ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/FutureTask.java
Revision: 1.99
Committed: Tue Dec 20 01:03:46 2011 UTC (12 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.98: +3 -4 lines
Log Message:
s/lastTime/deadline/g

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8 import java.util.concurrent.locks.LockSupport;
9
10 /**
11 * A cancellable asynchronous computation. This class provides a base
12 * implementation of {@link Future}, with methods to start and cancel
13 * a computation, query to see if the computation is complete, and
14 * retrieve the result of the computation. The result can only be
15 * retrieved when the computation has completed; the {@code get}
16 * methods will block if the computation has not yet completed. Once
17 * the computation has completed, the computation cannot be restarted
18 * or cancelled (unless the computation is invoked using
19 * {@link #runAndReset}).
20 *
21 * <p>A {@code FutureTask} can be used to wrap a {@link Callable} or
22 * {@link Runnable} object. Because {@code FutureTask} implements
23 * {@code Runnable}, a {@code FutureTask} can be submitted to an
24 * {@link Executor} for execution.
25 *
26 * <p>In addition to serving as a standalone class, this class provides
27 * {@code protected} functionality that may be useful when creating
28 * customized task classes.
29 *
30 * @since 1.5
31 * @author Doug Lea
32 * @param <V> The result type returned by this FutureTask's {@code get} methods
33 */
34 public class FutureTask<V> implements RunnableFuture<V> {
35 /*
36 * Revision notes: This differs from previous versions of this
37 * class that relied on AbstractQueuedSynchronizer, mainly to
38 * avoid surprising users about retaining interrupt status during
39 * cancellation races. Sync control in the current design relies
40 * on a "state" field updated via CAS to track completion, along
41 * with a simple Treiber stack to hold waiting threads.
42 *
43 * Style note: As usual, we bypass overhead of using
44 * AtomicXFieldUpdaters and instead directly use Unsafe intrinsics.
45 */
46
47 /**
48 * The run state of this task, initially NEW. The run state
49 * transitions to a terminal state only in methods set,
50 * setException, and cancel. During completion, state may take on
51 * transient values of COMPLETING (while outcome is being set) or
52 * INTERRUPTING (only while interrupting the runner to satisfy a
53 * cancel(true)). Transitions from these intermediate to final
54 * states use cheaper ordered/lazy writes because values are unique
55 * and cannot be further modified.
56 *
57 * Possible state transitions:
58 * NEW -> COMPLETING -> NORMAL
59 * NEW -> COMPLETING -> EXCEPTIONAL
60 * NEW -> CANCELLED
61 * NEW -> INTERRUPTING -> INTERRUPTED
62 */
63 private volatile int state;
64 private static final int NEW = 0;
65 private static final int COMPLETING = 1;
66 private static final int NORMAL = 2;
67 private static final int EXCEPTIONAL = 3;
68 private static final int CANCELLED = 4;
69 private static final int INTERRUPTING = 5;
70 private static final int INTERRUPTED = 6;
71
72 /** The underlying callable; nulled out after running */
73 private Callable<V> callable;
74 /** The result to return or exception to throw from get() */
75 private Object outcome; // non-volatile, protected by state reads/writes
76 /** The thread running the callable; CASed during run() */
77 private volatile Thread runner;
78 /** Treiber stack of waiting threads */
79 private volatile WaitNode waiters;
80
81 /**
82 * Returns result or throws exception for completed task.
83 *
84 * @param s completed state value
85 */
86 @SuppressWarnings("unchecked")
87 private V report(int s) throws ExecutionException {
88 Object x = outcome;
89 if (s == NORMAL)
90 return (V)x;
91 if (s >= CANCELLED)
92 throw new CancellationException();
93 throw new ExecutionException((Throwable)x);
94 }
95
96 /**
97 * Creates a {@code FutureTask} that will, upon running, execute the
98 * given {@code Callable}.
99 *
100 * @param callable the callable task
101 * @throws NullPointerException if the callable is null
102 */
103 public FutureTask(Callable<V> callable) {
104 if (callable == null)
105 throw new NullPointerException();
106 this.callable = callable;
107 this.state = NEW; // ensure visibility of callable
108 }
109
110 /**
111 * Creates a {@code FutureTask} that will, upon running, execute the
112 * given {@code Runnable}, and arrange that {@code get} will return the
113 * given result on successful completion.
114 *
115 * @param runnable the runnable task
116 * @param result the result to return on successful completion. If
117 * you don't need a particular result, consider using
118 * constructions of the form:
119 * {@code Future<?> f = new FutureTask<Void>(runnable, null)}
120 * @throws NullPointerException if the runnable is null
121 */
122 public FutureTask(Runnable runnable, V result) {
123 this.callable = Executors.callable(runnable, result);
124 this.state = NEW; // ensure visibility of callable
125 }
126
127 public boolean isCancelled() {
128 return state >= CANCELLED;
129 }
130
131 public boolean isDone() {
132 return state != NEW;
133 }
134
135 public boolean cancel(boolean mayInterruptIfRunning) {
136 if (state != NEW)
137 return false;
138 if (mayInterruptIfRunning) {
139 if (!UNSAFE.compareAndSwapInt(this, stateOffset, NEW, INTERRUPTING))
140 return false;
141 Thread t = runner;
142 if (t != null)
143 t.interrupt();
144 UNSAFE.putOrderedInt(this, stateOffset, INTERRUPTED); // final state
145 }
146 else if (!UNSAFE.compareAndSwapInt(this, stateOffset, NEW, CANCELLED))
147 return false;
148 finishCompletion();
149 return true;
150 }
151
152 /**
153 * @throws CancellationException {@inheritDoc}
154 */
155 public V get() throws InterruptedException, ExecutionException {
156 int s = state;
157 if (s <= COMPLETING)
158 s = awaitDone(false, 0L);
159 return report(s);
160 }
161
162 /**
163 * @throws CancellationException {@inheritDoc}
164 */
165 public V get(long timeout, TimeUnit unit)
166 throws InterruptedException, ExecutionException, TimeoutException {
167 if (unit == null)
168 throw new NullPointerException();
169 int s = state;
170 if (s <= COMPLETING &&
171 (s = awaitDone(true, unit.toNanos(timeout))) <= COMPLETING)
172 throw new TimeoutException();
173 return report(s);
174 }
175
176 /**
177 * Protected method invoked when this task transitions to state
178 * {@code isDone} (whether normally or via cancellation). The
179 * default implementation does nothing. Subclasses may override
180 * this method to invoke completion callbacks or perform
181 * bookkeeping. Note that you can query status inside the
182 * implementation of this method to determine whether this task
183 * has been cancelled.
184 */
185 protected void done() { }
186
187 /**
188 * Sets the result of this future to the given value unless
189 * this future has already been set or has been cancelled.
190 *
191 * <p>This method is invoked internally by the {@link #run} method
192 * upon successful completion of the computation.
193 *
194 * @param v the value
195 */
196 protected void set(V v) {
197 if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
198 outcome = v;
199 UNSAFE.putOrderedInt(this, stateOffset, NORMAL); // final state
200 finishCompletion();
201 }
202 }
203
204 /**
205 * Causes this future to report an {@link ExecutionException}
206 * with the given throwable as its cause, unless this future has
207 * already been set or has been cancelled.
208 *
209 * <p>This method is invoked internally by the {@link #run} method
210 * upon failure of the computation.
211 *
212 * @param t the cause of failure
213 */
214 protected void setException(Throwable t) {
215 if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
216 outcome = t;
217 UNSAFE.putOrderedInt(this, stateOffset, EXCEPTIONAL); // final state
218 finishCompletion();
219 }
220 }
221
222 public void run() {
223 if (state != NEW ||
224 !UNSAFE.compareAndSwapObject(this, runnerOffset,
225 null, Thread.currentThread()))
226 return;
227 try {
228 Callable<V> c = callable;
229 if (c != null && state == NEW) {
230 V result;
231 boolean ran;
232 try {
233 result = c.call();
234 ran = true;
235 } catch (Throwable ex) {
236 result = null;
237 ran = false;
238 setException(ex);
239 }
240 if (ran)
241 set(result);
242 }
243 } finally {
244 // runner must be non-null until state is settled to
245 // prevent concurrent calls to run()
246 runner = null;
247 // state must be re-read after nulling runner to prevent
248 // leaked interrupts
249 int s = state;
250 if (s >= INTERRUPTING)
251 handlePossibleCancellationInterrupt(s);
252 }
253 }
254
255 /**
256 * Executes the computation without setting its result, and then
257 * resets this future to initial state, failing to do so if the
258 * computation encounters an exception or is cancelled. This is
259 * designed for use with tasks that intrinsically execute more
260 * than once.
261 *
262 * @return true if successfully run and reset
263 */
264 protected boolean runAndReset() {
265 if (state != NEW ||
266 !UNSAFE.compareAndSwapObject(this, runnerOffset,
267 null, Thread.currentThread()))
268 return false;
269 boolean ran = false;
270 int s = state;
271 try {
272 Callable<V> c = callable;
273 if (c != null && s == NEW) {
274 try {
275 c.call(); // don't set result
276 ran = true;
277 } catch (Throwable ex) {
278 setException(ex);
279 }
280 }
281 } finally {
282 // runner must be non-null until state is settled to
283 // prevent concurrent calls to run()
284 runner = null;
285 // state must be re-read after nulling runner to prevent
286 // leaked interrupts
287 s = state;
288 if (s >= INTERRUPTING)
289 handlePossibleCancellationInterrupt(s);
290 }
291 return ran && s == NEW;
292 }
293
294 /**
295 * Ensures that any interrupt from a possible cancel(true) is only
296 * delivered to a task while in run or runAndReset.
297 */
298 private void handlePossibleCancellationInterrupt(int s) {
299 // It is possible for our interrupter to stall before getting a
300 // chance to interrupt us. Let's spin-wait patiently.
301 if (s == INTERRUPTING)
302 while (state == INTERRUPTING)
303 Thread.yield(); // wait out pending interrupt
304
305 // assert state == INTERRUPTED;
306
307 // We want to clear any interrupt we may have received from
308 // cancel(true). However, it is permissible to use interrupts
309 // as an independent mechanism for a task to communicate with
310 // its caller, and there is no way to clear only the
311 // cancellation interrupt.
312 //
313 // Thread.interrupted();
314 }
315
316 /**
317 * Simple linked list nodes to record waiting threads in a Treiber
318 * stack. See other classes such as Phaser and SynchronousQueue
319 * for more detailed explanation.
320 */
321 static final class WaitNode {
322 volatile Thread thread;
323 volatile WaitNode next;
324 WaitNode() { thread = Thread.currentThread(); }
325 }
326
327 /**
328 * Removes and signals all waiting threads, invokes done(), and
329 * nulls out callable.
330 */
331 private void finishCompletion() {
332 // assert state > COMPLETING;
333 for (WaitNode q; (q = waiters) != null;) {
334 if (UNSAFE.compareAndSwapObject(this, waitersOffset, q, null)) {
335 for (;;) {
336 Thread t = q.thread;
337 if (t != null) {
338 q.thread = null;
339 LockSupport.unpark(t);
340 }
341 WaitNode next = q.next;
342 if (next == null)
343 break;
344 q.next = null; // unlink to help gc
345 q = next;
346 }
347 break;
348 }
349 }
350
351 done();
352
353 callable = null; // to reduce footprint
354 }
355
356 /**
357 * Awaits completion or aborts on interrupt or timeout.
358 *
359 * @param timed true if use timed waits
360 * @param nanos time to wait, if timed
361 * @return state upon completion
362 */
363 private int awaitDone(boolean timed, long nanos)
364 throws InterruptedException {
365 final long deadline = timed ? System.nanoTime() + nanos : 0L;
366 WaitNode q = null;
367 boolean queued = false;
368 for (;;) {
369 if (Thread.interrupted()) {
370 removeWaiter(q);
371 throw new InterruptedException();
372 }
373
374 int s = state;
375 if (s > COMPLETING) {
376 if (q != null)
377 q.thread = null;
378 return s;
379 }
380 else if (s == COMPLETING) // cannot time out yet
381 Thread.yield();
382 else if (q == null)
383 q = new WaitNode();
384 else if (!queued)
385 queued = UNSAFE.compareAndSwapObject(this, waitersOffset,
386 q.next = waiters, q);
387 else if (timed) {
388 nanos = deadline - System.nanoTime();
389 if (nanos <= 0L) {
390 removeWaiter(q);
391 return state;
392 }
393 LockSupport.parkNanos(this, nanos);
394 }
395 else
396 LockSupport.park(this);
397 }
398 }
399
400 /**
401 * Tries to unlink a timed-out or interrupted wait node to avoid
402 * accumulating garbage. Internal nodes are simply unspliced
403 * without CAS since it is harmless if they are traversed anyway
404 * by releasers. To avoid effects of unsplicing from already
405 * removed nodes, the list is retraversed in case of an apparent
406 * race. This is slow when there are a lot of nodes, but we don't
407 * expect lists to be long enough to outweigh higher-overhead
408 * schemes.
409 */
410 private void removeWaiter(WaitNode node) {
411 if (node != null) {
412 node.thread = null;
413 retry:
414 for (;;) { // restart on removeWaiter race
415 for (WaitNode pred = null, q = waiters, s; q != null; q = s) {
416 s = q.next;
417 if (q.thread != null)
418 pred = q;
419 else if (pred != null) {
420 pred.next = s;
421 if (pred.thread == null) // check for race
422 continue retry;
423 }
424 else if (!UNSAFE.compareAndSwapObject(this, waitersOffset,
425 q, s))
426 continue retry;
427 }
428 break;
429 }
430 }
431 }
432
433 // Unsafe mechanics
434 private static final sun.misc.Unsafe UNSAFE;
435 private static final long stateOffset;
436 private static final long runnerOffset;
437 private static final long waitersOffset;
438 static {
439 try {
440 UNSAFE = sun.misc.Unsafe.getUnsafe();
441 Class<?> k = FutureTask.class;
442 stateOffset = UNSAFE.objectFieldOffset
443 (k.getDeclaredField("state"));
444 runnerOffset = UNSAFE.objectFieldOffset
445 (k.getDeclaredField("runner"));
446 waitersOffset = UNSAFE.objectFieldOffset
447 (k.getDeclaredField("waiters"));
448 } catch (Exception e) {
449 throw new Error(e);
450 }
451 }
452
453 }