ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/FutureTask.java
Revision: 1.97
Committed: Wed Nov 16 18:24:14 2011 UTC (12 years, 6 months ago) by dl
Branch: MAIN
Changes since 1.96: +2 -0 lines
Log Message:
Don't time out if detectably completing

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8 import java.util.concurrent.locks.LockSupport;
9
10 /**
11 * A cancellable asynchronous computation. This class provides a base
12 * implementation of {@link Future}, with methods to start and cancel
13 * a computation, query to see if the computation is complete, and
14 * retrieve the result of the computation. The result can only be
15 * retrieved when the computation has completed; the {@code get}
16 * methods will block if the computation has not yet completed. Once
17 * the computation has completed, the computation cannot be restarted
18 * or cancelled (unless the computation is invoked using
19 * {@link #runAndReset}).
20 *
21 * <p>A {@code FutureTask} can be used to wrap a {@link Callable} or
22 * {@link Runnable} object. Because {@code FutureTask} implements
23 * {@code Runnable}, a {@code FutureTask} can be submitted to an
24 * {@link Executor} for execution.
25 *
26 * <p>In addition to serving as a standalone class, this class provides
27 * {@code protected} functionality that may be useful when creating
28 * customized task classes.
29 *
30 * @since 1.5
31 * @author Doug Lea
32 * @param <V> The result type returned by this FutureTask's {@code get} methods
33 */
34 public class FutureTask<V> implements RunnableFuture<V> {
35 /*
36 * Revision notes: This differs from previous versions of this
37 * class that relied on AbstractQueuedSynchronizer, mainly to
38 * avoid surprising users about retaining interrupt status during
39 * cancellation races. Sync control in the current design relies
40 * on a "state" field updated via CAS to track completion, along
41 * with a simple Treiber stack to hold waiting threads.
42 *
43 * Style note: As usual, we bypass overhead of using
44 * AtomicXFieldUpdaters and instead directly use Unsafe intrinsics.
45 */
46
47 /**
48 * The run state of this task, initially NEW. The run state
49 * transitions to a terminal state only in methods set,
50 * setException, and cancel. During completion, state may take on
51 * transient values of COMPLETING (while outcome is being set) or
52 * INTERRUPTING (only while interrupting the runner to satisfy a
53 * cancel(true)). Transitions from these intermediate to final
54 * states use cheaper ordered/lazy writes because values are unique
55 * and cannot be further modified.
56 *
57 * Possible state transitions:
58 * NEW -> COMPLETING -> NORMAL
59 * NEW -> COMPLETING -> EXCEPTIONAL
60 * NEW -> CANCELLED
61 * NEW -> INTERRUPTING -> INTERRUPTED
62 */
63 private volatile int state;
64 private static final int NEW = 0;
65 private static final int COMPLETING = 1;
66 private static final int NORMAL = 2;
67 private static final int EXCEPTIONAL = 3;
68 private static final int CANCELLED = 4;
69 private static final int INTERRUPTING = 5;
70 private static final int INTERRUPTED = 6;
71
72 /** The underlying callable; nulled out after running */
73 private Callable<V> callable;
74 /** The result to return or exception to throw from get() */
75 private Object outcome; // non-volatile, protected by state reads/writes
76 /** The thread running the callable; CASed during run() */
77 private volatile Thread runner;
78 /** Treiber stack of waiting threads */
79 private volatile WaitNode waiters;
80
81 /**
82 * Returns result or throws exception for completed task.
83 *
84 * @param s completed state value
85 */
86 private V report(int s) throws ExecutionException {
87 Object x = outcome;
88 if (s == NORMAL) {
89 @SuppressWarnings("unchecked") V v = (V)x;
90 return v;
91 }
92 if (s >= CANCELLED)
93 throw new CancellationException();
94 throw new ExecutionException((Throwable)x);
95 }
96
97 /**
98 * Creates a {@code FutureTask} that will, upon running, execute the
99 * given {@code Callable}.
100 *
101 * @param callable the callable task
102 * @throws NullPointerException if the callable is null
103 */
104 public FutureTask(Callable<V> callable) {
105 if (callable == null)
106 throw new NullPointerException();
107 this.callable = callable;
108 this.state = NEW; // ensure visibility of callable
109 }
110
111 /**
112 * Creates a {@code FutureTask} that will, upon running, execute the
113 * given {@code Runnable}, and arrange that {@code get} will return the
114 * given result on successful completion.
115 *
116 * @param runnable the runnable task
117 * @param result the result to return on successful completion. If
118 * you don't need a particular result, consider using
119 * constructions of the form:
120 * {@code Future<?> f = new FutureTask<Void>(runnable, null)}
121 * @throws NullPointerException if the runnable is null
122 */
123 public FutureTask(Runnable runnable, V result) {
124 this.callable = Executors.callable(runnable, result);
125 this.state = NEW; // ensure visibility of callable
126 }
127
128 public boolean isCancelled() {
129 return state >= CANCELLED;
130 }
131
132 public boolean isDone() {
133 return state != NEW;
134 }
135
136 public boolean cancel(boolean mayInterruptIfRunning) {
137 if (state != NEW)
138 return false;
139 if (mayInterruptIfRunning) {
140 if (!UNSAFE.compareAndSwapInt(this, stateOffset, NEW, INTERRUPTING))
141 return false;
142 Thread t = runner;
143 if (t != null)
144 t.interrupt();
145 UNSAFE.putOrderedInt(this, stateOffset, INTERRUPTED); // final state
146 }
147 else if (!UNSAFE.compareAndSwapInt(this, stateOffset, NEW, CANCELLED))
148 return false;
149 finishCompletion();
150 return true;
151 }
152
153 /**
154 * @throws CancellationException {@inheritDoc}
155 */
156 public V get() throws InterruptedException, ExecutionException {
157 int s = state;
158 if (s <= COMPLETING)
159 s = awaitDone(false, 0L);
160 return report(s);
161 }
162
163 /**
164 * @throws CancellationException {@inheritDoc}
165 */
166 public V get(long timeout, TimeUnit unit)
167 throws InterruptedException, ExecutionException, TimeoutException {
168 if (unit == null)
169 throw new NullPointerException();
170 int s = state;
171 if (s <= COMPLETING &&
172 (s = awaitDone(true, unit.toNanos(timeout))) <= COMPLETING)
173 throw new TimeoutException();
174 return report(s);
175 }
176
177 /**
178 * Protected method invoked when this task transitions to state
179 * {@code isDone} (whether normally or via cancellation). The
180 * default implementation does nothing. Subclasses may override
181 * this method to invoke completion callbacks or perform
182 * bookkeeping. Note that you can query status inside the
183 * implementation of this method to determine whether this task
184 * has been cancelled.
185 */
186 protected void done() { }
187
188 /**
189 * Sets the result of this future to the given value unless
190 * this future has already been set or has been cancelled.
191 *
192 * <p>This method is invoked internally by the {@link #run} method
193 * upon successful completion of the computation.
194 *
195 * @param v the value
196 */
197 protected void set(V v) {
198 if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
199 outcome = v;
200 UNSAFE.putOrderedInt(this, stateOffset, NORMAL); // final state
201 finishCompletion();
202 }
203 }
204
205 /**
206 * Causes this future to report an {@link ExecutionException}
207 * with the given throwable as its cause, unless this future has
208 * already been set or has been cancelled.
209 *
210 * <p>This method is invoked internally by the {@link #run} method
211 * upon failure of the computation.
212 *
213 * @param t the cause of failure
214 */
215 protected void setException(Throwable t) {
216 if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
217 outcome = t;
218 UNSAFE.putOrderedInt(this, stateOffset, EXCEPTIONAL); // final state
219 finishCompletion();
220 }
221 }
222
223 public void run() {
224 if (state != NEW ||
225 !UNSAFE.compareAndSwapObject(this, runnerOffset,
226 null, Thread.currentThread()))
227 return;
228 try {
229 Callable<V> c = callable;
230 if (c != null && state == NEW) {
231 V result;
232 boolean ran;
233 try {
234 result = c.call();
235 ran = true;
236 } catch (Throwable ex) {
237 result = null;
238 ran = false;
239 setException(ex);
240 }
241 if (ran)
242 set(result);
243 }
244 } finally {
245 // runner must be non-null until state is settled to
246 // prevent concurrent calls to run()
247 runner = null;
248 // state must be re-read after nulling runner to prevent
249 // leaked interrupts
250 int s = state;
251 if (s >= INTERRUPTING)
252 handlePossibleCancellationInterrupt(s);
253 }
254 }
255
256 /**
257 * Executes the computation without setting its result, and then
258 * resets this future to initial state, failing to do so if the
259 * computation encounters an exception or is cancelled. This is
260 * designed for use with tasks that intrinsically execute more
261 * than once.
262 *
263 * @return true if successfully run and reset
264 */
265 protected boolean runAndReset() {
266 if (state != NEW ||
267 !UNSAFE.compareAndSwapObject(this, runnerOffset,
268 null, Thread.currentThread()))
269 return false;
270 boolean ran = false;
271 int s = state;
272 try {
273 Callable<V> c = callable;
274 if (c != null && s == NEW) {
275 try {
276 c.call(); // don't set result
277 ran = true;
278 } catch (Throwable ex) {
279 setException(ex);
280 }
281 }
282 } finally {
283 // runner must be non-null until state is settled to
284 // prevent concurrent calls to run()
285 runner = null;
286 // state must be re-read after nulling runner to prevent
287 // leaked interrupts
288 s = state;
289 if (s >= INTERRUPTING)
290 handlePossibleCancellationInterrupt(s);
291 }
292 return ran && s == NEW;
293 }
294
295 /**
296 * Ensures that any interrupt from a possible cancel(true) is only
297 * delivered to a task while in run or runAndReset.
298 */
299 private void handlePossibleCancellationInterrupt(int s) {
300 // It is possible for our interrupter to stall before getting a
301 // chance to interrupt us. Let's spin-wait patiently.
302 if (s == INTERRUPTING)
303 while (state == INTERRUPTING)
304 Thread.yield(); // wait out pending interrupt
305
306 // assert state == INTERRUPTED;
307
308 // We want to clear any interrupt we may have received from
309 // cancel(true). However, it is permissible to use interrupts
310 // as an independent mechanism for a task to communicate with
311 // its caller, and there is no way to clear only the
312 // cancellation interrupt.
313 //
314 // Thread.interrupted();
315 }
316
317 /**
318 * Simple linked list nodes to record waiting threads in a Treiber
319 * stack. See other classes such as Phaser and SynchronousQueue
320 * for more detailed explanation.
321 */
322 static final class WaitNode {
323 volatile Thread thread;
324 volatile WaitNode next;
325 WaitNode() { thread = Thread.currentThread(); }
326 }
327
328 /**
329 * Removes and signals all waiting threads, invokes done(), and
330 * nulls out callable.
331 */
332 private void finishCompletion() {
333 // assert state > COMPLETING;
334 for (WaitNode q; (q = waiters) != null;) {
335 if (UNSAFE.compareAndSwapObject(this, waitersOffset, q, null)) {
336 for (;;) {
337 Thread t = q.thread;
338 if (t != null) {
339 q.thread = null;
340 LockSupport.unpark(t);
341 }
342 WaitNode next = q.next;
343 if (next == null)
344 break;
345 q.next = null; // unlink to help gc
346 q = next;
347 }
348 break;
349 }
350 }
351
352 done();
353
354 callable = null; // to reduce footprint
355 }
356
357 /**
358 * Awaits completion or aborts on interrupt or timeout.
359 *
360 * @param timed true if use timed waits
361 * @param nanos time to wait, if timed
362 * @return state upon completion
363 */
364 private int awaitDone(boolean timed, long nanos)
365 throws InterruptedException {
366 long last = timed ? System.nanoTime() : 0L;
367 WaitNode q = null;
368 boolean queued = false;
369 for (;;) {
370 if (Thread.interrupted()) {
371 removeWaiter(q);
372 throw new InterruptedException();
373 }
374
375 int s = state;
376 if (s > COMPLETING) {
377 if (q != null)
378 q.thread = null;
379 return s;
380 }
381 else if (s == COMPLETING) // cannot time out yet
382 Thread.yield();
383 else if (q == null)
384 q = new WaitNode();
385 else if (!queued)
386 queued = UNSAFE.compareAndSwapObject(this, waitersOffset,
387 q.next = waiters, q);
388 else if (timed) {
389 long now = System.nanoTime();
390 if ((nanos -= (now - last)) <= 0L) {
391 removeWaiter(q);
392 return state;
393 }
394 last = now;
395 LockSupport.parkNanos(this, nanos);
396 }
397 else
398 LockSupport.park(this);
399 }
400 }
401
402 /**
403 * Tries to unlink a timed-out or interrupted wait node to avoid
404 * accumulating garbage. Internal nodes are simply unspliced
405 * without CAS since it is harmless if they are traversed anyway
406 * by releasers. To avoid effects of unsplicing from already
407 * removed nodes, the list is retraversed in case of an apparent
408 * race. This is slow when there are a lot of nodes, but we don't
409 * expect lists to be long enough to outweigh higher-overhead
410 * schemes.
411 */
412 private void removeWaiter(WaitNode node) {
413 if (node != null) {
414 node.thread = null;
415 retry:
416 for (;;) { // restart on removeWaiter race
417 for (WaitNode pred = null, q = waiters, s; q != null; q = s) {
418 s = q.next;
419 if (q.thread != null)
420 pred = q;
421 else if (pred != null) {
422 pred.next = s;
423 if (pred.thread == null) // check for race
424 continue retry;
425 }
426 else if (!UNSAFE.compareAndSwapObject(this, waitersOffset,
427 q, s))
428 continue retry;
429 }
430 break;
431 }
432 }
433 }
434
435 // Unsafe mechanics
436 private static final sun.misc.Unsafe UNSAFE;
437 private static final long stateOffset;
438 private static final long runnerOffset;
439 private static final long waitersOffset;
440 static {
441 try {
442 UNSAFE = sun.misc.Unsafe.getUnsafe();
443 Class<?> k = FutureTask.class;
444 stateOffset = UNSAFE.objectFieldOffset
445 (k.getDeclaredField("state"));
446 runnerOffset = UNSAFE.objectFieldOffset
447 (k.getDeclaredField("runner"));
448 waitersOffset = UNSAFE.objectFieldOffset
449 (k.getDeclaredField("waiters"));
450 } catch (Exception e) {
451 throw new Error(e);
452 }
453 }
454
455 }