ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.7
Committed: Fri Jul 31 20:41:13 2009 UTC (14 years, 10 months ago) by jsr166
Branch: MAIN
Changes since 1.6: +10 -62 lines
Log Message:
sync with jsr166 package

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package java.util.concurrent;
8
9 import java.util.ArrayList;
10 import java.util.Arrays;
11 import java.util.Collection;
12 import java.util.Collections;
13 import java.util.List;
14 import java.util.concurrent.locks.Condition;
15 import java.util.concurrent.locks.LockSupport;
16 import java.util.concurrent.locks.ReentrantLock;
17 import java.util.concurrent.atomic.AtomicInteger;
18 import java.util.concurrent.atomic.AtomicLong;
19
20 /**
21 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
22 * A ForkJoinPool provides the entry point for submissions from
23 * non-ForkJoinTasks, as well as management and monitoring operations.
24 * Normally a single ForkJoinPool is used for a large number of
25 * submitted tasks. Otherwise, use would not usually outweigh the
26 * construction and bookkeeping overhead of creating a large set of
27 * threads.
28 *
29 * <p>ForkJoinPools differ from other kinds of Executors mainly in
30 * that they provide <em>work-stealing</em>: all threads in the pool
31 * attempt to find and execute subtasks created by other active tasks
32 * (eventually blocking if none exist). This makes them efficient when
33 * most tasks spawn other subtasks (as do most ForkJoinTasks), as well
34 * as the mixed execution of some plain Runnable- or Callable- based
35 * activities along with ForkJoinTasks. When setting {@linkplain
36 * #setAsyncMode async mode}, a ForkJoinPool may also be appropriate
37 * for use with fine-grained tasks that are never joined. Otherwise,
38 * other ExecutorService implementations are typically more
39 * appropriate choices.
40 *
41 * <p>A ForkJoinPool may be constructed with a given parallelism level
42 * (target pool size), which it attempts to maintain by dynamically
43 * adding, suspending, or resuming threads, even if some tasks are
44 * waiting to join others. However, no such adjustments are performed
45 * in the face of blocked IO or other unmanaged synchronization. The
46 * nested {@link ManagedBlocker} interface enables extension of
47 * the kinds of synchronization accommodated. The target parallelism
48 * level may also be changed dynamically ({@link #setParallelism})
49 * and thread construction can be limited using methods
50 * {@link #setMaximumPoolSize} and/or
51 * {@link #setMaintainsParallelism}.
52 *
53 * <p>In addition to execution and lifecycle control methods, this
54 * class provides status check methods (for example
55 * {@link #getStealCount}) that are intended to aid in developing,
56 * tuning, and monitoring fork/join applications. Also, method
57 * {@link #toString} returns indications of pool state in a
58 * convenient form for informal monitoring.
59 *
60 * <p><b>Implementation notes</b>: This implementation restricts the
61 * maximum number of running threads to 32767. Attempts to create
62 * pools with greater than the maximum result in
63 * IllegalArgumentExceptions.
64 *
65 * @since 1.7
66 * @author Doug Lea
67 */
68 public class ForkJoinPool extends AbstractExecutorService {
69
70 /*
71 * See the extended comments interspersed below for design,
72 * rationale, and walkthroughs.
73 */
74
75 /** Mask for packing and unpacking shorts */
76 private static final int shortMask = 0xffff;
77
78 /** Max pool size -- must be a power of two minus 1 */
79 private static final int MAX_THREADS = 0x7FFF;
80
81 /**
82 * Factory for creating new ForkJoinWorkerThreads. A
83 * ForkJoinWorkerThreadFactory must be defined and used for
84 * ForkJoinWorkerThread subclasses that extend base functionality
85 * or initialize threads with different contexts.
86 */
87 public static interface ForkJoinWorkerThreadFactory {
88 /**
89 * Returns a new worker thread operating in the given pool.
90 *
91 * @param pool the pool this thread works in
92 * @throws NullPointerException if pool is null
93 */
94 public ForkJoinWorkerThread newThread(ForkJoinPool pool);
95 }
96
97 /**
98 * Default ForkJoinWorkerThreadFactory implementation; creates a
99 * new ForkJoinWorkerThread.
100 */
101 static class DefaultForkJoinWorkerThreadFactory
102 implements ForkJoinWorkerThreadFactory {
103 public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
104 try {
105 return new ForkJoinWorkerThread(pool);
106 } catch (OutOfMemoryError oom) {
107 return null;
108 }
109 }
110 }
111
112 /**
113 * Creates a new ForkJoinWorkerThread. This factory is used unless
114 * overridden in ForkJoinPool constructors.
115 */
116 public static final ForkJoinWorkerThreadFactory
117 defaultForkJoinWorkerThreadFactory =
118 new DefaultForkJoinWorkerThreadFactory();
119
120 /**
121 * Permission required for callers of methods that may start or
122 * kill threads.
123 */
124 private static final RuntimePermission modifyThreadPermission =
125 new RuntimePermission("modifyThread");
126
127 /**
128 * If there is a security manager, makes sure caller has
129 * permission to modify threads.
130 */
131 private static void checkPermission() {
132 SecurityManager security = System.getSecurityManager();
133 if (security != null)
134 security.checkPermission(modifyThreadPermission);
135 }
136
137 /**
138 * Generator for assigning sequence numbers as pool names.
139 */
140 private static final AtomicInteger poolNumberGenerator =
141 new AtomicInteger();
142
143 /**
144 * Array holding all worker threads in the pool. Initialized upon
145 * first use. Array size must be a power of two. Updates and
146 * replacements are protected by workerLock, but it is always kept
147 * in a consistent enough state to be randomly accessed without
148 * locking by workers performing work-stealing.
149 */
150 volatile ForkJoinWorkerThread[] workers;
151
152 /**
153 * Lock protecting access to workers.
154 */
155 private final ReentrantLock workerLock;
156
157 /**
158 * Condition for awaitTermination.
159 */
160 private final Condition termination;
161
162 /**
163 * The uncaught exception handler used when any worker
164 * abruptly terminates
165 */
166 private Thread.UncaughtExceptionHandler ueh;
167
168 /**
169 * Creation factory for worker threads.
170 */
171 private final ForkJoinWorkerThreadFactory factory;
172
173 /**
174 * Head of stack of threads that were created to maintain
175 * parallelism when other threads blocked, but have since
176 * suspended when the parallelism level rose.
177 */
178 private volatile WaitQueueNode spareStack;
179
180 /**
181 * Sum of per-thread steal counts, updated only when threads are
182 * idle or terminating.
183 */
184 private final AtomicLong stealCount;
185
186 /**
187 * Queue for external submissions.
188 */
189 private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
190
191 /**
192 * Head of Treiber stack for barrier sync. See below for explanation.
193 */
194 private volatile WaitQueueNode syncStack;
195
196 /**
197 * The count for event barrier
198 */
199 private volatile long eventCount;
200
201 /**
202 * Pool number, just for assigning useful names to worker threads
203 */
204 private final int poolNumber;
205
206 /**
207 * The maximum allowed pool size
208 */
209 private volatile int maxPoolSize;
210
211 /**
212 * The desired parallelism level, updated only under workerLock.
213 */
214 private volatile int parallelism;
215
216 /**
217 * True if use local fifo, not default lifo, for local polling
218 */
219 private volatile boolean locallyFifo;
220
221 /**
222 * Holds number of total (i.e., created and not yet terminated)
223 * and running (i.e., not blocked on joins or other managed sync)
224 * threads, packed into one int to ensure consistent snapshot when
225 * making decisions about creating and suspending spare
226 * threads. Updated only by CAS. Note: CASes in
227 * updateRunningCount and preJoin assume that running active count
228 * is in low word, so need to be modified if this changes.
229 */
230 private volatile int workerCounts;
231
232 private static int totalCountOf(int s) { return s >>> 16; }
233 private static int runningCountOf(int s) { return s & shortMask; }
234 private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
235
236 /**
237 * Adds delta (which may be negative) to running count. This must
238 * be called before (with negative arg) and after (with positive)
239 * any managed synchronization (i.e., mainly, joins).
240 *
241 * @param delta the number to add
242 */
243 final void updateRunningCount(int delta) {
244 int s;
245 do {} while (!casWorkerCounts(s = workerCounts, s + delta));
246 }
247
248 /**
249 * Adds delta (which may be negative) to both total and running
250 * count. This must be called upon creation and termination of
251 * worker threads.
252 *
253 * @param delta the number to add
254 */
255 private void updateWorkerCount(int delta) {
256 int d = delta + (delta << 16); // add to both lo and hi parts
257 int s;
258 do {} while (!casWorkerCounts(s = workerCounts, s + d));
259 }
260
261 /**
262 * Lifecycle control. High word contains runState, low word
263 * contains the number of workers that are (probably) executing
264 * tasks. This value is atomically incremented before a worker
265 * gets a task to run, and decremented when worker has no tasks
266 * and cannot find any. These two fields are bundled together to
267 * support correct termination triggering. Note: activeCount
268 * CAS'es cheat by assuming active count is in low word, so need
269 * to be modified if this changes
270 */
271 private volatile int runControl;
272
273 // RunState values. Order among values matters
274 private static final int RUNNING = 0;
275 private static final int SHUTDOWN = 1;
276 private static final int TERMINATING = 2;
277 private static final int TERMINATED = 3;
278
279 private static int runStateOf(int c) { return c >>> 16; }
280 private static int activeCountOf(int c) { return c & shortMask; }
281 private static int runControlFor(int r, int a) { return (r << 16) + a; }
282
283 /**
284 * Tries incrementing active count; fails on contention.
285 * Called by workers before/during executing tasks.
286 *
287 * @return true on success
288 */
289 final boolean tryIncrementActiveCount() {
290 int c = runControl;
291 return casRunControl(c, c+1);
292 }
293
294 /**
295 * Tries decrementing active count; fails on contention.
296 * Possibly triggers termination on success.
297 * Called by workers when they can't find tasks.
298 *
299 * @return true on success
300 */
301 final boolean tryDecrementActiveCount() {
302 int c = runControl;
303 int nextc = c - 1;
304 if (!casRunControl(c, nextc))
305 return false;
306 if (canTerminateOnShutdown(nextc))
307 terminateOnShutdown();
308 return true;
309 }
310
311 /**
312 * Returns {@code true} if argument represents zero active count
313 * and nonzero runstate, which is the triggering condition for
314 * terminating on shutdown.
315 */
316 private static boolean canTerminateOnShutdown(int c) {
317 // i.e. least bit is nonzero runState bit
318 return ((c & -c) >>> 16) != 0;
319 }
320
321 /**
322 * Transition run state to at least the given state. Return true
323 * if not already at least given state.
324 */
325 private boolean transitionRunStateTo(int state) {
326 for (;;) {
327 int c = runControl;
328 if (runStateOf(c) >= state)
329 return false;
330 if (casRunControl(c, runControlFor(state, activeCountOf(c))))
331 return true;
332 }
333 }
334
335 /**
336 * Controls whether to add spares to maintain parallelism
337 */
338 private volatile boolean maintainsParallelism;
339
340 // Constructors
341
342 /**
343 * Creates a ForkJoinPool with a pool size equal to the number of
344 * processors available on the system, using the default
345 * ForkJoinWorkerThreadFactory.
346 *
347 * @throws SecurityException if a security manager exists and
348 * the caller is not permitted to modify threads
349 * because it does not hold {@link
350 * java.lang.RuntimePermission}{@code ("modifyThread")}
351 */
352 public ForkJoinPool() {
353 this(Runtime.getRuntime().availableProcessors(),
354 defaultForkJoinWorkerThreadFactory);
355 }
356
357 /**
358 * Creates a ForkJoinPool with the indicated parallelism level
359 * threads and using the default ForkJoinWorkerThreadFactory.
360 *
361 * @param parallelism the number of worker threads
362 * @throws IllegalArgumentException if parallelism less than or
363 * equal to zero
364 * @throws SecurityException if a security manager exists and
365 * the caller is not permitted to modify threads
366 * because it does not hold {@link
367 * java.lang.RuntimePermission}{@code ("modifyThread")}
368 */
369 public ForkJoinPool(int parallelism) {
370 this(parallelism, defaultForkJoinWorkerThreadFactory);
371 }
372
373 /**
374 * Creates a ForkJoinPool with parallelism equal to the number of
375 * processors available on the system and using the given
376 * ForkJoinWorkerThreadFactory.
377 *
378 * @param factory the factory for creating new threads
379 * @throws NullPointerException if factory is null
380 * @throws SecurityException if a security manager exists and
381 * the caller is not permitted to modify threads
382 * because it does not hold {@link
383 * java.lang.RuntimePermission}{@code ("modifyThread")}
384 */
385 public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
386 this(Runtime.getRuntime().availableProcessors(), factory);
387 }
388
389 /**
390 * Creates a ForkJoinPool with the given parallelism and factory.
391 *
392 * @param parallelism the targeted number of worker threads
393 * @param factory the factory for creating new threads
394 * @throws IllegalArgumentException if parallelism less than or
395 * equal to zero, or greater than implementation limit
396 * @throws NullPointerException if factory is null
397 * @throws SecurityException if a security manager exists and
398 * the caller is not permitted to modify threads
399 * because it does not hold {@link
400 * java.lang.RuntimePermission}{@code ("modifyThread")}
401 */
402 public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
403 if (parallelism <= 0 || parallelism > MAX_THREADS)
404 throw new IllegalArgumentException();
405 if (factory == null)
406 throw new NullPointerException();
407 checkPermission();
408 this.factory = factory;
409 this.parallelism = parallelism;
410 this.maxPoolSize = MAX_THREADS;
411 this.maintainsParallelism = true;
412 this.poolNumber = poolNumberGenerator.incrementAndGet();
413 this.workerLock = new ReentrantLock();
414 this.termination = workerLock.newCondition();
415 this.stealCount = new AtomicLong();
416 this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
417 // worker array and workers are lazily constructed
418 }
419
420 /**
421 * Creates a new worker thread using factory.
422 *
423 * @param index the index to assign worker
424 * @return new worker, or null of factory failed
425 */
426 private ForkJoinWorkerThread createWorker(int index) {
427 Thread.UncaughtExceptionHandler h = ueh;
428 ForkJoinWorkerThread w = factory.newThread(this);
429 if (w != null) {
430 w.poolIndex = index;
431 w.setDaemon(true);
432 w.setAsyncMode(locallyFifo);
433 w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
434 if (h != null)
435 w.setUncaughtExceptionHandler(h);
436 }
437 return w;
438 }
439
440 /**
441 * Returns a good size for worker array given pool size.
442 * Currently requires size to be a power of two.
443 */
444 private static int arraySizeFor(int poolSize) {
445 return (poolSize <= 1) ? 1 :
446 (1 << (32 - Integer.numberOfLeadingZeros(poolSize-1)));
447 }
448
449 /**
450 * Creates or resizes array if necessary to hold newLength.
451 * Call only under exclusion.
452 *
453 * @return the array
454 */
455 private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
456 ForkJoinWorkerThread[] ws = workers;
457 if (ws == null)
458 return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
459 else if (newLength > ws.length)
460 return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
461 else
462 return ws;
463 }
464
465 /**
466 * Tries to shrink workers into smaller array after one or more terminate.
467 */
468 private void tryShrinkWorkerArray() {
469 ForkJoinWorkerThread[] ws = workers;
470 if (ws != null) {
471 int len = ws.length;
472 int last = len - 1;
473 while (last >= 0 && ws[last] == null)
474 --last;
475 int newLength = arraySizeFor(last+1);
476 if (newLength < len)
477 workers = Arrays.copyOf(ws, newLength);
478 }
479 }
480
481 /**
482 * Initializes workers if necessary.
483 */
484 final void ensureWorkerInitialization() {
485 ForkJoinWorkerThread[] ws = workers;
486 if (ws == null) {
487 final ReentrantLock lock = this.workerLock;
488 lock.lock();
489 try {
490 ws = workers;
491 if (ws == null) {
492 int ps = parallelism;
493 ws = ensureWorkerArrayCapacity(ps);
494 for (int i = 0; i < ps; ++i) {
495 ForkJoinWorkerThread w = createWorker(i);
496 if (w != null) {
497 ws[i] = w;
498 w.start();
499 updateWorkerCount(1);
500 }
501 }
502 }
503 } finally {
504 lock.unlock();
505 }
506 }
507 }
508
509 /**
510 * Worker creation and startup for threads added via setParallelism.
511 */
512 private void createAndStartAddedWorkers() {
513 resumeAllSpares(); // Allow spares to convert to nonspare
514 int ps = parallelism;
515 ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
516 int len = ws.length;
517 // Sweep through slots, to keep lowest indices most populated
518 int k = 0;
519 while (k < len) {
520 if (ws[k] != null) {
521 ++k;
522 continue;
523 }
524 int s = workerCounts;
525 int tc = totalCountOf(s);
526 int rc = runningCountOf(s);
527 if (rc >= ps || tc >= ps)
528 break;
529 if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
530 ForkJoinWorkerThread w = createWorker(k);
531 if (w != null) {
532 ws[k++] = w;
533 w.start();
534 }
535 else {
536 updateWorkerCount(-1); // back out on failed creation
537 break;
538 }
539 }
540 }
541 }
542
543 // Execution methods
544
545 /**
546 * Common code for execute, invoke and submit
547 */
548 private <T> void doSubmit(ForkJoinTask<T> task) {
549 if (task == null)
550 throw new NullPointerException();
551 if (isShutdown())
552 throw new RejectedExecutionException();
553 if (workers == null)
554 ensureWorkerInitialization();
555 submissionQueue.offer(task);
556 signalIdleWorkers();
557 }
558
559 /**
560 * Performs the given task, returning its result upon completion.
561 *
562 * @param task the task
563 * @return the task's result
564 * @throws NullPointerException if task is null
565 * @throws RejectedExecutionException if pool is shut down
566 */
567 public <T> T invoke(ForkJoinTask<T> task) {
568 doSubmit(task);
569 return task.join();
570 }
571
572 /**
573 * Arranges for (asynchronous) execution of the given task.
574 *
575 * @param task the task
576 * @throws NullPointerException if task is null
577 * @throws RejectedExecutionException if pool is shut down
578 */
579 public <T> void execute(ForkJoinTask<T> task) {
580 doSubmit(task);
581 }
582
583 // AbstractExecutorService methods
584
585 public void execute(Runnable task) {
586 ForkJoinTask<?> job;
587 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
588 job = (ForkJoinTask<?>) task;
589 else
590 job = ForkJoinTask.adapt(task, null);
591 doSubmit(job);
592 }
593
594 public <T> ForkJoinTask<T> submit(Callable<T> task) {
595 ForkJoinTask<T> job = ForkJoinTask.adapt(task);
596 doSubmit(job);
597 return job;
598 }
599
600 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
601 ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
602 doSubmit(job);
603 return job;
604 }
605
606 public ForkJoinTask<?> submit(Runnable task) {
607 ForkJoinTask<?> job;
608 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
609 job = (ForkJoinTask<?>) task;
610 else
611 job = ForkJoinTask.adapt(task, null);
612 doSubmit(job);
613 return job;
614 }
615
616 /**
617 * Submits a ForkJoinTask for execution.
618 *
619 * @param task the task to submit
620 * @return the task
621 * @throws RejectedExecutionException if the task cannot be
622 * scheduled for execution
623 * @throws NullPointerException if the task is null
624 */
625 public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
626 doSubmit(task);
627 return task;
628 }
629
630
631 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
632 ArrayList<ForkJoinTask<T>> forkJoinTasks =
633 new ArrayList<ForkJoinTask<T>>(tasks.size());
634 for (Callable<T> task : tasks)
635 forkJoinTasks.add(ForkJoinTask.adapt(task));
636 invoke(new InvokeAll<T>(forkJoinTasks));
637
638 @SuppressWarnings({"unchecked", "rawtypes"})
639 List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
640 return futures;
641 }
642
643 static final class InvokeAll<T> extends RecursiveAction {
644 final ArrayList<ForkJoinTask<T>> tasks;
645 InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
646 public void compute() {
647 try { invokeAll(tasks); }
648 catch (Exception ignore) {}
649 }
650 private static final long serialVersionUID = -7914297376763021607L;
651 }
652
653 // Configuration and status settings and queries
654
655 /**
656 * Returns the factory used for constructing new workers.
657 *
658 * @return the factory used for constructing new workers
659 */
660 public ForkJoinWorkerThreadFactory getFactory() {
661 return factory;
662 }
663
664 /**
665 * Returns the handler for internal worker threads that terminate
666 * due to unrecoverable errors encountered while executing tasks.
667 *
668 * @return the handler, or {@code null} if none
669 */
670 public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
671 Thread.UncaughtExceptionHandler h;
672 final ReentrantLock lock = this.workerLock;
673 lock.lock();
674 try {
675 h = ueh;
676 } finally {
677 lock.unlock();
678 }
679 return h;
680 }
681
682 /**
683 * Sets the handler for internal worker threads that terminate due
684 * to unrecoverable errors encountered while executing tasks.
685 * Unless set, the current default or ThreadGroup handler is used
686 * as handler.
687 *
688 * @param h the new handler
689 * @return the old handler, or {@code null} if none
690 * @throws SecurityException if a security manager exists and
691 * the caller is not permitted to modify threads
692 * because it does not hold {@link
693 * java.lang.RuntimePermission}{@code ("modifyThread")}
694 */
695 public Thread.UncaughtExceptionHandler
696 setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
697 checkPermission();
698 Thread.UncaughtExceptionHandler old = null;
699 final ReentrantLock lock = this.workerLock;
700 lock.lock();
701 try {
702 old = ueh;
703 ueh = h;
704 ForkJoinWorkerThread[] ws = workers;
705 if (ws != null) {
706 for (int i = 0; i < ws.length; ++i) {
707 ForkJoinWorkerThread w = ws[i];
708 if (w != null)
709 w.setUncaughtExceptionHandler(h);
710 }
711 }
712 } finally {
713 lock.unlock();
714 }
715 return old;
716 }
717
718
719 /**
720 * Sets the target parallelism level of this pool.
721 *
722 * @param parallelism the target parallelism
723 * @throws IllegalArgumentException if parallelism less than or
724 * equal to zero or greater than maximum size bounds
725 * @throws SecurityException if a security manager exists and
726 * the caller is not permitted to modify threads
727 * because it does not hold {@link
728 * java.lang.RuntimePermission}{@code ("modifyThread")}
729 */
730 public void setParallelism(int parallelism) {
731 checkPermission();
732 if (parallelism <= 0 || parallelism > maxPoolSize)
733 throw new IllegalArgumentException();
734 final ReentrantLock lock = this.workerLock;
735 lock.lock();
736 try {
737 if (!isTerminating()) {
738 int p = this.parallelism;
739 this.parallelism = parallelism;
740 if (parallelism > p)
741 createAndStartAddedWorkers();
742 else
743 trimSpares();
744 }
745 } finally {
746 lock.unlock();
747 }
748 signalIdleWorkers();
749 }
750
751 /**
752 * Returns the targeted number of worker threads in this pool.
753 *
754 * @return the targeted number of worker threads in this pool
755 */
756 public int getParallelism() {
757 return parallelism;
758 }
759
760 /**
761 * Returns the number of worker threads that have started but not
762 * yet terminated. This result returned by this method may differ
763 * from {@link #getParallelism} when threads are created to
764 * maintain parallelism when others are cooperatively blocked.
765 *
766 * @return the number of worker threads
767 */
768 public int getPoolSize() {
769 return totalCountOf(workerCounts);
770 }
771
772 /**
773 * Returns the maximum number of threads allowed to exist in the
774 * pool, even if there are insufficient unblocked running threads.
775 *
776 * @return the maximum
777 */
778 public int getMaximumPoolSize() {
779 return maxPoolSize;
780 }
781
782 /**
783 * Sets the maximum number of threads allowed to exist in the
784 * pool, even if there are insufficient unblocked running threads.
785 * Setting this value has no effect on current pool size. It
786 * controls construction of new threads.
787 *
788 * @throws IllegalArgumentException if negative or greater then
789 * internal implementation limit
790 */
791 public void setMaximumPoolSize(int newMax) {
792 if (newMax < 0 || newMax > MAX_THREADS)
793 throw new IllegalArgumentException();
794 maxPoolSize = newMax;
795 }
796
797
798 /**
799 * Returns {@code true} if this pool dynamically maintains its
800 * target parallelism level. If false, new threads are added only
801 * to avoid possible starvation. This setting is by default true.
802 *
803 * @return {@code true} if maintains parallelism
804 */
805 public boolean getMaintainsParallelism() {
806 return maintainsParallelism;
807 }
808
809 /**
810 * Sets whether this pool dynamically maintains its target
811 * parallelism level. If false, new threads are added only to
812 * avoid possible starvation.
813 *
814 * @param enable {@code true} to maintain parallelism
815 */
816 public void setMaintainsParallelism(boolean enable) {
817 maintainsParallelism = enable;
818 }
819
820 /**
821 * Establishes local first-in-first-out scheduling mode for forked
822 * tasks that are never joined. This mode may be more appropriate
823 * than default locally stack-based mode in applications in which
824 * worker threads only process asynchronous tasks. This method is
825 * designed to be invoked only when the pool is quiescent, and
826 * typically only before any tasks are submitted. The effects of
827 * invocations at other times may be unpredictable.
828 *
829 * @param async if {@code true}, use locally FIFO scheduling
830 * @return the previous mode
831 * @see #getAsyncMode
832 */
833 public boolean setAsyncMode(boolean async) {
834 boolean oldMode = locallyFifo;
835 locallyFifo = async;
836 ForkJoinWorkerThread[] ws = workers;
837 if (ws != null) {
838 for (int i = 0; i < ws.length; ++i) {
839 ForkJoinWorkerThread t = ws[i];
840 if (t != null)
841 t.setAsyncMode(async);
842 }
843 }
844 return oldMode;
845 }
846
847 /**
848 * Returns {@code true} if this pool uses local first-in-first-out
849 * scheduling mode for forked tasks that are never joined.
850 *
851 * @return {@code true} if this pool uses async mode
852 * @see #setAsyncMode
853 */
854 public boolean getAsyncMode() {
855 return locallyFifo;
856 }
857
858 /**
859 * Returns an estimate of the number of worker threads that are
860 * not blocked waiting to join tasks or for other managed
861 * synchronization.
862 *
863 * @return the number of worker threads
864 */
865 public int getRunningThreadCount() {
866 return runningCountOf(workerCounts);
867 }
868
869 /**
870 * Returns an estimate of the number of threads that are currently
871 * stealing or executing tasks. This method may overestimate the
872 * number of active threads.
873 *
874 * @return the number of active threads
875 */
876 public int getActiveThreadCount() {
877 return activeCountOf(runControl);
878 }
879
880 /**
881 * Returns an estimate of the number of threads that are currently
882 * idle waiting for tasks. This method may underestimate the
883 * number of idle threads.
884 *
885 * @return the number of idle threads
886 */
887 final int getIdleThreadCount() {
888 int c = runningCountOf(workerCounts) - activeCountOf(runControl);
889 return (c <= 0) ? 0 : c;
890 }
891
892 /**
893 * Returns {@code true} if all worker threads are currently idle.
894 * An idle worker is one that cannot obtain a task to execute
895 * because none are available to steal from other threads, and
896 * there are no pending submissions to the pool. This method is
897 * conservative; it might not return {@code true} immediately upon
898 * idleness of all threads, but will eventually become true if
899 * threads remain inactive.
900 *
901 * @return {@code true} if all threads are currently idle
902 */
903 public boolean isQuiescent() {
904 return activeCountOf(runControl) == 0;
905 }
906
907 /**
908 * Returns an estimate of the total number of tasks stolen from
909 * one thread's work queue by another. The reported value
910 * underestimates the actual total number of steals when the pool
911 * is not quiescent. This value may be useful for monitoring and
912 * tuning fork/join programs: in general, steal counts should be
913 * high enough to keep threads busy, but low enough to avoid
914 * overhead and contention across threads.
915 *
916 * @return the number of steals
917 */
918 public long getStealCount() {
919 return stealCount.get();
920 }
921
922 /**
923 * Accumulates steal count from a worker.
924 * Call only when worker known to be idle.
925 */
926 private void updateStealCount(ForkJoinWorkerThread w) {
927 int sc = w.getAndClearStealCount();
928 if (sc != 0)
929 stealCount.addAndGet(sc);
930 }
931
932 /**
933 * Returns an estimate of the total number of tasks currently held
934 * in queues by worker threads (but not including tasks submitted
935 * to the pool that have not begun executing). This value is only
936 * an approximation, obtained by iterating across all threads in
937 * the pool. This method may be useful for tuning task
938 * granularities.
939 *
940 * @return the number of queued tasks
941 */
942 public long getQueuedTaskCount() {
943 long count = 0;
944 ForkJoinWorkerThread[] ws = workers;
945 if (ws != null) {
946 for (int i = 0; i < ws.length; ++i) {
947 ForkJoinWorkerThread t = ws[i];
948 if (t != null)
949 count += t.getQueueSize();
950 }
951 }
952 return count;
953 }
954
955 /**
956 * Returns an estimate of the number tasks submitted to this pool
957 * that have not yet begun executing. This method takes time
958 * proportional to the number of submissions.
959 *
960 * @return the number of queued submissions
961 */
962 public int getQueuedSubmissionCount() {
963 return submissionQueue.size();
964 }
965
966 /**
967 * Returns {@code true} if there are any tasks submitted to this
968 * pool that have not yet begun executing.
969 *
970 * @return {@code true} if there are any queued submissions
971 */
972 public boolean hasQueuedSubmissions() {
973 return !submissionQueue.isEmpty();
974 }
975
976 /**
977 * Removes and returns the next unexecuted submission if one is
978 * available. This method may be useful in extensions to this
979 * class that re-assign work in systems with multiple pools.
980 *
981 * @return the next submission, or {@code null} if none
982 */
983 protected ForkJoinTask<?> pollSubmission() {
984 return submissionQueue.poll();
985 }
986
987 /**
988 * Removes all available unexecuted submitted and forked tasks
989 * from scheduling queues and adds them to the given collection,
990 * without altering their execution status. These may include
991 * artificially generated or wrapped tasks. This method is designed
992 * to be invoked only when the pool is known to be
993 * quiescent. Invocations at other times may not remove all
994 * tasks. A failure encountered while attempting to add elements
995 * to collection {@code c} may result in elements being in
996 * neither, either or both collections when the associated
997 * exception is thrown. The behavior of this operation is
998 * undefined if the specified collection is modified while the
999 * operation is in progress.
1000 *
1001 * @param c the collection to transfer elements into
1002 * @return the number of elements transferred
1003 */
1004 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1005 int n = submissionQueue.drainTo(c);
1006 ForkJoinWorkerThread[] ws = workers;
1007 if (ws != null) {
1008 for (int i = 0; i < ws.length; ++i) {
1009 ForkJoinWorkerThread w = ws[i];
1010 if (w != null)
1011 n += w.drainTasksTo(c);
1012 }
1013 }
1014 return n;
1015 }
1016
1017 /**
1018 * Returns a string identifying this pool, as well as its state,
1019 * including indications of run state, parallelism level, and
1020 * worker and task counts.
1021 *
1022 * @return a string identifying this pool, as well as its state
1023 */
1024 public String toString() {
1025 int ps = parallelism;
1026 int wc = workerCounts;
1027 int rc = runControl;
1028 long st = getStealCount();
1029 long qt = getQueuedTaskCount();
1030 long qs = getQueuedSubmissionCount();
1031 return super.toString() +
1032 "[" + runStateToString(runStateOf(rc)) +
1033 ", parallelism = " + ps +
1034 ", size = " + totalCountOf(wc) +
1035 ", active = " + activeCountOf(rc) +
1036 ", running = " + runningCountOf(wc) +
1037 ", steals = " + st +
1038 ", tasks = " + qt +
1039 ", submissions = " + qs +
1040 "]";
1041 }
1042
1043 private static String runStateToString(int rs) {
1044 switch(rs) {
1045 case RUNNING: return "Running";
1046 case SHUTDOWN: return "Shutting down";
1047 case TERMINATING: return "Terminating";
1048 case TERMINATED: return "Terminated";
1049 default: throw new Error("Unknown run state");
1050 }
1051 }
1052
1053 // lifecycle control
1054
1055 /**
1056 * Initiates an orderly shutdown in which previously submitted
1057 * tasks are executed, but no new tasks will be accepted.
1058 * Invocation has no additional effect if already shut down.
1059 * Tasks that are in the process of being submitted concurrently
1060 * during the course of this method may or may not be rejected.
1061 *
1062 * @throws SecurityException if a security manager exists and
1063 * the caller is not permitted to modify threads
1064 * because it does not hold {@link
1065 * java.lang.RuntimePermission}{@code ("modifyThread")}
1066 */
1067 public void shutdown() {
1068 checkPermission();
1069 transitionRunStateTo(SHUTDOWN);
1070 if (canTerminateOnShutdown(runControl)) {
1071 if (workers == null) { // shutting down before workers created
1072 final ReentrantLock lock = this.workerLock;
1073 lock.lock();
1074 try {
1075 if (workers == null) {
1076 terminate();
1077 transitionRunStateTo(TERMINATED);
1078 termination.signalAll();
1079 }
1080 } finally {
1081 lock.unlock();
1082 }
1083 }
1084 terminateOnShutdown();
1085 }
1086 }
1087
1088 /**
1089 * Attempts to stop all actively executing tasks, and cancels all
1090 * waiting tasks. Tasks that are in the process of being
1091 * submitted or executed concurrently during the course of this
1092 * method may or may not be rejected. Unlike some other executors,
1093 * this method cancels rather than collects non-executed tasks
1094 * upon termination, so always returns an empty list. However, you
1095 * can use method {@link #drainTasksTo} before invoking this
1096 * method to transfer unexecuted tasks to another collection.
1097 *
1098 * @return an empty list
1099 * @throws SecurityException if a security manager exists and
1100 * the caller is not permitted to modify threads
1101 * because it does not hold {@link
1102 * java.lang.RuntimePermission}{@code ("modifyThread")}
1103 */
1104 public List<Runnable> shutdownNow() {
1105 checkPermission();
1106 terminate();
1107 return Collections.emptyList();
1108 }
1109
1110 /**
1111 * Returns {@code true} if all tasks have completed following shut down.
1112 *
1113 * @return {@code true} if all tasks have completed following shut down
1114 */
1115 public boolean isTerminated() {
1116 return runStateOf(runControl) == TERMINATED;
1117 }
1118
1119 /**
1120 * Returns {@code true} if the process of termination has
1121 * commenced but possibly not yet completed.
1122 *
1123 * @return {@code true} if terminating
1124 */
1125 public boolean isTerminating() {
1126 return runStateOf(runControl) >= TERMINATING;
1127 }
1128
1129 /**
1130 * Returns {@code true} if this pool has been shut down.
1131 *
1132 * @return {@code true} if this pool has been shut down
1133 */
1134 public boolean isShutdown() {
1135 return runStateOf(runControl) >= SHUTDOWN;
1136 }
1137
1138 /**
1139 * Blocks until all tasks have completed execution after a shutdown
1140 * request, or the timeout occurs, or the current thread is
1141 * interrupted, whichever happens first.
1142 *
1143 * @param timeout the maximum time to wait
1144 * @param unit the time unit of the timeout argument
1145 * @return {@code true} if this executor terminated and
1146 * {@code false} if the timeout elapsed before termination
1147 * @throws InterruptedException if interrupted while waiting
1148 */
1149 public boolean awaitTermination(long timeout, TimeUnit unit)
1150 throws InterruptedException {
1151 long nanos = unit.toNanos(timeout);
1152 final ReentrantLock lock = this.workerLock;
1153 lock.lock();
1154 try {
1155 for (;;) {
1156 if (isTerminated())
1157 return true;
1158 if (nanos <= 0)
1159 return false;
1160 nanos = termination.awaitNanos(nanos);
1161 }
1162 } finally {
1163 lock.unlock();
1164 }
1165 }
1166
1167 // Shutdown and termination support
1168
1169 /**
1170 * Callback from terminating worker. Nulls out the corresponding
1171 * workers slot, and if terminating, tries to terminate; else
1172 * tries to shrink workers array.
1173 *
1174 * @param w the worker
1175 */
1176 final void workerTerminated(ForkJoinWorkerThread w) {
1177 updateStealCount(w);
1178 updateWorkerCount(-1);
1179 final ReentrantLock lock = this.workerLock;
1180 lock.lock();
1181 try {
1182 ForkJoinWorkerThread[] ws = workers;
1183 if (ws != null) {
1184 int idx = w.poolIndex;
1185 if (idx >= 0 && idx < ws.length && ws[idx] == w)
1186 ws[idx] = null;
1187 if (totalCountOf(workerCounts) == 0) {
1188 terminate(); // no-op if already terminating
1189 transitionRunStateTo(TERMINATED);
1190 termination.signalAll();
1191 }
1192 else if (!isTerminating()) {
1193 tryShrinkWorkerArray();
1194 tryResumeSpare(true); // allow replacement
1195 }
1196 }
1197 } finally {
1198 lock.unlock();
1199 }
1200 signalIdleWorkers();
1201 }
1202
1203 /**
1204 * Initiates termination.
1205 */
1206 private void terminate() {
1207 if (transitionRunStateTo(TERMINATING)) {
1208 stopAllWorkers();
1209 resumeAllSpares();
1210 signalIdleWorkers();
1211 cancelQueuedSubmissions();
1212 cancelQueuedWorkerTasks();
1213 interruptUnterminatedWorkers();
1214 signalIdleWorkers(); // resignal after interrupt
1215 }
1216 }
1217
1218 /**
1219 * Possibly terminates when on shutdown state.
1220 */
1221 private void terminateOnShutdown() {
1222 if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1223 terminate();
1224 }
1225
1226 /**
1227 * Clears out and cancels submissions.
1228 */
1229 private void cancelQueuedSubmissions() {
1230 ForkJoinTask<?> task;
1231 while ((task = pollSubmission()) != null)
1232 task.cancel(false);
1233 }
1234
1235 /**
1236 * Cleans out worker queues.
1237 */
1238 private void cancelQueuedWorkerTasks() {
1239 final ReentrantLock lock = this.workerLock;
1240 lock.lock();
1241 try {
1242 ForkJoinWorkerThread[] ws = workers;
1243 if (ws != null) {
1244 for (int i = 0; i < ws.length; ++i) {
1245 ForkJoinWorkerThread t = ws[i];
1246 if (t != null)
1247 t.cancelTasks();
1248 }
1249 }
1250 } finally {
1251 lock.unlock();
1252 }
1253 }
1254
1255 /**
1256 * Sets each worker's status to terminating. Requires lock to avoid
1257 * conflicts with add/remove.
1258 */
1259 private void stopAllWorkers() {
1260 final ReentrantLock lock = this.workerLock;
1261 lock.lock();
1262 try {
1263 ForkJoinWorkerThread[] ws = workers;
1264 if (ws != null) {
1265 for (int i = 0; i < ws.length; ++i) {
1266 ForkJoinWorkerThread t = ws[i];
1267 if (t != null)
1268 t.shutdownNow();
1269 }
1270 }
1271 } finally {
1272 lock.unlock();
1273 }
1274 }
1275
1276 /**
1277 * Interrupts all unterminated workers. This is not required for
1278 * sake of internal control, but may help unstick user code during
1279 * shutdown.
1280 */
1281 private void interruptUnterminatedWorkers() {
1282 final ReentrantLock lock = this.workerLock;
1283 lock.lock();
1284 try {
1285 ForkJoinWorkerThread[] ws = workers;
1286 if (ws != null) {
1287 for (int i = 0; i < ws.length; ++i) {
1288 ForkJoinWorkerThread t = ws[i];
1289 if (t != null && !t.isTerminated()) {
1290 try {
1291 t.interrupt();
1292 } catch (SecurityException ignore) {
1293 }
1294 }
1295 }
1296 }
1297 } finally {
1298 lock.unlock();
1299 }
1300 }
1301
1302
1303 /*
1304 * Nodes for event barrier to manage idle threads. Queue nodes
1305 * are basic Treiber stack nodes, also used for spare stack.
1306 *
1307 * The event barrier has an event count and a wait queue (actually
1308 * a Treiber stack). Workers are enabled to look for work when
1309 * the eventCount is incremented. If they fail to find work, they
1310 * may wait for next count. Upon release, threads help others wake
1311 * up.
1312 *
1313 * Synchronization events occur only in enough contexts to
1314 * maintain overall liveness:
1315 *
1316 * - Submission of a new task to the pool
1317 * - Resizes or other changes to the workers array
1318 * - pool termination
1319 * - A worker pushing a task on an empty queue
1320 *
1321 * The case of pushing a task occurs often enough, and is heavy
1322 * enough compared to simple stack pushes, to require special
1323 * handling: Method signalWork returns without advancing count if
1324 * the queue appears to be empty. This would ordinarily result in
1325 * races causing some queued waiters not to be woken up. To avoid
1326 * this, the first worker enqueued in method sync (see
1327 * syncIsReleasable) rescans for tasks after being enqueued, and
1328 * helps signal if any are found. This works well because the
1329 * worker has nothing better to do, and so might as well help
1330 * alleviate the overhead and contention on the threads actually
1331 * doing work. Also, since event counts increments on task
1332 * availability exist to maintain liveness (rather than to force
1333 * refreshes etc), it is OK for callers to exit early if
1334 * contending with another signaller.
1335 */
1336 static final class WaitQueueNode {
1337 WaitQueueNode next; // only written before enqueued
1338 volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1339 final long count; // unused for spare stack
1340
1341 WaitQueueNode(long c, ForkJoinWorkerThread w) {
1342 count = c;
1343 thread = w;
1344 }
1345
1346 /**
1347 * Wakes up waiter, returning false if known to already
1348 */
1349 boolean signal() {
1350 ForkJoinWorkerThread t = thread;
1351 if (t == null)
1352 return false;
1353 thread = null;
1354 LockSupport.unpark(t);
1355 return true;
1356 }
1357
1358 /**
1359 * Awaits release on sync.
1360 */
1361 void awaitSyncRelease(ForkJoinPool p) {
1362 while (thread != null && !p.syncIsReleasable(this))
1363 LockSupport.park(this);
1364 }
1365
1366 /**
1367 * Awaits resumption as spare.
1368 */
1369 void awaitSpareRelease() {
1370 while (thread != null) {
1371 if (!Thread.interrupted())
1372 LockSupport.park(this);
1373 }
1374 }
1375 }
1376
1377 /**
1378 * Ensures that no thread is waiting for count to advance from the
1379 * current value of eventCount read on entry to this method, by
1380 * releasing waiting threads if necessary.
1381 *
1382 * @return the count
1383 */
1384 final long ensureSync() {
1385 long c = eventCount;
1386 WaitQueueNode q;
1387 while ((q = syncStack) != null && q.count < c) {
1388 if (casBarrierStack(q, null)) {
1389 do {
1390 q.signal();
1391 } while ((q = q.next) != null);
1392 break;
1393 }
1394 }
1395 return c;
1396 }
1397
1398 /**
1399 * Increments event count and releases waiting threads.
1400 */
1401 private void signalIdleWorkers() {
1402 long c;
1403 do {} while (!casEventCount(c = eventCount, c+1));
1404 ensureSync();
1405 }
1406
1407 /**
1408 * Signals threads waiting to poll a task. Because method sync
1409 * rechecks availability, it is OK to only proceed if queue
1410 * appears to be non-empty, and OK to skip under contention to
1411 * increment count (since some other thread succeeded).
1412 */
1413 final void signalWork() {
1414 long c;
1415 WaitQueueNode q;
1416 if (syncStack != null &&
1417 casEventCount(c = eventCount, c+1) &&
1418 (((q = syncStack) != null && q.count <= c) &&
1419 (!casBarrierStack(q, q.next) || !q.signal())))
1420 ensureSync();
1421 }
1422
1423 /**
1424 * Waits until event count advances from last value held by
1425 * caller, or if excess threads, caller is resumed as spare, or
1426 * caller or pool is terminating. Updates caller's event on exit.
1427 *
1428 * @param w the calling worker thread
1429 */
1430 final void sync(ForkJoinWorkerThread w) {
1431 updateStealCount(w); // Transfer w's count while it is idle
1432
1433 while (!w.isShutdown() && !isTerminating() && !suspendIfSpare(w)) {
1434 long prev = w.lastEventCount;
1435 WaitQueueNode node = null;
1436 WaitQueueNode h;
1437 while (eventCount == prev &&
1438 ((h = syncStack) == null || h.count == prev)) {
1439 if (node == null)
1440 node = new WaitQueueNode(prev, w);
1441 if (casBarrierStack(node.next = h, node)) {
1442 node.awaitSyncRelease(this);
1443 break;
1444 }
1445 }
1446 long ec = ensureSync();
1447 if (ec != prev) {
1448 w.lastEventCount = ec;
1449 break;
1450 }
1451 }
1452 }
1453
1454 /**
1455 * Returns {@code true} if worker waiting on sync can proceed:
1456 * - on signal (thread == null)
1457 * - on event count advance (winning race to notify vs signaller)
1458 * - on interrupt
1459 * - if the first queued node, we find work available
1460 * If node was not signalled and event count not advanced on exit,
1461 * then we also help advance event count.
1462 *
1463 * @return {@code true} if node can be released
1464 */
1465 final boolean syncIsReleasable(WaitQueueNode node) {
1466 long prev = node.count;
1467 if (!Thread.interrupted() && node.thread != null &&
1468 (node.next != null ||
1469 !ForkJoinWorkerThread.hasQueuedTasks(workers)) &&
1470 eventCount == prev)
1471 return false;
1472 if (node.thread != null) {
1473 node.thread = null;
1474 long ec = eventCount;
1475 if (prev <= ec) // help signal
1476 casEventCount(ec, ec+1);
1477 }
1478 return true;
1479 }
1480
1481 /**
1482 * Returns {@code true} if a new sync event occurred since last
1483 * call to sync or this method, if so, updating caller's count.
1484 */
1485 final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
1486 long lc = w.lastEventCount;
1487 long ec = ensureSync();
1488 if (ec == lc)
1489 return false;
1490 w.lastEventCount = ec;
1491 return true;
1492 }
1493
1494 // Parallelism maintenance
1495
1496 /**
1497 * Decrements running count; if too low, adds spare.
1498 *
1499 * Conceptually, all we need to do here is add or resume a
1500 * spare thread when one is about to block (and remove or
1501 * suspend it later when unblocked -- see suspendIfSpare).
1502 * However, implementing this idea requires coping with
1503 * several problems: we have imperfect information about the
1504 * states of threads. Some count updates can and usually do
1505 * lag run state changes, despite arrangements to keep them
1506 * accurate (for example, when possible, updating counts
1507 * before signalling or resuming), especially when running on
1508 * dynamic JVMs that don't optimize the infrequent paths that
1509 * update counts. Generating too many threads can make these
1510 * problems become worse, because excess threads are more
1511 * likely to be context-switched with others, slowing them all
1512 * down, especially if there is no work available, so all are
1513 * busy scanning or idling. Also, excess spare threads can
1514 * only be suspended or removed when they are idle, not
1515 * immediately when they aren't needed. So adding threads will
1516 * raise parallelism level for longer than necessary. Also,
1517 * FJ applications often encounter highly transient peaks when
1518 * many threads are blocked joining, but for less time than it
1519 * takes to create or resume spares.
1520 *
1521 * @param joinMe if non-null, return early if done
1522 * @param maintainParallelism if true, try to stay within
1523 * target counts, else create only to avoid starvation
1524 * @return true if joinMe known to be done
1525 */
1526 final boolean preJoin(ForkJoinTask<?> joinMe,
1527 boolean maintainParallelism) {
1528 maintainParallelism &= maintainsParallelism; // overrride
1529 boolean dec = false; // true when running count decremented
1530 while (spareStack == null || !tryResumeSpare(dec)) {
1531 int counts = workerCounts;
1532 if (dec || (dec = casWorkerCounts(counts, --counts))) {
1533 // CAS cheat
1534 if (!needSpare(counts, maintainParallelism))
1535 break;
1536 if (joinMe.status < 0)
1537 return true;
1538 if (tryAddSpare(counts))
1539 break;
1540 }
1541 }
1542 return false;
1543 }
1544
1545 /**
1546 * Same idea as preJoin
1547 */
1548 final boolean preBlock(ManagedBlocker blocker,
1549 boolean maintainParallelism) {
1550 maintainParallelism &= maintainsParallelism;
1551 boolean dec = false;
1552 while (spareStack == null || !tryResumeSpare(dec)) {
1553 int counts = workerCounts;
1554 if (dec || (dec = casWorkerCounts(counts, --counts))) {
1555 if (!needSpare(counts, maintainParallelism))
1556 break;
1557 if (blocker.isReleasable())
1558 return true;
1559 if (tryAddSpare(counts))
1560 break;
1561 }
1562 }
1563 return false;
1564 }
1565
1566 /**
1567 * Returns {@code true} if a spare thread appears to be needed.
1568 * If maintaining parallelism, returns true when the deficit in
1569 * running threads is more than the surplus of total threads, and
1570 * there is apparently some work to do. This self-limiting rule
1571 * means that the more threads that have already been added, the
1572 * less parallelism we will tolerate before adding another.
1573 *
1574 * @param counts current worker counts
1575 * @param maintainParallelism try to maintain parallelism
1576 */
1577 private boolean needSpare(int counts, boolean maintainParallelism) {
1578 int ps = parallelism;
1579 int rc = runningCountOf(counts);
1580 int tc = totalCountOf(counts);
1581 int runningDeficit = ps - rc;
1582 int totalSurplus = tc - ps;
1583 return (tc < maxPoolSize &&
1584 (rc == 0 || totalSurplus < 0 ||
1585 (maintainParallelism &&
1586 runningDeficit > totalSurplus &&
1587 ForkJoinWorkerThread.hasQueuedTasks(workers))));
1588 }
1589
1590 /**
1591 * Adds a spare worker if lock available and no more than the
1592 * expected numbers of threads exist.
1593 *
1594 * @return true if successful
1595 */
1596 private boolean tryAddSpare(int expectedCounts) {
1597 final ReentrantLock lock = this.workerLock;
1598 int expectedRunning = runningCountOf(expectedCounts);
1599 int expectedTotal = totalCountOf(expectedCounts);
1600 boolean success = false;
1601 boolean locked = false;
1602 // confirm counts while locking; CAS after obtaining lock
1603 try {
1604 for (;;) {
1605 int s = workerCounts;
1606 int tc = totalCountOf(s);
1607 int rc = runningCountOf(s);
1608 if (rc > expectedRunning || tc > expectedTotal)
1609 break;
1610 if (!locked && !(locked = lock.tryLock()))
1611 break;
1612 if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1613 createAndStartSpare(tc);
1614 success = true;
1615 break;
1616 }
1617 }
1618 } finally {
1619 if (locked)
1620 lock.unlock();
1621 }
1622 return success;
1623 }
1624
1625 /**
1626 * Adds the kth spare worker. On entry, pool counts are already
1627 * adjusted to reflect addition.
1628 */
1629 private void createAndStartSpare(int k) {
1630 ForkJoinWorkerThread w = null;
1631 ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1632 int len = ws.length;
1633 // Probably, we can place at slot k. If not, find empty slot
1634 if (k < len && ws[k] != null) {
1635 for (k = 0; k < len && ws[k] != null; ++k)
1636 ;
1637 }
1638 if (k < len && !isTerminating() && (w = createWorker(k)) != null) {
1639 ws[k] = w;
1640 w.start();
1641 }
1642 else
1643 updateWorkerCount(-1); // adjust on failure
1644 signalIdleWorkers();
1645 }
1646
1647 /**
1648 * Suspends calling thread w if there are excess threads. Called
1649 * only from sync. Spares are enqueued in a Treiber stack using
1650 * the same WaitQueueNodes as barriers. They are resumed mainly
1651 * in preJoin, but are also woken on pool events that require all
1652 * threads to check run state.
1653 *
1654 * @param w the caller
1655 */
1656 private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1657 WaitQueueNode node = null;
1658 int s;
1659 while (parallelism < runningCountOf(s = workerCounts)) {
1660 if (node == null)
1661 node = new WaitQueueNode(0, w);
1662 if (casWorkerCounts(s, s-1)) { // representation-dependent
1663 // push onto stack
1664 do {} while (!casSpareStack(node.next = spareStack, node));
1665 // block until released by resumeSpare
1666 node.awaitSpareRelease();
1667 return true;
1668 }
1669 }
1670 return false;
1671 }
1672
1673 /**
1674 * Tries to pop and resume a spare thread.
1675 *
1676 * @param updateCount if true, increment running count on success
1677 * @return true if successful
1678 */
1679 private boolean tryResumeSpare(boolean updateCount) {
1680 WaitQueueNode q;
1681 while ((q = spareStack) != null) {
1682 if (casSpareStack(q, q.next)) {
1683 if (updateCount)
1684 updateRunningCount(1);
1685 q.signal();
1686 return true;
1687 }
1688 }
1689 return false;
1690 }
1691
1692 /**
1693 * Pops and resumes all spare threads. Same idea as ensureSync.
1694 *
1695 * @return true if any spares released
1696 */
1697 private boolean resumeAllSpares() {
1698 WaitQueueNode q;
1699 while ( (q = spareStack) != null) {
1700 if (casSpareStack(q, null)) {
1701 do {
1702 updateRunningCount(1);
1703 q.signal();
1704 } while ((q = q.next) != null);
1705 return true;
1706 }
1707 }
1708 return false;
1709 }
1710
1711 /**
1712 * Pops and shuts down excessive spare threads. Call only while
1713 * holding lock. This is not guaranteed to eliminate all excess
1714 * threads, only those suspended as spares, which are the ones
1715 * unlikely to be needed in the future.
1716 */
1717 private void trimSpares() {
1718 int surplus = totalCountOf(workerCounts) - parallelism;
1719 WaitQueueNode q;
1720 while (surplus > 0 && (q = spareStack) != null) {
1721 if (casSpareStack(q, null)) {
1722 do {
1723 updateRunningCount(1);
1724 ForkJoinWorkerThread w = q.thread;
1725 if (w != null && surplus > 0 &&
1726 runningCountOf(workerCounts) > 0 && w.shutdown())
1727 --surplus;
1728 q.signal();
1729 } while ((q = q.next) != null);
1730 }
1731 }
1732 }
1733
1734 /**
1735 * Interface for extending managed parallelism for tasks running
1736 * in ForkJoinPools. A ManagedBlocker provides two methods.
1737 * Method {@code isReleasable} must return {@code true} if
1738 * blocking is not necessary. Method {@code block} blocks the
1739 * current thread if necessary (perhaps internally invoking
1740 * {@code isReleasable} before actually blocking.).
1741 *
1742 * <p>For example, here is a ManagedBlocker based on a
1743 * ReentrantLock:
1744 * <pre> {@code
1745 * class ManagedLocker implements ManagedBlocker {
1746 * final ReentrantLock lock;
1747 * boolean hasLock = false;
1748 * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
1749 * public boolean block() {
1750 * if (!hasLock)
1751 * lock.lock();
1752 * return true;
1753 * }
1754 * public boolean isReleasable() {
1755 * return hasLock || (hasLock = lock.tryLock());
1756 * }
1757 * }}</pre>
1758 */
1759 public static interface ManagedBlocker {
1760 /**
1761 * Possibly blocks the current thread, for example waiting for
1762 * a lock or condition.
1763 *
1764 * @return {@code true} if no additional blocking is necessary
1765 * (i.e., if isReleasable would return true)
1766 * @throws InterruptedException if interrupted while waiting
1767 * (the method is not required to do so, but is allowed to)
1768 */
1769 boolean block() throws InterruptedException;
1770
1771 /**
1772 * Returns {@code true} if blocking is unnecessary.
1773 */
1774 boolean isReleasable();
1775 }
1776
1777 /**
1778 * Blocks in accord with the given blocker. If the current thread
1779 * is a ForkJoinWorkerThread, this method possibly arranges for a
1780 * spare thread to be activated if necessary to ensure parallelism
1781 * while the current thread is blocked. If
1782 * {@code maintainParallelism} is {@code true} and the pool supports
1783 * it ({@link #getMaintainsParallelism}), this method attempts to
1784 * maintain the pool's nominal parallelism. Otherwise it activates
1785 * a thread only if necessary to avoid complete starvation. This
1786 * option may be preferable when blockages use timeouts, or are
1787 * almost always brief.
1788 *
1789 * <p> If the caller is not a ForkJoinTask, this method is behaviorally
1790 * equivalent to
1791 * <pre> {@code
1792 * while (!blocker.isReleasable())
1793 * if (blocker.block())
1794 * return;
1795 * }</pre>
1796 * If the caller is a ForkJoinTask, then the pool may first
1797 * be expanded to ensure parallelism, and later adjusted.
1798 *
1799 * @param blocker the blocker
1800 * @param maintainParallelism if {@code true} and supported by
1801 * this pool, attempt to maintain the pool's nominal parallelism;
1802 * otherwise activate a thread only if necessary to avoid
1803 * complete starvation.
1804 * @throws InterruptedException if blocker.block did so
1805 */
1806 public static void managedBlock(ManagedBlocker blocker,
1807 boolean maintainParallelism)
1808 throws InterruptedException {
1809 Thread t = Thread.currentThread();
1810 ForkJoinPool pool = ((t instanceof ForkJoinWorkerThread) ?
1811 ((ForkJoinWorkerThread) t).pool : null);
1812 if (!blocker.isReleasable()) {
1813 try {
1814 if (pool == null ||
1815 !pool.preBlock(blocker, maintainParallelism))
1816 awaitBlocker(blocker);
1817 } finally {
1818 if (pool != null)
1819 pool.updateRunningCount(1);
1820 }
1821 }
1822 }
1823
1824 private static void awaitBlocker(ManagedBlocker blocker)
1825 throws InterruptedException {
1826 do {} while (!blocker.isReleasable() && !blocker.block());
1827 }
1828
1829 // AbstractExecutorService overrides. These rely on undocumented
1830 // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
1831 // implement RunnableFuture.
1832
1833 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
1834 return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
1835 }
1836
1837 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
1838 return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
1839 }
1840
1841 // Unsafe mechanics
1842
1843 private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
1844 private static final long eventCountOffset =
1845 objectFieldOffset("eventCount", ForkJoinPool.class);
1846 private static final long workerCountsOffset =
1847 objectFieldOffset("workerCounts", ForkJoinPool.class);
1848 private static final long runControlOffset =
1849 objectFieldOffset("runControl", ForkJoinPool.class);
1850 private static final long syncStackOffset =
1851 objectFieldOffset("syncStack",ForkJoinPool.class);
1852 private static final long spareStackOffset =
1853 objectFieldOffset("spareStack", ForkJoinPool.class);
1854
1855 private boolean casEventCount(long cmp, long val) {
1856 return UNSAFE.compareAndSwapLong(this, eventCountOffset, cmp, val);
1857 }
1858 private boolean casWorkerCounts(int cmp, int val) {
1859 return UNSAFE.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1860 }
1861 private boolean casRunControl(int cmp, int val) {
1862 return UNSAFE.compareAndSwapInt(this, runControlOffset, cmp, val);
1863 }
1864 private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1865 return UNSAFE.compareAndSwapObject(this, spareStackOffset, cmp, val);
1866 }
1867 private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1868 return UNSAFE.compareAndSwapObject(this, syncStackOffset, cmp, val);
1869 }
1870
1871 private static long objectFieldOffset(String field, Class<?> klazz) {
1872 try {
1873 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1874 } catch (NoSuchFieldException e) {
1875 // Convert Exception to corresponding Error
1876 NoSuchFieldError error = new NoSuchFieldError(field);
1877 error.initCause(e);
1878 throw error;
1879 }
1880 }
1881 }