ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.365
Committed: Mon Jan 20 15:51:54 2020 UTC (4 years, 4 months ago) by dl
Branch: MAIN
Changes since 1.364: +32 -46 lines
Log Message:
improve compatibilty for timeouts etc; increase common code paths

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.lang.Thread.UncaughtExceptionHandler;
10 import java.lang.invoke.MethodHandles;
11 import java.lang.invoke.VarHandle;
12 import java.security.AccessController;
13 import java.security.AccessControlContext;
14 import java.security.Permission;
15 import java.security.Permissions;
16 import java.security.PrivilegedAction;
17 import java.security.ProtectionDomain;
18 import java.util.ArrayList;
19 import java.util.Arrays;
20 import java.util.Iterator;
21 import java.util.Collection;
22 import java.util.Collections;
23 import java.util.List;
24 import java.util.function.Predicate;
25 import java.util.concurrent.locks.LockSupport;
26 import java.util.concurrent.locks.ReentrantLock;
27 import java.util.concurrent.locks.Condition;
28
29 /**
30 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
31 * A {@code ForkJoinPool} provides the entry point for submissions
32 * from non-{@code ForkJoinTask} clients, as well as management and
33 * monitoring operations.
34 *
35 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
36 * ExecutorService} mainly by virtue of employing
37 * <em>work-stealing</em>: all threads in the pool attempt to find and
38 * execute tasks submitted to the pool and/or created by other active
39 * tasks (eventually blocking waiting for work if none exist). This
40 * enables efficient processing when most tasks spawn other subtasks
41 * (as do most {@code ForkJoinTask}s), as well as when many small
42 * tasks are submitted to the pool from external clients. Especially
43 * when setting <em>asyncMode</em> to true in constructors, {@code
44 * ForkJoinPool}s may also be appropriate for use with event-style
45 * tasks that are never joined. All worker threads are initialized
46 * with {@link Thread#isDaemon} set {@code true}.
47 *
48 * <p>A static {@link #commonPool()} is available and appropriate for
49 * most applications. The common pool is used by any ForkJoinTask that
50 * is not explicitly submitted to a specified pool. Using the common
51 * pool normally reduces resource usage (its threads are slowly
52 * reclaimed during periods of non-use, and reinstated upon subsequent
53 * use).
54 *
55 * <p>For applications that require separate or custom pools, a {@code
56 * ForkJoinPool} may be constructed with a given target parallelism
57 * level; by default, equal to the number of available processors.
58 * The pool attempts to maintain enough active (or available) threads
59 * by dynamically adding, suspending, or resuming internal worker
60 * threads, even if some tasks are stalled waiting to join others.
61 * However, no such adjustments are guaranteed in the face of blocked
62 * I/O or other unmanaged synchronization. The nested {@link
63 * ManagedBlocker} interface enables extension of the kinds of
64 * synchronization accommodated. The default policies may be
65 * overridden using a constructor with parameters corresponding to
66 * those documented in class {@link ThreadPoolExecutor}.
67 *
68 * <p>In addition to execution and lifecycle control methods, this
69 * class provides status check methods (for example
70 * {@link #getStealCount}) that are intended to aid in developing,
71 * tuning, and monitoring fork/join applications. Also, method
72 * {@link #toString} returns indications of pool state in a
73 * convenient form for informal monitoring.
74 *
75 * <p>As is the case with other ExecutorServices, there are three
76 * main task execution methods summarized in the following table.
77 * These are designed to be used primarily by clients not already
78 * engaged in fork/join computations in the current pool. The main
79 * forms of these methods accept instances of {@code ForkJoinTask},
80 * but overloaded forms also allow mixed execution of plain {@code
81 * Runnable}- or {@code Callable}- based activities as well. However,
82 * tasks that are already executing in a pool should normally instead
83 * use the within-computation forms listed in the table unless using
84 * async event-style tasks that are not usually joined, in which case
85 * there is little difference among choice of methods.
86 *
87 * <table class="plain">
88 * <caption>Summary of task execution methods</caption>
89 * <tr>
90 * <td></td>
91 * <th scope="col"> Call from non-fork/join clients</th>
92 * <th scope="col"> Call from within fork/join computations</th>
93 * </tr>
94 * <tr>
95 * <th scope="row" style="text-align:left"> Arrange async execution</th>
96 * <td> {@link #execute(ForkJoinTask)}</td>
97 * <td> {@link ForkJoinTask#fork}</td>
98 * </tr>
99 * <tr>
100 * <th scope="row" style="text-align:left"> Await and obtain result</th>
101 * <td> {@link #invoke(ForkJoinTask)}</td>
102 * <td> {@link ForkJoinTask#invoke}</td>
103 * </tr>
104 * <tr>
105 * <th scope="row" style="text-align:left"> Arrange exec and obtain Future</th>
106 * <td> {@link #submit(ForkJoinTask)}</td>
107 * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
108 * </tr>
109 * </table>
110 *
111 * <p>The parameters used to construct the common pool may be controlled by
112 * setting the following {@linkplain System#getProperty system properties}:
113 * <ul>
114 * <li>{@systemProperty java.util.concurrent.ForkJoinPool.common.parallelism}
115 * - the parallelism level, a non-negative integer
116 * <li>{@systemProperty java.util.concurrent.ForkJoinPool.common.threadFactory}
117 * - the class name of a {@link ForkJoinWorkerThreadFactory}.
118 * The {@linkplain ClassLoader#getSystemClassLoader() system class loader}
119 * is used to load this class.
120 * <li>{@systemProperty java.util.concurrent.ForkJoinPool.common.exceptionHandler}
121 * - the class name of a {@link UncaughtExceptionHandler}.
122 * The {@linkplain ClassLoader#getSystemClassLoader() system class loader}
123 * is used to load this class.
124 * <li>{@systemProperty java.util.concurrent.ForkJoinPool.common.maximumSpares}
125 * - the maximum number of allowed extra threads to maintain target
126 * parallelism (default 256).
127 * </ul>
128 * If no thread factory is supplied via a system property, then the
129 * common pool uses a factory that uses the system class loader as the
130 * {@linkplain Thread#getContextClassLoader() thread context class loader}.
131 * In addition, if a {@link SecurityManager} is present, then
132 * the common pool uses a factory supplying threads that have no
133 * {@link Permissions} enabled.
134 *
135 * Upon any error in establishing these settings, default parameters
136 * are used. It is possible to disable or limit the use of threads in
137 * the common pool by setting the parallelism property to zero, and/or
138 * using a factory that may return {@code null}. However doing so may
139 * cause unjoined tasks to never be executed.
140 *
141 * <p><b>Implementation notes</b>: This implementation restricts the
142 * maximum number of running threads to 32767. Attempts to create
143 * pools with greater than the maximum number result in
144 * {@code IllegalArgumentException}.
145 *
146 * <p>This implementation rejects submitted tasks (that is, by throwing
147 * {@link RejectedExecutionException}) only when the pool is shut down
148 * or internal resources have been exhausted.
149 *
150 * @since 1.7
151 * @author Doug Lea
152 */
153 public class ForkJoinPool extends AbstractExecutorService {
154
155 /*
156 * Implementation Overview
157 *
158 * This class and its nested classes provide the main
159 * functionality and control for a set of worker threads:
160 * Submissions from non-FJ threads enter into submission queues.
161 * Workers take these tasks and typically split them into subtasks
162 * that may be stolen by other workers. Work-stealing based on
163 * randomized scans generally leads to better throughput than
164 * "work dealing" in which producers assign tasks to idle threads,
165 * in part because threads that have finished other tasks before
166 * the signalled thread wakes up (which can be a long time) can
167 * take the task instead. Preference rules give first priority to
168 * processing tasks from their own queues (LIFO or FIFO, depending
169 * on mode), then to randomized FIFO steals of tasks in other
170 * queues. This framework began as vehicle for supporting
171 * tree-structured parallelism using work-stealing. Over time,
172 * its scalability advantages led to extensions and changes to
173 * better support more diverse usage contexts. Because most
174 * internal methods and nested classes are interrelated, their
175 * main rationale and descriptions are presented here; individual
176 * methods and nested classes contain only brief comments about
177 * details.
178 *
179 * WorkQueues
180 * ==========
181 *
182 * Most operations occur within work-stealing queues (in nested
183 * class WorkQueue). These are special forms of Deques that
184 * support only three of the four possible end-operations -- push,
185 * pop, and poll (aka steal), under the further constraints that
186 * push and pop are called only from the owning thread (or, as
187 * extended here, under a lock), while poll may be called from
188 * other threads. (If you are unfamiliar with them, you probably
189 * want to read Herlihy and Shavit's book "The Art of
190 * Multiprocessor programming", chapter 16 describing these in
191 * more detail before proceeding.) The main work-stealing queue
192 * design is roughly similar to those in the papers "Dynamic
193 * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
194 * (http://research.sun.com/scalable/pubs/index.html) and
195 * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
196 * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
197 * The main differences ultimately stem from GC requirements that
198 * we null out taken slots as soon as we can, to maintain as small
199 * a footprint as possible even in programs generating huge
200 * numbers of tasks. To accomplish this, we shift the CAS
201 * arbitrating pop vs poll (steal) from being on the indices
202 * ("base" and "top") to the slots themselves.
203 *
204 * Adding tasks then takes the form of a classic array push(task)
205 * in a circular buffer:
206 * q.array[q.top++ % length] = task;
207 *
208 * The actual code needs to null-check and size-check the array,
209 * uses masking, not mod, for indexing a power-of-two-sized array,
210 * enforces memory ordering, supports resizing, and possibly
211 * signals waiting workers to start scanning -- see below.
212 *
213 * The pop operation (always performed by owner) is of the form:
214 * if ((task = getAndSet(q.array, (q.top-1) % length, null)) != null)
215 * decrement top and return task;
216 * If this fails, the queue is empty.
217 *
218 * The poll operation by another stealer thread is, basically:
219 * if (CAS nonnull task at q.array[q.base % length] to null)
220 * increment base and return task;
221 *
222 * This may fail due to contention, and may be retried.
223 * Implementations must ensure a consistent snapshot of the base
224 * index and the task (by looping or trying elsewhere) before
225 * trying CAS. There isn't actually a method of this form,
226 * because failure due to inconsistency or contention is handled
227 * in different ways in different contexts, normally by first
228 * trying other queues. (For the most straightforward example, see
229 * method pollScan.) There are further variants for cases
230 * requiring inspection of elements before extracting them, so
231 * must interleave these with variants of this code. Also, a more
232 * efficient version (nextLocalTask) is used for polls by owners.
233 * It avoids some overhead because the queue cannot be growing
234 * during call.
235 *
236 * Memory ordering. See "Correct and Efficient Work-Stealing for
237 * Weak Memory Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
238 * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
239 * analysis of memory ordering requirements in work-stealing
240 * algorithms similar to the one used here. Inserting and
241 * extracting tasks in array slots via volatile or atomic accesses
242 * or explicit fences provides primary synchronization.
243 *
244 * Operations on deque elements require reads and writes of both
245 * indices and slots. When possible, we allow these to occur in
246 * any order. Because the base and top indices (along with other
247 * pool or array fields accessed in many methods) only imprecisely
248 * guide where to extract from, we let accesses other than the
249 * element getAndSet/CAS/setVolatile appear in any order, using
250 * plain mode. But we must still preface some methods (mainly
251 * those that may be accessed externally) with an acquireFence to
252 * avoid unbounded staleness. This is equivalent to acting as if
253 * callers use an acquiring read of the reference to the pool or
254 * queue when invoking the method, even when they do not. We use
255 * explicit acquiring reads (getSlot) rather than plain array
256 * access when acquire mode is required but not otherwise ensured
257 * by context. To reduce stalls by other stealers, we encourage
258 * timely writes to the base index by immediately following
259 * updates with a write of a volatile field that must be updated
260 * anyway, or an Opaque-mode write if there is no such
261 * opportunity.
262 *
263 * Because indices and slot contents cannot always be consistent,
264 * the emptiness check base == top is only quiescently accurate
265 * (and so used where this suffices). Otherwise, it may err on the
266 * side of possibly making the queue appear nonempty when a push,
267 * pop, or poll have not fully committed, or making it appear
268 * empty when an update of top or base has not yet been seen.
269 * Method isEmpty() provides a more accurate test by checking both
270 * indices and slots. Similarly, the check in push for the queue
271 * array being full may trigger when not completely full, causing
272 * a resize earlier than required.
273 *
274 * Mainly because of these potential inconsistencies among slots
275 * vs indices, the poll operation, considered individually, is not
276 * wait-free. One thief cannot successfully continue until another
277 * in-progress one (or, if previously empty, a push) visibly
278 * completes. This can stall threads when required to consume
279 * from a given queue (which may spin). However, in the
280 * aggregate, we ensure probabilistic non-blockingness at least
281 * until checking quiescence (which is intrinsically blocking):
282 * If an attempted steal fails, a scanning thief chooses a
283 * different victim target to try next. So, in order for one thief
284 * to progress, it suffices for any in-progress poll or new push
285 * on any empty queue to complete. The worst cases occur when many
286 * threads are looking for tasks being produced by a stalled
287 * producer.
288 *
289 * This approach also enables support of a user mode in which
290 * local task processing is in FIFO, not LIFO order, simply by
291 * using poll rather than pop. This can be useful in
292 * message-passing frameworks in which tasks are never joined,
293 * although with increased contention among task producers and
294 * consumers.
295 *
296 * WorkQueues are also used in a similar way for tasks submitted
297 * to the pool. We cannot mix these tasks in the same queues used
298 * by workers. Instead, we randomly associate submission queues
299 * with submitting threads, using a form of hashing. The
300 * ThreadLocalRandom probe value serves as a hash code for
301 * choosing existing queues, and may be randomly repositioned upon
302 * contention with other submitters. In essence, submitters act
303 * like workers except that they are restricted to executing local
304 * tasks that they submitted (or when known, subtasks thereof).
305 * Insertion of tasks in shared mode requires a lock. We use only
306 * a simple spinlock (using field "source"), because submitters
307 * encountering a busy queue move to a different position to use
308 * or create other queues. They block only when registering new
309 * queues.
310 *
311 * Management
312 * ==========
313 *
314 * The main throughput advantages of work-stealing stem from
315 * decentralized control -- workers mostly take tasks from
316 * themselves or each other, at rates that can exceed a billion
317 * per second. Most non-atomic control is performed by some form
318 * of scanning across or within queues. The pool itself creates,
319 * activates (enables scanning for and running tasks),
320 * deactivates, blocks, and terminates threads, all with minimal
321 * central information. There are only a few properties that we
322 * can globally track or maintain, so we pack them into a small
323 * number of variables, often maintaining atomicity without
324 * blocking or locking. Nearly all essentially atomic control
325 * state is held in a few volatile variables that are by far most
326 * often read (not written) as status and consistency checks. We
327 * pack as much information into them as we can.
328 *
329 * Field "ctl" contains 64 bits holding information needed to
330 * atomically decide to add, enqueue (on an event queue), and
331 * dequeue and release workers. To enable this packing, we
332 * restrict maximum parallelism to (1<<15)-1 (which is far in
333 * excess of normal operating range) to allow ids, counts, and
334 * their negations (used for thresholding) to fit into 16bit
335 * subfields.
336 *
337 * Field "mode" holds configuration parameters as well as lifetime
338 * status, atomically and monotonically setting SHUTDOWN, STOP,
339 * and finally TERMINATED bits. It is updated only via bitwise
340 * atomics (getAndBitwiseOr).
341 *
342 * Array "queues" holds references to WorkQueues. It is updated
343 * (only during worker creation and termination) under the
344 * registrationLock, but is otherwise concurrently readable, and
345 * accessed directly (although always prefaced by acquireFences or
346 * other acquiring reads). To simplify index-based operations, the
347 * array size is always a power of two, and all readers must
348 * tolerate null slots. Worker queues are at odd indices. Worker
349 * ids masked with SMASK match their index. Shared (submission)
350 * queues are at even indices. Grouping them together in this way
351 * simplifies and speeds up task scanning.
352 *
353 * All worker thread creation is on-demand, triggered by task
354 * submissions, replacement of terminated workers, and/or
355 * compensation for blocked workers. However, all other support
356 * code is set up to work with other policies. To ensure that we
357 * do not hold on to worker or task references that would prevent
358 * GC, all accesses to workQueues are via indices into the
359 * queues array (which is one source of some of the messy code
360 * constructions here). In essence, the queues array serves as
361 * a weak reference mechanism. Thus for example the stack top
362 * subfield of ctl stores indices, not references.
363 *
364 * Queuing Idle Workers. Unlike HPC work-stealing frameworks, we
365 * cannot let workers spin indefinitely scanning for tasks when
366 * none can be found immediately, and we cannot start/resume
367 * workers unless there appear to be tasks available. On the
368 * other hand, we must quickly prod them into action when new
369 * tasks are submitted or generated. These latencies are mainly a
370 * function of JVM park/unpark (and underlying OS) performance,
371 * which can be slow and variable. In many usages, ramp-up time
372 * is the main limiting factor in overall performance, which is
373 * compounded at program start-up by JIT compilation and
374 * allocation. On the other hand, throughput degrades when too
375 * many threads poll for too few tasks.
376 *
377 * The "ctl" field atomically maintains total and "released"
378 * worker counts, plus the head of the available worker queue
379 * (actually stack, represented by the lower 32bit subfield of
380 * ctl). Released workers are those known to be scanning for
381 * and/or running tasks. Unreleased ("available") workers are
382 * recorded in the ctl stack. These workers are made available for
383 * signalling by enqueuing in ctl (see method awaitWork). The
384 * "queue" is a form of Treiber stack. This is ideal for
385 * activating threads in most-recently used order, and improves
386 * performance and locality, outweighing the disadvantages of
387 * being prone to contention and inability to release a worker
388 * unless it is topmost on stack. The top stack state holds the
389 * value of the "phase" field of the worker: its index and status,
390 * plus a version counter that, in addition to the count subfields
391 * (also serving as version stamps) provide protection against
392 * Treiber stack ABA effects.
393 *
394 * Creating workers. To create a worker, we pre-increment counts
395 * (serving as a reservation), and attempt to construct a
396 * ForkJoinWorkerThread via its factory. On starting, the new
397 * thread first invokes registerWorker, where it constructs a
398 * WorkQueue and is assigned an index in the queues array
399 * (expanding the array if necessary). Upon any exception across
400 * these steps, or null return from factory, deregisterWorker
401 * adjusts counts and records accordingly. If a null return, the
402 * pool continues running with fewer than the target number
403 * workers. If exceptional, the exception is propagated, generally
404 * to some external caller.
405 *
406 * WorkQueue field "phase" is used by both workers and the pool to
407 * manage and track whether a worker is UNSIGNALLED (possibly
408 * blocked waiting for a signal). When a worker is enqueued its
409 * phase field is set negative. Note that phase field updates lag
410 * queue CAS releases; seeing a negative phase does not guarantee
411 * that the worker is available. When queued, the lower 16 bits of
412 * its phase must hold its pool index. So we place the index there
413 * upon initialization and never modify these bits.
414 *
415 * The ctl field also serves as the basis for memory
416 * synchronization surrounding activation. This uses a more
417 * efficient version of a Dekker-like rule that task producers and
418 * consumers sync with each other by both writing/CASing ctl (even
419 * if to its current value). However, rather than CASing ctl to
420 * its current value in the common case where no action is
421 * required, we reduce write contention by ensuring that
422 * signalWork invocations are prefaced with a full-volatile memory
423 * access (which is usually needed anyway).
424 *
425 * Signalling. Signals (in signalWork) cause new or reactivated
426 * workers to scan for tasks. Method signalWork and its callers
427 * try to approximate the unattainable goal of having the right
428 * number of workers activated for the tasks at hand, but must err
429 * on the side of too many workers vs too few to avoid stalls. If
430 * computations are purely tree structured, it suffices for every
431 * worker to activate another when it pushes a task into an empty
432 * queue, resulting in O(log(#threads)) steps to full activation.
433 * If instead, tasks come in serially from only a single producer,
434 * each worker taking its first (since the last quiescence) task
435 * from a queue should signal another if there are more tasks in
436 * that queue. This is equivalent to, but generally faster than,
437 * arranging the stealer take two tasks, re-pushing one on its own
438 * queue, and signalling (because its queue is empty), also
439 * resulting in logarithmic full activation time. Because we don't
440 * know about usage patterns (or most commonly, mixtures), we use
441 * both approaches. We approximate the second rule by arranging
442 * that workers in scan() do not repeat signals when repeatedly
443 * taking tasks from any given queue, by remembering the previous
444 * one. There are narrow windows in which both rules may apply,
445 * leading to duplicate or unnecessary signals. Despite such
446 * limitations, these rules usually avoid slowdowns that otherwise
447 * occur when too many workers contend to take too few tasks, or
448 * when producers waste most of their time resignalling. However,
449 * contention and overhead effects may still occur during ramp-up,
450 * ramp-down, and small computations involving only a few workers.
451 *
452 * Scanning. Method scan performs top-level scanning for (and
453 * execution of) tasks. Scans by different workers and/or at
454 * different times are unlikely to poll queues in the same
455 * order. Each scan traverses and tries to poll from each queue in
456 * a pseudorandom permutation order by starting at a random index,
457 * and using a constant cyclically exhaustive stride; restarting
458 * upon contention. (Non-top-level scans; for example in
459 * helpJoin, use simpler linear probes because they do not
460 * systematically contend with top-level scans.) The pseudorandom
461 * generator need not have high-quality statistical properties in
462 * the long term. We use Marsaglia XorShifts, seeded with the Weyl
463 * sequence from ThreadLocalRandom probes, which are cheap and
464 * suffice. Scans do not otherwise explicitly take into account
465 * core affinities, loads, cache localities, etc, However, they do
466 * exploit temporal locality (which usually approximates these) by
467 * preferring to re-poll from the same queue after a successful
468 * poll before trying others (see method topLevelExec). This
469 * reduces fairness, which is partially counteracted by using a
470 * one-shot form of poll (tryPoll) that may lose to other workers.
471 *
472 * Deactivation. Method scan returns a sentinel when no tasks are
473 * found, leading to deactivation (see awaitWork). The count
474 * fields in ctl allow accurate discovery of quiescent states
475 * (i.e., when all workers are idle) after deactivation. However,
476 * this may also race with new (external) submissions, so a
477 * recheck is also needed to determine quiescence. Upon apparently
478 * triggering quiescence, awaitWork re-scans and self-signals if
479 * it may have missed a signal. In other cases, a missed signal
480 * may transiently lower parallelism because deactivation does not
481 * necessarily mean that there is no more work, only that that
482 * there were no tasks not taken by other workers. But more
483 * signals are generated (see above) to eventually reactivate if
484 * needed.
485 *
486 * Trimming workers. To release resources after periods of lack of
487 * use, a worker starting to wait when the pool is quiescent will
488 * time out and terminate if the pool has remained quiescent for
489 * period given by field keepAlive.
490 *
491 * Shutdown and Termination. A call to shutdownNow invokes
492 * tryTerminate to atomically set a mode bit. The calling thread,
493 * as well as every other worker thereafter terminating, helps
494 * terminate others by cancelling their unprocessed tasks, and
495 * waking them up. Calls to non-abrupt shutdown() preface this by
496 * checking isQuiescent before triggering the "STOP" phase of
497 * termination.
498 *
499 * Joining Tasks
500 * =============
501 *
502 * Normally, the first option when joining a task that is not done
503 * is to try to unfork it from local queue and run it. Otherwise,
504 * any of several actions may be taken when one worker is waiting
505 * to join a task stolen (or always held) by another. Because we
506 * are multiplexing many tasks on to a pool of workers, we can't
507 * always just let them block (as in Thread.join). We also cannot
508 * just reassign the joiner's run-time stack with another and
509 * replace it later, which would be a form of "continuation", that
510 * even if possible is not necessarily a good idea since we may
511 * need both an unblocked task and its continuation to progress.
512 * Instead we combine two tactics:
513 *
514 * Helping: Arranging for the joiner to execute some task that it
515 * could be running if the steal had not occurred.
516 *
517 * Compensating: Unless there are already enough live threads,
518 * method tryCompensate() may create or re-activate a spare
519 * thread to compensate for blocked joiners until they unblock.
520 *
521 * A third form (implemented via tryRemove) amounts to helping a
522 * hypothetical compensator: If we can readily tell that a
523 * possible action of a compensator is to steal and execute the
524 * task being joined, the joining thread can do so directly,
525 * without the need for a compensation thread; although with a
526 * (rare) possibility of reduced parallelism because of a
527 * transient gap in the queue array.
528 *
529 * Other intermediate forms available for specific task types (for
530 * example helpAsyncBlocker) often avoid or postpone the need for
531 * blocking or compensation.
532 *
533 * The ManagedBlocker extension API can't use helping so relies
534 * only on compensation in method awaitBlocker.
535 *
536 * The algorithm in helpJoin entails a form of "linear helping".
537 * Each worker records (in field "source") the id of the queue
538 * from which it last stole a task. The scan in method helpJoin
539 * uses these markers to try to find a worker to help (i.e., steal
540 * back a task from and execute it) that could hasten completion
541 * of the actively joined task. Thus, the joiner executes a task
542 * that would be on its own local deque if the to-be-joined task
543 * had not been stolen. This is a conservative variant of the
544 * approach described in Wagner & Calder "Leapfrogging: a portable
545 * technique for implementing efficient futures" SIGPLAN Notices,
546 * 1993 (http://portal.acm.org/citation.cfm?id=155354). It differs
547 * mainly in that we only record queue ids, not full dependency
548 * links. This requires a linear scan of the queues array to
549 * locate stealers, but isolates cost to when it is needed, rather
550 * than adding to per-task overhead. Also, searches are limited to
551 * direct and at most two levels of indirect stealers, after which
552 * there are rapidly diminishing returns on increased overhead.
553 * Searches can fail to locate stealers when stalls delay
554 * recording sources. Further, even when accurately identified,
555 * stealers might not ever produce a task that the joiner can in
556 * turn help with. So, compensation is tried upon failure to find
557 * tasks to run.
558 *
559 * Joining CountedCompleters (see helpComplete) differs from (and
560 * is generally more efficient than) other cases because task
561 * eligibility is determined by checking completion chains rather
562 * than tracking stealers.
563 *
564 * Compensation does not by default aim to keep exactly the target
565 * parallelism number of unblocked threads running at any given
566 * time. Some previous versions of this class employed immediate
567 * compensations for any blocked join. However, in practice, the
568 * vast majority of blockages are transient byproducts of GC and
569 * other JVM or OS activities that are made worse by replacement
570 * when they cause longer-term oversubscription. Rather than
571 * impose arbitrary policies, we allow users to override the
572 * default of only adding threads upon apparent starvation. The
573 * compensation mechanism may also be bounded. Bounds for the
574 * commonPool (see COMMON_MAX_SPARES) better enable JVMs to cope
575 * with programming errors and abuse before running out of
576 * resources to do so.
577 *
578 * Common Pool
579 * ===========
580 *
581 * The static common pool always exists after static
582 * initialization. Since it (or any other created pool) need
583 * never be used, we minimize initial construction overhead and
584 * footprint to the setup of about a dozen fields.
585 *
586 * When external threads submit to the common pool, they can
587 * perform subtask processing (see helpComplete and related
588 * methods) upon joins. This caller-helps policy makes it
589 * sensible to set common pool parallelism level to one (or more)
590 * less than the total number of available cores, or even zero for
591 * pure caller-runs. We do not need to record whether external
592 * submissions are to the common pool -- if not, external help
593 * methods return quickly. These submitters would otherwise be
594 * blocked waiting for completion, so the extra effort (with
595 * liberally sprinkled task status checks) in inapplicable cases
596 * amounts to an odd form of limited spin-wait before blocking in
597 * ForkJoinTask.join.
598 *
599 * As a more appropriate default in managed environments, unless
600 * overridden by system properties, we use workers of subclass
601 * InnocuousForkJoinWorkerThread when there is a SecurityManager
602 * present. These workers have no permissions set, do not belong
603 * to any user-defined ThreadGroup, and erase all ThreadLocals
604 * after executing any top-level task. The associated mechanics
605 * may be JVM-dependent and must access particular Thread class
606 * fields to achieve this effect.
607 *
608 * Memory placement
609 * ================
610 *
611 * Performance can be very sensitive to placement of instances of
612 * ForkJoinPool and WorkQueues and their queue arrays. To reduce
613 * false-sharing impact, the @Contended annotation isolates the
614 * ForkJoinPool.ctl field as well as the most heavily written
615 * WorkQueue fields. These mainly reduce cache traffic by scanners.
616 * WorkQueue arrays are presized large enough to avoid resizing
617 * (which transiently reduces throughput) in most tree-like
618 * computations, although not in some streaming usages. Initial
619 * sizes are not large enough to avoid secondary contention
620 * effects (especially for GC cardmarks) when queues are placed
621 * near each other in memory. This is common, but has different
622 * impact in different collectors and remains incompletely
623 * addressed.
624 *
625 * Style notes
626 * ===========
627 *
628 * Memory ordering relies mainly on atomic operations (CAS,
629 * getAndSet, getAndAdd) along with explicit fences. This can be
630 * awkward and ugly, but also reflects the need to control
631 * outcomes across the unusual cases that arise in very racy code
632 * with very few invariants. All fields are read into locals
633 * before use, and null-checked if they are references, even if
634 * they can never be null under current usages. Array accesses
635 * using masked indices include checks (that are always true) that
636 * the array length is non-zero to avoid compilers inserting more
637 * expensive traps. This is usually done in a "C"-like style of
638 * listing declarations at the heads of methods or blocks, and
639 * using inline assignments on first encounter. Nearly all
640 * explicit checks lead to bypass/return, not exception throws,
641 * because they may legitimately arise during shutdown.
642 *
643 * There is a lot of representation-level coupling among classes
644 * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
645 * fields of WorkQueue maintain data structures managed by
646 * ForkJoinPool, so are directly accessed. There is little point
647 * trying to reduce this, since any associated future changes in
648 * representations will need to be accompanied by algorithmic
649 * changes anyway. Several methods intrinsically sprawl because
650 * they must accumulate sets of consistent reads of fields held in
651 * local variables. Some others are artificially broken up to
652 * reduce producer/consumer imbalances due to dynamic compilation.
653 * There are also other coding oddities (including several
654 * unnecessary-looking hoisted null checks) that help some methods
655 * perform reasonably even when interpreted (not compiled).
656 *
657 * The order of declarations in this file is (with a few exceptions):
658 * (1) Static utility functions
659 * (2) Nested (static) classes
660 * (3) Static fields
661 * (4) Fields, along with constants used when unpacking some of them
662 * (5) Internal control methods
663 * (6) Callbacks and other support for ForkJoinTask methods
664 * (7) Exported methods
665 * (8) Static block initializing statics in minimally dependent order
666 *
667 * Revision notes
668 * ==============
669 *
670 * The main sources of differences of January 2020 ForkJoin
671 * classes from previous version are:
672 *
673 * * ForkJoinTask now uses field "aux" to support blocking joins
674 * and/or record exceptions, replacing reliance on builtin
675 * monitors and side tables.
676 * * Scans probe slots (vs compare indices), along with related
677 * changes that reduce performance differences across most
678 * garbage collectors, and reduce contention.
679 * * Refactoring for better integration of special task types and
680 * other capabilities that had been incrementally tacked on. Plus
681 * many minor reworkings to improve consistency.
682 */
683
684 // Static utilities
685
686 /**
687 * If there is a security manager, makes sure caller has
688 * permission to modify threads.
689 */
690 private static void checkPermission() {
691 SecurityManager security = System.getSecurityManager();
692 if (security != null)
693 security.checkPermission(modifyThreadPermission);
694 }
695
696 static AccessControlContext contextWithPermissions(Permission ... perms) {
697 Permissions permissions = new Permissions();
698 for (Permission perm : perms)
699 permissions.add(perm);
700 return new AccessControlContext(
701 new ProtectionDomain[] { new ProtectionDomain(null, permissions) });
702 }
703
704 // Nested classes
705
706 /**
707 * Factory for creating new {@link ForkJoinWorkerThread}s.
708 * A {@code ForkJoinWorkerThreadFactory} must be defined and used
709 * for {@code ForkJoinWorkerThread} subclasses that extend base
710 * functionality or initialize threads with different contexts.
711 */
712 public static interface ForkJoinWorkerThreadFactory {
713 /**
714 * Returns a new worker thread operating in the given pool.
715 * Returning null or throwing an exception may result in tasks
716 * never being executed. If this method throws an exception,
717 * it is relayed to the caller of the method (for example
718 * {@code execute}) causing attempted thread creation. If this
719 * method returns null or throws an exception, it is not
720 * retried until the next attempted creation (for example
721 * another call to {@code execute}).
722 *
723 * @param pool the pool this thread works in
724 * @return the new worker thread, or {@code null} if the request
725 * to create a thread is rejected
726 * @throws NullPointerException if the pool is null
727 */
728 public ForkJoinWorkerThread newThread(ForkJoinPool pool);
729 }
730
731 /**
732 * Default ForkJoinWorkerThreadFactory implementation; creates a
733 * new ForkJoinWorkerThread using the system class loader as the
734 * thread context class loader.
735 */
736 static final class DefaultForkJoinWorkerThreadFactory
737 implements ForkJoinWorkerThreadFactory {
738 // ACC for access to the factory
739 private static final AccessControlContext ACC = contextWithPermissions(
740 new RuntimePermission("getClassLoader"),
741 new RuntimePermission("setContextClassLoader"));
742
743 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
744 return AccessController.doPrivileged(
745 new PrivilegedAction<>() {
746 public ForkJoinWorkerThread run() {
747 return new ForkJoinWorkerThread(null, pool, true, false);
748 }},
749 ACC);
750 }
751 }
752
753 /**
754 * Factory for InnocuousForkJoinWorkerThread. Support requires
755 * that we break quite a lot of encapsulation (some via helper
756 * methods in ThreadLocalRandom) to access and set Thread fields.
757 */
758 static final class InnocuousForkJoinWorkerThreadFactory
759 implements ForkJoinWorkerThreadFactory {
760 // ACC for access to the factory
761 private static final AccessControlContext ACC = contextWithPermissions(
762 modifyThreadPermission,
763 new RuntimePermission("enableContextClassLoaderOverride"),
764 new RuntimePermission("modifyThreadGroup"),
765 new RuntimePermission("getClassLoader"),
766 new RuntimePermission("setContextClassLoader"));
767
768 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
769 return AccessController.doPrivileged(
770 new PrivilegedAction<>() {
771 public ForkJoinWorkerThread run() {
772 return new ForkJoinWorkerThread.
773 InnocuousForkJoinWorkerThread(pool); }},
774 ACC);
775 }
776 }
777
778 // Constants shared across ForkJoinPool and WorkQueue
779
780 // Bounds
781 static final int SWIDTH = 16; // width of short
782 static final int SMASK = 0xffff; // short bits == max index
783 static final int MAX_CAP = 0x7fff; // max #workers - 1
784
785 // Masks and units for WorkQueue.phase and ctl sp subfield
786 static final int UNSIGNALLED = 1 << 31; // must be negative
787 static final int SS_SEQ = 1 << 16; // version count
788
789 // Mode bits and sentinels, some also used in WorkQueue fields
790 static final int FIFO = 1 << 16; // fifo queue or access mode
791 static final int SRC = 1 << 17; // set for valid queue ids
792 static final int INNOCUOUS = 1 << 18; // set for Innocuous workers
793 static final int QUIET = 1 << 19; // quiescing phase or source
794 static final int SHUTDOWN = 1 << 24;
795 static final int TERMINATED = 1 << 25;
796 static final int STOP = 1 << 31; // must be negative
797 static final int ADJUST = 1 << 16; // tryCompensate return
798
799 /**
800 * Initial capacity of work-stealing queue array. Must be a power
801 * of two, at least 2. See above.
802 */
803 static final int INITIAL_QUEUE_CAPACITY = 1 << 8;
804
805 /**
806 * Queues supporting work-stealing as well as external task
807 * submission. See above for descriptions and algorithms.
808 */
809 static final class WorkQueue {
810 volatile int phase; // versioned, negative if inactive
811 int stackPred; // pool stack (ctl) predecessor link
812 int config; // index, mode, ORed with SRC after init
813 int base; // index of next slot for poll
814 ForkJoinTask<?>[] array; // the queued tasks; power of 2 size
815 final ForkJoinWorkerThread owner; // owning thread or null if shared
816
817 // segregate fields frequently updated but not read by scans or steals
818 @jdk.internal.vm.annotation.Contended("w")
819 int top; // index of next slot for push
820 @jdk.internal.vm.annotation.Contended("w")
821 volatile int source; // source queue id, lock, or sentinel
822 @jdk.internal.vm.annotation.Contended("w")
823 int nsteals; // number of steals from other queues
824
825 // Support for atomic operations
826 private static final VarHandle QA; // for array slots
827 private static final VarHandle SOURCE;
828 private static final VarHandle BASE;
829 static final ForkJoinTask<?> getSlot(ForkJoinTask<?>[] a, int i) {
830 return (ForkJoinTask<?>)QA.getAcquire(a, i);
831 }
832 static final ForkJoinTask<?> getAndClearSlot(ForkJoinTask<?>[] a,
833 int i) {
834 return (ForkJoinTask<?>)QA.getAndSet(a, i, null);
835 }
836 static final void setSlotVolatile(ForkJoinTask<?>[] a, int i,
837 ForkJoinTask<?> v) {
838 QA.setVolatile(a, i, v);
839 }
840 static final boolean casSlotToNull(ForkJoinTask<?>[] a, int i,
841 ForkJoinTask<?> c) {
842 return QA.weakCompareAndSet(a, i, c, null);
843 }
844 final boolean tryLock() {
845 return SOURCE.compareAndSet(this, 0, 1);
846 }
847 final void setBaseOpaque(int b) {
848 BASE.setOpaque(this, b);
849 }
850
851 /**
852 * Constructor used by ForkJoinWorkerThreads. Most fields
853 * are initialized upon thread start, in pool.registerWorker.
854 */
855 WorkQueue(ForkJoinWorkerThread owner, boolean isInnocuous) {
856 this.config = (isInnocuous) ? INNOCUOUS : 0;
857 this.owner = owner;
858 }
859
860 /**
861 * Constructor used for external queues.
862 */
863 WorkQueue(int config) {
864 array = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
865 this.config = config;
866 owner = null;
867 phase = -1;
868 }
869
870 /**
871 * Returns an exportable index (used by ForkJoinWorkerThread).
872 */
873 final int getPoolIndex() {
874 return (config & 0xffff) >>> 1; // ignore odd/even tag bit
875 }
876
877 /**
878 * Returns the approximate number of tasks in the queue.
879 */
880 final int queueSize() {
881 VarHandle.acquireFence(); // ensure fresh reads by external callers
882 int n = top - base;
883 return (n < 0) ? 0 : n; // ignore transient negative
884 }
885
886 /**
887 * Provides a more accurate estimate of whether this queue has
888 * any tasks than does queueSize, by checking whether an
889 * apparently near-empty queue has at least one unclaimed
890 * task.
891 */
892 final boolean isEmpty() {
893 VarHandle.acquireFence();
894 int s = top, b = base, cap;
895 ForkJoinTask<?>[] a = array;
896 return s - b <= 1 && (a == null || (cap = a.length) == 0 ||
897 (a[(cap - 1) & b] == null &&
898 a[(cap - 1) & (s - 1)] == null));
899 }
900
901 /**
902 * Pushes a task. Call only by owner in unshared queues.
903 *
904 * @param task the task. Caller must ensure non-null.
905 * @param pool (no-op if null)
906 * @throws RejectedExecutionException if array cannot be resized
907 */
908 final void push(ForkJoinTask<?> task, ForkJoinPool pool) {
909 ForkJoinTask<?>[] a = array;
910 int s = top++, d = s - base, cap, m; // skip insert if disabled
911 if (a != null && pool != null && (cap = a.length) > 0) {
912 setSlotVolatile(a, (m = cap - 1) & s, task);
913 if (d == m)
914 growArray();
915 if (d == m || a[m & (s - 1)] == null)
916 pool.signalWork(); // signal if was empty or resized
917 }
918 }
919
920 /**
921 * Pushes task to a shared queue with lock already held, and unlocks.
922 *
923 * @return true if caller should signal work
924 */
925 final boolean lockedPush(ForkJoinTask<?> task) {
926 ForkJoinTask<?>[] a = array;
927 int s = top++, d = s - base, cap, m;
928 if (a != null && (cap = a.length) > 0) {
929 a[(m = cap - 1) & s] = task;
930 if (d == m)
931 growArray();
932 source = 0; // unlock
933 if (d == m || a[m & (s - 1)] == null)
934 return true;
935 }
936 return false;
937 }
938
939 /**
940 * Doubles the capacity of array. Called by owner or with lock
941 * held after pre-incrementing top, which is reverted on
942 * allocation failure.
943 */
944 final void growArray() {
945 ForkJoinTask<?>[] oldArray = array, newArray;
946 int s = top - 1, oldCap, newCap;
947 if (oldArray != null && (oldCap = oldArray.length) > 0 &&
948 (newCap = oldCap << 1) > 0) { // skip if disabled
949 try {
950 newArray = new ForkJoinTask<?>[newCap];
951 } catch (Throwable ex) {
952 top = s;
953 if (owner == null)
954 source = 0; // unlock
955 throw new RejectedExecutionException(
956 "Queue capacity exceeded");
957 }
958 int newMask = newCap - 1, oldMask = oldCap - 1;
959 for (int k = oldCap; k > 0; --k, --s) {
960 ForkJoinTask<?> x; // poll old, push to new
961 if ((x = getAndClearSlot(oldArray, s & oldMask)) == null)
962 break; // others already taken
963 newArray[s & newMask] = x;
964 }
965 VarHandle.releaseFence(); // fill before publish
966 array = newArray;
967 }
968 }
969
970 // Variants of pop
971
972 /**
973 * Pops and returns task, or null if empty. Called only by owner.
974 */
975 private ForkJoinTask<?> pop() {
976 ForkJoinTask<?> t = null;
977 int s = top, cap; ForkJoinTask<?>[] a;
978 if ((a = array) != null && (cap = a.length) > 0 && base != s-- &&
979 (t = getAndClearSlot(a, (cap - 1) & s)) != null)
980 top = s;
981 return t;
982 }
983
984 /**
985 * Pops the given task for owner only if it is at the current top.
986 */
987 final boolean tryUnpush(ForkJoinTask<?> task, boolean owned) {
988 boolean taken = false;
989 int s = top, cap, k; ForkJoinTask<?>[] a;
990 if ((a = array) != null && (cap = a.length) > 0 &&
991 a[k = (cap - 1) & (s - 1)] == task) {
992 if (owned || tryLock()) {
993 if ((owned || (top == s && array == a)) &&
994 (taken = casSlotToNull(a, k, task)))
995 top = s - 1;
996 if (!owned)
997 source = 0; // release lock
998 }
999 }
1000 return taken;
1001 }
1002
1003 /**
1004 * Deep form of tryUnpush: Traverses from top and removes task if
1005 * present, shifting others to fill gap.
1006 */
1007 final boolean tryRemove(ForkJoinTask<?> task, boolean owned) {
1008 boolean taken = false;
1009 int p = top, cap; ForkJoinTask<?>[] a; ForkJoinTask<?> t;
1010 if ((a = array) != null && task != null && (cap = a.length) > 0) {
1011 int m = cap - 1, s = p - 1, d = p - base;
1012 for (int i = s, k; d > 0; --i, --d) {
1013 if ((t = a[k = i & m]) == task) {
1014 if (owned || tryLock()) {
1015 if ((owned || (array == a && top == p)) &&
1016 (taken = casSlotToNull(a, k, t))) {
1017 for (int j = i; j != s; ) // shift down
1018 a[j & m] = getAndClearSlot(a, ++j & m);
1019 top = s;
1020 }
1021 if (!owned)
1022 source = 0;
1023 }
1024 break;
1025 }
1026 }
1027 }
1028 return taken;
1029 }
1030
1031 // variants of poll
1032
1033 /**
1034 * Tries once to poll next task in FIFO order, failing on
1035 * inconsistency or contention.
1036 */
1037 final ForkJoinTask<?> tryPoll() {
1038 int cap, b, k; ForkJoinTask<?>[] a;
1039 if ((a = array) != null && (cap = a.length) > 0) {
1040 ForkJoinTask<?> t = getSlot(a, k = (cap - 1) & (b = base));
1041 if (base == b++ && t != null && casSlotToNull(a, k, t)) {
1042 setBaseOpaque(b);
1043 return t;
1044 }
1045 }
1046 return null;
1047 }
1048
1049 /**
1050 * Takes next task, if one exists, in order specified by mode.
1051 */
1052 final ForkJoinTask<?> nextLocalTask(int cfg) {
1053 ForkJoinTask<?> t = null;
1054 int s = top, cap; ForkJoinTask<?>[] a;
1055 if ((a = array) != null && (cap = a.length) > 0) {
1056 for (int b, d;;) {
1057 if ((d = s - (b = base)) <= 0)
1058 break;
1059 if (d == 1 || (cfg & FIFO) == 0) {
1060 if ((t = getAndClearSlot(a, --s & (cap - 1))) != null)
1061 top = s;
1062 break;
1063 }
1064 if ((t = getAndClearSlot(a, b++ & (cap - 1))) != null) {
1065 setBaseOpaque(b);
1066 break;
1067 }
1068 }
1069 }
1070 return t;
1071 }
1072
1073 /**
1074 * Takes next task, if one exists, using configured mode.
1075 */
1076 final ForkJoinTask<?> nextLocalTask() {
1077 return nextLocalTask(config);
1078 }
1079
1080 /**
1081 * Returns next task, if one exists, in order specified by mode.
1082 */
1083 final ForkJoinTask<?> peek() {
1084 VarHandle.acquireFence();
1085 int cap; ForkJoinTask<?>[] a;
1086 return ((a = array) != null && (cap = a.length) > 0) ?
1087 a[(cap - 1) & ((config & FIFO) != 0 ? base : top - 1)] : null;
1088 }
1089
1090 // specialized execution methods
1091
1092 /**
1093 * Runs the given (stolen) task if nonnull, as well as
1094 * remaining local tasks and/or others available from the
1095 * given queue.
1096 */
1097 final void topLevelExec(ForkJoinTask<?> task, WorkQueue q) {
1098 int cfg = config, nstolen = 1;
1099 while (task != null) {
1100 task.doExec();
1101 if ((task = nextLocalTask(cfg)) == null &&
1102 q != null && (task = q.tryPoll()) != null)
1103 ++nstolen;
1104 }
1105 nsteals += nstolen;
1106 source = 0;
1107 if ((cfg & INNOCUOUS) != 0)
1108 ThreadLocalRandom.eraseThreadLocals(Thread.currentThread());
1109 }
1110
1111 /**
1112 * Tries to pop and run tasks within the target's computation
1113 * until done, not found, or limit exceeded.
1114 *
1115 * @param task root of CountedCompleter computation
1116 * @param owned true if owned by a ForkJoinWorkerThread
1117 * @param limit max runs, or zero for no limit
1118 * @return task status on exit
1119 */
1120 final int helpComplete(ForkJoinTask<?> task, boolean owned, int limit) {
1121 int status = 0, cap, k, p, s; ForkJoinTask<?>[] a; ForkJoinTask<?> t;
1122 while (task != null && (status = task.status) >= 0 &&
1123 (a = array) != null && (cap = a.length) > 0 &&
1124 (t = a[k = (cap - 1) & (s = (p = top) - 1)])
1125 instanceof CountedCompleter) {
1126 CountedCompleter<?> f = (CountedCompleter<?>)t;
1127 boolean taken = false;
1128 for (;;) { // exec if root task is a completer of t
1129 if (f == task) {
1130 if (owned) {
1131 if ((taken = casSlotToNull(a, k, t)))
1132 top = s;
1133 }
1134 else if (tryLock()) {
1135 if (top == p && array == a &&
1136 (taken = casSlotToNull(a, k, t)))
1137 top = s;
1138 source = 0;
1139 }
1140 break;
1141 }
1142 else if ((f = f.completer) == null)
1143 break;
1144 }
1145 if (!taken)
1146 break;
1147 t.doExec();
1148 if (limit != 0 && --limit == 0)
1149 break;
1150 }
1151 return status;
1152 }
1153
1154 /**
1155 * Tries to poll and run AsynchronousCompletionTasks until
1156 * none found or blocker is released.
1157 *
1158 * @param blocker the blocker
1159 */
1160 final void helpAsyncBlocker(ManagedBlocker blocker) {
1161 int cap, b, d, k; ForkJoinTask<?>[] a; ForkJoinTask<?> t;
1162 while (blocker != null && (d = top - (b = base)) > 0 &&
1163 (a = array) != null && (cap = a.length) > 0 &&
1164 (((t = getSlot(a, k = (cap - 1) & b)) == null && d > 1) ||
1165 t instanceof
1166 CompletableFuture.AsynchronousCompletionTask) &&
1167 !blocker.isReleasable()) {
1168 if (t != null && base == b++ && casSlotToNull(a, k, t)) {
1169 setBaseOpaque(b);
1170 t.doExec();
1171 }
1172 }
1173 }
1174
1175 // misc
1176
1177 /** AccessControlContext for innocuous workers, created on 1st use. */
1178 private static AccessControlContext INNOCUOUS_ACC;
1179
1180 /**
1181 * Initializes (upon registration) InnocuousForkJoinWorkerThreads.
1182 */
1183 final void initializeInnocuousWorker() {
1184 AccessControlContext acc; // racy construction OK
1185 if ((acc = INNOCUOUS_ACC) == null)
1186 INNOCUOUS_ACC = acc = new AccessControlContext(
1187 new ProtectionDomain[] { new ProtectionDomain(null, null) });
1188 Thread t = Thread.currentThread();
1189 ThreadLocalRandom.setInheritedAccessControlContext(t, acc);
1190 ThreadLocalRandom.eraseThreadLocals(t);
1191 }
1192
1193 /**
1194 * Returns true if owned and not known to be blocked.
1195 */
1196 final boolean isApparentlyUnblocked() {
1197 Thread wt; Thread.State s;
1198 return ((wt = owner) != null &&
1199 (s = wt.getState()) != Thread.State.BLOCKED &&
1200 s != Thread.State.WAITING &&
1201 s != Thread.State.TIMED_WAITING);
1202 }
1203
1204 static {
1205 try {
1206 QA = MethodHandles.arrayElementVarHandle(ForkJoinTask[].class);
1207 MethodHandles.Lookup l = MethodHandles.lookup();
1208 SOURCE = l.findVarHandle(WorkQueue.class, "source", int.class);
1209 BASE = l.findVarHandle(WorkQueue.class, "base", int.class);
1210 } catch (ReflectiveOperationException e) {
1211 throw new ExceptionInInitializerError(e);
1212 }
1213 }
1214 }
1215
1216 // static fields (initialized in static initializer below)
1217
1218 /**
1219 * Creates a new ForkJoinWorkerThread. This factory is used unless
1220 * overridden in ForkJoinPool constructors.
1221 */
1222 public static final ForkJoinWorkerThreadFactory
1223 defaultForkJoinWorkerThreadFactory;
1224
1225 /**
1226 * Permission required for callers of methods that may start or
1227 * kill threads.
1228 */
1229 static final RuntimePermission modifyThreadPermission;
1230
1231 /**
1232 * Common (static) pool. Non-null for public use unless a static
1233 * construction exception, but internal usages null-check on use
1234 * to paranoically avoid potential initialization circularities
1235 * as well as to simplify generated code.
1236 */
1237 static final ForkJoinPool common;
1238
1239 /**
1240 * Common pool parallelism. To allow simpler use and management
1241 * when common pool threads are disabled, we allow the underlying
1242 * common.parallelism field to be zero, but in that case still report
1243 * parallelism as 1 to reflect resulting caller-runs mechanics.
1244 */
1245 static final int COMMON_PARALLELISM;
1246
1247 /**
1248 * Limit on spare thread construction in tryCompensate.
1249 */
1250 private static final int COMMON_MAX_SPARES;
1251
1252 /**
1253 * Sequence number for creating worker names
1254 */
1255 private static volatile int poolIds;
1256
1257 // static configuration constants
1258
1259 /**
1260 * Default idle timeout value (in milliseconds) for the thread
1261 * triggering quiescence to park waiting for new work
1262 */
1263 private static final long DEFAULT_KEEPALIVE = 60_000L;
1264
1265 /**
1266 * Undershoot tolerance for idle timeouts
1267 */
1268 private static final long TIMEOUT_SLOP = 20L;
1269
1270 /**
1271 * The default value for COMMON_MAX_SPARES. Overridable using the
1272 * "java.util.concurrent.ForkJoinPool.common.maximumSpares" system
1273 * property. The default value is far in excess of normal
1274 * requirements, but also far short of MAX_CAP and typical OS
1275 * thread limits, so allows JVMs to catch misuse/abuse before
1276 * running out of resources needed to do so.
1277 */
1278 private static final int DEFAULT_COMMON_MAX_SPARES = 256;
1279
1280 /*
1281 * Bits and masks for field ctl, packed with 4 16 bit subfields:
1282 * RC: Number of released (unqueued) workers minus target parallelism
1283 * TC: Number of total workers minus target parallelism
1284 * SS: version count and status of top waiting thread
1285 * ID: poolIndex of top of Treiber stack of waiters
1286 *
1287 * When convenient, we can extract the lower 32 stack top bits
1288 * (including version bits) as sp=(int)ctl. The offsets of counts
1289 * by the target parallelism and the positionings of fields makes
1290 * it possible to perform the most common checks via sign tests of
1291 * fields: When ac is negative, there are not enough unqueued
1292 * workers, when tc is negative, there are not enough total
1293 * workers. When sp is non-zero, there are waiting workers. To
1294 * deal with possibly negative fields, we use casts in and out of
1295 * "short" and/or signed shifts to maintain signedness.
1296 *
1297 * Because it occupies uppermost bits, we can add one release
1298 * count using getAndAdd of RC_UNIT, rather than CAS, when
1299 * returning from a blocked join. Other updates entail multiple
1300 * subfields and masking, requiring CAS.
1301 *
1302 * The limits packed in field "bounds" are also offset by the
1303 * parallelism level to make them comparable to the ctl rc and tc
1304 * fields.
1305 */
1306
1307 // Lower and upper word masks
1308 private static final long SP_MASK = 0xffffffffL;
1309 private static final long UC_MASK = ~SP_MASK;
1310
1311 // Release counts
1312 private static final int RC_SHIFT = 48;
1313 private static final long RC_UNIT = 0x0001L << RC_SHIFT;
1314 private static final long RC_MASK = 0xffffL << RC_SHIFT;
1315
1316 // Total counts
1317 private static final int TC_SHIFT = 32;
1318 private static final long TC_UNIT = 0x0001L << TC_SHIFT;
1319 private static final long TC_MASK = 0xffffL << TC_SHIFT;
1320 private static final long ADD_WORKER = 0x0001L << (TC_SHIFT + 15); // sign
1321
1322 // Instance fields
1323
1324 final long keepAlive; // milliseconds before dropping if idle
1325 volatile long stealCount; // collects worker nsteals
1326 int scanRover; // advances across pollScan calls
1327 volatile int threadIds; // for worker thread names
1328 final int bounds; // min, max threads packed as shorts
1329 volatile int mode; // parallelism, runstate, queue mode
1330 WorkQueue[] queues; // main registry
1331 final ReentrantLock registrationLock;
1332 Condition termination; // lazily constructed
1333 final String workerNamePrefix; // null for common pool
1334 final ForkJoinWorkerThreadFactory factory;
1335 final UncaughtExceptionHandler ueh; // per-worker UEH
1336 final Predicate<? super ForkJoinPool> saturate;
1337
1338 @jdk.internal.vm.annotation.Contended("fjpctl") // segregate
1339 volatile long ctl; // main pool control
1340
1341 // Support for atomic operations
1342 private static final VarHandle CTL;
1343 private static final VarHandle MODE;
1344 private static final VarHandle THREADIDS;
1345 private static final VarHandle POOLIDS;
1346 private boolean compareAndSetCtl(long c, long v) {
1347 return CTL.compareAndSet(this, c, v);
1348 }
1349 private long compareAndExchangeCtl(long c, long v) {
1350 return (long)CTL.compareAndExchange(this, c, v);
1351 }
1352 private long getAndAddCtl(long v) {
1353 return (long)CTL.getAndAdd(this, v);
1354 }
1355 private int getAndBitwiseOrMode(int v) {
1356 return (int)MODE.getAndBitwiseOr(this, v);
1357 }
1358 private int getAndAddThreadIds(int x) {
1359 return (int)THREADIDS.getAndAdd(this, x);
1360 }
1361 private static int getAndAddPoolIds(int x) {
1362 return (int)POOLIDS.getAndAdd(x);
1363 }
1364
1365 // Creating, registering and deregistering workers
1366
1367 /**
1368 * Tries to construct and start one worker. Assumes that total
1369 * count has already been incremented as a reservation. Invokes
1370 * deregisterWorker on any failure.
1371 *
1372 * @return true if successful
1373 */
1374 private boolean createWorker() {
1375 ForkJoinWorkerThreadFactory fac = factory;
1376 Throwable ex = null;
1377 ForkJoinWorkerThread wt = null;
1378 try {
1379 if (fac != null && (wt = fac.newThread(this)) != null) {
1380 wt.start();
1381 return true;
1382 }
1383 } catch (Throwable rex) {
1384 ex = rex;
1385 }
1386 deregisterWorker(wt, ex);
1387 return false;
1388 }
1389
1390 /**
1391 * Provides a name for ForkJoinWorkerThread constructor.
1392 */
1393 final String nextWorkerThreadName() {
1394 String prefix = workerNamePrefix;
1395 int tid = getAndAddThreadIds(1) + 1;
1396 if (prefix == null) // commonPool has no prefix
1397 prefix = "ForkJoinPool.commonPool-worker-";
1398 return prefix.concat(Integer.toString(tid));
1399 }
1400
1401 /**
1402 * Finishes initializing and records owned queue.
1403 *
1404 * @param w caller's WorkQueue
1405 */
1406 final void registerWorker(WorkQueue w) {
1407 ReentrantLock lock = registrationLock;
1408 ThreadLocalRandom.localInit();
1409 int seed = ThreadLocalRandom.getProbe();
1410 if (w != null && lock != null) {
1411 int modebits = (mode & FIFO) | w.config;
1412 w.array = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
1413 w.stackPred = seed; // stash for runWorker
1414 if ((modebits & INNOCUOUS) != 0)
1415 w.initializeInnocuousWorker();
1416 int id = (seed << 1) | 1; // initial index guess
1417 lock.lock();
1418 try {
1419 WorkQueue[] qs; int n; // find queue index
1420 if ((qs = queues) != null && (n = qs.length) > 0) {
1421 int k = n, m = n - 1;
1422 for (; qs[id &= m] != null && k > 0; id -= 2, k -= 2);
1423 if (k == 0)
1424 id = n | 1; // resize below
1425 w.phase = w.config = id | modebits; // now publishable
1426
1427 if (id < n)
1428 qs[id] = w;
1429 else { // expand array
1430 int an = n << 1, am = an - 1;
1431 WorkQueue[] as = new WorkQueue[an];
1432 as[id & am] = w;
1433 for (int j = 1; j < n; j += 2)
1434 as[j] = qs[j];
1435 for (int j = 0; j < n; j += 2) {
1436 WorkQueue q;
1437 if ((q = qs[j]) != null) // shared queues may move
1438 as[q.config & am] = q;
1439 }
1440 VarHandle.releaseFence(); // fill before publish
1441 queues = as;
1442 }
1443 }
1444 } finally {
1445 lock.unlock();
1446 }
1447 }
1448 }
1449
1450 /**
1451 * Final callback from terminating worker, as well as upon failure
1452 * to construct or start a worker. Removes record of worker from
1453 * array, and adjusts counts. If pool is shutting down, tries to
1454 * complete termination.
1455 *
1456 * @param wt the worker thread, or null if construction failed
1457 * @param ex the exception causing failure, or null if none
1458 */
1459 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1460 ReentrantLock lock = registrationLock;
1461 WorkQueue w = null;
1462 int cfg = 0;
1463 if (wt != null && (w = wt.workQueue) != null && lock != null) {
1464 WorkQueue[] qs; int n, i;
1465 cfg = w.config;
1466 long ns = w.nsteals & 0xffffffffL;
1467 lock.lock(); // remove index from array
1468 if ((qs = queues) != null && (n = qs.length) > 0 &&
1469 qs[i = cfg & (n - 1)] == w)
1470 qs[i] = null;
1471 stealCount += ns; // accumulate steals
1472 lock.unlock();
1473 long c = ctl;
1474 if (w.phase != QUIET) // decrement counts
1475 do {} while (c != (c = compareAndExchangeCtl(
1476 c, ((RC_MASK & (c - RC_UNIT)) |
1477 (TC_MASK & (c - TC_UNIT)) |
1478 (SP_MASK & c)))));
1479 else if ((int)c == 0) // was dropped on timeout
1480 cfg = 0; // suppress signal if last
1481 for (ForkJoinTask<?> t; (t = w.pop()) != null; )
1482 ForkJoinTask.cancelIgnoringExceptions(t); // cancel tasks
1483 }
1484
1485 if (!tryTerminate(false, false) && w != null && (cfg & SRC) != 0)
1486 signalWork(); // possibly replace worker
1487 if (ex != null)
1488 ForkJoinTask.rethrow(ex);
1489 }
1490
1491 /*
1492 * Tries to create or release a worker if too few are running.
1493 */
1494 final void signalWork() {
1495 for (long c = ctl; c < 0L;) {
1496 int sp, i; WorkQueue[] qs; WorkQueue v;
1497 if ((sp = (int)c & ~UNSIGNALLED) == 0) { // no idle workers
1498 if ((c & ADD_WORKER) == 0L) // enough total workers
1499 break;
1500 if (c == (c = compareAndExchangeCtl(
1501 c, ((RC_MASK & (c + RC_UNIT)) |
1502 (TC_MASK & (c + TC_UNIT)))))) {
1503 createWorker();
1504 break;
1505 }
1506 }
1507 else if ((qs = queues) == null)
1508 break; // unstarted/terminated
1509 else if (qs.length <= (i = sp & SMASK))
1510 break; // terminated
1511 else if ((v = qs[i]) == null)
1512 break; // terminating
1513 else {
1514 long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + RC_UNIT));
1515 Thread vt = v.owner;
1516 if (c == (c = compareAndExchangeCtl(c, nc))) {
1517 v.phase = sp;
1518 LockSupport.unpark(vt); // release idle worker
1519 break;
1520 }
1521 }
1522 }
1523 }
1524
1525 /**
1526 * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1527 * See above for explanation.
1528 *
1529 * @param w caller's WorkQueue (may be null on failed initialization)
1530 */
1531 final void runWorker(WorkQueue w) {
1532 if (w != null) { // skip on failed init
1533 w.config |= SRC; // mark as valid source
1534 int r = w.stackPred, src = 0; // use seed from registerWorker
1535 do {
1536 r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
1537 } while ((src = scan(w, src, r)) >= 0 ||
1538 (src = awaitWork(w)) == 0);
1539 }
1540 }
1541
1542 /**
1543 * Scans for and if found executes top-level tasks: Tries to poll
1544 * each queue starting at a random index with random stride,
1545 * returning source id or retry indicator if contended or
1546 * inconsistent.
1547 *
1548 * @param w caller's WorkQueue
1549 * @param prevSrc the previous queue stolen from in current phase, or 0
1550 * @param r random seed
1551 * @return id of queue if taken, negative if none found, prevSrc for retry
1552 */
1553 private int scan(WorkQueue w, int prevSrc, int r) {
1554 WorkQueue[] qs = queues;
1555 int n = (w == null || qs == null) ? 0 : qs.length;
1556 for (int step = (r >>> 16) | 1, i = n; i > 0; --i, r += step) {
1557 int j, cap, b; WorkQueue q; ForkJoinTask<?>[] a;
1558 if ((q = qs[j = r & (n - 1)]) != null && // poll at qs[j].array[k]
1559 (a = q.array) != null && (cap = a.length) > 0) {
1560 int k = (cap - 1) & (b = q.base), nextBase = b + 1;
1561 int nextIndex = (cap - 1) & nextBase, src = j | SRC;
1562 ForkJoinTask<?> t = WorkQueue.getSlot(a, k);
1563 if (q.base != b) // inconsistent
1564 return prevSrc;
1565 else if (t != null && WorkQueue.casSlotToNull(a, k, t)) {
1566 q.base = nextBase;
1567 ForkJoinTask<?> next = a[nextIndex];
1568 if ((w.source = src) != prevSrc && next != null)
1569 signalWork(); // propagate
1570 w.topLevelExec(t, q);
1571 return src;
1572 }
1573 else if (a[nextIndex] != null) // revisit
1574 return prevSrc;
1575 }
1576 }
1577 return (queues != qs) ? prevSrc: -1; // possibly resized
1578 }
1579
1580 /**
1581 * Advances worker phase, pushes onto ctl stack, and awaits signal
1582 * or reports termination.
1583 *
1584 * @return negative if terminated, else 0
1585 */
1586 private int awaitWork(WorkQueue w) {
1587 if (w == null)
1588 return -1; // already terminated
1589 int phase, ac; // advance phase
1590 w.phase = (phase = w.phase + SS_SEQ) | UNSIGNALLED;
1591 long prevCtl = ctl, c; // enqueue
1592 do {
1593 w.stackPred = (int)prevCtl;
1594 c = ((prevCtl - RC_UNIT) & UC_MASK) | (phase & SP_MASK);
1595 } while (prevCtl != (prevCtl = compareAndExchangeCtl(prevCtl, c)));
1596
1597 LockSupport.setCurrentBlocker(this); // prepare to block (exit also OK)
1598 long deadline = 0L; // use timed wait if nonzero
1599 if ((ac = (int)(c >> RC_SHIFT)) + (mode & SMASK) <= 0) { // quiescent
1600 if ((deadline = System.currentTimeMillis() + keepAlive) == 0L)
1601 deadline = 1L; // avoid zero
1602 WorkQueue[] qs = queues; // check for racing submission
1603 int n = (qs == null || ctl != c) ? 0 : qs.length;
1604 for (int i = 0; i < n; i += 2) {
1605 WorkQueue q; ForkJoinTask<?>[] a; int cap;
1606 if ((q = qs[i]) != null && (a = q.array) != null &&
1607 (cap = a.length) > 0 && a[(cap - 1) & q.base] != null) {
1608 if (ctl == c && compareAndSetCtl(c, prevCtl))
1609 w.phase = phase; // self-signal
1610 break; // else lost race
1611 }
1612 }
1613 }
1614 for (;;) { // await activation or termination
1615 if (w.phase >= 0)
1616 break;
1617 else if (tryTerminate(false, false))
1618 return -1;
1619 else if ((int)(ctl >> RC_SHIFT) > ac)
1620 Thread.onSpinWait(); // signal in progress
1621 else if (deadline != 0L)
1622 LockSupport.parkUntil(deadline);
1623 else
1624 LockSupport.park();
1625 if (w.phase >= 0)
1626 break;
1627 else if (deadline != 0L &&
1628 deadline - System.currentTimeMillis() <= TIMEOUT_SLOP &&
1629 compareAndSetCtl(c, ((UC_MASK & (c - TC_UNIT)) |
1630 (w.stackPred & SP_MASK)))) {
1631 w.phase = QUIET;
1632 return -1; // drop on timeout
1633 }
1634 else
1635 Thread.interrupted(); // clear status before repark
1636 }
1637 LockSupport.setCurrentBlocker(null);
1638 return 0;
1639 }
1640
1641 /**
1642 * Tries to decrement counts (sometimes implicitly) and possibly
1643 * arrange for a compensating worker in preparation for
1644 * blocking. May fail due to interference, in which case -1 is
1645 * returned so caller may retry. A zero return value indicates
1646 * that the caller doesn't need to re-adjust counts when later
1647 * unblocked.
1648 *
1649 * @param c incoming ctl value
1650 * @return ADJUST: block then adjust, 0: block without adjust, -1 : retry
1651 */
1652 private int tryCompensate(long c) {
1653 Predicate<? super ForkJoinPool> sat;
1654 int b = bounds; // counts are signed; centered at parallelism level == 0
1655 int minActive = (short)(b & SMASK),
1656 maxTotal = b >>> SWIDTH,
1657 active = (int)(c >> RC_SHIFT),
1658 total = (short)(c >>> TC_SHIFT), sp;
1659 if ((sp = (int)c & ~UNSIGNALLED) != 0) { // activate idle worker
1660 WorkQueue[] qs; int n; WorkQueue v;
1661 if ((qs = queues) != null && (n = qs.length) > 0 &&
1662 (v = qs[sp & (n - 1)]) != null) {
1663 Thread vt = v.owner;
1664 long nc = ((long)v.stackPred & SP_MASK) | (UC_MASK & c);
1665 if (compareAndSetCtl(c, nc)) {
1666 v.phase = sp;
1667 LockSupport.unpark(vt);
1668 return ADJUST;
1669 }
1670 }
1671 return -1; // retry
1672 }
1673 else if (total >= 0 && active > minActive) { // reduce parallelism
1674 long nc = ((RC_MASK & (c - RC_UNIT)) | (~RC_MASK & c));
1675 return compareAndSetCtl(c, nc) ? ADJUST : -1;
1676 }
1677 else if (total < maxTotal) { // expand pool
1678 long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1679 return !compareAndSetCtl(c, nc) ? -1 : !createWorker() ? 0 : ADJUST;
1680 }
1681 else if (!compareAndSetCtl(c, c)) // validate
1682 return -1;
1683 else if ((sat = saturate) != null && sat.test(this))
1684 return 0;
1685 else
1686 throw new RejectedExecutionException(
1687 "Thread limit exceeded replacing blocked worker");
1688 }
1689
1690 /**
1691 * Readjusts RC count; called from ForkJoinTask after blocking.
1692 */
1693 final void uncompensate() {
1694 getAndAddCtl(RC_UNIT);
1695 }
1696
1697 /**
1698 * Helps if possible until the given task is done. Scans other
1699 * queues for a task produced by one of w's stealers; returning
1700 * compensated blocking sentinel if none are found.
1701 *
1702 * @param task the task
1703 * @param w caller's WorkQueue
1704 * @return task status on exit, or ADJUST for compensated blocking
1705 */
1706 final int helpJoin(ForkJoinTask<?> task, WorkQueue w) {
1707 int s = 0;
1708 if (task != null && w != null) {
1709 int wsrc = w.source, wid = w.config & SMASK, r = wid + 2;
1710 boolean scan = true;
1711 long c = 0L; // track ctl stability
1712 outer: for (;;) {
1713 if ((s = task.status) < 0)
1714 break;
1715 else if (!scan && c == (c = ctl)) {
1716 if (mode < 0)
1717 ForkJoinTask.cancelIgnoringExceptions(task);
1718 else if ((s = tryCompensate(c)) >= 0)
1719 break; // block
1720 }
1721 else { // scan for subtasks
1722 scan = false;
1723 WorkQueue[] qs = queues;
1724 int n = (qs == null) ? 0 : qs.length, m = n - 1;
1725 for (int i = n; i > 0; i -= 2, r += 2) {
1726 int j; WorkQueue q, x, y; ForkJoinTask<?>[] a;
1727 if ((q = qs[j = r & m]) != null) {
1728 int sq = q.source & SMASK, cap, b;
1729 if ((a = q.array) != null && (cap = a.length) > 0) {
1730 int k = (cap - 1) & (b = q.base);
1731 int nextBase = b + 1, src = j | SRC, sx;
1732 ForkJoinTask<?> t = WorkQueue.getSlot(a, k);
1733 boolean eligible = sq == wid ||
1734 ((x = qs[sq & m]) != null && // indirect
1735 ((sx = (x.source & SMASK)) == wid ||
1736 ((y = qs[sx & m]) != null && // 2-indirect
1737 (y.source & SMASK) == wid)));
1738 if ((s = task.status) < 0)
1739 break outer;
1740 else if ((q.source & SMASK) != sq ||
1741 q.base != b)
1742 scan = true; // inconsistent
1743 else if (t == null)
1744 scan |= (a[nextBase & (cap - 1)] != null ||
1745 q.top != b); // lagging
1746 else if (eligible) {
1747 if (WorkQueue.casSlotToNull(a, k, t)) {
1748 q.base = nextBase;
1749 w.source = src;
1750 t.doExec();
1751 w.source = wsrc;
1752 }
1753 scan = true;
1754 break;
1755 }
1756 }
1757 }
1758 }
1759 }
1760 }
1761 }
1762 return s;
1763 }
1764
1765 /**
1766 * Version of helpJoin for CountedCompleters, also usable with
1767 * external submitter threads. Scans for and runs subtasks of the
1768 * given root task, compensating and blocking if none are found.
1769 *
1770 * @param task root of CountedCompleter computation
1771 * @param w caller's WorkQueue
1772 * @param owned true if owned by a ForkJoinWorkerThread
1773 * @return task status on exit, or ADJUST for compensated blocking
1774 */
1775 final int helpComplete(ForkJoinTask<?> task, WorkQueue w, boolean owned) {
1776 int s = 0;
1777 if (task != null && w != null) {
1778 int r = w.config;
1779 boolean scan = true, locals = true;
1780 long c = 0L;
1781 outer: for (;;) {
1782 if (locals) { // try locals before scanning
1783 if ((s = w.helpComplete(task, owned, 0)) < 0)
1784 break;
1785 locals = false;
1786 }
1787 else if ((s = task.status) < 0)
1788 break;
1789 else if (!scan && c == (c = ctl)) {
1790 if (mode < 0)
1791 ForkJoinTask.cancelIgnoringExceptions(task);
1792 else if (!owned || (s = tryCompensate(c)) >= 0)
1793 break; // block
1794 }
1795 else { // scan for subtasks
1796 scan = false;
1797 WorkQueue[] qs = queues;
1798 int n = (qs == null) ? 0 : qs.length;
1799 for (int i = n; i > 0; --i, ++r) {
1800 int j, cap, b; WorkQueue q; ForkJoinTask<?>[] a;
1801 boolean eligible = false;
1802 if ((q = qs[j = r & (n - 1)]) != null &&
1803 (a = q.array) != null && (cap = a.length) > 0) {
1804 int k = (cap - 1) & (b = q.base), nextBase = b + 1;
1805 ForkJoinTask<?> t = WorkQueue.getSlot(a, k);
1806 if (t instanceof CountedCompleter) {
1807 CountedCompleter<?> f = (CountedCompleter<?>)t;
1808 do {} while (!(eligible = (f == task)) &&
1809 (f = f.completer) != null);
1810 }
1811 if ((s = task.status) < 0)
1812 break outer;
1813 else if (q.base != b)
1814 scan = true; // inconsistent
1815 else if (t == null)
1816 scan |= (a[nextBase & (cap - 1)] != null ||
1817 q.top != b);
1818 else if (eligible) {
1819 if (WorkQueue.casSlotToNull(a, k, t)) {
1820 q.setBaseOpaque(nextBase);
1821 t.doExec();
1822 locals = true;
1823 }
1824 scan = true;
1825 break;
1826 }
1827 }
1828 }
1829 }
1830 }
1831 }
1832 return s;
1833 }
1834
1835 /**
1836 * Runs tasks until {@code isQuiescent()}. Rather than blocking
1837 * when tasks cannot be found, rescans until all others cannot
1838 * find tasks either.
1839 */
1840 final void helpQuiescePool(WorkQueue w) {
1841 if (w != null) {
1842 int prevSrc = w.source, wsrc = prevSrc, cfg = w.config, r = cfg + 1;
1843 for (boolean active = true, locals = true;;) {
1844 boolean busy = false, scan = false;
1845 if (locals) { // run local tasks before (re)polling
1846 locals = false;
1847 for (ForkJoinTask<?> u; (u = w.nextLocalTask(cfg)) != null;)
1848 u.doExec();
1849 }
1850 WorkQueue[] qs = queues;
1851 int n = (qs == null) ? 0 : qs.length;
1852 for (int i = n; i > 0; --i, ++r) {
1853 int j, b, cap; WorkQueue q; ForkJoinTask<?>[] a;
1854 if ((q = qs[j = (n - 1) & r]) != null && q != w &&
1855 (a = q.array) != null && (cap = a.length) > 0) {
1856 int k = (cap - 1) & (b = q.base);
1857 int nextBase = b + 1, src = j | SRC;
1858 ForkJoinTask<?> t = WorkQueue.getSlot(a, k);
1859 if (q.base != b)
1860 busy = scan = true;
1861 else if (t != null) {
1862 busy = scan = true;
1863 if (!active) { // increment before taking
1864 active = true;
1865 getAndAddCtl(RC_UNIT);
1866 }
1867 if (WorkQueue.casSlotToNull(a, k, t)) {
1868 q.base = nextBase;
1869 w.source = src;
1870 t.doExec();
1871 w.source = wsrc = prevSrc;
1872 locals = true;
1873 }
1874 break;
1875 }
1876 else if (!busy) {
1877 if (q.top != b || a[nextBase & (cap - 1)] != null)
1878 busy = scan = true;
1879 else if (q.source != QUIET && q.phase >= 0)
1880 busy = true;
1881 }
1882 }
1883 }
1884 VarHandle.acquireFence();
1885 if (!scan && queues == qs) {
1886 if (!busy) {
1887 w.source = prevSrc;
1888 if (!active)
1889 getAndAddCtl(RC_UNIT);
1890 break;
1891 }
1892 if (wsrc != QUIET)
1893 w.source = wsrc = QUIET;
1894 if (active) { // decrement
1895 active = false;
1896 getAndAddCtl(RC_MASK & -RC_UNIT);
1897 }
1898 else
1899 Thread.yield(); // no tasks but others busy
1900 }
1901 }
1902 }
1903 }
1904
1905 /**
1906 * Scans for and returns a polled task, if available. Used only
1907 * for untracked polls. Begins scan at an index (scanRover)
1908 * advanced on each call, to avoid systematic unfairness.
1909 *
1910 * @param submissionsOnly if true, only scan submission queues
1911 */
1912 private ForkJoinTask<?> pollScan(boolean submissionsOnly) {
1913 VarHandle.acquireFence();
1914 int r = scanRover += 0x61c88647; // Weyl increment; raciness OK
1915 if (submissionsOnly) // even indices only
1916 r &= ~1;
1917 int step = (submissionsOnly) ? 2 : 1;
1918 WorkQueue[] qs; int n;
1919 while ((qs = queues) != null && (n = qs.length) > 0) {
1920 boolean scan = false;
1921 for (int i = 0; i < n; i += step) {
1922 int j, cap, b; WorkQueue q; ForkJoinTask<?>[] a;
1923 if ((q = qs[j = (n - 1) & (r + i)]) != null &&
1924 (a = q.array) != null && (cap = a.length) > 0) {
1925 int k = (cap - 1) & (b = q.base), nextBase = b + 1;
1926 ForkJoinTask<?> t = WorkQueue.getSlot(a, k);
1927 if (q.base != b)
1928 scan = true;
1929 else if (t == null)
1930 scan |= (q.top != b || a[nextBase & (cap - 1)] != null);
1931 else if (!WorkQueue.casSlotToNull(a, k, t))
1932 scan = true;
1933 else {
1934 q.setBaseOpaque(nextBase);
1935 return t;
1936 }
1937 }
1938 }
1939 if (!scan && queues == qs)
1940 break;
1941 }
1942 return null;
1943 }
1944
1945 /**
1946 * Gets and removes a local or stolen task for the given worker.
1947 *
1948 * @return a task, if available
1949 */
1950 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
1951 ForkJoinTask<?> t;
1952 if (w == null || (t = w.nextLocalTask(w.config)) == null)
1953 t = pollScan(false);
1954 return t;
1955 }
1956
1957 // External operations
1958
1959 /**
1960 * Finds and locks a WorkQueue for an external submitter, or
1961 * returns null if shutdown or terminating.
1962 */
1963 final WorkQueue submissionQueue() {
1964 int r;
1965 if ((r = ThreadLocalRandom.getProbe()) == 0) {
1966 ThreadLocalRandom.localInit(); // initialize caller's probe
1967 r = ThreadLocalRandom.getProbe();
1968 }
1969 for (int id = r << 1;;) { // even indices only
1970 int md = mode, n, i; WorkQueue q; ReentrantLock lock;
1971 WorkQueue[] qs = queues;
1972 if ((md & SHUTDOWN) != 0 || qs == null || (n = qs.length) <= 0)
1973 return null;
1974 else if ((q = qs[i = (n - 1) & id]) == null) {
1975 if ((lock = registrationLock) != null) {
1976 WorkQueue w = new WorkQueue(id | SRC);
1977 lock.lock(); // install under lock
1978 if (qs[i] == null)
1979 qs[i] = w; // else lost race; discard
1980 lock.unlock();
1981 }
1982 }
1983 else if (!q.tryLock()) // move and restart
1984 id = (r = ThreadLocalRandom.advanceProbe(r)) << 1;
1985 else
1986 return q;
1987 }
1988 }
1989
1990 /**
1991 * Adds the given task to an external submission queue, or throws
1992 * exception if shutdown or terminating.
1993 *
1994 * @param task the task. Caller must ensure non-null.
1995 */
1996 final void externalPush(ForkJoinTask<?> task) {
1997 WorkQueue q;
1998 if ((q = submissionQueue()) == null)
1999 throw new RejectedExecutionException(); // shutdown or disabled
2000 else if (q.lockedPush(task))
2001 signalWork();
2002 }
2003
2004 /**
2005 * Pushes a possibly-external submission.
2006 */
2007 private <T> ForkJoinTask<T> externalSubmit(ForkJoinTask<T> task) {
2008 Thread t; ForkJoinWorkerThread wt; WorkQueue q;
2009 if (task == null)
2010 throw new NullPointerException();
2011 if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) &&
2012 (q = (wt = (ForkJoinWorkerThread)t).workQueue) != null &&
2013 wt.pool == this)
2014 q.push(task, this);
2015 else
2016 externalPush(task);
2017 return task;
2018 }
2019
2020 /**
2021 * Returns common pool queue for an external thread that has
2022 * possibly ever submitted a common pool task (nonzero probe), or
2023 * null if none.
2024 */
2025 static WorkQueue commonQueue() {
2026 ForkJoinPool p; WorkQueue[] qs;
2027 int r = ThreadLocalRandom.getProbe(), n;
2028 return ((p = common) != null && (qs = p.queues) != null &&
2029 (n = qs.length) > 0 && r != 0) ?
2030 qs[(n - 1) & (r << 1)] : null;
2031 }
2032
2033 /**
2034 * If the given executor is a ForkJoinPool, poll and execute
2035 * AsynchronousCompletionTasks from worker's queue until none are
2036 * available or blocker is released.
2037 */
2038 static void helpAsyncBlocker(Executor e, ManagedBlocker blocker) {
2039 WorkQueue w = null; Thread t; ForkJoinWorkerThread wt;
2040 if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) {
2041 if ((wt = (ForkJoinWorkerThread)t).pool == e)
2042 w = wt.workQueue;
2043 }
2044 else if (e == common)
2045 w = commonQueue();
2046 if (w != null)
2047 w.helpAsyncBlocker(blocker);
2048 }
2049
2050 /**
2051 * Returns a cheap heuristic guide for task partitioning when
2052 * programmers, frameworks, tools, or languages have little or no
2053 * idea about task granularity. In essence, by offering this
2054 * method, we ask users only about tradeoffs in overhead vs
2055 * expected throughput and its variance, rather than how finely to
2056 * partition tasks.
2057 *
2058 * In a steady state strict (tree-structured) computation, each
2059 * thread makes available for stealing enough tasks for other
2060 * threads to remain active. Inductively, if all threads play by
2061 * the same rules, each thread should make available only a
2062 * constant number of tasks.
2063 *
2064 * The minimum useful constant is just 1. But using a value of 1
2065 * would require immediate replenishment upon each steal to
2066 * maintain enough tasks, which is infeasible. Further,
2067 * partitionings/granularities of offered tasks should minimize
2068 * steal rates, which in general means that threads nearer the top
2069 * of computation tree should generate more than those nearer the
2070 * bottom. In perfect steady state, each thread is at
2071 * approximately the same level of computation tree. However,
2072 * producing extra tasks amortizes the uncertainty of progress and
2073 * diffusion assumptions.
2074 *
2075 * So, users will want to use values larger (but not much larger)
2076 * than 1 to both smooth over transient shortages and hedge
2077 * against uneven progress; as traded off against the cost of
2078 * extra task overhead. We leave the user to pick a threshold
2079 * value to compare with the results of this call to guide
2080 * decisions, but recommend values such as 3.
2081 *
2082 * When all threads are active, it is on average OK to estimate
2083 * surplus strictly locally. In steady-state, if one thread is
2084 * maintaining say 2 surplus tasks, then so are others. So we can
2085 * just use estimated queue length. However, this strategy alone
2086 * leads to serious mis-estimates in some non-steady-state
2087 * conditions (ramp-up, ramp-down, other stalls). We can detect
2088 * many of these by further considering the number of "idle"
2089 * threads, that are known to have zero queued tasks, so
2090 * compensate by a factor of (#idle/#active) threads.
2091 */
2092 static int getSurplusQueuedTaskCount() {
2093 Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2094 if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) &&
2095 (pool = (wt = (ForkJoinWorkerThread)t).pool) != null &&
2096 (q = wt.workQueue) != null) {
2097 int p = pool.mode & SMASK;
2098 int a = p + (int)(pool.ctl >> RC_SHIFT);
2099 int n = q.top - q.base;
2100 return n - (a > (p >>>= 1) ? 0 :
2101 a > (p >>>= 1) ? 1 :
2102 a > (p >>>= 1) ? 2 :
2103 a > (p >>>= 1) ? 4 :
2104 8);
2105 }
2106 return 0;
2107 }
2108
2109 // Termination
2110
2111 /**
2112 * Possibly initiates and/or completes termination.
2113 *
2114 * @param now if true, unconditionally terminate, else only
2115 * if no work and no active workers
2116 * @param enable if true, terminate when next possible
2117 * @return true if terminating or terminated
2118 */
2119 private boolean tryTerminate(boolean now, boolean enable) {
2120 int md; // try to set SHUTDOWN, then STOP, then help terminate
2121 if (((md = mode) & SHUTDOWN) == 0) {
2122 if (!enable)
2123 return false;
2124 md = getAndBitwiseOrMode(SHUTDOWN);
2125 }
2126 if ((md & STOP) == 0) {
2127 if (!now && !isQuiescent())
2128 return false;
2129 md = getAndBitwiseOrMode(STOP);
2130 }
2131 if ((md & TERMINATED) == 0) {
2132 for (ForkJoinTask<?> t; (t = pollScan(false)) != null; )
2133 ForkJoinTask.cancelIgnoringExceptions(t); // cancel tasks
2134 WorkQueue[] qs; WorkQueue q; Thread t;
2135 int n = ((qs = queues) == null) ? 0 : qs.length;
2136 for (int i = 1; i < n; i += 2) { // unblock parked workers
2137 if ((q = qs[i]) != null && (t = q.owner) != null &&
2138 !t.isInterrupted()) {
2139 try {
2140 t.interrupt();
2141 } catch (Throwable ignore) {
2142 }
2143 }
2144 }
2145
2146 ReentrantLock lock; Condition cond; // finish if no workers
2147 if ((md & SMASK) + (short)(ctl >>> TC_SHIFT) <= 0 &&
2148 (getAndBitwiseOrMode(TERMINATED) & TERMINATED) == 0 &&
2149 (lock = registrationLock) != null) {
2150 lock.lock();
2151 if ((cond = termination) != null)
2152 cond.signalAll();
2153 lock.unlock();
2154 }
2155 }
2156 return true;
2157 }
2158
2159 // Exported methods
2160
2161 // Constructors
2162
2163 /**
2164 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2165 * java.lang.Runtime#availableProcessors}, using defaults for all
2166 * other parameters (see {@link #ForkJoinPool(int,
2167 * ForkJoinWorkerThreadFactory, UncaughtExceptionHandler, boolean,
2168 * int, int, int, Predicate, long, TimeUnit)}).
2169 *
2170 * @throws SecurityException if a security manager exists and
2171 * the caller is not permitted to modify threads
2172 * because it does not hold {@link
2173 * java.lang.RuntimePermission}{@code ("modifyThread")}
2174 */
2175 public ForkJoinPool() {
2176 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2177 defaultForkJoinWorkerThreadFactory, null, false,
2178 0, MAX_CAP, 1, null, DEFAULT_KEEPALIVE, TimeUnit.MILLISECONDS);
2179 }
2180
2181 /**
2182 * Creates a {@code ForkJoinPool} with the indicated parallelism
2183 * level, using defaults for all other parameters (see {@link
2184 * #ForkJoinPool(int, ForkJoinWorkerThreadFactory,
2185 * UncaughtExceptionHandler, boolean, int, int, int, Predicate,
2186 * long, TimeUnit)}).
2187 *
2188 * @param parallelism the parallelism level
2189 * @throws IllegalArgumentException if parallelism less than or
2190 * equal to zero, or greater than implementation limit
2191 * @throws SecurityException if a security manager exists and
2192 * the caller is not permitted to modify threads
2193 * because it does not hold {@link
2194 * java.lang.RuntimePermission}{@code ("modifyThread")}
2195 */
2196 public ForkJoinPool(int parallelism) {
2197 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false,
2198 0, MAX_CAP, 1, null, DEFAULT_KEEPALIVE, TimeUnit.MILLISECONDS);
2199 }
2200
2201 /**
2202 * Creates a {@code ForkJoinPool} with the given parameters (using
2203 * defaults for others -- see {@link #ForkJoinPool(int,
2204 * ForkJoinWorkerThreadFactory, UncaughtExceptionHandler, boolean,
2205 * int, int, int, Predicate, long, TimeUnit)}).
2206 *
2207 * @param parallelism the parallelism level. For default value,
2208 * use {@link java.lang.Runtime#availableProcessors}.
2209 * @param factory the factory for creating new threads. For default value,
2210 * use {@link #defaultForkJoinWorkerThreadFactory}.
2211 * @param handler the handler for internal worker threads that
2212 * terminate due to unrecoverable errors encountered while executing
2213 * tasks. For default value, use {@code null}.
2214 * @param asyncMode if true,
2215 * establishes local first-in-first-out scheduling mode for forked
2216 * tasks that are never joined. This mode may be more appropriate
2217 * than default locally stack-based mode in applications in which
2218 * worker threads only process event-style asynchronous tasks.
2219 * For default value, use {@code false}.
2220 * @throws IllegalArgumentException if parallelism less than or
2221 * equal to zero, or greater than implementation limit
2222 * @throws NullPointerException if the factory is null
2223 * @throws SecurityException if a security manager exists and
2224 * the caller is not permitted to modify threads
2225 * because it does not hold {@link
2226 * java.lang.RuntimePermission}{@code ("modifyThread")}
2227 */
2228 public ForkJoinPool(int parallelism,
2229 ForkJoinWorkerThreadFactory factory,
2230 UncaughtExceptionHandler handler,
2231 boolean asyncMode) {
2232 this(parallelism, factory, handler, asyncMode,
2233 0, MAX_CAP, 1, null, DEFAULT_KEEPALIVE, TimeUnit.MILLISECONDS);
2234 }
2235
2236 /**
2237 * Creates a {@code ForkJoinPool} with the given parameters.
2238 *
2239 * @param parallelism the parallelism level. For default value,
2240 * use {@link java.lang.Runtime#availableProcessors}.
2241 *
2242 * @param factory the factory for creating new threads. For
2243 * default value, use {@link #defaultForkJoinWorkerThreadFactory}.
2244 *
2245 * @param handler the handler for internal worker threads that
2246 * terminate due to unrecoverable errors encountered while
2247 * executing tasks. For default value, use {@code null}.
2248 *
2249 * @param asyncMode if true, establishes local first-in-first-out
2250 * scheduling mode for forked tasks that are never joined. This
2251 * mode may be more appropriate than default locally stack-based
2252 * mode in applications in which worker threads only process
2253 * event-style asynchronous tasks. For default value, use {@code
2254 * false}.
2255 *
2256 * @param corePoolSize the number of threads to keep in the pool
2257 * (unless timed out after an elapsed keep-alive). Normally (and
2258 * by default) this is the same value as the parallelism level,
2259 * but may be set to a larger value to reduce dynamic overhead if
2260 * tasks regularly block. Using a smaller value (for example
2261 * {@code 0}) has the same effect as the default.
2262 *
2263 * @param maximumPoolSize the maximum number of threads allowed.
2264 * When the maximum is reached, attempts to replace blocked
2265 * threads fail. (However, because creation and termination of
2266 * different threads may overlap, and may be managed by the given
2267 * thread factory, this value may be transiently exceeded.) To
2268 * arrange the same value as is used by default for the common
2269 * pool, use {@code 256} plus the {@code parallelism} level. (By
2270 * default, the common pool allows a maximum of 256 spare
2271 * threads.) Using a value (for example {@code
2272 * Integer.MAX_VALUE}) larger than the implementation's total
2273 * thread limit has the same effect as using this limit (which is
2274 * the default).
2275 *
2276 * @param minimumRunnable the minimum allowed number of core
2277 * threads not blocked by a join or {@link ManagedBlocker}. To
2278 * ensure progress, when too few unblocked threads exist and
2279 * unexecuted tasks may exist, new threads are constructed, up to
2280 * the given maximumPoolSize. For the default value, use {@code
2281 * 1}, that ensures liveness. A larger value might improve
2282 * throughput in the presence of blocked activities, but might
2283 * not, due to increased overhead. A value of zero may be
2284 * acceptable when submitted tasks cannot have dependencies
2285 * requiring additional threads.
2286 *
2287 * @param saturate if non-null, a predicate invoked upon attempts
2288 * to create more than the maximum total allowed threads. By
2289 * default, when a thread is about to block on a join or {@link
2290 * ManagedBlocker}, but cannot be replaced because the
2291 * maximumPoolSize would be exceeded, a {@link
2292 * RejectedExecutionException} is thrown. But if this predicate
2293 * returns {@code true}, then no exception is thrown, so the pool
2294 * continues to operate with fewer than the target number of
2295 * runnable threads, which might not ensure progress.
2296 *
2297 * @param keepAliveTime the elapsed time since last use before
2298 * a thread is terminated (and then later replaced if needed).
2299 * For the default value, use {@code 60, TimeUnit.SECONDS}.
2300 *
2301 * @param unit the time unit for the {@code keepAliveTime} argument
2302 *
2303 * @throws IllegalArgumentException if parallelism is less than or
2304 * equal to zero, or is greater than implementation limit,
2305 * or if maximumPoolSize is less than parallelism,
2306 * of if the keepAliveTime is less than or equal to zero.
2307 * @throws NullPointerException if the factory is null
2308 * @throws SecurityException if a security manager exists and
2309 * the caller is not permitted to modify threads
2310 * because it does not hold {@link
2311 * java.lang.RuntimePermission}{@code ("modifyThread")}
2312 * @since 9
2313 */
2314 public ForkJoinPool(int parallelism,
2315 ForkJoinWorkerThreadFactory factory,
2316 UncaughtExceptionHandler handler,
2317 boolean asyncMode,
2318 int corePoolSize,
2319 int maximumPoolSize,
2320 int minimumRunnable,
2321 Predicate<? super ForkJoinPool> saturate,
2322 long keepAliveTime,
2323 TimeUnit unit) {
2324 checkPermission();
2325 int p = parallelism;
2326 if (p <= 0 || p > MAX_CAP || p > maximumPoolSize || keepAliveTime <= 0L)
2327 throw new IllegalArgumentException();
2328 if (factory == null || unit == null)
2329 throw new NullPointerException();
2330 this.factory = factory;
2331 this.ueh = handler;
2332 this.saturate = saturate;
2333 this.keepAlive = Math.max(unit.toMillis(keepAliveTime), TIMEOUT_SLOP);
2334 int size = 1 << (33 - Integer.numberOfLeadingZeros(p - 1));
2335 int corep = Math.min(Math.max(corePoolSize, p), MAX_CAP);
2336 int maxSpares = Math.min(maximumPoolSize, MAX_CAP) - p;
2337 int minAvail = Math.min(Math.max(minimumRunnable, 0), MAX_CAP);
2338 this.bounds = ((minAvail - p) & SMASK) | (maxSpares << SWIDTH);
2339 this.mode = p | (asyncMode ? FIFO : 0);
2340 this.ctl = ((((long)(-corep) << TC_SHIFT) & TC_MASK) |
2341 (((long)(-p) << RC_SHIFT) & RC_MASK));
2342 this.registrationLock = new ReentrantLock();
2343 this.queues = new WorkQueue[size];
2344 String pid = Integer.toString(getAndAddPoolIds(1) + 1);
2345 this.workerNamePrefix = "ForkJoinPool-" + pid + "-worker-";
2346 }
2347
2348 // helper method for commonPool constructor
2349 private static Object newInstanceFromSystemProperty(String property)
2350 throws ReflectiveOperationException {
2351 String className = System.getProperty(property);
2352 return (className == null)
2353 ? null
2354 : ClassLoader.getSystemClassLoader().loadClass(className)
2355 .getConstructor().newInstance();
2356 }
2357
2358 /**
2359 * Constructor for common pool using parameters possibly
2360 * overridden by system properties
2361 */
2362 private ForkJoinPool(byte forCommonPoolOnly) {
2363 int parallelism = Runtime.getRuntime().availableProcessors() - 1;
2364 ForkJoinWorkerThreadFactory fac = null;
2365 UncaughtExceptionHandler handler = null;
2366 try { // ignore exceptions in accessing/parsing properties
2367 fac = (ForkJoinWorkerThreadFactory) newInstanceFromSystemProperty(
2368 "java.util.concurrent.ForkJoinPool.common.threadFactory");
2369 handler = (UncaughtExceptionHandler) newInstanceFromSystemProperty(
2370 "java.util.concurrent.ForkJoinPool.common.exceptionHandler");
2371 String pp = System.getProperty
2372 ("java.util.concurrent.ForkJoinPool.common.parallelism");
2373 if (pp != null)
2374 parallelism = Integer.parseInt(pp);
2375 } catch (Exception ignore) {
2376 }
2377 int p = this.mode = Math.min(Math.max(parallelism, 0), MAX_CAP);
2378 int size = 1 << (33 - Integer.numberOfLeadingZeros(p > 0 ? p - 1 : 1));
2379 this.factory = (fac != null) ? fac :
2380 (System.getSecurityManager() == null ?
2381 defaultForkJoinWorkerThreadFactory :
2382 new InnocuousForkJoinWorkerThreadFactory());
2383 this.ueh = handler;
2384 this.keepAlive = DEFAULT_KEEPALIVE;
2385 this.saturate = null;
2386 this.workerNamePrefix = null;
2387 this.bounds = ((1 - p) & SMASK) | (COMMON_MAX_SPARES << SWIDTH);
2388 this.ctl = ((((long)(-p) << TC_SHIFT) & TC_MASK) |
2389 (((long)(-p) << RC_SHIFT) & RC_MASK));
2390 this.queues = new WorkQueue[size];
2391 this.registrationLock = new ReentrantLock();
2392 }
2393
2394 /**
2395 * Returns the common pool instance. This pool is statically
2396 * constructed; its run state is unaffected by attempts to {@link
2397 * #shutdown} or {@link #shutdownNow}. However this pool and any
2398 * ongoing processing are automatically terminated upon program
2399 * {@link System#exit}. Any program that relies on asynchronous
2400 * task processing to complete before program termination should
2401 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2402 * before exit.
2403 *
2404 * @return the common pool instance
2405 * @since 1.8
2406 */
2407 public static ForkJoinPool commonPool() {
2408 // assert common != null : "static init error";
2409 return common;
2410 }
2411
2412 // Execution methods
2413
2414 /**
2415 * Performs the given task, returning its result upon completion.
2416 * If the computation encounters an unchecked Exception or Error,
2417 * it is rethrown as the outcome of this invocation. Rethrown
2418 * exceptions behave in the same way as regular exceptions, but,
2419 * when possible, contain stack traces (as displayed for example
2420 * using {@code ex.printStackTrace()}) of both the current thread
2421 * as well as the thread actually encountering the exception;
2422 * minimally only the latter.
2423 *
2424 * @param task the task
2425 * @param <T> the type of the task's result
2426 * @return the task's result
2427 * @throws NullPointerException if the task is null
2428 * @throws RejectedExecutionException if the task cannot be
2429 * scheduled for execution
2430 */
2431 public <T> T invoke(ForkJoinTask<T> task) {
2432 externalSubmit(task);
2433 return task.join();
2434 }
2435
2436 /**
2437 * Arranges for (asynchronous) execution of the given task.
2438 *
2439 * @param task the task
2440 * @throws NullPointerException if the task is null
2441 * @throws RejectedExecutionException if the task cannot be
2442 * scheduled for execution
2443 */
2444 public void execute(ForkJoinTask<?> task) {
2445 externalSubmit(task);
2446 }
2447
2448 // AbstractExecutorService methods
2449
2450 /**
2451 * @throws NullPointerException if the task is null
2452 * @throws RejectedExecutionException if the task cannot be
2453 * scheduled for execution
2454 */
2455 @Override
2456 @SuppressWarnings("unchecked")
2457 public void execute(Runnable task) {
2458 externalSubmit((task instanceof ForkJoinTask<?>)
2459 ? (ForkJoinTask<Void>) task // avoid re-wrap
2460 : new ForkJoinTask.RunnableExecuteAction(task));
2461 }
2462
2463 /**
2464 * Submits a ForkJoinTask for execution.
2465 *
2466 * @param task the task to submit
2467 * @param <T> the type of the task's result
2468 * @return the task
2469 * @throws NullPointerException if the task is null
2470 * @throws RejectedExecutionException if the task cannot be
2471 * scheduled for execution
2472 */
2473 public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2474 return externalSubmit(task);
2475 }
2476
2477 /**
2478 * @throws NullPointerException if the task is null
2479 * @throws RejectedExecutionException if the task cannot be
2480 * scheduled for execution
2481 */
2482 @Override
2483 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2484 return externalSubmit(new ForkJoinTask.AdaptedCallable<T>(task));
2485 }
2486
2487 /**
2488 * @throws NullPointerException if the task is null
2489 * @throws RejectedExecutionException if the task cannot be
2490 * scheduled for execution
2491 */
2492 @Override
2493 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2494 return externalSubmit(new ForkJoinTask.AdaptedRunnable<T>(task, result));
2495 }
2496
2497 /**
2498 * @throws NullPointerException if the task is null
2499 * @throws RejectedExecutionException if the task cannot be
2500 * scheduled for execution
2501 */
2502 @Override
2503 @SuppressWarnings("unchecked")
2504 public ForkJoinTask<?> submit(Runnable task) {
2505 return externalSubmit((task instanceof ForkJoinTask<?>)
2506 ? (ForkJoinTask<Void>) task // avoid re-wrap
2507 : new ForkJoinTask.AdaptedRunnableAction(task));
2508 }
2509
2510 /**
2511 * Task class, plus some helper methods, for invokeAll and invokeAny.
2512 */
2513 static final class BulkTask<E> extends CountedCompleter<E> {
2514 private static final long serialVersionUID = 2838392045355241008L;
2515 @SuppressWarnings("serial") // Conditionally serializable
2516 final Callable<E> callable;
2517 @SuppressWarnings("serial") // Conditionally serializable
2518 E result;
2519 final boolean invokeAny; // false if performing invokeAll
2520 BulkTask(BulkTask<E> parent, Callable<E> callable, boolean invokeAny) {
2521 super(parent);
2522 this.callable = callable;
2523 this.invokeAny = invokeAny;
2524 }
2525 public E getRawResult() { return result; }
2526 public void setRawResult(E r) { result = r; }
2527
2528 public void compute() {
2529 try {
2530 E r = callable.call();
2531 @SuppressWarnings("unchecked") CountedCompleter<E> p =
2532 invokeAny ? (CountedCompleter<E>)getCompleter() : null;
2533 if (p != null)
2534 p.complete(r);
2535 else
2536 complete(r);
2537 } catch (Throwable ex) {
2538 completeExceptionally(ex);
2539 }
2540 }
2541
2542 static void cancelAll(BulkTask<?>[] fs) { // cancel all nonnull tasks
2543 if (fs != null) {
2544 for (BulkTask<?> f: fs) {
2545 if (f != null)
2546 f.cancel(false);
2547 }
2548 }
2549 }
2550
2551 /**
2552 * Creates, records, and forks a BulkTask for each Callable;
2553 * returns the array, with first element root task (if nonempty).
2554 */
2555 static <T> BulkTask<T>[] forkAll(Collection<? extends Callable<T>> cs,
2556 boolean invokeAny) {
2557 int n = cs.size();
2558 @SuppressWarnings("unchecked")
2559 BulkTask<T>[] fs = (BulkTask<T>[])new BulkTask<?>[n];
2560 BulkTask<T> root = null; // parent completer for all others
2561 Iterator<? extends Callable<T>> it = cs.iterator();
2562 int i = 0; // ignores extra elements if cs.size() inconsistent
2563 while (i < n && it.hasNext()) {
2564 Callable<T> c; BulkTask<T> f;
2565 if ((c = it.next()) == null) {
2566 cancelAll(fs);
2567 throw new NullPointerException();
2568 }
2569 fs[i++] = f = new BulkTask<T>(root, c, invokeAny);
2570 if (root == null)
2571 (root = f).setPendingCount(n);
2572 f.fork();
2573 }
2574 return fs;
2575 }
2576
2577 /**
2578 * If completed abnormally, throws any exception encountered
2579 * by any task in array, or a CancellationException if none,
2580 * wrapped in ExecutionException. Else returns result.
2581 */
2582 E reportInvokeAnyResult(BulkTask<?>[] fs) throws ExecutionException {
2583 E r = getRawResult();
2584 if (r == null && isCompletedAbnormally()) {
2585 Throwable ex = null;
2586 if (fs != null) {
2587 for (BulkTask<?> f: fs) {
2588 if (f != null && (ex = f.getException()) != null)
2589 break;
2590 }
2591 }
2592 if (ex == null)
2593 ex = new CancellationException();
2594 throw new ExecutionException(ex);
2595 }
2596 return r;
2597 }
2598 }
2599
2600 /**
2601 * @throws NullPointerException {@inheritDoc}
2602 * @throws RejectedExecutionException {@inheritDoc}
2603 */
2604 @Override
2605 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2606 BulkTask<T>[] fs; BulkTask<T> root;
2607 if ((fs = BulkTask.forkAll(tasks, false)) != null && fs.length > 0 &&
2608 (root = fs[0]) != null)
2609 root.quietlyJoin();
2610 return Arrays.asList(fs);
2611 }
2612
2613 @Override
2614 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks,
2615 long timeout, TimeUnit unit)
2616 throws InterruptedException {
2617 BulkTask<T>[] fs; BulkTask<T> root;
2618 long deadline = unit.toNanos(timeout) + System.nanoTime();
2619 if ((fs = BulkTask.forkAll(tasks, false)) != null && fs.length > 0 &&
2620 (root = fs[0]) != null) {
2621 try {
2622 root.get(deadline, TimeUnit.NANOSECONDS);
2623 } catch (Exception ex) {
2624 BulkTask.cancelAll(fs);
2625 }
2626 }
2627 return Arrays.asList(fs);
2628 }
2629
2630 @Override
2631 public <T> T invokeAny(Collection<? extends Callable<T>> tasks)
2632 throws InterruptedException, ExecutionException {
2633 BulkTask<T>[] fs; BulkTask<T> root;
2634 if ((fs = BulkTask.forkAll(tasks, true)) != null && fs.length > 0 &&
2635 (root = fs[0]) != null) {
2636 root.quietlyJoin();
2637 BulkTask.cancelAll(fs);
2638 return root.reportInvokeAnyResult(fs);
2639 }
2640 else
2641 throw new IllegalArgumentException(); // no tasks
2642 }
2643
2644 @Override
2645 public <T> T invokeAny(Collection<? extends Callable<T>> tasks,
2646 long timeout, TimeUnit unit)
2647 throws InterruptedException, ExecutionException, TimeoutException {
2648 BulkTask<T>[] fs; BulkTask<T> root;
2649 long deadline = unit.toNanos(timeout) + System.nanoTime();
2650 if ((fs = BulkTask.forkAll(tasks, true)) != null && fs.length > 0 &&
2651 (root = fs[0]) != null) {
2652 TimeoutException tex = null;
2653 try {
2654 root.get(deadline, TimeUnit.NANOSECONDS);
2655 } catch (TimeoutException tx) {
2656 tex = tx;
2657 } catch (Throwable ignore) {
2658 }
2659 BulkTask.cancelAll(fs);
2660 if (tex != null)
2661 throw tex;
2662 return root.reportInvokeAnyResult(fs);
2663 }
2664 else
2665 throw new IllegalArgumentException();
2666 }
2667
2668 /**
2669 * Returns the factory used for constructing new workers.
2670 *
2671 * @return the factory used for constructing new workers
2672 */
2673 public ForkJoinWorkerThreadFactory getFactory() {
2674 return factory;
2675 }
2676
2677 /**
2678 * Returns the handler for internal worker threads that terminate
2679 * due to unrecoverable errors encountered while executing tasks.
2680 *
2681 * @return the handler, or {@code null} if none
2682 */
2683 public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2684 return ueh;
2685 }
2686
2687 /**
2688 * Returns the targeted parallelism level of this pool.
2689 *
2690 * @return the targeted parallelism level of this pool
2691 */
2692 public int getParallelism() {
2693 int par = mode & SMASK;
2694 return (par > 0) ? par : 1;
2695 }
2696
2697 /**
2698 * Returns the targeted parallelism level of the common pool.
2699 *
2700 * @return the targeted parallelism level of the common pool
2701 * @since 1.8
2702 */
2703 public static int getCommonPoolParallelism() {
2704 return COMMON_PARALLELISM;
2705 }
2706
2707 /**
2708 * Returns the number of worker threads that have started but not
2709 * yet terminated. The result returned by this method may differ
2710 * from {@link #getParallelism} when threads are created to
2711 * maintain parallelism when others are cooperatively blocked.
2712 *
2713 * @return the number of worker threads
2714 */
2715 public int getPoolSize() {
2716 return ((mode & SMASK) + (short)(ctl >>> TC_SHIFT));
2717 }
2718
2719 /**
2720 * Returns {@code true} if this pool uses local first-in-first-out
2721 * scheduling mode for forked tasks that are never joined.
2722 *
2723 * @return {@code true} if this pool uses async mode
2724 */
2725 public boolean getAsyncMode() {
2726 return (mode & FIFO) != 0;
2727 }
2728
2729 /**
2730 * Returns an estimate of the number of worker threads that are
2731 * not blocked waiting to join tasks or for other managed
2732 * synchronization. This method may overestimate the
2733 * number of running threads.
2734 *
2735 * @return the number of worker threads
2736 */
2737 public int getRunningThreadCount() {
2738 VarHandle.acquireFence();
2739 WorkQueue[] qs; WorkQueue q;
2740 int rc = 0;
2741 if ((qs = queues) != null) {
2742 for (int i = 1; i < qs.length; i += 2) {
2743 if ((q = qs[i]) != null && q.isApparentlyUnblocked())
2744 ++rc;
2745 }
2746 }
2747 return rc;
2748 }
2749
2750 /**
2751 * Returns an estimate of the number of threads that are currently
2752 * stealing or executing tasks. This method may overestimate the
2753 * number of active threads.
2754 *
2755 * @return the number of active threads
2756 */
2757 public int getActiveThreadCount() {
2758 int r = (mode & SMASK) + (int)(ctl >> RC_SHIFT);
2759 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2760 }
2761
2762 /**
2763 * Returns {@code true} if all worker threads are currently idle.
2764 * An idle worker is one that cannot obtain a task to execute
2765 * because none are available to steal from other threads, and
2766 * there are no pending submissions to the pool. This method is
2767 * conservative; it might not return {@code true} immediately upon
2768 * idleness of all threads, but will eventually become true if
2769 * threads remain inactive.
2770 *
2771 * @return {@code true} if all threads are currently idle
2772 */
2773 public boolean isQuiescent() {
2774 int m, p;
2775 return ((((m = mode) & STOP) != 0) ||
2776 ((p = m & SMASK) + (int)(ctl >> RC_SHIFT) <= 0 &&
2777 !hasQueuedSubmissions() && p + (int)(ctl >> RC_SHIFT) <= 0) ||
2778 (mode & STOP) != 0); // recheck
2779 }
2780
2781 /**
2782 * Returns an estimate of the total number of completed tasks that
2783 * were executed by a thread other than their submitter. The
2784 * reported value underestimates the actual total number of steals
2785 * when the pool is not quiescent. This value may be useful for
2786 * monitoring and tuning fork/join programs: in general, steal
2787 * counts should be high enough to keep threads busy, but low
2788 * enough to avoid overhead and contention across threads.
2789 *
2790 * @return the number of steals
2791 */
2792 public long getStealCount() {
2793 long count = stealCount;
2794 WorkQueue[] qs; WorkQueue q;
2795 if ((qs = queues) != null) {
2796 for (int i = 1; i < qs.length; i += 2) {
2797 if ((q = qs[i]) != null)
2798 count += (long)q.nsteals & 0xffffffffL;
2799 }
2800 }
2801 return count;
2802 }
2803
2804 /**
2805 * Returns an estimate of the total number of tasks currently held
2806 * in queues by worker threads (but not including tasks submitted
2807 * to the pool that have not begun executing). This value is only
2808 * an approximation, obtained by iterating across all threads in
2809 * the pool. This method may be useful for tuning task
2810 * granularities.
2811 *
2812 * @return the number of queued tasks
2813 */
2814 public long getQueuedTaskCount() {
2815 VarHandle.acquireFence();
2816 WorkQueue[] qs; WorkQueue q;
2817 int count = 0;
2818 if ((qs = queues) != null) {
2819 for (int i = 1; i < qs.length; i += 2) {
2820 if ((q = qs[i]) != null)
2821 count += q.queueSize();
2822 }
2823 }
2824 return count;
2825 }
2826
2827 /**
2828 * Returns an estimate of the number of tasks submitted to this
2829 * pool that have not yet begun executing. This method may take
2830 * time proportional to the number of submissions.
2831 *
2832 * @return the number of queued submissions
2833 */
2834 public int getQueuedSubmissionCount() {
2835 VarHandle.acquireFence();
2836 WorkQueue[] qs; WorkQueue q;
2837 int count = 0;
2838 if ((qs = queues) != null) {
2839 for (int i = 0; i < qs.length; i += 2) {
2840 if ((q = qs[i]) != null)
2841 count += q.queueSize();
2842 }
2843 }
2844 return count;
2845 }
2846
2847 /**
2848 * Returns {@code true} if there are any tasks submitted to this
2849 * pool that have not yet begun executing.
2850 *
2851 * @return {@code true} if there are any queued submissions
2852 */
2853 public boolean hasQueuedSubmissions() {
2854 VarHandle.acquireFence();
2855 WorkQueue[] qs; WorkQueue q;
2856 if ((qs = queues) != null) {
2857 for (int i = 0; i < qs.length; i += 2) {
2858 if ((q = qs[i]) != null && !q.isEmpty())
2859 return true;
2860 }
2861 }
2862 return false;
2863 }
2864
2865 /**
2866 * Removes and returns the next unexecuted submission if one is
2867 * available. This method may be useful in extensions to this
2868 * class that re-assign work in systems with multiple pools.
2869 *
2870 * @return the next submission, or {@code null} if none
2871 */
2872 protected ForkJoinTask<?> pollSubmission() {
2873 return pollScan(true);
2874 }
2875
2876 /**
2877 * Removes all available unexecuted submitted and forked tasks
2878 * from scheduling queues and adds them to the given collection,
2879 * without altering their execution status. These may include
2880 * artificially generated or wrapped tasks. This method is
2881 * designed to be invoked only when the pool is known to be
2882 * quiescent. Invocations at other times may not remove all
2883 * tasks. A failure encountered while attempting to add elements
2884 * to collection {@code c} may result in elements being in
2885 * neither, either or both collections when the associated
2886 * exception is thrown. The behavior of this operation is
2887 * undefined if the specified collection is modified while the
2888 * operation is in progress.
2889 *
2890 * @param c the collection to transfer elements into
2891 * @return the number of elements transferred
2892 */
2893 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2894 int count = 0;
2895 for (ForkJoinTask<?> t; (t = pollScan(false)) != null; ) {
2896 c.add(t);
2897 ++count;
2898 }
2899 return count;
2900 }
2901
2902 /**
2903 * Returns a string identifying this pool, as well as its state,
2904 * including indications of run state, parallelism level, and
2905 * worker and task counts.
2906 *
2907 * @return a string identifying this pool, as well as its state
2908 */
2909 public String toString() {
2910 // Use a single pass through queues to collect counts
2911 int md = mode; // read volatile fields first
2912 long c = ctl;
2913 long st = stealCount;
2914 long qt = 0L, ss = 0L; int rc = 0;
2915 WorkQueue[] qs; WorkQueue q;
2916 if ((qs = queues) != null) {
2917 for (int i = 0; i < qs.length; ++i) {
2918 if ((q = qs[i]) != null) {
2919 int size = q.queueSize();
2920 if ((i & 1) == 0)
2921 ss += size;
2922 else {
2923 qt += size;
2924 st += (long)q.nsteals & 0xffffffffL;
2925 if (q.isApparentlyUnblocked())
2926 ++rc;
2927 }
2928 }
2929 }
2930 }
2931
2932 int pc = (md & SMASK);
2933 int tc = pc + (short)(c >>> TC_SHIFT);
2934 int ac = pc + (int)(c >> RC_SHIFT);
2935 if (ac < 0) // ignore transient negative
2936 ac = 0;
2937 String level = ((md & TERMINATED) != 0 ? "Terminated" :
2938 (md & STOP) != 0 ? "Terminating" :
2939 (md & SHUTDOWN) != 0 ? "Shutting down" :
2940 "Running");
2941 return super.toString() +
2942 "[" + level +
2943 ", parallelism = " + pc +
2944 ", size = " + tc +
2945 ", active = " + ac +
2946 ", running = " + rc +
2947 ", steals = " + st +
2948 ", tasks = " + qt +
2949 ", submissions = " + ss +
2950 "]";
2951 }
2952
2953 /**
2954 * Possibly initiates an orderly shutdown in which previously
2955 * submitted tasks are executed, but no new tasks will be
2956 * accepted. Invocation has no effect on execution state if this
2957 * is the {@link #commonPool()}, and no additional effect if
2958 * already shut down. Tasks that are in the process of being
2959 * submitted concurrently during the course of this method may or
2960 * may not be rejected.
2961 *
2962 * @throws SecurityException if a security manager exists and
2963 * the caller is not permitted to modify threads
2964 * because it does not hold {@link
2965 * java.lang.RuntimePermission}{@code ("modifyThread")}
2966 */
2967 public void shutdown() {
2968 checkPermission();
2969 if (this != common)
2970 tryTerminate(false, true);
2971 }
2972
2973 /**
2974 * Possibly attempts to cancel and/or stop all tasks, and reject
2975 * all subsequently submitted tasks. Invocation has no effect on
2976 * execution state if this is the {@link #commonPool()}, and no
2977 * additional effect if already shut down. Otherwise, tasks that
2978 * are in the process of being submitted or executed concurrently
2979 * during the course of this method may or may not be
2980 * rejected. This method cancels both existing and unexecuted
2981 * tasks, in order to permit termination in the presence of task
2982 * dependencies. So the method always returns an empty list
2983 * (unlike the case for some other Executors).
2984 *
2985 * @return an empty list
2986 * @throws SecurityException if a security manager exists and
2987 * the caller is not permitted to modify threads
2988 * because it does not hold {@link
2989 * java.lang.RuntimePermission}{@code ("modifyThread")}
2990 */
2991 public List<Runnable> shutdownNow() {
2992 checkPermission();
2993 if (this != common)
2994 tryTerminate(true, true);
2995 return Collections.emptyList();
2996 }
2997
2998 /**
2999 * Returns {@code true} if all tasks have completed following shut down.
3000 *
3001 * @return {@code true} if all tasks have completed following shut down
3002 */
3003 public boolean isTerminated() {
3004 return (mode & TERMINATED) != 0;
3005 }
3006
3007 /**
3008 * Returns {@code true} if the process of termination has
3009 * commenced but not yet completed. This method may be useful for
3010 * debugging. A return of {@code true} reported a sufficient
3011 * period after shutdown may indicate that submitted tasks have
3012 * ignored or suppressed interruption, or are waiting for I/O,
3013 * causing this executor not to properly terminate. (See the
3014 * advisory notes for class {@link ForkJoinTask} stating that
3015 * tasks should not normally entail blocking operations. But if
3016 * they do, they must abort them on interrupt.)
3017 *
3018 * @return {@code true} if terminating but not yet terminated
3019 */
3020 public boolean isTerminating() {
3021 return (mode & (STOP | TERMINATED)) == STOP;
3022 }
3023
3024 /**
3025 * Returns {@code true} if this pool has been shut down.
3026 *
3027 * @return {@code true} if this pool has been shut down
3028 */
3029 public boolean isShutdown() {
3030 return (mode & SHUTDOWN) != 0;
3031 }
3032
3033 /**
3034 * Blocks until all tasks have completed execution after a
3035 * shutdown request, or the timeout occurs, or the current thread
3036 * is interrupted, whichever happens first. Because the {@link
3037 * #commonPool()} never terminates until program shutdown, when
3038 * applied to the common pool, this method is equivalent to {@link
3039 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
3040 *
3041 * @param timeout the maximum time to wait
3042 * @param unit the time unit of the timeout argument
3043 * @return {@code true} if this executor terminated and
3044 * {@code false} if the timeout elapsed before termination
3045 * @throws InterruptedException if interrupted while waiting
3046 */
3047 public boolean awaitTermination(long timeout, TimeUnit unit)
3048 throws InterruptedException {
3049 long nanos = unit.toNanos(timeout);
3050 ReentrantLock lock; Condition cond; // construct only if waiting
3051 if (Thread.interrupted())
3052 throw new InterruptedException();
3053 if (this == common) {
3054 awaitQuiescence(timeout, unit);
3055 return false;
3056 }
3057 if (isTerminated() || (lock = registrationLock) == null)
3058 return true;
3059 lock.lock();
3060 try {
3061 if ((cond = termination) == null)
3062 termination = cond = lock.newCondition();
3063 while (!isTerminated() && nanos > 0L)
3064 nanos = cond.awaitNanos(nanos);
3065 } finally {
3066 lock.unlock();
3067 }
3068 return isTerminated();
3069 }
3070
3071 /**
3072 * If called by a ForkJoinTask operating in this pool, equivalent
3073 * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3074 * waits and/or attempts to assist performing tasks until this
3075 * pool {@link #isQuiescent} or the indicated timeout elapses.
3076 *
3077 * @param timeout the maximum time to wait
3078 * @param unit the time unit of the timeout argument
3079 * @return {@code true} if quiescent; {@code false} if the
3080 * timeout elapsed.
3081 */
3082 public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3083 Thread thread; ForkJoinWorkerThread wt;
3084 long nanos = unit.toNanos(timeout);
3085 if ((thread = Thread.currentThread()) instanceof ForkJoinWorkerThread &&
3086 (wt = (ForkJoinWorkerThread)thread).pool == this) {
3087 helpQuiescePool(wt.workQueue);
3088 return true;
3089 }
3090 // else cannot block, so use exponential sleeps
3091 boolean quiesced = false, interrupted = false;
3092 for (long startTime = System.nanoTime(), parkTime = 0L;;) {
3093 ForkJoinTask<?> t;
3094 if ((t = pollScan(false)) != null) {
3095 t.doExec();
3096 parkTime = 0L;
3097 }
3098 else if (quiesced = isQuiescent())
3099 break;
3100 else if ((System.nanoTime() - startTime) > nanos)
3101 break;
3102 else if (parkTime == 0L) {
3103 parkTime = 1L << 10; // initially about 1 usec
3104 Thread.yield();
3105 }
3106 else if (Thread.interrupted())
3107 interrupted = true;
3108 else {
3109 LockSupport.parkNanos(this, parkTime);
3110 if (parkTime < nanos >>> 8) // max sleep approx 1% nanos
3111 parkTime <<= 1;
3112 }
3113 }
3114 if (interrupted)
3115 Thread.currentThread().interrupt();
3116 return quiesced;
3117 }
3118
3119 /**
3120 * Waits and/or attempts to assist performing tasks indefinitely
3121 * until the {@link #commonPool()} {@link #isQuiescent}.
3122 */
3123 static void quiesceCommonPool() {
3124 common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3125 }
3126
3127 /**
3128 * Interface for extending managed parallelism for tasks running
3129 * in {@link ForkJoinPool}s.
3130 *
3131 * <p>A {@code ManagedBlocker} provides two methods. Method
3132 * {@link #isReleasable} must return {@code true} if blocking is
3133 * not necessary. Method {@link #block} blocks the current thread
3134 * if necessary (perhaps internally invoking {@code isReleasable}
3135 * before actually blocking). These actions are performed by any
3136 * thread invoking {@link
3137 * ForkJoinPool#managedBlock(ManagedBlocker)}. The unusual
3138 * methods in this API accommodate synchronizers that may, but
3139 * don't usually, block for long periods. Similarly, they allow
3140 * more efficient internal handling of cases in which additional
3141 * workers may be, but usually are not, needed to ensure
3142 * sufficient parallelism. Toward this end, implementations of
3143 * method {@code isReleasable} must be amenable to repeated
3144 * invocation. Neither method is invoked after a prior invocation
3145 * of {@code isReleasable} or {@code block} returns {@code true}.
3146 *
3147 * <p>For example, here is a ManagedBlocker based on a
3148 * ReentrantLock:
3149 * <pre> {@code
3150 * class ManagedLocker implements ManagedBlocker {
3151 * final ReentrantLock lock;
3152 * boolean hasLock = false;
3153 * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3154 * public boolean block() {
3155 * if (!hasLock)
3156 * lock.lock();
3157 * return true;
3158 * }
3159 * public boolean isReleasable() {
3160 * return hasLock || (hasLock = lock.tryLock());
3161 * }
3162 * }}</pre>
3163 *
3164 * <p>Here is a class that possibly blocks waiting for an
3165 * item on a given queue:
3166 * <pre> {@code
3167 * class QueueTaker<E> implements ManagedBlocker {
3168 * final BlockingQueue<E> queue;
3169 * volatile E item = null;
3170 * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3171 * public boolean block() throws InterruptedException {
3172 * if (item == null)
3173 * item = queue.take();
3174 * return true;
3175 * }
3176 * public boolean isReleasable() {
3177 * return item != null || (item = queue.poll()) != null;
3178 * }
3179 * public E getItem() { // call after pool.managedBlock completes
3180 * return item;
3181 * }
3182 * }}</pre>
3183 */
3184 public static interface ManagedBlocker {
3185 /**
3186 * Possibly blocks the current thread, for example waiting for
3187 * a lock or condition.
3188 *
3189 * @return {@code true} if no additional blocking is necessary
3190 * (i.e., if isReleasable would return true)
3191 * @throws InterruptedException if interrupted while waiting
3192 * (the method is not required to do so, but is allowed to)
3193 */
3194 boolean block() throws InterruptedException;
3195
3196 /**
3197 * Returns {@code true} if blocking is unnecessary.
3198 * @return {@code true} if blocking is unnecessary
3199 */
3200 boolean isReleasable();
3201 }
3202
3203 /**
3204 * Runs the given possibly blocking task. When {@linkplain
3205 * ForkJoinTask#inForkJoinPool() running in a ForkJoinPool}, this
3206 * method possibly arranges for a spare thread to be activated if
3207 * necessary to ensure sufficient parallelism while the current
3208 * thread is blocked in {@link ManagedBlocker#block blocker.block()}.
3209 *
3210 * <p>This method repeatedly calls {@code blocker.isReleasable()} and
3211 * {@code blocker.block()} until either method returns {@code true}.
3212 * Every call to {@code blocker.block()} is preceded by a call to
3213 * {@code blocker.isReleasable()} that returned {@code false}.
3214 *
3215 * <p>If not running in a ForkJoinPool, this method is
3216 * behaviorally equivalent to
3217 * <pre> {@code
3218 * while (!blocker.isReleasable())
3219 * if (blocker.block())
3220 * break;}</pre>
3221 *
3222 * If running in a ForkJoinPool, the pool may first be expanded to
3223 * ensure sufficient parallelism available during the call to
3224 * {@code blocker.block()}.
3225 *
3226 * @param blocker the blocker task
3227 * @throws InterruptedException if {@code blocker.block()} did so
3228 */
3229 public static void managedBlock(ManagedBlocker blocker)
3230 throws InterruptedException {
3231 Thread t; ForkJoinPool p;
3232 if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread &&
3233 (p = ((ForkJoinWorkerThread)t).pool) != null)
3234 p.compensatedBlock(blocker);
3235 else
3236 unmanagedBlock(blocker);
3237 }
3238
3239 /** ManagedBlock for ForkJoinWorkerThreads */
3240 private void compensatedBlock(ManagedBlocker blocker)
3241 throws InterruptedException {
3242 if (blocker == null) throw new NullPointerException();
3243 for (;;) {
3244 int comp; boolean done;
3245 long c = ctl;
3246 if (blocker.isReleasable())
3247 break;
3248 if ((comp = tryCompensate(c)) >= 0) {
3249 long post = (comp == 0) ? 0L : RC_UNIT;
3250 try {
3251 done = blocker.block();
3252 } finally {
3253 getAndAddCtl(post);
3254 }
3255 if (done)
3256 break;
3257 }
3258 }
3259 }
3260
3261 /** ManagedBlock for external threads */
3262 private static void unmanagedBlock(ManagedBlocker blocker)
3263 throws InterruptedException {
3264 if (blocker == null) throw new NullPointerException();
3265 do {} while (!blocker.isReleasable() && !blocker.block());
3266 }
3267
3268 // AbstractExecutorService.newTaskFor overrides rely on
3269 // undocumented fact that ForkJoinTask.adapt returns ForkJoinTasks
3270 // that also implement RunnableFuture.
3271
3272 @Override
3273 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3274 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3275 }
3276
3277 @Override
3278 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3279 return new ForkJoinTask.AdaptedCallable<T>(callable);
3280 }
3281
3282 static {
3283 try {
3284 MethodHandles.Lookup l = MethodHandles.lookup();
3285 CTL = l.findVarHandle(ForkJoinPool.class, "ctl", long.class);
3286 MODE = l.findVarHandle(ForkJoinPool.class, "mode", int.class);
3287 THREADIDS = l.findVarHandle(ForkJoinPool.class, "threadIds", int.class);
3288 POOLIDS = l.findStaticVarHandle(ForkJoinPool.class, "poolIds", int.class);
3289 } catch (ReflectiveOperationException e) {
3290 throw new ExceptionInInitializerError(e);
3291 }
3292
3293 // Reduce the risk of rare disastrous classloading in first call to
3294 // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
3295 Class<?> ensureLoaded = LockSupport.class;
3296
3297 int commonMaxSpares = DEFAULT_COMMON_MAX_SPARES;
3298 try {
3299 String p = System.getProperty
3300 ("java.util.concurrent.ForkJoinPool.common.maximumSpares");
3301 if (p != null)
3302 commonMaxSpares = Integer.parseInt(p);
3303 } catch (Exception ignore) {}
3304 COMMON_MAX_SPARES = commonMaxSpares;
3305
3306 defaultForkJoinWorkerThreadFactory =
3307 new DefaultForkJoinWorkerThreadFactory();
3308 modifyThreadPermission = new RuntimePermission("modifyThread");
3309 common = AccessController.doPrivileged(new PrivilegedAction<>() {
3310 public ForkJoinPool run() {
3311 return new ForkJoinPool((byte)0); }});
3312
3313 COMMON_PARALLELISM = Math.max(common.mode & SMASK, 1);
3314 }
3315 }