ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/LinkedBlockingQueue.java
Revision: 1.43
Committed: Tue May 17 06:50:55 2005 UTC (19 years ago) by jsr166
Branch: MAIN
Changes since 1.42: +77 -20 lines
Log Message:
doc fixes

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package java.util.concurrent;
8 import java.util.concurrent.atomic.*;
9 import java.util.concurrent.locks.*;
10 import java.util.*;
11
12 /**
13 * An optionally-bounded {@linkplain BlockingQueue blocking queue} based on
14 * linked nodes.
15 * This queue orders elements FIFO (first-in-first-out).
16 * The <em>head</em> of the queue is that element that has been on the
17 * queue the longest time.
18 * The <em>tail</em> of the queue is that element that has been on the
19 * queue the shortest time. New elements
20 * are inserted at the tail of the queue, and the queue retrieval
21 * operations obtain elements at the head of the queue.
22 * Linked queues typically have higher throughput than array-based queues but
23 * less predictable performance in most concurrent applications.
24 *
25 * <p> The optional capacity bound constructor argument serves as a
26 * way to prevent excessive queue expansion. The capacity, if unspecified,
27 * is equal to {@link Integer#MAX_VALUE}. Linked nodes are
28 * dynamically created upon each insertion unless this would bring the
29 * queue above capacity.
30 *
31 * <p>This class and its iterator implement all of the
32 * <em>optional</em> methods of the {@link Collection} and {@link
33 * Iterator} interfaces.
34 *
35 * <p>This class is a member of the
36 * <a href="{@docRoot}/../guide/collections/index.html">
37 * Java Collections Framework</a>.
38 *
39 * @since 1.5
40 * @author Doug Lea
41 * @param <E> the type of elements held in this collection
42 *
43 */
44 public class LinkedBlockingQueue<E> extends AbstractQueue<E>
45 implements BlockingQueue<E>, java.io.Serializable {
46 private static final long serialVersionUID = -6903933977591709194L;
47
48 /*
49 * A variant of the "two lock queue" algorithm. The putLock gates
50 * entry to put (and offer), and has an associated condition for
51 * waiting puts. Similarly for the takeLock. The "count" field
52 * that they both rely on is maintained as an atomic to avoid
53 * needing to get both locks in most cases. Also, to minimize need
54 * for puts to get takeLock and vice-versa, cascading notifies are
55 * used. When a put notices that it has enabled at least one take,
56 * it signals taker. That taker in turn signals others if more
57 * items have been entered since the signal. And symmetrically for
58 * takes signalling puts. Operations such as remove(Object) and
59 * iterators acquire both locks.
60 */
61
62 /**
63 * Linked list node class
64 */
65 static class Node<E> {
66 /** The item, volatile to ensure barrier separating write and read */
67 volatile E item;
68 Node<E> next;
69 Node(E x) { item = x; }
70 }
71
72 /** The capacity bound, or Integer.MAX_VALUE if none */
73 private final int capacity;
74
75 /** Current number of elements */
76 private final AtomicInteger count = new AtomicInteger(0);
77
78 /** Head of linked list */
79 private transient Node<E> head;
80
81 /** Tail of linked list */
82 private transient Node<E> last;
83
84 /** Lock held by take, poll, etc */
85 private final ReentrantLock takeLock = new ReentrantLock();
86
87 /** Wait queue for waiting takes */
88 private final Condition notEmpty = takeLock.newCondition();
89
90 /** Lock held by put, offer, etc */
91 private final ReentrantLock putLock = new ReentrantLock();
92
93 /** Wait queue for waiting puts */
94 private final Condition notFull = putLock.newCondition();
95
96 /**
97 * Signals a waiting take. Called only from put/offer (which do not
98 * otherwise ordinarily lock takeLock.)
99 */
100 private void signalNotEmpty() {
101 final ReentrantLock takeLock = this.takeLock;
102 takeLock.lock();
103 try {
104 notEmpty.signal();
105 } finally {
106 takeLock.unlock();
107 }
108 }
109
110 /**
111 * Signals a waiting put. Called only from take/poll.
112 */
113 private void signalNotFull() {
114 final ReentrantLock putLock = this.putLock;
115 putLock.lock();
116 try {
117 notFull.signal();
118 } finally {
119 putLock.unlock();
120 }
121 }
122
123 /**
124 * Creates a node and links it at end of queue.
125 * @param x the item
126 */
127 private void insert(E x) {
128 last = last.next = new Node<E>(x);
129 }
130
131 /**
132 * Removes a node from head of queue,
133 * @return the node
134 */
135 private E extract() {
136 Node<E> first = head.next;
137 head = first;
138 E x = first.item;
139 first.item = null;
140 return x;
141 }
142
143 /**
144 * Lock to prevent both puts and takes.
145 */
146 private void fullyLock() {
147 putLock.lock();
148 takeLock.lock();
149 }
150
151 /**
152 * Unlock to allow both puts and takes.
153 */
154 private void fullyUnlock() {
155 takeLock.unlock();
156 putLock.unlock();
157 }
158
159
160 /**
161 * Creates a <tt>LinkedBlockingQueue</tt> with a capacity of
162 * {@link Integer#MAX_VALUE}.
163 */
164 public LinkedBlockingQueue() {
165 this(Integer.MAX_VALUE);
166 }
167
168 /**
169 * Creates a <tt>LinkedBlockingQueue</tt> with the given (fixed) capacity.
170 *
171 * @param capacity the capacity of this queue
172 * @throws IllegalArgumentException if <tt>capacity</tt> is not greater
173 * than zero
174 */
175 public LinkedBlockingQueue(int capacity) {
176 if (capacity <= 0) throw new IllegalArgumentException();
177 this.capacity = capacity;
178 last = head = new Node<E>(null);
179 }
180
181 /**
182 * Creates a <tt>LinkedBlockingQueue</tt> with a capacity of
183 * {@link Integer#MAX_VALUE}, initially containing the elements of the
184 * given collection,
185 * added in traversal order of the collection's iterator.
186 *
187 * @param c the collection of elements to initially contain
188 * @throws NullPointerException if the specified collection or any
189 * of its elements are null
190 */
191 public LinkedBlockingQueue(Collection<? extends E> c) {
192 this(Integer.MAX_VALUE);
193 for (E e : c)
194 add(e);
195 }
196
197
198 // this doc comment is overridden to remove the reference to collections
199 // greater in size than Integer.MAX_VALUE
200 /**
201 * Returns the number of elements in this queue.
202 *
203 * @return the number of elements in this queue
204 */
205 public int size() {
206 return count.get();
207 }
208
209 // this doc comment is a modified copy of the inherited doc comment,
210 // without the reference to unlimited queues.
211 /**
212 * Returns the number of additional elements that this queue can ideally
213 * (in the absence of memory or resource constraints) accept without
214 * blocking. This is always equal to the initial capacity of this queue
215 * less the current <tt>size</tt> of this queue.
216 *
217 * <p>Note that you <em>cannot</em> always tell if an attempt to insert
218 * an element will succeed by inspecting <tt>remainingCapacity</tt>
219 * because it may be the case that another thread is about to
220 * insert or remove an element.
221 */
222 public int remainingCapacity() {
223 return capacity - count.get();
224 }
225
226 /**
227 * Adds the specified element to the tail of this queue, waiting if
228 * necessary for space to become available.
229 *
230 * @throws InterruptedException {@inheritDoc}
231 * @throws NullPointerException {@inheritDoc}
232 */
233 public void put(E e) throws InterruptedException {
234 if (e == null) throw new NullPointerException();
235 // Note: convention in all put/take/etc is to preset
236 // local var holding count negative to indicate failure unless set.
237 int c = -1;
238 final ReentrantLock putLock = this.putLock;
239 final AtomicInteger count = this.count;
240 putLock.lockInterruptibly();
241 try {
242 /*
243 * Note that count is used in wait guard even though it is
244 * not protected by lock. This works because count can
245 * only decrease at this point (all other puts are shut
246 * out by lock), and we (or some other waiting put) are
247 * signalled if it ever changes from
248 * capacity. Similarly for all other uses of count in
249 * other wait guards.
250 */
251 try {
252 while (count.get() == capacity)
253 notFull.await();
254 } catch (InterruptedException ie) {
255 notFull.signal(); // propagate to a non-interrupted thread
256 throw ie;
257 }
258 insert(e);
259 c = count.getAndIncrement();
260 if (c + 1 < capacity)
261 notFull.signal();
262 } finally {
263 putLock.unlock();
264 }
265 if (c == 0)
266 signalNotEmpty();
267 }
268
269 /**
270 * Inserts the specified element at the tail of this queue, waiting if
271 * necessary up to the specified wait time for space to become available.
272 *
273 * @return <tt>true</tt> if successful, or <tt>false</tt> if
274 * the specified waiting time elapses before space is available.
275 * @throws InterruptedException {@inheritDoc}
276 * @throws NullPointerException {@inheritDoc}
277 */
278 public boolean offer(E e, long timeout, TimeUnit unit)
279 throws InterruptedException {
280
281 if (e == null) throw new NullPointerException();
282 long nanos = unit.toNanos(timeout);
283 int c = -1;
284 final ReentrantLock putLock = this.putLock;
285 final AtomicInteger count = this.count;
286 putLock.lockInterruptibly();
287 try {
288 for (;;) {
289 if (count.get() < capacity) {
290 insert(e);
291 c = count.getAndIncrement();
292 if (c + 1 < capacity)
293 notFull.signal();
294 break;
295 }
296 if (nanos <= 0)
297 return false;
298 try {
299 nanos = notFull.awaitNanos(nanos);
300 } catch (InterruptedException ie) {
301 notFull.signal(); // propagate to a non-interrupted thread
302 throw ie;
303 }
304 }
305 } finally {
306 putLock.unlock();
307 }
308 if (c == 0)
309 signalNotEmpty();
310 return true;
311 }
312
313 /**
314 * Inserts the specified element at the tail of this queue if possible,
315 * returning immediately if this queue is full.
316 *
317 * @return <tt>true</tt> if it was possible to add the element to
318 * this queue, else <tt>false</tt>
319 * @throws NullPointerException if the specified element is null
320 */
321 public boolean offer(E e) {
322 if (e == null) throw new NullPointerException();
323 final AtomicInteger count = this.count;
324 if (count.get() == capacity)
325 return false;
326 int c = -1;
327 final ReentrantLock putLock = this.putLock;
328 putLock.lock();
329 try {
330 if (count.get() < capacity) {
331 insert(e);
332 c = count.getAndIncrement();
333 if (c + 1 < capacity)
334 notFull.signal();
335 }
336 } finally {
337 putLock.unlock();
338 }
339 if (c == 0)
340 signalNotEmpty();
341 return c >= 0;
342 }
343
344
345 public E take() throws InterruptedException {
346 E x;
347 int c = -1;
348 final AtomicInteger count = this.count;
349 final ReentrantLock takeLock = this.takeLock;
350 takeLock.lockInterruptibly();
351 try {
352 try {
353 while (count.get() == 0)
354 notEmpty.await();
355 } catch (InterruptedException ie) {
356 notEmpty.signal(); // propagate to a non-interrupted thread
357 throw ie;
358 }
359
360 x = extract();
361 c = count.getAndDecrement();
362 if (c > 1)
363 notEmpty.signal();
364 } finally {
365 takeLock.unlock();
366 }
367 if (c == capacity)
368 signalNotFull();
369 return x;
370 }
371
372 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
373 E x = null;
374 int c = -1;
375 long nanos = unit.toNanos(timeout);
376 final AtomicInteger count = this.count;
377 final ReentrantLock takeLock = this.takeLock;
378 takeLock.lockInterruptibly();
379 try {
380 for (;;) {
381 if (count.get() > 0) {
382 x = extract();
383 c = count.getAndDecrement();
384 if (c > 1)
385 notEmpty.signal();
386 break;
387 }
388 if (nanos <= 0)
389 return null;
390 try {
391 nanos = notEmpty.awaitNanos(nanos);
392 } catch (InterruptedException ie) {
393 notEmpty.signal(); // propagate to a non-interrupted thread
394 throw ie;
395 }
396 }
397 } finally {
398 takeLock.unlock();
399 }
400 if (c == capacity)
401 signalNotFull();
402 return x;
403 }
404
405 public E poll() {
406 final AtomicInteger count = this.count;
407 if (count.get() == 0)
408 return null;
409 E x = null;
410 int c = -1;
411 final ReentrantLock takeLock = this.takeLock;
412 takeLock.lock();
413 try {
414 if (count.get() > 0) {
415 x = extract();
416 c = count.getAndDecrement();
417 if (c > 1)
418 notEmpty.signal();
419 }
420 } finally {
421 takeLock.unlock();
422 }
423 if (c == capacity)
424 signalNotFull();
425 return x;
426 }
427
428
429 public E peek() {
430 if (count.get() == 0)
431 return null;
432 final ReentrantLock takeLock = this.takeLock;
433 takeLock.lock();
434 try {
435 Node<E> first = head.next;
436 if (first == null)
437 return null;
438 else
439 return first.item;
440 } finally {
441 takeLock.unlock();
442 }
443 }
444
445 /**
446 * Removes a single instance of the specified element from this
447 * queue, if it is present.
448 */
449 public boolean remove(Object o) {
450 if (o == null) return false;
451 boolean removed = false;
452 fullyLock();
453 try {
454 Node<E> trail = head;
455 Node<E> p = head.next;
456 while (p != null) {
457 if (o.equals(p.item)) {
458 removed = true;
459 break;
460 }
461 trail = p;
462 p = p.next;
463 }
464 if (removed) {
465 p.item = null;
466 trail.next = p.next;
467 if (last == p)
468 last = trail;
469 if (count.getAndDecrement() == capacity)
470 notFull.signalAll();
471 }
472 } finally {
473 fullyUnlock();
474 }
475 return removed;
476 }
477
478 /**
479 * Returns an array containing all of the elements in this queue, in
480 * proper sequence.
481 *
482 * <p>The returned array will be "safe" in that no references to it are
483 * maintained by this queue. (In other words, this method must allocate
484 * a new array). The caller is thus free to modify the returned array.
485 *
486 * <p>This method acts as bridge between array-based and collection-based
487 * APIs.
488 *
489 * @return an array containing all of the elements in this queue
490 */
491 public Object[] toArray() {
492 fullyLock();
493 try {
494 int size = count.get();
495 Object[] a = new Object[size];
496 int k = 0;
497 for (Node<E> p = head.next; p != null; p = p.next)
498 a[k++] = p.item;
499 return a;
500 } finally {
501 fullyUnlock();
502 }
503 }
504
505 /**
506 * Returns an array containing all of the elements in this queue, in
507 * proper sequence; the runtime type of the returned array is that of
508 * the specified array. If the queue fits in the specified array, it
509 * is returned therein. Otherwise, a new array is allocated with the
510 * runtime type of the specified array and the size of this queue.
511 *
512 * <p>If this queue fits in the specified array with room to spare
513 * (i.e., the array has more elements than this queue), the element in
514 * the array immediately following the end of the queue is set to
515 * <tt>null</tt>.
516 *
517 * <p>Like the {@link #toArray()} method, this method acts as bridge between
518 * array-based and collection-based APIs. Further, this method allows
519 * precise control over the runtime type of the output array, and may,
520 * under certain circumstances, be used to save allocation costs.
521 *
522 * <p>Suppose <tt>x</tt> is a queue known to contain only strings.
523 * The following code can be used to dump the queue into a newly
524 * allocated array of <tt>String</tt>:
525 *
526 * <pre>
527 * String[] y = x.toArray(new String[0]);</pre>
528 *
529 * Note that <tt>toArray(new Object[0])</tt> is identical in function to
530 * <tt>toArray()</tt>.
531 *
532 * @param a the array into which the elements of the queue are to
533 * be stored, if it is big enough; otherwise, a new array of the
534 * same runtime type is allocated for this purpose
535 * @return an array containing all of the elements in this queue
536 * @throws ArrayStoreException if the runtime type of the specified array
537 * is not a supertype of the runtime type of every element in
538 * this queue
539 * @throws NullPointerException if the specified array is null
540 */
541 public <T> T[] toArray(T[] a) {
542 fullyLock();
543 try {
544 int size = count.get();
545 if (a.length < size)
546 a = (T[])java.lang.reflect.Array.newInstance
547 (a.getClass().getComponentType(), size);
548
549 int k = 0;
550 for (Node p = head.next; p != null; p = p.next)
551 a[k++] = (T)p.item;
552 return a;
553 } finally {
554 fullyUnlock();
555 }
556 }
557
558 public String toString() {
559 fullyLock();
560 try {
561 return super.toString();
562 } finally {
563 fullyUnlock();
564 }
565 }
566
567 /**
568 * Atomically removes all of the elements from this queue.
569 * The queue will be empty after this call returns.
570 */
571 public void clear() {
572 fullyLock();
573 try {
574 head.next = null;
575 assert head.item == null;
576 last = head;
577 if (count.getAndSet(0) == capacity)
578 notFull.signalAll();
579 } finally {
580 fullyUnlock();
581 }
582 }
583
584 /**
585 * @throws UnsupportedOperationException {@inheritDoc}
586 * @throws ClassCastException {@inheritDoc}
587 * @throws NullPointerException {@inheritDoc}
588 * @throws IllegalArgumentException {@inheritDoc}
589 */
590 public int drainTo(Collection<? super E> c) {
591 if (c == null)
592 throw new NullPointerException();
593 if (c == this)
594 throw new IllegalArgumentException();
595 Node first;
596 fullyLock();
597 try {
598 first = head.next;
599 head.next = null;
600 assert head.item == null;
601 last = head;
602 if (count.getAndSet(0) == capacity)
603 notFull.signalAll();
604 } finally {
605 fullyUnlock();
606 }
607 // Transfer the elements outside of locks
608 int n = 0;
609 for (Node<E> p = first; p != null; p = p.next) {
610 c.add(p.item);
611 p.item = null;
612 ++n;
613 }
614 return n;
615 }
616
617 /**
618 * @throws UnsupportedOperationException {@inheritDoc}
619 * @throws ClassCastException {@inheritDoc}
620 * @throws NullPointerException {@inheritDoc}
621 * @throws IllegalArgumentException {@inheritDoc}
622 */
623 public int drainTo(Collection<? super E> c, int maxElements) {
624 if (c == null)
625 throw new NullPointerException();
626 if (c == this)
627 throw new IllegalArgumentException();
628 fullyLock();
629 try {
630 int n = 0;
631 Node<E> p = head.next;
632 while (p != null && n < maxElements) {
633 c.add(p.item);
634 p.item = null;
635 p = p.next;
636 ++n;
637 }
638 if (n != 0) {
639 head.next = p;
640 assert head.item == null;
641 if (p == null)
642 last = head;
643 if (count.getAndAdd(-n) == capacity)
644 notFull.signalAll();
645 }
646 return n;
647 } finally {
648 fullyUnlock();
649 }
650 }
651
652 /**
653 * Returns an iterator over the elements in this queue in proper sequence.
654 * The returned <tt>Iterator</tt> is a "weakly consistent" iterator that
655 * will never throw {@link ConcurrentModificationException},
656 * and guarantees to traverse elements as they existed upon
657 * construction of the iterator, and may (but is not guaranteed to)
658 * reflect any modifications subsequent to construction.
659 *
660 * @return an iterator over the elements in this queue in proper sequence
661 */
662 public Iterator<E> iterator() {
663 return new Itr();
664 }
665
666 private class Itr implements Iterator<E> {
667 /*
668 * Basic weak-consistent iterator. At all times hold the next
669 * item to hand out so that if hasNext() reports true, we will
670 * still have it to return even if lost race with a take etc.
671 */
672 private Node<E> current;
673 private Node<E> lastRet;
674 private E currentElement;
675
676 Itr() {
677 final ReentrantLock putLock = LinkedBlockingQueue.this.putLock;
678 final ReentrantLock takeLock = LinkedBlockingQueue.this.takeLock;
679 putLock.lock();
680 takeLock.lock();
681 try {
682 current = head.next;
683 if (current != null)
684 currentElement = current.item;
685 } finally {
686 takeLock.unlock();
687 putLock.unlock();
688 }
689 }
690
691 public boolean hasNext() {
692 return current != null;
693 }
694
695 public E next() {
696 final ReentrantLock putLock = LinkedBlockingQueue.this.putLock;
697 final ReentrantLock takeLock = LinkedBlockingQueue.this.takeLock;
698 putLock.lock();
699 takeLock.lock();
700 try {
701 if (current == null)
702 throw new NoSuchElementException();
703 E x = currentElement;
704 lastRet = current;
705 current = current.next;
706 if (current != null)
707 currentElement = current.item;
708 return x;
709 } finally {
710 takeLock.unlock();
711 putLock.unlock();
712 }
713 }
714
715 public void remove() {
716 if (lastRet == null)
717 throw new IllegalStateException();
718 final ReentrantLock putLock = LinkedBlockingQueue.this.putLock;
719 final ReentrantLock takeLock = LinkedBlockingQueue.this.takeLock;
720 putLock.lock();
721 takeLock.lock();
722 try {
723 Node<E> node = lastRet;
724 lastRet = null;
725 Node<E> trail = head;
726 Node<E> p = head.next;
727 while (p != null && p != node) {
728 trail = p;
729 p = p.next;
730 }
731 if (p == node) {
732 p.item = null;
733 trail.next = p.next;
734 if (last == p)
735 last = trail;
736 int c = count.getAndDecrement();
737 if (c == capacity)
738 notFull.signalAll();
739 }
740 } finally {
741 takeLock.unlock();
742 putLock.unlock();
743 }
744 }
745 }
746
747 /**
748 * Save the state to a stream (that is, serialize it).
749 *
750 * @serialData The capacity is emitted (int), followed by all of
751 * its elements (each an <tt>Object</tt>) in the proper order,
752 * followed by a null
753 * @param s the stream
754 */
755 private void writeObject(java.io.ObjectOutputStream s)
756 throws java.io.IOException {
757
758 fullyLock();
759 try {
760 // Write out any hidden stuff, plus capacity
761 s.defaultWriteObject();
762
763 // Write out all elements in the proper order.
764 for (Node<E> p = head.next; p != null; p = p.next)
765 s.writeObject(p.item);
766
767 // Use trailing null as sentinel
768 s.writeObject(null);
769 } finally {
770 fullyUnlock();
771 }
772 }
773
774 /**
775 * Reconstitute this queue instance from a stream (that is,
776 * deserialize it).
777 * @param s the stream
778 */
779 private void readObject(java.io.ObjectInputStream s)
780 throws java.io.IOException, ClassNotFoundException {
781 // Read in capacity, and any hidden stuff
782 s.defaultReadObject();
783
784 count.set(0);
785 last = head = new Node<E>(null);
786
787 // Read in all elements and place in queue
788 for (;;) {
789 E item = (E)s.readObject();
790 if (item == null)
791 break;
792 add(item);
793 }
794 }
795 }