ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/ForkJoinWorkerThread.java
Revision: 1.9
Committed: Wed Aug 12 04:10:59 2009 UTC (14 years, 9 months ago) by jsr166
Branch: MAIN
Changes since 1.8: +1 -1 lines
Log Message:
sync with jsr166 package

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package java.util.concurrent;
8    
9     import java.util.Collection;
10    
11     /**
12     * A thread managed by a {@link ForkJoinPool}. This class is
13     * subclassable solely for the sake of adding functionality -- there
14 jsr166 1.7 * are no overridable methods dealing with scheduling or execution.
15     * However, you can override initialization and termination methods
16     * surrounding the main task processing loop. If you do create such a
17     * subclass, you will also need to supply a custom {@link
18     * ForkJoinPool.ForkJoinWorkerThreadFactory} to use it in a {@code
19     * ForkJoinPool}.
20 jsr166 1.1 *
21     * @since 1.7
22     * @author Doug Lea
23     */
24     public class ForkJoinWorkerThread extends Thread {
25     /*
26     * Algorithm overview:
27     *
28     * 1. Work-Stealing: Work-stealing queues are special forms of
29     * Deques that support only three of the four possible
30     * end-operations -- push, pop, and deq (aka steal), and only do
31     * so under the constraints that push and pop are called only from
32     * the owning thread, while deq may be called from other threads.
33     * (If you are unfamiliar with them, you probably want to read
34     * Herlihy and Shavit's book "The Art of Multiprocessor
35     * programming", chapter 16 describing these in more detail before
36     * proceeding.) The main work-stealing queue design is roughly
37     * similar to "Dynamic Circular Work-Stealing Deque" by David
38     * Chase and Yossi Lev, SPAA 2005
39     * (http://research.sun.com/scalable/pubs/index.html). The main
40     * difference ultimately stems from gc requirements that we null
41     * out taken slots as soon as we can, to maintain as small a
42     * footprint as possible even in programs generating huge numbers
43     * of tasks. To accomplish this, we shift the CAS arbitrating pop
44     * vs deq (steal) from being on the indices ("base" and "sp") to
45     * the slots themselves (mainly via method "casSlotNull()"). So,
46     * both a successful pop and deq mainly entail CAS'ing a non-null
47     * slot to null. Because we rely on CASes of references, we do
48     * not need tag bits on base or sp. They are simple ints as used
49     * in any circular array-based queue (see for example ArrayDeque).
50     * Updates to the indices must still be ordered in a way that
51     * guarantees that (sp - base) > 0 means the queue is empty, but
52     * otherwise may err on the side of possibly making the queue
53     * appear nonempty when a push, pop, or deq have not fully
54     * committed. Note that this means that the deq operation,
55     * considered individually, is not wait-free. One thief cannot
56     * successfully continue until another in-progress one (or, if
57     * previously empty, a push) completes. However, in the
58 jsr166 1.8 * aggregate, we ensure at least probabilistic
59     * non-blockingness. If an attempted steal fails, a thief always
60     * chooses a different random victim target to try next. So, in
61     * order for one thief to progress, it suffices for any
62     * in-progress deq or new push on any empty queue to complete. One
63     * reason this works well here is that apparently-nonempty often
64     * means soon-to-be-stealable, which gives threads a chance to
65     * activate if necessary before stealing (see below).
66 jsr166 1.1 *
67 jsr166 1.6 * This approach also enables support for "async mode" where local
68     * task processing is in FIFO, not LIFO order; simply by using a
69     * version of deq rather than pop when locallyFifo is true (as set
70     * by the ForkJoinPool). This allows use in message-passing
71     * frameworks in which tasks are never joined.
72     *
73 jsr166 1.1 * Efficient implementation of this approach currently relies on
74     * an uncomfortable amount of "Unsafe" mechanics. To maintain
75     * correct orderings, reads and writes of variable base require
76     * volatile ordering. Variable sp does not require volatile write
77     * but needs cheaper store-ordering on writes. Because they are
78     * protected by volatile base reads, reads of the queue array and
79     * its slots do not need volatile load semantics, but writes (in
80     * push) require store order and CASes (in pop and deq) require
81 jsr166 1.8 * (volatile) CAS semantics. (See "Idempotent work stealing" by
82     * Michael, Saraswat, and Vechev, PPoPP 2009
83     * http://portal.acm.org/citation.cfm?id=1504186 for an algorithm
84     * with similar properties, but without support for nulling
85     * slots.) Since these combinations aren't supported using
86     * ordinary volatiles, the only way to accomplish these
87     * efficiently is to use direct Unsafe calls. (Using external
88 jsr166 1.1 * AtomicIntegers and AtomicReferenceArrays for the indices and
89     * array is significantly slower because of memory locality and
90 jsr166 1.8 * indirection effects.)
91 jsr166 1.9 *
92 jsr166 1.8 * Further, performance on most platforms is very sensitive to
93     * placement and sizing of the (resizable) queue array. Even
94     * though these queues don't usually become all that big, the
95     * initial size must be large enough to counteract cache
96 jsr166 1.1 * contention effects across multiple queues (especially in the
97     * presence of GC cardmarking). Also, to improve thread-locality,
98     * queues are currently initialized immediately after the thread
99     * gets the initial signal to start processing tasks. However,
100     * all queue-related methods except pushTask are written in a way
101     * that allows them to instead be lazily allocated and/or disposed
102     * of when empty. All together, these low-level implementation
103     * choices produce as much as a factor of 4 performance
104     * improvement compared to naive implementations, and enable the
105     * processing of billions of tasks per second, sometimes at the
106     * expense of ugliness.
107     *
108     * 2. Run control: The primary run control is based on a global
109     * counter (activeCount) held by the pool. It uses an algorithm
110     * similar to that in Herlihy and Shavit section 17.6 to cause
111     * threads to eventually block when all threads declare they are
112 jsr166 1.8 * inactive. For this to work, threads must be declared active
113     * when executing tasks, and before stealing a task. They must be
114     * inactive before blocking on the Pool Barrier (awaiting a new
115     * submission or other Pool event). In between, there is some free
116     * play which we take advantage of to avoid contention and rapid
117     * flickering of the global activeCount: If inactive, we activate
118     * only if a victim queue appears to be nonempty (see above).
119     * Similarly, a thread tries to inactivate only after a full scan
120     * of other threads. The net effect is that contention on
121     * activeCount is rarely a measurable performance issue. (There
122     * are also a few other cases where we scan for work rather than
123     * retry/block upon contention.)
124 jsr166 1.1 *
125     * 3. Selection control. We maintain policy of always choosing to
126     * run local tasks rather than stealing, and always trying to
127     * steal tasks before trying to run a new submission. All steals
128     * are currently performed in randomly-chosen deq-order. It may be
129     * worthwhile to bias these with locality / anti-locality
130     * information, but doing this well probably requires more
131     * lower-level information from JVMs than currently provided.
132     */
133    
134     /**
135     * Capacity of work-stealing queue array upon initialization.
136     * Must be a power of two. Initial size must be at least 2, but is
137     * padded to minimize cache effects.
138     */
139     private static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
140    
141     /**
142     * Maximum work-stealing queue array size. Must be less than or
143     * equal to 1 << 28 to ensure lack of index wraparound. (This
144     * is less than usual bounds, because we need leftshift by 3
145     * to be in int range).
146     */
147     private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 28;
148    
149     /**
150     * The pool this thread works in. Accessed directly by ForkJoinTask.
151     */
152     final ForkJoinPool pool;
153    
154     /**
155     * The work-stealing queue array. Size must be a power of two.
156     * Initialized when thread starts, to improve memory locality.
157     */
158     private ForkJoinTask<?>[] queue;
159    
160     /**
161     * Index (mod queue.length) of next queue slot to push to or pop
162     * from. It is written only by owner thread, via ordered store.
163     * Both sp and base are allowed to wrap around on overflow, but
164     * (sp - base) still estimates size.
165     */
166     private volatile int sp;
167    
168     /**
169     * Index (mod queue.length) of least valid queue slot, which is
170     * always the next position to steal from if nonempty.
171     */
172     private volatile int base;
173    
174     /**
175     * Activity status. When true, this worker is considered active.
176     * Must be false upon construction. It must be true when executing
177     * tasks, and BEFORE stealing a task. It must be false before
178     * calling pool.sync.
179     */
180     private boolean active;
181    
182     /**
183     * Run state of this worker. Supports simple versions of the usual
184     * shutdown/shutdownNow control.
185     */
186     private volatile int runState;
187    
188     /**
189     * Seed for random number generator for choosing steal victims.
190     * Uses Marsaglia xorshift. Must be nonzero upon initialization.
191     */
192     private int seed;
193    
194     /**
195     * Number of steals, transferred to pool when idle
196     */
197     private int stealCount;
198    
199     /**
200     * Index of this worker in pool array. Set once by pool before
201     * running, and accessed directly by pool during cleanup etc.
202     */
203     int poolIndex;
204    
205     /**
206     * The last barrier event waited for. Accessed in pool callback
207     * methods, but only by current thread.
208     */
209     long lastEventCount;
210    
211     /**
212     * True if use local fifo, not default lifo, for local polling
213     */
214     private boolean locallyFifo;
215    
216     /**
217     * Creates a ForkJoinWorkerThread operating in the given pool.
218     *
219     * @param pool the pool this thread works in
220     * @throws NullPointerException if pool is null
221     */
222     protected ForkJoinWorkerThread(ForkJoinPool pool) {
223     if (pool == null) throw new NullPointerException();
224     this.pool = pool;
225     // Note: poolIndex is set by pool during construction
226     // Remaining initialization is deferred to onStart
227     }
228    
229     // Public access methods
230    
231     /**
232     * Returns the pool hosting this thread.
233     *
234     * @return the pool
235     */
236     public ForkJoinPool getPool() {
237     return pool;
238     }
239    
240     /**
241     * Returns the index number of this thread in its pool. The
242     * returned value ranges from zero to the maximum number of
243     * threads (minus one) that have ever been created in the pool.
244     * This method may be useful for applications that track status or
245     * collect results per-worker rather than per-task.
246     *
247     * @return the index number
248     */
249     public int getPoolIndex() {
250     return poolIndex;
251     }
252    
253     /**
254     * Establishes local first-in-first-out scheduling mode for forked
255     * tasks that are never joined.
256     *
257     * @param async if true, use locally FIFO scheduling
258     */
259     void setAsyncMode(boolean async) {
260     locallyFifo = async;
261     }
262    
263     // Runstate management
264    
265     // Runstate values. Order matters
266     private static final int RUNNING = 0;
267     private static final int SHUTDOWN = 1;
268     private static final int TERMINATING = 2;
269     private static final int TERMINATED = 3;
270    
271     final boolean isShutdown() { return runState >= SHUTDOWN; }
272     final boolean isTerminating() { return runState >= TERMINATING; }
273     final boolean isTerminated() { return runState == TERMINATED; }
274     final boolean shutdown() { return transitionRunStateTo(SHUTDOWN); }
275     final boolean shutdownNow() { return transitionRunStateTo(TERMINATING); }
276    
277     /**
278 jsr166 1.4 * Transitions to at least the given state.
279     *
280     * @return {@code true} if not already at least at given state
281 jsr166 1.1 */
282     private boolean transitionRunStateTo(int state) {
283     for (;;) {
284     int s = runState;
285     if (s >= state)
286     return false;
287     if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, state))
288     return true;
289     }
290     }
291    
292     /**
293     * Tries to set status to active; fails on contention.
294     */
295     private boolean tryActivate() {
296     if (!active) {
297     if (!pool.tryIncrementActiveCount())
298     return false;
299     active = true;
300     }
301     return true;
302     }
303    
304     /**
305     * Tries to set status to inactive; fails on contention.
306     */
307     private boolean tryInactivate() {
308     if (active) {
309     if (!pool.tryDecrementActiveCount())
310     return false;
311     active = false;
312     }
313     return true;
314     }
315    
316     /**
317     * Computes next value for random victim probe. Scans don't
318     * require a very high quality generator, but also not a crummy
319     * one. Marsaglia xor-shift is cheap and works well.
320     */
321     private static int xorShift(int r) {
322 jsr166 1.6 r ^= (r << 13);
323     r ^= (r >>> 17);
324     return r ^ (r << 5);
325 jsr166 1.1 }
326    
327     // Lifecycle methods
328    
329     /**
330     * This method is required to be public, but should never be
331     * called explicitly. It performs the main run loop to execute
332     * ForkJoinTasks.
333     */
334     public void run() {
335     Throwable exception = null;
336     try {
337     onStart();
338     pool.sync(this); // await first pool event
339     mainLoop();
340     } catch (Throwable ex) {
341     exception = ex;
342     } finally {
343     onTermination(exception);
344     }
345     }
346    
347     /**
348     * Executes tasks until shut down.
349     */
350     private void mainLoop() {
351     while (!isShutdown()) {
352     ForkJoinTask<?> t = pollTask();
353     if (t != null || (t = pollSubmission()) != null)
354     t.quietlyExec();
355     else if (tryInactivate())
356     pool.sync(this);
357     }
358     }
359    
360     /**
361     * Initializes internal state after construction but before
362     * processing any tasks. If you override this method, you must
363     * invoke super.onStart() at the beginning of the method.
364     * Initialization requires care: Most fields must have legal
365     * default values, to ensure that attempted accesses from other
366     * threads work correctly even before this thread starts
367     * processing tasks.
368     */
369     protected void onStart() {
370     // Allocate while starting to improve chances of thread-local
371     // isolation
372     queue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
373     // Initial value of seed need not be especially random but
374     // should differ across workers and must be nonzero
375     int p = poolIndex + 1;
376     seed = p + (p << 8) + (p << 16) + (p << 24); // spread bits
377     }
378    
379     /**
380     * Performs cleanup associated with termination of this worker
381     * thread. If you override this method, you must invoke
382     * {@code super.onTermination} at the end of the overridden method.
383     *
384     * @param exception the exception causing this thread to abort due
385 jsr166 1.4 * to an unrecoverable error, or {@code null} if completed normally
386 jsr166 1.1 */
387     protected void onTermination(Throwable exception) {
388     // Execute remaining local tasks unless aborting or terminating
389 jsr166 1.8 while (exception == null && pool.isProcessingTasks() && base != sp) {
390 jsr166 1.1 try {
391     ForkJoinTask<?> t = popTask();
392     if (t != null)
393     t.quietlyExec();
394     } catch (Throwable ex) {
395     exception = ex;
396     }
397     }
398     // Cancel other tasks, transition status, notify pool, and
399     // propagate exception to uncaught exception handler
400     try {
401     do {} while (!tryInactivate()); // ensure inactive
402     cancelTasks();
403     runState = TERMINATED;
404     pool.workerTerminated(this);
405     } catch (Throwable ex) { // Shouldn't ever happen
406     if (exception == null) // but if so, at least rethrown
407     exception = ex;
408     } finally {
409     if (exception != null)
410     ForkJoinTask.rethrowException(exception);
411     }
412     }
413    
414     // Intrinsics-based support for queue operations.
415    
416     /**
417     * Adds in store-order the given task at given slot of q to null.
418     * Caller must ensure q is non-null and index is in range.
419     */
420     private static void setSlot(ForkJoinTask<?>[] q, int i,
421     ForkJoinTask<?> t) {
422     UNSAFE.putOrderedObject(q, (i << qShift) + qBase, t);
423     }
424    
425     /**
426     * CAS given slot of q to null. Caller must ensure q is non-null
427     * and index is in range.
428     */
429     private static boolean casSlotNull(ForkJoinTask<?>[] q, int i,
430     ForkJoinTask<?> t) {
431     return UNSAFE.compareAndSwapObject(q, (i << qShift) + qBase, t, null);
432     }
433    
434     /**
435     * Sets sp in store-order.
436     */
437     private void storeSp(int s) {
438     UNSAFE.putOrderedInt(this, spOffset, s);
439     }
440    
441     // Main queue methods
442    
443     /**
444     * Pushes a task. Called only by current thread.
445     *
446     * @param t the task. Caller must ensure non-null.
447     */
448     final void pushTask(ForkJoinTask<?> t) {
449     ForkJoinTask<?>[] q = queue;
450     int mask = q.length - 1;
451     int s = sp;
452     setSlot(q, s & mask, t);
453     storeSp(++s);
454     if ((s -= base) == 1)
455     pool.signalWork();
456     else if (s >= mask)
457     growQueue();
458     }
459    
460     /**
461     * Tries to take a task from the base of the queue, failing if
462     * either empty or contended.
463     *
464     * @return a task, or null if none or contended
465     */
466     final ForkJoinTask<?> deqTask() {
467     ForkJoinTask<?> t;
468     ForkJoinTask<?>[] q;
469     int i;
470     int b;
471     if (sp != (b = base) &&
472     (q = queue) != null && // must read q after b
473     (t = q[i = (q.length - 1) & b]) != null &&
474     casSlotNull(q, i, t)) {
475     base = b + 1;
476     return t;
477     }
478     return null;
479     }
480    
481     /**
482 jsr166 1.6 * Tries to take a task from the base of own queue, activating if
483     * necessary, failing only if empty. Called only by current thread.
484     *
485     * @return a task, or null if none
486     */
487     final ForkJoinTask<?> locallyDeqTask() {
488     int b;
489     while (sp != (b = base)) {
490     if (tryActivate()) {
491     ForkJoinTask<?>[] q = queue;
492     int i = (q.length - 1) & b;
493     ForkJoinTask<?> t = q[i];
494     if (t != null && casSlotNull(q, i, t)) {
495     base = b + 1;
496     return t;
497     }
498     }
499     }
500     return null;
501     }
502    
503     /**
504 jsr166 1.1 * Returns a popped task, or null if empty. Ensures active status
505     * if non-null. Called only by current thread.
506     */
507     final ForkJoinTask<?> popTask() {
508     int s = sp;
509     while (s != base) {
510     if (tryActivate()) {
511     ForkJoinTask<?>[] q = queue;
512     int mask = q.length - 1;
513     int i = (s - 1) & mask;
514     ForkJoinTask<?> t = q[i];
515     if (t == null || !casSlotNull(q, i, t))
516     break;
517     storeSp(s - 1);
518     return t;
519     }
520     }
521     return null;
522     }
523    
524     /**
525     * Specialized version of popTask to pop only if
526     * topmost element is the given task. Called only
527     * by current thread while active.
528     *
529     * @param t the task. Caller must ensure non-null.
530     */
531     final boolean unpushTask(ForkJoinTask<?> t) {
532     ForkJoinTask<?>[] q = queue;
533     int mask = q.length - 1;
534     int s = sp - 1;
535     if (casSlotNull(q, s & mask, t)) {
536     storeSp(s);
537     return true;
538     }
539     return false;
540     }
541    
542     /**
543 jsr166 1.6 * Returns next task or null if empty or contended
544 jsr166 1.1 */
545     final ForkJoinTask<?> peekTask() {
546     ForkJoinTask<?>[] q = queue;
547     if (q == null)
548     return null;
549     int mask = q.length - 1;
550     int i = locallyFifo ? base : (sp - 1);
551     return q[i & mask];
552     }
553    
554     /**
555     * Doubles queue array size. Transfers elements by emulating
556     * steals (deqs) from old array and placing, oldest first, into
557     * new array.
558     */
559     private void growQueue() {
560     ForkJoinTask<?>[] oldQ = queue;
561     int oldSize = oldQ.length;
562     int newSize = oldSize << 1;
563     if (newSize > MAXIMUM_QUEUE_CAPACITY)
564     throw new RejectedExecutionException("Queue capacity exceeded");
565     ForkJoinTask<?>[] newQ = queue = new ForkJoinTask<?>[newSize];
566    
567     int b = base;
568     int bf = b + oldSize;
569     int oldMask = oldSize - 1;
570     int newMask = newSize - 1;
571     do {
572     int oldIndex = b & oldMask;
573     ForkJoinTask<?> t = oldQ[oldIndex];
574     if (t != null && !casSlotNull(oldQ, oldIndex, t))
575     t = null;
576     setSlot(newQ, b & newMask, t);
577     } while (++b != bf);
578     pool.signalWork();
579     }
580    
581     /**
582     * Tries to steal a task from another worker. Starts at a random
583     * index of workers array, and probes workers until finding one
584     * with non-empty queue or finding that all are empty. It
585     * randomly selects the first n probes. If these are empty, it
586     * resorts to a full circular traversal, which is necessary to
587     * accurately set active status by caller. Also restarts if pool
588     * events occurred since last scan, which forces refresh of
589     * workers array, in case barrier was associated with resize.
590     *
591     * This method must be both fast and quiet -- usually avoiding
592     * memory accesses that could disrupt cache sharing etc other than
593     * those needed to check for and take tasks. This accounts for,
594     * among other things, updating random seed in place without
595     * storing it until exit.
596     *
597     * @return a task, or null if none found
598     */
599     private ForkJoinTask<?> scan() {
600     ForkJoinTask<?> t = null;
601     int r = seed; // extract once to keep scan quiet
602     ForkJoinWorkerThread[] ws; // refreshed on outer loop
603     int mask; // must be power 2 minus 1 and > 0
604     outer:do {
605     if ((ws = pool.workers) != null && (mask = ws.length - 1) > 0) {
606     int idx = r;
607     int probes = ~mask; // use random index while negative
608     for (;;) {
609     r = xorShift(r); // update random seed
610     ForkJoinWorkerThread v = ws[mask & idx];
611     if (v == null || v.sp == v.base) {
612     if (probes <= mask)
613     idx = (probes++ < 0) ? r : (idx + 1);
614     else
615     break;
616     }
617     else if (!tryActivate() || (t = v.deqTask()) == null)
618     continue outer; // restart on contention
619     else
620     break outer;
621     }
622     }
623     } while (pool.hasNewSyncEvent(this)); // retry on pool events
624     seed = r;
625     return t;
626     }
627    
628     /**
629     * Gets and removes a local or stolen task.
630     *
631     * @return a task, if available
632     */
633     final ForkJoinTask<?> pollTask() {
634 jsr166 1.6 ForkJoinTask<?> t = locallyFifo ? locallyDeqTask() : popTask();
635 jsr166 1.1 if (t == null && (t = scan()) != null)
636     ++stealCount;
637     return t;
638     }
639    
640     /**
641     * Gets a local task.
642     *
643     * @return a task, if available
644     */
645     final ForkJoinTask<?> pollLocalTask() {
646 jsr166 1.6 return locallyFifo ? locallyDeqTask() : popTask();
647 jsr166 1.1 }
648    
649     /**
650     * Returns a pool submission, if one exists, activating first.
651     *
652     * @return a submission, if available
653     */
654     private ForkJoinTask<?> pollSubmission() {
655     ForkJoinPool p = pool;
656     while (p.hasQueuedSubmissions()) {
657     ForkJoinTask<?> t;
658     if (tryActivate() && (t = p.pollSubmission()) != null)
659     return t;
660     }
661     return null;
662     }
663    
664     // Methods accessed only by Pool
665    
666     /**
667     * Removes and cancels all tasks in queue. Can be called from any
668     * thread.
669     */
670     final void cancelTasks() {
671     ForkJoinTask<?> t;
672     while (base != sp && (t = deqTask()) != null)
673     t.cancelIgnoringExceptions();
674     }
675    
676     /**
677     * Drains tasks to given collection c.
678     *
679     * @return the number of tasks drained
680     */
681 jsr166 1.5 final int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
682 jsr166 1.1 int n = 0;
683     ForkJoinTask<?> t;
684     while (base != sp && (t = deqTask()) != null) {
685     c.add(t);
686     ++n;
687     }
688     return n;
689     }
690    
691     /**
692     * Gets and clears steal count for accumulation by pool. Called
693     * only when known to be idle (in pool.sync and termination).
694     */
695     final int getAndClearStealCount() {
696     int sc = stealCount;
697     stealCount = 0;
698     return sc;
699     }
700    
701     /**
702 jsr166 1.4 * Returns {@code true} if at least one worker in the given array
703     * appears to have at least one queued task.
704 jsr166 1.1 *
705     * @param ws array of workers
706     */
707     static boolean hasQueuedTasks(ForkJoinWorkerThread[] ws) {
708     if (ws != null) {
709     int len = ws.length;
710     for (int j = 0; j < 2; ++j) { // need two passes for clean sweep
711     for (int i = 0; i < len; ++i) {
712     ForkJoinWorkerThread w = ws[i];
713     if (w != null && w.sp != w.base)
714     return true;
715     }
716     }
717     }
718     return false;
719     }
720    
721     // Support methods for ForkJoinTask
722    
723     /**
724     * Returns an estimate of the number of tasks in the queue.
725     */
726     final int getQueueSize() {
727     // suppress momentarily negative values
728     return Math.max(0, sp - base);
729     }
730    
731     /**
732     * Returns an estimate of the number of tasks, offset by a
733     * function of number of idle workers.
734     */
735     final int getEstimatedSurplusTaskCount() {
736     // The halving approximates weighting idle vs non-idle workers
737     return (sp - base) - (pool.getIdleThreadCount() >>> 1);
738     }
739    
740     /**
741     * Scans, returning early if joinMe done.
742     */
743     final ForkJoinTask<?> scanWhileJoining(ForkJoinTask<?> joinMe) {
744     ForkJoinTask<?> t = pollTask();
745     if (t != null && joinMe.status < 0 && sp == base) {
746     pushTask(t); // unsteal if done and this task would be stealable
747     t = null;
748     }
749     return t;
750     }
751    
752     /**
753     * Runs tasks until {@code pool.isQuiescent()}.
754     */
755     final void helpQuiescePool() {
756     for (;;) {
757     ForkJoinTask<?> t = pollTask();
758     if (t != null)
759     t.quietlyExec();
760     else if (tryInactivate() && pool.isQuiescent())
761     break;
762     }
763     do {} while (!tryActivate()); // re-activate on exit
764     }
765    
766     // Unsafe mechanics
767    
768     private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
769 jsr166 1.2 private static final long spOffset =
770 jsr166 1.3 objectFieldOffset("sp", ForkJoinWorkerThread.class);
771 jsr166 1.2 private static final long runStateOffset =
772 jsr166 1.3 objectFieldOffset("runState", ForkJoinWorkerThread.class);
773 jsr166 1.2 private static final long qBase;
774     private static final int qShift;
775 jsr166 1.1
776     static {
777     qBase = UNSAFE.arrayBaseOffset(ForkJoinTask[].class);
778     int s = UNSAFE.arrayIndexScale(ForkJoinTask[].class);
779     if ((s & (s-1)) != 0)
780     throw new Error("data type scale not a power of two");
781     qShift = 31 - Integer.numberOfLeadingZeros(s);
782     }
783 jsr166 1.3
784     private static long objectFieldOffset(String field, Class<?> klazz) {
785     try {
786     return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
787     } catch (NoSuchFieldException e) {
788     // Convert Exception to corresponding Error
789     NoSuchFieldError error = new NoSuchFieldError(field);
790     error.initCause(e);
791     throw error;
792     }
793     }
794 jsr166 1.1 }