ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinWorkerThread.java
Revision: 1.3
Committed: Sun Jul 26 17:48:58 2009 UTC (14 years, 10 months ago) by jsr166
Branch: MAIN
Changes since 1.2: +13 -12 lines
Log Message:
sync with jsr166y package

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package java.util.concurrent;
8    
9     import java.util.Collection;
10    
11     /**
12     * A thread managed by a {@link ForkJoinPool}. This class is
13     * subclassable solely for the sake of adding functionality -- there
14     * are no overridable methods dealing with scheduling or
15     * execution. However, you can override initialization and termination
16     * methods surrounding the main task processing loop. If you do
17     * create such a subclass, you will also need to supply a custom
18     * ForkJoinWorkerThreadFactory to use it in a ForkJoinPool.
19     *
20     * @since 1.7
21     * @author Doug Lea
22     */
23     public class ForkJoinWorkerThread extends Thread {
24     /*
25     * Algorithm overview:
26     *
27     * 1. Work-Stealing: Work-stealing queues are special forms of
28     * Deques that support only three of the four possible
29     * end-operations -- push, pop, and deq (aka steal), and only do
30     * so under the constraints that push and pop are called only from
31     * the owning thread, while deq may be called from other threads.
32     * (If you are unfamiliar with them, you probably want to read
33     * Herlihy and Shavit's book "The Art of Multiprocessor
34     * programming", chapter 16 describing these in more detail before
35     * proceeding.) The main work-stealing queue design is roughly
36     * similar to "Dynamic Circular Work-Stealing Deque" by David
37     * Chase and Yossi Lev, SPAA 2005
38     * (http://research.sun.com/scalable/pubs/index.html). The main
39     * difference ultimately stems from gc requirements that we null
40     * out taken slots as soon as we can, to maintain as small a
41     * footprint as possible even in programs generating huge numbers
42     * of tasks. To accomplish this, we shift the CAS arbitrating pop
43     * vs deq (steal) from being on the indices ("base" and "sp") to
44     * the slots themselves (mainly via method "casSlotNull()"). So,
45     * both a successful pop and deq mainly entail CAS'ing a non-null
46     * slot to null. Because we rely on CASes of references, we do
47     * not need tag bits on base or sp. They are simple ints as used
48     * in any circular array-based queue (see for example ArrayDeque).
49     * Updates to the indices must still be ordered in a way that
50     * guarantees that (sp - base) > 0 means the queue is empty, but
51     * otherwise may err on the side of possibly making the queue
52     * appear nonempty when a push, pop, or deq have not fully
53     * committed. Note that this means that the deq operation,
54     * considered individually, is not wait-free. One thief cannot
55     * successfully continue until another in-progress one (or, if
56     * previously empty, a push) completes. However, in the
57     * aggregate, we ensure at least probabilistic non-blockingness. If
58     * an attempted steal fails, a thief always chooses a different
59     * random victim target to try next. So, in order for one thief to
60     * progress, it suffices for any in-progress deq or new push on
61     * any empty queue to complete. One reason this works well here is
62     * that apparently-nonempty often means soon-to-be-stealable,
63     * which gives threads a chance to activate if necessary before
64     * stealing (see below).
65     *
66     * Efficient implementation of this approach currently relies on
67     * an uncomfortable amount of "Unsafe" mechanics. To maintain
68     * correct orderings, reads and writes of variable base require
69     * volatile ordering. Variable sp does not require volatile write
70     * but needs cheaper store-ordering on writes. Because they are
71     * protected by volatile base reads, reads of the queue array and
72     * its slots do not need volatile load semantics, but writes (in
73     * push) require store order and CASes (in pop and deq) require
74     * (volatile) CAS semantics. Since these combinations aren't
75     * supported using ordinary volatiles, the only way to accomplish
76     * these efficiently is to use direct Unsafe calls. (Using external
77     * AtomicIntegers and AtomicReferenceArrays for the indices and
78     * array is significantly slower because of memory locality and
79     * indirection effects.) Further, performance on most platforms is
80     * very sensitive to placement and sizing of the (resizable) queue
81     * array. Even though these queues don't usually become all that
82     * big, the initial size must be large enough to counteract cache
83     * contention effects across multiple queues (especially in the
84     * presence of GC cardmarking). Also, to improve thread-locality,
85     * queues are currently initialized immediately after the thread
86     * gets the initial signal to start processing tasks. However,
87     * all queue-related methods except pushTask are written in a way
88     * that allows them to instead be lazily allocated and/or disposed
89     * of when empty. All together, these low-level implementation
90     * choices produce as much as a factor of 4 performance
91     * improvement compared to naive implementations, and enable the
92     * processing of billions of tasks per second, sometimes at the
93     * expense of ugliness.
94     *
95     * 2. Run control: The primary run control is based on a global
96     * counter (activeCount) held by the pool. It uses an algorithm
97     * similar to that in Herlihy and Shavit section 17.6 to cause
98     * threads to eventually block when all threads declare they are
99     * inactive. (See variable "scans".) For this to work, threads
100     * must be declared active when executing tasks, and before
101     * stealing a task. They must be inactive before blocking on the
102     * Pool Barrier (awaiting a new submission or other Pool
103     * event). In between, there is some free play which we take
104     * advantage of to avoid contention and rapid flickering of the
105     * global activeCount: If inactive, we activate only if a victim
106     * queue appears to be nonempty (see above). Similarly, a thread
107     * tries to inactivate only after a full scan of other threads.
108     * The net effect is that contention on activeCount is rarely a
109     * measurable performance issue. (There are also a few other cases
110     * where we scan for work rather than retry/block upon
111     * contention.)
112     *
113     * 3. Selection control. We maintain policy of always choosing to
114     * run local tasks rather than stealing, and always trying to
115     * steal tasks before trying to run a new submission. All steals
116     * are currently performed in randomly-chosen deq-order. It may be
117     * worthwhile to bias these with locality / anti-locality
118     * information, but doing this well probably requires more
119     * lower-level information from JVMs than currently provided.
120     */
121    
122     /**
123     * Capacity of work-stealing queue array upon initialization.
124     * Must be a power of two. Initial size must be at least 2, but is
125     * padded to minimize cache effects.
126     */
127     private static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
128    
129     /**
130     * Maximum work-stealing queue array size. Must be less than or
131     * equal to 1 << 28 to ensure lack of index wraparound. (This
132     * is less than usual bounds, because we need leftshift by 3
133     * to be in int range).
134     */
135     private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 28;
136    
137     /**
138     * The pool this thread works in. Accessed directly by ForkJoinTask.
139     */
140     final ForkJoinPool pool;
141    
142     /**
143     * The work-stealing queue array. Size must be a power of two.
144     * Initialized when thread starts, to improve memory locality.
145     */
146     private ForkJoinTask<?>[] queue;
147    
148     /**
149     * Index (mod queue.length) of next queue slot to push to or pop
150     * from. It is written only by owner thread, via ordered store.
151     * Both sp and base are allowed to wrap around on overflow, but
152     * (sp - base) still estimates size.
153     */
154     private volatile int sp;
155    
156     /**
157     * Index (mod queue.length) of least valid queue slot, which is
158     * always the next position to steal from if nonempty.
159     */
160     private volatile int base;
161    
162     /**
163     * Activity status. When true, this worker is considered active.
164     * Must be false upon construction. It must be true when executing
165     * tasks, and BEFORE stealing a task. It must be false before
166     * calling pool.sync.
167     */
168     private boolean active;
169    
170     /**
171     * Run state of this worker. Supports simple versions of the usual
172     * shutdown/shutdownNow control.
173     */
174     private volatile int runState;
175    
176     /**
177     * Seed for random number generator for choosing steal victims.
178     * Uses Marsaglia xorshift. Must be nonzero upon initialization.
179     */
180     private int seed;
181    
182     /**
183     * Number of steals, transferred to pool when idle
184     */
185     private int stealCount;
186    
187     /**
188     * Index of this worker in pool array. Set once by pool before
189     * running, and accessed directly by pool during cleanup etc.
190     */
191     int poolIndex;
192    
193     /**
194     * The last barrier event waited for. Accessed in pool callback
195     * methods, but only by current thread.
196     */
197     long lastEventCount;
198    
199     /**
200     * True if use local fifo, not default lifo, for local polling
201     */
202     private boolean locallyFifo;
203    
204     /**
205     * Creates a ForkJoinWorkerThread operating in the given pool.
206     *
207     * @param pool the pool this thread works in
208     * @throws NullPointerException if pool is null
209     */
210     protected ForkJoinWorkerThread(ForkJoinPool pool) {
211     if (pool == null) throw new NullPointerException();
212     this.pool = pool;
213     // Note: poolIndex is set by pool during construction
214     // Remaining initialization is deferred to onStart
215     }
216    
217     // Public access methods
218    
219     /**
220     * Returns the pool hosting this thread.
221     *
222     * @return the pool
223     */
224     public ForkJoinPool getPool() {
225     return pool;
226     }
227    
228     /**
229     * Returns the index number of this thread in its pool. The
230     * returned value ranges from zero to the maximum number of
231     * threads (minus one) that have ever been created in the pool.
232     * This method may be useful for applications that track status or
233     * collect results per-worker rather than per-task.
234     *
235     * @return the index number
236     */
237     public int getPoolIndex() {
238     return poolIndex;
239     }
240    
241     /**
242     * Establishes local first-in-first-out scheduling mode for forked
243     * tasks that are never joined.
244     *
245     * @param async if true, use locally FIFO scheduling
246     */
247     void setAsyncMode(boolean async) {
248     locallyFifo = async;
249     }
250    
251     // Runstate management
252    
253     // Runstate values. Order matters
254     private static final int RUNNING = 0;
255     private static final int SHUTDOWN = 1;
256     private static final int TERMINATING = 2;
257     private static final int TERMINATED = 3;
258    
259     final boolean isShutdown() { return runState >= SHUTDOWN; }
260     final boolean isTerminating() { return runState >= TERMINATING; }
261     final boolean isTerminated() { return runState == TERMINATED; }
262     final boolean shutdown() { return transitionRunStateTo(SHUTDOWN); }
263     final boolean shutdownNow() { return transitionRunStateTo(TERMINATING); }
264    
265     /**
266     * Transitions to at least the given state. Returns true if not
267     * already at least at given state.
268     */
269     private boolean transitionRunStateTo(int state) {
270     for (;;) {
271     int s = runState;
272     if (s >= state)
273     return false;
274     if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, state))
275     return true;
276     }
277     }
278    
279     /**
280     * Tries to set status to active; fails on contention.
281     */
282     private boolean tryActivate() {
283     if (!active) {
284     if (!pool.tryIncrementActiveCount())
285     return false;
286     active = true;
287     }
288     return true;
289     }
290    
291     /**
292     * Tries to set status to inactive; fails on contention.
293     */
294     private boolean tryInactivate() {
295     if (active) {
296     if (!pool.tryDecrementActiveCount())
297     return false;
298     active = false;
299     }
300     return true;
301     }
302    
303     /**
304     * Computes next value for random victim probe. Scans don't
305     * require a very high quality generator, but also not a crummy
306     * one. Marsaglia xor-shift is cheap and works well.
307     */
308     private static int xorShift(int r) {
309     r ^= r << 1;
310     r ^= r >>> 3;
311     r ^= r << 10;
312     return r;
313     }
314    
315     // Lifecycle methods
316    
317     /**
318     * This method is required to be public, but should never be
319     * called explicitly. It performs the main run loop to execute
320     * ForkJoinTasks.
321     */
322     public void run() {
323     Throwable exception = null;
324     try {
325     onStart();
326     pool.sync(this); // await first pool event
327     mainLoop();
328     } catch (Throwable ex) {
329     exception = ex;
330     } finally {
331     onTermination(exception);
332     }
333     }
334    
335     /**
336     * Executes tasks until shut down.
337     */
338     private void mainLoop() {
339     while (!isShutdown()) {
340     ForkJoinTask<?> t = pollTask();
341     if (t != null || (t = pollSubmission()) != null)
342     t.quietlyExec();
343     else if (tryInactivate())
344     pool.sync(this);
345     }
346     }
347    
348     /**
349     * Initializes internal state after construction but before
350     * processing any tasks. If you override this method, you must
351     * invoke super.onStart() at the beginning of the method.
352     * Initialization requires care: Most fields must have legal
353     * default values, to ensure that attempted accesses from other
354     * threads work correctly even before this thread starts
355     * processing tasks.
356     */
357     protected void onStart() {
358     // Allocate while starting to improve chances of thread-local
359     // isolation
360     queue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
361     // Initial value of seed need not be especially random but
362     // should differ across workers and must be nonzero
363     int p = poolIndex + 1;
364     seed = p + (p << 8) + (p << 16) + (p << 24); // spread bits
365     }
366    
367     /**
368     * Performs cleanup associated with termination of this worker
369     * thread. If you override this method, you must invoke
370     * {@code super.onTermination} at the end of the overridden method.
371     *
372     * @param exception the exception causing this thread to abort due
373     * to an unrecoverable error, or null if completed normally
374     */
375     protected void onTermination(Throwable exception) {
376     // Execute remaining local tasks unless aborting or terminating
377     while (exception == null && !pool.isTerminating() && base != sp) {
378     try {
379     ForkJoinTask<?> t = popTask();
380     if (t != null)
381     t.quietlyExec();
382     } catch (Throwable ex) {
383     exception = ex;
384     }
385     }
386     // Cancel other tasks, transition status, notify pool, and
387     // propagate exception to uncaught exception handler
388     try {
389     do {} while (!tryInactivate()); // ensure inactive
390     cancelTasks();
391     runState = TERMINATED;
392     pool.workerTerminated(this);
393     } catch (Throwable ex) { // Shouldn't ever happen
394     if (exception == null) // but if so, at least rethrown
395     exception = ex;
396     } finally {
397     if (exception != null)
398     ForkJoinTask.rethrowException(exception);
399     }
400     }
401    
402     // Intrinsics-based support for queue operations.
403    
404     /**
405     * Adds in store-order the given task at given slot of q to null.
406     * Caller must ensure q is non-null and index is in range.
407     */
408     private static void setSlot(ForkJoinTask<?>[] q, int i,
409     ForkJoinTask<?> t) {
410     UNSAFE.putOrderedObject(q, (i << qShift) + qBase, t);
411     }
412    
413     /**
414     * CAS given slot of q to null. Caller must ensure q is non-null
415     * and index is in range.
416     */
417     private static boolean casSlotNull(ForkJoinTask<?>[] q, int i,
418     ForkJoinTask<?> t) {
419     return UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase, t, null);
420     }
421    
422     /**
423     * Sets sp in store-order.
424     */
425     private void storeSp(int s) {
426     UNSAFE.putOrderedInt(this, spOffset, s);
427     }
428    
429     // Main queue methods
430    
431     /**
432     * Pushes a task. Called only by current thread.
433     *
434     * @param t the task. Caller must ensure non-null.
435     */
436     final void pushTask(ForkJoinTask<?> t) {
437     ForkJoinTask<?>[] q = queue;
438     int mask = q.length - 1;
439     int s = sp;
440     setSlot(q, s & mask, t);
441     storeSp(++s);
442     if ((s -= base) == 1)
443     pool.signalWork();
444     else if (s >= mask)
445     growQueue();
446     }
447    
448     /**
449     * Tries to take a task from the base of the queue, failing if
450     * either empty or contended.
451     *
452     * @return a task, or null if none or contended
453     */
454     final ForkJoinTask<?> deqTask() {
455     ForkJoinTask<?> t;
456     ForkJoinTask<?>[] q;
457     int i;
458     int b;
459     if (sp != (b = base) &&
460     (q = queue) != null && // must read q after b
461     (t = q[i = (q.length - 1) & b]) != null &&
462     casSlotNull(q, i, t)) {
463     base = b + 1;
464     return t;
465     }
466     return null;
467     }
468    
469     /**
470     * Returns a popped task, or null if empty. Ensures active status
471     * if non-null. Called only by current thread.
472     */
473     final ForkJoinTask<?> popTask() {
474     int s = sp;
475     while (s != base) {
476     if (tryActivate()) {
477     ForkJoinTask<?>[] q = queue;
478     int mask = q.length - 1;
479     int i = (s - 1) & mask;
480     ForkJoinTask<?> t = q[i];
481     if (t == null || !casSlotNull(q, i, t))
482     break;
483     storeSp(s - 1);
484     return t;
485     }
486     }
487     return null;
488     }
489    
490     /**
491     * Specialized version of popTask to pop only if
492     * topmost element is the given task. Called only
493     * by current thread while active.
494     *
495     * @param t the task. Caller must ensure non-null.
496     */
497     final boolean unpushTask(ForkJoinTask<?> t) {
498     ForkJoinTask<?>[] q = queue;
499     int mask = q.length - 1;
500     int s = sp - 1;
501     if (casSlotNull(q, s & mask, t)) {
502     storeSp(s);
503     return true;
504     }
505     return false;
506     }
507    
508     /**
509     * Returns next task.
510     */
511     final ForkJoinTask<?> peekTask() {
512     ForkJoinTask<?>[] q = queue;
513     if (q == null)
514     return null;
515     int mask = q.length - 1;
516     int i = locallyFifo ? base : (sp - 1);
517     return q[i & mask];
518     }
519    
520     /**
521     * Doubles queue array size. Transfers elements by emulating
522     * steals (deqs) from old array and placing, oldest first, into
523     * new array.
524     */
525     private void growQueue() {
526     ForkJoinTask<?>[] oldQ = queue;
527     int oldSize = oldQ.length;
528     int newSize = oldSize << 1;
529     if (newSize > MAXIMUM_QUEUE_CAPACITY)
530     throw new RejectedExecutionException("Queue capacity exceeded");
531     ForkJoinTask<?>[] newQ = queue = new ForkJoinTask<?>[newSize];
532    
533     int b = base;
534     int bf = b + oldSize;
535     int oldMask = oldSize - 1;
536     int newMask = newSize - 1;
537     do {
538     int oldIndex = b & oldMask;
539     ForkJoinTask<?> t = oldQ[oldIndex];
540     if (t != null && !casSlotNull(oldQ, oldIndex, t))
541     t = null;
542     setSlot(newQ, b & newMask, t);
543     } while (++b != bf);
544     pool.signalWork();
545     }
546    
547     /**
548     * Tries to steal a task from another worker. Starts at a random
549     * index of workers array, and probes workers until finding one
550     * with non-empty queue or finding that all are empty. It
551     * randomly selects the first n probes. If these are empty, it
552     * resorts to a full circular traversal, which is necessary to
553     * accurately set active status by caller. Also restarts if pool
554     * events occurred since last scan, which forces refresh of
555     * workers array, in case barrier was associated with resize.
556     *
557     * This method must be both fast and quiet -- usually avoiding
558     * memory accesses that could disrupt cache sharing etc other than
559     * those needed to check for and take tasks. This accounts for,
560     * among other things, updating random seed in place without
561     * storing it until exit.
562     *
563     * @return a task, or null if none found
564     */
565     private ForkJoinTask<?> scan() {
566     ForkJoinTask<?> t = null;
567     int r = seed; // extract once to keep scan quiet
568     ForkJoinWorkerThread[] ws; // refreshed on outer loop
569     int mask; // must be power 2 minus 1 and > 0
570     outer:do {
571     if ((ws = pool.workers) != null && (mask = ws.length - 1) > 0) {
572     int idx = r;
573     int probes = ~mask; // use random index while negative
574     for (;;) {
575     r = xorShift(r); // update random seed
576     ForkJoinWorkerThread v = ws[mask & idx];
577     if (v == null || v.sp == v.base) {
578     if (probes <= mask)
579     idx = (probes++ < 0) ? r : (idx + 1);
580     else
581     break;
582     }
583     else if (!tryActivate() || (t = v.deqTask()) == null)
584     continue outer; // restart on contention
585     else
586     break outer;
587     }
588     }
589     } while (pool.hasNewSyncEvent(this)); // retry on pool events
590     seed = r;
591     return t;
592     }
593    
594     /**
595     * Gets and removes a local or stolen task.
596     *
597     * @return a task, if available
598     */
599     final ForkJoinTask<?> pollTask() {
600     ForkJoinTask<?> t = locallyFifo ? deqTask() : popTask();
601     if (t == null && (t = scan()) != null)
602     ++stealCount;
603     return t;
604     }
605    
606     /**
607     * Gets a local task.
608     *
609     * @return a task, if available
610     */
611     final ForkJoinTask<?> pollLocalTask() {
612     return locallyFifo ? deqTask() : popTask();
613     }
614    
615     /**
616     * Returns a pool submission, if one exists, activating first.
617     *
618     * @return a submission, if available
619     */
620     private ForkJoinTask<?> pollSubmission() {
621     ForkJoinPool p = pool;
622     while (p.hasQueuedSubmissions()) {
623     ForkJoinTask<?> t;
624     if (tryActivate() && (t = p.pollSubmission()) != null)
625     return t;
626     }
627     return null;
628     }
629    
630     // Methods accessed only by Pool
631    
632     /**
633     * Removes and cancels all tasks in queue. Can be called from any
634     * thread.
635     */
636     final void cancelTasks() {
637     ForkJoinTask<?> t;
638     while (base != sp && (t = deqTask()) != null)
639     t.cancelIgnoringExceptions();
640     }
641    
642     /**
643     * Drains tasks to given collection c.
644     *
645     * @return the number of tasks drained
646     */
647     final int drainTasksTo(Collection<ForkJoinTask<?>> c) {
648     int n = 0;
649     ForkJoinTask<?> t;
650     while (base != sp && (t = deqTask()) != null) {
651     c.add(t);
652     ++n;
653     }
654     return n;
655     }
656    
657     /**
658     * Gets and clears steal count for accumulation by pool. Called
659     * only when known to be idle (in pool.sync and termination).
660     */
661     final int getAndClearStealCount() {
662     int sc = stealCount;
663     stealCount = 0;
664     return sc;
665     }
666    
667     /**
668     * Returns true if at least one worker in the given array appears
669     * to have at least one queued task.
670     *
671     * @param ws array of workers
672     */
673     static boolean hasQueuedTasks(ForkJoinWorkerThread[] ws) {
674     if (ws != null) {
675     int len = ws.length;
676     for (int j = 0; j < 2; ++j) { // need two passes for clean sweep
677     for (int i = 0; i < len; ++i) {
678     ForkJoinWorkerThread w = ws[i];
679     if (w != null && w.sp != w.base)
680     return true;
681     }
682     }
683     }
684     return false;
685     }
686    
687     // Support methods for ForkJoinTask
688    
689     /**
690     * Returns an estimate of the number of tasks in the queue.
691     */
692     final int getQueueSize() {
693     // suppress momentarily negative values
694     return Math.max(0, sp - base);
695     }
696    
697     /**
698     * Returns an estimate of the number of tasks, offset by a
699     * function of number of idle workers.
700     */
701     final int getEstimatedSurplusTaskCount() {
702     // The halving approximates weighting idle vs non-idle workers
703     return (sp - base) - (pool.getIdleThreadCount() >>> 1);
704     }
705    
706     /**
707     * Scans, returning early if joinMe done.
708     */
709     final ForkJoinTask<?> scanWhileJoining(ForkJoinTask<?> joinMe) {
710     ForkJoinTask<?> t = pollTask();
711     if (t != null && joinMe.status < 0 && sp == base) {
712     pushTask(t); // unsteal if done and this task would be stealable
713     t = null;
714     }
715     return t;
716     }
717    
718     /**
719     * Runs tasks until {@code pool.isQuiescent()}.
720     */
721     final void helpQuiescePool() {
722     for (;;) {
723     ForkJoinTask<?> t = pollTask();
724     if (t != null)
725     t.quietlyExec();
726     else if (tryInactivate() && pool.isQuiescent())
727     break;
728     }
729     do {} while (!tryActivate()); // re-activate on exit
730     }
731    
732     // Unsafe mechanics
733    
734     private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
735 jsr166 1.2 private static final long spOffset =
736 jsr166 1.3 objectFieldOffset("sp", ForkJoinWorkerThread.class);
737 jsr166 1.2 private static final long runStateOffset =
738 jsr166 1.3 objectFieldOffset("runState", ForkJoinWorkerThread.class);
739 jsr166 1.2 private static final long qBase;
740     private static final int qShift;
741 jsr166 1.1
742     static {
743     qBase = UNSAFE.arrayBaseOffset(ForkJoinTask[].class);
744     int s = UNSAFE.arrayIndexScale(ForkJoinTask[].class);
745     if ((s & (s-1)) != 0)
746     throw new Error("data type scale not a power of two");
747     qShift = 31 - Integer.numberOfLeadingZeros(s);
748     }
749 jsr166 1.3
750     private static long objectFieldOffset(String field, Class<?> klazz) {
751     try {
752     return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
753     } catch (NoSuchFieldException e) {
754     // Convert Exception to corresponding Error
755     NoSuchFieldError error = new NoSuchFieldError(field);
756     error.initCause(e);
757     throw error;
758     }
759     }
760 jsr166 1.1 }