ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/FutureTask.java
Revision: 1.70
Committed: Fri Jun 17 22:54:47 2011 UTC (12 years, 11 months ago) by jsr166
Branch: MAIN
Changes since 1.69: +8 -9 lines
Log Message:
use ordinary ordered integers for state values

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8 import java.util.concurrent.locks.LockSupport;
9
10 /**
11 * A cancellable asynchronous computation. This class provides a base
12 * implementation of {@link Future}, with methods to start and cancel
13 * a computation, query to see if the computation is complete, and
14 * retrieve the result of the computation. The result can only be
15 * retrieved when the computation has completed; the {@code get}
16 * methods will block if the computation has not yet completed. Once
17 * the computation has completed, the computation cannot be restarted
18 * or cancelled (unless the computation is invoked using
19 * {@link #runAndReset}).
20 *
21 * <p>A {@code FutureTask} can be used to wrap a {@link Callable} or
22 * {@link Runnable} object. Because {@code FutureTask} implements
23 * {@code Runnable}, a {@code FutureTask} can be submitted to an
24 * {@link Executor} for execution.
25 *
26 * <p>In addition to serving as a standalone class, this class provides
27 * {@code protected} functionality that may be useful when creating
28 * customized task classes.
29 *
30 * @since 1.5
31 * @author Doug Lea
32 * @param <V> The result type returned by this FutureTask's {@code get} methods
33 */
34 public class FutureTask<V> implements RunnableFuture<V> {
35 /*
36 * Revision notes: This differs from previous versions of this
37 * class that relied on AbstractQueuedSynchronizer, mainly to
38 * avoid surprising users about retaining interrupt status during
39 * cancellation races. Sync control in the current design relies
40 * on a "state" field updated via CAS to track completion, along
41 * with a simple Treiber stack to hold waiting threads.
42 *
43 * Style note: As usual, we bypass overhead of using
44 * AtomicXFieldUpdaters and instead directly use Unsafe intrinsics.
45 */
46
47 /**
48 * The run state of this task, initially UNDECIDED. The run state
49 * transitions to a terminal state only in method setCompletion.
50 * During setCompletion, state may take on transient values of
51 * COMPLETING (while outcome is being set) or INTERRUPTING (only
52 * while interrupting the runner to satisfy a cancel(true)).
53 * State values are highly order-dependent to simplify checks.
54 *
55 * Possible state transitions:
56 * UNDECIDED -> COMPLETING -> NORMAL
57 * UNDECIDED -> COMPLETING -> EXCEPTIONAL
58 * UNDECIDED -> CANCELLED
59 * UNDECIDED -> INTERRUPTING -> INTERRUPTED
60 */
61 private volatile int state;
62 private static final int UNDECIDED = 0;
63 private static final int COMPLETING = 1;
64 private static final int NORMAL = 2;
65 private static final int EXCEPTIONAL = 3;
66 private static final int CANCELLED = 4;
67 private static final int INTERRUPTING = 5;
68 private static final int INTERRUPTED = 6;
69
70 /** The underlying callable */
71 private final Callable<V> callable;
72 /** The result to return or exception to throw from get() */
73 private Object outcome; // non-volatile, protected by state reads/writes
74 /** The thread running the callable; CASed during run() */
75 private volatile Thread runner;
76 /** Treiber stack of waiting threads */
77 private volatile WaitNode waiters;
78
79 /**
80 * Sets completion status, unless already completed. If
81 * necessary, we first set state to transient states COMPLETING
82 * or INTERRUPTING to establish precedence.
83 *
84 * @param x the outcome
85 * @param mode the completion state value
86 * @return true if this call caused transition from UNDECIDED to completed
87 */
88 private boolean setCompletion(Object x, int mode) {
89 // set up transient states
90 int next = (x != null) ? COMPLETING : mode;
91 if (!UNSAFE.compareAndSwapInt(this, stateOffset, UNDECIDED, next))
92 return false;
93 if (next == INTERRUPTING) {
94 Thread t = runner; // recheck to avoid leaked interrupt
95 if (t != null)
96 t.interrupt();
97 state = INTERRUPTED;
98 }
99 else if (next == COMPLETING) {
100 outcome = x;
101 state = mode;
102 }
103 if (waiters != null)
104 releaseAll();
105 done();
106 return true;
107 }
108
109 /**
110 * Returns result or throws exception for completed task.
111 *
112 * @param s completed state value
113 */
114 private V report(int s) throws ExecutionException {
115 Object x = outcome;
116 if (s == NORMAL)
117 return (V)x;
118 if (s >= CANCELLED)
119 throw new CancellationException();
120 throw new ExecutionException((Throwable)x);
121 }
122
123 /**
124 * Creates a {@code FutureTask} that will, upon running, execute the
125 * given {@code Callable}.
126 *
127 * @param callable the callable task
128 * @throws NullPointerException if callable is null
129 */
130 public FutureTask(Callable<V> callable) {
131 if (callable == null)
132 throw new NullPointerException();
133 this.callable = callable;
134 }
135
136 /**
137 * Creates a {@code FutureTask} that will, upon running, execute the
138 * given {@code Runnable}, and arrange that {@code get} will return the
139 * given result on successful completion.
140 *
141 * @param runnable the runnable task
142 * @param result the result to return on successful completion. If
143 * you don't need a particular result, consider using
144 * constructions of the form:
145 * {@code Future<?> f = new FutureTask<Void>(runnable, null)}
146 * @throws NullPointerException if runnable is null
147 */
148 public FutureTask(Runnable runnable, V result) {
149 this.callable = Executors.callable(runnable, result);
150 }
151
152 public boolean isCancelled() {
153 return state >= CANCELLED;
154 }
155
156 public boolean isDone() {
157 return state != UNDECIDED;
158 }
159
160 public boolean cancel(boolean mayInterruptIfRunning) {
161 return state == UNDECIDED &&
162 setCompletion(null, (mayInterruptIfRunning && runner != null) ?
163 INTERRUPTING : CANCELLED);
164 }
165
166 /**
167 * @throws CancellationException {@inheritDoc}
168 */
169 public V get() throws InterruptedException, ExecutionException {
170 int s = state;
171 if (s <= COMPLETING)
172 s = awaitDone(false, 0L);
173 return report(s);
174 }
175
176 /**
177 * @throws CancellationException {@inheritDoc}
178 */
179 public V get(long timeout, TimeUnit unit)
180 throws InterruptedException, ExecutionException, TimeoutException {
181 int s = state;
182 if (s <= COMPLETING &&
183 (s = awaitDone(true, unit.toNanos(timeout))) <= COMPLETING)
184 throw new TimeoutException();
185 return report(s);
186 }
187
188 /**
189 * Protected method invoked when this task transitions to state
190 * {@code isDone} (whether normally or via cancellation). The
191 * default implementation does nothing. Subclasses may override
192 * this method to invoke completion callbacks or perform
193 * bookkeeping. Note that you can query status inside the
194 * implementation of this method to determine whether this task
195 * has been cancelled.
196 */
197 protected void done() { }
198
199 /**
200 * Sets the result of this future to the given value unless
201 * this future has already been set or has been cancelled.
202 *
203 * <p>This method is invoked internally by the {@link #run} method
204 * upon successful completion of the computation.
205 *
206 * @param v the value
207 */
208 protected void set(V v) {
209 setCompletion(v, NORMAL);
210 }
211
212 /**
213 * Causes this future to report an {@link ExecutionException}
214 * with the given throwable as its cause, unless this future has
215 * already been set or has been cancelled.
216 *
217 * <p>This method is invoked internally by the {@link #run} method
218 * upon failure of the computation.
219 *
220 * @param t the cause of failure
221 */
222 protected void setException(Throwable t) {
223 setCompletion(t, EXCEPTIONAL);
224 }
225
226 public void run() {
227 if (state != UNDECIDED ||
228 !UNSAFE.compareAndSwapObject(this, runnerOffset,
229 null, Thread.currentThread()))
230 return;
231
232 try {
233 V result;
234 try {
235 result = callable.call();
236 } catch (Throwable ex) {
237 setException(ex);
238 return;
239 }
240 set(result);
241 } finally {
242 runner = null;
243 int s = state;
244 if (s >= INTERRUPTING) {
245 while ((s = state) == INTERRUPTING)
246 Thread.yield(); // wait out pending cancellation interrupt
247 Thread.interrupted(); // clear any interrupt from cancel(true)
248 }
249 }
250 }
251
252 /**
253 * Executes the computation without setting its result, and then
254 * resets this future to initial state, failing to do so if the
255 * computation encounters an exception or is cancelled. This is
256 * designed for use with tasks that intrinsically execute more
257 * than once.
258 *
259 * @return true if successfully run and reset
260 */
261 protected boolean runAndReset() {
262 if (state != UNDECIDED ||
263 !UNSAFE.compareAndSwapObject(this, runnerOffset,
264 null, Thread.currentThread()))
265 return false;
266
267 try {
268 try {
269 callable.call(); // don't set result
270 return (state == UNDECIDED);
271 } catch (Throwable ex) {
272 setException(ex);
273 return false;
274 }
275 } finally {
276 runner = null;
277 int s = state;
278 if (s >= INTERRUPTING) {
279 while ((s = state) == INTERRUPTING)
280 Thread.yield(); // wait out pending cancellation interrupt
281 Thread.interrupted(); // clear any interrupt from cancel(true)
282 }
283 }
284 }
285
286 /**
287 * Simple linked list nodes to record waiting threads in a Treiber
288 * stack. See other classes such as Phaser and SynchronousQueue
289 * for more detailed explanation.
290 */
291 static final class WaitNode {
292 volatile Thread thread;
293 WaitNode next;
294 }
295
296 /**
297 * Removes and signals all waiting threads.
298 */
299 private void releaseAll() {
300 WaitNode q;
301 while ((q = waiters) != null) {
302 if (UNSAFE.compareAndSwapObject(this, waitersOffset, q, null)) {
303 for (;;) {
304 Thread t = q.thread;
305 if (t != null) {
306 q.thread = null;
307 LockSupport.unpark(t);
308 }
309 WaitNode next = q.next;
310 if (next == null)
311 return;
312 q.next = null; // unlink to help gc
313 q = next;
314 }
315 }
316 }
317 }
318
319 /**
320 * Awaits completion or aborts on interrupt or timeout.
321 *
322 * @param timed true if use timed waits
323 * @param nanos time to wait, if timed
324 * @return state upon completion
325 */
326 private int awaitDone(boolean timed, long nanos)
327 throws InterruptedException {
328 long last = timed ? System.nanoTime() : 0L;
329 WaitNode q = null;
330 boolean queued = false;
331 for (;;) {
332 if (Thread.interrupted()) {
333 removeWaiter(q);
334 throw new InterruptedException();
335 }
336
337 int s = state;
338 if (s > COMPLETING) {
339 if (q != null)
340 q.thread = null;
341 return s;
342 }
343 else if (q == null)
344 q = new WaitNode();
345 else if (!queued)
346 queued = UNSAFE.compareAndSwapObject(this, waitersOffset,
347 q.next = waiters, q);
348 else if (q.thread == null)
349 q.thread = Thread.currentThread();
350 else if (timed) {
351 long now = System.nanoTime();
352 if ((nanos -= (now - last)) <= 0L) {
353 removeWaiter(q);
354 return state;
355 }
356 last = now;
357 LockSupport.parkNanos(this, nanos);
358 }
359 else
360 LockSupport.park(this);
361 }
362 }
363
364 /**
365 * Tries to unlink a timed-out or interrupted wait node to avoid
366 * accumulating garbage. Internal nodes are simply unspliced
367 * without CAS since it is harmless if they are traversed anyway
368 * by releasers or concurrent calls to removeWaiter.
369 */
370 private void removeWaiter(WaitNode node) {
371 if (node != null) {
372 node.thread = null;
373 WaitNode pred = null;
374 WaitNode q = waiters;
375 while (q != null) {
376 WaitNode next = node.next;
377 if (q != node) {
378 pred = q;
379 q = next;
380 }
381 else if (pred != null) {
382 pred.next = next;
383 break;
384 }
385 else if (UNSAFE.compareAndSwapObject(this, waitersOffset,
386 q, next))
387 break;
388 else { // restart on CAS failure
389 pred = null;
390 q = waiters;
391 }
392 }
393 }
394 }
395
396 // Unsafe mechanics
397 private static final sun.misc.Unsafe UNSAFE;
398 private static final long stateOffset;
399 private static final long runnerOffset;
400 private static final long waitersOffset;
401 static {
402 try {
403 UNSAFE = sun.misc.Unsafe.getUnsafe();
404 Class<?> k = FutureTask.class;
405 stateOffset = UNSAFE.objectFieldOffset
406 (k.getDeclaredField("state"));
407 runnerOffset = UNSAFE.objectFieldOffset
408 (k.getDeclaredField("runner"));
409 waitersOffset = UNSAFE.objectFieldOffset
410 (k.getDeclaredField("waiters"));
411 } catch (Exception e) {
412 throw new Error(e);
413 }
414 }
415
416 }