ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.381
Committed: Sat Sep 26 11:29:01 2020 UTC (3 years, 8 months ago) by dl
Branch: MAIN
Changes since 1.380: +1 -3 lines
Log Message:
reinstate clobbered diff

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.lang.Thread.UncaughtExceptionHandler;
10 import java.lang.invoke.MethodHandles;
11 import java.lang.invoke.VarHandle;
12 import java.security.AccessController;
13 import java.security.AccessControlContext;
14 import java.security.Permission;
15 import java.security.Permissions;
16 import java.security.PrivilegedAction;
17 import java.security.ProtectionDomain;
18 import java.util.ArrayList;
19 import java.util.Collection;
20 import java.util.Collections;
21 import java.util.List;
22 import java.util.function.Predicate;
23 import java.util.concurrent.atomic.AtomicInteger;
24 import java.util.concurrent.locks.LockSupport;
25 import java.util.concurrent.locks.ReentrantLock;
26 import java.util.concurrent.locks.Condition;
27
28 /**
29 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
30 * A {@code ForkJoinPool} provides the entry point for submissions
31 * from non-{@code ForkJoinTask} clients, as well as management and
32 * monitoring operations.
33 *
34 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
35 * ExecutorService} mainly by virtue of employing
36 * <em>work-stealing</em>: all threads in the pool attempt to find and
37 * execute tasks submitted to the pool and/or created by other active
38 * tasks (eventually blocking waiting for work if none exist). This
39 * enables efficient processing when most tasks spawn other subtasks
40 * (as do most {@code ForkJoinTask}s), as well as when many small
41 * tasks are submitted to the pool from external clients. Especially
42 * when setting <em>asyncMode</em> to true in constructors, {@code
43 * ForkJoinPool}s may also be appropriate for use with event-style
44 * tasks that are never joined. All worker threads are initialized
45 * with {@link Thread#isDaemon} set {@code true}.
46 *
47 * <p>A static {@link #commonPool()} is available and appropriate for
48 * most applications. The common pool is used by any ForkJoinTask that
49 * is not explicitly submitted to a specified pool. Using the common
50 * pool normally reduces resource usage (its threads are slowly
51 * reclaimed during periods of non-use, and reinstated upon subsequent
52 * use).
53 *
54 * <p>For applications that require separate or custom pools, a {@code
55 * ForkJoinPool} may be constructed with a given target parallelism
56 * level; by default, equal to the number of available processors.
57 * The pool attempts to maintain enough active (or available) threads
58 * by dynamically adding, suspending, or resuming internal worker
59 * threads, even if some tasks are stalled waiting to join others.
60 * However, no such adjustments are guaranteed in the face of blocked
61 * I/O or other unmanaged synchronization. The nested {@link
62 * ManagedBlocker} interface enables extension of the kinds of
63 * synchronization accommodated. The default policies may be
64 * overridden using a constructor with parameters corresponding to
65 * those documented in class {@link ThreadPoolExecutor}.
66 *
67 * <p>In addition to execution and lifecycle control methods, this
68 * class provides status check methods (for example
69 * {@link #getStealCount}) that are intended to aid in developing,
70 * tuning, and monitoring fork/join applications. Also, method
71 * {@link #toString} returns indications of pool state in a
72 * convenient form for informal monitoring.
73 *
74 * <p>As is the case with other ExecutorServices, there are three
75 * main task execution methods summarized in the following table.
76 * These are designed to be used primarily by clients not already
77 * engaged in fork/join computations in the current pool. The main
78 * forms of these methods accept instances of {@code ForkJoinTask},
79 * but overloaded forms also allow mixed execution of plain {@code
80 * Runnable}- or {@code Callable}- based activities as well. However,
81 * tasks that are already executing in a pool should normally instead
82 * use the within-computation forms listed in the table unless using
83 * async event-style tasks that are not usually joined, in which case
84 * there is little difference among choice of methods.
85 *
86 * <table class="plain">
87 * <caption>Summary of task execution methods</caption>
88 * <tr>
89 * <td></td>
90 * <th scope="col"> Call from non-fork/join clients</th>
91 * <th scope="col"> Call from within fork/join computations</th>
92 * </tr>
93 * <tr>
94 * <th scope="row" style="text-align:left"> Arrange async execution</th>
95 * <td> {@link #execute(ForkJoinTask)}</td>
96 * <td> {@link ForkJoinTask#fork}</td>
97 * </tr>
98 * <tr>
99 * <th scope="row" style="text-align:left"> Await and obtain result</th>
100 * <td> {@link #invoke(ForkJoinTask)}</td>
101 * <td> {@link ForkJoinTask#invoke}</td>
102 * </tr>
103 * <tr>
104 * <th scope="row" style="text-align:left"> Arrange exec and obtain Future</th>
105 * <td> {@link #submit(ForkJoinTask)}</td>
106 * <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
107 * </tr>
108 * </table>
109 *
110 * <p>The parameters used to construct the common pool may be controlled by
111 * setting the following {@linkplain System#getProperty system properties}:
112 * <ul>
113 * <li>{@systemProperty java.util.concurrent.ForkJoinPool.common.parallelism}
114 * - the parallelism level, a non-negative integer
115 * <li>{@systemProperty java.util.concurrent.ForkJoinPool.common.threadFactory}
116 * - the class name of a {@link ForkJoinWorkerThreadFactory}.
117 * The {@linkplain ClassLoader#getSystemClassLoader() system class loader}
118 * is used to load this class.
119 * <li>{@systemProperty java.util.concurrent.ForkJoinPool.common.exceptionHandler}
120 * - the class name of a {@link UncaughtExceptionHandler}.
121 * The {@linkplain ClassLoader#getSystemClassLoader() system class loader}
122 * is used to load this class.
123 * <li>{@systemProperty java.util.concurrent.ForkJoinPool.common.maximumSpares}
124 * - the maximum number of allowed extra threads to maintain target
125 * parallelism (default 256).
126 * </ul>
127 * If no thread factory is supplied via a system property, then the
128 * common pool uses a factory that uses the system class loader as the
129 * {@linkplain Thread#getContextClassLoader() thread context class loader}.
130 * In addition, if a {@link SecurityManager} is present, then
131 * the common pool uses a factory supplying threads that have no
132 * {@link Permissions} enabled.
133 *
134 * Upon any error in establishing these settings, default parameters
135 * are used. It is possible to disable or limit the use of threads in
136 * the common pool by setting the parallelism property to zero, and/or
137 * using a factory that may return {@code null}. However doing so may
138 * cause unjoined tasks to never be executed.
139 *
140 * <p><b>Implementation notes</b>: This implementation restricts the
141 * maximum number of running threads to 32767. Attempts to create
142 * pools with greater than the maximum number result in
143 * {@code IllegalArgumentException}.
144 *
145 * <p>This implementation rejects submitted tasks (that is, by throwing
146 * {@link RejectedExecutionException}) only when the pool is shut down
147 * or internal resources have been exhausted.
148 *
149 * @since 1.7
150 * @author Doug Lea
151 */
152 public class ForkJoinPool extends AbstractExecutorService {
153
154 /*
155 * Implementation Overview
156 *
157 * This class and its nested classes provide the main
158 * functionality and control for a set of worker threads:
159 * Submissions from non-FJ threads enter into submission queues.
160 * Workers take these tasks and typically split them into subtasks
161 * that may be stolen by other workers. Work-stealing based on
162 * randomized scans generally leads to better throughput than
163 * "work dealing" in which producers assign tasks to idle threads,
164 * in part because threads that have finished other tasks before
165 * the signalled thread wakes up (which can be a long time) can
166 * take the task instead. Preference rules give first priority to
167 * processing tasks from their own queues (LIFO or FIFO, depending
168 * on mode), then to randomized FIFO steals of tasks in other
169 * queues. This framework began as vehicle for supporting
170 * tree-structured parallelism using work-stealing. Over time,
171 * its scalability advantages led to extensions and changes to
172 * better support more diverse usage contexts. Because most
173 * internal methods and nested classes are interrelated, their
174 * main rationale and descriptions are presented here; individual
175 * methods and nested classes contain only brief comments about
176 * details.
177 *
178 * WorkQueues
179 * ==========
180 *
181 * Most operations occur within work-stealing queues (in nested
182 * class WorkQueue). These are special forms of Deques that
183 * support only three of the four possible end-operations -- push,
184 * pop, and poll (aka steal), under the further constraints that
185 * push and pop are called only from the owning thread (or, as
186 * extended here, under a lock), while poll may be called from
187 * other threads. (If you are unfamiliar with them, you probably
188 * want to read Herlihy and Shavit's book "The Art of
189 * Multiprocessor programming", chapter 16 describing these in
190 * more detail before proceeding.) The main work-stealing queue
191 * design is roughly similar to those in the papers "Dynamic
192 * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
193 * (http://research.sun.com/scalable/pubs/index.html) and
194 * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
195 * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
196 * The main differences ultimately stem from GC requirements that
197 * we null out taken slots as soon as we can, to maintain as small
198 * a footprint as possible even in programs generating huge
199 * numbers of tasks. To accomplish this, we shift the CAS
200 * arbitrating pop vs poll (steal) from being on the indices
201 * ("base" and "top") to the slots themselves.
202 *
203 * Adding tasks then takes the form of a classic array push(task)
204 * in a circular buffer:
205 * q.array[q.top++ % length] = task;
206 *
207 * The actual code needs to null-check and size-check the array,
208 * uses masking, not mod, for indexing a power-of-two-sized array,
209 * enforces memory ordering, supports resizing, and possibly
210 * signals waiting workers to start scanning -- see below.
211 *
212 * The pop operation (always performed by owner) is of the form:
213 * if ((task = getAndSet(q.array, (q.top-1) % length, null)) != null)
214 * decrement top and return task;
215 * If this fails, the queue is empty.
216 *
217 * The poll operation by another stealer thread is, basically:
218 * if (CAS nonnull task at q.array[q.base % length] to null)
219 * increment base and return task;
220 *
221 * This may fail due to contention, and may be retried.
222 * Implementations must ensure a consistent snapshot of the base
223 * index and the task (by looping or trying elsewhere) before
224 * trying CAS. There isn't actually a method of this form,
225 * because failure due to inconsistency or contention is handled
226 * in different ways in different contexts, normally by first
227 * trying other queues. (For the most straightforward example, see
228 * method pollScan.) There are further variants for cases
229 * requiring inspection of elements before extracting them, so
230 * must interleave these with variants of this code. Also, a more
231 * efficient version (nextLocalTask) is used for polls by owners.
232 * It avoids some overhead because the queue cannot be growing
233 * during call.
234 *
235 * Memory ordering. See "Correct and Efficient Work-Stealing for
236 * Weak Memory Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
237 * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
238 * analysis of memory ordering requirements in work-stealing
239 * algorithms similar to the one used here. Inserting and
240 * extracting tasks in array slots via volatile or atomic accesses
241 * or explicit fences provides primary synchronization.
242 *
243 * Operations on deque elements require reads and writes of both
244 * indices and slots. When possible, we allow these to occur in
245 * any order. Because the base and top indices (along with other
246 * pool or array fields accessed in many methods) only imprecisely
247 * guide where to extract from, we let accesses other than the
248 * element getAndSet/CAS/setVolatile appear in any order, using
249 * plain mode. But we must still preface some methods (mainly
250 * those that may be accessed externally) with an acquireFence to
251 * avoid unbounded staleness. This is equivalent to acting as if
252 * callers use an acquiring read of the reference to the pool or
253 * queue when invoking the method, even when they do not. We use
254 * explicit acquiring reads (getSlot) rather than plain array
255 * access when acquire mode is required but not otherwise ensured
256 * by context. To reduce stalls by other stealers, we encourage
257 * timely writes to the base index by immediately following
258 * updates with a write of a volatile field that must be updated
259 * anyway, or an Opaque-mode write if there is no such
260 * opportunity.
261 *
262 * Because indices and slot contents cannot always be consistent,
263 * the emptiness check base == top is only quiescently accurate
264 * (and so used where this suffices). Otherwise, it may err on the
265 * side of possibly making the queue appear nonempty when a push,
266 * pop, or poll have not fully committed, or making it appear
267 * empty when an update of top or base has not yet been seen.
268 * Similarly, the check in push for the queue array being full may
269 * trigger when not completely full, causing a resize earlier than
270 * required.
271 *
272 * Mainly because of these potential inconsistencies among slots
273 * vs indices, the poll operation, considered individually, is not
274 * wait-free. One thief cannot successfully continue until another
275 * in-progress one (or, if previously empty, a push) visibly
276 * completes. This can stall threads when required to consume
277 * from a given queue (which may spin). However, in the
278 * aggregate, we ensure probabilistic non-blockingness at least
279 * until checking quiescence (which is intrinsically blocking):
280 * If an attempted steal fails, a scanning thief chooses a
281 * different victim target to try next. So, in order for one thief
282 * to progress, it suffices for any in-progress poll or new push
283 * on any empty queue to complete. The worst cases occur when many
284 * threads are looking for tasks being produced by a stalled
285 * producer.
286 *
287 * This approach also enables support of a user mode in which
288 * local task processing is in FIFO, not LIFO order, simply by
289 * using poll rather than pop. This can be useful in
290 * message-passing frameworks in which tasks are never joined,
291 * although with increased contention among task producers and
292 * consumers.
293 *
294 * WorkQueues are also used in a similar way for tasks submitted
295 * to the pool. We cannot mix these tasks in the same queues used
296 * by workers. Instead, we randomly associate submission queues
297 * with submitting threads, using a form of hashing. The
298 * ThreadLocalRandom probe value serves as a hash code for
299 * choosing existing queues, and may be randomly repositioned upon
300 * contention with other submitters. In essence, submitters act
301 * like workers except that they are restricted to executing local
302 * tasks that they submitted (or when known, subtasks thereof).
303 * Insertion of tasks in shared mode requires a lock. We use only
304 * a simple spinlock (using field "source"), because submitters
305 * encountering a busy queue move to a different position to use
306 * or create other queues. They block only when registering new
307 * queues.
308 *
309 * Management
310 * ==========
311 *
312 * The main throughput advantages of work-stealing stem from
313 * decentralized control -- workers mostly take tasks from
314 * themselves or each other, at rates that can exceed a billion
315 * per second. Most non-atomic control is performed by some form
316 * of scanning across or within queues. The pool itself creates,
317 * activates (enables scanning for and running tasks),
318 * deactivates, blocks, and terminates threads, all with minimal
319 * central information. There are only a few properties that we
320 * can globally track or maintain, so we pack them into a small
321 * number of variables, often maintaining atomicity without
322 * blocking or locking. Nearly all essentially atomic control
323 * state is held in a few volatile variables that are by far most
324 * often read (not written) as status and consistency checks. We
325 * pack as much information into them as we can.
326 *
327 * Field "ctl" contains 64 bits holding information needed to
328 * atomically decide to add, enqueue (on an event queue), and
329 * dequeue and release workers. To enable this packing, we
330 * restrict maximum parallelism to (1<<15)-1 (which is far in
331 * excess of normal operating range) to allow ids, counts, and
332 * their negations (used for thresholding) to fit into 16bit
333 * subfields.
334 *
335 * Field "mode" holds configuration parameters as well as lifetime
336 * status, atomically and monotonically setting SHUTDOWN, STOP,
337 * and finally TERMINATED bits. It is updated only via bitwise
338 * atomics (getAndBitwiseOr).
339 *
340 * Array "queues" holds references to WorkQueues. It is updated
341 * (only during worker creation and termination) under the
342 * registrationLock, but is otherwise concurrently readable, and
343 * accessed directly (although always prefaced by acquireFences or
344 * other acquiring reads). To simplify index-based operations, the
345 * array size is always a power of two, and all readers must
346 * tolerate null slots. Worker queues are at odd indices. Worker
347 * ids masked with SMASK match their index. Shared (submission)
348 * queues are at even indices. Grouping them together in this way
349 * simplifies and speeds up task scanning.
350 *
351 * All worker thread creation is on-demand, triggered by task
352 * submissions, replacement of terminated workers, and/or
353 * compensation for blocked workers. However, all other support
354 * code is set up to work with other policies. To ensure that we
355 * do not hold on to worker or task references that would prevent
356 * GC, all accesses to workQueues are via indices into the
357 * queues array (which is one source of some of the messy code
358 * constructions here). In essence, the queues array serves as
359 * a weak reference mechanism. Thus for example the stack top
360 * subfield of ctl stores indices, not references.
361 *
362 * Queuing Idle Workers. Unlike HPC work-stealing frameworks, we
363 * cannot let workers spin indefinitely scanning for tasks when
364 * none can be found immediately, and we cannot start/resume
365 * workers unless there appear to be tasks available. On the
366 * other hand, we must quickly prod them into action when new
367 * tasks are submitted or generated. These latencies are mainly a
368 * function of JVM park/unpark (and underlying OS) performance,
369 * which can be slow and variable. In many usages, ramp-up time
370 * is the main limiting factor in overall performance, which is
371 * compounded at program start-up by JIT compilation and
372 * allocation. On the other hand, throughput degrades when too
373 * many threads poll for too few tasks.
374 *
375 * The "ctl" field atomically maintains total and "released"
376 * worker counts, plus the head of the available worker queue
377 * (actually stack, represented by the lower 32bit subfield of
378 * ctl). Released workers are those known to be scanning for
379 * and/or running tasks. Unreleased ("available") workers are
380 * recorded in the ctl stack. These workers are made available for
381 * signalling by enqueuing in ctl (see method awaitWork). The
382 * "queue" is a form of Treiber stack. This is ideal for
383 * activating threads in most-recently used order, and improves
384 * performance and locality, outweighing the disadvantages of
385 * being prone to contention and inability to release a worker
386 * unless it is topmost on stack. The top stack state holds the
387 * value of the "phase" field of the worker: its index and status,
388 * plus a version counter that, in addition to the count subfields
389 * (also serving as version stamps) provide protection against
390 * Treiber stack ABA effects.
391 *
392 * Creating workers. To create a worker, we pre-increment counts
393 * (serving as a reservation), and attempt to construct a
394 * ForkJoinWorkerThread via its factory. On starting, the new
395 * thread first invokes registerWorker, where it constructs a
396 * WorkQueue and is assigned an index in the queues array
397 * (expanding the array if necessary). Upon any exception across
398 * these steps, or null return from factory, deregisterWorker
399 * adjusts counts and records accordingly. If a null return, the
400 * pool continues running with fewer than the target number
401 * workers. If exceptional, the exception is propagated, generally
402 * to some external caller.
403 *
404 * WorkQueue field "phase" is used by both workers and the pool to
405 * manage and track whether a worker is UNSIGNALLED (possibly
406 * blocked waiting for a signal). When a worker is enqueued its
407 * phase field is set negative. Note that phase field updates lag
408 * queue CAS releases; seeing a negative phase does not guarantee
409 * that the worker is available. When queued, the lower 16 bits of
410 * its phase must hold its pool index. So we place the index there
411 * upon initialization and never modify these bits.
412 *
413 * The ctl field also serves as the basis for memory
414 * synchronization surrounding activation. This uses a more
415 * efficient version of a Dekker-like rule that task producers and
416 * consumers sync with each other by both writing/CASing ctl (even
417 * if to its current value). However, rather than CASing ctl to
418 * its current value in the common case where no action is
419 * required, we reduce write contention by ensuring that
420 * signalWork invocations are prefaced with a full-volatile memory
421 * access (which is usually needed anyway).
422 *
423 * Signalling. Signals (in signalWork) cause new or reactivated
424 * workers to scan for tasks. Method signalWork and its callers
425 * try to approximate the unattainable goal of having the right
426 * number of workers activated for the tasks at hand, but must err
427 * on the side of too many workers vs too few to avoid stalls. If
428 * computations are purely tree structured, it suffices for every
429 * worker to activate another when it pushes a task into an empty
430 * queue, resulting in O(log(#threads)) steps to full activation.
431 * If instead, tasks come in serially from only a single producer,
432 * each worker taking its first (since the last quiescence) task
433 * from a queue should signal another if there are more tasks in
434 * that queue. This is equivalent to, but generally faster than,
435 * arranging the stealer take two tasks, re-pushing one on its own
436 * queue, and signalling (because its queue is empty), also
437 * resulting in logarithmic full activation time. Because we don't
438 * know about usage patterns (or most commonly, mixtures), we use
439 * both approaches. We approximate the second rule by arranging
440 * that workers in scan() do not repeat signals when repeatedly
441 * taking tasks from any given queue, by remembering the previous
442 * one. There are narrow windows in which both rules may apply,
443 * leading to duplicate or unnecessary signals. Despite such
444 * limitations, these rules usually avoid slowdowns that otherwise
445 * occur when too many workers contend to take too few tasks, or
446 * when producers waste most of their time resignalling. However,
447 * contention and overhead effects may still occur during ramp-up,
448 * ramp-down, and small computations involving only a few workers.
449 *
450 * Scanning. Method scan performs top-level scanning for (and
451 * execution of) tasks. Scans by different workers and/or at
452 * different times are unlikely to poll queues in the same
453 * order. Each scan traverses and tries to poll from each queue in
454 * a pseudorandom permutation order by starting at a random index,
455 * and using a constant cyclically exhaustive stride; restarting
456 * upon contention. (Non-top-level scans; for example in
457 * helpJoin, use simpler linear probes because they do not
458 * systematically contend with top-level scans.) The pseudorandom
459 * generator need not have high-quality statistical properties in
460 * the long term. We use Marsaglia XorShifts, seeded with the Weyl
461 * sequence from ThreadLocalRandom probes, which are cheap and
462 * suffice. Scans do not otherwise explicitly take into account
463 * core affinities, loads, cache localities, etc, However, they do
464 * exploit temporal locality (which usually approximates these) by
465 * preferring to re-poll from the same queue after a successful
466 * poll before trying others (see method topLevelExec). This
467 * reduces fairness, which is partially counteracted by using a
468 * one-shot form of poll (tryPoll) that may lose to other workers.
469 *
470 * Deactivation. Method scan returns a sentinel when no tasks are
471 * found, leading to deactivation (see awaitWork). The count
472 * fields in ctl allow accurate discovery of quiescent states
473 * (i.e., when all workers are idle) after deactivation. However,
474 * this may also race with new (external) submissions, so a
475 * recheck is also needed to determine quiescence. Upon apparently
476 * triggering quiescence, awaitWork re-scans and self-signals if
477 * it may have missed a signal. In other cases, a missed signal
478 * may transiently lower parallelism because deactivation does not
479 * necessarily mean that there is no more work, only that that
480 * there were no tasks not taken by other workers. But more
481 * signals are generated (see above) to eventually reactivate if
482 * needed.
483 *
484 * Trimming workers. To release resources after periods of lack of
485 * use, a worker starting to wait when the pool is quiescent will
486 * time out and terminate if the pool has remained quiescent for
487 * period given by field keepAlive.
488 *
489 * Shutdown and Termination. A call to shutdownNow invokes
490 * tryTerminate to atomically set a mode bit. The calling thread,
491 * as well as every other worker thereafter terminating, helps
492 * terminate others by cancelling their unprocessed tasks, and
493 * waking them up. Calls to non-abrupt shutdown() preface this by
494 * checking isQuiescent before triggering the "STOP" phase of
495 * termination.
496 *
497 * Joining Tasks
498 * =============
499 *
500 * Normally, the first option when joining a task that is not done
501 * is to try to unfork it from local queue and run it. Otherwise,
502 * any of several actions may be taken when one worker is waiting
503 * to join a task stolen (or always held) by another. Because we
504 * are multiplexing many tasks on to a pool of workers, we can't
505 * always just let them block (as in Thread.join). We also cannot
506 * just reassign the joiner's run-time stack with another and
507 * replace it later, which would be a form of "continuation", that
508 * even if possible is not necessarily a good idea since we may
509 * need both an unblocked task and its continuation to progress.
510 * Instead we combine two tactics:
511 *
512 * Helping: Arranging for the joiner to execute some task that it
513 * could be running if the steal had not occurred.
514 *
515 * Compensating: Unless there are already enough live threads,
516 * method tryCompensate() may create or re-activate a spare
517 * thread to compensate for blocked joiners until they unblock.
518 *
519 * A third form (implemented via tryRemove) amounts to helping a
520 * hypothetical compensator: If we can readily tell that a
521 * possible action of a compensator is to steal and execute the
522 * task being joined, the joining thread can do so directly,
523 * without the need for a compensation thread; although with a
524 * (rare) possibility of reduced parallelism because of a
525 * transient gap in the queue array.
526 *
527 * Other intermediate forms available for specific task types (for
528 * example helpAsyncBlocker) often avoid or postpone the need for
529 * blocking or compensation.
530 *
531 * The ManagedBlocker extension API can't use helping so relies
532 * only on compensation in method awaitBlocker.
533 *
534 * The algorithm in helpJoin entails a form of "linear helping".
535 * Each worker records (in field "source") the id of the queue
536 * from which it last stole a task. The scan in method helpJoin
537 * uses these markers to try to find a worker to help (i.e., steal
538 * back a task from and execute it) that could hasten completion
539 * of the actively joined task. Thus, the joiner executes a task
540 * that would be on its own local deque if the to-be-joined task
541 * had not been stolen. This is a conservative variant of the
542 * approach described in Wagner & Calder "Leapfrogging: a portable
543 * technique for implementing efficient futures" SIGPLAN Notices,
544 * 1993 (http://portal.acm.org/citation.cfm?id=155354). It differs
545 * mainly in that we only record queue ids, not full dependency
546 * links. This requires a linear scan of the queues array to
547 * locate stealers, but isolates cost to when it is needed, rather
548 * than adding to per-task overhead. Also, searches are limited to
549 * direct and at most two levels of indirect stealers, after which
550 * there are rapidly diminishing returns on increased overhead.
551 * Searches can fail to locate stealers when stalls delay
552 * recording sources. Further, even when accurately identified,
553 * stealers might not ever produce a task that the joiner can in
554 * turn help with. So, compensation is tried upon failure to find
555 * tasks to run.
556 *
557 * Joining CountedCompleters (see helpComplete) differs from (and
558 * is generally more efficient than) other cases because task
559 * eligibility is determined by checking completion chains rather
560 * than tracking stealers.
561 *
562 * Joining under timeouts (ForkJoinTask timed get) uses a
563 * constrained mixture of helping and compensating in part because
564 * pools (actually, only the common pool) may not have any
565 * available threads: If the pool is saturated (all available
566 * workers are busy), the caller tries to remove and otherwise
567 * help; else it blocks under compensation so that it may time out
568 * independently of any tasks.
569 *
570 * Compensation does not by default aim to keep exactly the target
571 * parallelism number of unblocked threads running at any given
572 * time. Some previous versions of this class employed immediate
573 * compensations for any blocked join. However, in practice, the
574 * vast majority of blockages are transient byproducts of GC and
575 * other JVM or OS activities that are made worse by replacement
576 * when they cause longer-term oversubscription. Rather than
577 * impose arbitrary policies, we allow users to override the
578 * default of only adding threads upon apparent starvation. The
579 * compensation mechanism may also be bounded. Bounds for the
580 * commonPool (see COMMON_MAX_SPARES) better enable JVMs to cope
581 * with programming errors and abuse before running out of
582 * resources to do so.
583 *
584 * Common Pool
585 * ===========
586 *
587 * The static common pool always exists after static
588 * initialization. Since it (or any other created pool) need
589 * never be used, we minimize initial construction overhead and
590 * footprint to the setup of about a dozen fields.
591 *
592 * When external threads submit to the common pool, they can
593 * perform subtask processing (see helpComplete and related
594 * methods) upon joins. This caller-helps policy makes it
595 * sensible to set common pool parallelism level to one (or more)
596 * less than the total number of available cores, or even zero for
597 * pure caller-runs. We do not need to record whether external
598 * submissions are to the common pool -- if not, external help
599 * methods return quickly. These submitters would otherwise be
600 * blocked waiting for completion, so the extra effort (with
601 * liberally sprinkled task status checks) in inapplicable cases
602 * amounts to an odd form of limited spin-wait before blocking in
603 * ForkJoinTask.join.
604 *
605 * As a more appropriate default in managed environments, unless
606 * overridden by system properties, we use workers of subclass
607 * InnocuousForkJoinWorkerThread when there is a SecurityManager
608 * present. These workers have no permissions set, do not belong
609 * to any user-defined ThreadGroup, and erase all ThreadLocals
610 * after executing any top-level task. The associated mechanics
611 * may be JVM-dependent and must access particular Thread class
612 * fields to achieve this effect.
613 *
614 * Interrupt handling
615 * ==================
616 *
617 * The framework is designed to manage task cancellation
618 * (ForkJoinTask.cancel) independently from the interrupt status
619 * of threads running tasks. (See the public ForkJoinTask
620 * documentation for rationale.) Interrupts are issued only in
621 * tryTerminate, when workers should be terminating and tasks
622 * should be cancelled anyway. Interrupts are cleared only when
623 * necessary to ensure that calls to LockSupport.park do not loop
624 * indefinitely (park returns immediately if the current thread is
625 * interrupted). If so, interruption is reinstated after blocking
626 * if status could be visible during the scope of any task. For
627 * cases in which task bodies are specified or desired to
628 * interrupt upon cancellation, ForkJoinTask.cancel can be
629 * overridden to do so (as is done for invoke{Any,All}).
630 *
631 * Memory placement
632 * ================
633 *
634 * Performance can be very sensitive to placement of instances of
635 * ForkJoinPool and WorkQueues and their queue arrays. To reduce
636 * false-sharing impact, the @Contended annotation isolates the
637 * ForkJoinPool.ctl field as well as the most heavily written
638 * WorkQueue fields. These mainly reduce cache traffic by scanners.
639 * WorkQueue arrays are presized large enough to avoid resizing
640 * (which transiently reduces throughput) in most tree-like
641 * computations, although not in some streaming usages. Initial
642 * sizes are not large enough to avoid secondary contention
643 * effects (especially for GC cardmarks) when queues are placed
644 * near each other in memory. This is common, but has different
645 * impact in different collectors and remains incompletely
646 * addressed.
647 *
648 * Style notes
649 * ===========
650 *
651 * Memory ordering relies mainly on atomic operations (CAS,
652 * getAndSet, getAndAdd) along with explicit fences. This can be
653 * awkward and ugly, but also reflects the need to control
654 * outcomes across the unusual cases that arise in very racy code
655 * with very few invariants. All fields are read into locals
656 * before use, and null-checked if they are references, even if
657 * they can never be null under current usages. Array accesses
658 * using masked indices include checks (that are always true) that
659 * the array length is non-zero to avoid compilers inserting more
660 * expensive traps. This is usually done in a "C"-like style of
661 * listing declarations at the heads of methods or blocks, and
662 * using inline assignments on first encounter. Nearly all
663 * explicit checks lead to bypass/return, not exception throws,
664 * because they may legitimately arise during shutdown.
665 *
666 * There is a lot of representation-level coupling among classes
667 * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask. The
668 * fields of WorkQueue maintain data structures managed by
669 * ForkJoinPool, so are directly accessed. There is little point
670 * trying to reduce this, since any associated future changes in
671 * representations will need to be accompanied by algorithmic
672 * changes anyway. Several methods intrinsically sprawl because
673 * they must accumulate sets of consistent reads of fields held in
674 * local variables. Some others are artificially broken up to
675 * reduce producer/consumer imbalances due to dynamic compilation.
676 * There are also other coding oddities (including several
677 * unnecessary-looking hoisted null checks) that help some methods
678 * perform reasonably even when interpreted (not compiled).
679 *
680 * The order of declarations in this file is (with a few exceptions):
681 * (1) Static utility functions
682 * (2) Nested (static) classes
683 * (3) Static fields
684 * (4) Fields, along with constants used when unpacking some of them
685 * (5) Internal control methods
686 * (6) Callbacks and other support for ForkJoinTask methods
687 * (7) Exported methods
688 * (8) Static block initializing statics in minimally dependent order
689 *
690 * Revision notes
691 * ==============
692 *
693 * The main sources of differences of January 2020 ForkJoin
694 * classes from previous version are:
695 *
696 * * ForkJoinTask now uses field "aux" to support blocking joins
697 * and/or record exceptions, replacing reliance on builtin
698 * monitors and side tables.
699 * * Scans probe slots (vs compare indices), along with related
700 * changes that reduce performance differences across most
701 * garbage collectors, and reduce contention.
702 * * Refactoring for better integration of special task types and
703 * other capabilities that had been incrementally tacked on. Plus
704 * many minor reworkings to improve consistency.
705 */
706
707 // Static utilities
708
709 /**
710 * If there is a security manager, makes sure caller has
711 * permission to modify threads.
712 */
713 private static void checkPermission() {
714 SecurityManager security = System.getSecurityManager();
715 if (security != null)
716 security.checkPermission(modifyThreadPermission);
717 }
718
719 static AccessControlContext contextWithPermissions(Permission ... perms) {
720 Permissions permissions = new Permissions();
721 for (Permission perm : perms)
722 permissions.add(perm);
723 return new AccessControlContext(
724 new ProtectionDomain[] { new ProtectionDomain(null, permissions) });
725 }
726
727 // Nested classes
728
729 /**
730 * Factory for creating new {@link ForkJoinWorkerThread}s.
731 * A {@code ForkJoinWorkerThreadFactory} must be defined and used
732 * for {@code ForkJoinWorkerThread} subclasses that extend base
733 * functionality or initialize threads with different contexts.
734 */
735 public static interface ForkJoinWorkerThreadFactory {
736 /**
737 * Returns a new worker thread operating in the given pool.
738 * Returning null or throwing an exception may result in tasks
739 * never being executed. If this method throws an exception,
740 * it is relayed to the caller of the method (for example
741 * {@code execute}) causing attempted thread creation. If this
742 * method returns null or throws an exception, it is not
743 * retried until the next attempted creation (for example
744 * another call to {@code execute}).
745 *
746 * @param pool the pool this thread works in
747 * @return the new worker thread, or {@code null} if the request
748 * to create a thread is rejected
749 * @throws NullPointerException if the pool is null
750 */
751 public ForkJoinWorkerThread newThread(ForkJoinPool pool);
752 }
753
754 /**
755 * Default ForkJoinWorkerThreadFactory implementation; creates a
756 * new ForkJoinWorkerThread using the system class loader as the
757 * thread context class loader.
758 */
759 static final class DefaultForkJoinWorkerThreadFactory
760 implements ForkJoinWorkerThreadFactory {
761 // ACC for access to the factory
762 private static final AccessControlContext ACC = contextWithPermissions(
763 new RuntimePermission("getClassLoader"),
764 new RuntimePermission("setContextClassLoader"));
765
766 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
767 return AccessController.doPrivileged(
768 new PrivilegedAction<>() {
769 public ForkJoinWorkerThread run() {
770 return new ForkJoinWorkerThread(null, pool, true, true);
771 }},
772 ACC);
773 }
774 }
775
776 /**
777 * Factory for InnocuousForkJoinWorkerThread. Support requires
778 * that we break quite a lot of encapsulation (some via helper
779 * methods in ThreadLocalRandom) to access and set Thread fields.
780 */
781 static final class InnocuousForkJoinWorkerThreadFactory
782 implements ForkJoinWorkerThreadFactory {
783 // ACC for access to the factory
784 private static final AccessControlContext ACC = contextWithPermissions(
785 modifyThreadPermission,
786 new RuntimePermission("enableContextClassLoaderOverride"),
787 new RuntimePermission("modifyThreadGroup"),
788 new RuntimePermission("getClassLoader"),
789 new RuntimePermission("setContextClassLoader"));
790
791 public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
792 return AccessController.doPrivileged(
793 new PrivilegedAction<>() {
794 public ForkJoinWorkerThread run() {
795 return new ForkJoinWorkerThread.
796 InnocuousForkJoinWorkerThread(pool); }},
797 ACC);
798 }
799 }
800
801 // Constants shared across ForkJoinPool and WorkQueue
802
803 // Bounds
804 static final int SWIDTH = 16; // width of short
805 static final int SMASK = 0xffff; // short bits == max index
806 static final int MAX_CAP = 0x7fff; // max #workers - 1
807
808 // Masks and units for WorkQueue.phase and ctl sp subfield
809 static final int UNSIGNALLED = 1 << 31; // must be negative
810 static final int SS_SEQ = 1 << 16; // version count
811
812 // Mode bits and sentinels, some also used in WorkQueue fields
813 static final int FIFO = 1 << 16; // fifo queue or access mode
814 static final int SRC = 1 << 17; // set for valid queue ids
815 static final int INNOCUOUS = 1 << 18; // set for Innocuous workers
816 static final int QUIET = 1 << 19; // quiescing phase or source
817 static final int SHUTDOWN = 1 << 24;
818 static final int TERMINATED = 1 << 25;
819 static final int STOP = 1 << 31; // must be negative
820 static final int UNCOMPENSATE = 1 << 16; // tryCompensate return
821
822 /**
823 * Initial capacity of work-stealing queue array. Must be a power
824 * of two, at least 2. See above.
825 */
826 static final int INITIAL_QUEUE_CAPACITY = 1 << 8;
827
828 /**
829 * Queues supporting work-stealing as well as external task
830 * submission. See above for descriptions and algorithms.
831 */
832 static final class WorkQueue {
833 volatile int phase; // versioned, negative if inactive
834 int stackPred; // pool stack (ctl) predecessor link
835 int config; // index, mode, ORed with SRC after init
836 int base; // index of next slot for poll
837 ForkJoinTask<?>[] array; // the queued tasks; power of 2 size
838 final ForkJoinWorkerThread owner; // owning thread or null if shared
839
840 // segregate fields frequently updated but not read by scans or steals
841 @jdk.internal.vm.annotation.Contended("w")
842 int top; // index of next slot for push
843 @jdk.internal.vm.annotation.Contended("w")
844 volatile int source; // source queue id, lock, or sentinel
845 @jdk.internal.vm.annotation.Contended("w")
846 int nsteals; // number of steals from other queues
847
848 // Support for atomic operations
849 private static final VarHandle QA; // for array slots
850 private static final VarHandle SOURCE;
851 private static final VarHandle BASE;
852 static final ForkJoinTask<?> getSlot(ForkJoinTask<?>[] a, int i) {
853 return (ForkJoinTask<?>)QA.getAcquire(a, i);
854 }
855 static final ForkJoinTask<?> getAndClearSlot(ForkJoinTask<?>[] a,
856 int i) {
857 return (ForkJoinTask<?>)QA.getAndSet(a, i, null);
858 }
859 static final void setSlotVolatile(ForkJoinTask<?>[] a, int i,
860 ForkJoinTask<?> v) {
861 QA.setVolatile(a, i, v);
862 }
863 static final boolean casSlotToNull(ForkJoinTask<?>[] a, int i,
864 ForkJoinTask<?> c) {
865 return QA.weakCompareAndSet(a, i, c, null);
866 }
867 final boolean tryLock() {
868 return SOURCE.compareAndSet(this, 0, 1);
869 }
870 final void setBaseOpaque(int b) {
871 BASE.setOpaque(this, b);
872 }
873
874 /**
875 * Constructor used by ForkJoinWorkerThreads. Most fields
876 * are initialized upon thread start, in pool.registerWorker.
877 */
878 WorkQueue(ForkJoinWorkerThread owner, boolean isInnocuous) {
879 this.config = (isInnocuous) ? INNOCUOUS : 0;
880 this.owner = owner;
881 }
882
883 /**
884 * Constructor used for external queues.
885 */
886 WorkQueue(int config) {
887 array = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
888 this.config = config;
889 owner = null;
890 phase = -1;
891 }
892
893 /**
894 * Returns an exportable index (used by ForkJoinWorkerThread).
895 */
896 final int getPoolIndex() {
897 return (config & 0xffff) >>> 1; // ignore odd/even tag bit
898 }
899
900 /**
901 * Returns the approximate number of tasks in the queue.
902 */
903 final int queueSize() {
904 VarHandle.acquireFence(); // ensure fresh reads by external callers
905 int n = top - base;
906 return (n < 0) ? 0 : n; // ignore transient negative
907 }
908
909 /**
910 * Provides a more conservative estimate of whether this queue
911 * has any tasks than does queueSize.
912 */
913 final boolean isEmpty() {
914 return !((source != 0 && owner == null) || top - base > 0);
915 }
916
917 /**
918 * Pushes a task. Call only by owner in unshared queues.
919 *
920 * @param task the task. Caller must ensure non-null.
921 * @param pool (no-op if null)
922 * @throws RejectedExecutionException if array cannot be resized
923 */
924 final void push(ForkJoinTask<?> task, ForkJoinPool pool) {
925 ForkJoinTask<?>[] a = array;
926 int s = top++, d = s - base, cap, m; // skip insert if disabled
927 if (a != null && pool != null && (cap = a.length) > 0) {
928 setSlotVolatile(a, (m = cap - 1) & s, task);
929 if (d == m)
930 growArray();
931 if (d == m || a[m & (s - 1)] == null)
932 pool.signalWork(); // signal if was empty or resized
933 }
934 }
935
936 /**
937 * Pushes task to a shared queue with lock already held, and unlocks.
938 *
939 * @return true if caller should signal work
940 */
941 final boolean lockedPush(ForkJoinTask<?> task) {
942 ForkJoinTask<?>[] a = array;
943 int s = top++, d = s - base, cap, m;
944 if (a != null && (cap = a.length) > 0) {
945 a[(m = cap - 1) & s] = task;
946 if (d == m)
947 growArray();
948 source = 0; // unlock
949 if (d == m || a[m & (s - 1)] == null)
950 return true;
951 }
952 return false;
953 }
954
955 /**
956 * Doubles the capacity of array. Called by owner or with lock
957 * held after pre-incrementing top, which is reverted on
958 * allocation failure.
959 */
960 final void growArray() {
961 ForkJoinTask<?>[] oldArray = array, newArray;
962 int s = top - 1, oldCap, newCap;
963 if (oldArray != null && (oldCap = oldArray.length) > 0 &&
964 (newCap = oldCap << 1) > 0) { // skip if disabled
965 try {
966 newArray = new ForkJoinTask<?>[newCap];
967 } catch (Throwable ex) {
968 top = s;
969 if (owner == null)
970 source = 0; // unlock
971 throw new RejectedExecutionException(
972 "Queue capacity exceeded");
973 }
974 int newMask = newCap - 1, oldMask = oldCap - 1;
975 for (int k = oldCap; k > 0; --k, --s) {
976 ForkJoinTask<?> x; // poll old, push to new
977 if ((x = getAndClearSlot(oldArray, s & oldMask)) == null)
978 break; // others already taken
979 newArray[s & newMask] = x;
980 }
981 VarHandle.releaseFence(); // fill before publish
982 array = newArray;
983 }
984 }
985
986 // Variants of pop
987
988 /**
989 * Pops and returns task, or null if empty. Called only by owner.
990 */
991 private ForkJoinTask<?> pop() {
992 ForkJoinTask<?> t = null;
993 int s = top, cap; ForkJoinTask<?>[] a;
994 if ((a = array) != null && (cap = a.length) > 0 && base != s-- &&
995 (t = getAndClearSlot(a, (cap - 1) & s)) != null)
996 top = s;
997 return t;
998 }
999
1000 /**
1001 * Pops the given task for owner only if it is at the current top.
1002 */
1003 final boolean tryUnpush(ForkJoinTask<?> task) {
1004 int s = top, cap; ForkJoinTask<?>[] a;
1005 if ((a = array) != null && (cap = a.length) > 0 && base != s-- &&
1006 casSlotToNull(a, (cap - 1) & s, task)) {
1007 top = s;
1008 return true;
1009 }
1010 return false;
1011 }
1012
1013 /**
1014 * Locking version of tryUnpush.
1015 */
1016 final boolean externalTryUnpush(ForkJoinTask<?> task) {
1017 boolean taken = false;
1018 int s = top, cap, k; ForkJoinTask<?>[] a;
1019 if ((a = array) != null && (cap = a.length) > 0 &&
1020 a[k = (cap - 1) & (s - 1)] == task && tryLock()) {
1021 if (top == s && array == a &&
1022 (taken = casSlotToNull(a, k, task)))
1023 top = s - 1;
1024 source = 0; // release lock
1025 }
1026 return taken;
1027 }
1028
1029 /**
1030 * Deep form of tryUnpush: Traverses from top and removes task if
1031 * present, shifting others to fill gap.
1032 */
1033 final boolean tryRemove(ForkJoinTask<?> task, boolean owned) {
1034 boolean taken = false;
1035 int p = top, cap; ForkJoinTask<?>[] a; ForkJoinTask<?> t;
1036 if ((a = array) != null && task != null && (cap = a.length) > 0) {
1037 int m = cap - 1, s = p - 1, d = p - base;
1038 for (int i = s, k; d > 0; --i, --d) {
1039 if ((t = a[k = i & m]) == task) {
1040 if (owned || tryLock()) {
1041 if ((owned || (array == a && top == p)) &&
1042 (taken = casSlotToNull(a, k, t))) {
1043 for (int j = i; j != s; ) // shift down
1044 a[j & m] = getAndClearSlot(a, ++j & m);
1045 top = s;
1046 }
1047 if (!owned)
1048 source = 0;
1049 }
1050 break;
1051 }
1052 }
1053 }
1054 return taken;
1055 }
1056
1057 // variants of poll
1058
1059 /**
1060 * Tries once to poll next task in FIFO order, failing on
1061 * inconsistency or contention.
1062 */
1063 final ForkJoinTask<?> tryPoll() {
1064 int cap, b, k; ForkJoinTask<?>[] a;
1065 if ((a = array) != null && (cap = a.length) > 0) {
1066 ForkJoinTask<?> t = getSlot(a, k = (cap - 1) & (b = base));
1067 if (base == b++ && t != null && casSlotToNull(a, k, t)) {
1068 setBaseOpaque(b);
1069 return t;
1070 }
1071 }
1072 return null;
1073 }
1074
1075 /**
1076 * Takes next task, if one exists, in order specified by mode.
1077 */
1078 final ForkJoinTask<?> nextLocalTask(int cfg) {
1079 ForkJoinTask<?> t = null;
1080 int s = top, cap; ForkJoinTask<?>[] a;
1081 if ((a = array) != null && (cap = a.length) > 0) {
1082 for (int b, d;;) {
1083 if ((d = s - (b = base)) <= 0)
1084 break;
1085 if (d == 1 || (cfg & FIFO) == 0) {
1086 if ((t = getAndClearSlot(a, --s & (cap - 1))) != null)
1087 top = s;
1088 break;
1089 }
1090 if ((t = getAndClearSlot(a, b++ & (cap - 1))) != null) {
1091 setBaseOpaque(b);
1092 break;
1093 }
1094 }
1095 }
1096 return t;
1097 }
1098
1099 /**
1100 * Takes next task, if one exists, using configured mode.
1101 */
1102 final ForkJoinTask<?> nextLocalTask() {
1103 return nextLocalTask(config);
1104 }
1105
1106 /**
1107 * Returns next task, if one exists, in order specified by mode.
1108 */
1109 final ForkJoinTask<?> peek() {
1110 VarHandle.acquireFence();
1111 int cap; ForkJoinTask<?>[] a;
1112 return ((a = array) != null && (cap = a.length) > 0) ?
1113 a[(cap - 1) & ((config & FIFO) != 0 ? base : top - 1)] : null;
1114 }
1115
1116 // specialized execution methods
1117
1118 /**
1119 * Runs the given (stolen) task if nonnull, as well as
1120 * remaining local tasks and/or others available from the
1121 * given queue.
1122 */
1123 final void topLevelExec(ForkJoinTask<?> task, WorkQueue q) {
1124 int cfg = config, nstolen = 1;
1125 while (task != null) {
1126 task.doExec();
1127 if ((task = nextLocalTask(cfg)) == null &&
1128 q != null && (task = q.tryPoll()) != null)
1129 ++nstolen;
1130 }
1131 nsteals += nstolen;
1132 source = 0;
1133 if ((cfg & INNOCUOUS) != 0)
1134 ThreadLocalRandom.eraseThreadLocals(Thread.currentThread());
1135 }
1136
1137 /**
1138 * Tries to pop and run tasks within the target's computation
1139 * until done, not found, or limit exceeded.
1140 *
1141 * @param task root of CountedCompleter computation
1142 * @param owned true if owned by a ForkJoinWorkerThread
1143 * @param limit max runs, or zero for no limit
1144 * @return task status on exit
1145 */
1146 final int helpComplete(ForkJoinTask<?> task, boolean owned, int limit) {
1147 int status = 0, cap, k, p, s; ForkJoinTask<?>[] a; ForkJoinTask<?> t;
1148 while (task != null && (status = task.status) >= 0 &&
1149 (a = array) != null && (cap = a.length) > 0 &&
1150 (t = a[k = (cap - 1) & (s = (p = top) - 1)])
1151 instanceof CountedCompleter) {
1152 CountedCompleter<?> f = (CountedCompleter<?>)t;
1153 boolean taken = false;
1154 for (;;) { // exec if root task is a completer of t
1155 if (f == task) {
1156 if (owned) {
1157 if ((taken = casSlotToNull(a, k, t)))
1158 top = s;
1159 }
1160 else if (tryLock()) {
1161 if (top == p && array == a &&
1162 (taken = casSlotToNull(a, k, t)))
1163 top = s;
1164 source = 0;
1165 }
1166 break;
1167 }
1168 else if ((f = f.completer) == null)
1169 break;
1170 }
1171 if (!taken)
1172 break;
1173 t.doExec();
1174 if (limit != 0 && --limit == 0)
1175 break;
1176 }
1177 return status;
1178 }
1179
1180 /**
1181 * Tries to poll and run AsynchronousCompletionTasks until
1182 * none found or blocker is released.
1183 *
1184 * @param blocker the blocker
1185 */
1186 final void helpAsyncBlocker(ManagedBlocker blocker) {
1187 int cap, b, d, k; ForkJoinTask<?>[] a; ForkJoinTask<?> t;
1188 while (blocker != null && (d = top - (b = base)) > 0 &&
1189 (a = array) != null && (cap = a.length) > 0 &&
1190 (((t = getSlot(a, k = (cap - 1) & b)) == null && d > 1) ||
1191 t instanceof
1192 CompletableFuture.AsynchronousCompletionTask) &&
1193 !blocker.isReleasable()) {
1194 if (t != null && base == b++ && casSlotToNull(a, k, t)) {
1195 setBaseOpaque(b);
1196 t.doExec();
1197 }
1198 }
1199 }
1200
1201 // misc
1202
1203 /** AccessControlContext for innocuous workers, created on 1st use. */
1204 private static AccessControlContext INNOCUOUS_ACC;
1205
1206 /**
1207 * Initializes (upon registration) InnocuousForkJoinWorkerThreads.
1208 */
1209 final void initializeInnocuousWorker() {
1210 AccessControlContext acc; // racy construction OK
1211 if ((acc = INNOCUOUS_ACC) == null)
1212 INNOCUOUS_ACC = acc = new AccessControlContext(
1213 new ProtectionDomain[] { new ProtectionDomain(null, null) });
1214 Thread t = Thread.currentThread();
1215 ThreadLocalRandom.setInheritedAccessControlContext(t, acc);
1216 ThreadLocalRandom.eraseThreadLocals(t);
1217 }
1218
1219 /**
1220 * Returns true if owned by a worker thread and not known to be blocked.
1221 */
1222 final boolean isApparentlyUnblocked() {
1223 Thread wt; Thread.State s;
1224 return ((wt = owner) != null &&
1225 (s = wt.getState()) != Thread.State.BLOCKED &&
1226 s != Thread.State.WAITING &&
1227 s != Thread.State.TIMED_WAITING);
1228 }
1229
1230 static {
1231 try {
1232 QA = MethodHandles.arrayElementVarHandle(ForkJoinTask[].class);
1233 MethodHandles.Lookup l = MethodHandles.lookup();
1234 SOURCE = l.findVarHandle(WorkQueue.class, "source", int.class);
1235 BASE = l.findVarHandle(WorkQueue.class, "base", int.class);
1236 } catch (ReflectiveOperationException e) {
1237 throw new ExceptionInInitializerError(e);
1238 }
1239 }
1240 }
1241
1242 // static fields (initialized in static initializer below)
1243
1244 /**
1245 * Creates a new ForkJoinWorkerThread. This factory is used unless
1246 * overridden in ForkJoinPool constructors.
1247 */
1248 public static final ForkJoinWorkerThreadFactory
1249 defaultForkJoinWorkerThreadFactory;
1250
1251 /**
1252 * Permission required for callers of methods that may start or
1253 * kill threads.
1254 */
1255 static final RuntimePermission modifyThreadPermission;
1256
1257 /**
1258 * Common (static) pool. Non-null for public use unless a static
1259 * construction exception, but internal usages null-check on use
1260 * to paranoically avoid potential initialization circularities
1261 * as well as to simplify generated code.
1262 */
1263 static final ForkJoinPool common;
1264
1265 /**
1266 * Common pool parallelism. To allow simpler use and management
1267 * when common pool threads are disabled, we allow the underlying
1268 * common.parallelism field to be zero, but in that case still report
1269 * parallelism as 1 to reflect resulting caller-runs mechanics.
1270 */
1271 static final int COMMON_PARALLELISM;
1272
1273 /**
1274 * Limit on spare thread construction in tryCompensate.
1275 */
1276 private static final int COMMON_MAX_SPARES;
1277
1278 /**
1279 * Sequence number for creating worker names
1280 */
1281 private static volatile int poolIds;
1282
1283 // static configuration constants
1284
1285 /**
1286 * Default idle timeout value (in milliseconds) for the thread
1287 * triggering quiescence to park waiting for new work
1288 */
1289 private static final long DEFAULT_KEEPALIVE = 60_000L;
1290
1291 /**
1292 * Undershoot tolerance for idle timeouts
1293 */
1294 private static final long TIMEOUT_SLOP = 20L;
1295
1296 /**
1297 * The default value for COMMON_MAX_SPARES. Overridable using the
1298 * "java.util.concurrent.ForkJoinPool.common.maximumSpares" system
1299 * property. The default value is far in excess of normal
1300 * requirements, but also far short of MAX_CAP and typical OS
1301 * thread limits, so allows JVMs to catch misuse/abuse before
1302 * running out of resources needed to do so.
1303 */
1304 private static final int DEFAULT_COMMON_MAX_SPARES = 256;
1305
1306 /*
1307 * Bits and masks for field ctl, packed with 4 16 bit subfields:
1308 * RC: Number of released (unqueued) workers minus target parallelism
1309 * TC: Number of total workers minus target parallelism
1310 * SS: version count and status of top waiting thread
1311 * ID: poolIndex of top of Treiber stack of waiters
1312 *
1313 * When convenient, we can extract the lower 32 stack top bits
1314 * (including version bits) as sp=(int)ctl. The offsets of counts
1315 * by the target parallelism and the positionings of fields makes
1316 * it possible to perform the most common checks via sign tests of
1317 * fields: When ac is negative, there are not enough unqueued
1318 * workers, when tc is negative, there are not enough total
1319 * workers. When sp is non-zero, there are waiting workers. To
1320 * deal with possibly negative fields, we use casts in and out of
1321 * "short" and/or signed shifts to maintain signedness.
1322 *
1323 * Because it occupies uppermost bits, we can add one release
1324 * count using getAndAdd of RC_UNIT, rather than CAS, when
1325 * returning from a blocked join. Other updates entail multiple
1326 * subfields and masking, requiring CAS.
1327 *
1328 * The limits packed in field "bounds" are also offset by the
1329 * parallelism level to make them comparable to the ctl rc and tc
1330 * fields.
1331 */
1332
1333 // Lower and upper word masks
1334 private static final long SP_MASK = 0xffffffffL;
1335 private static final long UC_MASK = ~SP_MASK;
1336
1337 // Release counts
1338 private static final int RC_SHIFT = 48;
1339 private static final long RC_UNIT = 0x0001L << RC_SHIFT;
1340 private static final long RC_MASK = 0xffffL << RC_SHIFT;
1341
1342 // Total counts
1343 private static final int TC_SHIFT = 32;
1344 private static final long TC_UNIT = 0x0001L << TC_SHIFT;
1345 private static final long TC_MASK = 0xffffL << TC_SHIFT;
1346 private static final long ADD_WORKER = 0x0001L << (TC_SHIFT + 15); // sign
1347
1348 // Instance fields
1349
1350 final long keepAlive; // milliseconds before dropping if idle
1351 volatile long stealCount; // collects worker nsteals
1352 int scanRover; // advances across pollScan calls
1353 volatile int threadIds; // for worker thread names
1354 final int bounds; // min, max threads packed as shorts
1355 volatile int mode; // parallelism, runstate, queue mode
1356 WorkQueue[] queues; // main registry
1357 final ReentrantLock registrationLock;
1358 Condition termination; // lazily constructed
1359 final String workerNamePrefix; // null for common pool
1360 final ForkJoinWorkerThreadFactory factory;
1361 final UncaughtExceptionHandler ueh; // per-worker UEH
1362 final Predicate<? super ForkJoinPool> saturate;
1363
1364 @jdk.internal.vm.annotation.Contended("fjpctl") // segregate
1365 volatile long ctl; // main pool control
1366
1367 // Support for atomic operations
1368 private static final VarHandle CTL;
1369 private static final VarHandle MODE;
1370 private static final VarHandle THREADIDS;
1371 private static final VarHandle POOLIDS;
1372 private boolean compareAndSetCtl(long c, long v) {
1373 return CTL.compareAndSet(this, c, v);
1374 }
1375 private long compareAndExchangeCtl(long c, long v) {
1376 return (long)CTL.compareAndExchange(this, c, v);
1377 }
1378 private long getAndAddCtl(long v) {
1379 return (long)CTL.getAndAdd(this, v);
1380 }
1381 private int getAndBitwiseOrMode(int v) {
1382 return (int)MODE.getAndBitwiseOr(this, v);
1383 }
1384 private int getAndAddThreadIds(int x) {
1385 return (int)THREADIDS.getAndAdd(this, x);
1386 }
1387 private static int getAndAddPoolIds(int x) {
1388 return (int)POOLIDS.getAndAdd(x);
1389 }
1390
1391 // Creating, registering and deregistering workers
1392
1393 /**
1394 * Tries to construct and start one worker. Assumes that total
1395 * count has already been incremented as a reservation. Invokes
1396 * deregisterWorker on any failure.
1397 *
1398 * @return true if successful
1399 */
1400 private boolean createWorker() {
1401 ForkJoinWorkerThreadFactory fac = factory;
1402 Throwable ex = null;
1403 ForkJoinWorkerThread wt = null;
1404 try {
1405 if (fac != null && (wt = fac.newThread(this)) != null) {
1406 wt.start();
1407 return true;
1408 }
1409 } catch (Throwable rex) {
1410 ex = rex;
1411 }
1412 deregisterWorker(wt, ex);
1413 return false;
1414 }
1415
1416 /**
1417 * Provides a name for ForkJoinWorkerThread constructor.
1418 */
1419 final String nextWorkerThreadName() {
1420 String prefix = workerNamePrefix;
1421 int tid = getAndAddThreadIds(1) + 1;
1422 if (prefix == null) // commonPool has no prefix
1423 prefix = "ForkJoinPool.commonPool-worker-";
1424 return prefix.concat(Integer.toString(tid));
1425 }
1426
1427 /**
1428 * Finishes initializing and records owned queue.
1429 *
1430 * @param w caller's WorkQueue
1431 */
1432 final void registerWorker(WorkQueue w) {
1433 ReentrantLock lock = registrationLock;
1434 ThreadLocalRandom.localInit();
1435 int seed = ThreadLocalRandom.getProbe();
1436 if (w != null && lock != null) {
1437 int modebits = (mode & FIFO) | w.config;
1438 w.array = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
1439 w.stackPred = seed; // stash for runWorker
1440 if ((modebits & INNOCUOUS) != 0)
1441 w.initializeInnocuousWorker();
1442 int id = (seed << 1) | 1; // initial index guess
1443 lock.lock();
1444 try {
1445 WorkQueue[] qs; int n; // find queue index
1446 if ((qs = queues) != null && (n = qs.length) > 0) {
1447 int k = n, m = n - 1;
1448 for (; qs[id &= m] != null && k > 0; id -= 2, k -= 2);
1449 if (k == 0)
1450 id = n | 1; // resize below
1451 w.phase = w.config = id | modebits; // now publishable
1452
1453 if (id < n)
1454 qs[id] = w;
1455 else { // expand array
1456 int an = n << 1, am = an - 1;
1457 WorkQueue[] as = new WorkQueue[an];
1458 as[id & am] = w;
1459 for (int j = 1; j < n; j += 2)
1460 as[j] = qs[j];
1461 for (int j = 0; j < n; j += 2) {
1462 WorkQueue q;
1463 if ((q = qs[j]) != null) // shared queues may move
1464 as[q.config & am] = q;
1465 }
1466 VarHandle.releaseFence(); // fill before publish
1467 queues = as;
1468 }
1469 }
1470 } finally {
1471 lock.unlock();
1472 }
1473 }
1474 }
1475
1476 /**
1477 * Final callback from terminating worker, as well as upon failure
1478 * to construct or start a worker. Removes record of worker from
1479 * array, and adjusts counts. If pool is shutting down, tries to
1480 * complete termination.
1481 *
1482 * @param wt the worker thread, or null if construction failed
1483 * @param ex the exception causing failure, or null if none
1484 */
1485 final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1486 ReentrantLock lock = registrationLock;
1487 WorkQueue w = null;
1488 int cfg = 0;
1489 if (wt != null && (w = wt.workQueue) != null && lock != null) {
1490 WorkQueue[] qs; int n, i;
1491 cfg = w.config;
1492 long ns = w.nsteals & 0xffffffffL;
1493 lock.lock(); // remove index from array
1494 if ((qs = queues) != null && (n = qs.length) > 0 &&
1495 qs[i = cfg & (n - 1)] == w)
1496 qs[i] = null;
1497 stealCount += ns; // accumulate steals
1498 lock.unlock();
1499 long c = ctl;
1500 if (w.phase != QUIET) // decrement counts
1501 do {} while (c != (c = compareAndExchangeCtl(
1502 c, ((RC_MASK & (c - RC_UNIT)) |
1503 (TC_MASK & (c - TC_UNIT)) |
1504 (SP_MASK & c)))));
1505 else if ((int)c == 0) // was dropped on timeout
1506 cfg = 0; // suppress signal if last
1507 for (ForkJoinTask<?> t; (t = w.pop()) != null; )
1508 ForkJoinTask.cancelIgnoringExceptions(t); // cancel tasks
1509 }
1510
1511 if (!tryTerminate(false, false) && w != null && (cfg & SRC) != 0)
1512 signalWork(); // possibly replace worker
1513 if (ex != null)
1514 ForkJoinTask.rethrow(ex);
1515 }
1516
1517 /*
1518 * Tries to create or release a worker if too few are running.
1519 */
1520 final void signalWork() {
1521 for (long c = ctl; c < 0L;) {
1522 int sp, i; WorkQueue[] qs; WorkQueue v;
1523 if ((sp = (int)c & ~UNSIGNALLED) == 0) { // no idle workers
1524 if ((c & ADD_WORKER) == 0L) // enough total workers
1525 break;
1526 if (c == (c = compareAndExchangeCtl(
1527 c, ((RC_MASK & (c + RC_UNIT)) |
1528 (TC_MASK & (c + TC_UNIT)))))) {
1529 createWorker();
1530 break;
1531 }
1532 }
1533 else if ((qs = queues) == null)
1534 break; // unstarted/terminated
1535 else if (qs.length <= (i = sp & SMASK))
1536 break; // terminated
1537 else if ((v = qs[i]) == null)
1538 break; // terminating
1539 else {
1540 long nc = (v.stackPred & SP_MASK) | (UC_MASK & (c + RC_UNIT));
1541 Thread vt = v.owner;
1542 if (c == (c = compareAndExchangeCtl(c, nc))) {
1543 v.phase = sp;
1544 LockSupport.unpark(vt); // release idle worker
1545 break;
1546 }
1547 }
1548 }
1549 }
1550
1551 /**
1552 * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1553 * See above for explanation.
1554 *
1555 * @param w caller's WorkQueue (may be null on failed initialization)
1556 */
1557 final void runWorker(WorkQueue w) {
1558 if (w != null) { // skip on failed init
1559 w.config |= SRC; // mark as valid source
1560 int r = w.stackPred, src = 0; // use seed from registerWorker
1561 do {
1562 r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
1563 } while ((src = scan(w, src, r)) >= 0 ||
1564 (src = awaitWork(w)) == 0);
1565 }
1566 }
1567
1568 /**
1569 * Scans for and if found executes top-level tasks: Tries to poll
1570 * each queue starting at a random index with random stride,
1571 * returning source id or retry indicator if contended or
1572 * inconsistent.
1573 *
1574 * @param w caller's WorkQueue
1575 * @param prevSrc the previous queue stolen from in current phase, or 0
1576 * @param r random seed
1577 * @return id of queue if taken, negative if none found, prevSrc for retry
1578 */
1579 private int scan(WorkQueue w, int prevSrc, int r) {
1580 WorkQueue[] qs = queues;
1581 int n = (w == null || qs == null) ? 0 : qs.length;
1582 for (int step = (r >>> 16) | 1, i = n; i > 0; --i, r += step) {
1583 int j, cap, b; WorkQueue q; ForkJoinTask<?>[] a;
1584 if ((q = qs[j = r & (n - 1)]) != null && // poll at qs[j].array[k]
1585 (a = q.array) != null && (cap = a.length) > 0) {
1586 int k = (cap - 1) & (b = q.base), nextBase = b + 1;
1587 int nextIndex = (cap - 1) & nextBase, src = j | SRC;
1588 ForkJoinTask<?> t = WorkQueue.getSlot(a, k);
1589 if (q.base != b) // inconsistent
1590 return prevSrc;
1591 else if (t != null && WorkQueue.casSlotToNull(a, k, t)) {
1592 q.base = nextBase;
1593 ForkJoinTask<?> next = a[nextIndex];
1594 if ((w.source = src) != prevSrc && next != null)
1595 signalWork(); // propagate
1596 w.topLevelExec(t, q);
1597 return src;
1598 }
1599 else if (a[nextIndex] != null) // revisit
1600 return prevSrc;
1601 }
1602 }
1603 return (queues != qs) ? prevSrc: -1; // possibly resized
1604 }
1605
1606 /**
1607 * Advances worker phase, pushes onto ctl stack, and awaits signal
1608 * or reports termination.
1609 *
1610 * @return negative if terminated, else 0
1611 */
1612 private int awaitWork(WorkQueue w) {
1613 if (w == null)
1614 return -1; // already terminated
1615 int phase = (w.phase + SS_SEQ) & ~UNSIGNALLED;
1616 w.phase = phase | UNSIGNALLED; // advance phase
1617 long prevCtl = ctl, c; // enqueue
1618 do {
1619 w.stackPred = (int)prevCtl;
1620 c = ((prevCtl - RC_UNIT) & UC_MASK) | (phase & SP_MASK);
1621 } while (prevCtl != (prevCtl = compareAndExchangeCtl(prevCtl, c)));
1622
1623 Thread.interrupted(); // clear status
1624 LockSupport.setCurrentBlocker(this); // prepare to block (exit also OK)
1625 long deadline = 0L; // nonzero if possibly quiescent
1626 int ac = (int)(c >> RC_SHIFT), md;
1627 if ((md = mode) < 0) // pool is terminating
1628 return -1;
1629 else if ((md & SMASK) + ac <= 0) {
1630 boolean checkTermination = (md & SHUTDOWN) != 0;
1631 if ((deadline = System.currentTimeMillis() + keepAlive) == 0L)
1632 deadline = 1L; // avoid zero
1633 WorkQueue[] qs = queues; // check for racing submission
1634 int n = (qs == null) ? 0 : qs.length;
1635 for (int i = 0; i < n; i += 2) {
1636 WorkQueue q; ForkJoinTask<?>[] a; int cap, b;
1637 if (ctl != c) { // already signalled
1638 checkTermination = false;
1639 break;
1640 }
1641 else if ((q = qs[i]) != null &&
1642 (a = q.array) != null && (cap = a.length) > 0 &&
1643 ((b = q.base) != q.top || a[(cap - 1) & b] != null ||
1644 q.source != 0)) {
1645 if (compareAndSetCtl(c, prevCtl))
1646 w.phase = phase; // self-signal
1647 checkTermination = false;
1648 break;
1649 }
1650 }
1651 if (checkTermination && tryTerminate(false, false))
1652 return -1; // trigger quiescent termination
1653 }
1654
1655 for (boolean alt = false;;) { // await activation or termination
1656 if (w.phase >= 0)
1657 break;
1658 else if (mode < 0)
1659 return -1;
1660 else if ((int)(ctl >> RC_SHIFT) > ac)
1661 Thread.onSpinWait(); // signal in progress
1662 else if (!(alt = !alt)) { // check between park calls
1663 if (!Thread.interrupted() && deadline != 0L &&
1664 deadline - System.currentTimeMillis() <= TIMEOUT_SLOP &&
1665 compareAndSetCtl(c, ((UC_MASK & (c - TC_UNIT)) |
1666 (w.stackPred & SP_MASK)))) {
1667 w.phase = QUIET;
1668 return -1; // drop on timeout
1669 }
1670 }
1671 else if (deadline != 0L)
1672 LockSupport.parkUntil(deadline);
1673 else
1674 LockSupport.park();
1675 }
1676 LockSupport.setCurrentBlocker(null);
1677 return 0;
1678 }
1679
1680 // Utilities used by ForkJoinTask
1681
1682 /**
1683 * Returns true if all workers are busy
1684 */
1685 final boolean isSaturated() {
1686 long c;
1687 return (int)((c = ctl) >> RC_SHIFT) >= 0 && ((int)c & ~UNSIGNALLED) == 0;
1688 }
1689
1690 /**
1691 * Returns true if can start terminating if enabled, or already terminated
1692 */
1693 final boolean canStop() {
1694 outer: for (long oldSum = 0L;;) { // repeat until stable
1695 int md; WorkQueue[] qs; long c;
1696 if ((qs = queues) == null || ((md = mode) & STOP) != 0)
1697 return true;
1698 if ((md & SMASK) + (int)((c = ctl) >> RC_SHIFT) > 0)
1699 break;
1700 long checkSum = c;
1701 for (int i = 1; i < qs.length; i += 2) { // scan submitters
1702 WorkQueue q; ForkJoinTask<?>[] a; int s = 0, cap;
1703 if ((q = qs[i]) != null && (a = q.array) != null &&
1704 (cap = a.length) > 0 &&
1705 ((s = q.top) != q.base || a[(cap - 1) & s] != null ||
1706 q.source != 0))
1707 break outer;
1708 checkSum += (((long)i) << 32) ^ s;
1709 }
1710 if (oldSum == (oldSum = checkSum) && queues == qs)
1711 return true;
1712 }
1713 return (mode & STOP) != 0; // recheck mode on false return
1714 }
1715
1716 /**
1717 * Tries to decrement counts (sometimes implicitly) and possibly
1718 * arrange for a compensating worker in preparation for
1719 * blocking. May fail due to interference, in which case -1 is
1720 * returned so caller may retry. A zero return value indicates
1721 * that the caller doesn't need to re-adjust counts when later
1722 * unblocked.
1723 *
1724 * @param c incoming ctl value
1725 * @return UNCOMPENSATE: block then adjust, 0: block, -1 : retry
1726 */
1727 private int tryCompensate(long c) {
1728 Predicate<? super ForkJoinPool> sat;
1729 int b = bounds; // counts are signed; centered at parallelism level == 0
1730 int minActive = (short)(b & SMASK),
1731 maxTotal = b >>> SWIDTH,
1732 active = (int)(c >> RC_SHIFT),
1733 total = (short)(c >>> TC_SHIFT),
1734 sp = (int)c & ~UNSIGNALLED;
1735 if (total >= 0) {
1736 if (sp != 0) { // activate idle worker
1737 WorkQueue[] qs; int n; WorkQueue v;
1738 if ((qs = queues) != null && (n = qs.length) > 0 &&
1739 (v = qs[sp & (n - 1)]) != null) {
1740 Thread vt = v.owner;
1741 long nc = ((long)v.stackPred & SP_MASK) | (UC_MASK & c);
1742 if (compareAndSetCtl(c, nc)) {
1743 v.phase = sp;
1744 LockSupport.unpark(vt);
1745 return UNCOMPENSATE;
1746 }
1747 }
1748 return -1; // retry
1749 }
1750 else if (active > minActive) { // reduce parallelism
1751 long nc = ((RC_MASK & (c - RC_UNIT)) | (~RC_MASK & c));
1752 return compareAndSetCtl(c, nc) ? UNCOMPENSATE : -1;
1753 }
1754 }
1755 if (total < maxTotal) { // expand pool
1756 long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1757 return (!compareAndSetCtl(c, nc) ? -1 :
1758 !createWorker() ? 0 : UNCOMPENSATE);
1759 }
1760 else if (!compareAndSetCtl(c, c)) // validate
1761 return -1;
1762 else if ((sat = saturate) != null && sat.test(this))
1763 return 0;
1764 else
1765 throw new RejectedExecutionException(
1766 "Thread limit exceeded replacing blocked worker");
1767 }
1768
1769 /**
1770 * Readjusts RC count; called from ForkJoinTask after blocking.
1771 */
1772 final void uncompensate() {
1773 getAndAddCtl(RC_UNIT);
1774 }
1775
1776 /**
1777 * Helps if possible until the given task is done. Scans other
1778 * queues for a task produced by one of w's stealers; returning
1779 * compensated blocking sentinel if none are found.
1780 *
1781 * @param task the task
1782 * @param w caller's WorkQueue
1783 * @return task status on exit, or UNCOMPENSATE for compensated blocking
1784 */
1785 final int helpJoin(ForkJoinTask<?> task, WorkQueue w) {
1786 int s = 0;
1787 if (task != null && w != null) {
1788 int wsrc = w.source, wid = w.config & SMASK, r = wid + 2;
1789 boolean scan = true;
1790 long c = 0L; // track ctl stability
1791 outer: for (;;) {
1792 if ((s = task.status) < 0)
1793 break;
1794 else if (scan = !scan) { // previous scan was empty
1795 if (mode < 0)
1796 ForkJoinTask.cancelIgnoringExceptions(task);
1797 else if (c == (c = ctl) && (s = tryCompensate(c)) >= 0)
1798 break; // block
1799 }
1800 else { // scan for subtasks
1801 WorkQueue[] qs = queues;
1802 int n = (qs == null) ? 0 : qs.length, m = n - 1;
1803 for (int i = n; i > 0; i -= 2, r += 2) {
1804 int j; WorkQueue q, x, y; ForkJoinTask<?>[] a;
1805 if ((q = qs[j = r & m]) != null) {
1806 int sq = q.source & SMASK, cap, b;
1807 if ((a = q.array) != null && (cap = a.length) > 0) {
1808 int k = (cap - 1) & (b = q.base);
1809 int nextBase = b + 1, src = j | SRC, sx;
1810 ForkJoinTask<?> t = WorkQueue.getSlot(a, k);
1811 boolean eligible = sq == wid ||
1812 ((x = qs[sq & m]) != null && // indirect
1813 ((sx = (x.source & SMASK)) == wid ||
1814 ((y = qs[sx & m]) != null && // 2-indirect
1815 (y.source & SMASK) == wid)));
1816 if ((s = task.status) < 0)
1817 break outer;
1818 else if ((q.source & SMASK) != sq ||
1819 q.base != b)
1820 scan = true; // inconsistent
1821 else if (t == null)
1822 scan |= (a[nextBase & (cap - 1)] != null ||
1823 q.top != b); // lagging
1824 else if (eligible) {
1825 if (WorkQueue.casSlotToNull(a, k, t)) {
1826 q.base = nextBase;
1827 w.source = src;
1828 t.doExec();
1829 w.source = wsrc;
1830 }
1831 scan = true;
1832 break;
1833 }
1834 }
1835 }
1836 }
1837 }
1838 }
1839 }
1840 return s;
1841 }
1842
1843 /**
1844 * Extra helpJoin steps for CountedCompleters. Scans for and runs
1845 * subtasks of the given root task, returning if none are found.
1846 *
1847 * @param task root of CountedCompleter computation
1848 * @param w caller's WorkQueue
1849 * @param owned true if owned by a ForkJoinWorkerThread
1850 * @return task status on exit
1851 */
1852 final int helpComplete(ForkJoinTask<?> task, WorkQueue w, boolean owned) {
1853 int s = 0;
1854 if (task != null && w != null) {
1855 int r = w.config;
1856 boolean scan = true, locals = true;
1857 long c = 0L;
1858 outer: for (;;) {
1859 if (locals) { // try locals before scanning
1860 if ((s = w.helpComplete(task, owned, 0)) < 0)
1861 break;
1862 locals = false;
1863 }
1864 else if ((s = task.status) < 0)
1865 break;
1866 else if (scan = !scan) {
1867 if (c == (c = ctl))
1868 break;
1869 }
1870 else { // scan for subtasks
1871 WorkQueue[] qs = queues;
1872 int n = (qs == null) ? 0 : qs.length;
1873 for (int i = n; i > 0; --i, ++r) {
1874 int j, cap, b; WorkQueue q; ForkJoinTask<?>[] a;
1875 boolean eligible = false;
1876 if ((q = qs[j = r & (n - 1)]) != null &&
1877 (a = q.array) != null && (cap = a.length) > 0) {
1878 int k = (cap - 1) & (b = q.base), nextBase = b + 1;
1879 ForkJoinTask<?> t = WorkQueue.getSlot(a, k);
1880 if (t instanceof CountedCompleter) {
1881 CountedCompleter<?> f = (CountedCompleter<?>)t;
1882 do {} while (!(eligible = (f == task)) &&
1883 (f = f.completer) != null);
1884 }
1885 if ((s = task.status) < 0)
1886 break outer;
1887 else if (q.base != b)
1888 scan = true; // inconsistent
1889 else if (t == null)
1890 scan |= (a[nextBase & (cap - 1)] != null ||
1891 q.top != b);
1892 else if (eligible) {
1893 if (WorkQueue.casSlotToNull(a, k, t)) {
1894 q.setBaseOpaque(nextBase);
1895 t.doExec();
1896 locals = true;
1897 }
1898 scan = true;
1899 break;
1900 }
1901 }
1902 }
1903 }
1904 }
1905 }
1906 return s;
1907 }
1908
1909 /**
1910 * Scans for and returns a polled task, if available. Used only
1911 * for untracked polls. Begins scan at an index (scanRover)
1912 * advanced on each call, to avoid systematic unfairness.
1913 *
1914 * @param submissionsOnly if true, only scan submission queues
1915 */
1916 private ForkJoinTask<?> pollScan(boolean submissionsOnly) {
1917 VarHandle.acquireFence();
1918 int r = scanRover += 0x61c88647; // Weyl increment; raciness OK
1919 if (submissionsOnly) // even indices only
1920 r &= ~1;
1921 int step = (submissionsOnly) ? 2 : 1;
1922 WorkQueue[] qs; int n;
1923 while ((qs = queues) != null && (n = qs.length) > 0) {
1924 boolean scan = false;
1925 for (int i = 0; i < n; i += step) {
1926 int j, cap, b; WorkQueue q; ForkJoinTask<?>[] a;
1927 if ((q = qs[j = (n - 1) & (r + i)]) != null &&
1928 (a = q.array) != null && (cap = a.length) > 0) {
1929 int k = (cap - 1) & (b = q.base), nextBase = b + 1;
1930 ForkJoinTask<?> t = WorkQueue.getSlot(a, k);
1931 if (q.base != b)
1932 scan = true;
1933 else if (t == null)
1934 scan |= (q.top != b || a[nextBase & (cap - 1)] != null);
1935 else if (!WorkQueue.casSlotToNull(a, k, t))
1936 scan = true;
1937 else {
1938 q.setBaseOpaque(nextBase);
1939 return t;
1940 }
1941 }
1942 }
1943 if (!scan && queues == qs)
1944 break;
1945 }
1946 return null;
1947 }
1948
1949 /**
1950 * Runs tasks until {@code isQuiescent()}. Rather than blocking
1951 * when tasks cannot be found, rescans until all others cannot
1952 * find tasks either.
1953 *
1954 * @param nanos max wait time (Long.MAX_VALUE if effectively untimed)
1955 * @param interruptible true if return on interrupt
1956 * @return positive if quiescent, negative if interrupted, else 0
1957 */
1958 final int helpQuiescePool(WorkQueue w, long nanos, boolean interruptible) {
1959 if (w == null)
1960 return 0;
1961 long startTime = System.nanoTime(), parkTime = 0L;
1962 int prevSrc = w.source, wsrc = prevSrc, cfg = w.config, r = cfg + 1;
1963 for (boolean active = true, locals = true;;) {
1964 boolean busy = false, scan = false;
1965 if (locals) { // run local tasks before (re)polling
1966 locals = false;
1967 for (ForkJoinTask<?> u; (u = w.nextLocalTask(cfg)) != null;)
1968 u.doExec();
1969 }
1970 WorkQueue[] qs = queues;
1971 int n = (qs == null) ? 0 : qs.length;
1972 for (int i = n; i > 0; --i, ++r) {
1973 int j, b, cap; WorkQueue q; ForkJoinTask<?>[] a;
1974 if ((q = qs[j = (n - 1) & r]) != null && q != w &&
1975 (a = q.array) != null && (cap = a.length) > 0) {
1976 int k = (cap - 1) & (b = q.base);
1977 int nextBase = b + 1, src = j | SRC;
1978 ForkJoinTask<?> t = WorkQueue.getSlot(a, k);
1979 if (q.base != b)
1980 busy = scan = true;
1981 else if (t != null) {
1982 busy = scan = true;
1983 if (!active) { // increment before taking
1984 active = true;
1985 getAndAddCtl(RC_UNIT);
1986 }
1987 if (WorkQueue.casSlotToNull(a, k, t)) {
1988 q.base = nextBase;
1989 w.source = src;
1990 t.doExec();
1991 w.source = wsrc = prevSrc;
1992 locals = true;
1993 }
1994 break;
1995 }
1996 else if (!busy) {
1997 if (q.top != b || a[nextBase & (cap - 1)] != null)
1998 busy = scan = true;
1999 else if (q.source != QUIET && q.phase >= 0)
2000 busy = true;
2001 }
2002 }
2003 }
2004 VarHandle.acquireFence();
2005 if (!scan && queues == qs) {
2006 boolean interrupted;
2007 if (!busy) {
2008 w.source = prevSrc;
2009 if (!active)
2010 getAndAddCtl(RC_UNIT);
2011 return 1;
2012 }
2013 if (wsrc != QUIET)
2014 w.source = wsrc = QUIET;
2015 if (active) { // decrement
2016 active = false;
2017 parkTime = 0L;
2018 getAndAddCtl(RC_MASK & -RC_UNIT);
2019 }
2020 else if (parkTime == 0L) {
2021 parkTime = 1L << 10; // initially about 1 usec
2022 Thread.yield();
2023 }
2024 else if ((interrupted = interruptible && Thread.interrupted()) ||
2025 System.nanoTime() - startTime > nanos) {
2026 getAndAddCtl(RC_UNIT);
2027 return interrupted ? -1 : 0;
2028 }
2029 else {
2030 LockSupport.parkNanos(this, parkTime);
2031 if (parkTime < nanos >>> 8 && parkTime < 1L << 20)
2032 parkTime <<= 1; // max sleep approx 1 sec or 1% nanos
2033 }
2034 }
2035 }
2036 }
2037
2038 /**
2039 * Helps quiesce from external caller until done, interrupted, or timeout
2040 *
2041 * @param nanos max wait time (Long.MAX_VALUE if effectively untimed)
2042 * @param interruptible true if return on interrupt
2043 * @return positive if quiescent, negative if interrupted, else 0
2044 */
2045 final int externalHelpQuiescePool(long nanos, boolean interruptible) {
2046 for (long startTime = System.nanoTime(), parkTime = 0L;;) {
2047 ForkJoinTask<?> t;
2048 if ((t = pollScan(false)) != null) {
2049 t.doExec();
2050 parkTime = 0L;
2051 }
2052 else if (canStop())
2053 return 1;
2054 else if (parkTime == 0L) {
2055 parkTime = 1L << 10;
2056 Thread.yield();
2057 }
2058 else if ((System.nanoTime() - startTime) > nanos)
2059 return 0;
2060 else if (interruptible && Thread.interrupted())
2061 return -1;
2062 else {
2063 LockSupport.parkNanos(this, parkTime);
2064 if (parkTime < nanos >>> 8 && parkTime < 1L << 20)
2065 parkTime <<= 1;
2066 }
2067 }
2068 }
2069
2070 /**
2071 * Gets and removes a local or stolen task for the given worker.
2072 *
2073 * @return a task, if available
2074 */
2075 final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2076 ForkJoinTask<?> t;
2077 if (w == null || (t = w.nextLocalTask(w.config)) == null)
2078 t = pollScan(false);
2079 return t;
2080 }
2081
2082 // External operations
2083
2084 /**
2085 * Finds and locks a WorkQueue for an external submitter, or
2086 * returns null if shutdown or terminating.
2087 */
2088 final WorkQueue submissionQueue() {
2089 int r;
2090 if ((r = ThreadLocalRandom.getProbe()) == 0) {
2091 ThreadLocalRandom.localInit(); // initialize caller's probe
2092 r = ThreadLocalRandom.getProbe();
2093 }
2094 for (int id = r << 1;;) { // even indices only
2095 int md = mode, n, i; WorkQueue q; ReentrantLock lock;
2096 WorkQueue[] qs = queues;
2097 if ((md & SHUTDOWN) != 0 || qs == null || (n = qs.length) <= 0)
2098 return null;
2099 else if ((q = qs[i = (n - 1) & id]) == null) {
2100 if ((lock = registrationLock) != null) {
2101 WorkQueue w = new WorkQueue(id | SRC);
2102 lock.lock(); // install under lock
2103 if (qs[i] == null)
2104 qs[i] = w; // else lost race; discard
2105 lock.unlock();
2106 }
2107 }
2108 else if (!q.tryLock()) // move and restart
2109 id = (r = ThreadLocalRandom.advanceProbe(r)) << 1;
2110 else
2111 return q;
2112 }
2113 }
2114
2115 /**
2116 * Adds the given task to an external submission queue, or throws
2117 * exception if shutdown or terminating.
2118 *
2119 * @param task the task. Caller must ensure non-null.
2120 */
2121 final void externalPush(ForkJoinTask<?> task) {
2122 WorkQueue q;
2123 if ((q = submissionQueue()) == null)
2124 throw new RejectedExecutionException(); // shutdown or disabled
2125 else if (q.lockedPush(task))
2126 signalWork();
2127 }
2128
2129 /**
2130 * Pushes a possibly-external submission.
2131 */
2132 private <T> ForkJoinTask<T> externalSubmit(ForkJoinTask<T> task) {
2133 Thread t; ForkJoinWorkerThread wt; WorkQueue q;
2134 if (task == null)
2135 throw new NullPointerException();
2136 if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) &&
2137 (q = (wt = (ForkJoinWorkerThread)t).workQueue) != null &&
2138 wt.pool == this)
2139 q.push(task, this);
2140 else
2141 externalPush(task);
2142 return task;
2143 }
2144
2145 /**
2146 * Returns common pool queue for an external thread that has
2147 * possibly ever submitted a common pool task (nonzero probe), or
2148 * null if none.
2149 */
2150 static WorkQueue commonQueue() {
2151 ForkJoinPool p; WorkQueue[] qs;
2152 int r = ThreadLocalRandom.getProbe(), n;
2153 return ((p = common) != null && (qs = p.queues) != null &&
2154 (n = qs.length) > 0 && r != 0) ?
2155 qs[(n - 1) & (r << 1)] : null;
2156 }
2157
2158 /**
2159 * If the given executor is a ForkJoinPool, poll and execute
2160 * AsynchronousCompletionTasks from worker's queue until none are
2161 * available or blocker is released.
2162 */
2163 static void helpAsyncBlocker(Executor e, ManagedBlocker blocker) {
2164 WorkQueue w = null; Thread t; ForkJoinWorkerThread wt;
2165 if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) {
2166 if ((wt = (ForkJoinWorkerThread)t).pool == e)
2167 w = wt.workQueue;
2168 }
2169 else if (e == common)
2170 w = commonQueue();
2171 if (w != null)
2172 w.helpAsyncBlocker(blocker);
2173 }
2174
2175 /**
2176 * Returns a cheap heuristic guide for task partitioning when
2177 * programmers, frameworks, tools, or languages have little or no
2178 * idea about task granularity. In essence, by offering this
2179 * method, we ask users only about tradeoffs in overhead vs
2180 * expected throughput and its variance, rather than how finely to
2181 * partition tasks.
2182 *
2183 * In a steady state strict (tree-structured) computation, each
2184 * thread makes available for stealing enough tasks for other
2185 * threads to remain active. Inductively, if all threads play by
2186 * the same rules, each thread should make available only a
2187 * constant number of tasks.
2188 *
2189 * The minimum useful constant is just 1. But using a value of 1
2190 * would require immediate replenishment upon each steal to
2191 * maintain enough tasks, which is infeasible. Further,
2192 * partitionings/granularities of offered tasks should minimize
2193 * steal rates, which in general means that threads nearer the top
2194 * of computation tree should generate more than those nearer the
2195 * bottom. In perfect steady state, each thread is at
2196 * approximately the same level of computation tree. However,
2197 * producing extra tasks amortizes the uncertainty of progress and
2198 * diffusion assumptions.
2199 *
2200 * So, users will want to use values larger (but not much larger)
2201 * than 1 to both smooth over transient shortages and hedge
2202 * against uneven progress; as traded off against the cost of
2203 * extra task overhead. We leave the user to pick a threshold
2204 * value to compare with the results of this call to guide
2205 * decisions, but recommend values such as 3.
2206 *
2207 * When all threads are active, it is on average OK to estimate
2208 * surplus strictly locally. In steady-state, if one thread is
2209 * maintaining say 2 surplus tasks, then so are others. So we can
2210 * just use estimated queue length. However, this strategy alone
2211 * leads to serious mis-estimates in some non-steady-state
2212 * conditions (ramp-up, ramp-down, other stalls). We can detect
2213 * many of these by further considering the number of "idle"
2214 * threads, that are known to have zero queued tasks, so
2215 * compensate by a factor of (#idle/#active) threads.
2216 */
2217 static int getSurplusQueuedTaskCount() {
2218 Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2219 if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) &&
2220 (pool = (wt = (ForkJoinWorkerThread)t).pool) != null &&
2221 (q = wt.workQueue) != null) {
2222 int p = pool.mode & SMASK;
2223 int a = p + (int)(pool.ctl >> RC_SHIFT);
2224 int n = q.top - q.base;
2225 return n - (a > (p >>>= 1) ? 0 :
2226 a > (p >>>= 1) ? 1 :
2227 a > (p >>>= 1) ? 2 :
2228 a > (p >>>= 1) ? 4 :
2229 8);
2230 }
2231 return 0;
2232 }
2233
2234 // Termination
2235
2236 /**
2237 * Possibly initiates and/or completes termination.
2238 *
2239 * @param now if true, unconditionally terminate, else only
2240 * if no work and no active workers
2241 * @param enable if true, terminate when next possible
2242 * @return true if terminating or terminated
2243 */
2244 private boolean tryTerminate(boolean now, boolean enable) {
2245 int md; // try to set SHUTDOWN, then STOP, then help terminate
2246 if (((md = mode) & SHUTDOWN) == 0) {
2247 if (!enable)
2248 return false;
2249 md = getAndBitwiseOrMode(SHUTDOWN);
2250 }
2251 if ((md & STOP) == 0) {
2252 if (!now && !canStop())
2253 return false;
2254 md = getAndBitwiseOrMode(STOP);
2255 }
2256 if ((md & TERMINATED) == 0) {
2257 for (ForkJoinTask<?> t; (t = pollScan(false)) != null; )
2258 ForkJoinTask.cancelIgnoringExceptions(t); // help cancel tasks
2259
2260 WorkQueue[] qs; int n; WorkQueue q; Thread thread;
2261 if ((qs = queues) != null && (n = qs.length) > 0) {
2262 for (int j = 1; j < n; j += 2) { // unblock other workers
2263 if ((q = qs[j]) != null && (thread = q.owner) != null &&
2264 !thread.isInterrupted()) {
2265 try {
2266 thread.interrupt();
2267 } catch (Throwable ignore) {
2268 }
2269 }
2270 }
2271 }
2272
2273 ReentrantLock lock; Condition cond; // signal when no workers
2274 if ((md & SMASK) + (short)(ctl >>> TC_SHIFT) <= 0 &&
2275 (getAndBitwiseOrMode(TERMINATED) & TERMINATED) == 0 &&
2276 (lock = registrationLock) != null) {
2277 lock.lock();
2278 if ((cond = termination) != null)
2279 cond.signalAll();
2280 lock.unlock();
2281 }
2282 }
2283 return true;
2284 }
2285
2286 // Exported methods
2287
2288 // Constructors
2289
2290 /**
2291 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2292 * java.lang.Runtime#availableProcessors}, using defaults for all
2293 * other parameters (see {@link #ForkJoinPool(int,
2294 * ForkJoinWorkerThreadFactory, UncaughtExceptionHandler, boolean,
2295 * int, int, int, Predicate, long, TimeUnit)}).
2296 *
2297 * @throws SecurityException if a security manager exists and
2298 * the caller is not permitted to modify threads
2299 * because it does not hold {@link
2300 * java.lang.RuntimePermission}{@code ("modifyThread")}
2301 */
2302 public ForkJoinPool() {
2303 this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2304 defaultForkJoinWorkerThreadFactory, null, false,
2305 0, MAX_CAP, 1, null, DEFAULT_KEEPALIVE, TimeUnit.MILLISECONDS);
2306 }
2307
2308 /**
2309 * Creates a {@code ForkJoinPool} with the indicated parallelism
2310 * level, using defaults for all other parameters (see {@link
2311 * #ForkJoinPool(int, ForkJoinWorkerThreadFactory,
2312 * UncaughtExceptionHandler, boolean, int, int, int, Predicate,
2313 * long, TimeUnit)}).
2314 *
2315 * @param parallelism the parallelism level
2316 * @throws IllegalArgumentException if parallelism less than or
2317 * equal to zero, or greater than implementation limit
2318 * @throws SecurityException if a security manager exists and
2319 * the caller is not permitted to modify threads
2320 * because it does not hold {@link
2321 * java.lang.RuntimePermission}{@code ("modifyThread")}
2322 */
2323 public ForkJoinPool(int parallelism) {
2324 this(parallelism, defaultForkJoinWorkerThreadFactory, null, false,
2325 0, MAX_CAP, 1, null, DEFAULT_KEEPALIVE, TimeUnit.MILLISECONDS);
2326 }
2327
2328 /**
2329 * Creates a {@code ForkJoinPool} with the given parameters (using
2330 * defaults for others -- see {@link #ForkJoinPool(int,
2331 * ForkJoinWorkerThreadFactory, UncaughtExceptionHandler, boolean,
2332 * int, int, int, Predicate, long, TimeUnit)}).
2333 *
2334 * @param parallelism the parallelism level. For default value,
2335 * use {@link java.lang.Runtime#availableProcessors}.
2336 * @param factory the factory for creating new threads. For default value,
2337 * use {@link #defaultForkJoinWorkerThreadFactory}.
2338 * @param handler the handler for internal worker threads that
2339 * terminate due to unrecoverable errors encountered while executing
2340 * tasks. For default value, use {@code null}.
2341 * @param asyncMode if true,
2342 * establishes local first-in-first-out scheduling mode for forked
2343 * tasks that are never joined. This mode may be more appropriate
2344 * than default locally stack-based mode in applications in which
2345 * worker threads only process event-style asynchronous tasks.
2346 * For default value, use {@code false}.
2347 * @throws IllegalArgumentException if parallelism less than or
2348 * equal to zero, or greater than implementation limit
2349 * @throws NullPointerException if the factory is null
2350 * @throws SecurityException if a security manager exists and
2351 * the caller is not permitted to modify threads
2352 * because it does not hold {@link
2353 * java.lang.RuntimePermission}{@code ("modifyThread")}
2354 */
2355 public ForkJoinPool(int parallelism,
2356 ForkJoinWorkerThreadFactory factory,
2357 UncaughtExceptionHandler handler,
2358 boolean asyncMode) {
2359 this(parallelism, factory, handler, asyncMode,
2360 0, MAX_CAP, 1, null, DEFAULT_KEEPALIVE, TimeUnit.MILLISECONDS);
2361 }
2362
2363 /**
2364 * Creates a {@code ForkJoinPool} with the given parameters.
2365 *
2366 * @param parallelism the parallelism level. For default value,
2367 * use {@link java.lang.Runtime#availableProcessors}.
2368 *
2369 * @param factory the factory for creating new threads. For
2370 * default value, use {@link #defaultForkJoinWorkerThreadFactory}.
2371 *
2372 * @param handler the handler for internal worker threads that
2373 * terminate due to unrecoverable errors encountered while
2374 * executing tasks. For default value, use {@code null}.
2375 *
2376 * @param asyncMode if true, establishes local first-in-first-out
2377 * scheduling mode for forked tasks that are never joined. This
2378 * mode may be more appropriate than default locally stack-based
2379 * mode in applications in which worker threads only process
2380 * event-style asynchronous tasks. For default value, use {@code
2381 * false}.
2382 *
2383 * @param corePoolSize the number of threads to keep in the pool
2384 * (unless timed out after an elapsed keep-alive). Normally (and
2385 * by default) this is the same value as the parallelism level,
2386 * but may be set to a larger value to reduce dynamic overhead if
2387 * tasks regularly block. Using a smaller value (for example
2388 * {@code 0}) has the same effect as the default.
2389 *
2390 * @param maximumPoolSize the maximum number of threads allowed.
2391 * When the maximum is reached, attempts to replace blocked
2392 * threads fail. (However, because creation and termination of
2393 * different threads may overlap, and may be managed by the given
2394 * thread factory, this value may be transiently exceeded.) To
2395 * arrange the same value as is used by default for the common
2396 * pool, use {@code 256} plus the {@code parallelism} level. (By
2397 * default, the common pool allows a maximum of 256 spare
2398 * threads.) Using a value (for example {@code
2399 * Integer.MAX_VALUE}) larger than the implementation's total
2400 * thread limit has the same effect as using this limit (which is
2401 * the default).
2402 *
2403 * @param minimumRunnable the minimum allowed number of core
2404 * threads not blocked by a join or {@link ManagedBlocker}. To
2405 * ensure progress, when too few unblocked threads exist and
2406 * unexecuted tasks may exist, new threads are constructed, up to
2407 * the given maximumPoolSize. For the default value, use {@code
2408 * 1}, that ensures liveness. A larger value might improve
2409 * throughput in the presence of blocked activities, but might
2410 * not, due to increased overhead. A value of zero may be
2411 * acceptable when submitted tasks cannot have dependencies
2412 * requiring additional threads.
2413 *
2414 * @param saturate if non-null, a predicate invoked upon attempts
2415 * to create more than the maximum total allowed threads. By
2416 * default, when a thread is about to block on a join or {@link
2417 * ManagedBlocker}, but cannot be replaced because the
2418 * maximumPoolSize would be exceeded, a {@link
2419 * RejectedExecutionException} is thrown. But if this predicate
2420 * returns {@code true}, then no exception is thrown, so the pool
2421 * continues to operate with fewer than the target number of
2422 * runnable threads, which might not ensure progress.
2423 *
2424 * @param keepAliveTime the elapsed time since last use before
2425 * a thread is terminated (and then later replaced if needed).
2426 * For the default value, use {@code 60, TimeUnit.SECONDS}.
2427 *
2428 * @param unit the time unit for the {@code keepAliveTime} argument
2429 *
2430 * @throws IllegalArgumentException if parallelism is less than or
2431 * equal to zero, or is greater than implementation limit,
2432 * or if maximumPoolSize is less than parallelism,
2433 * of if the keepAliveTime is less than or equal to zero.
2434 * @throws NullPointerException if the factory is null
2435 * @throws SecurityException if a security manager exists and
2436 * the caller is not permitted to modify threads
2437 * because it does not hold {@link
2438 * java.lang.RuntimePermission}{@code ("modifyThread")}
2439 * @since 9
2440 */
2441 public ForkJoinPool(int parallelism,
2442 ForkJoinWorkerThreadFactory factory,
2443 UncaughtExceptionHandler handler,
2444 boolean asyncMode,
2445 int corePoolSize,
2446 int maximumPoolSize,
2447 int minimumRunnable,
2448 Predicate<? super ForkJoinPool> saturate,
2449 long keepAliveTime,
2450 TimeUnit unit) {
2451 checkPermission();
2452 int p = parallelism;
2453 if (p <= 0 || p > MAX_CAP || p > maximumPoolSize || keepAliveTime <= 0L)
2454 throw new IllegalArgumentException();
2455 if (factory == null || unit == null)
2456 throw new NullPointerException();
2457 this.factory = factory;
2458 this.ueh = handler;
2459 this.saturate = saturate;
2460 this.keepAlive = Math.max(unit.toMillis(keepAliveTime), TIMEOUT_SLOP);
2461 int size = 1 << (33 - Integer.numberOfLeadingZeros(p - 1));
2462 int corep = Math.min(Math.max(corePoolSize, p), MAX_CAP);
2463 int maxSpares = Math.min(maximumPoolSize, MAX_CAP) - p;
2464 int minAvail = Math.min(Math.max(minimumRunnable, 0), MAX_CAP);
2465 this.bounds = ((minAvail - p) & SMASK) | (maxSpares << SWIDTH);
2466 this.mode = p | (asyncMode ? FIFO : 0);
2467 this.ctl = ((((long)(-corep) << TC_SHIFT) & TC_MASK) |
2468 (((long)(-p) << RC_SHIFT) & RC_MASK));
2469 this.registrationLock = new ReentrantLock();
2470 this.queues = new WorkQueue[size];
2471 String pid = Integer.toString(getAndAddPoolIds(1) + 1);
2472 this.workerNamePrefix = "ForkJoinPool-" + pid + "-worker-";
2473 }
2474
2475 // helper method for commonPool constructor
2476 private static Object newInstanceFromSystemProperty(String property)
2477 throws ReflectiveOperationException {
2478 String className = System.getProperty(property);
2479 return (className == null)
2480 ? null
2481 : ClassLoader.getSystemClassLoader().loadClass(className)
2482 .getConstructor().newInstance();
2483 }
2484
2485 /**
2486 * Constructor for common pool using parameters possibly
2487 * overridden by system properties
2488 */
2489 private ForkJoinPool(byte forCommonPoolOnly) {
2490 int parallelism = Runtime.getRuntime().availableProcessors() - 1;
2491 ForkJoinWorkerThreadFactory fac = null;
2492 UncaughtExceptionHandler handler = null;
2493 try { // ignore exceptions in accessing/parsing properties
2494 fac = (ForkJoinWorkerThreadFactory) newInstanceFromSystemProperty(
2495 "java.util.concurrent.ForkJoinPool.common.threadFactory");
2496 handler = (UncaughtExceptionHandler) newInstanceFromSystemProperty(
2497 "java.util.concurrent.ForkJoinPool.common.exceptionHandler");
2498 String pp = System.getProperty
2499 ("java.util.concurrent.ForkJoinPool.common.parallelism");
2500 if (pp != null)
2501 parallelism = Integer.parseInt(pp);
2502 } catch (Exception ignore) {
2503 }
2504 int p = this.mode = Math.min(Math.max(parallelism, 0), MAX_CAP);
2505 int size = 1 << (33 - Integer.numberOfLeadingZeros(p > 0 ? p - 1 : 1));
2506 this.factory = (fac != null) ? fac :
2507 (System.getSecurityManager() == null ?
2508 defaultForkJoinWorkerThreadFactory :
2509 new InnocuousForkJoinWorkerThreadFactory());
2510 this.ueh = handler;
2511 this.keepAlive = DEFAULT_KEEPALIVE;
2512 this.saturate = null;
2513 this.workerNamePrefix = null;
2514 this.bounds = ((1 - p) & SMASK) | (COMMON_MAX_SPARES << SWIDTH);
2515 this.ctl = ((((long)(-p) << TC_SHIFT) & TC_MASK) |
2516 (((long)(-p) << RC_SHIFT) & RC_MASK));
2517 this.queues = new WorkQueue[size];
2518 this.registrationLock = new ReentrantLock();
2519 }
2520
2521 /**
2522 * Returns the common pool instance. This pool is statically
2523 * constructed; its run state is unaffected by attempts to {@link
2524 * #shutdown} or {@link #shutdownNow}. However this pool and any
2525 * ongoing processing are automatically terminated upon program
2526 * {@link System#exit}. Any program that relies on asynchronous
2527 * task processing to complete before program termination should
2528 * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2529 * before exit.
2530 *
2531 * @return the common pool instance
2532 * @since 1.8
2533 */
2534 public static ForkJoinPool commonPool() {
2535 // assert common != null : "static init error";
2536 return common;
2537 }
2538
2539 // Execution methods
2540
2541 /**
2542 * Performs the given task, returning its result upon completion.
2543 * If the computation encounters an unchecked Exception or Error,
2544 * it is rethrown as the outcome of this invocation. Rethrown
2545 * exceptions behave in the same way as regular exceptions, but,
2546 * when possible, contain stack traces (as displayed for example
2547 * using {@code ex.printStackTrace()}) of both the current thread
2548 * as well as the thread actually encountering the exception;
2549 * minimally only the latter.
2550 *
2551 * @param task the task
2552 * @param <T> the type of the task's result
2553 * @return the task's result
2554 * @throws NullPointerException if the task is null
2555 * @throws RejectedExecutionException if the task cannot be
2556 * scheduled for execution
2557 */
2558 public <T> T invoke(ForkJoinTask<T> task) {
2559 externalSubmit(task);
2560 return task.join();
2561 }
2562
2563 /**
2564 * Arranges for (asynchronous) execution of the given task.
2565 *
2566 * @param task the task
2567 * @throws NullPointerException if the task is null
2568 * @throws RejectedExecutionException if the task cannot be
2569 * scheduled for execution
2570 */
2571 public void execute(ForkJoinTask<?> task) {
2572 externalSubmit(task);
2573 }
2574
2575 // AbstractExecutorService methods
2576
2577 /**
2578 * @throws NullPointerException if the task is null
2579 * @throws RejectedExecutionException if the task cannot be
2580 * scheduled for execution
2581 */
2582 @Override
2583 @SuppressWarnings("unchecked")
2584 public void execute(Runnable task) {
2585 externalSubmit((task instanceof ForkJoinTask<?>)
2586 ? (ForkJoinTask<Void>) task // avoid re-wrap
2587 : new ForkJoinTask.RunnableExecuteAction(task));
2588 }
2589
2590 /**
2591 * Submits a ForkJoinTask for execution.
2592 *
2593 * @param task the task to submit
2594 * @param <T> the type of the task's result
2595 * @return the task
2596 * @throws NullPointerException if the task is null
2597 * @throws RejectedExecutionException if the task cannot be
2598 * scheduled for execution
2599 */
2600 public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2601 return externalSubmit(task);
2602 }
2603
2604 /**
2605 * @throws NullPointerException if the task is null
2606 * @throws RejectedExecutionException if the task cannot be
2607 * scheduled for execution
2608 */
2609 @Override
2610 public <T> ForkJoinTask<T> submit(Callable<T> task) {
2611 return externalSubmit(new ForkJoinTask.AdaptedCallable<T>(task));
2612 }
2613
2614 /**
2615 * @throws NullPointerException if the task is null
2616 * @throws RejectedExecutionException if the task cannot be
2617 * scheduled for execution
2618 */
2619 @Override
2620 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2621 return externalSubmit(new ForkJoinTask.AdaptedRunnable<T>(task, result));
2622 }
2623
2624 /**
2625 * @throws NullPointerException if the task is null
2626 * @throws RejectedExecutionException if the task cannot be
2627 * scheduled for execution
2628 */
2629 @Override
2630 @SuppressWarnings("unchecked")
2631 public ForkJoinTask<?> submit(Runnable task) {
2632 return externalSubmit((task instanceof ForkJoinTask<?>)
2633 ? (ForkJoinTask<Void>) task // avoid re-wrap
2634 : new ForkJoinTask.AdaptedRunnableAction(task));
2635 }
2636
2637 /**
2638 * @throws NullPointerException {@inheritDoc}
2639 * @throws RejectedExecutionException {@inheritDoc}
2640 */
2641 @Override
2642 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2643 ArrayList<Future<T>> futures = new ArrayList<>(tasks.size());
2644 try {
2645 for (Callable<T> t : tasks) {
2646 ForkJoinTask<T> f =
2647 new ForkJoinTask.AdaptedInterruptibleCallable<T>(t);
2648 futures.add(f);
2649 externalSubmit(f);
2650 }
2651 for (int i = futures.size() - 1; i >= 0; --i)
2652 ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2653 return futures;
2654 } catch (Throwable t) {
2655 for (Future<T> e : futures)
2656 ForkJoinTask.cancelIgnoringExceptions(e);
2657 throw t;
2658 }
2659 }
2660
2661 @Override
2662 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks,
2663 long timeout, TimeUnit unit)
2664 throws InterruptedException {
2665 long nanos = unit.toNanos(timeout);
2666 ArrayList<Future<T>> futures = new ArrayList<>(tasks.size());
2667 try {
2668 for (Callable<T> t : tasks) {
2669 ForkJoinTask<T> f =
2670 new ForkJoinTask.AdaptedInterruptibleCallable<T>(t);
2671 futures.add(f);
2672 externalSubmit(f);
2673 }
2674 long startTime = System.nanoTime(), ns = nanos;
2675 boolean timedOut = (ns < 0L);
2676 for (int i = futures.size() - 1; i >= 0; --i) {
2677 Future<T> f = futures.get(i);
2678 if (!f.isDone()) {
2679 if (timedOut)
2680 ForkJoinTask.cancelIgnoringExceptions(f);
2681 else {
2682 try {
2683 f.get(ns, TimeUnit.NANOSECONDS);
2684 } catch (CancellationException | TimeoutException |
2685 ExecutionException ok) {
2686 }
2687 if ((ns = nanos - (System.nanoTime() - startTime)) < 0L)
2688 timedOut = true;
2689 }
2690 }
2691 }
2692 return futures;
2693 } catch (Throwable t) {
2694 for (Future<T> e : futures)
2695 ForkJoinTask.cancelIgnoringExceptions(e);
2696 throw t;
2697 }
2698 }
2699
2700 // Task to hold results from InvokeAnyTasks
2701 static final class InvokeAnyRoot<E> extends ForkJoinTask<E> {
2702 private static final long serialVersionUID = 2838392045355241008L;
2703 @SuppressWarnings("serial") // Conditionally serializable
2704 volatile E result;
2705 final AtomicInteger count; // in case all throw
2706 InvokeAnyRoot(int n) { count = new AtomicInteger(n); }
2707 final void tryComplete(Callable<E> c) { // called by InvokeAnyTasks
2708 if (c != null && !isDone()) { // raciness OK
2709 try {
2710 complete(c.call());
2711 } catch (Throwable ex) {
2712 if (count.getAndDecrement() <= 1)
2713 trySetThrown(ex);
2714 }
2715 }
2716 }
2717 public final boolean exec() { return false; } // never forked
2718 public final E getRawResult() { return result; }
2719 public final void setRawResult(E v) { result = v; }
2720 }
2721
2722 // Variant of AdaptedInterruptibleCallable with results in InvokeAnyRoot
2723 static final class InvokeAnyTask<E> extends ForkJoinTask<E> {
2724 private static final long serialVersionUID = 2838392045355241008L;
2725 final InvokeAnyRoot<E> root;
2726 @SuppressWarnings("serial") // Conditionally serializable
2727 final Callable<E> callable;
2728 transient volatile Thread runner;
2729 InvokeAnyTask(InvokeAnyRoot<E> root, Callable<E> callable) {
2730 this.root = root;
2731 this.callable = callable;
2732 }
2733 public final boolean exec() {
2734 Thread.interrupted();
2735 runner = Thread.currentThread();
2736 root.tryComplete(callable);
2737 runner = null;
2738 Thread.interrupted();
2739 return true;
2740 }
2741 public final boolean cancel(boolean mayInterruptIfRunning) {
2742 Thread t;
2743 boolean stat = super.cancel(false);
2744 if (mayInterruptIfRunning && (t = runner) != null) {
2745 try {
2746 t.interrupt();
2747 } catch (Throwable ignore) {
2748 }
2749 }
2750 return stat;
2751 }
2752 public final void setRawResult(E v) {} // unused
2753 public final E getRawResult() { return null; }
2754 }
2755
2756 @Override
2757 public <T> T invokeAny(Collection<? extends Callable<T>> tasks)
2758 throws InterruptedException, ExecutionException {
2759 int n = tasks.size();
2760 if (n <= 0)
2761 throw new IllegalArgumentException();
2762 InvokeAnyRoot<T> root = new InvokeAnyRoot<T>(n);
2763 ArrayList<InvokeAnyTask<T>> fs = new ArrayList<>(n);
2764 for (Callable<T> c : tasks) {
2765 if (c == null)
2766 throw new NullPointerException();
2767 InvokeAnyTask<T> f = new InvokeAnyTask<T>(root, c);
2768 fs.add(f);
2769 if (isSaturated())
2770 f.doExec();
2771 else
2772 externalSubmit(f);
2773 if (root.isDone())
2774 break;
2775 }
2776 try {
2777 return root.get();
2778 } finally {
2779 for (InvokeAnyTask<T> f : fs)
2780 ForkJoinTask.cancelIgnoringExceptions(f);
2781 }
2782 }
2783
2784 @Override
2785 public <T> T invokeAny(Collection<? extends Callable<T>> tasks,
2786 long timeout, TimeUnit unit)
2787 throws InterruptedException, ExecutionException, TimeoutException {
2788 long nanos = unit.toNanos(timeout);
2789 int n = tasks.size();
2790 if (n <= 0)
2791 throw new IllegalArgumentException();
2792 InvokeAnyRoot<T> root = new InvokeAnyRoot<T>(n);
2793 ArrayList<InvokeAnyTask<T>> fs = new ArrayList<>(n);
2794 for (Callable<T> c : tasks) {
2795 if (c == null)
2796 throw new NullPointerException();
2797 InvokeAnyTask<T> f = new InvokeAnyTask<T>(root, c);
2798 fs.add(f);
2799 if (isSaturated())
2800 f.doExec();
2801 else
2802 externalSubmit(f);
2803 if (root.isDone())
2804 break;
2805 }
2806 try {
2807 return root.get(nanos, TimeUnit.NANOSECONDS);
2808 } finally {
2809 for (InvokeAnyTask<T> f : fs)
2810 ForkJoinTask.cancelIgnoringExceptions(f);
2811 }
2812 }
2813
2814 /**
2815 * Returns the factory used for constructing new workers.
2816 *
2817 * @return the factory used for constructing new workers
2818 */
2819 public ForkJoinWorkerThreadFactory getFactory() {
2820 return factory;
2821 }
2822
2823 /**
2824 * Returns the handler for internal worker threads that terminate
2825 * due to unrecoverable errors encountered while executing tasks.
2826 *
2827 * @return the handler, or {@code null} if none
2828 */
2829 public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2830 return ueh;
2831 }
2832
2833 /**
2834 * Returns the targeted parallelism level of this pool.
2835 *
2836 * @return the targeted parallelism level of this pool
2837 */
2838 public int getParallelism() {
2839 int par = mode & SMASK;
2840 return (par > 0) ? par : 1;
2841 }
2842
2843 /**
2844 * Returns the targeted parallelism level of the common pool.
2845 *
2846 * @return the targeted parallelism level of the common pool
2847 * @since 1.8
2848 */
2849 public static int getCommonPoolParallelism() {
2850 return COMMON_PARALLELISM;
2851 }
2852
2853 /**
2854 * Returns the number of worker threads that have started but not
2855 * yet terminated. The result returned by this method may differ
2856 * from {@link #getParallelism} when threads are created to
2857 * maintain parallelism when others are cooperatively blocked.
2858 *
2859 * @return the number of worker threads
2860 */
2861 public int getPoolSize() {
2862 return ((mode & SMASK) + (short)(ctl >>> TC_SHIFT));
2863 }
2864
2865 /**
2866 * Returns {@code true} if this pool uses local first-in-first-out
2867 * scheduling mode for forked tasks that are never joined.
2868 *
2869 * @return {@code true} if this pool uses async mode
2870 */
2871 public boolean getAsyncMode() {
2872 return (mode & FIFO) != 0;
2873 }
2874
2875 /**
2876 * Returns an estimate of the number of worker threads that are
2877 * not blocked waiting to join tasks or for other managed
2878 * synchronization. This method may overestimate the
2879 * number of running threads.
2880 *
2881 * @return the number of worker threads
2882 */
2883 public int getRunningThreadCount() {
2884 VarHandle.acquireFence();
2885 WorkQueue[] qs; WorkQueue q;
2886 int rc = 0;
2887 if ((qs = queues) != null) {
2888 for (int i = 1; i < qs.length; i += 2) {
2889 if ((q = qs[i]) != null && q.isApparentlyUnblocked())
2890 ++rc;
2891 }
2892 }
2893 return rc;
2894 }
2895
2896 /**
2897 * Returns an estimate of the number of threads that are currently
2898 * stealing or executing tasks. This method may overestimate the
2899 * number of active threads.
2900 *
2901 * @return the number of active threads
2902 */
2903 public int getActiveThreadCount() {
2904 int r = (mode & SMASK) + (int)(ctl >> RC_SHIFT);
2905 return (r <= 0) ? 0 : r; // suppress momentarily negative values
2906 }
2907
2908 /**
2909 * Returns {@code true} if all worker threads are currently idle.
2910 * An idle worker is one that cannot obtain a task to execute
2911 * because none are available to steal from other threads, and
2912 * there are no pending submissions to the pool. This method is
2913 * conservative; it might not return {@code true} immediately upon
2914 * idleness of all threads, but will eventually become true if
2915 * threads remain inactive.
2916 *
2917 * @return {@code true} if all threads are currently idle
2918 */
2919 public boolean isQuiescent() {
2920 return canStop();
2921 }
2922
2923 /**
2924 * Returns an estimate of the total number of completed tasks that
2925 * were executed by a thread other than their submitter. The
2926 * reported value underestimates the actual total number of steals
2927 * when the pool is not quiescent. This value may be useful for
2928 * monitoring and tuning fork/join programs: in general, steal
2929 * counts should be high enough to keep threads busy, but low
2930 * enough to avoid overhead and contention across threads.
2931 *
2932 * @return the number of steals
2933 */
2934 public long getStealCount() {
2935 long count = stealCount;
2936 WorkQueue[] qs; WorkQueue q;
2937 if ((qs = queues) != null) {
2938 for (int i = 1; i < qs.length; i += 2) {
2939 if ((q = qs[i]) != null)
2940 count += (long)q.nsteals & 0xffffffffL;
2941 }
2942 }
2943 return count;
2944 }
2945
2946 /**
2947 * Returns an estimate of the total number of tasks currently held
2948 * in queues by worker threads (but not including tasks submitted
2949 * to the pool that have not begun executing). This value is only
2950 * an approximation, obtained by iterating across all threads in
2951 * the pool. This method may be useful for tuning task
2952 * granularities.
2953 *
2954 * @return the number of queued tasks
2955 */
2956 public long getQueuedTaskCount() {
2957 VarHandle.acquireFence();
2958 WorkQueue[] qs; WorkQueue q;
2959 int count = 0;
2960 if ((qs = queues) != null) {
2961 for (int i = 1; i < qs.length; i += 2) {
2962 if ((q = qs[i]) != null)
2963 count += q.queueSize();
2964 }
2965 }
2966 return count;
2967 }
2968
2969 /**
2970 * Returns an estimate of the number of tasks submitted to this
2971 * pool that have not yet begun executing. This method may take
2972 * time proportional to the number of submissions.
2973 *
2974 * @return the number of queued submissions
2975 */
2976 public int getQueuedSubmissionCount() {
2977 VarHandle.acquireFence();
2978 WorkQueue[] qs; WorkQueue q;
2979 int count = 0;
2980 if ((qs = queues) != null) {
2981 for (int i = 0; i < qs.length; i += 2) {
2982 if ((q = qs[i]) != null)
2983 count += q.queueSize();
2984 }
2985 }
2986 return count;
2987 }
2988
2989 /**
2990 * Returns {@code true} if there are any tasks submitted to this
2991 * pool that have not yet begun executing.
2992 *
2993 * @return {@code true} if there are any queued submissions
2994 */
2995 public boolean hasQueuedSubmissions() {
2996 VarHandle.acquireFence();
2997 WorkQueue[] qs; WorkQueue q;
2998 if ((qs = queues) != null) {
2999 for (int i = 0; i < qs.length; i += 2) {
3000 if ((q = qs[i]) != null && !q.isEmpty())
3001 return true;
3002 }
3003 }
3004 return false;
3005 }
3006
3007 /**
3008 * Removes and returns the next unexecuted submission if one is
3009 * available. This method may be useful in extensions to this
3010 * class that re-assign work in systems with multiple pools.
3011 *
3012 * @return the next submission, or {@code null} if none
3013 */
3014 protected ForkJoinTask<?> pollSubmission() {
3015 return pollScan(true);
3016 }
3017
3018 /**
3019 * Removes all available unexecuted submitted and forked tasks
3020 * from scheduling queues and adds them to the given collection,
3021 * without altering their execution status. These may include
3022 * artificially generated or wrapped tasks. This method is
3023 * designed to be invoked only when the pool is known to be
3024 * quiescent. Invocations at other times may not remove all
3025 * tasks. A failure encountered while attempting to add elements
3026 * to collection {@code c} may result in elements being in
3027 * neither, either or both collections when the associated
3028 * exception is thrown. The behavior of this operation is
3029 * undefined if the specified collection is modified while the
3030 * operation is in progress.
3031 *
3032 * @param c the collection to transfer elements into
3033 * @return the number of elements transferred
3034 */
3035 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
3036 int count = 0;
3037 for (ForkJoinTask<?> t; (t = pollScan(false)) != null; ) {
3038 c.add(t);
3039 ++count;
3040 }
3041 return count;
3042 }
3043
3044 /**
3045 * Returns a string identifying this pool, as well as its state,
3046 * including indications of run state, parallelism level, and
3047 * worker and task counts.
3048 *
3049 * @return a string identifying this pool, as well as its state
3050 */
3051 public String toString() {
3052 // Use a single pass through queues to collect counts
3053 int md = mode; // read volatile fields first
3054 long c = ctl;
3055 long st = stealCount;
3056 long qt = 0L, ss = 0L; int rc = 0;
3057 WorkQueue[] qs; WorkQueue q;
3058 if ((qs = queues) != null) {
3059 for (int i = 0; i < qs.length; ++i) {
3060 if ((q = qs[i]) != null) {
3061 int size = q.queueSize();
3062 if ((i & 1) == 0)
3063 ss += size;
3064 else {
3065 qt += size;
3066 st += (long)q.nsteals & 0xffffffffL;
3067 if (q.isApparentlyUnblocked())
3068 ++rc;
3069 }
3070 }
3071 }
3072 }
3073
3074 int pc = (md & SMASK);
3075 int tc = pc + (short)(c >>> TC_SHIFT);
3076 int ac = pc + (int)(c >> RC_SHIFT);
3077 if (ac < 0) // ignore transient negative
3078 ac = 0;
3079 String level = ((md & TERMINATED) != 0 ? "Terminated" :
3080 (md & STOP) != 0 ? "Terminating" :
3081 (md & SHUTDOWN) != 0 ? "Shutting down" :
3082 "Running");
3083 return super.toString() +
3084 "[" + level +
3085 ", parallelism = " + pc +
3086 ", size = " + tc +
3087 ", active = " + ac +
3088 ", running = " + rc +
3089 ", steals = " + st +
3090 ", tasks = " + qt +
3091 ", submissions = " + ss +
3092 "]";
3093 }
3094
3095 /**
3096 * Possibly initiates an orderly shutdown in which previously
3097 * submitted tasks are executed, but no new tasks will be
3098 * accepted. Invocation has no effect on execution state if this
3099 * is the {@link #commonPool()}, and no additional effect if
3100 * already shut down. Tasks that are in the process of being
3101 * submitted concurrently during the course of this method may or
3102 * may not be rejected.
3103 *
3104 * @throws SecurityException if a security manager exists and
3105 * the caller is not permitted to modify threads
3106 * because it does not hold {@link
3107 * java.lang.RuntimePermission}{@code ("modifyThread")}
3108 */
3109 public void shutdown() {
3110 checkPermission();
3111 if (this != common)
3112 tryTerminate(false, true);
3113 }
3114
3115 /**
3116 * Possibly attempts to cancel and/or stop all tasks, and reject
3117 * all subsequently submitted tasks. Invocation has no effect on
3118 * execution state if this is the {@link #commonPool()}, and no
3119 * additional effect if already shut down. Otherwise, tasks that
3120 * are in the process of being submitted or executed concurrently
3121 * during the course of this method may or may not be
3122 * rejected. This method cancels both existing and unexecuted
3123 * tasks, in order to permit termination in the presence of task
3124 * dependencies. So the method always returns an empty list
3125 * (unlike the case for some other Executors).
3126 *
3127 * @return an empty list
3128 * @throws SecurityException if a security manager exists and
3129 * the caller is not permitted to modify threads
3130 * because it does not hold {@link
3131 * java.lang.RuntimePermission}{@code ("modifyThread")}
3132 */
3133 public List<Runnable> shutdownNow() {
3134 checkPermission();
3135 if (this != common)
3136 tryTerminate(true, true);
3137 return Collections.emptyList();
3138 }
3139
3140 /**
3141 * Returns {@code true} if all tasks have completed following shut down.
3142 *
3143 * @return {@code true} if all tasks have completed following shut down
3144 */
3145 public boolean isTerminated() {
3146 return (mode & TERMINATED) != 0;
3147 }
3148
3149 /**
3150 * Returns {@code true} if the process of termination has
3151 * commenced but not yet completed. This method may be useful for
3152 * debugging. A return of {@code true} reported a sufficient
3153 * period after shutdown may indicate that submitted tasks have
3154 * ignored or suppressed interruption, or are waiting for I/O,
3155 * causing this executor not to properly terminate. (See the
3156 * advisory notes for class {@link ForkJoinTask} stating that
3157 * tasks should not normally entail blocking operations. But if
3158 * they do, they must abort them on interrupt.)
3159 *
3160 * @return {@code true} if terminating but not yet terminated
3161 */
3162 public boolean isTerminating() {
3163 return (mode & (STOP | TERMINATED)) == STOP;
3164 }
3165
3166 /**
3167 * Returns {@code true} if this pool has been shut down.
3168 *
3169 * @return {@code true} if this pool has been shut down
3170 */
3171 public boolean isShutdown() {
3172 return (mode & SHUTDOWN) != 0;
3173 }
3174
3175 /**
3176 * Blocks until all tasks have completed execution after a
3177 * shutdown request, or the timeout occurs, or the current thread
3178 * is interrupted, whichever happens first. Because the {@link
3179 * #commonPool()} never terminates until program shutdown, when
3180 * applied to the common pool, this method is equivalent to {@link
3181 * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
3182 *
3183 * @param timeout the maximum time to wait
3184 * @param unit the time unit of the timeout argument
3185 * @return {@code true} if this executor terminated and
3186 * {@code false} if the timeout elapsed before termination
3187 * @throws InterruptedException if interrupted while waiting
3188 */
3189 public boolean awaitTermination(long timeout, TimeUnit unit)
3190 throws InterruptedException {
3191 ReentrantLock lock; Condition cond;
3192 long nanos = unit.toNanos(timeout);
3193 boolean terminated = false;
3194 if (this == common) {
3195 Thread t; ForkJoinWorkerThread wt; int q;
3196 if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread &&
3197 (wt = (ForkJoinWorkerThread)t).pool == this)
3198 q = helpQuiescePool(wt.workQueue, nanos, true);
3199 else
3200 q = externalHelpQuiescePool(nanos, true);
3201 if (q < 0)
3202 throw new InterruptedException();
3203 }
3204 else if (!(terminated = ((mode & TERMINATED) != 0)) &&
3205 (lock = registrationLock) != null) {
3206 lock.lock();
3207 try {
3208 if ((cond = termination) == null)
3209 termination = cond = lock.newCondition();
3210 while (!(terminated = ((mode & TERMINATED) != 0)) && nanos > 0L)
3211 nanos = cond.awaitNanos(nanos);
3212 } finally {
3213 lock.unlock();
3214 }
3215 }
3216 return terminated;
3217 }
3218
3219 /**
3220 * If called by a ForkJoinTask operating in this pool, equivalent
3221 * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3222 * waits and/or attempts to assist performing tasks until this
3223 * pool {@link #isQuiescent} or the indicated timeout elapses.
3224 *
3225 * @param timeout the maximum time to wait
3226 * @param unit the time unit of the timeout argument
3227 * @return {@code true} if quiescent; {@code false} if the
3228 * timeout elapsed.
3229 */
3230 public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3231 Thread t; ForkJoinWorkerThread wt; int q;
3232 long nanos = unit.toNanos(timeout);
3233 if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread &&
3234 (wt = (ForkJoinWorkerThread)t).pool == this)
3235 q = helpQuiescePool(wt.workQueue, nanos, false);
3236 else
3237 q = externalHelpQuiescePool(nanos, false);
3238 return (q > 0);
3239 }
3240
3241 /**
3242 * Interface for extending managed parallelism for tasks running
3243 * in {@link ForkJoinPool}s.
3244 *
3245 * <p>A {@code ManagedBlocker} provides two methods. Method
3246 * {@link #isReleasable} must return {@code true} if blocking is
3247 * not necessary. Method {@link #block} blocks the current thread
3248 * if necessary (perhaps internally invoking {@code isReleasable}
3249 * before actually blocking). These actions are performed by any
3250 * thread invoking {@link
3251 * ForkJoinPool#managedBlock(ManagedBlocker)}. The unusual
3252 * methods in this API accommodate synchronizers that may, but
3253 * don't usually, block for long periods. Similarly, they allow
3254 * more efficient internal handling of cases in which additional
3255 * workers may be, but usually are not, needed to ensure
3256 * sufficient parallelism. Toward this end, implementations of
3257 * method {@code isReleasable} must be amenable to repeated
3258 * invocation. Neither method is invoked after a prior invocation
3259 * of {@code isReleasable} or {@code block} returns {@code true}.
3260 *
3261 * <p>For example, here is a ManagedBlocker based on a
3262 * ReentrantLock:
3263 * <pre> {@code
3264 * class ManagedLocker implements ManagedBlocker {
3265 * final ReentrantLock lock;
3266 * boolean hasLock = false;
3267 * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3268 * public boolean block() {
3269 * if (!hasLock)
3270 * lock.lock();
3271 * return true;
3272 * }
3273 * public boolean isReleasable() {
3274 * return hasLock || (hasLock = lock.tryLock());
3275 * }
3276 * }}</pre>
3277 *
3278 * <p>Here is a class that possibly blocks waiting for an
3279 * item on a given queue:
3280 * <pre> {@code
3281 * class QueueTaker<E> implements ManagedBlocker {
3282 * final BlockingQueue<E> queue;
3283 * volatile E item = null;
3284 * QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3285 * public boolean block() throws InterruptedException {
3286 * if (item == null)
3287 * item = queue.take();
3288 * return true;
3289 * }
3290 * public boolean isReleasable() {
3291 * return item != null || (item = queue.poll()) != null;
3292 * }
3293 * public E getItem() { // call after pool.managedBlock completes
3294 * return item;
3295 * }
3296 * }}</pre>
3297 */
3298 public static interface ManagedBlocker {
3299 /**
3300 * Possibly blocks the current thread, for example waiting for
3301 * a lock or condition.
3302 *
3303 * @return {@code true} if no additional blocking is necessary
3304 * (i.e., if isReleasable would return true)
3305 * @throws InterruptedException if interrupted while waiting
3306 * (the method is not required to do so, but is allowed to)
3307 */
3308 boolean block() throws InterruptedException;
3309
3310 /**
3311 * Returns {@code true} if blocking is unnecessary.
3312 * @return {@code true} if blocking is unnecessary
3313 */
3314 boolean isReleasable();
3315 }
3316
3317 /**
3318 * Runs the given possibly blocking task. When {@linkplain
3319 * ForkJoinTask#inForkJoinPool() running in a ForkJoinPool}, this
3320 * method possibly arranges for a spare thread to be activated if
3321 * necessary to ensure sufficient parallelism while the current
3322 * thread is blocked in {@link ManagedBlocker#block blocker.block()}.
3323 *
3324 * <p>This method repeatedly calls {@code blocker.isReleasable()} and
3325 * {@code blocker.block()} until either method returns {@code true}.
3326 * Every call to {@code blocker.block()} is preceded by a call to
3327 * {@code blocker.isReleasable()} that returned {@code false}.
3328 *
3329 * <p>If not running in a ForkJoinPool, this method is
3330 * behaviorally equivalent to
3331 * <pre> {@code
3332 * while (!blocker.isReleasable())
3333 * if (blocker.block())
3334 * break;}</pre>
3335 *
3336 * If running in a ForkJoinPool, the pool may first be expanded to
3337 * ensure sufficient parallelism available during the call to
3338 * {@code blocker.block()}.
3339 *
3340 * @param blocker the blocker task
3341 * @throws InterruptedException if {@code blocker.block()} did so
3342 */
3343 public static void managedBlock(ManagedBlocker blocker)
3344 throws InterruptedException {
3345 Thread t; ForkJoinPool p;
3346 if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread &&
3347 (p = ((ForkJoinWorkerThread)t).pool) != null)
3348 p.compensatedBlock(blocker);
3349 else
3350 unmanagedBlock(blocker);
3351 }
3352
3353 /** ManagedBlock for ForkJoinWorkerThreads */
3354 private void compensatedBlock(ManagedBlocker blocker)
3355 throws InterruptedException {
3356 if (blocker == null) throw new NullPointerException();
3357 for (;;) {
3358 int comp; boolean done;
3359 long c = ctl;
3360 if (blocker.isReleasable())
3361 break;
3362 if ((comp = tryCompensate(c)) >= 0) {
3363 long post = (comp == 0) ? 0L : RC_UNIT;
3364 try {
3365 done = blocker.block();
3366 } finally {
3367 getAndAddCtl(post);
3368 }
3369 if (done)
3370 break;
3371 }
3372 }
3373 }
3374
3375 /** ManagedBlock for external threads */
3376 private static void unmanagedBlock(ManagedBlocker blocker)
3377 throws InterruptedException {
3378 if (blocker == null) throw new NullPointerException();
3379 do {} while (!blocker.isReleasable() && !blocker.block());
3380 }
3381
3382 // AbstractExecutorService.newTaskFor overrides rely on
3383 // undocumented fact that ForkJoinTask.adapt returns ForkJoinTasks
3384 // that also implement RunnableFuture.
3385
3386 @Override
3387 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3388 return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3389 }
3390
3391 @Override
3392 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3393 return new ForkJoinTask.AdaptedCallable<T>(callable);
3394 }
3395
3396 static {
3397 try {
3398 MethodHandles.Lookup l = MethodHandles.lookup();
3399 CTL = l.findVarHandle(ForkJoinPool.class, "ctl", long.class);
3400 MODE = l.findVarHandle(ForkJoinPool.class, "mode", int.class);
3401 THREADIDS = l.findVarHandle(ForkJoinPool.class, "threadIds", int.class);
3402 POOLIDS = l.findStaticVarHandle(ForkJoinPool.class, "poolIds", int.class);
3403 } catch (ReflectiveOperationException e) {
3404 throw new ExceptionInInitializerError(e);
3405 }
3406
3407 // Reduce the risk of rare disastrous classloading in first call to
3408 // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
3409 Class<?> ensureLoaded = LockSupport.class;
3410
3411 int commonMaxSpares = DEFAULT_COMMON_MAX_SPARES;
3412 try {
3413 String p = System.getProperty
3414 ("java.util.concurrent.ForkJoinPool.common.maximumSpares");
3415 if (p != null)
3416 commonMaxSpares = Integer.parseInt(p);
3417 } catch (Exception ignore) {}
3418 COMMON_MAX_SPARES = commonMaxSpares;
3419
3420 defaultForkJoinWorkerThreadFactory =
3421 new DefaultForkJoinWorkerThreadFactory();
3422 modifyThreadPermission = new RuntimePermission("modifyThread");
3423 common = AccessController.doPrivileged(new PrivilegedAction<>() {
3424 public ForkJoinPool run() {
3425 return new ForkJoinPool((byte)0); }});
3426
3427 COMMON_PARALLELISM = Math.max(common.mode & SMASK, 1);
3428 }
3429 }