - 1 : 1;
2345 n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
2346 n = (n + 1) << 1;
2347
2348 this.workQueues = new WorkQueue[n];
2349 this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2350 this.factory = fac;
2351 this.ueh = handler;
2352 this.saturate = null;
2353 this.keepAlive = DEFAULT_KEEPALIVE;
2354 this.bounds = b;
2355 this.mode = parallelism;
2356 this.ctl = c;
2357 }
2358
2359 /**
2360 * Returns the common pool instance. This pool is statically
2361 * constructed; its run state is unaffected by attempts to {@link
2362 * #shutdown} or {@link #shutdownNow}. However this pool and any
2363 * ongoing processing are automatically terminated upon program
2364 * {@link System#exit}. Any program that relies on asynchronous
2365 * task processing to complete before program termination should
2366 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2367 * before exit.
2368 *
2369 * @return the common pool instance
2370 * @since 1.8
2371 */
2372 public static ForkJoinPool commonPool() {
2373 // assert common != null : "static init error";
2374 return common;
2375 }
2376
2377 // Execution methods
2378
2379 /**
2380 * Performs the given task, returning its result upon completion.
2381 * If the computation encounters an unchecked Exception or Error,
2382 * it is rethrown as the outcome of this invocation. Rethrown
2383 * exceptions behave in the same way as regular exceptions, but,
2384 * when possible, contain stack traces (as displayed for example
2385 * using {@code ex.printStackTrace()}) of both the current thread
2386 * as well as the thread actually encountering the exception;
2387 * minimally only the latter.
2388 *
2389 * @param task the task
2390 * @param <T> the type of the task's result
2391 * @return the task's result
2392 * @throws NullPointerException if the task is null
2393 * @throws RejectedExecutionException if the task cannot be
2394 * scheduled for execution
2395 */
2396 public <T> T invoke(ForkJoinTask<T> task) {
2397 if (task == null)
2398 throw new NullPointerException();
2399 externalSubmit(task);
2400 return task.join();
2401 }
2402
2403 /**
2404 * Arranges for (asynchronous) execution of the given task.
2405 *
2406 * @param task the task
2407 * @throws NullPointerException if the task is null
2408 * @throws RejectedExecutionException if the task cannot be
2409 * scheduled for execution
2410 */
2411 public void execute(ForkJoinTask<?> task) {
2412 externalSubmit(task);
2413 }
2414
2415 // AbstractExecutorService methods
2416
2417 /**
2418 * @throws NullPointerException if the task is null
2419 * @throws RejectedExecutionException if the task cannot be
2420 * scheduled for execution
2421 */
2422 public void execute(Runnable task) {
2423 if (task == null)
2424 throw new NullPointerException();
2425 ForkJoinTask<?> job;
2426 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2427 job = (ForkJoinTask<?>) task;
2428 else
2429 job = new ForkJoinTask.RunnableExecuteAction(task);
2430 externalSubmit(job);
2431 }
2432
2433 /**
2434 * Submits a ForkJoinTask for execution.
2435 *
2436 * @param task the task to submit
2437 * @param <T> the type of the task's result
2438 * @return the task
2439 * @throws NullPointerException if the task is null
2440 * @throws RejectedExecutionException if the task cannot be
2441 * scheduled for execution
2442 */
2443 public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2444 return externalSubmit(task);
2445 }
2446
2447 /**
2448 * @throws NullPointerException if the task is null
2449 * @throws RejectedExecutionException if the task cannot be
2450 * scheduled for execution
2451 */
2452 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2453 return externalSubmit(new ForkJoinTask.AdaptedCallable<T>(task));
2454 }
2455
2456 /**
2457 * @throws NullPointerException if the task is null
2458 * @throws RejectedExecutionException if the task cannot be
2459 * scheduled for execution
2460 */
2461 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2462 return externalSubmit(new ForkJoinTask.AdaptedRunnable<T>(task, result));
2463 }
2464
2465 /**
2466 * @throws NullPointerException if the task is null
2467 * @throws RejectedExecutionException if the task cannot be
2468 * scheduled for execution
2469 */
2470 public ForkJoinTask<?> submit(Runnable task) {
2471 if (task == null)
2472 throw new NullPointerException();
2473 ForkJoinTask<?> job;
2474 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2475 job = (ForkJoinTask<?>) task;
2476 else
2477 job = new ForkJoinTask.AdaptedRunnableAction(task);
2478 return externalSubmit(job);
2479 }
2480
2481 /**
2482 * @throws NullPointerException {@inheritDoc}
2483 * @throws RejectedExecutionException {@inheritDoc}
2484 */
2485 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2486 // In previous versions of this class, this method constructed
2487 // a task to run ForkJoinTask.invokeAll, but now external
2488 // invocation of multiple tasks is at least as efficient.
2489 ArrayList<Future<T>> futures = new ArrayList<>(tasks.size());
2490
2491 try {
2492 for (Callable<T> t : tasks) {
2493 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2494 futures.add(f);
2495 externalSubmit(f);
2496 }
2497 for (int i = 0, size = futures.size(); i < size; i++)
2498 ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2499 return futures;
2500 } catch (Throwable t) {
2501 for (int i = 0, size = futures.size(); i < size; i++)
2502 futures.get(i).cancel(false);
2503 throw t;
2504 }
2505 }
2506
2507 /**
2508 * Returns the factory used for constructing new workers.
2509 *
2510 * @return the factory used for constructing new workers
2511 */
2512 public ForkJoinWorkerThreadFactory getFactory() {
2513 return factory;
2514 }
2515
2516 /**
2517 * Returns the handler for internal worker threads that terminate
2518 * due to unrecoverable errors encountered while executing tasks.
2519 *
2520 * @return the handler, or {@code null} if none
2521 */
2522 public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2523 return ueh;
2524 }
2525
2526 /**
2527 * Returns the targeted parallelism level of this pool.
2528 *
2529 * @return the targeted parallelism level of this pool
2530 */
2531 public int getParallelism() {
2532 int par = mode & SMASK;
2533 return (par > 0) ? par : 1;
2534 }
2535
2536 /**
2537 * Returns the targeted parallelism level of the common pool.
2538 *
2539 * @return the targeted parallelism level of the common pool
2540 * @since 1.8
2541 */
2542 public static int getCommonPoolParallelism() {
2543 return COMMON_PARALLELISM;
2544 }
2545
2546 /**
2547 * Returns the number of worker threads that have started but not
2548 * yet terminated. The result returned by this method may differ
2549 * from {@link #getParallelism} when threads are created to
2550 * maintain parallelism when others are cooperatively blocked.
2551 *
2552 * @return the number of worker threads
2553 */
2554 public int getPoolSize() {
2555 return ((mode & SMASK) + (short)(ctl >>> TC_SHIFT));
2556 }
2557
2558 /**
2559 * Returns {@code true} if this pool uses local first-in-first-out
2560 * scheduling mode for forked tasks that are never joined.
2561 *
2562 * @return {@code true} if this pool uses async mode
2563 */
2564 public boolean getAsyncMode() {
2565 return (mode & FIFO) != 0;
2566 }
2567
2568 /**
2569 * Returns an estimate of the number of worker threads that are
2570 * not blocked waiting to join tasks or for other managed
2571 * synchronization. This method may overestimate the
2572 * number of running threads.
2573 *
2574 * @return the number of worker threads
2575 */
2576 public int getRunningThreadCount() {
2577 int rc = 0;
2578 WorkQueue[] ws; WorkQueue w;
2579 if ((ws = workQueues) != null) {
2580 for (int i = 1; i < ws.length; i += 2) {
2581 if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2582 ++rc;
2583 }
2584 }
2585 return rc;
2586 }
2587
2588 /**
2589 * Returns an estimate of the number of threads that are currently
2590 * stealing or executing tasks. This method may overestimate the
2591 * number of active threads.
2592 *
2593 * @return the number of active threads
2594 */
2595 public int getActiveThreadCount() {
2596 int r = (mode & SMASK) + (int)(ctl >> RC_SHIFT);
2597 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2598 }
2599
2600 /**
2601 * Returns {@code true} if all worker threads are currently idle.
2602 * An idle worker is one that cannot obtain a task to execute
2603 * because none are available to steal from other threads, and
2604 * there are no pending submissions to the pool. This method is
2605 * conservative; it might not return {@code true} immediately upon
2606 * idleness of all threads, but will eventually become true if
2607 * threads remain inactive.
2608 *
2609 * @return {@code true} if all threads are currently idle
2610 */
2611 public boolean isQuiescent() {
2612 for (;;) {
2613 long c = ctl;
2614 int md = mode, pc = md & SMASK;
2615 int tc = pc + (short)(c >>> TC_SHIFT);
2616 int rc = pc + (int)(c >> RC_SHIFT);
2617 if ((md & (STOP | TERMINATED)) != 0)
2618 return true;
2619 else if (rc > 0)
2620 return false;
2621 else {
2622 WorkQueue[] ws; WorkQueue v;
2623 if ((ws = workQueues) != null) {
2624 for (int i = 1; i < ws.length; i += 2) {
2625 if ((v = ws[i]) != null) {
2626 if ((v.source & QUIET) == 0)
2627 return false;
2628 --tc;
2629 }
2630 }
2631 }
2632 if (tc == 0 && ctl == c)
2633 return true;
2634 }
2635 }
2636 }
2637
2638 /**
2639 * Returns an estimate of the total number of tasks stolen from
2640 * one thread's work queue by another. The reported value
2641 * underestimates the actual total number of steals when the pool
2642 * is not quiescent. This value may be useful for monitoring and
2643 * tuning fork/join programs: in general, steal counts should be
2644 * high enough to keep threads busy, but low enough to avoid
2645 * overhead and contention across threads.
2646 *
2647 * @return the number of steals
2648 */
2649 public long getStealCount() {
2650 long count = stealCount;
2651 WorkQueue[] ws; WorkQueue w;
2652 if ((ws = workQueues) != null) {
2653 for (int i = 1; i < ws.length; i += 2) {
2654 if ((w = ws[i]) != null)
2655 count += (long)w.nsteals & 0xffffffffL;
2656 }
2657 }
2658 return count;
2659 }
2660
2661 /**
2662 * Returns an estimate of the total number of tasks currently held
2663 * in queues by worker threads (but not including tasks submitted
2664 * to the pool that have not begun executing). This value is only
2665 * an approximation, obtained by iterating across all threads in
2666 * the pool. This method may be useful for tuning task
2667 * granularities.
2668 *
2669 * @return the number of queued tasks
2670 */
2671 public long getQueuedTaskCount() {
2672 long count = 0;
2673 WorkQueue[] ws; WorkQueue w;
2674 if ((ws = workQueues) != null) {
2675 for (int i = 1; i < ws.length; i += 2) {
2676 if ((w = ws[i]) != null)
2677 count += w.queueSize();
2678 }
2679 }
2680 return count;
2681 }
2682
2683 /**
2684 * Returns an estimate of the number of tasks submitted to this
2685 * pool that have not yet begun executing. This method may take
2686 * time proportional to the number of submissions.
2687 *
2688 * @return the number of queued submissions
2689 */
2690 public int getQueuedSubmissionCount() {
2691 int count = 0;
2692 WorkQueue[] ws; WorkQueue w;
2693 if ((ws = workQueues) != null) {
2694 for (int i = 0; i < ws.length; i += 2) {
2695 if ((w = ws[i]) != null)
2696 count += w.queueSize();
2697 }
2698 }
2699 return count;
2700 }
2701
2702 /**
2703 * Returns {@code true} if there are any tasks submitted to this
2704 * pool that have not yet begun executing.
2705 *
2706 * @return {@code true} if there are any queued submissions
2707 */
2708 public boolean hasQueuedSubmissions() {
2709 WorkQueue[] ws; WorkQueue w;
2710 if ((ws = workQueues) != null) {
2711 for (int i = 0; i < ws.length; i += 2) {
2712 if ((w = ws[i]) != null && !w.isEmpty())
2713 return true;
2714 }
2715 }
2716 return false;
2717 }
2718
2719 /**
2720 * Removes and returns the next unexecuted submission if one is
2721 * available. This method may be useful in extensions to this
2722 * class that re-assign work in systems with multiple pools.
2723 *
2724 * @return the next submission, or {@code null} if none
2725 */
2726 protected ForkJoinTask<?> pollSubmission() {
2727 return pollScan(true);
2728 }
2729
2730 /**
2731 * Removes all available unexecuted submitted and forked tasks
2732 * from scheduling queues and adds them to the given collection,
2733 * without altering their execution status. These may include
2734 * artificially generated or wrapped tasks. This method is
2735 * designed to be invoked only when the pool is known to be
2736 * quiescent. Invocations at other times may not remove all
2737 * tasks. A failure encountered while attempting to add elements
2738 * to collection {@code c} may result in elements being in
2739 * neither, either or both collections when the associated
2740 * exception is thrown. The behavior of this operation is
2741 * undefined if the specified collection is modified while the
2742 * operation is in progress.
2743 *
2744 * @param c the collection to transfer elements into
2745 * @return the number of elements transferred
2746 */
2747 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2748 int count = 0;
2749 WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2750 if ((ws = workQueues) != null) {
2751 for (int i = 0; i < ws.length; ++i) {
2752 if ((w = ws[i]) != null) {
2753 while ((t = w.poll()) != null) {
2754 c.add(t);
2755 ++count;
2756 }
2757 }
2758 }
2759 }
2760 return count;
2761 }
2762
2763 /**
2764 * Returns a string identifying this pool, as well as its state,
2765 * including indications of run state, parallelism level, and
2766 * worker and task counts.
2767 *
2768 * @return a string identifying this pool, as well as its state
2769 */
2770 public String toString() {
2771 // Use a single pass through workQueues to collect counts
2772 long qt = 0L, qs = 0L; int rc = 0;
2773 long st = stealCount;
2774 WorkQueue[] ws; WorkQueue w;
2775 if ((ws = workQueues) != null) {
2776 for (int i = 0; i < ws.length; ++i) {
2777 if ((w = ws[i]) != null) {
2778 int size = w.queueSize();
2779 if ((i & 1) == 0)
2780 qs += size;
2781 else {
2782 qt += size;
2783 st += (long)w.nsteals & 0xffffffffL;
2784 if (w.isApparentlyUnblocked())
2785 ++rc;
2786 }
2787 }
2788 }
2789 }
2790
2791 int md = mode;
2792 int pc = (md & SMASK);
2793 long c = ctl;
2794 int tc = pc + (short)(c >>> TC_SHIFT);
2795 int ac = pc + (int)(c >> RC_SHIFT);
2796 if (ac < 0) // ignore transient negative
2797 ac = 0;
2798 String level = ((md & TERMINATED) != 0 ? "Terminated" :
2799 (md & STOP) != 0 ? "Terminating" :
2800 (md & SHUTDOWN) != 0 ? "Shutting down" :
2801 "Running");
2802 return super.toString() +
2803 "[" + level +
2804 ", parallelism = " + pc +
2805 ", size = " + tc +
2806 ", active = " + ac +
2807 ", running = " + rc +
2808 ", steals = " + st +
2809 ", tasks = " + qt +
2810 ", submissions = " + qs +
2811 "]";
2812 }
2813
2814 /**
2815 * Possibly initiates an orderly shutdown in which previously
2816 * submitted tasks are executed, but no new tasks will be
2817 * accepted. Invocation has no effect on execution state if this
2818 * is the {@link #commonPool()}, and no additional effect if
2819 * already shut down. Tasks that are in the process of being
2820 * submitted concurrently during the course of this method may or
2821 * may not be rejected.
2822 *
2823 * @throws SecurityException if a security manager exists and
2824 * the caller is not permitted to modify threads
2825 * because it does not hold {@link
2826 * java.lang.RuntimePermission}{@code ("modifyThread")}
2827 */
2828 public void shutdown() {
2829 checkPermission();
2830 tryTerminate(false, true);
2831 }
2832
2833 /**
2834 * Possibly attempts to cancel and/or stop all tasks, and reject
2835 * all subsequently submitted tasks. Invocation has no effect on
2836 * execution state if this is the {@link #commonPool()}, and no
2837 * additional effect if already shut down. Otherwise, tasks that
2838 * are in the process of being submitted or executed concurrently
2839 * during the course of this method may or may not be
2840 * rejected. This method cancels both existing and unexecuted
2841 * tasks, in order to permit termination in the presence of task
2842 * dependencies. So the method always returns an empty list
2843 * (unlike the case for some other Executors).
2844 *
2845 * @return an empty list
2846 * @throws SecurityException if a security manager exists and
2847 * the caller is not permitted to modify threads
2848 * because it does not hold {@link
2849 * java.lang.RuntimePermission}{@code ("modifyThread")}
2850 */
2851 public List<Runnable> shutdownNow() {
2852 checkPermission();
2853 tryTerminate(true, true);
2854 return Collections.emptyList();
2855 }
2856
2857 /**
2858 * Returns {@code true} if all tasks have completed following shut down.
2859 *
2860 * @return {@code true} if all tasks have completed following shut down
2861 */
2862 public boolean isTerminated() {
2863 return (mode & TERMINATED) != 0;
2864 }
2865
2866 /**
2867 * Returns {@code true} if the process of termination has
2868 * commenced but not yet completed. This method may be useful for
2869 * debugging. A return of {@code true} reported a sufficient
2870 * period after shutdown may indicate that submitted tasks have
2871 * ignored or suppressed interruption, or are waiting for I/O,
2872 * causing this executor not to properly terminate. (See the
2873 * advisory notes for class {@link ForkJoinTask} stating that
2874 * tasks should not normally entail blocking operations. But if
2875 * they do, they must abort them on interrupt.)
2876 *
2877 * @return {@code true} if terminating but not yet terminated
2878 */
2879 public boolean isTerminating() {
2880 int md = mode;
2881 return (md & STOP) != 0 && (md & TERMINATED) == 0;
2882 }
2883
2884 /**
2885 * Returns {@code true} if this pool has been shut down.
2886 *
2887 * @return {@code true} if this pool has been shut down
2888 */
2889 public boolean isShutdown() {
2890 return (mode & SHUTDOWN) != 0;
2891 }
2892
2893 /**
2894 * Blocks until all tasks have completed execution after a
2895 * shutdown request, or the timeout occurs, or the current thread
2896 * is interrupted, whichever happens first. Because the {@link
2897 * #commonPool()} never terminates until program shutdown, when
2898 * applied to the common pool, this method is equivalent to {@link
2899 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
2900 *
2901 * @param timeout the maximum time to wait
2902 * @param unit the time unit of the timeout argument
2903 * @return {@code true} if this executor terminated and
2904 * {@code false} if the timeout elapsed before termination
2905 * @throws InterruptedException if interrupted while waiting
2906 */
2907 public boolean awaitTermination(long timeout, TimeUnit unit)
2908 throws InterruptedException {
2909 if (Thread.interrupted())
2910 throw new InterruptedException();
2911 if (this == common) {
2912 awaitQuiescence(timeout, unit);
2913 return false;
2914 }
2915 long nanos = unit.toNanos(timeout);
2916 if (isTerminated())
2917 return true;
2918 if (nanos <= 0L)
2919 return false;
2920 long deadline = System.nanoTime() + nanos;
2921 synchronized (this) {
2922 for (;;) {
2923 if (isTerminated())
2924 return true;
2925 if (nanos <= 0L)
2926 return false;
2927 long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
2928 wait(millis > 0L ? millis : 1L);
2929 nanos = deadline - System.nanoTime();
2930 }
2931 }
2932 }
2933
2934 /**
2935 * If called by a ForkJoinTask operating in this pool, equivalent
2936 * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
2937 * waits and/or attempts to assist performing tasks until this
2938 * pool {@link #isQuiescent} or the indicated timeout elapses.
2939 *
2940 * @param timeout the maximum time to wait
2941 * @param unit the time unit of the timeout argument
2942 * @return {@code true} if quiescent; {@code false} if the
2943 * timeout elapsed.
2944 */
2945 public boolean awaitQuiescence(long timeout, TimeUnit unit) {
2946 long nanos = unit.toNanos(timeout);
2947 ForkJoinWorkerThread wt;
2948 Thread thread = Thread.currentThread();
2949 if ((thread instanceof ForkJoinWorkerThread) &&
2950 (wt = (ForkJoinWorkerThread)thread).pool == this) {
2951 helpQuiescePool(wt.workQueue);
2952 return true;
2953 }
2954 else {
2955 for (long startTime = System.nanoTime();;) {
2956 ForkJoinTask<?> t;
2957 if ((t = pollScan(false)) != null)
2958 t.doExec();
2959 else if (isQuiescent())
2960 return true;
2961 else if ((System.nanoTime() - startTime) > nanos)
2962 return false;
2963 else
2964 Thread.yield(); // cannot block
2965 }
2966 }
2967 }
2968
2969 /**
2970 * Waits and/or attempts to assist performing tasks indefinitely
2971 * until the {@link #commonPool()} {@link #isQuiescent}.
2972 */
2973 static void quiesceCommonPool() {
2974 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
2975 }
2976
2977 /**
2978 * Interface for extending managed parallelism for tasks running
2979 * in {@link ForkJoinPool}s.
2980 *
2981 * <p>A {@code ManagedBlocker} provides two methods. Method
2982 * {@link #isReleasable} must return {@code true} if blocking is
2983 * not necessary. Method {@link #block} blocks the current thread
2984 * if necessary (perhaps internally invoking {@code isReleasable}
2985 * before actually blocking). These actions are performed by any
2986 * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
2987 * The unusual methods in this API accommodate synchronizers that
2988 * may, but don't usually, block for long periods. Similarly, they
2989 * allow more efficient internal handling of cases in which
2990 * additional workers may be, but usually are not, needed to
2991 * ensure sufficient parallelism. Toward this end,
2992 * implementations of method {@code isReleasable} must be amenable
2993 * to repeated invocation.
2994 *
2995 * <p>For example, here is a ManagedBlocker based on a
2996 * ReentrantLock:
2997 * <pre> {@code
2998 * class ManagedLocker implements ManagedBlocker {
2999 * final ReentrantLock lock;
3000 * boolean hasLock = false;
3001 * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3002 * public boolean block() {
3003 * if (!hasLock)
3004 * lock.lock();
3005 * return true;
3006 * }
3007 * public boolean isReleasable() {
3008 * return hasLock || (hasLock = lock.tryLock());
3009 * }
3010 * }}</pre>
3011 *
3012 * <p>Here is a class that possibly blocks waiting for an
3013 * item on a given queue:
3014 * <pre> {@code
3015 * class QueueTaker<E> implements ManagedBlocker {
3016 * final BlockingQueue<E> queue;
3017 * volatile E item = null;
3018 * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3019 * public boolean block() throws InterruptedException {
3020 * if (item == null)
3021 * item = queue.take();
3022 * return true;
3023 * }
3024 * public boolean isReleasable() {
3025 * return item != null || (item = queue.poll()) != null;
3026 * }
3027 * public E getItem() { // call after pool.managedBlock completes
3028 * return item;
3029 * }
3030 * }}</pre>
3031 */
3032 public static interface ManagedBlocker {
3033 /**
3034 * Possibly blocks the current thread, for example waiting for
3035 * a lock or condition.
3036 *
3037 * @return {@code true} if no additional blocking is necessary
3038 * (i.e., if isReleasable would return true)
3039 * @throws InterruptedException if interrupted while waiting
3040 * (the method is not required to do so, but is allowed to)
3041 */
3042 boolean block() throws InterruptedException;
3043
3044 /**
3045 * Returns {@code true} if blocking is unnecessary.
3046 * @return {@code true} if blocking is unnecessary
3047 */
3048 boolean isReleasable();
3049 }
3050
3051 /**
3052 * Runs the given possibly blocking task. When {@linkplain
3053 * ForkJoinTask#inForkJoinPool() running in a ForkJoinPool}, this
3054 * method possibly arranges for a spare thread to be activated if
3055 * necessary to ensure sufficient parallelism while the current
3056 * thread is blocked in {@link ManagedBlocker#block blocker.block()}.
3057 *
3058 * <p>This method repeatedly calls {@code blocker.isReleasable()} and
3059 * {@code blocker.block()} until either method returns {@code true}.
3060 * Every call to {@code blocker.block()} is preceded by a call to
3061 * {@code blocker.isReleasable()} that returned {@code false}.
3062 *
3063 * <p>If not running in a ForkJoinPool, this method is
3064 * behaviorally equivalent to
3065 * <pre> {@code
3066 * while (!blocker.isReleasable())
3067 * if (blocker.block())
3068 * break;}</pre>
3069 *
3070 * If running in a ForkJoinPool, the pool may first be expanded to
3071 * ensure sufficient parallelism available during the call to
3072 * {@code blocker.block()}.
3073 *
3074 * @param blocker the blocker task
3075 * @throws InterruptedException if {@code blocker.block()} did so
3076 */
3077 public static void managedBlock(ManagedBlocker blocker)
3078 throws InterruptedException {
3079 ForkJoinPool p;
3080 ForkJoinWorkerThread wt;
3081 WorkQueue w;
3082 Thread t = Thread.currentThread();
3083 if ((t instanceof ForkJoinWorkerThread) &&
3084 (p = (wt = (ForkJoinWorkerThread)t).pool) != null &&
3085 (w = wt.workQueue) != null) {
3086 int block;
3087 while (!blocker.isReleasable()) {
3088 if ((block = p.tryCompensate(w)) != 0) {
3089 try {
3090 do {} while (!blocker.isReleasable() &&
3091 !blocker.block());
3092 } finally {
3093 CTL.getAndAdd(p, (block > 0) ? RC_UNIT : 0L);
3094 }
3095 break;
3096 }
3097 }
3098 }
3099 else {
3100 do {} while (!blocker.isReleasable() &&
3101 !blocker.block());
3102 }
3103 }
3104
3105 /**
3106 * If the given executor is a ForkJoinPool, poll and execute
3107 * AsynchronousCompletionTasks from worker's queue until none are
3108 * available or blocker is released.
3109 */
3110 static void helpAsyncBlocker(Executor e, ManagedBlocker blocker) {
3111 if (blocker != null && (e instanceof ForkJoinPool)) {
3112 WorkQueue w; ForkJoinWorkerThread wt; WorkQueue[] ws; int r, n;
3113 ForkJoinPool p = (ForkJoinPool)e;
3114 Thread thread = Thread.currentThread();
3115 if (thread instanceof ForkJoinWorkerThread &&
3116 (wt = (ForkJoinWorkerThread)thread).pool == p)
3117 w = wt.workQueue;
3118 else if ((r = ThreadLocalRandom.getProbe()) != 0 &&
3119 (ws = p.workQueues) != null && (n = ws.length) > 0)
3120 w = ws[(n - 1) & r & SQMASK];
3121 else
3122 w = null;
3123 if (w != null) {
3124 for (;;) {
3125 int b = w.base, s = w.top, d, al; ForkJoinTask<?>[] a;
3126 if ((a = w.array) != null && (d = b - s) < 0 &&
3127 (al = a.length) > 0) {
3128 int index = (al - 1) & b;
3129 ForkJoinTask<?> t = (ForkJoinTask<?>)
3130 QA.getAcquire(a, index);
3131 if (blocker.isReleasable())
3132 break;
3133 else if (b++ == w.base) {
3134 if (t == null) {
3135 if (d == -1)
3136 break;
3137 }
3138 else if (!(t instanceof CompletableFuture.
3139 AsynchronousCompletionTask))
3140 break;
3141 else if (QA.compareAndSet(a, index, t, null)) {
3142 w.base = b;
3143 t.doExec();
3144 }
3145 }
3146 }
3147 else
3148 break;
3149 }
3150 }
3151 }
3152 }
3153
3154 // AbstractExecutorService overrides. These rely on undocumented
3155 // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3156 // implement RunnableFuture.
3157
3158 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3159 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3160 }
3161
3162 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3163 return new ForkJoinTask.AdaptedCallable<T>(callable);
3164 }
3165
3166 // VarHandle mechanics
3167 private static final VarHandle CTL;
3168 private static final VarHandle MODE;
3169 private static final VarHandle QA;
3170
3171 static {
3172 try {
3173 MethodHandles.Lookup l = MethodHandles.lookup();
3174 CTL = l.findVarHandle(ForkJoinPool.class, "ctl", long.class);
3175 MODE = l.findVarHandle(ForkJoinPool.class, "mode", int.class);
3176 QA = MethodHandles.arrayElementVarHandle(ForkJoinTask[].class);
3177 } catch (ReflectiveOperationException e) {
3178 throw new Error(e);
3179 }
3180
3181 // Reduce the risk of rare disastrous classloading in first call to
3182 // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
3183 Class<?> ensureLoaded = LockSupport.class;
3184
3185 int commonMaxSpares = DEFAULT_COMMON_MAX_SPARES;
3186 try {
3187 String p = System.getProperty
3188 ("java.util.concurrent.ForkJoinPool.common.maximumSpares");
3189 if (p != null)
3190 commonMaxSpares = Integer.parseInt(p);
3191 } catch (Exception ignore) {}
3192 COMMON_MAX_SPARES = commonMaxSpares;
3193
3194 defaultForkJoinWorkerThreadFactory =
3195 new DefaultForkJoinWorkerThreadFactory();
3196 modifyThreadPermission = new RuntimePermission("modifyThread");
3197
3198 common = java.security.AccessController.doPrivileged
3199 (new java.security.PrivilegedAction<ForkJoinPool>() {
3200 public ForkJoinPool run() {
3201 return new ForkJoinPool((byte)0); }});
3202
3203 COMMON_PARALLELISM = Math.max(common.mode & SMASK, 1);
3204 }
3205
3206 /**
3207 * Factory for innocuous worker threads.
3208 */
3209 private static final class InnocuousForkJoinWorkerThreadFactory
3210 implements ForkJoinWorkerThreadFactory {
3211
3212 /**
3213 * An ACC to restrict permissions for the factory itself.
3214 * The constructed workers have no permissions set.
3215 */
3216 private static final AccessControlContext INNOCUOUS_ACC;
3217 static {
3218 Permissions innocuousPerms = new Permissions();
3219 innocuousPerms.add(modifyThreadPermission);
3220 innocuousPerms.add(new RuntimePermission(
3221 "enableContextClassLoaderOverride"));
3222 innocuousPerms.add(new RuntimePermission(
3223 "modifyThreadGroup"));
3224 INNOCUOUS_ACC = new AccessControlContext(new ProtectionDomain[] {
3225 new ProtectionDomain(null, innocuousPerms)
3226 });
3227 }
3228
3229 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
3230 return java.security.AccessController.doPrivileged(
3231 new java.security.PrivilegedAction<ForkJoinWorkerThread>() {
3232 public ForkJoinWorkerThread run() {
3233 return new ForkJoinWorkerThread.
3234 InnocuousForkJoinWorkerThread(pool);
3235 }}, INNOCUOUS_ACC);
3236 }
3237 }
3238
3239 }