ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/LinkedBlockingDeque.java
Revision: 1.25
Committed: Wed Nov 3 19:33:54 2010 UTC (13 years, 7 months ago) by jsr166
Branch: MAIN
Changes since 1.24: +21 -10 lines
Log Message:
fix for 6993789: LinkedBlockingDeque iterator never returns and owns lock forever

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package java.util.concurrent;
8
9 import java.util.AbstractQueue;
10 import java.util.Collection;
11 import java.util.Iterator;
12 import java.util.NoSuchElementException;
13 import java.util.concurrent.locks.Condition;
14 import java.util.concurrent.locks.ReentrantLock;
15
16 /**
17 * An optionally-bounded {@linkplain BlockingDeque blocking deque} based on
18 * linked nodes.
19 *
20 * <p> The optional capacity bound constructor argument serves as a
21 * way to prevent excessive expansion. The capacity, if unspecified,
22 * is equal to {@link Integer#MAX_VALUE}. Linked nodes are
23 * dynamically created upon each insertion unless this would bring the
24 * deque above capacity.
25 *
26 * <p>Most operations run in constant time (ignoring time spent
27 * blocking). Exceptions include {@link #remove(Object) remove},
28 * {@link #removeFirstOccurrence removeFirstOccurrence}, {@link
29 * #removeLastOccurrence removeLastOccurrence}, {@link #contains
30 * contains}, {@link #iterator iterator.remove()}, and the bulk
31 * operations, all of which run in linear time.
32 *
33 * <p>This class and its iterator implement all of the
34 * <em>optional</em> methods of the {@link Collection} and {@link
35 * Iterator} interfaces.
36 *
37 * <p>This class is a member of the
38 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
39 * Java Collections Framework</a>.
40 *
41 * @since 1.6
42 * @author Doug Lea
43 * @param <E> the type of elements held in this collection
44 */
45 public class LinkedBlockingDeque<E>
46 extends AbstractQueue<E>
47 implements BlockingDeque<E>, java.io.Serializable {
48
49 /*
50 * Implemented as a simple doubly-linked list protected by a
51 * single lock and using conditions to manage blocking.
52 *
53 * To implement weakly consistent iterators, it appears we need to
54 * keep all Nodes GC-reachable from a predecessor dequeued Node.
55 * That would cause two problems:
56 * - allow a rogue Iterator to cause unbounded memory retention
57 * - cause cross-generational linking of old Nodes to new Nodes if
58 * a Node was tenured while live, which generational GCs have a
59 * hard time dealing with, causing repeated major collections.
60 * However, only non-deleted Nodes need to be reachable from
61 * dequeued Nodes, and reachability does not necessarily have to
62 * be of the kind understood by the GC. We use the trick of
63 * linking a Node that has just been dequeued to itself. Such a
64 * self-link implicitly means to jump to "first" (for next links)
65 * or "last" (for prev links).
66 */
67
68 /*
69 * We have "diamond" multiple interface/abstract class inheritance
70 * here, and that introduces ambiguities. Often we want the
71 * BlockingDeque javadoc combined with the AbstractQueue
72 * implementation, so a lot of method specs are duplicated here.
73 */
74
75 private static final long serialVersionUID = -387911632671998426L;
76
77 /** Doubly-linked list node class */
78 static final class Node<E> {
79 /**
80 * The item, or null if this node has been removed.
81 */
82 E item;
83
84 /**
85 * One of:
86 * - the real predecessor Node
87 * - this Node, meaning the predecessor is tail
88 * - null, meaning there is no predecessor
89 */
90 Node<E> prev;
91
92 /**
93 * One of:
94 * - the real successor Node
95 * - this Node, meaning the successor is head
96 * - null, meaning there is no successor
97 */
98 Node<E> next;
99
100 Node(E x) {
101 item = x;
102 }
103 }
104
105 /**
106 * Pointer to first node.
107 * Invariant: (first == null && last == null) ||
108 * (first.prev == null && first.item != null)
109 */
110 transient Node<E> first;
111
112 /**
113 * Pointer to last node.
114 * Invariant: (first == null && last == null) ||
115 * (last.next == null && last.item != null)
116 */
117 transient Node<E> last;
118
119 /** Number of items in the deque */
120 private transient int count;
121
122 /** Maximum number of items in the deque */
123 private final int capacity;
124
125 /** Main lock guarding all access */
126 final ReentrantLock lock = new ReentrantLock();
127
128 /** Condition for waiting takes */
129 private final Condition notEmpty = lock.newCondition();
130
131 /** Condition for waiting puts */
132 private final Condition notFull = lock.newCondition();
133
134 /**
135 * Creates a {@code LinkedBlockingDeque} with a capacity of
136 * {@link Integer#MAX_VALUE}.
137 */
138 public LinkedBlockingDeque() {
139 this(Integer.MAX_VALUE);
140 }
141
142 /**
143 * Creates a {@code LinkedBlockingDeque} with the given (fixed) capacity.
144 *
145 * @param capacity the capacity of this deque
146 * @throws IllegalArgumentException if {@code capacity} is less than 1
147 */
148 public LinkedBlockingDeque(int capacity) {
149 if (capacity <= 0) throw new IllegalArgumentException();
150 this.capacity = capacity;
151 }
152
153 /**
154 * Creates a {@code LinkedBlockingDeque} with a capacity of
155 * {@link Integer#MAX_VALUE}, initially containing the elements of
156 * the given collection, added in traversal order of the
157 * collection's iterator.
158 *
159 * @param c the collection of elements to initially contain
160 * @throws NullPointerException if the specified collection or any
161 * of its elements are null
162 */
163 public LinkedBlockingDeque(Collection<? extends E> c) {
164 this(Integer.MAX_VALUE);
165 final ReentrantLock lock = this.lock;
166 lock.lock(); // Never contended, but necessary for visibility
167 try {
168 for (E e : c) {
169 if (e == null)
170 throw new NullPointerException();
171 if (!linkLast(new Node<E>(e)))
172 throw new IllegalStateException("Deque full");
173 }
174 } finally {
175 lock.unlock();
176 }
177 }
178
179
180 // Basic linking and unlinking operations, called only while holding lock
181
182 /**
183 * Links node as first element, or returns false if full.
184 */
185 private boolean linkFirst(Node<E> node) {
186 // assert lock.isHeldByCurrentThread();
187 if (count >= capacity)
188 return false;
189 Node<E> f = first;
190 node.next = f;
191 first = node;
192 if (last == null)
193 last = node;
194 else
195 f.prev = node;
196 ++count;
197 notEmpty.signal();
198 return true;
199 }
200
201 /**
202 * Links node as last element, or returns false if full.
203 */
204 private boolean linkLast(Node<E> node) {
205 // assert lock.isHeldByCurrentThread();
206 if (count >= capacity)
207 return false;
208 Node<E> l = last;
209 node.prev = l;
210 last = node;
211 if (first == null)
212 first = node;
213 else
214 l.next = node;
215 ++count;
216 notEmpty.signal();
217 return true;
218 }
219
220 /**
221 * Removes and returns first element, or null if empty.
222 */
223 private E unlinkFirst() {
224 // assert lock.isHeldByCurrentThread();
225 Node<E> f = first;
226 if (f == null)
227 return null;
228 Node<E> n = f.next;
229 E item = f.item;
230 f.item = null;
231 f.next = f; // help GC
232 first = n;
233 if (n == null)
234 last = null;
235 else
236 n.prev = null;
237 --count;
238 notFull.signal();
239 return item;
240 }
241
242 /**
243 * Removes and returns last element, or null if empty.
244 */
245 private E unlinkLast() {
246 // assert lock.isHeldByCurrentThread();
247 Node<E> l = last;
248 if (l == null)
249 return null;
250 Node<E> p = l.prev;
251 E item = l.item;
252 l.item = null;
253 l.prev = l; // help GC
254 last = p;
255 if (p == null)
256 first = null;
257 else
258 p.next = null;
259 --count;
260 notFull.signal();
261 return item;
262 }
263
264 /**
265 * Unlinks x.
266 */
267 void unlink(Node<E> x) {
268 // assert lock.isHeldByCurrentThread();
269 Node<E> p = x.prev;
270 Node<E> n = x.next;
271 if (p == null) {
272 unlinkFirst();
273 } else if (n == null) {
274 unlinkLast();
275 } else {
276 p.next = n;
277 n.prev = p;
278 x.item = null;
279 // Don't mess with x's links. They may still be in use by
280 // an iterator.
281 --count;
282 notFull.signal();
283 }
284 }
285
286 // BlockingDeque methods
287
288 /**
289 * @throws IllegalStateException {@inheritDoc}
290 * @throws NullPointerException {@inheritDoc}
291 */
292 public void addFirst(E e) {
293 if (!offerFirst(e))
294 throw new IllegalStateException("Deque full");
295 }
296
297 /**
298 * @throws IllegalStateException {@inheritDoc}
299 * @throws NullPointerException {@inheritDoc}
300 */
301 public void addLast(E e) {
302 if (!offerLast(e))
303 throw new IllegalStateException("Deque full");
304 }
305
306 /**
307 * @throws NullPointerException {@inheritDoc}
308 */
309 public boolean offerFirst(E e) {
310 if (e == null) throw new NullPointerException();
311 Node<E> node = new Node<E>(e);
312 final ReentrantLock lock = this.lock;
313 lock.lock();
314 try {
315 return linkFirst(node);
316 } finally {
317 lock.unlock();
318 }
319 }
320
321 /**
322 * @throws NullPointerException {@inheritDoc}
323 */
324 public boolean offerLast(E e) {
325 if (e == null) throw new NullPointerException();
326 Node<E> node = new Node<E>(e);
327 final ReentrantLock lock = this.lock;
328 lock.lock();
329 try {
330 return linkLast(node);
331 } finally {
332 lock.unlock();
333 }
334 }
335
336 /**
337 * @throws NullPointerException {@inheritDoc}
338 * @throws InterruptedException {@inheritDoc}
339 */
340 public void putFirst(E e) throws InterruptedException {
341 if (e == null) throw new NullPointerException();
342 Node<E> node = new Node<E>(e);
343 final ReentrantLock lock = this.lock;
344 lock.lock();
345 try {
346 while (!linkFirst(node))
347 notFull.await();
348 } finally {
349 lock.unlock();
350 }
351 }
352
353 /**
354 * @throws NullPointerException {@inheritDoc}
355 * @throws InterruptedException {@inheritDoc}
356 */
357 public void putLast(E e) throws InterruptedException {
358 if (e == null) throw new NullPointerException();
359 Node<E> node = new Node<E>(e);
360 final ReentrantLock lock = this.lock;
361 lock.lock();
362 try {
363 while (!linkLast(node))
364 notFull.await();
365 } finally {
366 lock.unlock();
367 }
368 }
369
370 /**
371 * @throws NullPointerException {@inheritDoc}
372 * @throws InterruptedException {@inheritDoc}
373 */
374 public boolean offerFirst(E e, long timeout, TimeUnit unit)
375 throws InterruptedException {
376 if (e == null) throw new NullPointerException();
377 Node<E> node = new Node<E>(e);
378 long nanos = unit.toNanos(timeout);
379 final ReentrantLock lock = this.lock;
380 lock.lockInterruptibly();
381 try {
382 while (!linkFirst(node)) {
383 if (nanos <= 0)
384 return false;
385 nanos = notFull.awaitNanos(nanos);
386 }
387 return true;
388 } finally {
389 lock.unlock();
390 }
391 }
392
393 /**
394 * @throws NullPointerException {@inheritDoc}
395 * @throws InterruptedException {@inheritDoc}
396 */
397 public boolean offerLast(E e, long timeout, TimeUnit unit)
398 throws InterruptedException {
399 if (e == null) throw new NullPointerException();
400 Node<E> node = new Node<E>(e);
401 long nanos = unit.toNanos(timeout);
402 final ReentrantLock lock = this.lock;
403 lock.lockInterruptibly();
404 try {
405 while (!linkLast(node)) {
406 if (nanos <= 0)
407 return false;
408 nanos = notFull.awaitNanos(nanos);
409 }
410 return true;
411 } finally {
412 lock.unlock();
413 }
414 }
415
416 /**
417 * @throws NoSuchElementException {@inheritDoc}
418 */
419 public E removeFirst() {
420 E x = pollFirst();
421 if (x == null) throw new NoSuchElementException();
422 return x;
423 }
424
425 /**
426 * @throws NoSuchElementException {@inheritDoc}
427 */
428 public E removeLast() {
429 E x = pollLast();
430 if (x == null) throw new NoSuchElementException();
431 return x;
432 }
433
434 public E pollFirst() {
435 final ReentrantLock lock = this.lock;
436 lock.lock();
437 try {
438 return unlinkFirst();
439 } finally {
440 lock.unlock();
441 }
442 }
443
444 public E pollLast() {
445 final ReentrantLock lock = this.lock;
446 lock.lock();
447 try {
448 return unlinkLast();
449 } finally {
450 lock.unlock();
451 }
452 }
453
454 public E takeFirst() throws InterruptedException {
455 final ReentrantLock lock = this.lock;
456 lock.lock();
457 try {
458 E x;
459 while ( (x = unlinkFirst()) == null)
460 notEmpty.await();
461 return x;
462 } finally {
463 lock.unlock();
464 }
465 }
466
467 public E takeLast() throws InterruptedException {
468 final ReentrantLock lock = this.lock;
469 lock.lock();
470 try {
471 E x;
472 while ( (x = unlinkLast()) == null)
473 notEmpty.await();
474 return x;
475 } finally {
476 lock.unlock();
477 }
478 }
479
480 public E pollFirst(long timeout, TimeUnit unit)
481 throws InterruptedException {
482 long nanos = unit.toNanos(timeout);
483 final ReentrantLock lock = this.lock;
484 lock.lockInterruptibly();
485 try {
486 E x;
487 while ( (x = unlinkFirst()) == null) {
488 if (nanos <= 0)
489 return null;
490 nanos = notEmpty.awaitNanos(nanos);
491 }
492 return x;
493 } finally {
494 lock.unlock();
495 }
496 }
497
498 public E pollLast(long timeout, TimeUnit unit)
499 throws InterruptedException {
500 long nanos = unit.toNanos(timeout);
501 final ReentrantLock lock = this.lock;
502 lock.lockInterruptibly();
503 try {
504 E x;
505 while ( (x = unlinkLast()) == null) {
506 if (nanos <= 0)
507 return null;
508 nanos = notEmpty.awaitNanos(nanos);
509 }
510 return x;
511 } finally {
512 lock.unlock();
513 }
514 }
515
516 /**
517 * @throws NoSuchElementException {@inheritDoc}
518 */
519 public E getFirst() {
520 E x = peekFirst();
521 if (x == null) throw new NoSuchElementException();
522 return x;
523 }
524
525 /**
526 * @throws NoSuchElementException {@inheritDoc}
527 */
528 public E getLast() {
529 E x = peekLast();
530 if (x == null) throw new NoSuchElementException();
531 return x;
532 }
533
534 public E peekFirst() {
535 final ReentrantLock lock = this.lock;
536 lock.lock();
537 try {
538 return (first == null) ? null : first.item;
539 } finally {
540 lock.unlock();
541 }
542 }
543
544 public E peekLast() {
545 final ReentrantLock lock = this.lock;
546 lock.lock();
547 try {
548 return (last == null) ? null : last.item;
549 } finally {
550 lock.unlock();
551 }
552 }
553
554 public boolean removeFirstOccurrence(Object o) {
555 if (o == null) return false;
556 final ReentrantLock lock = this.lock;
557 lock.lock();
558 try {
559 for (Node<E> p = first; p != null; p = p.next) {
560 if (o.equals(p.item)) {
561 unlink(p);
562 return true;
563 }
564 }
565 return false;
566 } finally {
567 lock.unlock();
568 }
569 }
570
571 public boolean removeLastOccurrence(Object o) {
572 if (o == null) return false;
573 final ReentrantLock lock = this.lock;
574 lock.lock();
575 try {
576 for (Node<E> p = last; p != null; p = p.prev) {
577 if (o.equals(p.item)) {
578 unlink(p);
579 return true;
580 }
581 }
582 return false;
583 } finally {
584 lock.unlock();
585 }
586 }
587
588 // BlockingQueue methods
589
590 /**
591 * Inserts the specified element at the end of this deque unless it would
592 * violate capacity restrictions. When using a capacity-restricted deque,
593 * it is generally preferable to use method {@link #offer(Object) offer}.
594 *
595 * <p>This method is equivalent to {@link #addLast}.
596 *
597 * @throws IllegalStateException if the element cannot be added at this
598 * time due to capacity restrictions
599 * @throws NullPointerException if the specified element is null
600 */
601 public boolean add(E e) {
602 addLast(e);
603 return true;
604 }
605
606 /**
607 * @throws NullPointerException if the specified element is null
608 */
609 public boolean offer(E e) {
610 return offerLast(e);
611 }
612
613 /**
614 * @throws NullPointerException {@inheritDoc}
615 * @throws InterruptedException {@inheritDoc}
616 */
617 public void put(E e) throws InterruptedException {
618 putLast(e);
619 }
620
621 /**
622 * @throws NullPointerException {@inheritDoc}
623 * @throws InterruptedException {@inheritDoc}
624 */
625 public boolean offer(E e, long timeout, TimeUnit unit)
626 throws InterruptedException {
627 return offerLast(e, timeout, unit);
628 }
629
630 /**
631 * Retrieves and removes the head of the queue represented by this deque.
632 * This method differs from {@link #poll poll} only in that it throws an
633 * exception if this deque is empty.
634 *
635 * <p>This method is equivalent to {@link #removeFirst() removeFirst}.
636 *
637 * @return the head of the queue represented by this deque
638 * @throws NoSuchElementException if this deque is empty
639 */
640 public E remove() {
641 return removeFirst();
642 }
643
644 public E poll() {
645 return pollFirst();
646 }
647
648 public E take() throws InterruptedException {
649 return takeFirst();
650 }
651
652 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
653 return pollFirst(timeout, unit);
654 }
655
656 /**
657 * Retrieves, but does not remove, the head of the queue represented by
658 * this deque. This method differs from {@link #peek peek} only in that
659 * it throws an exception if this deque is empty.
660 *
661 * <p>This method is equivalent to {@link #getFirst() getFirst}.
662 *
663 * @return the head of the queue represented by this deque
664 * @throws NoSuchElementException if this deque is empty
665 */
666 public E element() {
667 return getFirst();
668 }
669
670 public E peek() {
671 return peekFirst();
672 }
673
674 /**
675 * Returns the number of additional elements that this deque can ideally
676 * (in the absence of memory or resource constraints) accept without
677 * blocking. This is always equal to the initial capacity of this deque
678 * less the current {@code size} of this deque.
679 *
680 * <p>Note that you <em>cannot</em> always tell if an attempt to insert
681 * an element will succeed by inspecting {@code remainingCapacity}
682 * because it may be the case that another thread is about to
683 * insert or remove an element.
684 */
685 public int remainingCapacity() {
686 final ReentrantLock lock = this.lock;
687 lock.lock();
688 try {
689 return capacity - count;
690 } finally {
691 lock.unlock();
692 }
693 }
694
695 /**
696 * @throws UnsupportedOperationException {@inheritDoc}
697 * @throws ClassCastException {@inheritDoc}
698 * @throws NullPointerException {@inheritDoc}
699 * @throws IllegalArgumentException {@inheritDoc}
700 */
701 public int drainTo(Collection<? super E> c) {
702 return drainTo(c, Integer.MAX_VALUE);
703 }
704
705 /**
706 * @throws UnsupportedOperationException {@inheritDoc}
707 * @throws ClassCastException {@inheritDoc}
708 * @throws NullPointerException {@inheritDoc}
709 * @throws IllegalArgumentException {@inheritDoc}
710 */
711 public int drainTo(Collection<? super E> c, int maxElements) {
712 if (c == null)
713 throw new NullPointerException();
714 if (c == this)
715 throw new IllegalArgumentException();
716 final ReentrantLock lock = this.lock;
717 lock.lock();
718 try {
719 int n = Math.min(maxElements, count);
720 for (int i = 0; i < n; i++) {
721 c.add(first.item); // In this order, in case add() throws.
722 unlinkFirst();
723 }
724 return n;
725 } finally {
726 lock.unlock();
727 }
728 }
729
730 // Stack methods
731
732 /**
733 * @throws IllegalStateException {@inheritDoc}
734 * @throws NullPointerException {@inheritDoc}
735 */
736 public void push(E e) {
737 addFirst(e);
738 }
739
740 /**
741 * @throws NoSuchElementException {@inheritDoc}
742 */
743 public E pop() {
744 return removeFirst();
745 }
746
747 // Collection methods
748
749 /**
750 * Removes the first occurrence of the specified element from this deque.
751 * If the deque does not contain the element, it is unchanged.
752 * More formally, removes the first element {@code e} such that
753 * {@code o.equals(e)} (if such an element exists).
754 * Returns {@code true} if this deque contained the specified element
755 * (or equivalently, if this deque changed as a result of the call).
756 *
757 * <p>This method is equivalent to
758 * {@link #removeFirstOccurrence(Object) removeFirstOccurrence}.
759 *
760 * @param o element to be removed from this deque, if present
761 * @return {@code true} if this deque changed as a result of the call
762 */
763 public boolean remove(Object o) {
764 return removeFirstOccurrence(o);
765 }
766
767 /**
768 * Returns the number of elements in this deque.
769 *
770 * @return the number of elements in this deque
771 */
772 public int size() {
773 final ReentrantLock lock = this.lock;
774 lock.lock();
775 try {
776 return count;
777 } finally {
778 lock.unlock();
779 }
780 }
781
782 /**
783 * Returns {@code true} if this deque contains the specified element.
784 * More formally, returns {@code true} if and only if this deque contains
785 * at least one element {@code e} such that {@code o.equals(e)}.
786 *
787 * @param o object to be checked for containment in this deque
788 * @return {@code true} if this deque contains the specified element
789 */
790 public boolean contains(Object o) {
791 if (o == null) return false;
792 final ReentrantLock lock = this.lock;
793 lock.lock();
794 try {
795 for (Node<E> p = first; p != null; p = p.next)
796 if (o.equals(p.item))
797 return true;
798 return false;
799 } finally {
800 lock.unlock();
801 }
802 }
803
804 /*
805 * TODO: Add support for more efficient bulk operations.
806 *
807 * We don't want to acquire the lock for every iteration, but we
808 * also want other threads a chance to interact with the
809 * collection, especially when count is close to capacity.
810 */
811
812 // /**
813 // * Adds all of the elements in the specified collection to this
814 // * queue. Attempts to addAll of a queue to itself result in
815 // * {@code IllegalArgumentException}. Further, the behavior of
816 // * this operation is undefined if the specified collection is
817 // * modified while the operation is in progress.
818 // *
819 // * @param c collection containing elements to be added to this queue
820 // * @return {@code true} if this queue changed as a result of the call
821 // * @throws ClassCastException {@inheritDoc}
822 // * @throws NullPointerException {@inheritDoc}
823 // * @throws IllegalArgumentException {@inheritDoc}
824 // * @throws IllegalStateException {@inheritDoc}
825 // * @see #add(Object)
826 // */
827 // public boolean addAll(Collection<? extends E> c) {
828 // if (c == null)
829 // throw new NullPointerException();
830 // if (c == this)
831 // throw new IllegalArgumentException();
832 // final ReentrantLock lock = this.lock;
833 // lock.lock();
834 // try {
835 // boolean modified = false;
836 // for (E e : c)
837 // if (linkLast(e))
838 // modified = true;
839 // return modified;
840 // } finally {
841 // lock.unlock();
842 // }
843 // }
844
845 /**
846 * Returns an array containing all of the elements in this deque, in
847 * proper sequence (from first to last element).
848 *
849 * <p>The returned array will be "safe" in that no references to it are
850 * maintained by this deque. (In other words, this method must allocate
851 * a new array). The caller is thus free to modify the returned array.
852 *
853 * <p>This method acts as bridge between array-based and collection-based
854 * APIs.
855 *
856 * @return an array containing all of the elements in this deque
857 */
858 @SuppressWarnings("unchecked")
859 public Object[] toArray() {
860 final ReentrantLock lock = this.lock;
861 lock.lock();
862 try {
863 Object[] a = new Object[count];
864 int k = 0;
865 for (Node<E> p = first; p != null; p = p.next)
866 a[k++] = p.item;
867 return a;
868 } finally {
869 lock.unlock();
870 }
871 }
872
873 /**
874 * Returns an array containing all of the elements in this deque, in
875 * proper sequence; the runtime type of the returned array is that of
876 * the specified array. If the deque fits in the specified array, it
877 * is returned therein. Otherwise, a new array is allocated with the
878 * runtime type of the specified array and the size of this deque.
879 *
880 * <p>If this deque fits in the specified array with room to spare
881 * (i.e., the array has more elements than this deque), the element in
882 * the array immediately following the end of the deque is set to
883 * {@code null}.
884 *
885 * <p>Like the {@link #toArray()} method, this method acts as bridge between
886 * array-based and collection-based APIs. Further, this method allows
887 * precise control over the runtime type of the output array, and may,
888 * under certain circumstances, be used to save allocation costs.
889 *
890 * <p>Suppose {@code x} is a deque known to contain only strings.
891 * The following code can be used to dump the deque into a newly
892 * allocated array of {@code String}:
893 *
894 * <pre>
895 * String[] y = x.toArray(new String[0]);</pre>
896 *
897 * Note that {@code toArray(new Object[0])} is identical in function to
898 * {@code toArray()}.
899 *
900 * @param a the array into which the elements of the deque are to
901 * be stored, if it is big enough; otherwise, a new array of the
902 * same runtime type is allocated for this purpose
903 * @return an array containing all of the elements in this deque
904 * @throws ArrayStoreException if the runtime type of the specified array
905 * is not a supertype of the runtime type of every element in
906 * this deque
907 * @throws NullPointerException if the specified array is null
908 */
909 @SuppressWarnings("unchecked")
910 public <T> T[] toArray(T[] a) {
911 final ReentrantLock lock = this.lock;
912 lock.lock();
913 try {
914 if (a.length < count)
915 a = (T[])java.lang.reflect.Array.newInstance
916 (a.getClass().getComponentType(), count);
917
918 int k = 0;
919 for (Node<E> p = first; p != null; p = p.next)
920 a[k++] = (T)p.item;
921 if (a.length > k)
922 a[k] = null;
923 return a;
924 } finally {
925 lock.unlock();
926 }
927 }
928
929 public String toString() {
930 final ReentrantLock lock = this.lock;
931 lock.lock();
932 try {
933 Node<E> p = first;
934 if (p == null)
935 return "[]";
936
937 StringBuilder sb = new StringBuilder();
938 sb.append('[');
939 for (;;) {
940 E e = p.item;
941 sb.append(e == this ? "(this Collection)" : e);
942 p = p.next;
943 if (p == null)
944 return sb.append(']').toString();
945 sb.append(',').append(' ');
946 }
947 } finally {
948 lock.unlock();
949 }
950 }
951
952 /**
953 * Atomically removes all of the elements from this deque.
954 * The deque will be empty after this call returns.
955 */
956 public void clear() {
957 final ReentrantLock lock = this.lock;
958 lock.lock();
959 try {
960 for (Node<E> f = first; f != null; ) {
961 f.item = null;
962 Node<E> n = f.next;
963 f.prev = null;
964 f.next = null;
965 f = n;
966 }
967 first = last = null;
968 count = 0;
969 notFull.signalAll();
970 } finally {
971 lock.unlock();
972 }
973 }
974
975 /**
976 * Returns an iterator over the elements in this deque in proper sequence.
977 * The elements will be returned in order from first (head) to last (tail).
978 * The returned {@code Iterator} is a "weakly consistent" iterator that
979 * will never throw {@link java.util.ConcurrentModificationException
980 * ConcurrentModificationException},
981 * and guarantees to traverse elements as they existed upon
982 * construction of the iterator, and may (but is not guaranteed to)
983 * reflect any modifications subsequent to construction.
984 *
985 * @return an iterator over the elements in this deque in proper sequence
986 */
987 public Iterator<E> iterator() {
988 return new Itr();
989 }
990
991 /**
992 * Returns an iterator over the elements in this deque in reverse
993 * sequential order. The elements will be returned in order from
994 * last (tail) to first (head).
995 * The returned {@code Iterator} is a "weakly consistent" iterator that
996 * will never throw {@link java.util.ConcurrentModificationException
997 * ConcurrentModificationException},
998 * and guarantees to traverse elements as they existed upon
999 * construction of the iterator, and may (but is not guaranteed to)
1000 * reflect any modifications subsequent to construction.
1001 */
1002 public Iterator<E> descendingIterator() {
1003 return new DescendingItr();
1004 }
1005
1006 /**
1007 * Base class for Iterators for LinkedBlockingDeque
1008 */
1009 private abstract class AbstractItr implements Iterator<E> {
1010 /**
1011 * The next node to return in next()
1012 */
1013 Node<E> next;
1014
1015 /**
1016 * nextItem holds on to item fields because once we claim that
1017 * an element exists in hasNext(), we must return item read
1018 * under lock (in advance()) even if it was in the process of
1019 * being removed when hasNext() was called.
1020 */
1021 E nextItem;
1022
1023 /**
1024 * Node returned by most recent call to next. Needed by remove.
1025 * Reset to null if this element is deleted by a call to remove.
1026 */
1027 private Node<E> lastRet;
1028
1029 abstract Node<E> firstNode();
1030 abstract Node<E> nextNode(Node<E> n);
1031
1032 AbstractItr() {
1033 // set to initial position
1034 final ReentrantLock lock = LinkedBlockingDeque.this.lock;
1035 lock.lock();
1036 try {
1037 next = firstNode();
1038 nextItem = (next == null) ? null : next.item;
1039 } finally {
1040 lock.unlock();
1041 }
1042 }
1043
1044 /**
1045 * Returns the successor node of the given non-null, but
1046 * possibly previously deleted, node.
1047 */
1048 private Node<E> succ(Node<E> n) {
1049 // Chains of deleted nodes ending in null or self-links
1050 // are possible if multiple interior nodes are removed.
1051 for (;;) {
1052 Node<E> s = nextNode(n);
1053 if (s == null)
1054 return null;
1055 else if (s.item != null)
1056 return s;
1057 else if (s == n)
1058 return firstNode();
1059 else
1060 n = s;
1061 }
1062 }
1063
1064 /**
1065 * Advances next.
1066 */
1067 void advance() {
1068 final ReentrantLock lock = LinkedBlockingDeque.this.lock;
1069 lock.lock();
1070 try {
1071 // assert next != null;
1072 next = succ(next);
1073 nextItem = (next == null) ? null : next.item;
1074 } finally {
1075 lock.unlock();
1076 }
1077 }
1078
1079 public boolean hasNext() {
1080 return next != null;
1081 }
1082
1083 public E next() {
1084 if (next == null)
1085 throw new NoSuchElementException();
1086 lastRet = next;
1087 E x = nextItem;
1088 advance();
1089 return x;
1090 }
1091
1092 public void remove() {
1093 Node<E> n = lastRet;
1094 if (n == null)
1095 throw new IllegalStateException();
1096 lastRet = null;
1097 final ReentrantLock lock = LinkedBlockingDeque.this.lock;
1098 lock.lock();
1099 try {
1100 if (n.item != null)
1101 unlink(n);
1102 } finally {
1103 lock.unlock();
1104 }
1105 }
1106 }
1107
1108 /** Forward iterator */
1109 private class Itr extends AbstractItr {
1110 Node<E> firstNode() { return first; }
1111 Node<E> nextNode(Node<E> n) { return n.next; }
1112 }
1113
1114 /** Descending iterator */
1115 private class DescendingItr extends AbstractItr {
1116 Node<E> firstNode() { return last; }
1117 Node<E> nextNode(Node<E> n) { return n.prev; }
1118 }
1119
1120 /**
1121 * Save the state of this deque to a stream (that is, serialize it).
1122 *
1123 * @serialData The capacity (int), followed by elements (each an
1124 * {@code Object}) in the proper order, followed by a null
1125 * @param s the stream
1126 */
1127 private void writeObject(java.io.ObjectOutputStream s)
1128 throws java.io.IOException {
1129 final ReentrantLock lock = this.lock;
1130 lock.lock();
1131 try {
1132 // Write out capacity and any hidden stuff
1133 s.defaultWriteObject();
1134 // Write out all elements in the proper order.
1135 for (Node<E> p = first; p != null; p = p.next)
1136 s.writeObject(p.item);
1137 // Use trailing null as sentinel
1138 s.writeObject(null);
1139 } finally {
1140 lock.unlock();
1141 }
1142 }
1143
1144 /**
1145 * Reconstitute this deque from a stream (that is,
1146 * deserialize it).
1147 * @param s the stream
1148 */
1149 private void readObject(java.io.ObjectInputStream s)
1150 throws java.io.IOException, ClassNotFoundException {
1151 s.defaultReadObject();
1152 count = 0;
1153 first = null;
1154 last = null;
1155 // Read in all elements and place in queue
1156 for (;;) {
1157 @SuppressWarnings("unchecked")
1158 E item = (E)s.readObject();
1159 if (item == null)
1160 break;
1161 add(item);
1162 }
1163 }
1164
1165 }