ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/LinkedBlockingDeque.java
Revision: 1.21
Committed: Wed Jul 29 18:13:43 2009 UTC (14 years, 10 months ago) by jsr166
Branch: MAIN
Changes since 1.20: +253 -141 lines
Log Message:
6805775: LinkedBlockingQueue Nodes should unlink themselves before becoming garbage
6815766: LinkedBlockingQueue's iterator can return null if drainTo(c) executes concurrently

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package java.util.concurrent;
8
9 import java.util.AbstractQueue;
10 import java.util.Collection;
11 import java.util.Iterator;
12 import java.util.NoSuchElementException;
13 import java.util.concurrent.locks.Condition;
14 import java.util.concurrent.locks.ReentrantLock;
15
16 /**
17 * An optionally-bounded {@linkplain BlockingDeque blocking deque} based on
18 * linked nodes.
19 *
20 * <p> The optional capacity bound constructor argument serves as a
21 * way to prevent excessive expansion. The capacity, if unspecified,
22 * is equal to {@link Integer#MAX_VALUE}. Linked nodes are
23 * dynamically created upon each insertion unless this would bring the
24 * deque above capacity.
25 *
26 * <p>Most operations run in constant time (ignoring time spent
27 * blocking). Exceptions include {@link #remove(Object) remove},
28 * {@link #removeFirstOccurrence removeFirstOccurrence}, {@link
29 * #removeLastOccurrence removeLastOccurrence}, {@link #contains
30 * contains}, {@link #iterator iterator.remove()}, and the bulk
31 * operations, all of which run in linear time.
32 *
33 * <p>This class and its iterator implement all of the
34 * <em>optional</em> methods of the {@link Collection} and {@link
35 * Iterator} interfaces.
36 *
37 * <p>This class is a member of the
38 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
39 * Java Collections Framework</a>.
40 *
41 * @since 1.6
42 * @author Doug Lea
43 * @param <E> the type of elements held in this collection
44 */
45 public class LinkedBlockingDeque<E>
46 extends AbstractQueue<E>
47 implements BlockingDeque<E>, java.io.Serializable {
48
49 /*
50 * Implemented as a simple doubly-linked list protected by a
51 * single lock and using conditions to manage blocking.
52 *
53 * To implement weakly consistent iterators, it appears we need to
54 * keep all Nodes GC-reachable from a predecessor dequeued Node.
55 * That would cause two problems:
56 * - allow a rogue Iterator to cause unbounded memory retention
57 * - cause cross-generational linking of old Nodes to new Nodes if
58 * a Node was tenured while live, which generational GCs have a
59 * hard time dealing with, causing repeated major collections.
60 * However, only non-deleted Nodes need to be reachable from
61 * dequeued Nodes, and reachability does not necessarily have to
62 * be of the kind understood by the GC. We use the trick of
63 * linking a Node that has just been dequeued to itself. Such a
64 * self-link implicitly means to jump to "first" (for next links)
65 * or "last" (for prev links).
66 */
67
68 /*
69 * We have "diamond" multiple interface/abstract class inheritance
70 * here, and that introduces ambiguities. Often we want the
71 * BlockingDeque javadoc combined with the AbstractQueue
72 * implementation, so a lot of method specs are duplicated here.
73 */
74
75 private static final long serialVersionUID = -387911632671998426L;
76
77 /** Doubly-linked list node class */
78 static final class Node<E> {
79 /**
80 * The item, or null if this node has been removed.
81 */
82 E item;
83
84 /**
85 * One of:
86 * - the real predecessor Node
87 * - this Node, meaning the predecessor is tail
88 * - null, meaning there is no predecessor
89 */
90 Node<E> prev;
91
92 /**
93 * One of:
94 * - the real successor Node
95 * - this Node, meaning the successor is head
96 * - null, meaning there is no successor
97 */
98 Node<E> next;
99
100 Node(E x, Node<E> p, Node<E> n) {
101 item = x;
102 prev = p;
103 next = n;
104 }
105 }
106
107 /**
108 * Pointer to first node.
109 * Invariant: (first == null && last == null) ||
110 * (first.prev == null && first.item != null)
111 */
112 transient Node<E> first;
113
114 /**
115 * Pointer to last node.
116 * Invariant: (first == null && last == null) ||
117 * (last.next == null && last.item != null)
118 */
119 transient Node<E> last;
120
121 /** Number of items in the deque */
122 private transient int count;
123
124 /** Maximum number of items in the deque */
125 private final int capacity;
126
127 /** Main lock guarding all access */
128 final ReentrantLock lock = new ReentrantLock();
129
130 /** Condition for waiting takes */
131 private final Condition notEmpty = lock.newCondition();
132
133 /** Condition for waiting puts */
134 private final Condition notFull = lock.newCondition();
135
136 /**
137 * Creates a {@code LinkedBlockingDeque} with a capacity of
138 * {@link Integer#MAX_VALUE}.
139 */
140 public LinkedBlockingDeque() {
141 this(Integer.MAX_VALUE);
142 }
143
144 /**
145 * Creates a {@code LinkedBlockingDeque} with the given (fixed) capacity.
146 *
147 * @param capacity the capacity of this deque
148 * @throws IllegalArgumentException if {@code capacity} is less than 1
149 */
150 public LinkedBlockingDeque(int capacity) {
151 if (capacity <= 0) throw new IllegalArgumentException();
152 this.capacity = capacity;
153 }
154
155 /**
156 * Creates a {@code LinkedBlockingDeque} with a capacity of
157 * {@link Integer#MAX_VALUE}, initially containing the elements of
158 * the given collection, added in traversal order of the
159 * collection's iterator.
160 *
161 * @param c the collection of elements to initially contain
162 * @throws NullPointerException if the specified collection or any
163 * of its elements are null
164 */
165 public LinkedBlockingDeque(Collection<? extends E> c) {
166 this(Integer.MAX_VALUE);
167 final ReentrantLock lock = this.lock;
168 lock.lock(); // Never contended, but necessary for visibility
169 try {
170 for (E e : c) {
171 if (e == null)
172 throw new NullPointerException();
173 if (!linkLast(e))
174 throw new IllegalStateException("Deque full");
175 }
176 } finally {
177 lock.unlock();
178 }
179 }
180
181
182 // Basic linking and unlinking operations, called only while holding lock
183
184 /**
185 * Links e as first element, or returns false if full.
186 */
187 private boolean linkFirst(E e) {
188 // assert lock.isHeldByCurrentThread();
189 if (count >= capacity)
190 return false;
191 Node<E> f = first;
192 Node<E> x = new Node<E>(e, null, f);
193 first = x;
194 if (last == null)
195 last = x;
196 else
197 f.prev = x;
198 ++count;
199 notEmpty.signal();
200 return true;
201 }
202
203 /**
204 * Links e as last element, or returns false if full.
205 */
206 private boolean linkLast(E e) {
207 // assert lock.isHeldByCurrentThread();
208 if (count >= capacity)
209 return false;
210 Node<E> l = last;
211 Node<E> x = new Node<E>(e, l, null);
212 last = x;
213 if (first == null)
214 first = x;
215 else
216 l.next = x;
217 ++count;
218 notEmpty.signal();
219 return true;
220 }
221
222 /**
223 * Removes and returns first element, or null if empty.
224 */
225 private E unlinkFirst() {
226 // assert lock.isHeldByCurrentThread();
227 Node<E> f = first;
228 if (f == null)
229 return null;
230 Node<E> n = f.next;
231 E item = f.item;
232 f.item = null;
233 f.next = f; // help GC
234 first = n;
235 if (n == null)
236 last = null;
237 else
238 n.prev = null;
239 --count;
240 notFull.signal();
241 return item;
242 }
243
244 /**
245 * Removes and returns last element, or null if empty.
246 */
247 private E unlinkLast() {
248 // assert lock.isHeldByCurrentThread();
249 Node<E> l = last;
250 if (l == null)
251 return null;
252 Node<E> p = l.prev;
253 E item = l.item;
254 l.item = null;
255 l.prev = l; // help GC
256 last = p;
257 if (p == null)
258 first = null;
259 else
260 p.next = null;
261 --count;
262 notFull.signal();
263 return item;
264 }
265
266 /**
267 * Unlinks x.
268 */
269 void unlink(Node<E> x) {
270 // assert lock.isHeldByCurrentThread();
271 Node<E> p = x.prev;
272 Node<E> n = x.next;
273 if (p == null) {
274 unlinkFirst();
275 } else if (n == null) {
276 unlinkLast();
277 } else {
278 p.next = n;
279 n.prev = p;
280 x.item = null;
281 // Don't mess with x's links. They may still be in use by
282 // an iterator.
283 --count;
284 notFull.signal();
285 }
286 }
287
288 // BlockingDeque methods
289
290 /**
291 * @throws IllegalStateException {@inheritDoc}
292 * @throws NullPointerException {@inheritDoc}
293 */
294 public void addFirst(E e) {
295 if (!offerFirst(e))
296 throw new IllegalStateException("Deque full");
297 }
298
299 /**
300 * @throws IllegalStateException {@inheritDoc}
301 * @throws NullPointerException {@inheritDoc}
302 */
303 public void addLast(E e) {
304 if (!offerLast(e))
305 throw new IllegalStateException("Deque full");
306 }
307
308 /**
309 * @throws NullPointerException {@inheritDoc}
310 */
311 public boolean offerFirst(E e) {
312 if (e == null) throw new NullPointerException();
313 final ReentrantLock lock = this.lock;
314 lock.lock();
315 try {
316 return linkFirst(e);
317 } finally {
318 lock.unlock();
319 }
320 }
321
322 /**
323 * @throws NullPointerException {@inheritDoc}
324 */
325 public boolean offerLast(E e) {
326 if (e == null) throw new NullPointerException();
327 final ReentrantLock lock = this.lock;
328 lock.lock();
329 try {
330 return linkLast(e);
331 } finally {
332 lock.unlock();
333 }
334 }
335
336 /**
337 * @throws NullPointerException {@inheritDoc}
338 * @throws InterruptedException {@inheritDoc}
339 */
340 public void putFirst(E e) throws InterruptedException {
341 if (e == null) throw new NullPointerException();
342 final ReentrantLock lock = this.lock;
343 lock.lock();
344 try {
345 while (!linkFirst(e))
346 notFull.await();
347 } finally {
348 lock.unlock();
349 }
350 }
351
352 /**
353 * @throws NullPointerException {@inheritDoc}
354 * @throws InterruptedException {@inheritDoc}
355 */
356 public void putLast(E e) throws InterruptedException {
357 if (e == null) throw new NullPointerException();
358 final ReentrantLock lock = this.lock;
359 lock.lock();
360 try {
361 while (!linkLast(e))
362 notFull.await();
363 } finally {
364 lock.unlock();
365 }
366 }
367
368 /**
369 * @throws NullPointerException {@inheritDoc}
370 * @throws InterruptedException {@inheritDoc}
371 */
372 public boolean offerFirst(E e, long timeout, TimeUnit unit)
373 throws InterruptedException {
374 if (e == null) throw new NullPointerException();
375 long nanos = unit.toNanos(timeout);
376 final ReentrantLock lock = this.lock;
377 lock.lockInterruptibly();
378 try {
379 while (!linkFirst(e)) {
380 if (nanos <= 0)
381 return false;
382 nanos = notFull.awaitNanos(nanos);
383 }
384 return true;
385 } finally {
386 lock.unlock();
387 }
388 }
389
390 /**
391 * @throws NullPointerException {@inheritDoc}
392 * @throws InterruptedException {@inheritDoc}
393 */
394 public boolean offerLast(E e, long timeout, TimeUnit unit)
395 throws InterruptedException {
396 if (e == null) throw new NullPointerException();
397 long nanos = unit.toNanos(timeout);
398 final ReentrantLock lock = this.lock;
399 lock.lockInterruptibly();
400 try {
401 while (!linkLast(e)) {
402 if (nanos <= 0)
403 return false;
404 nanos = notFull.awaitNanos(nanos);
405 }
406 return true;
407 } finally {
408 lock.unlock();
409 }
410 }
411
412 /**
413 * @throws NoSuchElementException {@inheritDoc}
414 */
415 public E removeFirst() {
416 E x = pollFirst();
417 if (x == null) throw new NoSuchElementException();
418 return x;
419 }
420
421 /**
422 * @throws NoSuchElementException {@inheritDoc}
423 */
424 public E removeLast() {
425 E x = pollLast();
426 if (x == null) throw new NoSuchElementException();
427 return x;
428 }
429
430 public E pollFirst() {
431 final ReentrantLock lock = this.lock;
432 lock.lock();
433 try {
434 return unlinkFirst();
435 } finally {
436 lock.unlock();
437 }
438 }
439
440 public E pollLast() {
441 final ReentrantLock lock = this.lock;
442 lock.lock();
443 try {
444 return unlinkLast();
445 } finally {
446 lock.unlock();
447 }
448 }
449
450 public E takeFirst() throws InterruptedException {
451 final ReentrantLock lock = this.lock;
452 lock.lock();
453 try {
454 E x;
455 while ( (x = unlinkFirst()) == null)
456 notEmpty.await();
457 return x;
458 } finally {
459 lock.unlock();
460 }
461 }
462
463 public E takeLast() throws InterruptedException {
464 final ReentrantLock lock = this.lock;
465 lock.lock();
466 try {
467 E x;
468 while ( (x = unlinkLast()) == null)
469 notEmpty.await();
470 return x;
471 } finally {
472 lock.unlock();
473 }
474 }
475
476 public E pollFirst(long timeout, TimeUnit unit)
477 throws InterruptedException {
478 long nanos = unit.toNanos(timeout);
479 final ReentrantLock lock = this.lock;
480 lock.lockInterruptibly();
481 try {
482 E x;
483 while ( (x = unlinkFirst()) == null) {
484 if (nanos <= 0)
485 return null;
486 nanos = notEmpty.awaitNanos(nanos);
487 }
488 return x;
489 } finally {
490 lock.unlock();
491 }
492 }
493
494 public E pollLast(long timeout, TimeUnit unit)
495 throws InterruptedException {
496 long nanos = unit.toNanos(timeout);
497 final ReentrantLock lock = this.lock;
498 lock.lockInterruptibly();
499 try {
500 E x;
501 while ( (x = unlinkLast()) == null) {
502 if (nanos <= 0)
503 return null;
504 nanos = notEmpty.awaitNanos(nanos);
505 }
506 return x;
507 } finally {
508 lock.unlock();
509 }
510 }
511
512 /**
513 * @throws NoSuchElementException {@inheritDoc}
514 */
515 public E getFirst() {
516 E x = peekFirst();
517 if (x == null) throw new NoSuchElementException();
518 return x;
519 }
520
521 /**
522 * @throws NoSuchElementException {@inheritDoc}
523 */
524 public E getLast() {
525 E x = peekLast();
526 if (x == null) throw new NoSuchElementException();
527 return x;
528 }
529
530 public E peekFirst() {
531 final ReentrantLock lock = this.lock;
532 lock.lock();
533 try {
534 return (first == null) ? null : first.item;
535 } finally {
536 lock.unlock();
537 }
538 }
539
540 public E peekLast() {
541 final ReentrantLock lock = this.lock;
542 lock.lock();
543 try {
544 return (last == null) ? null : last.item;
545 } finally {
546 lock.unlock();
547 }
548 }
549
550 public boolean removeFirstOccurrence(Object o) {
551 if (o == null) return false;
552 final ReentrantLock lock = this.lock;
553 lock.lock();
554 try {
555 for (Node<E> p = first; p != null; p = p.next) {
556 if (o.equals(p.item)) {
557 unlink(p);
558 return true;
559 }
560 }
561 return false;
562 } finally {
563 lock.unlock();
564 }
565 }
566
567 public boolean removeLastOccurrence(Object o) {
568 if (o == null) return false;
569 final ReentrantLock lock = this.lock;
570 lock.lock();
571 try {
572 for (Node<E> p = last; p != null; p = p.prev) {
573 if (o.equals(p.item)) {
574 unlink(p);
575 return true;
576 }
577 }
578 return false;
579 } finally {
580 lock.unlock();
581 }
582 }
583
584 // BlockingQueue methods
585
586 /**
587 * Inserts the specified element at the end of this deque unless it would
588 * violate capacity restrictions. When using a capacity-restricted deque,
589 * it is generally preferable to use method {@link #offer(Object) offer}.
590 *
591 * <p>This method is equivalent to {@link #addLast}.
592 *
593 * @throws IllegalStateException if the element cannot be added at this
594 * time due to capacity restrictions
595 * @throws NullPointerException if the specified element is null
596 */
597 public boolean add(E e) {
598 addLast(e);
599 return true;
600 }
601
602 /**
603 * @throws NullPointerException if the specified element is null
604 */
605 public boolean offer(E e) {
606 return offerLast(e);
607 }
608
609 /**
610 * @throws NullPointerException {@inheritDoc}
611 * @throws InterruptedException {@inheritDoc}
612 */
613 public void put(E e) throws InterruptedException {
614 putLast(e);
615 }
616
617 /**
618 * @throws NullPointerException {@inheritDoc}
619 * @throws InterruptedException {@inheritDoc}
620 */
621 public boolean offer(E e, long timeout, TimeUnit unit)
622 throws InterruptedException {
623 return offerLast(e, timeout, unit);
624 }
625
626 /**
627 * Retrieves and removes the head of the queue represented by this deque.
628 * This method differs from {@link #poll poll} only in that it throws an
629 * exception if this deque is empty.
630 *
631 * <p>This method is equivalent to {@link #removeFirst() removeFirst}.
632 *
633 * @return the head of the queue represented by this deque
634 * @throws NoSuchElementException if this deque is empty
635 */
636 public E remove() {
637 return removeFirst();
638 }
639
640 public E poll() {
641 return pollFirst();
642 }
643
644 public E take() throws InterruptedException {
645 return takeFirst();
646 }
647
648 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
649 return pollFirst(timeout, unit);
650 }
651
652 /**
653 * Retrieves, but does not remove, the head of the queue represented by
654 * this deque. This method differs from {@link #peek peek} only in that
655 * it throws an exception if this deque is empty.
656 *
657 * <p>This method is equivalent to {@link #getFirst() getFirst}.
658 *
659 * @return the head of the queue represented by this deque
660 * @throws NoSuchElementException if this deque is empty
661 */
662 public E element() {
663 return getFirst();
664 }
665
666 public E peek() {
667 return peekFirst();
668 }
669
670 /**
671 * Returns the number of additional elements that this deque can ideally
672 * (in the absence of memory or resource constraints) accept without
673 * blocking. This is always equal to the initial capacity of this deque
674 * less the current {@code size} of this deque.
675 *
676 * <p>Note that you <em>cannot</em> always tell if an attempt to insert
677 * an element will succeed by inspecting {@code remainingCapacity}
678 * because it may be the case that another thread is about to
679 * insert or remove an element.
680 */
681 public int remainingCapacity() {
682 final ReentrantLock lock = this.lock;
683 lock.lock();
684 try {
685 return capacity - count;
686 } finally {
687 lock.unlock();
688 }
689 }
690
691 /**
692 * @throws UnsupportedOperationException {@inheritDoc}
693 * @throws ClassCastException {@inheritDoc}
694 * @throws NullPointerException {@inheritDoc}
695 * @throws IllegalArgumentException {@inheritDoc}
696 */
697 public int drainTo(Collection<? super E> c) {
698 return drainTo(c, Integer.MAX_VALUE);
699 }
700
701 /**
702 * @throws UnsupportedOperationException {@inheritDoc}
703 * @throws ClassCastException {@inheritDoc}
704 * @throws NullPointerException {@inheritDoc}
705 * @throws IllegalArgumentException {@inheritDoc}
706 */
707 public int drainTo(Collection<? super E> c, int maxElements) {
708 if (c == null)
709 throw new NullPointerException();
710 if (c == this)
711 throw new IllegalArgumentException();
712 final ReentrantLock lock = this.lock;
713 lock.lock();
714 try {
715 int n = Math.min(maxElements, count);
716 for (int i = 0; i < n; i++) {
717 c.add(first.item); // In this order, in case add() throws.
718 unlinkFirst();
719 }
720 return n;
721 } finally {
722 lock.unlock();
723 }
724 }
725
726 // Stack methods
727
728 /**
729 * @throws IllegalStateException {@inheritDoc}
730 * @throws NullPointerException {@inheritDoc}
731 */
732 public void push(E e) {
733 addFirst(e);
734 }
735
736 /**
737 * @throws NoSuchElementException {@inheritDoc}
738 */
739 public E pop() {
740 return removeFirst();
741 }
742
743 // Collection methods
744
745 /**
746 * Removes the first occurrence of the specified element from this deque.
747 * If the deque does not contain the element, it is unchanged.
748 * More formally, removes the first element {@code e} such that
749 * {@code o.equals(e)} (if such an element exists).
750 * Returns {@code true} if this deque contained the specified element
751 * (or equivalently, if this deque changed as a result of the call).
752 *
753 * <p>This method is equivalent to
754 * {@link #removeFirstOccurrence(Object) removeFirstOccurrence}.
755 *
756 * @param o element to be removed from this deque, if present
757 * @return {@code true} if this deque changed as a result of the call
758 */
759 public boolean remove(Object o) {
760 return removeFirstOccurrence(o);
761 }
762
763 /**
764 * Returns the number of elements in this deque.
765 *
766 * @return the number of elements in this deque
767 */
768 public int size() {
769 final ReentrantLock lock = this.lock;
770 lock.lock();
771 try {
772 return count;
773 } finally {
774 lock.unlock();
775 }
776 }
777
778 /**
779 * Returns {@code true} if this deque contains the specified element.
780 * More formally, returns {@code true} if and only if this deque contains
781 * at least one element {@code e} such that {@code o.equals(e)}.
782 *
783 * @param o object to be checked for containment in this deque
784 * @return {@code true} if this deque contains the specified element
785 */
786 public boolean contains(Object o) {
787 if (o == null) return false;
788 final ReentrantLock lock = this.lock;
789 lock.lock();
790 try {
791 for (Node<E> p = first; p != null; p = p.next)
792 if (o.equals(p.item))
793 return true;
794 return false;
795 } finally {
796 lock.unlock();
797 }
798 }
799
800 /*
801 * TODO: Add support for more efficient bulk operations.
802 *
803 * We don't want to acquire the lock for every iteration, but we
804 * also want other threads a chance to interact with the
805 * collection, especially when count is close to capacity.
806 */
807
808 // /**
809 // * Adds all of the elements in the specified collection to this
810 // * queue. Attempts to addAll of a queue to itself result in
811 // * {@code IllegalArgumentException}. Further, the behavior of
812 // * this operation is undefined if the specified collection is
813 // * modified while the operation is in progress.
814 // *
815 // * @param c collection containing elements to be added to this queue
816 // * @return {@code true} if this queue changed as a result of the call
817 // * @throws ClassCastException {@inheritDoc}
818 // * @throws NullPointerException {@inheritDoc}
819 // * @throws IllegalArgumentException {@inheritDoc}
820 // * @throws IllegalStateException {@inheritDoc}
821 // * @see #add(Object)
822 // */
823 // public boolean addAll(Collection<? extends E> c) {
824 // if (c == null)
825 // throw new NullPointerException();
826 // if (c == this)
827 // throw new IllegalArgumentException();
828 // final ReentrantLock lock = this.lock;
829 // lock.lock();
830 // try {
831 // boolean modified = false;
832 // for (E e : c)
833 // if (linkLast(e))
834 // modified = true;
835 // return modified;
836 // } finally {
837 // lock.unlock();
838 // }
839 // }
840
841 /**
842 * Returns an array containing all of the elements in this deque, in
843 * proper sequence (from first to last element).
844 *
845 * <p>The returned array will be "safe" in that no references to it are
846 * maintained by this deque. (In other words, this method must allocate
847 * a new array). The caller is thus free to modify the returned array.
848 *
849 * <p>This method acts as bridge between array-based and collection-based
850 * APIs.
851 *
852 * @return an array containing all of the elements in this deque
853 */
854 @SuppressWarnings("unchecked")
855 public Object[] toArray() {
856 final ReentrantLock lock = this.lock;
857 lock.lock();
858 try {
859 Object[] a = new Object[count];
860 int k = 0;
861 for (Node<E> p = first; p != null; p = p.next)
862 a[k++] = p.item;
863 return a;
864 } finally {
865 lock.unlock();
866 }
867 }
868
869 /**
870 * Returns an array containing all of the elements in this deque, in
871 * proper sequence; the runtime type of the returned array is that of
872 * the specified array. If the deque fits in the specified array, it
873 * is returned therein. Otherwise, a new array is allocated with the
874 * runtime type of the specified array and the size of this deque.
875 *
876 * <p>If this deque fits in the specified array with room to spare
877 * (i.e., the array has more elements than this deque), the element in
878 * the array immediately following the end of the deque is set to
879 * {@code null}.
880 *
881 * <p>Like the {@link #toArray()} method, this method acts as bridge between
882 * array-based and collection-based APIs. Further, this method allows
883 * precise control over the runtime type of the output array, and may,
884 * under certain circumstances, be used to save allocation costs.
885 *
886 * <p>Suppose {@code x} is a deque known to contain only strings.
887 * The following code can be used to dump the deque into a newly
888 * allocated array of {@code String}:
889 *
890 * <pre>
891 * String[] y = x.toArray(new String[0]);</pre>
892 *
893 * Note that {@code toArray(new Object[0])} is identical in function to
894 * {@code toArray()}.
895 *
896 * @param a the array into which the elements of the deque are to
897 * be stored, if it is big enough; otherwise, a new array of the
898 * same runtime type is allocated for this purpose
899 * @return an array containing all of the elements in this deque
900 * @throws ArrayStoreException if the runtime type of the specified array
901 * is not a supertype of the runtime type of every element in
902 * this deque
903 * @throws NullPointerException if the specified array is null
904 */
905 @SuppressWarnings("unchecked")
906 public <T> T[] toArray(T[] a) {
907 final ReentrantLock lock = this.lock;
908 lock.lock();
909 try {
910 if (a.length < count)
911 a = (T[])java.lang.reflect.Array.newInstance
912 (a.getClass().getComponentType(), count);
913
914 int k = 0;
915 for (Node<E> p = first; p != null; p = p.next)
916 a[k++] = (T)p.item;
917 if (a.length > k)
918 a[k] = null;
919 return a;
920 } finally {
921 lock.unlock();
922 }
923 }
924
925 public String toString() {
926 final ReentrantLock lock = this.lock;
927 lock.lock();
928 try {
929 return super.toString();
930 } finally {
931 lock.unlock();
932 }
933 }
934
935 /**
936 * Atomically removes all of the elements from this deque.
937 * The deque will be empty after this call returns.
938 */
939 public void clear() {
940 final ReentrantLock lock = this.lock;
941 lock.lock();
942 try {
943 for (Node<E> f = first; f != null; ) {
944 f.item = null;
945 Node<E> n = f.next;
946 f.prev = null;
947 f.next = null;
948 f = n;
949 }
950 first = last = null;
951 count = 0;
952 notFull.signalAll();
953 } finally {
954 lock.unlock();
955 }
956 }
957
958 /**
959 * Returns an iterator over the elements in this deque in proper sequence.
960 * The elements will be returned in order from first (head) to last (tail).
961 * The returned {@code Iterator} is a "weakly consistent" iterator that
962 * will never throw {@link ConcurrentModificationException},
963 * and guarantees to traverse elements as they existed upon
964 * construction of the iterator, and may (but is not guaranteed to)
965 * reflect any modifications subsequent to construction.
966 *
967 * @return an iterator over the elements in this deque in proper sequence
968 */
969 public Iterator<E> iterator() {
970 return new Itr();
971 }
972
973 /**
974 * Returns an iterator over the elements in this deque in reverse
975 * sequential order. The elements will be returned in order from
976 * last (tail) to first (head).
977 * The returned {@code Iterator} is a "weakly consistent" iterator that
978 * will never throw {@link ConcurrentModificationException},
979 * and guarantees to traverse elements as they existed upon
980 * construction of the iterator, and may (but is not guaranteed to)
981 * reflect any modifications subsequent to construction.
982 */
983 public Iterator<E> descendingIterator() {
984 return new DescendingItr();
985 }
986
987 /**
988 * Base class for Iterators for LinkedBlockingDeque
989 */
990 private abstract class AbstractItr implements Iterator<E> {
991 /**
992 * The next node to return in next()
993 */
994 Node<E> next;
995
996 /**
997 * nextItem holds on to item fields because once we claim that
998 * an element exists in hasNext(), we must return item read
999 * under lock (in advance()) even if it was in the process of
1000 * being removed when hasNext() was called.
1001 */
1002 E nextItem;
1003
1004 /**
1005 * Node returned by most recent call to next. Needed by remove.
1006 * Reset to null if this element is deleted by a call to remove.
1007 */
1008 private Node<E> lastRet;
1009
1010 abstract Node<E> firstNode();
1011 abstract Node<E> nextNode(Node<E> n);
1012
1013 AbstractItr() {
1014 // set to initial position
1015 final ReentrantLock lock = LinkedBlockingDeque.this.lock;
1016 lock.lock();
1017 try {
1018 next = firstNode();
1019 nextItem = (next == null) ? null : next.item;
1020 } finally {
1021 lock.unlock();
1022 }
1023 }
1024
1025 /**
1026 * Advances next.
1027 */
1028 void advance() {
1029 final ReentrantLock lock = LinkedBlockingDeque.this.lock;
1030 lock.lock();
1031 try {
1032 // assert next != null;
1033 Node<E> s = nextNode(next);
1034 if (s == next) {
1035 next = firstNode();
1036 } else {
1037 // Skip over removed nodes.
1038 // May be necessary if multiple interior Nodes are removed.
1039 while (s != null && s.item == null)
1040 s = nextNode(s);
1041 next = s;
1042 }
1043 nextItem = (next == null) ? null : next.item;
1044 } finally {
1045 lock.unlock();
1046 }
1047 }
1048
1049 public boolean hasNext() {
1050 return next != null;
1051 }
1052
1053 public E next() {
1054 if (next == null)
1055 throw new NoSuchElementException();
1056 lastRet = next;
1057 E x = nextItem;
1058 advance();
1059 return x;
1060 }
1061
1062 public void remove() {
1063 Node<E> n = lastRet;
1064 if (n == null)
1065 throw new IllegalStateException();
1066 lastRet = null;
1067 final ReentrantLock lock = LinkedBlockingDeque.this.lock;
1068 lock.lock();
1069 try {
1070 if (n.item != null)
1071 unlink(n);
1072 } finally {
1073 lock.unlock();
1074 }
1075 }
1076 }
1077
1078 /** Forward iterator */
1079 private class Itr extends AbstractItr {
1080 Node<E> firstNode() { return first; }
1081 Node<E> nextNode(Node<E> n) { return n.next; }
1082 }
1083
1084 /** Descending iterator */
1085 private class DescendingItr extends AbstractItr {
1086 Node<E> firstNode() { return last; }
1087 Node<E> nextNode(Node<E> n) { return n.prev; }
1088 }
1089
1090 /**
1091 * Save the state of this deque to a stream (that is, serialize it).
1092 *
1093 * @serialData The capacity (int), followed by elements (each an
1094 * {@code Object}) in the proper order, followed by a null
1095 * @param s the stream
1096 */
1097 private void writeObject(java.io.ObjectOutputStream s)
1098 throws java.io.IOException {
1099 final ReentrantLock lock = this.lock;
1100 lock.lock();
1101 try {
1102 // Write out capacity and any hidden stuff
1103 s.defaultWriteObject();
1104 // Write out all elements in the proper order.
1105 for (Node<E> p = first; p != null; p = p.next)
1106 s.writeObject(p.item);
1107 // Use trailing null as sentinel
1108 s.writeObject(null);
1109 } finally {
1110 lock.unlock();
1111 }
1112 }
1113
1114 /**
1115 * Reconstitute this deque from a stream (that is,
1116 * deserialize it).
1117 * @param s the stream
1118 */
1119 private void readObject(java.io.ObjectInputStream s)
1120 throws java.io.IOException, ClassNotFoundException {
1121 s.defaultReadObject();
1122 count = 0;
1123 first = null;
1124 last = null;
1125 // Read in all elements and place in queue
1126 for (;;) {
1127 @SuppressWarnings("unchecked")
1128 E item = (E)s.readObject();
1129 if (item == null)
1130 break;
1131 add(item);
1132 }
1133 }
1134
1135 }