ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/LinkedBlockingQueue.java
Revision: 1.65
Committed: Wed Aug 3 14:44:33 2011 UTC (12 years, 10 months ago) by jsr166
Branch: MAIN
Changes since 1.64: +1 -2 lines
Log Message:
use standard readObject first sentence javadoc

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package java.util.concurrent;
8
9 import java.util.concurrent.atomic.AtomicInteger;
10 import java.util.concurrent.locks.Condition;
11 import java.util.concurrent.locks.ReentrantLock;
12 import java.util.AbstractQueue;
13 import java.util.Collection;
14 import java.util.Iterator;
15 import java.util.NoSuchElementException;
16
17 /**
18 * An optionally-bounded {@linkplain BlockingQueue blocking queue} based on
19 * linked nodes.
20 * This queue orders elements FIFO (first-in-first-out).
21 * The <em>head</em> of the queue is that element that has been on the
22 * queue the longest time.
23 * The <em>tail</em> of the queue is that element that has been on the
24 * queue the shortest time. New elements
25 * are inserted at the tail of the queue, and the queue retrieval
26 * operations obtain elements at the head of the queue.
27 * Linked queues typically have higher throughput than array-based queues but
28 * less predictable performance in most concurrent applications.
29 *
30 * <p> The optional capacity bound constructor argument serves as a
31 * way to prevent excessive queue expansion. The capacity, if unspecified,
32 * is equal to {@link Integer#MAX_VALUE}. Linked nodes are
33 * dynamically created upon each insertion unless this would bring the
34 * queue above capacity.
35 *
36 * <p>This class and its iterator implement all of the
37 * <em>optional</em> methods of the {@link Collection} and {@link
38 * Iterator} interfaces.
39 *
40 * <p>This class is a member of the
41 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
42 * Java Collections Framework</a>.
43 *
44 * @since 1.5
45 * @author Doug Lea
46 * @param <E> the type of elements held in this collection
47 *
48 */
49 public class LinkedBlockingQueue<E> extends AbstractQueue<E>
50 implements BlockingQueue<E>, java.io.Serializable {
51 private static final long serialVersionUID = -6903933977591709194L;
52
53 /*
54 * A variant of the "two lock queue" algorithm. The putLock gates
55 * entry to put (and offer), and has an associated condition for
56 * waiting puts. Similarly for the takeLock. The "count" field
57 * that they both rely on is maintained as an atomic to avoid
58 * needing to get both locks in most cases. Also, to minimize need
59 * for puts to get takeLock and vice-versa, cascading notifies are
60 * used. When a put notices that it has enabled at least one take,
61 * it signals taker. That taker in turn signals others if more
62 * items have been entered since the signal. And symmetrically for
63 * takes signalling puts. Operations such as remove(Object) and
64 * iterators acquire both locks.
65 *
66 * Visibility between writers and readers is provided as follows:
67 *
68 * Whenever an element is enqueued, the putLock is acquired and
69 * count updated. A subsequent reader guarantees visibility to the
70 * enqueued Node by either acquiring the putLock (via fullyLock)
71 * or by acquiring the takeLock, and then reading n = count.get();
72 * this gives visibility to the first n items.
73 *
74 * To implement weakly consistent iterators, it appears we need to
75 * keep all Nodes GC-reachable from a predecessor dequeued Node.
76 * That would cause two problems:
77 * - allow a rogue Iterator to cause unbounded memory retention
78 * - cause cross-generational linking of old Nodes to new Nodes if
79 * a Node was tenured while live, which generational GCs have a
80 * hard time dealing with, causing repeated major collections.
81 * However, only non-deleted Nodes need to be reachable from
82 * dequeued Nodes, and reachability does not necessarily have to
83 * be of the kind understood by the GC. We use the trick of
84 * linking a Node that has just been dequeued to itself. Such a
85 * self-link implicitly means to advance to head.next.
86 */
87
88 /**
89 * Linked list node class
90 */
91 static class Node<E> {
92 E item;
93
94 /**
95 * One of:
96 * - the real successor Node
97 * - this Node, meaning the successor is head.next
98 * - null, meaning there is no successor (this is the last node)
99 */
100 Node<E> next;
101
102 Node(E x) { item = x; }
103 }
104
105 /** The capacity bound, or Integer.MAX_VALUE if none */
106 private final int capacity;
107
108 /** Current number of elements */
109 private final AtomicInteger count = new AtomicInteger();
110
111 /**
112 * Head of linked list.
113 * Invariant: head.item == null
114 */
115 transient Node<E> head;
116
117 /**
118 * Tail of linked list.
119 * Invariant: last.next == null
120 */
121 private transient Node<E> last;
122
123 /** Lock held by take, poll, etc */
124 private final ReentrantLock takeLock = new ReentrantLock();
125
126 /** Wait queue for waiting takes */
127 private final Condition notEmpty = takeLock.newCondition();
128
129 /** Lock held by put, offer, etc */
130 private final ReentrantLock putLock = new ReentrantLock();
131
132 /** Wait queue for waiting puts */
133 private final Condition notFull = putLock.newCondition();
134
135 /**
136 * Signals a waiting take. Called only from put/offer (which do not
137 * otherwise ordinarily lock takeLock.)
138 */
139 private void signalNotEmpty() {
140 final ReentrantLock takeLock = this.takeLock;
141 takeLock.lock();
142 try {
143 notEmpty.signal();
144 } finally {
145 takeLock.unlock();
146 }
147 }
148
149 /**
150 * Signals a waiting put. Called only from take/poll.
151 */
152 private void signalNotFull() {
153 final ReentrantLock putLock = this.putLock;
154 putLock.lock();
155 try {
156 notFull.signal();
157 } finally {
158 putLock.unlock();
159 }
160 }
161
162 /**
163 * Links node at end of queue.
164 *
165 * @param node the node
166 */
167 private void enqueue(Node<E> node) {
168 // assert putLock.isHeldByCurrentThread();
169 // assert last.next == null;
170 last = last.next = node;
171 }
172
173 /**
174 * Removes a node from head of queue.
175 *
176 * @return the node
177 */
178 private E dequeue() {
179 // assert takeLock.isHeldByCurrentThread();
180 // assert head.item == null;
181 Node<E> h = head;
182 Node<E> first = h.next;
183 h.next = h; // help GC
184 head = first;
185 E x = first.item;
186 first.item = null;
187 return x;
188 }
189
190 /**
191 * Lock to prevent both puts and takes.
192 */
193 void fullyLock() {
194 putLock.lock();
195 takeLock.lock();
196 }
197
198 /**
199 * Unlock to allow both puts and takes.
200 */
201 void fullyUnlock() {
202 takeLock.unlock();
203 putLock.unlock();
204 }
205
206 // /**
207 // * Tells whether both locks are held by current thread.
208 // */
209 // boolean isFullyLocked() {
210 // return (putLock.isHeldByCurrentThread() &&
211 // takeLock.isHeldByCurrentThread());
212 // }
213
214 /**
215 * Creates a {@code LinkedBlockingQueue} with a capacity of
216 * {@link Integer#MAX_VALUE}.
217 */
218 public LinkedBlockingQueue() {
219 this(Integer.MAX_VALUE);
220 }
221
222 /**
223 * Creates a {@code LinkedBlockingQueue} with the given (fixed) capacity.
224 *
225 * @param capacity the capacity of this queue
226 * @throws IllegalArgumentException if {@code capacity} is not greater
227 * than zero
228 */
229 public LinkedBlockingQueue(int capacity) {
230 if (capacity <= 0) throw new IllegalArgumentException();
231 this.capacity = capacity;
232 last = head = new Node<E>(null);
233 }
234
235 /**
236 * Creates a {@code LinkedBlockingQueue} with a capacity of
237 * {@link Integer#MAX_VALUE}, initially containing the elements of the
238 * given collection,
239 * added in traversal order of the collection's iterator.
240 *
241 * @param c the collection of elements to initially contain
242 * @throws NullPointerException if the specified collection or any
243 * of its elements are null
244 */
245 public LinkedBlockingQueue(Collection<? extends E> c) {
246 this(Integer.MAX_VALUE);
247 final ReentrantLock putLock = this.putLock;
248 putLock.lock(); // Never contended, but necessary for visibility
249 try {
250 int n = 0;
251 for (E e : c) {
252 if (e == null)
253 throw new NullPointerException();
254 if (n == capacity)
255 throw new IllegalStateException("Queue full");
256 enqueue(new Node<E>(e));
257 ++n;
258 }
259 count.set(n);
260 } finally {
261 putLock.unlock();
262 }
263 }
264
265
266 // this doc comment is overridden to remove the reference to collections
267 // greater in size than Integer.MAX_VALUE
268 /**
269 * Returns the number of elements in this queue.
270 *
271 * @return the number of elements in this queue
272 */
273 public int size() {
274 return count.get();
275 }
276
277 // this doc comment is a modified copy of the inherited doc comment,
278 // without the reference to unlimited queues.
279 /**
280 * Returns the number of additional elements that this queue can ideally
281 * (in the absence of memory or resource constraints) accept without
282 * blocking. This is always equal to the initial capacity of this queue
283 * less the current {@code size} of this queue.
284 *
285 * <p>Note that you <em>cannot</em> always tell if an attempt to insert
286 * an element will succeed by inspecting {@code remainingCapacity}
287 * because it may be the case that another thread is about to
288 * insert or remove an element.
289 */
290 public int remainingCapacity() {
291 return capacity - count.get();
292 }
293
294 /**
295 * Inserts the specified element at the tail of this queue, waiting if
296 * necessary for space to become available.
297 *
298 * @throws InterruptedException {@inheritDoc}
299 * @throws NullPointerException {@inheritDoc}
300 */
301 public void put(E e) throws InterruptedException {
302 if (e == null) throw new NullPointerException();
303 // Note: convention in all put/take/etc is to preset local var
304 // holding count negative to indicate failure unless set.
305 int c = -1;
306 Node<E> node = new Node<E>(e);
307 final ReentrantLock putLock = this.putLock;
308 final AtomicInteger count = this.count;
309 putLock.lockInterruptibly();
310 try {
311 /*
312 * Note that count is used in wait guard even though it is
313 * not protected by lock. This works because count can
314 * only decrease at this point (all other puts are shut
315 * out by lock), and we (or some other waiting put) are
316 * signalled if it ever changes from capacity. Similarly
317 * for all other uses of count in other wait guards.
318 */
319 while (count.get() == capacity) {
320 notFull.await();
321 }
322 enqueue(node);
323 c = count.getAndIncrement();
324 if (c + 1 < capacity)
325 notFull.signal();
326 } finally {
327 putLock.unlock();
328 }
329 if (c == 0)
330 signalNotEmpty();
331 }
332
333 /**
334 * Inserts the specified element at the tail of this queue, waiting if
335 * necessary up to the specified wait time for space to become available.
336 *
337 * @return {@code true} if successful, or {@code false} if
338 * the specified waiting time elapses before space is available.
339 * @throws InterruptedException {@inheritDoc}
340 * @throws NullPointerException {@inheritDoc}
341 */
342 public boolean offer(E e, long timeout, TimeUnit unit)
343 throws InterruptedException {
344
345 if (e == null) throw new NullPointerException();
346 long nanos = unit.toNanos(timeout);
347 int c = -1;
348 final ReentrantLock putLock = this.putLock;
349 final AtomicInteger count = this.count;
350 putLock.lockInterruptibly();
351 try {
352 while (count.get() == capacity) {
353 if (nanos <= 0)
354 return false;
355 nanos = notFull.awaitNanos(nanos);
356 }
357 enqueue(new Node<E>(e));
358 c = count.getAndIncrement();
359 if (c + 1 < capacity)
360 notFull.signal();
361 } finally {
362 putLock.unlock();
363 }
364 if (c == 0)
365 signalNotEmpty();
366 return true;
367 }
368
369 /**
370 * Inserts the specified element at the tail of this queue if it is
371 * possible to do so immediately without exceeding the queue's capacity,
372 * returning {@code true} upon success and {@code false} if this queue
373 * is full.
374 * When using a capacity-restricted queue, this method is generally
375 * preferable to method {@link BlockingQueue#add add}, which can fail to
376 * insert an element only by throwing an exception.
377 *
378 * @throws NullPointerException if the specified element is null
379 */
380 public boolean offer(E e) {
381 if (e == null) throw new NullPointerException();
382 final AtomicInteger count = this.count;
383 if (count.get() == capacity)
384 return false;
385 int c = -1;
386 Node<E> node = new Node<E>(e);
387 final ReentrantLock putLock = this.putLock;
388 putLock.lock();
389 try {
390 if (count.get() < capacity) {
391 enqueue(node);
392 c = count.getAndIncrement();
393 if (c + 1 < capacity)
394 notFull.signal();
395 }
396 } finally {
397 putLock.unlock();
398 }
399 if (c == 0)
400 signalNotEmpty();
401 return c >= 0;
402 }
403
404
405 public E take() throws InterruptedException {
406 E x;
407 int c = -1;
408 final AtomicInteger count = this.count;
409 final ReentrantLock takeLock = this.takeLock;
410 takeLock.lockInterruptibly();
411 try {
412 while (count.get() == 0) {
413 notEmpty.await();
414 }
415 x = dequeue();
416 c = count.getAndDecrement();
417 if (c > 1)
418 notEmpty.signal();
419 } finally {
420 takeLock.unlock();
421 }
422 if (c == capacity)
423 signalNotFull();
424 return x;
425 }
426
427 public E poll(long timeout, TimeUnit unit) throws InterruptedException {
428 E x = null;
429 int c = -1;
430 long nanos = unit.toNanos(timeout);
431 final AtomicInteger count = this.count;
432 final ReentrantLock takeLock = this.takeLock;
433 takeLock.lockInterruptibly();
434 try {
435 while (count.get() == 0) {
436 if (nanos <= 0)
437 return null;
438 nanos = notEmpty.awaitNanos(nanos);
439 }
440 x = dequeue();
441 c = count.getAndDecrement();
442 if (c > 1)
443 notEmpty.signal();
444 } finally {
445 takeLock.unlock();
446 }
447 if (c == capacity)
448 signalNotFull();
449 return x;
450 }
451
452 public E poll() {
453 final AtomicInteger count = this.count;
454 if (count.get() == 0)
455 return null;
456 E x = null;
457 int c = -1;
458 final ReentrantLock takeLock = this.takeLock;
459 takeLock.lock();
460 try {
461 if (count.get() > 0) {
462 x = dequeue();
463 c = count.getAndDecrement();
464 if (c > 1)
465 notEmpty.signal();
466 }
467 } finally {
468 takeLock.unlock();
469 }
470 if (c == capacity)
471 signalNotFull();
472 return x;
473 }
474
475 public E peek() {
476 if (count.get() == 0)
477 return null;
478 final ReentrantLock takeLock = this.takeLock;
479 takeLock.lock();
480 try {
481 Node<E> first = head.next;
482 if (first == null)
483 return null;
484 else
485 return first.item;
486 } finally {
487 takeLock.unlock();
488 }
489 }
490
491 /**
492 * Unlinks interior Node p with predecessor trail.
493 */
494 void unlink(Node<E> p, Node<E> trail) {
495 // assert isFullyLocked();
496 // p.next is not changed, to allow iterators that are
497 // traversing p to maintain their weak-consistency guarantee.
498 p.item = null;
499 trail.next = p.next;
500 if (last == p)
501 last = trail;
502 if (count.getAndDecrement() == capacity)
503 notFull.signal();
504 }
505
506 /**
507 * Removes a single instance of the specified element from this queue,
508 * if it is present. More formally, removes an element {@code e} such
509 * that {@code o.equals(e)}, if this queue contains one or more such
510 * elements.
511 * Returns {@code true} if this queue contained the specified element
512 * (or equivalently, if this queue changed as a result of the call).
513 *
514 * @param o element to be removed from this queue, if present
515 * @return {@code true} if this queue changed as a result of the call
516 */
517 public boolean remove(Object o) {
518 if (o == null) return false;
519 fullyLock();
520 try {
521 for (Node<E> trail = head, p = trail.next;
522 p != null;
523 trail = p, p = p.next) {
524 if (o.equals(p.item)) {
525 unlink(p, trail);
526 return true;
527 }
528 }
529 return false;
530 } finally {
531 fullyUnlock();
532 }
533 }
534
535 /**
536 * Returns {@code true} if this queue contains the specified element.
537 * More formally, returns {@code true} if and only if this queue contains
538 * at least one element {@code e} such that {@code o.equals(e)}.
539 *
540 * @param o object to be checked for containment in this queue
541 * @return {@code true} if this queue contains the specified element
542 */
543 public boolean contains(Object o) {
544 if (o == null) return false;
545 fullyLock();
546 try {
547 for (Node<E> p = head.next; p != null; p = p.next)
548 if (o.equals(p.item))
549 return true;
550 return false;
551 } finally {
552 fullyUnlock();
553 }
554 }
555
556 /**
557 * Returns an array containing all of the elements in this queue, in
558 * proper sequence.
559 *
560 * <p>The returned array will be "safe" in that no references to it are
561 * maintained by this queue. (In other words, this method must allocate
562 * a new array). The caller is thus free to modify the returned array.
563 *
564 * <p>This method acts as bridge between array-based and collection-based
565 * APIs.
566 *
567 * @return an array containing all of the elements in this queue
568 */
569 public Object[] toArray() {
570 fullyLock();
571 try {
572 int size = count.get();
573 Object[] a = new Object[size];
574 int k = 0;
575 for (Node<E> p = head.next; p != null; p = p.next)
576 a[k++] = p.item;
577 return a;
578 } finally {
579 fullyUnlock();
580 }
581 }
582
583 /**
584 * Returns an array containing all of the elements in this queue, in
585 * proper sequence; the runtime type of the returned array is that of
586 * the specified array. If the queue fits in the specified array, it
587 * is returned therein. Otherwise, a new array is allocated with the
588 * runtime type of the specified array and the size of this queue.
589 *
590 * <p>If this queue fits in the specified array with room to spare
591 * (i.e., the array has more elements than this queue), the element in
592 * the array immediately following the end of the queue is set to
593 * {@code null}.
594 *
595 * <p>Like the {@link #toArray()} method, this method acts as bridge between
596 * array-based and collection-based APIs. Further, this method allows
597 * precise control over the runtime type of the output array, and may,
598 * under certain circumstances, be used to save allocation costs.
599 *
600 * <p>Suppose {@code x} is a queue known to contain only strings.
601 * The following code can be used to dump the queue into a newly
602 * allocated array of {@code String}:
603 *
604 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
605 *
606 * Note that {@code toArray(new Object[0])} is identical in function to
607 * {@code toArray()}.
608 *
609 * @param a the array into which the elements of the queue are to
610 * be stored, if it is big enough; otherwise, a new array of the
611 * same runtime type is allocated for this purpose
612 * @return an array containing all of the elements in this queue
613 * @throws ArrayStoreException if the runtime type of the specified array
614 * is not a supertype of the runtime type of every element in
615 * this queue
616 * @throws NullPointerException if the specified array is null
617 */
618 @SuppressWarnings("unchecked")
619 public <T> T[] toArray(T[] a) {
620 fullyLock();
621 try {
622 int size = count.get();
623 if (a.length < size)
624 a = (T[])java.lang.reflect.Array.newInstance
625 (a.getClass().getComponentType(), size);
626
627 int k = 0;
628 for (Node<E> p = head.next; p != null; p = p.next)
629 a[k++] = (T)p.item;
630 if (a.length > k)
631 a[k] = null;
632 return a;
633 } finally {
634 fullyUnlock();
635 }
636 }
637
638 public String toString() {
639 fullyLock();
640 try {
641 Node<E> p = head.next;
642 if (p == null)
643 return "[]";
644
645 StringBuilder sb = new StringBuilder();
646 sb.append('[');
647 for (;;) {
648 E e = p.item;
649 sb.append(e == this ? "(this Collection)" : e);
650 p = p.next;
651 if (p == null)
652 return sb.append(']').toString();
653 sb.append(',').append(' ');
654 }
655 } finally {
656 fullyUnlock();
657 }
658 }
659
660 /**
661 * Atomically removes all of the elements from this queue.
662 * The queue will be empty after this call returns.
663 */
664 public void clear() {
665 fullyLock();
666 try {
667 for (Node<E> p, h = head; (p = h.next) != null; h = p) {
668 h.next = h;
669 p.item = null;
670 }
671 head = last;
672 // assert head.item == null && head.next == null;
673 if (count.getAndSet(0) == capacity)
674 notFull.signal();
675 } finally {
676 fullyUnlock();
677 }
678 }
679
680 /**
681 * @throws UnsupportedOperationException {@inheritDoc}
682 * @throws ClassCastException {@inheritDoc}
683 * @throws NullPointerException {@inheritDoc}
684 * @throws IllegalArgumentException {@inheritDoc}
685 */
686 public int drainTo(Collection<? super E> c) {
687 return drainTo(c, Integer.MAX_VALUE);
688 }
689
690 /**
691 * @throws UnsupportedOperationException {@inheritDoc}
692 * @throws ClassCastException {@inheritDoc}
693 * @throws NullPointerException {@inheritDoc}
694 * @throws IllegalArgumentException {@inheritDoc}
695 */
696 public int drainTo(Collection<? super E> c, int maxElements) {
697 if (c == null)
698 throw new NullPointerException();
699 if (c == this)
700 throw new IllegalArgumentException();
701 if (maxElements <= 0)
702 return 0;
703 boolean signalNotFull = false;
704 final ReentrantLock takeLock = this.takeLock;
705 takeLock.lock();
706 try {
707 int n = Math.min(maxElements, count.get());
708 // count.get provides visibility to first n Nodes
709 Node<E> h = head;
710 int i = 0;
711 try {
712 while (i < n) {
713 Node<E> p = h.next;
714 c.add(p.item);
715 p.item = null;
716 h.next = h;
717 h = p;
718 ++i;
719 }
720 return n;
721 } finally {
722 // Restore invariants even if c.add() threw
723 if (i > 0) {
724 // assert h.item == null;
725 head = h;
726 signalNotFull = (count.getAndAdd(-i) == capacity);
727 }
728 }
729 } finally {
730 takeLock.unlock();
731 if (signalNotFull)
732 signalNotFull();
733 }
734 }
735
736 /**
737 * Returns an iterator over the elements in this queue in proper sequence.
738 * The elements will be returned in order from first (head) to last (tail).
739 *
740 * <p>The returned iterator is a "weakly consistent" iterator that
741 * will never throw {@link java.util.ConcurrentModificationException
742 * ConcurrentModificationException}, and guarantees to traverse
743 * elements as they existed upon construction of the iterator, and
744 * may (but is not guaranteed to) reflect any modifications
745 * subsequent to construction.
746 *
747 * @return an iterator over the elements in this queue in proper sequence
748 */
749 public Iterator<E> iterator() {
750 return new Itr();
751 }
752
753 private class Itr implements Iterator<E> {
754 /*
755 * Basic weakly-consistent iterator. At all times hold the next
756 * item to hand out so that if hasNext() reports true, we will
757 * still have it to return even if lost race with a take etc.
758 */
759 private Node<E> current;
760 private Node<E> lastRet;
761 private E currentElement;
762
763 Itr() {
764 fullyLock();
765 try {
766 current = head.next;
767 if (current != null)
768 currentElement = current.item;
769 } finally {
770 fullyUnlock();
771 }
772 }
773
774 public boolean hasNext() {
775 return current != null;
776 }
777
778 /**
779 * Returns the next live successor of p, or null if no such.
780 *
781 * Unlike other traversal methods, iterators need to handle both:
782 * - dequeued nodes (p.next == p)
783 * - (possibly multiple) interior removed nodes (p.item == null)
784 */
785 private Node<E> nextNode(Node<E> p) {
786 for (;;) {
787 Node<E> s = p.next;
788 if (s == p)
789 return head.next;
790 if (s == null || s.item != null)
791 return s;
792 p = s;
793 }
794 }
795
796 public E next() {
797 fullyLock();
798 try {
799 if (current == null)
800 throw new NoSuchElementException();
801 E x = currentElement;
802 lastRet = current;
803 current = nextNode(current);
804 currentElement = (current == null) ? null : current.item;
805 return x;
806 } finally {
807 fullyUnlock();
808 }
809 }
810
811 public void remove() {
812 if (lastRet == null)
813 throw new IllegalStateException();
814 fullyLock();
815 try {
816 Node<E> node = lastRet;
817 lastRet = null;
818 for (Node<E> trail = head, p = trail.next;
819 p != null;
820 trail = p, p = p.next) {
821 if (p == node) {
822 unlink(p, trail);
823 break;
824 }
825 }
826 } finally {
827 fullyUnlock();
828 }
829 }
830 }
831
832 /**
833 * Save the state to a stream (that is, serialize it).
834 *
835 * @serialData The capacity is emitted (int), followed by all of
836 * its elements (each an {@code Object}) in the proper order,
837 * followed by a null
838 * @param s the stream
839 */
840 private void writeObject(java.io.ObjectOutputStream s)
841 throws java.io.IOException {
842
843 fullyLock();
844 try {
845 // Write out any hidden stuff, plus capacity
846 s.defaultWriteObject();
847
848 // Write out all elements in the proper order.
849 for (Node<E> p = head.next; p != null; p = p.next)
850 s.writeObject(p.item);
851
852 // Use trailing null as sentinel
853 s.writeObject(null);
854 } finally {
855 fullyUnlock();
856 }
857 }
858
859 /**
860 * Reconstitutes this queue from a stream (that is, deserializes it).
861 *
862 * @param s the stream
863 */
864 private void readObject(java.io.ObjectInputStream s)
865 throws java.io.IOException, ClassNotFoundException {
866 // Read in capacity, and any hidden stuff
867 s.defaultReadObject();
868
869 count.set(0);
870 last = head = new Node<E>(null);
871
872 // Read in all elements and place in queue
873 for (;;) {
874 @SuppressWarnings("unchecked")
875 E item = (E)s.readObject();
876 if (item == null)
877 break;
878 add(item);
879 }
880 }
881 }