ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.362
Committed: Fri Jan 17 20:33:28 2020 UTC (4 years, 4 months ago) by jsr166
Branch: MAIN
Changes since 1.361: +1 -1 lines
Log Message:
javadoc style

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.lang.Thread.UncaughtExceptionHandler;
10 import java.lang.invoke.MethodHandles;
11 import java.lang.invoke.VarHandle;
12 import java.security.AccessController;
13 import java.security.AccessControlContext;
14 import java.security.Permission;
15 import java.security.Permissions;
16 import java.security.PrivilegedAction;
17 import java.security.ProtectionDomain;
18 import java.util.ArrayList;
19 import java.util.Arrays;
20 import java.util.Iterator;
21 import java.util.Collection;
22 import java.util.Collections;
23 import java.util.List;
24 import java.util.function.Predicate;
25 import java.util.concurrent.locks.LockSupport;
26 import java.util.concurrent.locks.ReentrantLock;
27 import java.util.concurrent.locks.Condition;
28
29 /**
30 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
31 * A {@code ForkJoinPool} provides the entry point for submissions
32 * from non-{@code ForkJoinTask} clients, as well as management and
33 * monitoring operations.
34 *
35 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
36 * ExecutorService} mainly by virtue of employing
37 * <em>work-stealing</em>: all threads in the pool attempt to find and
38 * execute tasks submitted to the pool and/or created by other active
39 * tasks (eventually blocking waiting for work if none exist). This
40 * enables efficient processing when most tasks spawn other subtasks
41 * (as do most {@code ForkJoinTask}s), as well as when many small
42 * tasks are submitted to the pool from external clients. Especially
43 * when setting <em>asyncMode</em> to true in constructors, {@code
44 * ForkJoinPool}s may also be appropriate for use with event-style
45 * tasks that are never joined. All worker threads are initialized
46 * with {@link Thread#isDaemon} set {@code true}.
47 *
48 * <p>A static {@link #commonPool()} is available and appropriate for
49 * most applications. The common pool is used by any ForkJoinTask that
50 * is not explicitly submitted to a specified pool. Using the common
51 * pool normally reduces resource usage (its threads are slowly
52 * reclaimed during periods of non-use, and reinstated upon subsequent
53 * use).
54 *
55 * <p>For applications that require separate or custom pools, a {@code
56 * ForkJoinPool} may be constructed with a given target parallelism
57 * level; by default, equal to the number of available processors.
58 * The pool attempts to maintain enough active (or available) threads
59 * by dynamically adding, suspending, or resuming internal worker
60 * threads, even if some tasks are stalled waiting to join others.
61 * However, no such adjustments are guaranteed in the face of blocked
62 * I/O or other unmanaged synchronization. The nested {@link
63 * ManagedBlocker} interface enables extension of the kinds of
64 * synchronization accommodated. The default policies may be
65 * overridden using a constructor with parameters corresponding to
66 * those documented in class {@link ThreadPoolExecutor}.
67 *
68 * <p>In addition to execution and lifecycle control methods, this
69 * class provides status check methods (for example
70 * {@link #getStealCount}) that are intended to aid in developing,
71 * tuning, and monitoring fork/join applications. Also, method
72 * {@link #toString} returns indications of pool state in a
73 * convenient form for informal monitoring.
74 *
75 * <p>As is the case with other ExecutorServices, there are three
76 * main task execution methods summarized in the following table.
77 * These are designed to be used primarily by clients not already
78 * engaged in fork/join computations in the current pool. The main
79 * forms of these methods accept instances of {@code ForkJoinTask},
80 * but overloaded forms also allow mixed execution of plain {@code
81 * Runnable}- or {@code Callable}- based activities as well. However,
82 * tasks that are already executing in a pool should normally instead
83 * use the within-computation forms listed in the table unless using
84 * async event-style tasks that are not usually joined, in which case
85 * there is little difference among choice of methods.
86 *
87 * <table class="plain">
88 * <caption>Summary of task execution methods</caption>
89 * <tr>
90 * <td></td>
91 * <th scope="col"> Call from non-fork/join clients</th>
92 * <th scope="col"> Call from within fork/join computations</th>
93 * </tr>
94 * <tr>
95 * <th scope="row" style="text-align:left"> Arrange async execution</th>
96 * <td> {@link #execute(ForkJoinTask)}</td>
97 * <td> {@link ForkJoinTask#fork}</td>
98 * </tr>
99 * <tr>
100 * <th scope="row" style="text-align:left"> Await and obtain result</th>
101 * <td> {@link #invoke(ForkJoinTask)}</td>
102 * <td> {@link ForkJoinTask#invoke}</td>
103 * </tr>
104 * <tr>
105 * <th scope="row" style="text-align:left"> Arrange exec and obtain Future</th>
106 * <td> {@link #submit(ForkJoinTask)}</td>
107 * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
108 * </tr>
109 * </table>
110 *
111 * <p>The parameters used to construct the common pool may be controlled by
112 * setting the following {@linkplain System#getProperty system properties}:
113 * <ul>
114 * <li>{@systemProperty java.util.concurrent.ForkJoinPool.common.parallelism}
115 * - the parallelism level, a non-negative integer
116 * <li>{@systemProperty java.util.concurrent.ForkJoinPool.common.threadFactory}
117 * - the class name of a {@link ForkJoinWorkerThreadFactory}.
118 * The {@linkplain ClassLoader#getSystemClassLoader() system class loader}
119 * is used to load this class.
120 * <li>{@systemProperty java.util.concurrent.ForkJoinPool.common.exceptionHandler}
121 * - the class name of a {@link UncaughtExceptionHandler}.
122 * The {@linkplain ClassLoader#getSystemClassLoader() system class loader}
123 * is used to load this class.
124 * <li>{@systemProperty java.util.concurrent.ForkJoinPool.common.maximumSpares}
125 * - the maximum number of allowed extra threads to maintain target
126 * parallelism (default 256).
127 * </ul>
128 * If no thread factory is supplied via a system property, then the
129 * common pool uses a factory that uses the system class loader as the
130 * {@linkplain Thread#getContextClassLoader() thread context class loader}.
131 * In addition, if a {@link SecurityManager} is present, then
132 * the common pool uses a factory supplying threads that have no
133 * {@link Permissions} enabled.
134 *
135 * Upon any error in establishing these settings, default parameters
136 * are used. It is possible to disable or limit the use of threads in
137 * the common pool by setting the parallelism property to zero, and/or
138 * using a factory that may return {@code null}. However doing so may
139 * cause unjoined tasks to never be executed.
140 *
141 * <p><b>Implementation notes</b>: This implementation restricts the
142 * maximum number of running threads to 32767. Attempts to create
143 * pools with greater than the maximum number result in
144 * {@code IllegalArgumentException}.
145 *
146 * <p>This implementation rejects submitted tasks (that is, by throwing
147 * {@link RejectedExecutionException}) only when the pool is shut down
148 * or internal resources have been exhausted.
149 *
150 * @since 1.7
151 * @author Doug Lea
152 */
153 public class ForkJoinPool extends AbstractExecutorService {
154
155 /*
156 * Implementation Overview
157 *
158 * This class and its nested classes provide the main
159 * functionality and control for a set of worker threads:
160 * Submissions from non-FJ threads enter into submission queues.
161 * Workers take these tasks and typically split them into subtasks
162 * that may be stolen by other workers. Work-stealing based on
163 * randomized scans generally leads to better throughput than
164 * "work dealing" in which producers assign tasks to idle threads,
165 * in part because threads that have finished other tasks before
166 * the signalled thread wakes up (which can be a long time) can
167 * take the task instead. Preference rules give first priority to
168 * processing tasks from their own queues (LIFO or FIFO, depending
169 * on mode), then to randomized FIFO steals of tasks in other
170 * queues. This framework began as vehicle for supporting
171 * tree-structured parallelism using work-stealing. Over time,
172 * its scalability advantages led to extensions and changes to
173 * better support more diverse usage contexts. Because most
174 * internal methods and nested classes are interrelated, their
175 * main rationale and descriptions are presented here; individual
176 * methods and nested classes contain only brief comments about
177 * details.
178 *
179 * WorkQueues
180 * ==========
181 *
182 * Most operations occur within work-stealing queues (in nested
183 * class WorkQueue). These are special forms of Deques that
184 * support only three of the four possible end-operations -- push,
185 * pop, and poll (aka steal), under the further constraints that
186 * push and pop are called only from the owning thread (or, as
187 * extended here, under a lock), while poll may be called from
188 * other threads. (If you are unfamiliar with them, you probably
189 * want to read Herlihy and Shavit's book "The Art of
190 * Multiprocessor programming", chapter 16 describing these in
191 * more detail before proceeding.) The main work-stealing queue
192 * design is roughly similar to those in the papers "Dynamic
193 * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
194 * (http://research.sun.com/scalable/pubs/index.html) and
195 * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
196 * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
197 * The main differences ultimately stem from GC requirements that
198 * we null out taken slots as soon as we can, to maintain as small
199 * a footprint as possible even in programs generating huge
200 * numbers of tasks. To accomplish this, we shift the CAS
201 * arbitrating pop vs poll (steal) from being on the indices
202 * ("base" and "top") to the slots themselves.
203 *
204 * Adding tasks then takes the form of a classic array push(task)
205 * in a circular buffer:
206 * q.array[q.top++ % length] = task;
207 *
208 * The actual code needs to null-check and size-check the array,
209 * uses masking, not mod, for indexing a power-of-two-sized array,
210 * enforces memory ordering, supports resizing, and possibly
211 * signals waiting workers to start scanning -- see below.
212 *
213 * The pop operation (always performed by owner) is of the form:
214 * if ((task = getAndSet(q.array, (q.top-1) % length, null)) != null)
215 * decrement top and return task;
216 * If this fails, the queue is empty.
217 *
218 * The poll operation by another stealer thread is, basically:
219 * if (CAS nonnull task at q.array[q.base % length] to null)
220 * increment base and return task;
221 *
222 * This may fail due to contention, and may be retried.
223 * Implementations must ensure a consistent snapshot of the base
224 * index and the task (by looping or trying elsewhere) before
225 * trying CAS. There isn't actually a method of this form,
226 * because failure due to inconsistency or contention is handled
227 * in different ways in different contexts, normally by first
228 * trying other queues. (For the most straightforward example, see
229 * method pollScan.) There are further variants for cases
230 * requiring inspection of elements before extracting them, so
231 * must interleave these with variants of this code. Also, a more
232 * efficient version (nextLocalTask) is used for polls by owners.
233 * It avoids some overhead because the queue cannot be growing
234 * during call.
235 *
236 * Memory ordering. See "Correct and Efficient Work-Stealing for
237 * Weak Memory Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
238 * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
239 * analysis of memory ordering requirements in work-stealing
240 * algorithms similar to the one used here. Inserting and
241 * extracting tasks in array slots via volatile or atomic accesses
242 * or explicit fences provides primary synchronization.
243 *
244 * Operations on deque elements require reads and writes of both
245 * indices and slots. When possible, we allow these to occur in
246 * any order. Because the base and top indices (along with other
247 * pool or array fields accessed in many methods) only imprecisely
248 * guide where to extract from, we let accesses other than the
249 * element getAndSet/CAS/setVolatile appear in any order, using
250 * plain mode. But we must still preface some methods (mainly
251 * those that may be accessed externally) with an acquireFence to
252 * avoid unbounded staleness. We use explicit acquiring reads
253 * (getSlot) rather than plain array access when acquire mode is
254 * required but not otherwise ensured by context. To reduce stalls
255 * by other stealers, we encourage timely writes to the base index
256 * by immediately following updates with a write of a volatile
257 * field that must be updated anyway, or an Opaque-mode write if
258 * there is no such opportunity.
259 *
260 * Because indices and slot contents cannot always be consistent,
261 * the emptiness check base == top is only quiescently accurate
262 * (and so used where this suffices). Otherwise, it may err on the
263 * side of possibly making the queue appear nonempty when a push,
264 * pop, or poll have not fully committed, or making it appear
265 * empty when an update of top or base has not yet been seen.
266 * Method isEmpty() provides a more accurate test by checking both
267 * indices and slots. Similarly, the check in push for the queue
268 * array being full may trigger when not completely full, causing
269 * a resize earlier than required.
270 *
271 * Mainly because of these potential inconsistencies among slots
272 * vs indices, the poll operation, considered individually, is not
273 * wait-free. One thief cannot successfully continue until another
274 * in-progress one (or, if previously empty, a push) visibly
275 * completes. This can stall threads when required to consume
276 * from a given queue (which may spin). However, in the
277 * aggregate, we ensure probabilistic non-blockingness at least
278 * until checking quiescence (which is intrinsically blocking):
279 * If an attempted steal fails, a scanning thief chooses a
280 * different victim target to try next. So, in order for one thief
281 * to progress, it suffices for any in-progress poll or new push
282 * on any empty queue to complete. The worst cases occur when many
283 * threads are looking for tasks being produced by a stalled
284 * producer.
285 *
286 * This approach also enables support of a user mode in which
287 * local task processing is in FIFO, not LIFO order, simply by
288 * using poll rather than pop. This can be useful in
289 * message-passing frameworks in which tasks are never joined,
290 * although with increased contention among task producers and
291 * consumers.
292 *
293 * WorkQueues are also used in a similar way for tasks submitted
294 * to the pool. We cannot mix these tasks in the same queues used
295 * by workers. Instead, we randomly associate submission queues
296 * with submitting threads, using a form of hashing. The
297 * ThreadLocalRandom probe value serves as a hash code for
298 * choosing existing queues, and may be randomly repositioned upon
299 * contention with other submitters. In essence, submitters act
300 * like workers except that they are restricted to executing local
301 * tasks that they submitted (or when known, subtasks thereof).
302 * Insertion of tasks in shared mode requires a lock. We use only
303 * a simple spinlock (using field "source"), because submitters
304 * encountering a busy queue move to a different position to use
305 * or create other queues. They block only when registering new
306 * queues.
307 *
308 * Management
309 * ==========
310 *
311 * The main throughput advantages of work-stealing stem from
312 * decentralized control -- workers mostly take tasks from
313 * themselves or each other, at rates that can exceed a billion
314 * per second. Most non-atomic control is performed by some form
315 * of scanning across or within queues. The pool itself creates,
316 * activates (enables scanning for and running tasks),
317 * deactivates, blocks, and terminates threads, all with minimal
318 * central information. There are only a few properties that we
319 * can globally track or maintain, so we pack them into a small
320 * number of variables, often maintaining atomicity without
321 * blocking or locking. Nearly all essentially atomic control
322 * state is held in a few volatile variables that are by far most
323 * often read (not written) as status and consistency checks. We
324 * pack as much information into them as we can.
325 *
326 * Field "ctl" contains 64 bits holding information needed to
327 * atomically decide to add, enqueue (on an event queue), and
328 * dequeue and release workers. To enable this packing, we
329 * restrict maximum parallelism to (1<<15)-1 (which is far in
330 * excess of normal operating range) to allow ids, counts, and
331 * their negations (used for thresholding) to fit into 16bit
332 * subfields.
333 *
334 * Field "mode" holds configuration parameters as well as lifetime
335 * status, atomically and monotonically setting SHUTDOWN, STOP,
336 * and finally TERMINATED bits. It is updated only via bitwise
337 * atomics (getAndBitwiseOr).
338 *
339 * Array "queues" holds references to WorkQueues. It is updated
340 * (only during worker creation and termination) under the
341 * registrationLock, but is otherwise concurrently readable, and
342 * accessed directly (although always prefaced by acquireFences or
343 * other acquiring reads). To simplify index-based operations, the
344 * array size is always a power of two, and all readers must
345 * tolerate null slots. Worker queues are at odd indices. Worker
346 * ids masked with SMASK match their index. Shared (submission)
347 * queues are at even indices. Grouping them together in this way
348 * simplifies and speeds up task scanning.
349 *
350 * All worker thread creation is on-demand, triggered by task
351 * submissions, replacement of terminated workers, and/or
352 * compensation for blocked workers. However, all other support
353 * code is set up to work with other policies. To ensure that we
354 * do not hold on to worker or task references that would prevent
355 * GC, all accesses to workQueues are via indices into the
356 * queues array (which is one source of some of the messy code
357 * constructions here). In essence, the queues array serves as
358 * a weak reference mechanism. Thus for example the stack top
359 * subfield of ctl stores indices, not references.
360 *
361 * Queuing Idle Workers. Unlike HPC work-stealing frameworks, we
362 * cannot let workers spin indefinitely scanning for tasks when
363 * none can be found immediately, and we cannot start/resume
364 * workers unless there appear to be tasks available. On the
365 * other hand, we must quickly prod them into action when new
366 * tasks are submitted or generated. These latencies are mainly a
367 * function of JVM park/unpark (and underlying OS) performance,
368 * which can be slow and variable. In many usages, ramp-up time
369 * is the main limiting factor in overall performance, which is
370 * compounded at program start-up by JIT compilation and
371 * allocation. On the other hand, throughput degrades when too
372 * many threads poll for too few tasks.
373 *
374 * The "ctl" field atomically maintains total and "released"
375 * worker counts, plus the head of the available worker queue
376 * (actually stack, represented by the lower 32bit subfield of
377 * ctl). Released workers are those known to be scanning for
378 * and/or running tasks. Unreleased ("available") workers are
379 * recorded in the ctl stack. These workers are made available for
380 * signalling by enqueuing in ctl (see method awaitWork). The
381 * "queue" is a form of Treiber stack. This is ideal for
382 * activating threads in most-recently used order, and improves
383 * performance and locality, outweighing the disadvantages of
384 * being prone to contention and inability to release a worker
385 * unless it is topmost on stack. The top stack state holds the
386 * value of the "phase" field of the worker: its index and status,
387 * plus a version counter that, in addition to the count subfields
388 * (also serving as version stamps) provide protection against
389 * Treiber stack ABA effects.
390 *
391 * Creating workers. To create a worker, we pre-increment counts
392 * (serving as a reservation), and attempt to construct a
393 * ForkJoinWorkerThread via its factory. On starting, the new
394 * thread first invokes registerWorker, where it constructs a
395 * WorkQueue and is assigned an index in the queues array
396 * (expanding the array if necessary). Upon any exception across
397 * these steps, or null return from factory, deregisterWorker
398 * adjusts counts and records accordingly. If a null return, the
399 * pool continues running with fewer than the target number
400 * workers. If exceptional, the exception is propagated, generally
401 * to some external caller.
402 *
403 * WorkQueue field "phase" is used by both workers and the pool to
404 * manage and track whether a worker is UNSIGNALLED (possibly
405 * blocked waiting for a signal). When a worker is enqueued its
406 * phase field is set negative. Note that phase field updates lag
407 * queue CAS releases; seeing a negative phase does not guarantee
408 * that the worker is available. When queued, the lower 16 bits of
409 * its phase must hold its pool index. So we place the index there
410 * upon initialization and never modify these bits.
411 *
412 * The ctl field also serves as the basis for memory
413 * synchronization surrounding activation. This uses a more
414 * efficient version of a Dekker-like rule that task producers and
415 * consumers sync with each other by both writing/CASing ctl (even
416 * if to its current value). However, rather than CASing ctl to
417 * its current value in the common case where no action is
418 * required, we reduce write contention by ensuring that
419 * signalWork invocations are prefaced with a full-volatile memory
420 * access (which is usually needed anyway).
421 *
422 * Signalling. Signals (in signalWork) cause new or reactivated
423 * workers to scan for tasks. Method signalWork and its callers
424 * try to approximate the unattainable goal of having the right
425 * number of workers activated for the tasks at hand, but must err
426 * on the side of too many workers vs too few to avoid stalls. If
427 * computations are purely tree structured, it suffices for every
428 * worker to activate another when it pushes a task into an empty
429 * queue, resulting in O(log(#threads)) steps to full activation.
430 * If instead, tasks come in serially from only a single producer,
431 * each worker taking its first (since the last quiescence) task
432 * from a queue should signal another if there are more tasks in
433 * that queue. This is equivalent to, but generally faster than,
434 * arranging the stealer take two tasks, re-pushing one on its own
435 * queue, and signalling (because its queue is empty), also
436 * resulting in logarithmic full activation time. Because we don't
437 * know about usage patterns (or most commonly, mixtures), we use
438 * both approaches. We approximate the second rule by arranging
439 * that workers in scan() do not repeat signals when repeatedly
440 * taking tasks from any given queue, by remembering the previous
441 * one. There are narrow windows in which both rules may apply,
442 * leading to duplicate or unnecessary signals. Despite such
443 * limitations, these rules usually avoid slowdowns that otherwise
444 * occur when too many workers contend to take too few tasks, or
445 * when producers waste most of their time resignalling. However,
446 * contention and overhead effects may still occur during ramp-up,
447 * ramp-down, and small computations involving only a few workers.
448 *
449 * Scanning. Method scan performs top-level scanning for (and
450 * execution of) tasks. Scans by different workers and/or at
451 * different times are unlikely to poll queues in the same
452 * order. Each scan traverses and tries to poll from each queue in
453 * a pseudorandom permutation order by starting at a random index,
454 * and using a constant cyclically exhaustive stride; restarting
455 * upon contention. (Non-top-level scans; for example in
456 * helpJoin, use simpler linear probes because they do not
457 * systematically contend with top-level scans.) The pseudorandom
458 * generator need not have high-quality statistical properties in
459 * the long term. We use Marsaglia XorShifts, seeded with the Weyl
460 * sequence from ThreadLocalRandom probes, which are cheap and
461 * suffice. Scans do not otherwise explicitly take into account
462 * core affinities, loads, cache localities, etc, However, they do
463 * exploit temporal locality (which usually approximates these) by
464 * preferring to re-poll from the same queue after a successful
465 * poll before trying others (see method topLevelExec). This
466 * reduces fairness, which is partially counteracted by using a
467 * one-shot form of poll (tryPoll) that may lose to other workers.
468 *
469 * Deactivation. Method scan returns a sentinel when no tasks are
470 * found, leading to deactivation (see awaitWork). The count
471 * fields in ctl allow accurate discovery of quiescent states
472 * (i.e., when all workers are idle) after deactivation. However,
473 * this may also race with new (external) submissions, so a
474 * recheck is also needed to determine quiescence. Upon apparently
475 * triggering quiescence, awaitWork re-scans and self-signals if
476 * it may have missed a signal. In other cases, a missed signal
477 * may transiently lower parallelism because deactivation does not
478 * necessarily mean that there is no more work, only that that
479 * there were no tasks not taken by other workers. But more
480 * signals are generated (see above) to eventually reactivate if
481 * needed.
482 *
483 * Trimming workers. To release resources after periods of lack of
484 * use, a worker starting to wait when the pool is quiescent will
485 * time out and terminate if the pool has remained quiescent for
486 * period given by field keepAlive.
487 *
488 * Shutdown and Termination. A call to shutdownNow invokes
489 * tryTerminate to atomically set a mode bit. The calling thread,
490 * as well as every other worker thereafter terminating, helps
491 * terminate others by cancelling their unprocessed tasks, and
492 * waking them up. Calls to non-abrupt shutdown() preface this by
493 * checking isQuiescent before triggering the "STOP" phase of
494 * termination.
495 *
496 * Joining Tasks
497 * =============
498 *
499 * Normally, the first option when joining a task that is not done
500 * is to try to unfork it from local queue and run it. Otherwise,
501 * any of several actions may be taken when one worker is waiting
502 * to join a task stolen (or always held) by another. Because we
503 * are multiplexing many tasks on to a pool of workers, we can't
504 * always just let them block (as in Thread.join). We also cannot
505 * just reassign the joiner's run-time stack with another and
506 * replace it later, which would be a form of "continuation", that
507 * even if possible is not necessarily a good idea since we may
508 * need both an unblocked task and its continuation to progress.
509 * Instead we combine two tactics:
510 *
511 * Helping: Arranging for the joiner to execute some task that it
512 * could be running if the steal had not occurred.
513 *
514 * Compensating: Unless there are already enough live threads,
515 * method tryCompensate() may create or re-activate a spare
516 * thread to compensate for blocked joiners until they unblock.
517 *
518 * A third form (implemented via tryRemove) amounts to helping a
519 * hypothetical compensator: If we can readily tell that a
520 * possible action of a compensator is to steal and execute the
521 * task being joined, the joining thread can do so directly,
522 * without the need for a compensation thread; although with a
523 * (rare) possibility of reduced parallelism because of a
524 * transient gap in the queue array.
525 *
526 * Other intermediate forms available for specific task types (for
527 * example helpAsyncBlocker) often avoid or postpone the need for
528 * blocking or compensation.
529 *
530 * The ManagedBlocker extension API can't use helping so relies
531 * only on compensation in method awaitBlocker.
532 *
533 * The algorithm in helpJoin entails a form of "linear helping".
534 * Each worker records (in field "source") the id of the queue
535 * from which it last stole a task. The scan in method helpJoin
536 * uses these markers to try to find a worker to help (i.e., steal
537 * back a task from and execute it) that could hasten completion
538 * of the actively joined task. Thus, the joiner executes a task
539 * that would be on its own local deque if the to-be-joined task
540 * had not been stolen. This is a conservative variant of the
541 * approach described in Wagner & Calder "Leapfrogging: a portable
542 * technique for implementing efficient futures" SIGPLAN Notices,
543 * 1993 (http://portal.acm.org/citation.cfm?id=155354). It differs
544 * mainly in that we only record queue ids, not full dependency
545 * links. This requires a linear scan of the queues array to
546 * locate stealers, but isolates cost to when it is needed, rather
547 * than adding to per-task overhead. Also, searches are limited to
548 * direct and at most two levels of indirect stealers, after which
549 * there are rapidly diminishing returns on increased overhead.
550 * Searches can fail to locate stealers when stalls delay
551 * recording sources. Further, even when accurately identified,
552 * stealers might not ever produce a task that the joiner can in
553 * turn help with. So, compensation is tried upon failure to find
554 * tasks to run.
555 *
556 * Joining CountedCompleters (see helpComplete) differs from (and
557 * is generally more efficient than) other cases because task
558 * eligibility is determined by checking completion chains rather
559 * than tracking stealers.
560 *
561 * Compensation does not by default aim to keep exactly the target
562 * parallelism number of unblocked threads running at any given
563 * time. Some previous versions of this class employed immediate
564 * compensations for any blocked join. However, in practice, the
565 * vast majority of blockages are transient byproducts of GC and
566 * other JVM or OS activities that are made worse by replacement
567 * when they cause longer-term oversubscription. Rather than
568 * impose arbitrary policies, we allow users to override the
569 * default of only adding threads upon apparent starvation. The
570 * compensation mechanism may also be bounded. Bounds for the
571 * commonPool (see COMMON_MAX_SPARES) better enable JVMs to cope
572 * with programming errors and abuse before running out of
573 * resources to do so.
574 *
575 * Common Pool
576 * ===========
577 *
578 * The static common pool always exists after static
579 * initialization. Since it (or any other created pool) need
580 * never be used, we minimize initial construction overhead and
581 * footprint to the setup of about a dozen fields.
582 *
583 * When external threads submit to the common pool, they can
584 * perform subtask processing (see helpComplete and related
585 * methods) upon joins. This caller-helps policy makes it
586 * sensible to set common pool parallelism level to one (or more)
587 * less than the total number of available cores, or even zero for
588 * pure caller-runs. We do not need to record whether external
589 * submissions are to the common pool -- if not, external help
590 * methods return quickly. These submitters would otherwise be
591 * blocked waiting for completion, so the extra effort (with
592 * liberally sprinkled task status checks) in inapplicable cases
593 * amounts to an odd form of limited spin-wait before blocking in
594 * ForkJoinTask.join.
595 *
596 * As a more appropriate default in managed environments, unless
597 * overridden by system properties, we use workers of subclass
598 * InnocuousForkJoinWorkerThread when there is a SecurityManager
599 * present. These workers have no permissions set, do not belong
600 * to any user-defined ThreadGroup, and erase all ThreadLocals
601 * after executing any top-level task. The associated mechanics
602 * (mainly in ForkJoinWorkerThread) may be JVM-dependent and must
603 * access particular Thread class fields to achieve this effect.
604 *
605 * Memory placement
606 * ================
607 *
608 * Performance can be very sensitive to placement of instances of
609 * ForkJoinPool and WorkQueues and their queue arrays. To reduce
610 * false-sharing impact, the @Contended annotation isolates the
611 * ForkJoinPool.ctl field as well as the most heavily written
612 * WorkQueue fields. These mainly reduce cache traffic by scanners.
613 * WorkQueue arrays are presized large enough to avoid resizing
614 * (which transiently reduces throughput) in most tree-like
615 * computations, although not in some streaming usages. Initial
616 * sizes are not large enough to avoid secondary contention
617 * effects (especially for GC cardmarks) when queues are placed
618 * near each other in memory. This is common, but has different
619 * impact in different collectors and remains incompletely
620 * addressed.
621 *
622 * Style notes
623 * ===========
624 *
625 * Memory ordering relies mainly on atomic operations (CAS,
626 * getAndSet, getAndAdd) along with explicit fences. This can be
627 * awkward and ugly, but also reflects the need to control
628 * outcomes across the unusual cases that arise in very racy code
629 * with very few invariants. All fields are read into locals
630 * before use, and null-checked if they are references, even if
631 * they can never be null under current usages. Array accesses
632 * using masked indices include checks (that are always true) that
633 * the array length is non-zero to avoid compilers inserting more
634 * expensive traps. This is usually done in a "C"-like style of
635 * listing declarations at the heads of methods or blocks, and
636 * using inline assignments on first encounter. Nearly all
637 * explicit checks lead to bypass/return, not exception throws,
638 * because they may legitimately arise during shutdown.
639 *
640 * There is a lot of representation-level coupling among classes
641 * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
642 * fields of WorkQueue maintain data structures managed by
643 * ForkJoinPool, so are directly accessed. There is little point
644 * trying to reduce this, since any associated future changes in
645 * representations will need to be accompanied by algorithmic
646 * changes anyway. Several methods intrinsically sprawl because
647 * they must accumulate sets of consistent reads of fields held in
648 * local variables. Some others are artificially broken up to
649 * reduce producer/consumer imbalances due to dynamic compilation.
650 * There are also other coding oddities (including several
651 * unnecessary-looking hoisted null checks) that help some methods
652 * perform reasonably even when interpreted (not compiled).
653 *
654 * The order of declarations in this file is (with a few exceptions):
655 * (1) Static utility functions
656 * (2) Nested (static) classes
657 * (3) Static fields
658 * (4) Fields, along with constants used when unpacking some of them
659 * (5) Internal control methods
660 * (6) Callbacks and other support for ForkJoinTask methods
661 * (7) Exported methods
662 * (8) Static block initializing statics in minimally dependent order
663 *
664 * Revision notes
665 * ==============
666 *
667 * The main sources of differences of January 2020 ForkJoin
668 * classes from previous version are:
669 *
670 * * ForkJoinTask now uses field "aux" to support blocking joins
671 * and/or record exceptions, replacing reliance on builtin
672 * monitors and side tables.
673 * * Scans probe slots (vs compare indices), along with related
674 * changes that reduce performance differences across most
675 * garbage collectors, and reduces contention.
676 * * Refactoring for better integration of special task types and
677 * other capabilities that had been incrementally tacked on. Plus
678 * many minor reworkings to improve consistency.
679 */
680
681 // Static utilities
682
683 /**
684 * If there is a security manager, makes sure caller has
685 * permission to modify threads.
686 */
687 private static void checkPermission() {
688 SecurityManager security = System.getSecurityManager();
689 if (security != null)
690 security.checkPermission(modifyThreadPermission);
691 }
692
693 static AccessControlContext contextWithPermissions(Permission ... perms) {
694 Permissions permissions = new Permissions();
695 for (Permission perm : perms)
696 permissions.add(perm);
697 return new AccessControlContext(
698 new ProtectionDomain[] { new ProtectionDomain(null, permissions) });
699 }
700
701 // Nested classes
702
703 /**
704 * Factory for creating new {@link ForkJoinWorkerThread}s.
705 * A {@code ForkJoinWorkerThreadFactory} must be defined and used
706 * for {@code ForkJoinWorkerThread} subclasses that extend base
707 * functionality or initialize threads with different contexts.
708 */
709 public static interface ForkJoinWorkerThreadFactory {
710 /**
711 * Returns a new worker thread operating in the given pool.
712 * Returning null or throwing an exception may result in tasks
713 * never being executed. If this method throws an exception,
714 * it is relayed to the caller of the method (for example
715 * {@code execute}) causing attempted thread creation. If this
716 * method returns null or throws an exception, it is not
717 * retried until the next attempted creation (for example
718 * another call to {@code execute}).
719 *
720 * @param pool the pool this thread works in
721 * @return the new worker thread, or {@code null} if the request
722 * to create a thread is rejected
723 * @throws NullPointerException if the pool is null
724 */
725 public ForkJoinWorkerThread newThread(ForkJoinPool pool);
726 }
727
728 /**
729 * Default ForkJoinWorkerThreadFactory implementation; creates a
730 * new ForkJoinWorkerThread using the system class loader as the
731 * thread context class loader.
732 */
733 static final class DefaultForkJoinWorkerThreadFactory
734 implements ForkJoinWorkerThreadFactory {
735 // ACC for access to the factory
736 private static final AccessControlContext ACC = contextWithPermissions(
737 new RuntimePermission("getClassLoader"),
738 new RuntimePermission("setContextClassLoader"));
739
740 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
741 return AccessController.doPrivileged(
742 new PrivilegedAction<>() {
743 public ForkJoinWorkerThread run() {
744 return new ForkJoinWorkerThread(null, pool, true, false);
745 }},
746 ACC);
747 }
748 }
749
750 /**
751 * Factory for InnocuousForkJoinWorkerThread. Support requires
752 * that we break quite a lot of encapsulation (some via helper
753 * methods in ThreadLocalRandom) to access and set Thread fields.
754 */
755 static final class InnocuousForkJoinWorkerThreadFactory
756 implements ForkJoinWorkerThreadFactory {
757 // ACC for access to the factory
758 private static final AccessControlContext ACC = contextWithPermissions(
759 modifyThreadPermission,
760 new RuntimePermission("enableContextClassLoaderOverride"),
761 new RuntimePermission("modifyThreadGroup"),
762 new RuntimePermission("getClassLoader"),
763 new RuntimePermission("setContextClassLoader"));
764
765 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
766 return AccessController.doPrivileged(
767 new PrivilegedAction<>() {
768 public ForkJoinWorkerThread run() {
769 return new ForkJoinWorkerThread.
770 InnocuousForkJoinWorkerThread(pool); }},
771 ACC);
772 }
773 }
774
775 // Constants shared across ForkJoinPool and WorkQueue
776
777 // Bounds
778 static final int SWIDTH = 16; // width of short
779 static final int SMASK = 0xffff; // short bits == max index
780 static final int MAX_CAP = 0x7fff; // max #workers - 1
781
782 // Masks and units for WorkQueue.phase and ctl sp subfield
783 static final int UNSIGNALLED = 1 << 31; // must be negative
784 static final int SS_SEQ = 1 << 16; // version count
785
786 // Mode bits and sentinels, some also used in WorkQueue fields
787 static final int FIFO = 1 << 16; // fifo queue or access mode
788 static final int SRC = 1 << 17; // set for valid queue ids
789 static final int INNOCUOUS = 1 << 18; // set for Innocuous workers
790 static final int QUIET = 1 << 19; // quiescing phase or source
791 static final int SHUTDOWN = 1 << 24;
792 static final int TERMINATED = 1 << 25;
793 static final int STOP = 1 << 31; // must be negative
794 static final int ADJUST = 1 << 16; // tryCompensate return
795
796 /**
797 * Initial capacity of work-stealing queue array. Must be a power
798 * of two, at least 2. See above.
799 */
800 static final int INITIAL_QUEUE_CAPACITY = 1 << 8;
801
802 /**
803 * Queues supporting work-stealing as well as external task
804 * submission. See above for descriptions and algorithms.
805 */
806 static final class WorkQueue {
807 volatile int phase; // versioned, negative if inactive
808 int stackPred; // pool stack (ctl) predecessor link
809 int config; // index, mode, ORed with SRC after init
810 int base; // index of next slot for poll
811 ForkJoinTask<?>[] array; // the queued tasks; power of 2 size
812 final ForkJoinWorkerThread owner; // owning thread or null if shared
813
814 // segregate fields frequently updated but not read by scans or steals
815 @jdk.internal.vm.annotation.Contended("w")
816 int top; // index of next slot for push
817 @jdk.internal.vm.annotation.Contended("w")
818 volatile int source; // source queue id, lock, or sentinel
819 @jdk.internal.vm.annotation.Contended("w")
820 int nsteals; // number of steals from other queues
821
822 // Support for atomic operations
823 private static final VarHandle QA; // for array slots
824 private static final VarHandle SOURCE;
825 private static final VarHandle BASE;
826 static final ForkJoinTask<?> getSlot(ForkJoinTask<?>[] a, int i) {
827 return (ForkJoinTask<?>)QA.getAcquire(a, i);
828 }
829 static final ForkJoinTask<?> getAndClearSlot(ForkJoinTask<?>[] a,
830 int i) {
831 return (ForkJoinTask<?>)QA.getAndSet(a, i, null);
832 }
833 static final void setSlotVolatile(ForkJoinTask<?>[] a, int i,
834 ForkJoinTask<?> v) {
835 QA.setVolatile(a, i, v);
836 }
837 static final boolean casSlotToNull(ForkJoinTask<?>[] a, int i,
838 ForkJoinTask<?> c) {
839 return QA.weakCompareAndSet(a, i, c, null);
840 }
841 final boolean tryLock() {
842 return SOURCE.compareAndSet(this, 0, 1);
843 }
844 final void setBaseOpaque(int b) {
845 BASE.setOpaque(this, b);
846 }
847
848 /**
849 * Constructor used by ForkJoinWorkerThreads. Most fields
850 * are initialized upon thread start, in pool.registerWorker.
851 */
852 WorkQueue(ForkJoinWorkerThread owner, boolean isInnocuous) {
853 this.config = (isInnocuous) ? INNOCUOUS : 0;
854 this.owner = owner;
855 }
856
857 /**
858 * Constructor used for external queues.
859 */
860 WorkQueue(int config) {
861 array = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
862 this.config = config;
863 owner = null;
864 phase = -1;
865 }
866
867 /**
868 * Returns an exportable index (used by ForkJoinWorkerThread).
869 */
870 final int getPoolIndex() {
871 return (config & 0xffff) >>> 1; // ignore odd/even tag bit
872 }
873
874 /**
875 * Returns the approximate number of tasks in the queue.
876 */
877 final int queueSize() {
878 VarHandle.acquireFence(); // ensure fresh reads by external callers
879 int n = top - base;
880 return (n < 0) ? 0 : n; // ignore transient negative
881 }
882
883 /**
884 * Provides a more accurate estimate of whether this queue has
885 * any tasks than does queueSize, by checking whether an
886 * apparently near-empty queue has at least one unclaimed
887 * task.
888 */
889 final boolean isEmpty() {
890 VarHandle.acquireFence();
891 int s = top, b = base, cap;
892 ForkJoinTask<?>[] a = array;
893 return s - b <= 1 && (a == null || (cap = a.length) == 0 ||
894 (a[(cap - 1) & b] == null &&
895 a[(cap - 1) & (s - 1)] == null));
896 }
897
898 /**
899 * Pushes a task. Call only by owner in unshared queues.
900 *
901 * @param task the task. Caller must ensure non-null.
902 * @param pool (no-op if null)
903 * @throws RejectedExecutionException if array cannot be resized
904 */
905 final void push(ForkJoinTask<?> task, ForkJoinPool pool) {
906 ForkJoinTask<?>[] a = array;
907 int s = top++, d = s - base, cap, m; // skip insert if disabled
908 if (a != null && pool != null && (cap = a.length) > 0) {
909 setSlotVolatile(a, (m = cap - 1) & s, task);
910 if (d == m)
911 growArray();
912 if (d == m || a[m & (s - 1)] == null)
913 pool.signalWork(); // signal if was empty or resized
914 }
915 }
916
917 /**
918 * Pushes task to a shared queue with lock already held, and unlocks.
919 *
920 * @return true if caller should signal work
921 */
922 final boolean lockedPush(ForkJoinTask<?> task) {
923 ForkJoinTask<?>[] a = array;
924 int s = top++, d = s - base, cap, m;
925 if (a != null && (cap = a.length) > 0) {
926 a[(m = cap - 1) & s] = task;
927 if (d == m)
928 growArray();
929 source = 0; // unlock
930 if (d == m || a[m & (s - 1)] == null)
931 return true;
932 }
933 return false;
934 }
935
936 /**
937 * Doubles the capacity of array. Called by owner or with lock
938 * held after pre-incrementing top, which is reverted on
939 * allocation failure.
940 */
941 final void growArray() {
942 ForkJoinTask<?>[] oldArray = array, newArray;
943 int s = top - 1, oldCap, newCap;
944 if (oldArray != null && (oldCap = oldArray.length) > 0 &&
945 (newCap = oldCap << 1) > 0) { // skip if disabled
946 try {
947 newArray = new ForkJoinTask<?>[newCap];
948 } catch (Throwable ex) {
949 top = s;
950 if (owner == null)
951 source = 0; // unlock
952 throw new RejectedExecutionException(
953 "Queue capacity exceeded");
954 }
955 int newMask = newCap - 1, oldMask = oldCap - 1;
956 for (int k = oldCap; k > 0; --k, --s) {
957 ForkJoinTask<?> x; // poll old, push to new
958 if ((x = getAndClearSlot(oldArray, s & oldMask)) == null)
959 break; // others already taken
960 newArray[s & newMask] = x;
961 }
962 VarHandle.releaseFence(); // fill before publish
963 array = newArray;
964 }
965 }
966
967 // Variants of pop
968
969 /**
970 * Pops and returns task, or null if empty. Called only by owner.
971 */
972 private ForkJoinTask<?> pop() {
973 ForkJoinTask<?> t = null;
974 int s = top, cap; ForkJoinTask<?>[] a;
975 if ((a = array) != null && (cap = a.length) > 0 && base != s-- &&
976 (t = getAndClearSlot(a, (cap - 1) & s)) != null)
977 top = s;
978 return t;
979 }
980
981 /**
982 * Pops the given task for owner only if it is at the current top.
983 */
984 final boolean tryUnpush(ForkJoinTask<?> task) {
985 int s = top - 1, cap, k; ForkJoinTask<?>[] a;
986 if ((a = array) != null && task != null && (cap = a.length) > 0 &&
987 a[k = (cap - 1) & s] == task && casSlotToNull(a, k, task)) {
988 top = s;
989 return true;
990 }
991 return false;
992 }
993
994 /**
995 * Locking version of tryUnpush.
996 */
997 final boolean externalTryUnpush(ForkJoinTask<?> task) {
998 boolean taken = false;
999 int s = top, cap, k; ForkJoinTask<?>[] a;
1000 if ((a = array) != null && task != null && (cap = a.length) > 0 &&
1001 a[k = (cap - 1) & (s - 1)] == task && tryLock()) {
1002 if (top == s && array == a &&
1003 (taken = casSlotToNull(a, k, task)))
1004 top = s - 1;
1005 source = 0; // release lock
1006 }
1007 return taken;
1008 }
1009
1010 /**
1011 * Deep form of pop: Traverses from top and removes task if
1012 * present, shifting others to fill gap.
1013 */
1014 final boolean tryRemove(ForkJoinTask<?> task) {
1015 int s = top, cap; ForkJoinTask<?>[] a; ForkJoinTask<?> t;
1016 if ((a = array) != null && task != null && (cap = a.length) > 0) {
1017 for (int m = cap - 1, d = s - base, i = --s, k; d > 0; --i,--d) {
1018 if ((t = a[k = i & m]) == task) {
1019 if (!casSlotToNull(a, k, t))
1020 break;
1021 for (int j = i; j != s; ) // shift down
1022 a[j & m] = getAndClearSlot(a, ++j & m);
1023 top = s;
1024 return true;
1025 }
1026 }
1027 }
1028 return false;
1029 }
1030
1031 // variants of poll
1032
1033 /**
1034 * Tries once to poll next task in FIFO order, failing on
1035 * inconsistency or contention.
1036 */
1037 final ForkJoinTask<?> tryPoll() {
1038 int cap, b, k; ForkJoinTask<?>[] a;
1039 if ((a = array) != null && (cap = a.length) > 0) {
1040 ForkJoinTask<?> t = getSlot(a, k = (cap - 1) & (b = base));
1041 if (base == b++ && t != null && casSlotToNull(a, k, t)) {
1042 setBaseOpaque(b);
1043 return t;
1044 }
1045 }
1046 return null;
1047 }
1048
1049 /**
1050 * Takes next task, if one exists, in order specified by mode.
1051 */
1052 final ForkJoinTask<?> nextLocalTask(int cfg) {
1053 ForkJoinTask<?> t = null;
1054 int s = top, cap; ForkJoinTask<?>[] a;
1055 if ((a = array) != null && (cap = a.length) > 0) {
1056 for (int b, d;;) {
1057 if ((d = s - (b = base)) <= 0)
1058 break;
1059 if (d == 1 || (cfg & FIFO) == 0) {
1060 if ((t = getAndClearSlot(a, --s & (cap - 1))) != null)
1061 top = s;
1062 break;
1063 }
1064 if ((t = getAndClearSlot(a, b++ & (cap - 1))) != null) {
1065 setBaseOpaque(b);
1066 break;
1067 }
1068 }
1069 }
1070 return t;
1071 }
1072
1073 /**
1074 * Takes next task, if one exists, using configured mode.
1075 */
1076 final ForkJoinTask<?> nextLocalTask() {
1077 return nextLocalTask(config);
1078 }
1079
1080 /**
1081 * Returns next task, if one exists, in order specified by mode.
1082 */
1083 final ForkJoinTask<?> peek() {
1084 VarHandle.acquireFence();
1085 int cap; ForkJoinTask<?>[] a;
1086 return ((a = array) != null && (cap = a.length) > 0) ?
1087 a[(cap - 1) & ((config & FIFO) != 0 ? base : top - 1)] : null;
1088 }
1089
1090 // specialized execution methods
1091
1092 /**
1093 * Runs the given (stolen) task if nonnull, as well as
1094 * remaining local tasks and/or others available from the
1095 * given queue.
1096 */
1097 final void topLevelExec(ForkJoinTask<?> task, WorkQueue q) {
1098 int cfg = config, nstolen = 1;
1099 while (task != null) {
1100 task.doExec();
1101 if ((task = nextLocalTask(cfg)) == null &&
1102 q != null && (task = q.tryPoll()) != null)
1103 ++nstolen;
1104 }
1105 nsteals += nstolen;
1106 source = 0;
1107 if ((cfg & INNOCUOUS) != 0)
1108 ThreadLocalRandom.eraseThreadLocals(Thread.currentThread());
1109 }
1110
1111 /**
1112 * Tries to pop and run tasks within the target's computation
1113 * until done, not found, or limit exceeded.
1114 *
1115 * @param task root of CountedCompleter computation
1116 * @param owned true if owned by a ForkJoinWorkerThread
1117 * @param limit max runs, or zero for no limit
1118 * @return ask status on exit
1119 */
1120 final int helpComplete(CountedCompleter<?> task, boolean owned,
1121 int limit) {
1122 int status = 0, cap, k, p, s; ForkJoinTask<?>[] a; ForkJoinTask<?> t;
1123 while (task != null && (status = task.status) >= 0 &&
1124 (a = array) != null && (cap = a.length) > 0 &&
1125 (t = a[k = (cap - 1) & (s = (p = top) - 1)])
1126 instanceof CountedCompleter) {
1127 CountedCompleter<?> f = (CountedCompleter<?>)t;
1128 boolean taken = false;
1129 for (;;) { // exec if root task is a completer of t
1130 if (f == task) {
1131 if (owned) {
1132 if ((taken = casSlotToNull(a, k, t)))
1133 top = s;
1134 }
1135 else if (tryLock()) {
1136 if (top == p && array == a &&
1137 (taken = casSlotToNull(a, k, t)))
1138 top = s;
1139 source = 0;
1140 }
1141 break;
1142 }
1143 else if ((f = f.completer) == null)
1144 break;
1145 }
1146 if (!taken)
1147 break;
1148 t.doExec();
1149 if (limit != 0 && --limit == 0)
1150 break;
1151 }
1152 return status;
1153 }
1154
1155 /**
1156 * Tries to poll and run AsynchronousCompletionTasks until
1157 * none found or blocker is released.
1158 *
1159 * @param blocker the blocker
1160 */
1161 final void helpAsyncBlocker(ManagedBlocker blocker) {
1162 int cap, b, d, k; ForkJoinTask<?>[] a; ForkJoinTask<?> t;
1163 while (blocker != null && (d = top - (b = base)) > 0 &&
1164 (a = array) != null && (cap = a.length) > 0 &&
1165 (((t = getSlot(a, k = (cap - 1) & b)) == null && d > 1) ||
1166 t instanceof
1167 CompletableFuture.AsynchronousCompletionTask) &&
1168 !blocker.isReleasable()) {
1169 if (t != null && base == b++ && casSlotToNull(a, k, t)) {
1170 setBaseOpaque(b);
1171 t.doExec();
1172 }
1173 }
1174 }
1175
1176 // misc
1177
1178 /** AccessControlContext for innocuous workers, created on 1st use. */
1179 private static AccessControlContext INNOCUOUS_ACC;
1180
1181 /**
1182 * Initializes (upon registration) InnocuousForkJoinWorkerThreads.
1183 */
1184 final void initializeInnocuousWorker() {
1185 AccessControlContext acc; // racy construction OK
1186 if ((acc = INNOCUOUS_ACC) == null)
1187 INNOCUOUS_ACC = acc = new AccessControlContext(
1188 new ProtectionDomain[] { new ProtectionDomain(null, null) });
1189 Thread t = Thread.currentThread();
1190 ThreadLocalRandom.setInheritedAccessControlContext(t, acc);
1191 ThreadLocalRandom.eraseThreadLocals(t);
1192 }
1193
1194 /**
1195 * Returns true if owned and not known to be blocked.
1196 */
1197 final boolean isApparentlyUnblocked() {
1198 Thread wt; Thread.State s;
1199 return ((wt = owner) != null &&
1200 (s = wt.getState()) != Thread.State.BLOCKED &&
1201 s != Thread.State.WAITING &&
1202 s != Thread.State.TIMED_WAITING);
1203 }
1204
1205 static {
1206 try {
1207 QA = MethodHandles.arrayElementVarHandle(ForkJoinTask[].class);
1208 MethodHandles.Lookup l = MethodHandles.lookup();
1209 SOURCE = l.findVarHandle(WorkQueue.class, "source", int.class);
1210 BASE = l.findVarHandle(WorkQueue.class, "base", int.class);
1211 } catch (ReflectiveOperationException e) {
1212 throw new ExceptionInInitializerError(e);
1213 }
1214 }
1215 }
1216
1217 // static fields (initialized in static initializer below)
1218
1219 /**
1220 * Creates a new ForkJoinWorkerThread. This factory is used unless
1221 * overridden in ForkJoinPool constructors.
1222 */
1223 public static final ForkJoinWorkerThreadFactory
1224 defaultForkJoinWorkerThreadFactory;
1225
1226 /**
1227 * Permission required for callers of methods that may start or
1228 * kill threads.
1229 */
1230 static final RuntimePermission modifyThreadPermission;
1231
1232 /**
1233 * Common (static) pool. Non-null for public use unless a static
1234 * construction exception, but internal usages null-check on use
1235 * to paranoically avoid potential initialization circularities
1236 * as well as to simplify generated code.
1237 */
1238 static final ForkJoinPool common;
1239
1240 /**
1241 * Common pool parallelism. To allow simpler use and management
1242 * when common pool threads are disabled, we allow the underlying
1243 * common.parallelism field to be zero, but in that case still report
1244 * parallelism as 1 to reflect resulting caller-runs mechanics.
1245 */
1246 static final int COMMON_PARALLELISM;
1247
1248 /**
1249 * Limit on spare thread construction in tryCompensate.
1250 */
1251 private static final int COMMON_MAX_SPARES;
1252
1253 /**
1254 * Sequence number for creating worker names
1255 */
1256 private static volatile int poolIds;
1257
1258 // static configuration constants
1259
1260 /**
1261 * Default idle timeout value (in milliseconds) for the thread
1262 * triggering quiescence to park waiting for new work
1263 */
1264 private static final long DEFAULT_KEEPALIVE = 60_000L;
1265
1266 /**
1267 * Undershoot tolerance for idle timeouts
1268 */
1269 private static final long TIMEOUT_SLOP = 20L;
1270
1271 /**
1272 * The default value for COMMON_MAX_SPARES. Overridable using the
1273 * "java.util.concurrent.ForkJoinPool.common.maximumSpares" system
1274 * property. The default value is far in excess of normal
1275 * requirements, but also far short of MAX_CAP and typical OS
1276 * thread limits, so allows JVMs to catch misuse/abuse before
1277 * running out of resources needed to do so.
1278 */
1279 private static final int DEFAULT_COMMON_MAX_SPARES = 256;
1280
1281 /*
1282 * Bits and masks for field ctl, packed with 4 16 bit subfields:
1283 * RC: Number of released (unqueued) workers minus target parallelism
1284 * TC: Number of total workers minus target parallelism
1285 * SS: version count and status of top waiting thread
1286 * ID: poolIndex of top of Treiber stack of waiters
1287 *
1288 * When convenient, we can extract the lower 32 stack top bits
1289 * (including version bits) as sp=(int)ctl. The offsets of counts
1290 * by the target parallelism and the positionings of fields makes
1291 * it possible to perform the most common checks via sign tests of
1292 * fields: When ac is negative, there are not enough unqueued
1293 * workers, when tc is negative, there are not enough total
1294 * workers. When sp is non-zero, there are waiting workers. To
1295 * deal with possibly negative fields, we use casts in and out of
1296 * "short" and/or signed shifts to maintain signedness.
1297 *
1298 * Because it occupies uppermost bits, we can add one release
1299 * count using getAndAdd of RC_UNIT, rather than CAS, when
1300 * returning from a blocked join. Other updates entail multiple
1301 * subfields and masking, requiring CAS.
1302 *
1303 * The limits packed in field "bounds" are also offset by the
1304 * parallelism level to make them comparable to the ctl rc and tc
1305 * fields.
1306 */
1307
1308 // Lower and upper word masks
1309 private static final long SP_MASK = 0xffffffffL;
1310 private static final long UC_MASK = ~SP_MASK;
1311
1312 // Release counts
1313 private static final int RC_SHIFT = 48;
1314 private static final long RC_UNIT = 0x0001L << RC_SHIFT;
1315 private static final long RC_MASK = 0xffffL << RC_SHIFT;
1316
1317 // Total counts
1318 private static final int TC_SHIFT = 32;
1319 private static final long TC_UNIT = 0x0001L << TC_SHIFT;
1320 private static final long TC_MASK = 0xffffL << TC_SHIFT;
1321 private static final long ADD_WORKER = 0x0001L << (TC_SHIFT + 15); // sign
1322
1323 // Instance fields
1324
1325 final long keepAlive; // milliseconds before dropping if idle
1326 volatile long stealCount; // collects worker nsteals
1327 int scanRover; // advances across pollScan calls
1328 volatile int threadIds; // for worker thread names
1329 final int bounds; // min, max threads packed as shorts
1330 volatile int mode; // parallelism, runstate, queue mode
1331 WorkQueue[] queues; // main registry
1332 final ReentrantLock registrationLock;
1333 Condition termination; // lazily constructed
1334 final String workerNamePrefix; // null for common pool
1335 final ForkJoinWorkerThreadFactory factory;
1336 final UncaughtExceptionHandler ueh; // per-worker UEH
1337 final Predicate<? super ForkJoinPool> saturate;
1338
1339 @jdk.internal.vm.annotation.Contended("fjpctl") // segregate
1340 volatile long ctl; // main pool control
1341
1342 // Support for atomic operations
1343 private static final VarHandle CTL;
1344 private static final VarHandle MODE;
1345 private static final VarHandle THREADIDS;
1346 private static final VarHandle POOLIDS;
1347 private boolean compareAndSetCtl(long c, long v) {
1348 return CTL.compareAndSet(this, c, v);
1349 }
1350 private long compareAndExchangeCtl(long c, long v) {
1351 return (long)CTL.compareAndExchange(this, c, v);
1352 }
1353 private long getAndAddCtl(long v) {
1354 return (long)CTL.getAndAdd(this, v);
1355 }
1356 private int getAndBitwiseOrMode(int v) {
1357 return (int)MODE.getAndBitwiseOr(this, v);
1358 }
1359 private int getAndAddThreadIds(int x) {
1360 return (int)THREADIDS.getAndAdd(this, x);
1361 }
1362 private static int getAndAddPoolIds(int x) {
1363 return (int)POOLIDS.getAndAdd(x);
1364 }
1365
1366 // Creating, registering and deregistering workers
1367
1368 /**
1369 * Tries to construct and start one worker. Assumes that total
1370 * count has already been incremented as a reservation. Invokes
1371 * deregisterWorker on any failure.
1372 *
1373 * @return true if successful
1374 */
1375 private boolean createWorker() {
1376 ForkJoinWorkerThreadFactory fac = factory;
1377 Throwable ex = null;
1378 ForkJoinWorkerThread wt = null;
1379 try {
1380 if (fac != null && (wt = fac.newThread(this)) != null) {
1381 wt.start();
1382 return true;
1383 }
1384 } catch (Throwable rex) {
1385 ex = rex;
1386 }
1387 deregisterWorker(wt, ex);
1388 return false;
1389 }
1390
1391 /**
1392 * Provides a name for ForkJoinWorkerThread constructor.
1393 */
1394 final String nextWorkerThreadName() {
1395 String prefix = workerNamePrefix;
1396 int tid = getAndAddThreadIds(1) + 1;
1397 if (prefix == null) // commonPool has no prefix
1398 prefix = "ForkJoinPool.commonPool-worker-";
1399 return prefix.concat(Integer.toString(tid));
1400 }
1401
1402 /**
1403 * Finishes initializing and records owned queue.
1404 *
1405 * @param w caller's WorkQueue
1406 */
1407 final void registerWorker(WorkQueue w) {
1408 ReentrantLock lock = registrationLock;
1409 ThreadLocalRandom.localInit();
1410 int seed = ThreadLocalRandom.getProbe();
1411 if (w != null && lock != null) {
1412 int modebits = (mode & FIFO) | w.config;
1413 w.array = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
1414 w.stackPred = seed; // stash for runWorker
1415 if ((modebits & INNOCUOUS) != 0)
1416 w.initializeInnocuousWorker();
1417 int id = (seed << 1) | 1; // initial index guess
1418 lock.lock();
1419 try {
1420 WorkQueue[] qs; int n; // find queue index
1421 if ((qs = queues) != null && (n = qs.length) > 0) {
1422 int k = n, m = n - 1;
1423 for (; qs[id &= m] != null && k > 0; id -= 2, k -= 2);
1424 if (k == 0)
1425 id = n | 1; // resize below
1426 w.phase = w.config = id | modebits; // now publishable
1427
1428 if (id < n)
1429 qs[id] = w;
1430 else { // expand array
1431 int an = n << 1, am = an - 1;
1432 WorkQueue[] as = new WorkQueue[an];
1433 as[id & am] = w;
1434 for (int j = 1; j < n; j += 2)
1435 as[j] = qs[j];
1436 for (int j = 0; j < n; j += 2) {
1437 WorkQueue q;
1438 if ((q = qs[j]) != null) // shared queues may move
1439 as[q.config & am] = q;
1440 }
1441 VarHandle.releaseFence(); // fill before publish
1442 queues = as;
1443 }
1444 }
1445 } finally {
1446 lock.unlock();
1447 }
1448 }
1449 }
1450
1451 /**
1452 * Final callback from terminating worker, as well as upon failure
1453 * to construct or start a worker. Removes record of worker from
1454 * array, and adjusts counts. If pool is shutting down, tries to
1455 * complete termination.
1456 *
1457 * @param wt the worker thread, or null if construction failed
1458 * @param ex the exception causing failure, or null if none
1459 */
1460 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1461 ReentrantLock lock = registrationLock;
1462 WorkQueue w = null;
1463 int cfg = 0;
1464 if (wt != null && (w = wt.workQueue) != null && lock != null) {
1465 WorkQueue[] qs; int n, i;
1466 cfg = w.config;
1467 long ns = w.nsteals & 0xffffffffL;
1468 lock.lock(); // remove index from array
1469 if ((qs = queues) != null && (n = qs.length) > 0 &&
1470 qs[i = cfg & (n - 1)] == w)
1471 qs[i] = null;
1472 stealCount += ns; // accumulate steals
1473 lock.unlock();
1474 long c = ctl;
1475 if (w.phase != QUIET) // decrement counts
1476 do {} while (c != (c = compareAndExchangeCtl(
1477 c, ((RC_MASK & (c - RC_UNIT)) |
1478 (TC_MASK & (c - TC_UNIT)) |
1479 (SP_MASK & c)))));
1480 else if ((int)c == 0) // was dropped on timeout
1481 cfg = 0; // suppress signal if last
1482 for (ForkJoinTask<?> t; (t = w.pop()) != null; )
1483 ForkJoinTask.cancelIgnoringExceptions(t); // cancel tasks
1484 }
1485
1486 if (!tryTerminate(false, false) && w != null && (cfg & SRC) != 0)
1487 signalWork(); // possibly replace worker
1488 if (ex != null)
1489 ForkJoinTask.rethrow(ex);
1490 }
1491
1492 /*
1493 * Tries to create or release a worker if too few are running.
1494 */
1495 final void signalWork() {
1496 for (long c = ctl; c < 0L;) {
1497 int sp, i; WorkQueue[] qs; WorkQueue v;
1498 if ((sp = (int)c & ~UNSIGNALLED) == 0) { // no idle workers
1499 if ((c & ADD_WORKER) == 0L) // enough total workers
1500 break;
1501 if (c == (c = compareAndExchangeCtl(
1502 c, ((RC_MASK & (c + RC_UNIT)) |
1503 (TC_MASK & (c + TC_UNIT)))))) {
1504 createWorker();
1505 break;
1506 }
1507 }
1508 else if ((qs = queues) == null)
1509 break; // unstarted/terminated
1510 else if (qs.length <= (i = sp & SMASK))
1511 break; // terminated
1512 else if ((v = qs[i]) == null)
1513 break; // terminating
1514 else {
1515 long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + RC_UNIT));
1516 Thread vt = v.owner;
1517 if (c == (c = compareAndExchangeCtl(c, nc))) {
1518 v.phase = sp;
1519 LockSupport.unpark(vt); // release idle worker
1520 break;
1521 }
1522 }
1523 }
1524 }
1525
1526 /**
1527 * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1528 * See above for explanation.
1529 *
1530 * @param w caller's WorkQueue (may be null on failed initialization)
1531 */
1532 final void runWorker(WorkQueue w) {
1533 if (w != null) { // skip on failed init
1534 w.config |= SRC; // mark as valid source
1535 int r = w.stackPred, src = 0; // use seed from registerWorker
1536 do {
1537 r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
1538 } while ((src = scan(w, src, r)) >= 0 ||
1539 (src = awaitWork(w)) == 0);
1540 }
1541 }
1542
1543 /**
1544 * Scans for and if found executes top-level tasks: Tries to poll
1545 * each queue starting at a random index with random stride,
1546 * returning source id or retry indicator if contended or
1547 * inconsistent.
1548 *
1549 * @param w caller's WorkQueue
1550 * @param prevSrc the previous queue stolen from in current phase, or 0
1551 * @param r random seed
1552 * @return id of queue if taken, negative if none found, prevSrc for retry
1553 */
1554 private int scan(WorkQueue w, int prevSrc, int r) {
1555 WorkQueue[] qs = queues;
1556 int n = (w == null || qs == null) ? 0 : qs.length;
1557 for (int step = (r >>> 16) | 1, i = n; i > 0; --i, r += step) {
1558 int j, cap, b; WorkQueue q; ForkJoinTask<?>[] a;
1559 if ((q = qs[j = r & (n - 1)]) != null && // poll at qs[j].array[k]
1560 (a = q.array) != null && (cap = a.length) > 0) {
1561 int k = (cap - 1) & (b = q.base), nextBase = b + 1;
1562 int nextIndex = (cap - 1) & nextBase, src = j | SRC;
1563 ForkJoinTask<?> t = WorkQueue.getSlot(a, k);
1564 if (q.base != b) // inconsistent
1565 return prevSrc;
1566 else if (t != null && WorkQueue.casSlotToNull(a, k, t)) {
1567 q.base = nextBase;
1568 ForkJoinTask<?> next = a[nextIndex];
1569 if ((w.source = src) != prevSrc && next != null)
1570 signalWork(); // propagate
1571 w.topLevelExec(t, q);
1572 return src;
1573 }
1574 else if (a[nextIndex] != null) // revisit
1575 return prevSrc;
1576 }
1577 }
1578 return (queues != qs) ? prevSrc: -1; // possibly resized
1579 }
1580
1581 /**
1582 * Advances worker phase, pushes onto ctl stack, and awaits signal
1583 * or reports termination.
1584 *
1585 * @return negative if terminated, else 0
1586 */
1587 private int awaitWork(WorkQueue w) {
1588 if (w == null)
1589 return -1; // already terminated
1590 int phase, ac; // advance phase
1591 w.phase = (phase = w.phase + SS_SEQ) | UNSIGNALLED;
1592 long prevCtl = ctl, c; // enqueue
1593 do {
1594 w.stackPred = (int)prevCtl;
1595 c = ((prevCtl - RC_UNIT) & UC_MASK) | (phase & SP_MASK);
1596 } while (prevCtl != (prevCtl = compareAndExchangeCtl(prevCtl, c)));
1597
1598 LockSupport.setCurrentBlocker(this); // prepare to block (exit also OK)
1599 long deadline = 0L; // use timed wait if nonzero
1600 if ((ac = (int)(c >> RC_SHIFT)) + (mode & SMASK) <= 0) { // quiescent
1601 if ((deadline = System.currentTimeMillis() + keepAlive) == 0L)
1602 deadline = 1L; // avoid zero
1603 WorkQueue[] qs = queues; // check for racing submission
1604 int n = (qs == null || ctl != c) ? 0 : qs.length;
1605 for (int i = 0; i < n; i += 2) {
1606 WorkQueue q; ForkJoinTask<?>[] a; int cap;
1607 if ((q = qs[i]) != null && (a = q.array) != null &&
1608 (cap = a.length) > 0 && a[(cap - 1) & q.base] != null) {
1609 if (ctl == c && compareAndSetCtl(c, prevCtl))
1610 w.phase = phase; // self-signal
1611 break; // else lost race
1612 }
1613 }
1614 }
1615 for (;;) { // await activation or termination
1616 if (w.phase >= 0)
1617 break;
1618 else if (tryTerminate(false, false))
1619 return -1;
1620 else if ((int)(ctl >> RC_SHIFT) > ac)
1621 Thread.onSpinWait(); // signal in progress
1622 else if (deadline != 0L)
1623 LockSupport.parkUntil(deadline);
1624 else
1625 LockSupport.park();
1626 if (w.phase >= 0)
1627 break;
1628 else if (deadline != 0L &&
1629 deadline - System.currentTimeMillis() <= TIMEOUT_SLOP &&
1630 compareAndSetCtl(c, ((UC_MASK & (c - TC_UNIT)) |
1631 (w.stackPred & SP_MASK)))) {
1632 w.phase = QUIET;
1633 return -1; // drop on timeout
1634 }
1635 else
1636 Thread.interrupted(); // clear status before repark
1637 }
1638 LockSupport.setCurrentBlocker(null);
1639 return 0;
1640 }
1641
1642 /**
1643 * Tries to decrement counts (sometimes implicitly) and possibly
1644 * arrange for a compensating worker in preparation for
1645 * blocking. May fail due to interference, in which case -1 is
1646 * returned so caller may retry. A zero return value indicates
1647 * that the caller doesn't need to re-adjust counts when later
1648 * unblocked.
1649 *
1650 * @param c incoming ctl value
1651 * @return ADJUST: block then adjust, 0: block without adjust, -1 : retry
1652 */
1653 private int tryCompensate(long c) {
1654 Predicate<? super ForkJoinPool> sat;
1655 int b = bounds; // counts are signed; centered at parallelism level == 0
1656 int minActive = (short)(b & SMASK),
1657 maxTotal = b >>> SWIDTH,
1658 active = (int)(c >> RC_SHIFT),
1659 total = (short)(c >>> TC_SHIFT), sp;
1660 if ((sp = (int)c & ~UNSIGNALLED) != 0) { // activate idle worker
1661 WorkQueue[] qs; int n; WorkQueue v;
1662 if ((qs = queues) != null && (n = qs.length) > 0 &&
1663 (v = qs[sp & (n - 1)]) != null) {
1664 Thread vt = v.owner;
1665 long nc = ((long)v.stackPred & SP_MASK) | (UC_MASK & c);
1666 if (compareAndSetCtl(c, nc)) {
1667 v.phase = sp;
1668 LockSupport.unpark(vt);
1669 return ADJUST;
1670 }
1671 }
1672 return -1; // retry
1673 }
1674 else if (total >= 0 && active > minActive) { // reduce parallelism
1675 long nc = ((RC_MASK & (c - RC_UNIT)) | (~RC_MASK & c));
1676 return compareAndSetCtl(c, nc) ? ADJUST : -1;
1677 }
1678 else if (total < maxTotal) { // expand pool
1679 long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1680 return !compareAndSetCtl(c, nc) ? -1 : !createWorker() ? 0 : ADJUST;
1681 }
1682 else if (!compareAndSetCtl(c, c)) // validate
1683 return -1;
1684 else if ((sat = saturate) != null && sat.test(this))
1685 return 0;
1686 else
1687 throw new RejectedExecutionException(
1688 "Thread limit exceeded replacing blocked worker");
1689 }
1690
1691 /**
1692 * Readjusts RC count; called from ForkJoinTask after blocking.
1693 */
1694 final void uncompensate() {
1695 getAndAddCtl(RC_UNIT);
1696 }
1697
1698 /**
1699 * Calls tryCompensate until success; needed for ForkJoinTask timed waits.
1700 *
1701 * @return 0 for no compensation, else ADJUST
1702 */
1703 final int preCompensate() {
1704 int comp;
1705 do {} while ((comp = tryCompensate(ctl)) < 0);
1706 return comp;
1707 }
1708
1709 /**
1710 * Helps if possible until the given task is done. Scans other
1711 * queues for a task produced by one of w's stealers; returning
1712 * compensated blocking sentinel if none are found.
1713 *
1714 * @param task the task
1715 * @param w caller's WorkQueue
1716 * @return task status on exit, or ADJUST for compensated blocking
1717 */
1718 final int helpJoin(ForkJoinTask<?> task, WorkQueue w) {
1719 int s = 0;
1720 if (task != null && w != null) {
1721 int wsrc = w.source, wid = w.config & SMASK, r = wid + 2;
1722 boolean scan = true;
1723 long c = 0L; // track ctl stability
1724 outer: for (;;) {
1725 if ((s = task.status) < 0)
1726 break;
1727 else if (!scan && c == (c = ctl)) {
1728 if (mode < 0)
1729 ForkJoinTask.cancelIgnoringExceptions(task);
1730 else if ((s = tryCompensate(c)) >= 0)
1731 break; // block
1732 }
1733 else { // scan for subtasks
1734 scan = false;
1735 WorkQueue[] qs = queues;
1736 int n = (qs == null) ? 0 : qs.length, m = n - 1;
1737 for (int i = n; i > 0; i -= 2, r += 2) {
1738 int j; WorkQueue q, x, y; ForkJoinTask<?>[] a;
1739 if ((q = qs[j = r & m]) != null) {
1740 int sq = q.source & SMASK, cap, b;
1741 if ((a = q.array) != null && (cap = a.length) > 0) {
1742 int k = (cap - 1) & (b = q.base);
1743 int nextBase = b + 1, src = j | SRC, sx;
1744 ForkJoinTask<?> t = WorkQueue.getSlot(a, k);
1745 boolean eligible = sq == wid ||
1746 ((x = qs[sq & m]) != null && // indirect
1747 ((sx = (x.source & SMASK)) == wid ||
1748 ((y = qs[sx & m]) != null && // 2-indirect
1749 (y.source & SMASK) == wid)));
1750 if ((s = task.status) < 0)
1751 break outer;
1752 else if ((q.source & SMASK) != sq ||
1753 q.base != b)
1754 scan = true; // inconsistent
1755 else if (t == null)
1756 scan |= (a[nextBase & (cap - 1)] != null ||
1757 q.top != b); // lagging
1758 else if (eligible) {
1759 if (WorkQueue.casSlotToNull(a, k, t)) {
1760 q.base = nextBase;
1761 w.source = src;
1762 t.doExec();
1763 w.source = wsrc;
1764 }
1765 scan = true;
1766 break;
1767 }
1768 }
1769 }
1770 }
1771 }
1772 }
1773 }
1774 return s;
1775 }
1776
1777 /**
1778 * Version of helpJoin for CountedCompleters, also usable with
1779 * external submitter threads. Scans for and runs subtasks of the
1780 * given root task, compensating and blocking if none are found.
1781 *
1782 * @param task root of CountedCompleter computation
1783 * @param w caller's WorkQueue
1784 * @return task status on exit, or ADJUST for compensated blocking
1785 */
1786 final int helpComplete(CountedCompleter<?> task, WorkQueue w) {
1787 int s = 0;
1788 if (task != null && w != null) {
1789 int r = w.config;
1790 boolean owned = (r & 1) != 0, scan = true, locals = true;
1791 long c = 0L;
1792 outer: for (;;) {
1793 if (locals) { // try locals before scanning
1794 if ((s = w.helpComplete(task, owned, 0)) < 0)
1795 break;
1796 locals = false;
1797 }
1798 else if ((s = task.status) < 0)
1799 break;
1800 else if (!scan && c == (c = ctl)) {
1801 if (mode < 0)
1802 ForkJoinTask.cancelIgnoringExceptions(task);
1803 else if (!owned || (s = tryCompensate(c)) >= 0)
1804 break; // block
1805 }
1806 else { // scan for subtasks
1807 scan = false;
1808 WorkQueue[] qs = queues;
1809 int n = (qs == null) ? 0 : qs.length;
1810 for (int i = n; i > 0; --i, ++r) {
1811 int j, cap, b; WorkQueue q; ForkJoinTask<?>[] a;
1812 boolean eligible = false;
1813 if ((q = qs[j = r & (n - 1)]) != null &&
1814 (a = q.array) != null && (cap = a.length) > 0) {
1815 int k = (cap - 1) & (b = q.base), nextBase = b + 1;
1816 ForkJoinTask<?> t = WorkQueue.getSlot(a, k);
1817 if (t instanceof CountedCompleter) {
1818 CountedCompleter<?> f = (CountedCompleter<?>)t;
1819 do {} while (!(eligible = (f == task)) &&
1820 (f = f.completer) != null);
1821 }
1822 if ((s = task.status) < 0)
1823 break outer;
1824 else if (q.base != b)
1825 scan = true; // inconsistent
1826 else if (t == null)
1827 scan |= (a[nextBase & (cap - 1)] != null ||
1828 q.top != b);
1829 else if (eligible) {
1830 if (WorkQueue.casSlotToNull(a, k, t)) {
1831 q.setBaseOpaque(nextBase);
1832 t.doExec();
1833 locals = true;
1834 }
1835 scan = true;
1836 break;
1837 }
1838 }
1839 }
1840 }
1841 }
1842 }
1843 return s;
1844 }
1845
1846 /**
1847 * Runs tasks until {@code isQuiescent()}. Rather than blocking
1848 * when tasks cannot be found, rescans until all others cannot
1849 * find tasks either.
1850 */
1851 final void helpQuiescePool(WorkQueue w) {
1852 if (w != null) {
1853 int prevSrc = w.source, wsrc = prevSrc, cfg = w.config, r = cfg + 1;
1854 for (boolean active = true, locals = true;;) {
1855 boolean busy = false, scan = false;
1856 if (locals) { // run local tasks before (re)polling
1857 locals = false;
1858 for (ForkJoinTask<?> u; (u = w.nextLocalTask(cfg)) != null;)
1859 u.doExec();
1860 }
1861 WorkQueue[] qs = queues;
1862 int n = (qs == null) ? 0 : qs.length;
1863 for (int i = n; i > 0; --i, ++r) {
1864 int j, b, cap; WorkQueue q; ForkJoinTask<?>[] a;
1865 if ((q = qs[j = (n - 1) & r]) != null && q != w &&
1866 (a = q.array) != null && (cap = a.length) > 0) {
1867 int k = (cap - 1) & (b = q.base);
1868 int nextBase = b + 1, src = j | SRC;
1869 ForkJoinTask<?> t = WorkQueue.getSlot(a, k);
1870 if (q.base != b)
1871 busy = scan = true;
1872 else if (t != null) {
1873 busy = scan = true;
1874 if (!active) { // increment before taking
1875 active = true;
1876 getAndAddCtl(RC_UNIT);
1877 }
1878 if (WorkQueue.casSlotToNull(a, k, t)) {
1879 q.base = nextBase;
1880 w.source = src;
1881 t.doExec();
1882 w.source = wsrc = prevSrc;
1883 locals = true;
1884 }
1885 break;
1886 }
1887 else if (!busy) {
1888 if (q.top != b || a[nextBase & (cap - 1)] != null)
1889 busy = scan = true;
1890 else if (q.source != QUIET && q.phase >= 0)
1891 busy = true;
1892 }
1893 }
1894 }
1895 VarHandle.acquireFence();
1896 if (!scan && queues == qs) {
1897 if (!busy) {
1898 w.source = prevSrc;
1899 if (!active)
1900 getAndAddCtl(RC_UNIT);
1901 break;
1902 }
1903 if (wsrc != QUIET)
1904 w.source = wsrc = QUIET;
1905 if (active) { // decrement
1906 active = false;
1907 getAndAddCtl(RC_MASK & -RC_UNIT);
1908 }
1909 else
1910 Thread.yield(); // no tasks but others busy
1911 }
1912 }
1913 }
1914 }
1915
1916 /**
1917 * Scans for and returns a polled task, if available. Used only
1918 * for untracked polls. Begins scan at an index (scanRover)
1919 * advanced on each call, to avoid systematic unfairness.
1920 *
1921 * @param submissionsOnly if true, only scan submission queues
1922 */
1923 private ForkJoinTask<?> pollScan(boolean submissionsOnly) {
1924 VarHandle.acquireFence();
1925 int r = scanRover += 0x61c88647; // Weyl increment; raciness OK
1926 if (submissionsOnly) // even indices only
1927 r &= ~1;
1928 int step = (submissionsOnly) ? 2 : 1;
1929 WorkQueue[] qs; int n;
1930 while ((qs = queues) != null && (n = qs.length) > 0) {
1931 boolean scan = false;
1932 for (int i = 0; i < n; i += step) {
1933 int j, cap, b; WorkQueue q; ForkJoinTask<?>[] a;
1934 if ((q = qs[j = (n - 1) & (r + i)]) != null &&
1935 (a = q.array) != null && (cap = a.length) > 0) {
1936 int k = (cap - 1) & (b = q.base), nextBase = b + 1;
1937 ForkJoinTask<?> t = WorkQueue.getSlot(a, k);
1938 if (q.base != b)
1939 scan = true;
1940 else if (t == null)
1941 scan |= (q.top != b || a[nextBase & (cap - 1)] != null);
1942 else if (!WorkQueue.casSlotToNull(a, k, t))
1943 scan = true;
1944 else {
1945 q.setBaseOpaque(nextBase);
1946 return t;
1947 }
1948 }
1949 }
1950 if (!scan && queues == qs)
1951 break;
1952 }
1953 return null;
1954 }
1955
1956 /**
1957 * Gets and removes a local or stolen task for the given worker.
1958 *
1959 * @return a task, if available
1960 */
1961 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
1962 ForkJoinTask<?> t;
1963 if (w == null || (t = w.nextLocalTask(w.config)) == null)
1964 t = pollScan(false);
1965 return t;
1966 }
1967
1968 // External operations
1969
1970 /**
1971 * Finds and locks a WorkQueue for an external submitter, or
1972 * returns null if shutdown or terminating.
1973 */
1974 final WorkQueue submissionQueue() {
1975 int r;
1976 if ((r = ThreadLocalRandom.getProbe()) == 0) {
1977 ThreadLocalRandom.localInit(); // initialize caller's probe
1978 r = ThreadLocalRandom.getProbe();
1979 }
1980 for (int id = r << 1;;) { // even indices only
1981 int md = mode, n, i; WorkQueue q; ReentrantLock lock;
1982 WorkQueue[] qs = queues;
1983 if ((md & SHUTDOWN) != 0 || qs == null || (n = qs.length) <= 0)
1984 return null;
1985 else if ((q = qs[i = (n - 1) & id]) == null) {
1986 if ((lock = registrationLock) != null) {
1987 WorkQueue w = new WorkQueue(id | SRC);
1988 lock.lock(); // install under lock
1989 if (qs[i] == null)
1990 qs[i] = w; // else lost race; discard
1991 lock.unlock();
1992 }
1993 }
1994 else if (!q.tryLock()) // move and restart
1995 id = (r = ThreadLocalRandom.advanceProbe(r)) << 1;
1996 else
1997 return q;
1998 }
1999 }
2000
2001 /**
2002 * Adds the given task to an external submission queue, or throws
2003 * exception if shutdown or terminating.
2004 *
2005 * @param task the task. Caller must ensure non-null.
2006 */
2007 final void externalPush(ForkJoinTask<?> task) {
2008 WorkQueue q;
2009 if ((q = submissionQueue()) == null)
2010 throw new RejectedExecutionException(); // shutdown or disabled
2011 else if (q.lockedPush(task))
2012 signalWork();
2013 }
2014
2015 /**
2016 * Pushes a possibly-external submission.
2017 */
2018 private <T> ForkJoinTask<T> externalSubmit(ForkJoinTask<T> task) {
2019 Thread t; ForkJoinWorkerThread wt; WorkQueue q;
2020 if (task == null)
2021 throw new NullPointerException();
2022 if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) &&
2023 (q = (wt = (ForkJoinWorkerThread)t).workQueue) != null &&
2024 wt.pool == this)
2025 q.push(task, this);
2026 else
2027 externalPush(task);
2028 return task;
2029 }
2030
2031 /**
2032 * Returns common pool queue for an external thread that has
2033 * possibly ever submitted a common pool task (nonzero probe), or
2034 * null if none.
2035 */
2036 static WorkQueue commonQueue() {
2037 ForkJoinPool p; WorkQueue[] qs;
2038 int r = ThreadLocalRandom.getProbe(), n;
2039 return ((p = common) != null && (qs = p.queues) != null &&
2040 (n = qs.length) > 0 && r != 0) ?
2041 qs[(n - 1) & (r << 1)] : null;
2042 }
2043
2044 /**
2045 * If the given executor is a ForkJoinPool, poll and execute
2046 * AsynchronousCompletionTasks from worker's queue until none are
2047 * available or blocker is released.
2048 */
2049 static void helpAsyncBlocker(Executor e, ManagedBlocker blocker) {
2050 WorkQueue w = null; Thread t; ForkJoinWorkerThread wt;
2051 if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) {
2052 if ((wt = (ForkJoinWorkerThread)t).pool == e)
2053 w = wt.workQueue;
2054 }
2055 else if (e == common)
2056 w = commonQueue();
2057 if (w != null)
2058 w.helpAsyncBlocker(blocker);
2059 }
2060
2061 /**
2062 * Returns a cheap heuristic guide for task partitioning when
2063 * programmers, frameworks, tools, or languages have little or no
2064 * idea about task granularity. In essence, by offering this
2065 * method, we ask users only about tradeoffs in overhead vs
2066 * expected throughput and its variance, rather than how finely to
2067 * partition tasks.
2068 *
2069 * In a steady state strict (tree-structured) computation, each
2070 * thread makes available for stealing enough tasks for other
2071 * threads to remain active. Inductively, if all threads play by
2072 * the same rules, each thread should make available only a
2073 * constant number of tasks.
2074 *
2075 * The minimum useful constant is just 1. But using a value of 1
2076 * would require immediate replenishment upon each steal to
2077 * maintain enough tasks, which is infeasible. Further,
2078 * partitionings/granularities of offered tasks should minimize
2079 * steal rates, which in general means that threads nearer the top
2080 * of computation tree should generate more than those nearer the
2081 * bottom. In perfect steady state, each thread is at
2082 * approximately the same level of computation tree. However,
2083 * producing extra tasks amortizes the uncertainty of progress and
2084 * diffusion assumptions.
2085 *
2086 * So, users will want to use values larger (but not much larger)
2087 * than 1 to both smooth over transient shortages and hedge
2088 * against uneven progress; as traded off against the cost of
2089 * extra task overhead. We leave the user to pick a threshold
2090 * value to compare with the results of this call to guide
2091 * decisions, but recommend values such as 3.
2092 *
2093 * When all threads are active, it is on average OK to estimate
2094 * surplus strictly locally. In steady-state, if one thread is
2095 * maintaining say 2 surplus tasks, then so are others. So we can
2096 * just use estimated queue length. However, this strategy alone
2097 * leads to serious mis-estimates in some non-steady-state
2098 * conditions (ramp-up, ramp-down, other stalls). We can detect
2099 * many of these by further considering the number of "idle"
2100 * threads, that are known to have zero queued tasks, so
2101 * compensate by a factor of (#idle/#active) threads.
2102 */
2103 static int getSurplusQueuedTaskCount() {
2104 Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2105 if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) &&
2106 (pool = (wt = (ForkJoinWorkerThread)t).pool) != null &&
2107 (q = wt.workQueue) != null) {
2108 int p = pool.mode & SMASK;
2109 int a = p + (int)(pool.ctl >> RC_SHIFT);
2110 int n = q.top - q.base;
2111 return n - (a > (p >>>= 1) ? 0 :
2112 a > (p >>>= 1) ? 1 :
2113 a > (p >>>= 1) ? 2 :
2114 a > (p >>>= 1) ? 4 :
2115 8);
2116 }
2117 return 0;
2118 }
2119
2120 // Termination
2121
2122 /**
2123 * Possibly initiates and/or completes termination.
2124 *
2125 * @param now if true, unconditionally terminate, else only
2126 * if no work and no active workers
2127 * @param enable if true, terminate when next possible
2128 * @return true if terminating or terminated
2129 */
2130 private boolean tryTerminate(boolean now, boolean enable) {
2131 int md; // try to set SHUTDOWN, then STOP, then help terminate
2132 if (((md = mode) & SHUTDOWN) == 0) {
2133 if (!enable)
2134 return false;
2135 md = getAndBitwiseOrMode(SHUTDOWN);
2136 }
2137 if ((md & STOP) == 0) {
2138 if (!now && !isQuiescent())
2139 return false;
2140 md = getAndBitwiseOrMode(STOP);
2141 }
2142 if ((md & TERMINATED) == 0) {
2143 for (ForkJoinTask<?> t; (t = pollScan(false)) != null; )
2144 ForkJoinTask.cancelIgnoringExceptions(t); // cancel tasks
2145 WorkQueue[] qs; WorkQueue q; Thread t;
2146 int n = ((qs = queues) == null) ? 0 : qs.length;
2147 for (int i = 1; i < n; i += 2) { // unblock parked workers
2148 if ((q = qs[i]) != null && (t = q.owner) != null &&
2149 !t.isInterrupted()) {
2150 try {
2151 t.interrupt();
2152 } catch (Throwable ignore) {
2153 }
2154 }
2155 }
2156
2157 ReentrantLock lock; Condition cond; // finish if no workers
2158 if ((md & SMASK) + (short)(ctl >>> TC_SHIFT) <= 0 &&
2159 (getAndBitwiseOrMode(TERMINATED) & TERMINATED) == 0 &&
2160 (lock = registrationLock) != null) {
2161 lock.lock();
2162 if ((cond = termination) != null)
2163 cond.signalAll();
2164 lock.unlock();
2165 }
2166 }
2167 return true;
2168 }
2169
2170 // Exported methods
2171
2172 // Constructors
2173
2174 /**
2175 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2176 * java.lang.Runtime#availableProcessors}, using defaults for all
2177 * other parameters (see {@link #ForkJoinPool(int,
2178 * ForkJoinWorkerThreadFactory, UncaughtExceptionHandler, boolean,
2179 * int, int, int, Predicate, long, TimeUnit)}).
2180 *
2181 * @throws SecurityException if a security manager exists and
2182 * the caller is not permitted to modify threads
2183 * because it does not hold {@link
2184 * java.lang.RuntimePermission}{@code ("modifyThread")}
2185 */
2186 public ForkJoinPool() {
2187 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2188 defaultForkJoinWorkerThreadFactory, null, false,
2189 0, MAX_CAP, 1, null, DEFAULT_KEEPALIVE, TimeUnit.MILLISECONDS);
2190 }
2191
2192 /**
2193 * Creates a {@code ForkJoinPool} with the indicated parallelism
2194 * level, using defaults for all other parameters (see {@link
2195 * #ForkJoinPool(int, ForkJoinWorkerThreadFactory,
2196 * UncaughtExceptionHandler, boolean, int, int, int, Predicate,
2197 * long, TimeUnit)}).
2198 *
2199 * @param parallelism the parallelism level
2200 * @throws IllegalArgumentException if parallelism less than or
2201 * equal to zero, or greater than implementation limit
2202 * @throws SecurityException if a security manager exists and
2203 * the caller is not permitted to modify threads
2204 * because it does not hold {@link
2205 * java.lang.RuntimePermission}{@code ("modifyThread")}
2206 */
2207 public ForkJoinPool(int parallelism) {
2208 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false,
2209 0, MAX_CAP, 1, null, DEFAULT_KEEPALIVE, TimeUnit.MILLISECONDS);
2210 }
2211
2212 /**
2213 * Creates a {@code ForkJoinPool} with the given parameters (using
2214 * defaults for others -- see {@link #ForkJoinPool(int,
2215 * ForkJoinWorkerThreadFactory, UncaughtExceptionHandler, boolean,
2216 * int, int, int, Predicate, long, TimeUnit)}).
2217 *
2218 * @param parallelism the parallelism level. For default value,
2219 * use {@link java.lang.Runtime#availableProcessors}.
2220 * @param factory the factory for creating new threads. For default value,
2221 * use {@link #defaultForkJoinWorkerThreadFactory}.
2222 * @param handler the handler for internal worker threads that
2223 * terminate due to unrecoverable errors encountered while executing
2224 * tasks. For default value, use {@code null}.
2225 * @param asyncMode if true,
2226 * establishes local first-in-first-out scheduling mode for forked
2227 * tasks that are never joined. This mode may be more appropriate
2228 * than default locally stack-based mode in applications in which
2229 * worker threads only process event-style asynchronous tasks.
2230 * For default value, use {@code false}.
2231 * @throws IllegalArgumentException if parallelism less than or
2232 * equal to zero, or greater than implementation limit
2233 * @throws NullPointerException if the factory is null
2234 * @throws SecurityException if a security manager exists and
2235 * the caller is not permitted to modify threads
2236 * because it does not hold {@link
2237 * java.lang.RuntimePermission}{@code ("modifyThread")}
2238 */
2239 public ForkJoinPool(int parallelism,
2240 ForkJoinWorkerThreadFactory factory,
2241 UncaughtExceptionHandler handler,
2242 boolean asyncMode) {
2243 this(parallelism, factory, handler, asyncMode,
2244 0, MAX_CAP, 1, null, DEFAULT_KEEPALIVE, TimeUnit.MILLISECONDS);
2245 }
2246
2247 /**
2248 * Creates a {@code ForkJoinPool} with the given parameters.
2249 *
2250 * @param parallelism the parallelism level. For default value,
2251 * use {@link java.lang.Runtime#availableProcessors}.
2252 *
2253 * @param factory the factory for creating new threads. For
2254 * default value, use {@link #defaultForkJoinWorkerThreadFactory}.
2255 *
2256 * @param handler the handler for internal worker threads that
2257 * terminate due to unrecoverable errors encountered while
2258 * executing tasks. For default value, use {@code null}.
2259 *
2260 * @param asyncMode if true, establishes local first-in-first-out
2261 * scheduling mode for forked tasks that are never joined. This
2262 * mode may be more appropriate than default locally stack-based
2263 * mode in applications in which worker threads only process
2264 * event-style asynchronous tasks. For default value, use {@code
2265 * false}.
2266 *
2267 * @param corePoolSize the number of threads to keep in the pool
2268 * (unless timed out after an elapsed keep-alive). Normally (and
2269 * by default) this is the same value as the parallelism level,
2270 * but may be set to a larger value to reduce dynamic overhead if
2271 * tasks regularly block. Using a smaller value (for example
2272 * {@code 0}) has the same effect as the default.
2273 *
2274 * @param maximumPoolSize the maximum number of threads allowed.
2275 * When the maximum is reached, attempts to replace blocked
2276 * threads fail. (However, because creation and termination of
2277 * different threads may overlap, and may be managed by the given
2278 * thread factory, this value may be transiently exceeded.) To
2279 * arrange the same value as is used by default for the common
2280 * pool, use {@code 256} plus the {@code parallelism} level. (By
2281 * default, the common pool allows a maximum of 256 spare
2282 * threads.) Using a value (for example {@code
2283 * Integer.MAX_VALUE}) larger than the implementation's total
2284 * thread limit has the same effect as using this limit (which is
2285 * the default).
2286 *
2287 * @param minimumRunnable the minimum allowed number of core
2288 * threads not blocked by a join or {@link ManagedBlocker}. To
2289 * ensure progress, when too few unblocked threads exist and
2290 * unexecuted tasks may exist, new threads are constructed, up to
2291 * the given maximumPoolSize. For the default value, use {@code
2292 * 1}, that ensures liveness. A larger value might improve
2293 * throughput in the presence of blocked activities, but might
2294 * not, due to increased overhead. A value of zero may be
2295 * acceptable when submitted tasks cannot have dependencies
2296 * requiring additional threads.
2297 *
2298 * @param saturate if non-null, a predicate invoked upon attempts
2299 * to create more than the maximum total allowed threads. By
2300 * default, when a thread is about to block on a join or {@link
2301 * ManagedBlocker}, but cannot be replaced because the
2302 * maximumPoolSize would be exceeded, a {@link
2303 * RejectedExecutionException} is thrown. But if this predicate
2304 * returns {@code true}, then no exception is thrown, so the pool
2305 * continues to operate with fewer than the target number of
2306 * runnable threads, which might not ensure progress.
2307 *
2308 * @param keepAliveTime the elapsed time since last use before
2309 * a thread is terminated (and then later replaced if needed).
2310 * For the default value, use {@code 60, TimeUnit.SECONDS}.
2311 *
2312 * @param unit the time unit for the {@code keepAliveTime} argument
2313 *
2314 * @throws IllegalArgumentException if parallelism is less than or
2315 * equal to zero, or is greater than implementation limit,
2316 * or if maximumPoolSize is less than parallelism,
2317 * of if the keepAliveTime is less than or equal to zero.
2318 * @throws NullPointerException if the factory is null
2319 * @throws SecurityException if a security manager exists and
2320 * the caller is not permitted to modify threads
2321 * because it does not hold {@link
2322 * java.lang.RuntimePermission}{@code ("modifyThread")}
2323 * @since 9
2324 */
2325 public ForkJoinPool(int parallelism,
2326 ForkJoinWorkerThreadFactory factory,
2327 UncaughtExceptionHandler handler,
2328 boolean asyncMode,
2329 int corePoolSize,
2330 int maximumPoolSize,
2331 int minimumRunnable,
2332 Predicate<? super ForkJoinPool> saturate,
2333 long keepAliveTime,
2334 TimeUnit unit) {
2335 checkPermission();
2336 int p = parallelism;
2337 if (p <= 0 || p > MAX_CAP || p > maximumPoolSize || keepAliveTime <= 0L)
2338 throw new IllegalArgumentException();
2339 if (factory == null || unit == null)
2340 throw new NullPointerException();
2341 this.factory = factory;
2342 this.ueh = handler;
2343 this.saturate = saturate;
2344 this.keepAlive = Math.max(unit.toMillis(keepAliveTime), TIMEOUT_SLOP);
2345 int size = 1 << (33 - Integer.numberOfLeadingZeros(p - 1));
2346 int corep = Math.min(Math.max(corePoolSize, p), MAX_CAP);
2347 int maxSpares = Math.min(maximumPoolSize, MAX_CAP) - p;
2348 int minAvail = Math.min(Math.max(minimumRunnable, 0), MAX_CAP);
2349 this.bounds = ((minAvail - p) & SMASK) | (maxSpares << SWIDTH);
2350 this.mode = p | (asyncMode ? FIFO : 0);
2351 this.ctl = ((((long)(-corep) << TC_SHIFT) & TC_MASK) |
2352 (((long)(-p) << RC_SHIFT) & RC_MASK));
2353 this.registrationLock = new ReentrantLock();
2354 this.queues = new WorkQueue[size];
2355 String pid = Integer.toString(getAndAddPoolIds(1) + 1);
2356 this.workerNamePrefix = "ForkJoinPool-" + pid + "-worker-";
2357 }
2358
2359 // helper method for commonPool constructor
2360 private static Object newInstanceFromSystemProperty(String property)
2361 throws ReflectiveOperationException {
2362 String className = System.getProperty(property);
2363 return (className == null)
2364 ? null
2365 : ClassLoader.getSystemClassLoader().loadClass(className)
2366 .getConstructor().newInstance();
2367 }
2368
2369 /**
2370 * Constructor for common pool using parameters possibly
2371 * overridden by system properties
2372 */
2373 private ForkJoinPool(byte forCommonPoolOnly) {
2374 int parallelism = Runtime.getRuntime().availableProcessors() - 1;
2375 ForkJoinWorkerThreadFactory fac = null;
2376 UncaughtExceptionHandler handler = null;
2377 try { // ignore exceptions in accessing/parsing properties
2378 fac = (ForkJoinWorkerThreadFactory) newInstanceFromSystemProperty(
2379 "java.util.concurrent.ForkJoinPool.common.threadFactory");
2380 handler = (UncaughtExceptionHandler) newInstanceFromSystemProperty(
2381 "java.util.concurrent.ForkJoinPool.common.exceptionHandler");
2382 String pp = System.getProperty
2383 ("java.util.concurrent.ForkJoinPool.common.parallelism");
2384 if (pp != null)
2385 parallelism = Integer.parseInt(pp);
2386 } catch (Exception ignore) {
2387 }
2388 int p = this.mode = Math.min(Math.max(parallelism, 0), MAX_CAP);
2389 int size = 1 << (33 - Integer.numberOfLeadingZeros(p > 0 ? p - 1 : 1));
2390 this.factory = (fac != null) ? fac :
2391 (System.getSecurityManager() == null ?
2392 defaultForkJoinWorkerThreadFactory :
2393 new InnocuousForkJoinWorkerThreadFactory());
2394 this.ueh = handler;
2395 this.keepAlive = DEFAULT_KEEPALIVE;
2396 this.saturate = null;
2397 this.workerNamePrefix = null;
2398 this.bounds = ((1 - p) & SMASK) | (COMMON_MAX_SPARES << SWIDTH);
2399 this.ctl = ((((long)(-p) << TC_SHIFT) & TC_MASK) |
2400 (((long)(-p) << RC_SHIFT) & RC_MASK));
2401 this.queues = new WorkQueue[size];
2402 this.registrationLock = new ReentrantLock();
2403 }
2404
2405 /**
2406 * Returns the common pool instance. This pool is statically
2407 * constructed; its run state is unaffected by attempts to {@link
2408 * #shutdown} or {@link #shutdownNow}. However this pool and any
2409 * ongoing processing are automatically terminated upon program
2410 * {@link System#exit}. Any program that relies on asynchronous
2411 * task processing to complete before program termination should
2412 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2413 * before exit.
2414 *
2415 * @return the common pool instance
2416 * @since 1.8
2417 */
2418 public static ForkJoinPool commonPool() {
2419 // assert common != null : "static init error";
2420 return common;
2421 }
2422
2423 // Execution methods
2424
2425 /**
2426 * Performs the given task, returning its result upon completion.
2427 * If the computation encounters an unchecked Exception or Error,
2428 * it is rethrown as the outcome of this invocation. Rethrown
2429 * exceptions behave in the same way as regular exceptions, but,
2430 * when possible, contain stack traces (as displayed for example
2431 * using {@code ex.printStackTrace()}) of both the current thread
2432 * as well as the thread actually encountering the exception;
2433 * minimally only the latter.
2434 *
2435 * @param task the task
2436 * @param <T> the type of the task's result
2437 * @return the task's result
2438 * @throws NullPointerException if the task is null
2439 * @throws RejectedExecutionException if the task cannot be
2440 * scheduled for execution
2441 */
2442 public <T> T invoke(ForkJoinTask<T> task) {
2443 externalSubmit(task);
2444 return task.join();
2445 }
2446
2447 /**
2448 * Arranges for (asynchronous) execution of the given task.
2449 *
2450 * @param task the task
2451 * @throws NullPointerException if the task is null
2452 * @throws RejectedExecutionException if the task cannot be
2453 * scheduled for execution
2454 */
2455 public void execute(ForkJoinTask<?> task) {
2456 externalSubmit(task);
2457 }
2458
2459 // AbstractExecutorService methods
2460
2461 /**
2462 * @throws NullPointerException if the task is null
2463 * @throws RejectedExecutionException if the task cannot be
2464 * scheduled for execution
2465 */
2466 @Override
2467 @SuppressWarnings("unchecked")
2468 public void execute(Runnable task) {
2469 externalSubmit((task instanceof ForkJoinTask<?>)
2470 ? (ForkJoinTask<Void>) task // avoid re-wrap
2471 : new ForkJoinTask.RunnableExecuteAction(task));
2472 }
2473
2474 /**
2475 * Submits a ForkJoinTask for execution.
2476 *
2477 * @param task the task to submit
2478 * @param <T> the type of the task's result
2479 * @return the task
2480 * @throws NullPointerException if the task is null
2481 * @throws RejectedExecutionException if the task cannot be
2482 * scheduled for execution
2483 */
2484 public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2485 return externalSubmit(task);
2486 }
2487
2488 /**
2489 * @throws NullPointerException if the task is null
2490 * @throws RejectedExecutionException if the task cannot be
2491 * scheduled for execution
2492 */
2493 @Override
2494 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2495 return externalSubmit(new ForkJoinTask.AdaptedCallable<T>(task));
2496 }
2497
2498 /**
2499 * @throws NullPointerException if the task is null
2500 * @throws RejectedExecutionException if the task cannot be
2501 * scheduled for execution
2502 */
2503 @Override
2504 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2505 return externalSubmit(new ForkJoinTask.AdaptedRunnable<T>(task, result));
2506 }
2507
2508 /**
2509 * @throws NullPointerException if the task is null
2510 * @throws RejectedExecutionException if the task cannot be
2511 * scheduled for execution
2512 */
2513 @Override
2514 @SuppressWarnings("unchecked")
2515 public ForkJoinTask<?> submit(Runnable task) {
2516 return externalSubmit((task instanceof ForkJoinTask<?>)
2517 ? (ForkJoinTask<Void>) task // avoid re-wrap
2518 : new ForkJoinTask.AdaptedRunnableAction(task));
2519 }
2520
2521 /**
2522 * Task class, plus some helper methods, for invokeAll and invokeAny.
2523 */
2524 static final class BulkTask<E> extends CountedCompleter<E> {
2525 private static final long serialVersionUID = 2838392045355241008L;
2526 @SuppressWarnings("serial") // Conditionally serializable
2527 final Callable<E> callable;
2528 @SuppressWarnings("serial") // Conditionally serializable
2529 E result;
2530 final boolean invokeAny; // false if performing invokeAll
2531 BulkTask(BulkTask<E> parent, Callable<E> callable, boolean invokeAny) {
2532 super(parent);
2533 this.callable = callable;
2534 this.invokeAny = invokeAny;
2535 }
2536 public E getRawResult() { return result; }
2537 public void setRawResult(E r) { result = r; }
2538
2539 public void compute() {
2540 try {
2541 E r = callable.call();
2542 @SuppressWarnings("unchecked") CountedCompleter<E> p =
2543 invokeAny ? (CountedCompleter<E>)getCompleter() : null;
2544 if (p != null)
2545 p.complete(r);
2546 else
2547 complete(r);
2548 } catch (Throwable ex) {
2549 completeExceptionally(ex);
2550 }
2551 }
2552
2553 static void cancelAll(BulkTask<?>[] fs) { // cancel all nonnull tasks
2554 if (fs != null) {
2555 for (BulkTask<?> f: fs) {
2556 if (f != null)
2557 f.cancel(false);
2558 }
2559 }
2560 }
2561
2562 /**
2563 * Creates, records, and forks a BulkTask for each Callable;
2564 * returns the array, with first element root task (if nonempty).
2565 */
2566 static <T> BulkTask<T>[] forkAll(Collection<? extends Callable<T>> cs,
2567 boolean invokeAny) {
2568 int n = cs.size();
2569 @SuppressWarnings("unchecked")
2570 BulkTask<T>[] fs = (BulkTask<T>[])new BulkTask<?>[n];
2571 BulkTask<T> root = null; // parent completer for all others
2572 Iterator<? extends Callable<T>> it = cs.iterator();
2573 int i = 0; // ignores extra elements if cs.size() inconsistent
2574 while (i < n && it.hasNext()) {
2575 Callable<T> c; BulkTask<T> f;
2576 if ((c = it.next()) == null) {
2577 cancelAll(fs);
2578 throw new NullPointerException();
2579 }
2580 fs[i++] = f = new BulkTask<T>(root, c, invokeAny);
2581 if (root == null)
2582 (root = f).setPendingCount(n);
2583 f.fork();
2584 }
2585 return fs;
2586 }
2587
2588 /**
2589 * If completed abnormally, throws any exception encountered
2590 * by any task in array, or a CancellationException if none,
2591 * wrapped in ExecutionException. Else returns result.
2592 */
2593 E reportInvokeAnyResult(BulkTask<?>[] fs) throws ExecutionException {
2594 E r = getRawResult();
2595 if (r == null && isCompletedAbnormally()) {
2596 Throwable ex = null;
2597 if (fs != null) {
2598 for (BulkTask<?> f: fs) {
2599 if (f != null && (ex = f.getException()) != null)
2600 break;
2601 }
2602 }
2603 if (ex == null)
2604 ex = new CancellationException();
2605 throw new ExecutionException(ex);
2606 }
2607 return r;
2608 }
2609 }
2610
2611 /**
2612 * @throws NullPointerException {@inheritDoc}
2613 * @throws RejectedExecutionException {@inheritDoc}
2614 */
2615 @Override
2616 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2617 BulkTask<T>[] fs; BulkTask<T> root;
2618 if ((fs = BulkTask.forkAll(tasks, false)) != null && fs.length > 0 &&
2619 (root = fs[0]) != null)
2620 root.quietlyJoin();
2621 return Arrays.asList(fs);
2622 }
2623
2624 @Override
2625 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks,
2626 long timeout, TimeUnit unit)
2627 throws InterruptedException {
2628 BulkTask<T>[] fs; BulkTask<T> root;
2629 long deadline = unit.toNanos(timeout) + System.nanoTime();
2630 if ((fs = BulkTask.forkAll(tasks, false)) != null && fs.length > 0 &&
2631 (root = fs[0]) != null) {
2632 try {
2633 root.get(deadline, TimeUnit.NANOSECONDS);
2634 } catch (Exception ex) {
2635 BulkTask.cancelAll(fs);
2636 }
2637 }
2638 return Arrays.asList(fs);
2639 }
2640
2641 @Override
2642 public <T> T invokeAny(Collection<? extends Callable<T>> tasks)
2643 throws InterruptedException, ExecutionException {
2644 BulkTask<T>[] fs; BulkTask<T> root;
2645 if ((fs = BulkTask.forkAll(tasks, true)) != null && fs.length > 0 &&
2646 (root = fs[0]) != null) {
2647 root.quietlyJoin();
2648 BulkTask.cancelAll(fs);
2649 return root.reportInvokeAnyResult(fs);
2650 }
2651 else
2652 throw new IllegalArgumentException(); // no tasks
2653 }
2654
2655 @Override
2656 public <T> T invokeAny(Collection<? extends Callable<T>> tasks,
2657 long timeout, TimeUnit unit)
2658 throws InterruptedException, ExecutionException, TimeoutException {
2659 int par = mode & SMASK;
2660 BulkTask<T>[] fs; BulkTask<T> root;
2661 long deadline = unit.toNanos(timeout) + System.nanoTime();
2662 if ((fs = BulkTask.forkAll(tasks, true)) != null && fs.length > 0 &&
2663 (root = fs[0]) != null) {
2664 TimeoutException tex = null;
2665 try {
2666 if (par == 0) // if no workers, caller must execute
2667 root.get();
2668 else
2669 root.get(deadline, TimeUnit.NANOSECONDS);
2670 } catch (TimeoutException tx) {
2671 tex = tx;
2672 } catch (Throwable ignore) {
2673 }
2674 BulkTask.cancelAll(fs);
2675 if (tex != null)
2676 throw tex;
2677 return root.reportInvokeAnyResult(fs);
2678 }
2679 else
2680 throw new IllegalArgumentException();
2681 }
2682
2683 /**
2684 * Returns the factory used for constructing new workers.
2685 *
2686 * @return the factory used for constructing new workers
2687 */
2688 public ForkJoinWorkerThreadFactory getFactory() {
2689 return factory;
2690 }
2691
2692 /**
2693 * Returns the handler for internal worker threads that terminate
2694 * due to unrecoverable errors encountered while executing tasks.
2695 *
2696 * @return the handler, or {@code null} if none
2697 */
2698 public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2699 return ueh;
2700 }
2701
2702 /**
2703 * Returns the targeted parallelism level of this pool.
2704 *
2705 * @return the targeted parallelism level of this pool
2706 */
2707 public int getParallelism() {
2708 int par = mode & SMASK;
2709 return (par > 0) ? par : 1;
2710 }
2711
2712 /**
2713 * Returns the targeted parallelism level of the common pool.
2714 *
2715 * @return the targeted parallelism level of the common pool
2716 * @since 1.8
2717 */
2718 public static int getCommonPoolParallelism() {
2719 return COMMON_PARALLELISM;
2720 }
2721
2722 /**
2723 * Returns the number of worker threads that have started but not
2724 * yet terminated. The result returned by this method may differ
2725 * from {@link #getParallelism} when threads are created to
2726 * maintain parallelism when others are cooperatively blocked.
2727 *
2728 * @return the number of worker threads
2729 */
2730 public int getPoolSize() {
2731 return ((mode & SMASK) + (short)(ctl >>> TC_SHIFT));
2732 }
2733
2734 /**
2735 * Returns {@code true} if this pool uses local first-in-first-out
2736 * scheduling mode for forked tasks that are never joined.
2737 *
2738 * @return {@code true} if this pool uses async mode
2739 */
2740 public boolean getAsyncMode() {
2741 return (mode & FIFO) != 0;
2742 }
2743
2744 /**
2745 * Returns an estimate of the number of worker threads that are
2746 * not blocked waiting to join tasks or for other managed
2747 * synchronization. This method may overestimate the
2748 * number of running threads.
2749 *
2750 * @return the number of worker threads
2751 */
2752 public int getRunningThreadCount() {
2753 VarHandle.acquireFence();
2754 WorkQueue[] qs; WorkQueue q;
2755 int rc = 0;
2756 if ((qs = queues) != null) {
2757 for (int i = 1; i < qs.length; i += 2) {
2758 if ((q = qs[i]) != null && q.isApparentlyUnblocked())
2759 ++rc;
2760 }
2761 }
2762 return rc;
2763 }
2764
2765 /**
2766 * Returns an estimate of the number of threads that are currently
2767 * stealing or executing tasks. This method may overestimate the
2768 * number of active threads.
2769 *
2770 * @return the number of active threads
2771 */
2772 public int getActiveThreadCount() {
2773 int r = (mode & SMASK) + (int)(ctl >> RC_SHIFT);
2774 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2775 }
2776
2777 /**
2778 * Returns {@code true} if all worker threads are currently idle.
2779 * An idle worker is one that cannot obtain a task to execute
2780 * because none are available to steal from other threads, and
2781 * there are no pending submissions to the pool. This method is
2782 * conservative; it might not return {@code true} immediately upon
2783 * idleness of all threads, but will eventually become true if
2784 * threads remain inactive.
2785 *
2786 * @return {@code true} if all threads are currently idle
2787 */
2788 public boolean isQuiescent() {
2789 int m, p;
2790 return ((((m = mode) & STOP) != 0) ||
2791 ((p = m & SMASK) + (int)(ctl >> RC_SHIFT) <= 0 &&
2792 !hasQueuedSubmissions() && p + (int)(ctl >> RC_SHIFT) <= 0) ||
2793 (mode & STOP) != 0); // recheck
2794 }
2795
2796 /**
2797 * Returns an estimate of the total number of completed tasks that
2798 * were executed by a thread other than their submitter. The
2799 * reported value underestimates the actual total number of steals
2800 * when the pool is not quiescent. This value may be useful for
2801 * monitoring and tuning fork/join programs: in general, steal
2802 * counts should be high enough to keep threads busy, but low
2803 * enough to avoid overhead and contention across threads.
2804 *
2805 * @return the number of steals
2806 */
2807 public long getStealCount() {
2808 long count = stealCount;
2809 WorkQueue[] qs; WorkQueue q;
2810 if ((qs = queues) != null) {
2811 for (int i = 1; i < qs.length; i += 2) {
2812 if ((q = qs[i]) != null)
2813 count += (long)q.nsteals & 0xffffffffL;
2814 }
2815 }
2816 return count;
2817 }
2818
2819 /**
2820 * Returns an estimate of the total number of tasks currently held
2821 * in queues by worker threads (but not including tasks submitted
2822 * to the pool that have not begun executing). This value is only
2823 * an approximation, obtained by iterating across all threads in
2824 * the pool. This method may be useful for tuning task
2825 * granularities.
2826 *
2827 * @return the number of queued tasks
2828 */
2829 public long getQueuedTaskCount() {
2830 VarHandle.acquireFence();
2831 WorkQueue[] qs; WorkQueue q;
2832 int count = 0;
2833 if ((qs = queues) != null) {
2834 for (int i = 1; i < qs.length; i += 2) {
2835 if ((q = qs[i]) != null)
2836 count += q.queueSize();
2837 }
2838 }
2839 return count;
2840 }
2841
2842 /**
2843 * Returns an estimate of the number of tasks submitted to this
2844 * pool that have not yet begun executing. This method may take
2845 * time proportional to the number of submissions.
2846 *
2847 * @return the number of queued submissions
2848 */
2849 public int getQueuedSubmissionCount() {
2850 VarHandle.acquireFence();
2851 WorkQueue[] qs; WorkQueue q;
2852 int count = 0;
2853 if ((qs = queues) != null) {
2854 for (int i = 0; i < qs.length; i += 2) {
2855 if ((q = qs[i]) != null)
2856 count += q.queueSize();
2857 }
2858 }
2859 return count;
2860 }
2861
2862 /**
2863 * Returns {@code true} if there are any tasks submitted to this
2864 * pool that have not yet begun executing.
2865 *
2866 * @return {@code true} if there are any queued submissions
2867 */
2868 public boolean hasQueuedSubmissions() {
2869 VarHandle.acquireFence();
2870 WorkQueue[] qs; WorkQueue q;
2871 if ((qs = queues) != null) {
2872 for (int i = 0; i < qs.length; i += 2) {
2873 if ((q = qs[i]) != null && !q.isEmpty())
2874 return true;
2875 }
2876 }
2877 return false;
2878 }
2879
2880 /**
2881 * Removes and returns the next unexecuted submission if one is
2882 * available. This method may be useful in extensions to this
2883 * class that re-assign work in systems with multiple pools.
2884 *
2885 * @return the next submission, or {@code null} if none
2886 */
2887 protected ForkJoinTask<?> pollSubmission() {
2888 return pollScan(true);
2889 }
2890
2891 /**
2892 * Removes all available unexecuted submitted and forked tasks
2893 * from scheduling queues and adds them to the given collection,
2894 * without altering their execution status. These may include
2895 * artificially generated or wrapped tasks. This method is
2896 * designed to be invoked only when the pool is known to be
2897 * quiescent. Invocations at other times may not remove all
2898 * tasks. A failure encountered while attempting to add elements
2899 * to collection {@code c} may result in elements being in
2900 * neither, either or both collections when the associated
2901 * exception is thrown. The behavior of this operation is
2902 * undefined if the specified collection is modified while the
2903 * operation is in progress.
2904 *
2905 * @param c the collection to transfer elements into
2906 * @return the number of elements transferred
2907 */
2908 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2909 int count = 0;
2910 for (ForkJoinTask<?> t; (t = pollScan(false)) != null; ) {
2911 c.add(t);
2912 ++count;
2913 }
2914 return count;
2915 }
2916
2917 /**
2918 * Returns a string identifying this pool, as well as its state,
2919 * including indications of run state, parallelism level, and
2920 * worker and task counts.
2921 *
2922 * @return a string identifying this pool, as well as its state
2923 */
2924 public String toString() {
2925 // Use a single pass through queues to collect counts
2926 int md = mode; // read volatile fields first
2927 long c = ctl;
2928 long st = stealCount;
2929 long qt = 0L, ss = 0L; int rc = 0;
2930 WorkQueue[] qs; WorkQueue q;
2931 if ((qs = queues) != null) {
2932 for (int i = 0; i < qs.length; ++i) {
2933 if ((q = qs[i]) != null) {
2934 int size = q.queueSize();
2935 if ((i & 1) == 0)
2936 ss += size;
2937 else {
2938 qt += size;
2939 st += (long)q.nsteals & 0xffffffffL;
2940 if (q.isApparentlyUnblocked())
2941 ++rc;
2942 }
2943 }
2944 }
2945 }
2946
2947 int pc = (md & SMASK);
2948 int tc = pc + (short)(c >>> TC_SHIFT);
2949 int ac = pc + (int)(c >> RC_SHIFT);
2950 if (ac < 0) // ignore transient negative
2951 ac = 0;
2952 String level = ((md & TERMINATED) != 0 ? "Terminated" :
2953 (md & STOP) != 0 ? "Terminating" :
2954 (md & SHUTDOWN) != 0 ? "Shutting down" :
2955 "Running");
2956 return super.toString() +
2957 "[" + level +
2958 ", parallelism = " + pc +
2959 ", size = " + tc +
2960 ", active = " + ac +
2961 ", running = " + rc +
2962 ", steals = " + st +
2963 ", tasks = " + qt +
2964 ", submissions = " + ss +
2965 "]";
2966 }
2967
2968 /**
2969 * Possibly initiates an orderly shutdown in which previously
2970 * submitted tasks are executed, but no new tasks will be
2971 * accepted. Invocation has no effect on execution state if this
2972 * is the {@link #commonPool()}, and no additional effect if
2973 * already shut down. Tasks that are in the process of being
2974 * submitted concurrently during the course of this method may or
2975 * may not be rejected.
2976 *
2977 * @throws SecurityException if a security manager exists and
2978 * the caller is not permitted to modify threads
2979 * because it does not hold {@link
2980 * java.lang.RuntimePermission}{@code ("modifyThread")}
2981 */
2982 public void shutdown() {
2983 checkPermission();
2984 if (this != common)
2985 tryTerminate(false, true);
2986 }
2987
2988 /**
2989 * Possibly attempts to cancel and/or stop all tasks, and reject
2990 * all subsequently submitted tasks. Invocation has no effect on
2991 * execution state if this is the {@link #commonPool()}, and no
2992 * additional effect if already shut down. Otherwise, tasks that
2993 * are in the process of being submitted or executed concurrently
2994 * during the course of this method may or may not be
2995 * rejected. This method cancels both existing and unexecuted
2996 * tasks, in order to permit termination in the presence of task
2997 * dependencies. So the method always returns an empty list
2998 * (unlike the case for some other Executors).
2999 *
3000 * @return an empty list
3001 * @throws SecurityException if a security manager exists and
3002 * the caller is not permitted to modify threads
3003 * because it does not hold {@link
3004 * java.lang.RuntimePermission}{@code ("modifyThread")}
3005 */
3006 public List<Runnable> shutdownNow() {
3007 checkPermission();
3008 if (this != common)
3009 tryTerminate(true, true);
3010 return Collections.emptyList();
3011 }
3012
3013 /**
3014 * Returns {@code true} if all tasks have completed following shut down.
3015 *
3016 * @return {@code true} if all tasks have completed following shut down
3017 */
3018 public boolean isTerminated() {
3019 return (mode & TERMINATED) != 0;
3020 }
3021
3022 /**
3023 * Returns {@code true} if the process of termination has
3024 * commenced but not yet completed. This method may be useful for
3025 * debugging. A return of {@code true} reported a sufficient
3026 * period after shutdown may indicate that submitted tasks have
3027 * ignored or suppressed interruption, or are waiting for I/O,
3028 * causing this executor not to properly terminate. (See the
3029 * advisory notes for class {@link ForkJoinTask} stating that
3030 * tasks should not normally entail blocking operations. But if
3031 * they do, they must abort them on interrupt.)
3032 *
3033 * @return {@code true} if terminating but not yet terminated
3034 */
3035 public boolean isTerminating() {
3036 return (mode & (STOP | TERMINATED)) == STOP;
3037 }
3038
3039 /**
3040 * Returns {@code true} if this pool has been shut down.
3041 *
3042 * @return {@code true} if this pool has been shut down
3043 */
3044 public boolean isShutdown() {
3045 return (mode & SHUTDOWN) != 0;
3046 }
3047
3048 /**
3049 * Blocks until all tasks have completed execution after a
3050 * shutdown request, or the timeout occurs, or the current thread
3051 * is interrupted, whichever happens first. Because the {@link
3052 * #commonPool()} never terminates until program shutdown, when
3053 * applied to the common pool, this method is equivalent to {@link
3054 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
3055 *
3056 * @param timeout the maximum time to wait
3057 * @param unit the time unit of the timeout argument
3058 * @return {@code true} if this executor terminated and
3059 * {@code false} if the timeout elapsed before termination
3060 * @throws InterruptedException if interrupted while waiting
3061 */
3062 public boolean awaitTermination(long timeout, TimeUnit unit)
3063 throws InterruptedException {
3064 long nanos = unit.toNanos(timeout);
3065 ReentrantLock lock; Condition cond; // construct only if waiting
3066 if (Thread.interrupted())
3067 throw new InterruptedException();
3068 if (this == common) {
3069 awaitQuiescence(timeout, unit);
3070 return false;
3071 }
3072 if (isTerminated() || (lock = registrationLock) == null)
3073 return true;
3074 lock.lock();
3075 try {
3076 if ((cond = termination) == null)
3077 termination = cond = lock.newCondition();
3078 while (!isTerminated() && nanos > 0L)
3079 nanos = cond.awaitNanos(nanos);
3080 } finally {
3081 lock.unlock();
3082 }
3083 return isTerminated();
3084 }
3085
3086 /**
3087 * If called by a ForkJoinTask operating in this pool, equivalent
3088 * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3089 * waits and/or attempts to assist performing tasks until this
3090 * pool {@link #isQuiescent} or the indicated timeout elapses.
3091 *
3092 * @param timeout the maximum time to wait
3093 * @param unit the time unit of the timeout argument
3094 * @return {@code true} if quiescent; {@code false} if the
3095 * timeout elapsed.
3096 */
3097 public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3098 Thread thread; ForkJoinWorkerThread wt;
3099 long nanos = unit.toNanos(timeout);
3100 if ((thread = Thread.currentThread()) instanceof ForkJoinWorkerThread &&
3101 (wt = (ForkJoinWorkerThread)thread).pool == this) {
3102 helpQuiescePool(wt.workQueue);
3103 return true;
3104 }
3105 // else cannot block, so use exponential sleeps
3106 boolean quiesced = false, interrupted = false;
3107 for (long startTime = System.nanoTime(), parkTime = 0L;;) {
3108 ForkJoinTask<?> t;
3109 if ((t = pollScan(false)) != null) {
3110 t.doExec();
3111 parkTime = 0L;
3112 }
3113 else if (quiesced = isQuiescent())
3114 break;
3115 else if ((System.nanoTime() - startTime) > nanos)
3116 break;
3117 else if (parkTime == 0L) {
3118 parkTime = 1L << 10; // initially about 1 usec
3119 Thread.yield();
3120 }
3121 else if (Thread.interrupted())
3122 interrupted = true;
3123 else {
3124 LockSupport.parkNanos(this, parkTime);
3125 if (parkTime < nanos >>> 8) // max sleep approx 1% nanos
3126 parkTime <<= 1;
3127 }
3128 }
3129 if (interrupted)
3130 Thread.currentThread().interrupt();
3131 return quiesced;
3132 }
3133
3134 /**
3135 * Waits and/or attempts to assist performing tasks indefinitely
3136 * until the {@link #commonPool()} {@link #isQuiescent}.
3137 */
3138 static void quiesceCommonPool() {
3139 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3140 }
3141
3142 /**
3143 * Interface for extending managed parallelism for tasks running
3144 * in {@link ForkJoinPool}s.
3145 *
3146 * <p>A {@code ManagedBlocker} provides two methods. Method
3147 * {@link #isReleasable} must return {@code true} if blocking is
3148 * not necessary. Method {@link #block} blocks the current thread
3149 * if necessary (perhaps internally invoking {@code isReleasable}
3150 * before actually blocking). These actions are performed by any
3151 * thread invoking {@link
3152 * ForkJoinPool#managedBlock(ManagedBlocker)}. The unusual
3153 * methods in this API accommodate synchronizers that may, but
3154 * don't usually, block for long periods. Similarly, they allow
3155 * more efficient internal handling of cases in which additional
3156 * workers may be, but usually are not, needed to ensure
3157 * sufficient parallelism. Toward this end, implementations of
3158 * method {@code isReleasable} must be amenable to repeated
3159 * invocation. Neither method is invoked after a prior invocation
3160 * of {@code isReleasable} or {@code block} returns {@code true}.
3161 *
3162 * <p>For example, here is a ManagedBlocker based on a
3163 * ReentrantLock:
3164 * <pre> {@code
3165 * class ManagedLocker implements ManagedBlocker {
3166 * final ReentrantLock lock;
3167 * boolean hasLock = false;
3168 * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3169 * public boolean block() {
3170 * if (!hasLock)
3171 * lock.lock();
3172 * return true;
3173 * }
3174 * public boolean isReleasable() {
3175 * return hasLock || (hasLock = lock.tryLock());
3176 * }
3177 * }}</pre>
3178 *
3179 * <p>Here is a class that possibly blocks waiting for an
3180 * item on a given queue:
3181 * <pre> {@code
3182 * class QueueTaker<E> implements ManagedBlocker {
3183 * final BlockingQueue<E> queue;
3184 * volatile E item = null;
3185 * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3186 * public boolean block() throws InterruptedException {
3187 * if (item == null)
3188 * item = queue.take();
3189 * return true;
3190 * }
3191 * public boolean isReleasable() {
3192 * return item != null || (item = queue.poll()) != null;
3193 * }
3194 * public E getItem() { // call after pool.managedBlock completes
3195 * return item;
3196 * }
3197 * }}</pre>
3198 */
3199 public static interface ManagedBlocker {
3200 /**
3201 * Possibly blocks the current thread, for example waiting for
3202 * a lock or condition.
3203 *
3204 * @return {@code true} if no additional blocking is necessary
3205 * (i.e., if isReleasable would return true)
3206 * @throws InterruptedException if interrupted while waiting
3207 * (the method is not required to do so, but is allowed to)
3208 */
3209 boolean block() throws InterruptedException;
3210
3211 /**
3212 * Returns {@code true} if blocking is unnecessary.
3213 * @return {@code true} if blocking is unnecessary
3214 */
3215 boolean isReleasable();
3216 }
3217
3218 /**
3219 * Runs the given possibly blocking task. When {@linkplain
3220 * ForkJoinTask#inForkJoinPool() running in a ForkJoinPool}, this
3221 * method possibly arranges for a spare thread to be activated if
3222 * necessary to ensure sufficient parallelism while the current
3223 * thread is blocked in {@link ManagedBlocker#block blocker.block()}.
3224 *
3225 * <p>This method repeatedly calls {@code blocker.isReleasable()} and
3226 * {@code blocker.block()} until either method returns {@code true}.
3227 * Every call to {@code blocker.block()} is preceded by a call to
3228 * {@code blocker.isReleasable()} that returned {@code false}.
3229 *
3230 * <p>If not running in a ForkJoinPool, this method is
3231 * behaviorally equivalent to
3232 * <pre> {@code
3233 * while (!blocker.isReleasable())
3234 * if (blocker.block())
3235 * break;}</pre>
3236 *
3237 * If running in a ForkJoinPool, the pool may first be expanded to
3238 * ensure sufficient parallelism available during the call to
3239 * {@code blocker.block()}.
3240 *
3241 * @param blocker the blocker task
3242 * @throws InterruptedException if {@code blocker.block()} did so
3243 */
3244 public static void managedBlock(ManagedBlocker blocker)
3245 throws InterruptedException {
3246 Thread t; ForkJoinPool p;
3247 if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread &&
3248 (p = ((ForkJoinWorkerThread)t).pool) != null)
3249 p.compensatedBlock(blocker);
3250 else
3251 unmanagedBlock(blocker);
3252 }
3253
3254 /** ManagedBlock for ForkJoinWorkerThreads */
3255 private void compensatedBlock(ManagedBlocker blocker)
3256 throws InterruptedException {
3257 if (blocker == null) throw new NullPointerException();
3258 for (;;) {
3259 int comp; boolean done;
3260 long c = ctl;
3261 if (blocker.isReleasable())
3262 break;
3263 if ((comp = tryCompensate(c)) >= 0) {
3264 long post = (comp == 0) ? 0L : RC_UNIT;
3265 try {
3266 done = blocker.block();
3267 } finally {
3268 getAndAddCtl(post);
3269 }
3270 if (done)
3271 break;
3272 }
3273 }
3274 }
3275
3276 /** ManagedBlock for external threads */
3277 private static void unmanagedBlock(ManagedBlocker blocker)
3278 throws InterruptedException {
3279 if (blocker == null) throw new NullPointerException();
3280 do {} while (!blocker.isReleasable() && !blocker.block());
3281 }
3282
3283 // AbstractExecutorService.newTaskFor overrides rely on
3284 // undocumented fact that ForkJoinTask.adapt returns ForkJoinTasks
3285 // that also implement RunnableFuture.
3286
3287 @Override
3288 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3289 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3290 }
3291
3292 @Override
3293 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3294 return new ForkJoinTask.AdaptedCallable<T>(callable);
3295 }
3296
3297 static {
3298 try {
3299 MethodHandles.Lookup l = MethodHandles.lookup();
3300 CTL = l.findVarHandle(ForkJoinPool.class, "ctl", long.class);
3301 MODE = l.findVarHandle(ForkJoinPool.class, "mode", int.class);
3302 THREADIDS = l.findVarHandle(ForkJoinPool.class, "threadIds", int.class);
3303 POOLIDS = l.findStaticVarHandle(ForkJoinPool.class, "poolIds", int.class);
3304 } catch (ReflectiveOperationException e) {
3305 throw new ExceptionInInitializerError(e);
3306 }
3307
3308 // Reduce the risk of rare disastrous classloading in first call to
3309 // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
3310 Class<?> ensureLoaded = LockSupport.class;
3311
3312 int commonMaxSpares = DEFAULT_COMMON_MAX_SPARES;
3313 try {
3314 String p = System.getProperty
3315 ("java.util.concurrent.ForkJoinPool.common.maximumSpares");
3316 if (p != null)
3317 commonMaxSpares = Integer.parseInt(p);
3318 } catch (Exception ignore) {}
3319 COMMON_MAX_SPARES = commonMaxSpares;
3320
3321 defaultForkJoinWorkerThreadFactory =
3322 new DefaultForkJoinWorkerThreadFactory();
3323 modifyThreadPermission = new RuntimePermission("modifyThread");
3324 common = AccessController.doPrivileged(new PrivilegedAction<>() {
3325 public ForkJoinPool run() {
3326 return new ForkJoinPool((byte)0); }});
3327
3328 COMMON_PARALLELISM = Math.max(common.mode & SMASK, 1);
3329 }
3330 }