ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/LinkedBlockingDeque.java
Revision: 1.66
Committed: Sun Dec 11 19:59:51 2016 UTC (7 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.65: +69 -69 lines
Log Message:
8171051: LinkedBlockingQueue spliterator needs to support node self-linking

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.util.AbstractQueue;
10 import java.util.Collection;
11 import java.util.Iterator;
12 import java.util.NoSuchElementException;
13 import java.util.Spliterator;
14 import java.util.Spliterators;
15 import java.util.concurrent.locks.Condition;
16 import java.util.concurrent.locks.ReentrantLock;
17 import java.util.function.Consumer;
18
19 /**
20 * An optionally-bounded {@linkplain BlockingDeque blocking deque} based on
21 * linked nodes.
22 *
23 * <p>The optional capacity bound constructor argument serves as a
24 * way to prevent excessive expansion. The capacity, if unspecified,
25 * is equal to {@link Integer#MAX_VALUE}. Linked nodes are
26 * dynamically created upon each insertion unless this would bring the
27 * deque above capacity.
28 *
29 * <p>Most operations run in constant time (ignoring time spent
30 * blocking). Exceptions include {@link #remove(Object) remove},
31 * {@link #removeFirstOccurrence removeFirstOccurrence}, {@link
32 * #removeLastOccurrence removeLastOccurrence}, {@link #contains
33 * contains}, {@link #iterator iterator.remove()}, and the bulk
34 * operations, all of which run in linear time.
35 *
36 * <p>This class and its iterator implement all of the
37 * <em>optional</em> methods of the {@link Collection} and {@link
38 * Iterator} interfaces.
39 *
40 * <p>This class is a member of the
41 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
42 * Java Collections Framework</a>.
43 *
44 * @since 1.6
45 * @author Doug Lea
46 * @param <E> the type of elements held in this deque
47 */
48 public class LinkedBlockingDeque<E>
49 extends AbstractQueue<E>
50 implements BlockingDeque<E>, java.io.Serializable {
51
52 /*
53 * Implemented as a simple doubly-linked list protected by a
54 * single lock and using conditions to manage blocking.
55 *
56 * To implement weakly consistent iterators, it appears we need to
57 * keep all Nodes GC-reachable from a predecessor dequeued Node.
58 * That would cause two problems:
59 * - allow a rogue Iterator to cause unbounded memory retention
60 * - cause cross-generational linking of old Nodes to new Nodes if
61 * a Node was tenured while live, which generational GCs have a
62 * hard time dealing with, causing repeated major collections.
63 * However, only non-deleted Nodes need to be reachable from
64 * dequeued Nodes, and reachability does not necessarily have to
65 * be of the kind understood by the GC. We use the trick of
66 * linking a Node that has just been dequeued to itself. Such a
67 * self-link implicitly means to jump to "first" (for next links)
68 * or "last" (for prev links).
69 */
70
71 /*
72 * We have "diamond" multiple interface/abstract class inheritance
73 * here, and that introduces ambiguities. Often we want the
74 * BlockingDeque javadoc combined with the AbstractQueue
75 * implementation, so a lot of method specs are duplicated here.
76 */
77
78 private static final long serialVersionUID = -387911632671998426L;
79
80 /** Doubly-linked list node class */
81 static final class Node<E> {
82 /**
83 * The item, or null if this node has been removed.
84 */
85 E item;
86
87 /**
88 * One of:
89 * - the real predecessor Node
90 * - this Node, meaning the predecessor is tail
91 * - null, meaning there is no predecessor
92 */
93 Node<E> prev;
94
95 /**
96 * One of:
97 * - the real successor Node
98 * - this Node, meaning the successor is head
99 * - null, meaning there is no successor
100 */
101 Node<E> next;
102
103 Node(E x) {
104 item = x;
105 }
106 }
107
108 /**
109 * Pointer to first node.
110 * Invariant: (first == null && last == null) ||
111 * (first.prev == null && first.item != null)
112 */
113 transient Node<E> first;
114
115 /**
116 * Pointer to last node.
117 * Invariant: (first == null && last == null) ||
118 * (last.next == null && last.item != null)
119 */
120 transient Node<E> last;
121
122 /** Number of items in the deque */
123 private transient int count;
124
125 /** Maximum number of items in the deque */
126 private final int capacity;
127
128 /** Main lock guarding all access */
129 final ReentrantLock lock = new ReentrantLock();
130
131 /** Condition for waiting takes */
132 private final Condition notEmpty = lock.newCondition();
133
134 /** Condition for waiting puts */
135 private final Condition notFull = lock.newCondition();
136
137 /**
138 * Creates a {@code LinkedBlockingDeque} with a capacity of
139 * {@link Integer#MAX_VALUE}.
140 */
141 public LinkedBlockingDeque() {
142 this(Integer.MAX_VALUE);
143 }
144
145 /**
146 * Creates a {@code LinkedBlockingDeque} with the given (fixed) capacity.
147 *
148 * @param capacity the capacity of this deque
149 * @throws IllegalArgumentException if {@code capacity} is less than 1
150 */
151 public LinkedBlockingDeque(int capacity) {
152 if (capacity <= 0) throw new IllegalArgumentException();
153 this.capacity = capacity;
154 }
155
156 /**
157 * Creates a {@code LinkedBlockingDeque} with a capacity of
158 * {@link Integer#MAX_VALUE}, initially containing the elements of
159 * the given collection, added in traversal order of the
160 * collection's iterator.
161 *
162 * @param c the collection of elements to initially contain
163 * @throws NullPointerException if the specified collection or any
164 * of its elements are null
165 */
166 public LinkedBlockingDeque(Collection<? extends E> c) {
167 this(Integer.MAX_VALUE);
168 final ReentrantLock lock = this.lock;
169 lock.lock(); // Never contended, but necessary for visibility
170 try {
171 for (E e : c) {
172 if (e == null)
173 throw new NullPointerException();
174 if (!linkLast(new Node<E>(e)))
175 throw new IllegalStateException("Deque full");
176 }
177 } finally {
178 // checkInvariants();
179 lock.unlock();
180 }
181 }
182
183
184 // Basic linking and unlinking operations, called only while holding lock
185
186 /**
187 * Links node as first element, or returns false if full.
188 */
189 private boolean linkFirst(Node<E> node) {
190 // assert lock.isHeldByCurrentThread();
191 if (count >= capacity)
192 return false;
193 Node<E> f = first;
194 node.next = f;
195 first = node;
196 if (last == null)
197 last = node;
198 else
199 f.prev = node;
200 ++count;
201 notEmpty.signal();
202 return true;
203 }
204
205 /**
206 * Links node as last element, or returns false if full.
207 */
208 private boolean linkLast(Node<E> node) {
209 // assert lock.isHeldByCurrentThread();
210 if (count >= capacity)
211 return false;
212 Node<E> l = last;
213 node.prev = l;
214 last = node;
215 if (first == null)
216 first = node;
217 else
218 l.next = node;
219 ++count;
220 notEmpty.signal();
221 return true;
222 }
223
224 /**
225 * Removes and returns first element, or null if empty.
226 */
227 private E unlinkFirst() {
228 // assert lock.isHeldByCurrentThread();
229 Node<E> f = first;
230 if (f == null)
231 return null;
232 Node<E> n = f.next;
233 E item = f.item;
234 f.item = null;
235 f.next = f; // help GC
236 first = n;
237 if (n == null)
238 last = null;
239 else
240 n.prev = null;
241 --count;
242 notFull.signal();
243 return item;
244 }
245
246 /**
247 * Removes and returns last element, or null if empty.
248 */
249 private E unlinkLast() {
250 // assert lock.isHeldByCurrentThread();
251 Node<E> l = last;
252 if (l == null)
253 return null;
254 Node<E> p = l.prev;
255 E item = l.item;
256 l.item = null;
257 l.prev = l; // help GC
258 last = p;
259 if (p == null)
260 first = null;
261 else
262 p.next = null;
263 --count;
264 notFull.signal();
265 return item;
266 }
267
268 /**
269 * Unlinks x.
270 */
271 void unlink(Node<E> x) {
272 // assert lock.isHeldByCurrentThread();
273 Node<E> p = x.prev;
274 Node<E> n = x.next;
275 if (p == null) {
276 unlinkFirst();
277 } else if (n == null) {
278 unlinkLast();
279 } else {
280 p.next = n;
281 n.prev = p;
282 x.item = null;
283 // Don't mess with x's links. They may still be in use by
284 // an iterator.
285 --count;
286 notFull.signal();
287 }
288 }
289
290 // BlockingDeque methods
291
292 /**
293 * @throws IllegalStateException if this deque is full
294 * @throws NullPointerException {@inheritDoc}
295 */
296 public void addFirst(E e) {
297 if (!offerFirst(e))
298 throw new IllegalStateException("Deque full");
299 }
300
301 /**
302 * @throws IllegalStateException if this deque is full
303 * @throws NullPointerException {@inheritDoc}
304 */
305 public void addLast(E e) {
306 if (!offerLast(e))
307 throw new IllegalStateException("Deque full");
308 }
309
310 /**
311 * @throws NullPointerException {@inheritDoc}
312 */
313 public boolean offerFirst(E e) {
314 if (e == null) throw new NullPointerException();
315 Node<E> node = new Node<E>(e);
316 final ReentrantLock lock = this.lock;
317 lock.lock();
318 try {
319 return linkFirst(node);
320 } finally {
321 // checkInvariants();
322 lock.unlock();
323 }
324 }
325
326 /**
327 * @throws NullPointerException {@inheritDoc}
328 */
329 public boolean offerLast(E e) {
330 if (e == null) throw new NullPointerException();
331 Node<E> node = new Node<E>(e);
332 final ReentrantLock lock = this.lock;
333 lock.lock();
334 try {
335 return linkLast(node);
336 } finally {
337 // checkInvariants();
338 lock.unlock();
339 }
340 }
341
342 /**
343 * @throws NullPointerException {@inheritDoc}
344 * @throws InterruptedException {@inheritDoc}
345 */
346 public void putFirst(E e) throws InterruptedException {
347 if (e == null) throw new NullPointerException();
348 Node<E> node = new Node<E>(e);
349 final ReentrantLock lock = this.lock;
350 lock.lock();
351 try {
352 while (!linkFirst(node))
353 notFull.await();
354 } finally {
355 // checkInvariants();
356 lock.unlock();
357 }
358 }
359
360 /**
361 * @throws NullPointerException {@inheritDoc}
362 * @throws InterruptedException {@inheritDoc}
363 */
364 public void putLast(E e) throws InterruptedException {
365 if (e == null) throw new NullPointerException();
366 Node<E> node = new Node<E>(e);
367 final ReentrantLock lock = this.lock;
368 lock.lock();
369 try {
370 while (!linkLast(node))
371 notFull.await();
372 } finally {
373 // checkInvariants();
374 lock.unlock();
375 }
376 }
377
378 /**
379 * @throws NullPointerException {@inheritDoc}
380 * @throws InterruptedException {@inheritDoc}
381 */
382 public boolean offerFirst(E e, long timeout, TimeUnit unit)
383 throws InterruptedException {
384 if (e == null) throw new NullPointerException();
385 Node<E> node = new Node<E>(e);
386 long nanos = unit.toNanos(timeout);
387 final ReentrantLock lock = this.lock;
388 lock.lockInterruptibly();
389 try {
390 while (!linkFirst(node)) {
391 if (nanos <= 0L)
392 return false;
393 nanos = notFull.awaitNanos(nanos);
394 }
395 return true;
396 } finally {
397 // checkInvariants();
398 lock.unlock();
399 }
400 }
401
402 /**
403 * @throws NullPointerException {@inheritDoc}
404 * @throws InterruptedException {@inheritDoc}
405 */
406 public boolean offerLast(E e, long timeout, TimeUnit unit)
407 throws InterruptedException {
408 if (e == null) throw new NullPointerException();
409 Node<E> node = new Node<E>(e);
410 long nanos = unit.toNanos(timeout);
411 final ReentrantLock lock = this.lock;
412 lock.lockInterruptibly();
413 try {
414 while (!linkLast(node)) {
415 if (nanos <= 0L)
416 return false;
417 nanos = notFull.awaitNanos(nanos);
418 }
419 return true;
420 } finally {
421 // checkInvariants();
422 lock.unlock();
423 }
424 }
425
426 /**
427 * @throws NoSuchElementException {@inheritDoc}
428 */
429 public E removeFirst() {
430 E x = pollFirst();
431 if (x == null) throw new NoSuchElementException();
432 return x;
433 }
434
435 /**
436 * @throws NoSuchElementException {@inheritDoc}
437 */
438 public E removeLast() {
439 E x = pollLast();
440 if (x == null) throw new NoSuchElementException();
441 return x;
442 }
443
444 public E pollFirst() {
445 final ReentrantLock lock = this.lock;
446 lock.lock();
447 try {
448 return unlinkFirst();
449 } finally {
450 // checkInvariants();
451 lock.unlock();
452 }
453 }
454
455 public E pollLast() {
456 final ReentrantLock lock = this.lock;
457 lock.lock();
458 try {
459 return unlinkLast();
460 } finally {
461 // checkInvariants();
462 lock.unlock();
463 }
464 }
465
466 public E takeFirst() throws InterruptedException {
467 final ReentrantLock lock = this.lock;
468 lock.lock();
469 try {
470 E x;
471 while ( (x = unlinkFirst()) == null)
472 notEmpty.await();
473 return x;
474 } finally {
475 // checkInvariants();
476 lock.unlock();
477 }
478 }
479
480 public E takeLast() throws InterruptedException {
481 final ReentrantLock lock = this.lock;
482 lock.lock();
483 try {
484 E x;
485 while ( (x = unlinkLast()) == null)
486 notEmpty.await();
487 return x;
488 } finally {
489 // checkInvariants();
490 lock.unlock();
491 }
492 }
493
494 public E pollFirst(long timeout, TimeUnit unit)
495 throws InterruptedException {
496 long nanos = unit.toNanos(timeout);
497 final ReentrantLock lock = this.lock;
498 lock.lockInterruptibly();
499 try {
500 E x;
501 while ( (x = unlinkFirst()) == null) {
502 if (nanos <= 0L)
503 return null;
504 nanos = notEmpty.awaitNanos(nanos);
505 }
506 return x;
507 } finally {
508 // checkInvariants();
509 lock.unlock();
510 }
511 }
512
513 public E pollLast(long timeout, TimeUnit unit)
514 throws InterruptedException {
515 long nanos = unit.toNanos(timeout);
516 final ReentrantLock lock = this.lock;
517 lock.lockInterruptibly();
518 try {
519 E x;
520 while ( (x = unlinkLast()) == null) {
521 if (nanos <= 0L)
522 return null;
523 nanos = notEmpty.awaitNanos(nanos);
524 }
525 return x;
526 } finally {
527 // checkInvariants();
528 lock.unlock();
529 }
530 }
531
532 /**
533 * @throws NoSuchElementException {@inheritDoc}
534 */
535 public E getFirst() {
536 E x = peekFirst();
537 if (x == null) throw new NoSuchElementException();
538 return x;
539 }
540
541 /**
542 * @throws NoSuchElementException {@inheritDoc}
543 */
544 public E getLast() {
545 E x = peekLast();
546 if (x == null) throw new NoSuchElementException();
547 return x;
548 }
549
550 public E peekFirst() {
551 final ReentrantLock lock = this.lock;
552 lock.lock();
553 try {
554 return (first == null) ? null : first.item;
555 } finally {
556 // checkInvariants();
557 lock.unlock();
558 }
559 }
560
561 public E peekLast() {
562 final ReentrantLock lock = this.lock;
563 lock.lock();
564 try {
565 return (last == null) ? null : last.item;
566 } finally {
567 // checkInvariants();
568 lock.unlock();
569 }
570 }
571
572 public boolean removeFirstOccurrence(Object o) {
573 if (o == null) return false;
574 final ReentrantLock lock = this.lock;
575 lock.lock();
576 try {
577 for (Node<E> p = first; p != null; p = p.next) {
578 if (o.equals(p.item)) {
579 unlink(p);
580 return true;
581 }
582 }
583 return false;
584 } finally {
585 // checkInvariants();
586 lock.unlock();
587 }
588 }
589
590 public boolean removeLastOccurrence(Object o) {
591 if (o == null) return false;
592 final ReentrantLock lock = this.lock;
593 lock.lock();
594 try {
595 for (Node<E> p = last; p != null; p = p.prev) {
596 if (o.equals(p.item)) {
597 unlink(p);
598 return true;
599 }
600 }
601 return false;
602 } finally {
603 // checkInvariants();
604 lock.unlock();
605 }
606 }
607
608 // BlockingQueue methods
609
610 /**
611 * Inserts the specified element at the end of this deque unless it would
612 * violate capacity restrictions. When using a capacity-restricted deque,
613 * it is generally preferable to use method {@link #offer(Object) offer}.
614 *
615 * <p>This method is equivalent to {@link #addLast}.
616 *
617 * @throws IllegalStateException if this deque is full
618 * @throws NullPointerException if the specified element is null
619 */
620 public boolean add(E e) {
621 addLast(e);
622 return true;
623 }
624
625 /**
626 * @throws NullPointerException if the specified element is null
627 */
628 public boolean offer(E e) {
629 return offerLast(e);
630 }
631
632 /**
633 * @throws NullPointerException {@inheritDoc}
634 * @throws InterruptedException {@inheritDoc}
635 */
636 public void put(E e) throws InterruptedException {
637 putLast(e);
638 }
639
640 /**
641 * @throws NullPointerException {@inheritDoc}
642 * @throws InterruptedException {@inheritDoc}
643 */
644 public boolean offer(E e, long timeout, TimeUnit unit)
645 throws InterruptedException {
646 return offerLast(e, timeout, unit);
647 }
648
649 /**
650 * Retrieves and removes the head of the queue represented by this deque.
651 * This method differs from {@link #poll poll} only in that it throws an
652 * exception if this deque is empty.
653 *
654 * <p>This method is equivalent to {@link #removeFirst() removeFirst}.
655 *
656 * @return the head of the queue represented by this deque
657 * @throws NoSuchElementException if this deque is empty
658 */
659 public E remove() {
660 return removeFirst();
661 }
662
663 public E poll() {
664 return pollFirst();
665 }
666
667 public E take() throws InterruptedException {
668 return takeFirst();
669 }
670
671 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
672 return pollFirst(timeout, unit);
673 }
674
675 /**
676 * Retrieves, but does not remove, the head of the queue represented by
677 * this deque. This method differs from {@link #peek peek} only in that
678 * it throws an exception if this deque is empty.
679 *
680 * <p>This method is equivalent to {@link #getFirst() getFirst}.
681 *
682 * @return the head of the queue represented by this deque
683 * @throws NoSuchElementException if this deque is empty
684 */
685 public E element() {
686 return getFirst();
687 }
688
689 public E peek() {
690 return peekFirst();
691 }
692
693 /**
694 * Returns the number of additional elements that this deque can ideally
695 * (in the absence of memory or resource constraints) accept without
696 * blocking. This is always equal to the initial capacity of this deque
697 * less the current {@code size} of this deque.
698 *
699 * <p>Note that you <em>cannot</em> always tell if an attempt to insert
700 * an element will succeed by inspecting {@code remainingCapacity}
701 * because it may be the case that another thread is about to
702 * insert or remove an element.
703 */
704 public int remainingCapacity() {
705 final ReentrantLock lock = this.lock;
706 lock.lock();
707 try {
708 return capacity - count;
709 } finally {
710 // checkInvariants();
711 lock.unlock();
712 }
713 }
714
715 /**
716 * @throws UnsupportedOperationException {@inheritDoc}
717 * @throws ClassCastException {@inheritDoc}
718 * @throws NullPointerException {@inheritDoc}
719 * @throws IllegalArgumentException {@inheritDoc}
720 */
721 public int drainTo(Collection<? super E> c) {
722 return drainTo(c, Integer.MAX_VALUE);
723 }
724
725 /**
726 * @throws UnsupportedOperationException {@inheritDoc}
727 * @throws ClassCastException {@inheritDoc}
728 * @throws NullPointerException {@inheritDoc}
729 * @throws IllegalArgumentException {@inheritDoc}
730 */
731 public int drainTo(Collection<? super E> c, int maxElements) {
732 if (c == null)
733 throw new NullPointerException();
734 if (c == this)
735 throw new IllegalArgumentException();
736 if (maxElements <= 0)
737 return 0;
738 final ReentrantLock lock = this.lock;
739 lock.lock();
740 try {
741 int n = Math.min(maxElements, count);
742 for (int i = 0; i < n; i++) {
743 c.add(first.item); // In this order, in case add() throws.
744 unlinkFirst();
745 }
746 return n;
747 } finally {
748 // checkInvariants();
749 lock.unlock();
750 }
751 }
752
753 // Stack methods
754
755 /**
756 * @throws IllegalStateException if this deque is full
757 * @throws NullPointerException {@inheritDoc}
758 */
759 public void push(E e) {
760 addFirst(e);
761 }
762
763 /**
764 * @throws NoSuchElementException {@inheritDoc}
765 */
766 public E pop() {
767 return removeFirst();
768 }
769
770 // Collection methods
771
772 /**
773 * Removes the first occurrence of the specified element from this deque.
774 * If the deque does not contain the element, it is unchanged.
775 * More formally, removes the first element {@code e} such that
776 * {@code o.equals(e)} (if such an element exists).
777 * Returns {@code true} if this deque contained the specified element
778 * (or equivalently, if this deque changed as a result of the call).
779 *
780 * <p>This method is equivalent to
781 * {@link #removeFirstOccurrence(Object) removeFirstOccurrence}.
782 *
783 * @param o element to be removed from this deque, if present
784 * @return {@code true} if this deque changed as a result of the call
785 */
786 public boolean remove(Object o) {
787 return removeFirstOccurrence(o);
788 }
789
790 /**
791 * Returns the number of elements in this deque.
792 *
793 * @return the number of elements in this deque
794 */
795 public int size() {
796 final ReentrantLock lock = this.lock;
797 lock.lock();
798 try {
799 return count;
800 } finally {
801 // checkInvariants();
802 lock.unlock();
803 }
804 }
805
806 /**
807 * Returns {@code true} if this deque contains the specified element.
808 * More formally, returns {@code true} if and only if this deque contains
809 * at least one element {@code e} such that {@code o.equals(e)}.
810 *
811 * @param o object to be checked for containment in this deque
812 * @return {@code true} if this deque contains the specified element
813 */
814 public boolean contains(Object o) {
815 if (o == null) return false;
816 final ReentrantLock lock = this.lock;
817 lock.lock();
818 try {
819 for (Node<E> p = first; p != null; p = p.next)
820 if (o.equals(p.item))
821 return true;
822 return false;
823 } finally {
824 // checkInvariants();
825 lock.unlock();
826 }
827 }
828
829 /*
830 * TODO: Add support for more efficient bulk operations.
831 *
832 * We don't want to acquire the lock for every iteration, but we
833 * also want other threads a chance to interact with the
834 * collection, especially when count is close to capacity.
835 */
836
837 // /**
838 // * Adds all of the elements in the specified collection to this
839 // * queue. Attempts to addAll of a queue to itself result in
840 // * {@code IllegalArgumentException}. Further, the behavior of
841 // * this operation is undefined if the specified collection is
842 // * modified while the operation is in progress.
843 // *
844 // * @param c collection containing elements to be added to this queue
845 // * @return {@code true} if this queue changed as a result of the call
846 // * @throws ClassCastException {@inheritDoc}
847 // * @throws NullPointerException {@inheritDoc}
848 // * @throws IllegalArgumentException {@inheritDoc}
849 // * @throws IllegalStateException if this deque is full
850 // * @see #add(Object)
851 // */
852 // public boolean addAll(Collection<? extends E> c) {
853 // if (c == null)
854 // throw new NullPointerException();
855 // if (c == this)
856 // throw new IllegalArgumentException();
857 // final ReentrantLock lock = this.lock;
858 // lock.lock();
859 // try {
860 // boolean modified = false;
861 // for (E e : c)
862 // if (linkLast(e))
863 // modified = true;
864 // return modified;
865 // } finally {
866 // lock.unlock();
867 // }
868 // }
869
870 /**
871 * Returns an array containing all of the elements in this deque, in
872 * proper sequence (from first to last element).
873 *
874 * <p>The returned array will be "safe" in that no references to it are
875 * maintained by this deque. (In other words, this method must allocate
876 * a new array). The caller is thus free to modify the returned array.
877 *
878 * <p>This method acts as bridge between array-based and collection-based
879 * APIs.
880 *
881 * @return an array containing all of the elements in this deque
882 */
883 @SuppressWarnings("unchecked")
884 public Object[] toArray() {
885 final ReentrantLock lock = this.lock;
886 lock.lock();
887 try {
888 Object[] a = new Object[count];
889 int k = 0;
890 for (Node<E> p = first; p != null; p = p.next)
891 a[k++] = p.item;
892 return a;
893 } finally {
894 // checkInvariants();
895 lock.unlock();
896 }
897 }
898
899 /**
900 * Returns an array containing all of the elements in this deque, in
901 * proper sequence; the runtime type of the returned array is that of
902 * the specified array. If the deque fits in the specified array, it
903 * is returned therein. Otherwise, a new array is allocated with the
904 * runtime type of the specified array and the size of this deque.
905 *
906 * <p>If this deque fits in the specified array with room to spare
907 * (i.e., the array has more elements than this deque), the element in
908 * the array immediately following the end of the deque is set to
909 * {@code null}.
910 *
911 * <p>Like the {@link #toArray()} method, this method acts as bridge between
912 * array-based and collection-based APIs. Further, this method allows
913 * precise control over the runtime type of the output array, and may,
914 * under certain circumstances, be used to save allocation costs.
915 *
916 * <p>Suppose {@code x} is a deque known to contain only strings.
917 * The following code can be used to dump the deque into a newly
918 * allocated array of {@code String}:
919 *
920 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
921 *
922 * Note that {@code toArray(new Object[0])} is identical in function to
923 * {@code toArray()}.
924 *
925 * @param a the array into which the elements of the deque are to
926 * be stored, if it is big enough; otherwise, a new array of the
927 * same runtime type is allocated for this purpose
928 * @return an array containing all of the elements in this deque
929 * @throws ArrayStoreException if the runtime type of the specified array
930 * is not a supertype of the runtime type of every element in
931 * this deque
932 * @throws NullPointerException if the specified array is null
933 */
934 @SuppressWarnings("unchecked")
935 public <T> T[] toArray(T[] a) {
936 final ReentrantLock lock = this.lock;
937 lock.lock();
938 try {
939 if (a.length < count)
940 a = (T[])java.lang.reflect.Array.newInstance
941 (a.getClass().getComponentType(), count);
942
943 int k = 0;
944 for (Node<E> p = first; p != null; p = p.next)
945 a[k++] = (T)p.item;
946 if (a.length > k)
947 a[k] = null;
948 return a;
949 } finally {
950 // checkInvariants();
951 lock.unlock();
952 }
953 }
954
955 public String toString() {
956 return Helpers.collectionToString(this);
957 }
958
959 /**
960 * Atomically removes all of the elements from this deque.
961 * The deque will be empty after this call returns.
962 */
963 public void clear() {
964 final ReentrantLock lock = this.lock;
965 lock.lock();
966 try {
967 for (Node<E> f = first; f != null; ) {
968 f.item = null;
969 Node<E> n = f.next;
970 f.prev = null;
971 f.next = null;
972 f = n;
973 }
974 first = last = null;
975 count = 0;
976 notFull.signalAll();
977 } finally {
978 // checkInvariants();
979 lock.unlock();
980 }
981 }
982
983 /**
984 * Returns an iterator over the elements in this deque in proper sequence.
985 * The elements will be returned in order from first (head) to last (tail).
986 *
987 * <p>The returned iterator is
988 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
989 *
990 * @return an iterator over the elements in this deque in proper sequence
991 */
992 public Iterator<E> iterator() {
993 return new Itr();
994 }
995
996 /**
997 * Returns an iterator over the elements in this deque in reverse
998 * sequential order. The elements will be returned in order from
999 * last (tail) to first (head).
1000 *
1001 * <p>The returned iterator is
1002 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1003 *
1004 * @return an iterator over the elements in this deque in reverse order
1005 */
1006 public Iterator<E> descendingIterator() {
1007 return new DescendingItr();
1008 }
1009
1010 /**
1011 * Base class for LinkedBlockingDeque iterators.
1012 */
1013 private abstract class AbstractItr implements Iterator<E> {
1014 /**
1015 * The next node to return in next().
1016 */
1017 Node<E> next;
1018
1019 /**
1020 * nextItem holds on to item fields because once we claim that
1021 * an element exists in hasNext(), we must return item read
1022 * under lock (in advance()) even if it was in the process of
1023 * being removed when hasNext() was called.
1024 */
1025 E nextItem;
1026
1027 /**
1028 * Node returned by most recent call to next. Needed by remove.
1029 * Reset to null if this element is deleted by a call to remove.
1030 */
1031 private Node<E> lastRet;
1032
1033 abstract Node<E> firstNode();
1034 abstract Node<E> nextNode(Node<E> n);
1035
1036 private Node<E> succ(Node<E> p) {
1037 return (p == (p = nextNode(p))) ? firstNode() : p;
1038 }
1039
1040 AbstractItr() {
1041 // set to initial position
1042 final ReentrantLock lock = LinkedBlockingDeque.this.lock;
1043 lock.lock();
1044 try {
1045 if ((next = firstNode()) != null)
1046 nextItem = next.item;
1047 } finally {
1048 // checkInvariants();
1049 lock.unlock();
1050 }
1051 }
1052
1053 /**
1054 * Advances next.
1055 */
1056 void advance() {
1057 // assert next != null;
1058 final ReentrantLock lock = LinkedBlockingDeque.this.lock;
1059 lock.lock();
1060 try {
1061 // Chains of deleted nodes ending in null or self-links
1062 // are possible if multiple interior nodes are removed.
1063 for (next = nextNode(next);; next = succ(next)) {
1064 if (next == null) {
1065 nextItem = null;
1066 break;
1067 } else if ((nextItem = next.item) != null)
1068 break;
1069 }
1070 } finally {
1071 // checkInvariants();
1072 lock.unlock();
1073 }
1074 }
1075
1076 public boolean hasNext() {
1077 return next != null;
1078 }
1079
1080 public E next() {
1081 if (next == null)
1082 throw new NoSuchElementException();
1083 lastRet = next;
1084 E x = nextItem;
1085 advance();
1086 return x;
1087 }
1088
1089 public void remove() {
1090 Node<E> n = lastRet;
1091 if (n == null)
1092 throw new IllegalStateException();
1093 lastRet = null;
1094 final ReentrantLock lock = LinkedBlockingDeque.this.lock;
1095 lock.lock();
1096 try {
1097 if (n.item != null)
1098 unlink(n);
1099 } finally {
1100 // checkInvariants();
1101 lock.unlock();
1102 }
1103 }
1104 }
1105
1106 /** Forward iterator */
1107 private class Itr extends AbstractItr {
1108 Node<E> firstNode() { return first; }
1109 Node<E> nextNode(Node<E> n) { return n.next; }
1110 }
1111
1112 /** Descending iterator */
1113 private class DescendingItr extends AbstractItr {
1114 Node<E> firstNode() { return last; }
1115 Node<E> nextNode(Node<E> n) { return n.prev; }
1116 }
1117
1118 /**
1119 * A customized variant of Spliterators.IteratorSpliterator.
1120 * Keep this class in sync with (very similar) LBQSpliterator.
1121 */
1122 private final class LBDSpliterator implements Spliterator<E> {
1123 static final int MAX_BATCH = 1 << 25; // max batch array size;
1124 Node<E> current; // current node; null until initialized
1125 int batch; // batch size for splits
1126 boolean exhausted; // true when no more nodes
1127 long est = size(); // size estimate
1128
1129 LBDSpliterator() {}
1130
1131 private Node<E> succ(Node<E> p) {
1132 return (p == (p = p.next)) ? first : p;
1133 }
1134
1135 public long estimateSize() { return est; }
1136
1137 public Spliterator<E> trySplit() {
1138 Node<E> h;
1139 int b = batch;
1140 int n = (b <= 0) ? 1 : (b >= MAX_BATCH) ? MAX_BATCH : b + 1;
1141 if (!exhausted &&
1142 ((h = current) != null || (h = first) != null)
1143 && h.next != null) {
1144 Object[] a = new Object[n];
1145 final ReentrantLock lock = LinkedBlockingDeque.this.lock;
1146 int i = 0;
1147 Node<E> p = current;
1148 lock.lock();
1149 try {
1150 if (p != null || (p = first) != null)
1151 for (; p != null && i < n; p = succ(p))
1152 if ((a[i] = p.item) != null)
1153 i++;
1154 } finally {
1155 // checkInvariants();
1156 lock.unlock();
1157 }
1158 if ((current = p) == null) {
1159 est = 0L;
1160 exhausted = true;
1161 }
1162 else if ((est -= i) < 0L)
1163 est = 0L;
1164 if (i > 0) {
1165 batch = i;
1166 return Spliterators.spliterator
1167 (a, 0, i, (Spliterator.ORDERED |
1168 Spliterator.NONNULL |
1169 Spliterator.CONCURRENT));
1170 }
1171 }
1172 return null;
1173 }
1174
1175 public void forEachRemaining(Consumer<? super E> action) {
1176 if (action == null) throw new NullPointerException();
1177 if (!exhausted) {
1178 exhausted = true;
1179 final ReentrantLock lock = LinkedBlockingDeque.this.lock;
1180 Node<E> p = current;
1181 current = null;
1182 do {
1183 E e = null;
1184 lock.lock();
1185 try {
1186 if (p != null || (p = first) != null)
1187 do {
1188 e = p.item;
1189 p = succ(p);
1190 } while (e == null && p != null);
1191 } finally {
1192 // checkInvariants();
1193 lock.unlock();
1194 }
1195 if (e != null)
1196 action.accept(e);
1197 } while (p != null);
1198 }
1199 }
1200
1201 public boolean tryAdvance(Consumer<? super E> action) {
1202 if (action == null) throw new NullPointerException();
1203 if (!exhausted) {
1204 final ReentrantLock lock = LinkedBlockingDeque.this.lock;
1205 Node<E> p = current;
1206 E e = null;
1207 lock.lock();
1208 try {
1209 if (p != null || (p = first) != null)
1210 do {
1211 e = p.item;
1212 p = succ(p);
1213 } while (e == null && p != null);
1214 } finally {
1215 // checkInvariants();
1216 lock.unlock();
1217 }
1218 exhausted = ((current = p) == null);
1219 if (e != null) {
1220 action.accept(e);
1221 return true;
1222 }
1223 }
1224 return false;
1225 }
1226
1227 public int characteristics() {
1228 return (Spliterator.ORDERED |
1229 Spliterator.NONNULL |
1230 Spliterator.CONCURRENT);
1231 }
1232 }
1233
1234 /**
1235 * Returns a {@link Spliterator} over the elements in this deque.
1236 *
1237 * <p>The returned spliterator is
1238 * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1239 *
1240 * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
1241 * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
1242 *
1243 * @implNote
1244 * The {@code Spliterator} implements {@code trySplit} to permit limited
1245 * parallelism.
1246 *
1247 * @return a {@code Spliterator} over the elements in this deque
1248 * @since 1.8
1249 */
1250 public Spliterator<E> spliterator() {
1251 return new LBDSpliterator();
1252 }
1253
1254 /**
1255 * Saves this deque to a stream (that is, serializes it).
1256 *
1257 * @param s the stream
1258 * @throws java.io.IOException if an I/O error occurs
1259 * @serialData The capacity (int), followed by elements (each an
1260 * {@code Object}) in the proper order, followed by a null
1261 */
1262 private void writeObject(java.io.ObjectOutputStream s)
1263 throws java.io.IOException {
1264 final ReentrantLock lock = this.lock;
1265 lock.lock();
1266 try {
1267 // Write out capacity and any hidden stuff
1268 s.defaultWriteObject();
1269 // Write out all elements in the proper order.
1270 for (Node<E> p = first; p != null; p = p.next)
1271 s.writeObject(p.item);
1272 // Use trailing null as sentinel
1273 s.writeObject(null);
1274 } finally {
1275 // checkInvariants();
1276 lock.unlock();
1277 }
1278 }
1279
1280 /**
1281 * Reconstitutes this deque from a stream (that is, deserializes it).
1282 * @param s the stream
1283 * @throws ClassNotFoundException if the class of a serialized object
1284 * could not be found
1285 * @throws java.io.IOException if an I/O error occurs
1286 */
1287 private void readObject(java.io.ObjectInputStream s)
1288 throws java.io.IOException, ClassNotFoundException {
1289 s.defaultReadObject();
1290 count = 0;
1291 first = null;
1292 last = null;
1293 // Read in all elements and place in queue
1294 for (;;) {
1295 @SuppressWarnings("unchecked")
1296 E item = (E)s.readObject();
1297 if (item == null)
1298 break;
1299 add(item);
1300 }
1301 }
1302
1303 void checkInvariants() {
1304 // assert lock.isHeldByCurrentThread();
1305 // Nodes may get self-linked or lose their item, but only
1306 // after being unlinked and becoming unreachable from first.
1307 for (Node<E> p = first; p != null; p = p.next) {
1308 // assert p.next != p;
1309 // assert p.item != null;
1310 }
1311 }
1312
1313 }