ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinPool.java
Revision: 1.9
Committed: Tue Aug 4 01:23:41 2009 UTC (14 years, 10 months ago) by jsr166
Branch: MAIN
Changes since 1.8: +99 -58 lines
Log Message:
sync with jsr166 package

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package java.util.concurrent;
8
9 import java.util.ArrayList;
10 import java.util.Arrays;
11 import java.util.Collection;
12 import java.util.Collections;
13 import java.util.List;
14 import java.util.concurrent.locks.Condition;
15 import java.util.concurrent.locks.LockSupport;
16 import java.util.concurrent.locks.ReentrantLock;
17 import java.util.concurrent.atomic.AtomicInteger;
18 import java.util.concurrent.atomic.AtomicLong;
19
20 /**
21 * An {@link ExecutorService} for running {@link ForkJoinTask}s.
22 * A {@code ForkJoinPool} provides the entry point for submissions
23 * from non-{@code ForkJoinTask}s, as well as management and
24 * monitoring operations.
25 *
26 * <p>A {@code ForkJoinPool} differs from other kinds of {@link
27 * ExecutorService} mainly by virtue of employing
28 * <em>work-stealing</em>: all threads in the pool attempt to find and
29 * execute subtasks created by other active tasks (eventually blocking
30 * waiting for work if none exist). This enables efficient processing
31 * when most tasks spawn other subtasks (as do most {@code
32 * ForkJoinTask}s). A {@code ForkJoinPool} may also be used for mixed
33 * execution of some plain {@code Runnable}- or {@code Callable}-
34 * based activities along with {@code ForkJoinTask}s. When setting
35 * {@linkplain #setAsyncMode async mode}, a {@code ForkJoinPool} may
36 * also be appropriate for use with fine-grained tasks of any form
37 * that are never joined. Otherwise, other {@code ExecutorService}
38 * implementations are typically more appropriate choices.
39 *
40 * <p>A {@code ForkJoinPool} is constructed with a given target
41 * parallelism level; by default, equal to the number of available
42 * processors. Unless configured otherwise via {@link
43 * #setMaintainsParallelism}, the pool attempts to maintain this
44 * number of active (or available) threads by dynamically adding,
45 * suspending, or resuming internal worker threads, even if some tasks
46 * are waiting to join others. However, no such adjustments are
47 * performed in the face of blocked IO or other unmanaged
48 * synchronization. The nested {@link ManagedBlocker} interface
49 * enables extension of the kinds of synchronization accommodated.
50 * The target parallelism level may also be changed dynamically
51 * ({@link #setParallelism}). The total number of threads may be
52 * limited using method {@link #setMaximumPoolSize}, in which case it
53 * may become possible for the activities of a pool to stall due to
54 * the lack of available threads to process new tasks.
55 *
56 * <p>In addition to execution and lifecycle control methods, this
57 * class provides status check methods (for example
58 * {@link #getStealCount}) that are intended to aid in developing,
59 * tuning, and monitoring fork/join applications. Also, method
60 * {@link #toString} returns indications of pool state in a
61 * convenient form for informal monitoring.
62 *
63 * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
64 * used for all parallel task execution in a program or subsystem.
65 * Otherwise, use would not usually outweigh the construction and
66 * bookkeeping overhead of creating a large set of threads. For
67 * example, a common pool could be used for the {@code SortTasks}
68 * illustrated in {@link RecursiveAction}. Because {@code
69 * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
70 * daemon} mode, there is typically no need to explicitly {@link
71 * #shutdown} such a pool upon program exit.
72 *
73 * <pre>
74 * static final ForkJoinPool mainPool = new ForkJoinPool();
75 * ...
76 * public void sort(long[] array) {
77 * mainPool.invoke(new SortTask(array, 0, array.length));
78 * }
79 * </pre>
80 *
81 * <p><b>Implementation notes</b>: This implementation restricts the
82 * maximum number of running threads to 32767. Attempts to create
83 * pools with greater than the maximum result in
84 * {@code IllegalArgumentException}.
85 *
86 * @since 1.7
87 * @author Doug Lea
88 */
89 public class ForkJoinPool extends AbstractExecutorService {
90
91 /*
92 * See the extended comments interspersed below for design,
93 * rationale, and walkthroughs.
94 */
95
96 /** Mask for packing and unpacking shorts */
97 private static final int shortMask = 0xffff;
98
99 /** Max pool size -- must be a power of two minus 1 */
100 private static final int MAX_THREADS = 0x7FFF;
101
102 /**
103 * Factory for creating new {@link ForkJoinWorkerThread}s.
104 * A {@code ForkJoinWorkerThreadFactory} must be defined and used
105 * for {@code ForkJoinWorkerThread} subclasses that extend base
106 * functionality or initialize threads with different contexts.
107 */
108 public static interface ForkJoinWorkerThreadFactory {
109 /**
110 * Returns a new worker thread operating in the given pool.
111 *
112 * @param pool the pool this thread works in
113 * @throws NullPointerException if pool is null
114 */
115 public ForkJoinWorkerThread newThread(ForkJoinPool pool);
116 }
117
118 /**
119 * Default ForkJoinWorkerThreadFactory implementation; creates a
120 * new ForkJoinWorkerThread.
121 */
122 static class DefaultForkJoinWorkerThreadFactory
123 implements ForkJoinWorkerThreadFactory {
124 public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
125 try {
126 return new ForkJoinWorkerThread(pool);
127 } catch (OutOfMemoryError oom) {
128 return null;
129 }
130 }
131 }
132
133 /**
134 * Creates a new ForkJoinWorkerThread. This factory is used unless
135 * overridden in ForkJoinPool constructors.
136 */
137 public static final ForkJoinWorkerThreadFactory
138 defaultForkJoinWorkerThreadFactory =
139 new DefaultForkJoinWorkerThreadFactory();
140
141 /**
142 * Permission required for callers of methods that may start or
143 * kill threads.
144 */
145 private static final RuntimePermission modifyThreadPermission =
146 new RuntimePermission("modifyThread");
147
148 /**
149 * If there is a security manager, makes sure caller has
150 * permission to modify threads.
151 */
152 private static void checkPermission() {
153 SecurityManager security = System.getSecurityManager();
154 if (security != null)
155 security.checkPermission(modifyThreadPermission);
156 }
157
158 /**
159 * Generator for assigning sequence numbers as pool names.
160 */
161 private static final AtomicInteger poolNumberGenerator =
162 new AtomicInteger();
163
164 /**
165 * Array holding all worker threads in the pool. Initialized upon
166 * first use. Array size must be a power of two. Updates and
167 * replacements are protected by workerLock, but it is always kept
168 * in a consistent enough state to be randomly accessed without
169 * locking by workers performing work-stealing.
170 */
171 volatile ForkJoinWorkerThread[] workers;
172
173 /**
174 * Lock protecting access to workers.
175 */
176 private final ReentrantLock workerLock;
177
178 /**
179 * Condition for awaitTermination.
180 */
181 private final Condition termination;
182
183 /**
184 * The uncaught exception handler used when any worker
185 * abruptly terminates
186 */
187 private Thread.UncaughtExceptionHandler ueh;
188
189 /**
190 * Creation factory for worker threads.
191 */
192 private final ForkJoinWorkerThreadFactory factory;
193
194 /**
195 * Head of stack of threads that were created to maintain
196 * parallelism when other threads blocked, but have since
197 * suspended when the parallelism level rose.
198 */
199 private volatile WaitQueueNode spareStack;
200
201 /**
202 * Sum of per-thread steal counts, updated only when threads are
203 * idle or terminating.
204 */
205 private final AtomicLong stealCount;
206
207 /**
208 * Queue for external submissions.
209 */
210 private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
211
212 /**
213 * Head of Treiber stack for barrier sync. See below for explanation.
214 */
215 private volatile WaitQueueNode syncStack;
216
217 /**
218 * The count for event barrier
219 */
220 private volatile long eventCount;
221
222 /**
223 * Pool number, just for assigning useful names to worker threads
224 */
225 private final int poolNumber;
226
227 /**
228 * The maximum allowed pool size
229 */
230 private volatile int maxPoolSize;
231
232 /**
233 * The desired parallelism level, updated only under workerLock.
234 */
235 private volatile int parallelism;
236
237 /**
238 * True if use local fifo, not default lifo, for local polling
239 */
240 private volatile boolean locallyFifo;
241
242 /**
243 * Holds number of total (i.e., created and not yet terminated)
244 * and running (i.e., not blocked on joins or other managed sync)
245 * threads, packed into one int to ensure consistent snapshot when
246 * making decisions about creating and suspending spare
247 * threads. Updated only by CAS. Note: CASes in
248 * updateRunningCount and preJoin assume that running active count
249 * is in low word, so need to be modified if this changes.
250 */
251 private volatile int workerCounts;
252
253 private static int totalCountOf(int s) { return s >>> 16; }
254 private static int runningCountOf(int s) { return s & shortMask; }
255 private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
256
257 /**
258 * Adds delta (which may be negative) to running count. This must
259 * be called before (with negative arg) and after (with positive)
260 * any managed synchronization (i.e., mainly, joins).
261 *
262 * @param delta the number to add
263 */
264 final void updateRunningCount(int delta) {
265 int s;
266 do {} while (!casWorkerCounts(s = workerCounts, s + delta));
267 }
268
269 /**
270 * Adds delta (which may be negative) to both total and running
271 * count. This must be called upon creation and termination of
272 * worker threads.
273 *
274 * @param delta the number to add
275 */
276 private void updateWorkerCount(int delta) {
277 int d = delta + (delta << 16); // add to both lo and hi parts
278 int s;
279 do {} while (!casWorkerCounts(s = workerCounts, s + d));
280 }
281
282 /**
283 * Lifecycle control. High word contains runState, low word
284 * contains the number of workers that are (probably) executing
285 * tasks. This value is atomically incremented before a worker
286 * gets a task to run, and decremented when worker has no tasks
287 * and cannot find any. These two fields are bundled together to
288 * support correct termination triggering. Note: activeCount
289 * CAS'es cheat by assuming active count is in low word, so need
290 * to be modified if this changes
291 */
292 private volatile int runControl;
293
294 // RunState values. Order among values matters
295 private static final int RUNNING = 0;
296 private static final int SHUTDOWN = 1;
297 private static final int TERMINATING = 2;
298 private static final int TERMINATED = 3;
299
300 private static int runStateOf(int c) { return c >>> 16; }
301 private static int activeCountOf(int c) { return c & shortMask; }
302 private static int runControlFor(int r, int a) { return (r << 16) + a; }
303
304 /**
305 * Tries incrementing active count; fails on contention.
306 * Called by workers before/during executing tasks.
307 *
308 * @return true on success
309 */
310 final boolean tryIncrementActiveCount() {
311 int c = runControl;
312 return casRunControl(c, c+1);
313 }
314
315 /**
316 * Tries decrementing active count; fails on contention.
317 * Possibly triggers termination on success.
318 * Called by workers when they can't find tasks.
319 *
320 * @return true on success
321 */
322 final boolean tryDecrementActiveCount() {
323 int c = runControl;
324 int nextc = c - 1;
325 if (!casRunControl(c, nextc))
326 return false;
327 if (canTerminateOnShutdown(nextc))
328 terminateOnShutdown();
329 return true;
330 }
331
332 /**
333 * Returns {@code true} if argument represents zero active count
334 * and nonzero runstate, which is the triggering condition for
335 * terminating on shutdown.
336 */
337 private static boolean canTerminateOnShutdown(int c) {
338 // i.e. least bit is nonzero runState bit
339 return ((c & -c) >>> 16) != 0;
340 }
341
342 /**
343 * Transition run state to at least the given state. Return true
344 * if not already at least given state.
345 */
346 private boolean transitionRunStateTo(int state) {
347 for (;;) {
348 int c = runControl;
349 if (runStateOf(c) >= state)
350 return false;
351 if (casRunControl(c, runControlFor(state, activeCountOf(c))))
352 return true;
353 }
354 }
355
356 /**
357 * Controls whether to add spares to maintain parallelism
358 */
359 private volatile boolean maintainsParallelism;
360
361 // Constructors
362
363 /**
364 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
365 * java.lang.Runtime#availableProcessors}, and using the {@linkplain
366 * #defaultForkJoinWorkerThreadFactory default thread factory}.
367 *
368 * @throws SecurityException if a security manager exists and
369 * the caller is not permitted to modify threads
370 * because it does not hold {@link
371 * java.lang.RuntimePermission}{@code ("modifyThread")}
372 */
373 public ForkJoinPool() {
374 this(Runtime.getRuntime().availableProcessors(),
375 defaultForkJoinWorkerThreadFactory);
376 }
377
378 /**
379 * Creates a {@code ForkJoinPool} with the indicated parallelism
380 * level and using the {@linkplain
381 * #defaultForkJoinWorkerThreadFactory default thread factory}.
382 *
383 * @param parallelism the parallelism level
384 * @throws IllegalArgumentException if parallelism less than or
385 * equal to zero
386 * @throws SecurityException if a security manager exists and
387 * the caller is not permitted to modify threads
388 * because it does not hold {@link
389 * java.lang.RuntimePermission}{@code ("modifyThread")}
390 */
391 public ForkJoinPool(int parallelism) {
392 this(parallelism, defaultForkJoinWorkerThreadFactory);
393 }
394
395 /**
396 * Creates a {@code ForkJoinPool} with parallelism equal to {@link
397 * java.lang.Runtime#availableProcessors}, and using the given
398 * thread factory.
399 *
400 * @param factory the factory for creating new threads
401 * @throws NullPointerException if factory is null
402 * @throws SecurityException if a security manager exists and
403 * the caller is not permitted to modify threads
404 * because it does not hold {@link
405 * java.lang.RuntimePermission}{@code ("modifyThread")}
406 */
407 public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
408 this(Runtime.getRuntime().availableProcessors(), factory);
409 }
410
411 /**
412 * Creates a {@code ForkJoinPool} with the given parallelism and
413 * thread factory.
414 *
415 * @param parallelism the parallelism level
416 * @param factory the factory for creating new threads
417 * @throws IllegalArgumentException if parallelism less than or
418 * equal to zero, or greater than implementation limit
419 * @throws NullPointerException if factory is null
420 * @throws SecurityException if a security manager exists and
421 * the caller is not permitted to modify threads
422 * because it does not hold {@link
423 * java.lang.RuntimePermission}{@code ("modifyThread")}
424 */
425 public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
426 if (parallelism <= 0 || parallelism > MAX_THREADS)
427 throw new IllegalArgumentException();
428 if (factory == null)
429 throw new NullPointerException();
430 checkPermission();
431 this.factory = factory;
432 this.parallelism = parallelism;
433 this.maxPoolSize = MAX_THREADS;
434 this.maintainsParallelism = true;
435 this.poolNumber = poolNumberGenerator.incrementAndGet();
436 this.workerLock = new ReentrantLock();
437 this.termination = workerLock.newCondition();
438 this.stealCount = new AtomicLong();
439 this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
440 // worker array and workers are lazily constructed
441 }
442
443 /**
444 * Creates a new worker thread using factory.
445 *
446 * @param index the index to assign worker
447 * @return new worker, or null if factory failed
448 */
449 private ForkJoinWorkerThread createWorker(int index) {
450 Thread.UncaughtExceptionHandler h = ueh;
451 ForkJoinWorkerThread w = factory.newThread(this);
452 if (w != null) {
453 w.poolIndex = index;
454 w.setDaemon(true);
455 w.setAsyncMode(locallyFifo);
456 w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
457 if (h != null)
458 w.setUncaughtExceptionHandler(h);
459 }
460 return w;
461 }
462
463 /**
464 * Returns a good size for worker array given pool size.
465 * Currently requires size to be a power of two.
466 */
467 private static int arraySizeFor(int poolSize) {
468 if (poolSize <= 1)
469 return 1;
470 // See Hackers Delight, sec 3.2
471 int c = poolSize >= MAX_THREADS ? MAX_THREADS : (poolSize - 1);
472 c |= c >>> 1;
473 c |= c >>> 2;
474 c |= c >>> 4;
475 c |= c >>> 8;
476 c |= c >>> 16;
477 return c + 1;
478 }
479
480 /**
481 * Creates or resizes array if necessary to hold newLength.
482 * Call only under exclusion.
483 *
484 * @return the array
485 */
486 private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
487 ForkJoinWorkerThread[] ws = workers;
488 if (ws == null)
489 return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
490 else if (newLength > ws.length)
491 return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
492 else
493 return ws;
494 }
495
496 /**
497 * Tries to shrink workers into smaller array after one or more terminate.
498 */
499 private void tryShrinkWorkerArray() {
500 ForkJoinWorkerThread[] ws = workers;
501 if (ws != null) {
502 int len = ws.length;
503 int last = len - 1;
504 while (last >= 0 && ws[last] == null)
505 --last;
506 int newLength = arraySizeFor(last+1);
507 if (newLength < len)
508 workers = Arrays.copyOf(ws, newLength);
509 }
510 }
511
512 /**
513 * Initializes workers if necessary.
514 */
515 final void ensureWorkerInitialization() {
516 ForkJoinWorkerThread[] ws = workers;
517 if (ws == null) {
518 final ReentrantLock lock = this.workerLock;
519 lock.lock();
520 try {
521 ws = workers;
522 if (ws == null) {
523 int ps = parallelism;
524 ws = ensureWorkerArrayCapacity(ps);
525 for (int i = 0; i < ps; ++i) {
526 ForkJoinWorkerThread w = createWorker(i);
527 if (w != null) {
528 ws[i] = w;
529 w.start();
530 updateWorkerCount(1);
531 }
532 }
533 }
534 } finally {
535 lock.unlock();
536 }
537 }
538 }
539
540 /**
541 * Worker creation and startup for threads added via setParallelism.
542 */
543 private void createAndStartAddedWorkers() {
544 resumeAllSpares(); // Allow spares to convert to nonspare
545 int ps = parallelism;
546 ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
547 int len = ws.length;
548 // Sweep through slots, to keep lowest indices most populated
549 int k = 0;
550 while (k < len) {
551 if (ws[k] != null) {
552 ++k;
553 continue;
554 }
555 int s = workerCounts;
556 int tc = totalCountOf(s);
557 int rc = runningCountOf(s);
558 if (rc >= ps || tc >= ps)
559 break;
560 if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
561 ForkJoinWorkerThread w = createWorker(k);
562 if (w != null) {
563 ws[k++] = w;
564 w.start();
565 }
566 else {
567 updateWorkerCount(-1); // back out on failed creation
568 break;
569 }
570 }
571 }
572 }
573
574 // Execution methods
575
576 /**
577 * Common code for execute, invoke and submit
578 */
579 private <T> void doSubmit(ForkJoinTask<T> task) {
580 if (task == null)
581 throw new NullPointerException();
582 if (isShutdown())
583 throw new RejectedExecutionException();
584 if (workers == null)
585 ensureWorkerInitialization();
586 submissionQueue.offer(task);
587 signalIdleWorkers();
588 }
589
590 /**
591 * Performs the given task, returning its result upon completion.
592 *
593 * @param task the task
594 * @return the task's result
595 * @throws NullPointerException if task is null
596 * @throws RejectedExecutionException if pool is shut down
597 */
598 public <T> T invoke(ForkJoinTask<T> task) {
599 doSubmit(task);
600 return task.join();
601 }
602
603 /**
604 * Arranges for (asynchronous) execution of the given task.
605 *
606 * @param task the task
607 * @throws NullPointerException if task is null
608 * @throws RejectedExecutionException if pool is shut down
609 */
610 public void execute(ForkJoinTask<?> task) {
611 doSubmit(task);
612 }
613
614 // AbstractExecutorService methods
615
616 public void execute(Runnable task) {
617 ForkJoinTask<?> job;
618 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
619 job = (ForkJoinTask<?>) task;
620 else
621 job = ForkJoinTask.adapt(task, null);
622 doSubmit(job);
623 }
624
625 public <T> ForkJoinTask<T> submit(Callable<T> task) {
626 ForkJoinTask<T> job = ForkJoinTask.adapt(task);
627 doSubmit(job);
628 return job;
629 }
630
631 public <T> ForkJoinTask<T> submit(Runnable task, T result) {
632 ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
633 doSubmit(job);
634 return job;
635 }
636
637 public ForkJoinTask<?> submit(Runnable task) {
638 ForkJoinTask<?> job;
639 if (task instanceof ForkJoinTask<?>) // avoid re-wrap
640 job = (ForkJoinTask<?>) task;
641 else
642 job = ForkJoinTask.adapt(task, null);
643 doSubmit(job);
644 return job;
645 }
646
647 /**
648 * Submits a ForkJoinTask for execution.
649 *
650 * @param task the task to submit
651 * @return the task
652 * @throws RejectedExecutionException if the task cannot be
653 * scheduled for execution
654 * @throws NullPointerException if the task is null
655 */
656 public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
657 doSubmit(task);
658 return task;
659 }
660
661
662 public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
663 ArrayList<ForkJoinTask<T>> forkJoinTasks =
664 new ArrayList<ForkJoinTask<T>>(tasks.size());
665 for (Callable<T> task : tasks)
666 forkJoinTasks.add(ForkJoinTask.adapt(task));
667 invoke(new InvokeAll<T>(forkJoinTasks));
668
669 @SuppressWarnings({"unchecked", "rawtypes"})
670 List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
671 return futures;
672 }
673
674 static final class InvokeAll<T> extends RecursiveAction {
675 final ArrayList<ForkJoinTask<T>> tasks;
676 InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
677 public void compute() {
678 try { invokeAll(tasks); }
679 catch (Exception ignore) {}
680 }
681 private static final long serialVersionUID = -7914297376763021607L;
682 }
683
684 // Configuration and status settings and queries
685
686 /**
687 * Returns the factory used for constructing new workers.
688 *
689 * @return the factory used for constructing new workers
690 */
691 public ForkJoinWorkerThreadFactory getFactory() {
692 return factory;
693 }
694
695 /**
696 * Returns the handler for internal worker threads that terminate
697 * due to unrecoverable errors encountered while executing tasks.
698 *
699 * @return the handler, or {@code null} if none
700 */
701 public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
702 Thread.UncaughtExceptionHandler h;
703 final ReentrantLock lock = this.workerLock;
704 lock.lock();
705 try {
706 h = ueh;
707 } finally {
708 lock.unlock();
709 }
710 return h;
711 }
712
713 /**
714 * Sets the handler for internal worker threads that terminate due
715 * to unrecoverable errors encountered while executing tasks.
716 * Unless set, the current default or ThreadGroup handler is used
717 * as handler.
718 *
719 * @param h the new handler
720 * @return the old handler, or {@code null} if none
721 * @throws SecurityException if a security manager exists and
722 * the caller is not permitted to modify threads
723 * because it does not hold {@link
724 * java.lang.RuntimePermission}{@code ("modifyThread")}
725 */
726 public Thread.UncaughtExceptionHandler
727 setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
728 checkPermission();
729 Thread.UncaughtExceptionHandler old = null;
730 final ReentrantLock lock = this.workerLock;
731 lock.lock();
732 try {
733 old = ueh;
734 ueh = h;
735 ForkJoinWorkerThread[] ws = workers;
736 if (ws != null) {
737 for (int i = 0; i < ws.length; ++i) {
738 ForkJoinWorkerThread w = ws[i];
739 if (w != null)
740 w.setUncaughtExceptionHandler(h);
741 }
742 }
743 } finally {
744 lock.unlock();
745 }
746 return old;
747 }
748
749
750 /**
751 * Sets the target parallelism level of this pool.
752 *
753 * @param parallelism the target parallelism
754 * @throws IllegalArgumentException if parallelism less than or
755 * equal to zero or greater than maximum size bounds
756 * @throws SecurityException if a security manager exists and
757 * the caller is not permitted to modify threads
758 * because it does not hold {@link
759 * java.lang.RuntimePermission}{@code ("modifyThread")}
760 */
761 public void setParallelism(int parallelism) {
762 checkPermission();
763 if (parallelism <= 0 || parallelism > maxPoolSize)
764 throw new IllegalArgumentException();
765 final ReentrantLock lock = this.workerLock;
766 lock.lock();
767 try {
768 if (isProcessingTasks()) {
769 int p = this.parallelism;
770 this.parallelism = parallelism;
771 if (parallelism > p)
772 createAndStartAddedWorkers();
773 else
774 trimSpares();
775 }
776 } finally {
777 lock.unlock();
778 }
779 signalIdleWorkers();
780 }
781
782 /**
783 * Returns the targeted parallelism level of this pool.
784 *
785 * @return the targeted parallelism level of this pool
786 */
787 public int getParallelism() {
788 return parallelism;
789 }
790
791 /**
792 * Returns the number of worker threads that have started but not
793 * yet terminated. This result returned by this method may differ
794 * from {@link #getParallelism} when threads are created to
795 * maintain parallelism when others are cooperatively blocked.
796 *
797 * @return the number of worker threads
798 */
799 public int getPoolSize() {
800 return totalCountOf(workerCounts);
801 }
802
803 /**
804 * Returns the maximum number of threads allowed to exist in the
805 * pool. Unless set using {@link #setMaximumPoolSize}, the
806 * maximum is an implementation-defined value designed only to
807 * prevent runaway growth.
808 *
809 * @return the maximum
810 */
811 public int getMaximumPoolSize() {
812 return maxPoolSize;
813 }
814
815 /**
816 * Sets the maximum number of threads allowed to exist in the
817 * pool. Setting this value has no effect on current pool
818 * size. It controls construction of new threads.
819 *
820 * @throws IllegalArgumentException if negative or greater than
821 * internal implementation limit
822 */
823 public void setMaximumPoolSize(int newMax) {
824 if (newMax < 0 || newMax > MAX_THREADS)
825 throw new IllegalArgumentException();
826 maxPoolSize = newMax;
827 }
828
829
830 /**
831 * Returns {@code true} if this pool dynamically maintains its
832 * target parallelism level. If false, new threads are added only
833 * to avoid possible starvation. This setting is by default true.
834 *
835 * @return {@code true} if maintains parallelism
836 */
837 public boolean getMaintainsParallelism() {
838 return maintainsParallelism;
839 }
840
841 /**
842 * Sets whether this pool dynamically maintains its target
843 * parallelism level. If false, new threads are added only to
844 * avoid possible starvation.
845 *
846 * @param enable {@code true} to maintain parallelism
847 */
848 public void setMaintainsParallelism(boolean enable) {
849 maintainsParallelism = enable;
850 }
851
852 /**
853 * Establishes local first-in-first-out scheduling mode for forked
854 * tasks that are never joined. This mode may be more appropriate
855 * than default locally stack-based mode in applications in which
856 * worker threads only process asynchronous tasks. This method is
857 * designed to be invoked only when the pool is quiescent, and
858 * typically only before any tasks are submitted. The effects of
859 * invocations at other times may be unpredictable.
860 *
861 * @param async if {@code true}, use locally FIFO scheduling
862 * @return the previous mode
863 * @see #getAsyncMode
864 */
865 public boolean setAsyncMode(boolean async) {
866 boolean oldMode = locallyFifo;
867 locallyFifo = async;
868 ForkJoinWorkerThread[] ws = workers;
869 if (ws != null) {
870 for (int i = 0; i < ws.length; ++i) {
871 ForkJoinWorkerThread t = ws[i];
872 if (t != null)
873 t.setAsyncMode(async);
874 }
875 }
876 return oldMode;
877 }
878
879 /**
880 * Returns {@code true} if this pool uses local first-in-first-out
881 * scheduling mode for forked tasks that are never joined.
882 *
883 * @return {@code true} if this pool uses async mode
884 * @see #setAsyncMode
885 */
886 public boolean getAsyncMode() {
887 return locallyFifo;
888 }
889
890 /**
891 * Returns an estimate of the number of worker threads that are
892 * not blocked waiting to join tasks or for other managed
893 * synchronization.
894 *
895 * @return the number of worker threads
896 */
897 public int getRunningThreadCount() {
898 return runningCountOf(workerCounts);
899 }
900
901 /**
902 * Returns an estimate of the number of threads that are currently
903 * stealing or executing tasks. This method may overestimate the
904 * number of active threads.
905 *
906 * @return the number of active threads
907 */
908 public int getActiveThreadCount() {
909 return activeCountOf(runControl);
910 }
911
912 /**
913 * Returns an estimate of the number of threads that are currently
914 * idle waiting for tasks. This method may underestimate the
915 * number of idle threads.
916 *
917 * @return the number of idle threads
918 */
919 final int getIdleThreadCount() {
920 int c = runningCountOf(workerCounts) - activeCountOf(runControl);
921 return (c <= 0) ? 0 : c;
922 }
923
924 /**
925 * Returns {@code true} if all worker threads are currently idle.
926 * An idle worker is one that cannot obtain a task to execute
927 * because none are available to steal from other threads, and
928 * there are no pending submissions to the pool. This method is
929 * conservative; it might not return {@code true} immediately upon
930 * idleness of all threads, but will eventually become true if
931 * threads remain inactive.
932 *
933 * @return {@code true} if all threads are currently idle
934 */
935 public boolean isQuiescent() {
936 return activeCountOf(runControl) == 0;
937 }
938
939 /**
940 * Returns an estimate of the total number of tasks stolen from
941 * one thread's work queue by another. The reported value
942 * underestimates the actual total number of steals when the pool
943 * is not quiescent. This value may be useful for monitoring and
944 * tuning fork/join programs: in general, steal counts should be
945 * high enough to keep threads busy, but low enough to avoid
946 * overhead and contention across threads.
947 *
948 * @return the number of steals
949 */
950 public long getStealCount() {
951 return stealCount.get();
952 }
953
954 /**
955 * Accumulates steal count from a worker.
956 * Call only when worker known to be idle.
957 */
958 private void updateStealCount(ForkJoinWorkerThread w) {
959 int sc = w.getAndClearStealCount();
960 if (sc != 0)
961 stealCount.addAndGet(sc);
962 }
963
964 /**
965 * Returns an estimate of the total number of tasks currently held
966 * in queues by worker threads (but not including tasks submitted
967 * to the pool that have not begun executing). This value is only
968 * an approximation, obtained by iterating across all threads in
969 * the pool. This method may be useful for tuning task
970 * granularities.
971 *
972 * @return the number of queued tasks
973 */
974 public long getQueuedTaskCount() {
975 long count = 0;
976 ForkJoinWorkerThread[] ws = workers;
977 if (ws != null) {
978 for (int i = 0; i < ws.length; ++i) {
979 ForkJoinWorkerThread t = ws[i];
980 if (t != null)
981 count += t.getQueueSize();
982 }
983 }
984 return count;
985 }
986
987 /**
988 * Returns an estimate of the number of tasks submitted to this
989 * pool that have not yet begun executing. This method takes time
990 * proportional to the number of submissions.
991 *
992 * @return the number of queued submissions
993 */
994 public int getQueuedSubmissionCount() {
995 return submissionQueue.size();
996 }
997
998 /**
999 * Returns {@code true} if there are any tasks submitted to this
1000 * pool that have not yet begun executing.
1001 *
1002 * @return {@code true} if there are any queued submissions
1003 */
1004 public boolean hasQueuedSubmissions() {
1005 return !submissionQueue.isEmpty();
1006 }
1007
1008 /**
1009 * Removes and returns the next unexecuted submission if one is
1010 * available. This method may be useful in extensions to this
1011 * class that re-assign work in systems with multiple pools.
1012 *
1013 * @return the next submission, or {@code null} if none
1014 */
1015 protected ForkJoinTask<?> pollSubmission() {
1016 return submissionQueue.poll();
1017 }
1018
1019 /**
1020 * Removes all available unexecuted submitted and forked tasks
1021 * from scheduling queues and adds them to the given collection,
1022 * without altering their execution status. These may include
1023 * artificially generated or wrapped tasks. This method is
1024 * designed to be invoked only when the pool is known to be
1025 * quiescent. Invocations at other times may not remove all
1026 * tasks. A failure encountered while attempting to add elements
1027 * to collection {@code c} may result in elements being in
1028 * neither, either or both collections when the associated
1029 * exception is thrown. The behavior of this operation is
1030 * undefined if the specified collection is modified while the
1031 * operation is in progress.
1032 *
1033 * @param c the collection to transfer elements into
1034 * @return the number of elements transferred
1035 */
1036 protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1037 int n = submissionQueue.drainTo(c);
1038 ForkJoinWorkerThread[] ws = workers;
1039 if (ws != null) {
1040 for (int i = 0; i < ws.length; ++i) {
1041 ForkJoinWorkerThread w = ws[i];
1042 if (w != null)
1043 n += w.drainTasksTo(c);
1044 }
1045 }
1046 return n;
1047 }
1048
1049 /**
1050 * Returns a string identifying this pool, as well as its state,
1051 * including indications of run state, parallelism level, and
1052 * worker and task counts.
1053 *
1054 * @return a string identifying this pool, as well as its state
1055 */
1056 public String toString() {
1057 int ps = parallelism;
1058 int wc = workerCounts;
1059 int rc = runControl;
1060 long st = getStealCount();
1061 long qt = getQueuedTaskCount();
1062 long qs = getQueuedSubmissionCount();
1063 return super.toString() +
1064 "[" + runStateToString(runStateOf(rc)) +
1065 ", parallelism = " + ps +
1066 ", size = " + totalCountOf(wc) +
1067 ", active = " + activeCountOf(rc) +
1068 ", running = " + runningCountOf(wc) +
1069 ", steals = " + st +
1070 ", tasks = " + qt +
1071 ", submissions = " + qs +
1072 "]";
1073 }
1074
1075 private static String runStateToString(int rs) {
1076 switch(rs) {
1077 case RUNNING: return "Running";
1078 case SHUTDOWN: return "Shutting down";
1079 case TERMINATING: return "Terminating";
1080 case TERMINATED: return "Terminated";
1081 default: throw new Error("Unknown run state");
1082 }
1083 }
1084
1085 // lifecycle control
1086
1087 /**
1088 * Initiates an orderly shutdown in which previously submitted
1089 * tasks are executed, but no new tasks will be accepted.
1090 * Invocation has no additional effect if already shut down.
1091 * Tasks that are in the process of being submitted concurrently
1092 * during the course of this method may or may not be rejected.
1093 *
1094 * @throws SecurityException if a security manager exists and
1095 * the caller is not permitted to modify threads
1096 * because it does not hold {@link
1097 * java.lang.RuntimePermission}{@code ("modifyThread")}
1098 */
1099 public void shutdown() {
1100 checkPermission();
1101 transitionRunStateTo(SHUTDOWN);
1102 if (canTerminateOnShutdown(runControl)) {
1103 if (workers == null) { // shutting down before workers created
1104 final ReentrantLock lock = this.workerLock;
1105 lock.lock();
1106 try {
1107 if (workers == null) {
1108 terminate();
1109 transitionRunStateTo(TERMINATED);
1110 termination.signalAll();
1111 }
1112 } finally {
1113 lock.unlock();
1114 }
1115 }
1116 terminateOnShutdown();
1117 }
1118 }
1119
1120 /**
1121 * Attempts to cancel and/or stop all tasks, and reject all
1122 * subsequently submitted tasks. Tasks that are in the process of
1123 * being submitted or executed concurrently during the course of
1124 * this method may or may not be rejected. This method cancels
1125 * both existing and unexecuted tasks, in order to permit
1126 * termination in the presence of task dependencies. So the method
1127 * always returns an empty list (unlike the case for some other
1128 * Executors).
1129 *
1130 * @return an empty list
1131 * @throws SecurityException if a security manager exists and
1132 * the caller is not permitted to modify threads
1133 * because it does not hold {@link
1134 * java.lang.RuntimePermission}{@code ("modifyThread")}
1135 */
1136 public List<Runnable> shutdownNow() {
1137 checkPermission();
1138 terminate();
1139 return Collections.emptyList();
1140 }
1141
1142 /**
1143 * Returns {@code true} if all tasks have completed following shut down.
1144 *
1145 * @return {@code true} if all tasks have completed following shut down
1146 */
1147 public boolean isTerminated() {
1148 return runStateOf(runControl) == TERMINATED;
1149 }
1150
1151 /**
1152 * Returns {@code true} if the process of termination has
1153 * commenced but not yet completed. This method may be useful for
1154 * debugging. A return of {@code true} reported a sufficient
1155 * period after shutdown may indicate that submitted tasks have
1156 * ignored or suppressed interruption, causing this executor not
1157 * to properly terminate.
1158 *
1159 * @return {@code true} if terminating but not yet terminated
1160 */
1161 public boolean isTerminating() {
1162 return runStateOf(runControl) == TERMINATING;
1163 }
1164
1165 /**
1166 * Returns {@code true} if this pool has been shut down.
1167 *
1168 * @return {@code true} if this pool has been shut down
1169 */
1170 public boolean isShutdown() {
1171 return runStateOf(runControl) >= SHUTDOWN;
1172 }
1173
1174 /**
1175 * Returns true if pool is not terminating or terminated.
1176 * Used internally to suppress execution when terminating.
1177 */
1178 final boolean isProcessingTasks() {
1179 return runStateOf(runControl) < TERMINATING;
1180 }
1181
1182 /**
1183 * Blocks until all tasks have completed execution after a shutdown
1184 * request, or the timeout occurs, or the current thread is
1185 * interrupted, whichever happens first.
1186 *
1187 * @param timeout the maximum time to wait
1188 * @param unit the time unit of the timeout argument
1189 * @return {@code true} if this executor terminated and
1190 * {@code false} if the timeout elapsed before termination
1191 * @throws InterruptedException if interrupted while waiting
1192 */
1193 public boolean awaitTermination(long timeout, TimeUnit unit)
1194 throws InterruptedException {
1195 long nanos = unit.toNanos(timeout);
1196 final ReentrantLock lock = this.workerLock;
1197 lock.lock();
1198 try {
1199 for (;;) {
1200 if (isTerminated())
1201 return true;
1202 if (nanos <= 0)
1203 return false;
1204 nanos = termination.awaitNanos(nanos);
1205 }
1206 } finally {
1207 lock.unlock();
1208 }
1209 }
1210
1211 // Shutdown and termination support
1212
1213 /**
1214 * Callback from terminating worker. Nulls out the corresponding
1215 * workers slot, and if terminating, tries to terminate; else
1216 * tries to shrink workers array.
1217 *
1218 * @param w the worker
1219 */
1220 final void workerTerminated(ForkJoinWorkerThread w) {
1221 updateStealCount(w);
1222 updateWorkerCount(-1);
1223 final ReentrantLock lock = this.workerLock;
1224 lock.lock();
1225 try {
1226 ForkJoinWorkerThread[] ws = workers;
1227 if (ws != null) {
1228 int idx = w.poolIndex;
1229 if (idx >= 0 && idx < ws.length && ws[idx] == w)
1230 ws[idx] = null;
1231 if (totalCountOf(workerCounts) == 0) {
1232 terminate(); // no-op if already terminating
1233 transitionRunStateTo(TERMINATED);
1234 termination.signalAll();
1235 }
1236 else if (isProcessingTasks()) {
1237 tryShrinkWorkerArray();
1238 tryResumeSpare(true); // allow replacement
1239 }
1240 }
1241 } finally {
1242 lock.unlock();
1243 }
1244 signalIdleWorkers();
1245 }
1246
1247 /**
1248 * Initiates termination.
1249 */
1250 private void terminate() {
1251 if (transitionRunStateTo(TERMINATING)) {
1252 stopAllWorkers();
1253 resumeAllSpares();
1254 signalIdleWorkers();
1255 cancelQueuedSubmissions();
1256 cancelQueuedWorkerTasks();
1257 interruptUnterminatedWorkers();
1258 signalIdleWorkers(); // resignal after interrupt
1259 }
1260 }
1261
1262 /**
1263 * Possibly terminates when on shutdown state.
1264 */
1265 private void terminateOnShutdown() {
1266 if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1267 terminate();
1268 }
1269
1270 /**
1271 * Clears out and cancels submissions.
1272 */
1273 private void cancelQueuedSubmissions() {
1274 ForkJoinTask<?> task;
1275 while ((task = pollSubmission()) != null)
1276 task.cancel(false);
1277 }
1278
1279 /**
1280 * Cleans out worker queues.
1281 */
1282 private void cancelQueuedWorkerTasks() {
1283 final ReentrantLock lock = this.workerLock;
1284 lock.lock();
1285 try {
1286 ForkJoinWorkerThread[] ws = workers;
1287 if (ws != null) {
1288 for (int i = 0; i < ws.length; ++i) {
1289 ForkJoinWorkerThread t = ws[i];
1290 if (t != null)
1291 t.cancelTasks();
1292 }
1293 }
1294 } finally {
1295 lock.unlock();
1296 }
1297 }
1298
1299 /**
1300 * Sets each worker's status to terminating. Requires lock to avoid
1301 * conflicts with add/remove.
1302 */
1303 private void stopAllWorkers() {
1304 final ReentrantLock lock = this.workerLock;
1305 lock.lock();
1306 try {
1307 ForkJoinWorkerThread[] ws = workers;
1308 if (ws != null) {
1309 for (int i = 0; i < ws.length; ++i) {
1310 ForkJoinWorkerThread t = ws[i];
1311 if (t != null)
1312 t.shutdownNow();
1313 }
1314 }
1315 } finally {
1316 lock.unlock();
1317 }
1318 }
1319
1320 /**
1321 * Interrupts all unterminated workers. This is not required for
1322 * sake of internal control, but may help unstick user code during
1323 * shutdown.
1324 */
1325 private void interruptUnterminatedWorkers() {
1326 final ReentrantLock lock = this.workerLock;
1327 lock.lock();
1328 try {
1329 ForkJoinWorkerThread[] ws = workers;
1330 if (ws != null) {
1331 for (int i = 0; i < ws.length; ++i) {
1332 ForkJoinWorkerThread t = ws[i];
1333 if (t != null && !t.isTerminated()) {
1334 try {
1335 t.interrupt();
1336 } catch (SecurityException ignore) {
1337 }
1338 }
1339 }
1340 }
1341 } finally {
1342 lock.unlock();
1343 }
1344 }
1345
1346
1347 /*
1348 * Nodes for event barrier to manage idle threads. Queue nodes
1349 * are basic Treiber stack nodes, also used for spare stack.
1350 *
1351 * The event barrier has an event count and a wait queue (actually
1352 * a Treiber stack). Workers are enabled to look for work when
1353 * the eventCount is incremented. If they fail to find work, they
1354 * may wait for next count. Upon release, threads help others wake
1355 * up.
1356 *
1357 * Synchronization events occur only in enough contexts to
1358 * maintain overall liveness:
1359 *
1360 * - Submission of a new task to the pool
1361 * - Resizes or other changes to the workers array
1362 * - pool termination
1363 * - A worker pushing a task on an empty queue
1364 *
1365 * The case of pushing a task occurs often enough, and is heavy
1366 * enough compared to simple stack pushes, to require special
1367 * handling: Method signalWork returns without advancing count if
1368 * the queue appears to be empty. This would ordinarily result in
1369 * races causing some queued waiters not to be woken up. To avoid
1370 * this, the first worker enqueued in method sync (see
1371 * syncIsReleasable) rescans for tasks after being enqueued, and
1372 * helps signal if any are found. This works well because the
1373 * worker has nothing better to do, and so might as well help
1374 * alleviate the overhead and contention on the threads actually
1375 * doing work. Also, since event counts increments on task
1376 * availability exist to maintain liveness (rather than to force
1377 * refreshes etc), it is OK for callers to exit early if
1378 * contending with another signaller.
1379 */
1380 static final class WaitQueueNode {
1381 WaitQueueNode next; // only written before enqueued
1382 volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1383 final long count; // unused for spare stack
1384
1385 WaitQueueNode(long c, ForkJoinWorkerThread w) {
1386 count = c;
1387 thread = w;
1388 }
1389
1390 /**
1391 * Wakes up waiter, returning false if known to already
1392 */
1393 boolean signal() {
1394 ForkJoinWorkerThread t = thread;
1395 if (t == null)
1396 return false;
1397 thread = null;
1398 LockSupport.unpark(t);
1399 return true;
1400 }
1401
1402 /**
1403 * Awaits release on sync.
1404 */
1405 void awaitSyncRelease(ForkJoinPool p) {
1406 while (thread != null && !p.syncIsReleasable(this))
1407 LockSupport.park(this);
1408 }
1409
1410 /**
1411 * Awaits resumption as spare.
1412 */
1413 void awaitSpareRelease() {
1414 while (thread != null) {
1415 if (!Thread.interrupted())
1416 LockSupport.park(this);
1417 }
1418 }
1419 }
1420
1421 /**
1422 * Ensures that no thread is waiting for count to advance from the
1423 * current value of eventCount read on entry to this method, by
1424 * releasing waiting threads if necessary.
1425 *
1426 * @return the count
1427 */
1428 final long ensureSync() {
1429 long c = eventCount;
1430 WaitQueueNode q;
1431 while ((q = syncStack) != null && q.count < c) {
1432 if (casBarrierStack(q, null)) {
1433 do {
1434 q.signal();
1435 } while ((q = q.next) != null);
1436 break;
1437 }
1438 }
1439 return c;
1440 }
1441
1442 /**
1443 * Increments event count and releases waiting threads.
1444 */
1445 private void signalIdleWorkers() {
1446 long c;
1447 do {} while (!casEventCount(c = eventCount, c+1));
1448 ensureSync();
1449 }
1450
1451 /**
1452 * Signals threads waiting to poll a task. Because method sync
1453 * rechecks availability, it is OK to only proceed if queue
1454 * appears to be non-empty, and OK to skip under contention to
1455 * increment count (since some other thread succeeded).
1456 */
1457 final void signalWork() {
1458 long c;
1459 WaitQueueNode q;
1460 if (syncStack != null &&
1461 casEventCount(c = eventCount, c+1) &&
1462 (((q = syncStack) != null && q.count <= c) &&
1463 (!casBarrierStack(q, q.next) || !q.signal())))
1464 ensureSync();
1465 }
1466
1467 /**
1468 * Waits until event count advances from last value held by
1469 * caller, or if excess threads, caller is resumed as spare, or
1470 * caller or pool is terminating. Updates caller's event on exit.
1471 *
1472 * @param w the calling worker thread
1473 */
1474 final void sync(ForkJoinWorkerThread w) {
1475 updateStealCount(w); // Transfer w's count while it is idle
1476
1477 while (!w.isShutdown() && isProcessingTasks() && !suspendIfSpare(w)) {
1478 long prev = w.lastEventCount;
1479 WaitQueueNode node = null;
1480 WaitQueueNode h;
1481 while (eventCount == prev &&
1482 ((h = syncStack) == null || h.count == prev)) {
1483 if (node == null)
1484 node = new WaitQueueNode(prev, w);
1485 if (casBarrierStack(node.next = h, node)) {
1486 node.awaitSyncRelease(this);
1487 break;
1488 }
1489 }
1490 long ec = ensureSync();
1491 if (ec != prev) {
1492 w.lastEventCount = ec;
1493 break;
1494 }
1495 }
1496 }
1497
1498 /**
1499 * Returns {@code true} if worker waiting on sync can proceed:
1500 * - on signal (thread == null)
1501 * - on event count advance (winning race to notify vs signaller)
1502 * - on interrupt
1503 * - if the first queued node, we find work available
1504 * If node was not signalled and event count not advanced on exit,
1505 * then we also help advance event count.
1506 *
1507 * @return {@code true} if node can be released
1508 */
1509 final boolean syncIsReleasable(WaitQueueNode node) {
1510 long prev = node.count;
1511 if (!Thread.interrupted() && node.thread != null &&
1512 (node.next != null ||
1513 !ForkJoinWorkerThread.hasQueuedTasks(workers)) &&
1514 eventCount == prev)
1515 return false;
1516 if (node.thread != null) {
1517 node.thread = null;
1518 long ec = eventCount;
1519 if (prev <= ec) // help signal
1520 casEventCount(ec, ec+1);
1521 }
1522 return true;
1523 }
1524
1525 /**
1526 * Returns {@code true} if a new sync event occurred since last
1527 * call to sync or this method, if so, updating caller's count.
1528 */
1529 final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
1530 long lc = w.lastEventCount;
1531 long ec = ensureSync();
1532 if (ec == lc)
1533 return false;
1534 w.lastEventCount = ec;
1535 return true;
1536 }
1537
1538 // Parallelism maintenance
1539
1540 /**
1541 * Decrements running count; if too low, adds spare.
1542 *
1543 * Conceptually, all we need to do here is add or resume a
1544 * spare thread when one is about to block (and remove or
1545 * suspend it later when unblocked -- see suspendIfSpare).
1546 * However, implementing this idea requires coping with
1547 * several problems: we have imperfect information about the
1548 * states of threads. Some count updates can and usually do
1549 * lag run state changes, despite arrangements to keep them
1550 * accurate (for example, when possible, updating counts
1551 * before signalling or resuming), especially when running on
1552 * dynamic JVMs that don't optimize the infrequent paths that
1553 * update counts. Generating too many threads can make these
1554 * problems become worse, because excess threads are more
1555 * likely to be context-switched with others, slowing them all
1556 * down, especially if there is no work available, so all are
1557 * busy scanning or idling. Also, excess spare threads can
1558 * only be suspended or removed when they are idle, not
1559 * immediately when they aren't needed. So adding threads will
1560 * raise parallelism level for longer than necessary. Also,
1561 * FJ applications often encounter highly transient peaks when
1562 * many threads are blocked joining, but for less time than it
1563 * takes to create or resume spares.
1564 *
1565 * @param joinMe if non-null, return early if done
1566 * @param maintainParallelism if true, try to stay within
1567 * target counts, else create only to avoid starvation
1568 * @return true if joinMe known to be done
1569 */
1570 final boolean preJoin(ForkJoinTask<?> joinMe,
1571 boolean maintainParallelism) {
1572 maintainParallelism &= maintainsParallelism; // overrride
1573 boolean dec = false; // true when running count decremented
1574 while (spareStack == null || !tryResumeSpare(dec)) {
1575 int counts = workerCounts;
1576 if (dec || (dec = casWorkerCounts(counts, --counts))) {
1577 // CAS cheat
1578 if (!needSpare(counts, maintainParallelism))
1579 break;
1580 if (joinMe.status < 0)
1581 return true;
1582 if (tryAddSpare(counts))
1583 break;
1584 }
1585 }
1586 return false;
1587 }
1588
1589 /**
1590 * Same idea as preJoin
1591 */
1592 final boolean preBlock(ManagedBlocker blocker,
1593 boolean maintainParallelism) {
1594 maintainParallelism &= maintainsParallelism;
1595 boolean dec = false;
1596 while (spareStack == null || !tryResumeSpare(dec)) {
1597 int counts = workerCounts;
1598 if (dec || (dec = casWorkerCounts(counts, --counts))) {
1599 if (!needSpare(counts, maintainParallelism))
1600 break;
1601 if (blocker.isReleasable())
1602 return true;
1603 if (tryAddSpare(counts))
1604 break;
1605 }
1606 }
1607 return false;
1608 }
1609
1610 /**
1611 * Returns {@code true} if a spare thread appears to be needed.
1612 * If maintaining parallelism, returns true when the deficit in
1613 * running threads is more than the surplus of total threads, and
1614 * there is apparently some work to do. This self-limiting rule
1615 * means that the more threads that have already been added, the
1616 * less parallelism we will tolerate before adding another.
1617 *
1618 * @param counts current worker counts
1619 * @param maintainParallelism try to maintain parallelism
1620 */
1621 private boolean needSpare(int counts, boolean maintainParallelism) {
1622 int ps = parallelism;
1623 int rc = runningCountOf(counts);
1624 int tc = totalCountOf(counts);
1625 int runningDeficit = ps - rc;
1626 int totalSurplus = tc - ps;
1627 return (tc < maxPoolSize &&
1628 (rc == 0 || totalSurplus < 0 ||
1629 (maintainParallelism &&
1630 runningDeficit > totalSurplus &&
1631 ForkJoinWorkerThread.hasQueuedTasks(workers))));
1632 }
1633
1634 /**
1635 * Adds a spare worker if lock available and no more than the
1636 * expected numbers of threads exist.
1637 *
1638 * @return true if successful
1639 */
1640 private boolean tryAddSpare(int expectedCounts) {
1641 final ReentrantLock lock = this.workerLock;
1642 int expectedRunning = runningCountOf(expectedCounts);
1643 int expectedTotal = totalCountOf(expectedCounts);
1644 boolean success = false;
1645 boolean locked = false;
1646 // confirm counts while locking; CAS after obtaining lock
1647 try {
1648 for (;;) {
1649 int s = workerCounts;
1650 int tc = totalCountOf(s);
1651 int rc = runningCountOf(s);
1652 if (rc > expectedRunning || tc > expectedTotal)
1653 break;
1654 if (!locked && !(locked = lock.tryLock()))
1655 break;
1656 if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1657 createAndStartSpare(tc);
1658 success = true;
1659 break;
1660 }
1661 }
1662 } finally {
1663 if (locked)
1664 lock.unlock();
1665 }
1666 return success;
1667 }
1668
1669 /**
1670 * Adds the kth spare worker. On entry, pool counts are already
1671 * adjusted to reflect addition.
1672 */
1673 private void createAndStartSpare(int k) {
1674 ForkJoinWorkerThread w = null;
1675 ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1676 int len = ws.length;
1677 // Probably, we can place at slot k. If not, find empty slot
1678 if (k < len && ws[k] != null) {
1679 for (k = 0; k < len && ws[k] != null; ++k)
1680 ;
1681 }
1682 if (k < len && isProcessingTasks() && (w = createWorker(k)) != null) {
1683 ws[k] = w;
1684 w.start();
1685 }
1686 else
1687 updateWorkerCount(-1); // adjust on failure
1688 signalIdleWorkers();
1689 }
1690
1691 /**
1692 * Suspends calling thread w if there are excess threads. Called
1693 * only from sync. Spares are enqueued in a Treiber stack using
1694 * the same WaitQueueNodes as barriers. They are resumed mainly
1695 * in preJoin, but are also woken on pool events that require all
1696 * threads to check run state.
1697 *
1698 * @param w the caller
1699 */
1700 private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1701 WaitQueueNode node = null;
1702 int s;
1703 while (parallelism < runningCountOf(s = workerCounts)) {
1704 if (node == null)
1705 node = new WaitQueueNode(0, w);
1706 if (casWorkerCounts(s, s-1)) { // representation-dependent
1707 // push onto stack
1708 do {} while (!casSpareStack(node.next = spareStack, node));
1709 // block until released by resumeSpare
1710 node.awaitSpareRelease();
1711 return true;
1712 }
1713 }
1714 return false;
1715 }
1716
1717 /**
1718 * Tries to pop and resume a spare thread.
1719 *
1720 * @param updateCount if true, increment running count on success
1721 * @return true if successful
1722 */
1723 private boolean tryResumeSpare(boolean updateCount) {
1724 WaitQueueNode q;
1725 while ((q = spareStack) != null) {
1726 if (casSpareStack(q, q.next)) {
1727 if (updateCount)
1728 updateRunningCount(1);
1729 q.signal();
1730 return true;
1731 }
1732 }
1733 return false;
1734 }
1735
1736 /**
1737 * Pops and resumes all spare threads. Same idea as ensureSync.
1738 *
1739 * @return true if any spares released
1740 */
1741 private boolean resumeAllSpares() {
1742 WaitQueueNode q;
1743 while ( (q = spareStack) != null) {
1744 if (casSpareStack(q, null)) {
1745 do {
1746 updateRunningCount(1);
1747 q.signal();
1748 } while ((q = q.next) != null);
1749 return true;
1750 }
1751 }
1752 return false;
1753 }
1754
1755 /**
1756 * Pops and shuts down excessive spare threads. Call only while
1757 * holding lock. This is not guaranteed to eliminate all excess
1758 * threads, only those suspended as spares, which are the ones
1759 * unlikely to be needed in the future.
1760 */
1761 private void trimSpares() {
1762 int surplus = totalCountOf(workerCounts) - parallelism;
1763 WaitQueueNode q;
1764 while (surplus > 0 && (q = spareStack) != null) {
1765 if (casSpareStack(q, null)) {
1766 do {
1767 updateRunningCount(1);
1768 ForkJoinWorkerThread w = q.thread;
1769 if (w != null && surplus > 0 &&
1770 runningCountOf(workerCounts) > 0 && w.shutdown())
1771 --surplus;
1772 q.signal();
1773 } while ((q = q.next) != null);
1774 }
1775 }
1776 }
1777
1778 /**
1779 * Interface for extending managed parallelism for tasks running
1780 * in {@link ForkJoinPool}s.
1781 *
1782 * <p>A {@code ManagedBlocker} provides two methods.
1783 * Method {@code isReleasable} must return {@code true} if
1784 * blocking is not necessary. Method {@code block} blocks the
1785 * current thread if necessary (perhaps internally invoking
1786 * {@code isReleasable} before actually blocking).
1787 *
1788 * <p>For example, here is a ManagedBlocker based on a
1789 * ReentrantLock:
1790 * <pre> {@code
1791 * class ManagedLocker implements ManagedBlocker {
1792 * final ReentrantLock lock;
1793 * boolean hasLock = false;
1794 * ManagedLocker(ReentrantLock lock) { this.lock = lock; }
1795 * public boolean block() {
1796 * if (!hasLock)
1797 * lock.lock();
1798 * return true;
1799 * }
1800 * public boolean isReleasable() {
1801 * return hasLock || (hasLock = lock.tryLock());
1802 * }
1803 * }}</pre>
1804 */
1805 public static interface ManagedBlocker {
1806 /**
1807 * Possibly blocks the current thread, for example waiting for
1808 * a lock or condition.
1809 *
1810 * @return {@code true} if no additional blocking is necessary
1811 * (i.e., if isReleasable would return true)
1812 * @throws InterruptedException if interrupted while waiting
1813 * (the method is not required to do so, but is allowed to)
1814 */
1815 boolean block() throws InterruptedException;
1816
1817 /**
1818 * Returns {@code true} if blocking is unnecessary.
1819 */
1820 boolean isReleasable();
1821 }
1822
1823 /**
1824 * Blocks in accord with the given blocker. If the current thread
1825 * is a {@link ForkJoinWorkerThread}, this method possibly
1826 * arranges for a spare thread to be activated if necessary to
1827 * ensure parallelism while the current thread is blocked.
1828 *
1829 * <p>If {@code maintainParallelism} is {@code true} and the pool
1830 * supports it ({@link #getMaintainsParallelism}), this method
1831 * attempts to maintain the pool's nominal parallelism. Otherwise
1832 * it activates a thread only if necessary to avoid complete
1833 * starvation. This option may be preferable when blockages use
1834 * timeouts, or are almost always brief.
1835 *
1836 * <p>If the caller is not a {@link ForkJoinTask}, this method is
1837 * behaviorally equivalent to
1838 * <pre> {@code
1839 * while (!blocker.isReleasable())
1840 * if (blocker.block())
1841 * return;
1842 * }</pre>
1843 *
1844 * If the caller is a {@code ForkJoinTask}, then the pool may
1845 * first be expanded to ensure parallelism, and later adjusted.
1846 *
1847 * @param blocker the blocker
1848 * @param maintainParallelism if {@code true} and supported by
1849 * this pool, attempt to maintain the pool's nominal parallelism;
1850 * otherwise activate a thread only if necessary to avoid
1851 * complete starvation.
1852 * @throws InterruptedException if blocker.block did so
1853 */
1854 public static void managedBlock(ManagedBlocker blocker,
1855 boolean maintainParallelism)
1856 throws InterruptedException {
1857 Thread t = Thread.currentThread();
1858 ForkJoinPool pool = ((t instanceof ForkJoinWorkerThread) ?
1859 ((ForkJoinWorkerThread) t).pool : null);
1860 if (!blocker.isReleasable()) {
1861 try {
1862 if (pool == null ||
1863 !pool.preBlock(blocker, maintainParallelism))
1864 awaitBlocker(blocker);
1865 } finally {
1866 if (pool != null)
1867 pool.updateRunningCount(1);
1868 }
1869 }
1870 }
1871
1872 private static void awaitBlocker(ManagedBlocker blocker)
1873 throws InterruptedException {
1874 do {} while (!blocker.isReleasable() && !blocker.block());
1875 }
1876
1877 // AbstractExecutorService overrides. These rely on undocumented
1878 // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
1879 // implement RunnableFuture.
1880
1881 protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
1882 return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
1883 }
1884
1885 protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
1886 return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
1887 }
1888
1889 // Unsafe mechanics
1890
1891 private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
1892 private static final long eventCountOffset =
1893 objectFieldOffset("eventCount", ForkJoinPool.class);
1894 private static final long workerCountsOffset =
1895 objectFieldOffset("workerCounts", ForkJoinPool.class);
1896 private static final long runControlOffset =
1897 objectFieldOffset("runControl", ForkJoinPool.class);
1898 private static final long syncStackOffset =
1899 objectFieldOffset("syncStack",ForkJoinPool.class);
1900 private static final long spareStackOffset =
1901 objectFieldOffset("spareStack", ForkJoinPool.class);
1902
1903 private boolean casEventCount(long cmp, long val) {
1904 return UNSAFE.compareAndSwapLong(this, eventCountOffset, cmp, val);
1905 }
1906 private boolean casWorkerCounts(int cmp, int val) {
1907 return UNSAFE.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1908 }
1909 private boolean casRunControl(int cmp, int val) {
1910 return UNSAFE.compareAndSwapInt(this, runControlOffset, cmp, val);
1911 }
1912 private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1913 return UNSAFE.compareAndSwapObject(this, spareStackOffset, cmp, val);
1914 }
1915 private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1916 return UNSAFE.compareAndSwapObject(this, syncStackOffset, cmp, val);
1917 }
1918
1919 private static long objectFieldOffset(String field, Class<?> klazz) {
1920 try {
1921 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1922 } catch (NoSuchFieldException e) {
1923 // Convert Exception to corresponding Error
1924 NoSuchFieldError error = new NoSuchFieldError(field);
1925 error.initCause(e);
1926 throw error;
1927 }
1928 }
1929 }