/* * Written by Doug Lea with assistance from members of JCP JSR-166 * Expert Group and released to the public domain. Use, modify, and * redistribute this code in any way without acknowledgement. */ package java.util.concurrent; import java.util.concurrent.atomic.*; import java.util.concurrent.locks.*; import java.util.*; /** * An optionally-bounded {@linkplain BlockingQueue blocking queue} based on * linked nodes. * This queue orders elements FIFO (first-in-first-out). * The head of the queue is that element that has been on the * queue the longest time. * The tail of the queue is that element that has been on the * queue the shortest time. New elements * are inserted at the tail of the queue, and the queue retrieval * operations obtain elements at the head of the queue. * Linked queues typically have higher throughput than array-based queues but * less predictable performance in most concurrent applications. * *

The optional capacity bound constructor argument serves as a * way to prevent excessive queue expansion. The capacity, if unspecified, * is equal to {@link Integer#MAX_VALUE}. Linked nodes are * dynamically created upon each insertion unless this would bring the * queue above capacity. * *

This class implements all of the optional methods * of the {@link Collection} and {@link Iterator} interfaces. * * @since 1.5 * @author Doug Lea * @param the type of elements held in this collection * **/ public class LinkedBlockingQueue extends AbstractQueue implements BlockingQueue, java.io.Serializable { private static final long serialVersionUID = -6903933977591709194L; /* * A variant of the "two lock queue" algorithm. The putLock gates * entry to put (and offer), and has an associated condition for * waiting puts. Similarly for the takeLock. The "count" field * that they both rely on is maintained as an atomic to avoid * needing to get both locks in most cases. Also, to minimize need * for puts to get takeLock and vice-versa, cascading notifies are * used. When a put notices that it has enabled at least one take, * it signals taker. That taker in turn signals others if more * items have been entered since the signal. And symmetrically for * takes signalling puts. Operations such as remove(Object) and * iterators acquire both locks. */ /** * Linked list node class */ static class Node { /** The item, volatile to ensure barrier separating write and read */ volatile E item; Node next; Node(E x) { item = x; } } /** The capacity bound, or Integer.MAX_VALUE if none */ private final int capacity; /** Current number of elements */ private final AtomicInteger count = new AtomicInteger(0); /** Head of linked list */ private transient Node head; /** Tail of linked list */ private transient Node last; /** Lock held by take, poll, etc */ private final ReentrantLock takeLock = new ReentrantLock(); /** Wait queue for waiting takes */ private final ReentrantLock.ConditionObject notEmpty = takeLock.newCondition(); /** Lock held by put, offer, etc */ private final ReentrantLock putLock = new ReentrantLock(); /** Wait queue for waiting puts */ private final ReentrantLock.ConditionObject notFull = putLock.newCondition(); /** * Signal a waiting take. Called only from put/offer (which do not * otherwise ordinarily lock takeLock.) */ private void signalNotEmpty() { final ReentrantLock takeLock = this.takeLock; takeLock.lock(); try { notEmpty.signal(); } finally { takeLock.unlock(); } } /** * Signal a waiting put. Called only from take/poll. */ private void signalNotFull() { final ReentrantLock putLock = this.putLock; putLock.lock(); try { notFull.signal(); } finally { putLock.unlock(); } } /** * Create a node and link it at end of queue * @param x the item */ private void insert(E x) { last = last.next = new Node(x); } /** * Remove a node from head of queue, * @return the node */ private E extract() { Node first = head.next; head = first; E x = first.item; first.item = null; return x; } /** * Lock to prevent both puts and takes. */ private void fullyLock() { putLock.lock(); takeLock.lock(); } /** * Unlock to allow both puts and takes. */ private void fullyUnlock() { takeLock.unlock(); putLock.unlock(); } /** * Creates a LinkedBlockingQueue with a capacity of * {@link Integer#MAX_VALUE}. */ public LinkedBlockingQueue() { this(Integer.MAX_VALUE); } /** * Creates a LinkedBlockingQueue with the given (fixed) capacity. * * @param capacity the capacity of this queue. * @throws IllegalArgumentException if capacity is not greater * than zero. */ public LinkedBlockingQueue(int capacity) { if (capacity <= 0) throw new IllegalArgumentException(); this.capacity = capacity; last = head = new Node(null); } /** * Creates a LinkedBlockingQueue with a capacity of * {@link Integer#MAX_VALUE}, initially containing the elements of the * given collection, * added in traversal order of the collection's iterator. * @param c the collection of elements to initially contain * @throws NullPointerException if c or any element within it * is null */ public LinkedBlockingQueue(Collection c) { this(Integer.MAX_VALUE); for (Iterator it = c.iterator(); it.hasNext();) add(it.next()); } // this doc comment is overridden to remove the reference to collections // greater in size than Integer.MAX_VALUE /** * Returns the number of elements in this queue. * * @return the number of elements in this queue. */ public int size() { return count.get(); } // this doc comment is a modified copy of the inherited doc comment, // without the reference to unlimited queues. /** * Returns the number of elements that this queue can ideally (in * the absence of memory or resource constraints) accept without * blocking. This is always equal to the initial capacity of this queue * less the current size of this queue. *

Note that you cannot always tell if * an attempt to add an element will succeed by * inspecting remainingCapacity because it may be the * case that a waiting consumer is ready to take an * element out of an otherwise full queue. */ public int remainingCapacity() { return capacity - count.get(); } /** * Adds the specified element to the tail of this queue, waiting if * necessary for space to become available. * @param o the element to add * @throws InterruptedException if interrupted while waiting. * @throws NullPointerException if the specified element is null. */ public void put(E o) throws InterruptedException { if (o == null) throw new NullPointerException(); // Note: convention in all put/take/etc is to preset // local var holding count negative to indicate failure unless set. int c = -1; final ReentrantLock putLock = this.putLock; final AtomicInteger count = this.count; putLock.lockInterruptibly(); try { /* * Note that count is used in wait guard even though it is * not protected by lock. This works because count can * only decrease at this point (all other puts are shut * out by lock), and we (or some other waiting put) are * signalled if it ever changes from * capacity. Similarly for all other uses of count in * other wait guards. */ try { while (count.get() == capacity) notFull.await(); } catch (InterruptedException ie) { notFull.signal(); // propagate to a non-interrupted thread throw ie; } insert(o); c = count.getAndIncrement(); if (c + 1 < capacity) notFull.signal(); } finally { putLock.unlock(); } if (c == 0) signalNotEmpty(); } /** * Inserts the specified element at the tail of this queue, waiting if * necessary up to the specified wait time for space to become available. * @param o the element to add * @param timeout how long to wait before giving up, in units of * unit * @param unit a TimeUnit determining how to interpret the * timeout parameter * @return true if successful, or false if * the specified waiting time elapses before space is available. * @throws InterruptedException if interrupted while waiting. * @throws NullPointerException if the specified element is null. */ public boolean offer(E o, long timeout, TimeUnit unit) throws InterruptedException { if (o == null) throw new NullPointerException(); long nanos = unit.toNanos(timeout); int c = -1; final ReentrantLock putLock = this.putLock; final AtomicInteger count = this.count; putLock.lockInterruptibly(); try { for (;;) { if (count.get() < capacity) { insert(o); c = count.getAndIncrement(); if (c + 1 < capacity) notFull.signal(); break; } if (nanos <= 0) return false; try { nanos = notFull.awaitNanos(nanos); } catch (InterruptedException ie) { notFull.signal(); // propagate to a non-interrupted thread throw ie; } } } finally { putLock.unlock(); } if (c == 0) signalNotEmpty(); return true; } /** * Inserts the specified element at the tail of this queue if possible, * returning immediately if this queue is full. * * @param o the element to add. * @return true if it was possible to add the element to * this queue, else false * @throws NullPointerException if the specified element is null */ public boolean offer(E o) { if (o == null) throw new NullPointerException(); final AtomicInteger count = this.count; if (count.get() == capacity) return false; int c = -1; final ReentrantLock putLock = this.putLock; putLock.lock(); try { if (count.get() < capacity) { insert(o); c = count.getAndIncrement(); if (c + 1 < capacity) notFull.signal(); } } finally { putLock.unlock(); } if (c == 0) signalNotEmpty(); return c >= 0; } public E take() throws InterruptedException { E x; int c = -1; final AtomicInteger count = this.count; final ReentrantLock takeLock = this.takeLock; takeLock.lockInterruptibly(); try { try { while (count.get() == 0) notEmpty.await(); } catch (InterruptedException ie) { notEmpty.signal(); // propagate to a non-interrupted thread throw ie; } x = extract(); c = count.getAndDecrement(); if (c > 1) notEmpty.signal(); } finally { takeLock.unlock(); } if (c == capacity) signalNotFull(); return x; } public E poll(long timeout, TimeUnit unit) throws InterruptedException { E x = null; int c = -1; long nanos = unit.toNanos(timeout); final AtomicInteger count = this.count; final ReentrantLock takeLock = this.takeLock; takeLock.lockInterruptibly(); try { for (;;) { if (count.get() > 0) { x = extract(); c = count.getAndDecrement(); if (c > 1) notEmpty.signal(); break; } if (nanos <= 0) return null; try { nanos = notEmpty.awaitNanos(nanos); } catch (InterruptedException ie) { notEmpty.signal(); // propagate to a non-interrupted thread throw ie; } } } finally { takeLock.unlock(); } if (c == capacity) signalNotFull(); return x; } public E poll() { final AtomicInteger count = this.count; if (count.get() == 0) return null; E x = null; int c = -1; final ReentrantLock takeLock = this.takeLock; takeLock.lock(); try { if (count.get() > 0) { x = extract(); c = count.getAndDecrement(); if (c > 1) notEmpty.signal(); } } finally { takeLock.unlock(); } if (c == capacity) signalNotFull(); return x; } public E peek() { if (count.get() == 0) return null; final ReentrantLock takeLock = this.takeLock; takeLock.lock(); try { Node first = head.next; if (first == null) return null; else return first.item; } finally { takeLock.unlock(); } } public boolean remove(Object o) { if (o == null) return false; boolean removed = false; fullyLock(); try { Node trail = head; Node p = head.next; while (p != null) { if (o.equals(p.item)) { removed = true; break; } trail = p; p = p.next; } if (removed) { p.item = null; trail.next = p.next; if (count.getAndDecrement() == capacity) notFull.signalAll(); } } finally { fullyUnlock(); } return removed; } public Object[] toArray() { fullyLock(); try { int size = count.get(); Object[] a = new Object[size]; int k = 0; for (Node p = head.next; p != null; p = p.next) a[k++] = p.item; return a; } finally { fullyUnlock(); } } public T[] toArray(T[] a) { fullyLock(); try { int size = count.get(); if (a.length < size) a = (T[])java.lang.reflect.Array.newInstance (a.getClass().getComponentType(), size); int k = 0; for (Node p = head.next; p != null; p = p.next) a[k++] = (T)p.item; return a; } finally { fullyUnlock(); } } public String toString() { fullyLock(); try { return super.toString(); } finally { fullyUnlock(); } } public void clear() { fullyLock(); try { head.next = null; if (count.getAndSet(0) == capacity) notFull.signalAll(); } finally { fullyUnlock(); } } public int drainTo(Collection c) { if (c == null) throw new NullPointerException(); if (c == this) throw new IllegalArgumentException(); Node first; fullyLock(); try { first = head.next; head.next = null; if (count.getAndSet(0) == capacity) notFull.signalAll(); } finally { fullyUnlock(); } // Transfer the elements outside of locks int n = 0; for (Node p = first; p != null; p = p.next) { c.add(p.item); p.item = null; ++n; } return n; } public int drainTo(Collection c, int maxElements) { if (c == null) throw new NullPointerException(); if (c == this) throw new IllegalArgumentException(); if (maxElements <= 0) return 0; fullyLock(); try { int n = 0; Node p = head.next; while (p != null && n < maxElements) { c.add(p.item); p.item = null; p = p.next; ++n; } if (n != 0) { head.next = p; if (count.getAndAdd(-n) == capacity) notFull.signalAll(); } return n; } finally { fullyUnlock(); } } /** * Returns an iterator over the elements in this queue in proper sequence. * The returned Iterator is a "weakly consistent" iterator that * will never throw {@link java.util.ConcurrentModificationException}, * and guarantees to traverse elements as they existed upon * construction of the iterator, and may (but is not guaranteed to) * reflect any modifications subsequent to construction. * * @return an iterator over the elements in this queue in proper sequence. */ public Iterator iterator() { return new Itr(); } private class Itr implements Iterator { /* * Basic weak-consistent iterator. At all times hold the next * item to hand out so that if hasNext() reports true, we will * still have it to return even if lost race with a take etc. */ private Node current; private Node lastRet; private E currentElement; Itr() { final ReentrantLock putLock = LinkedBlockingQueue.this.putLock; final ReentrantLock takeLock = LinkedBlockingQueue.this.takeLock; putLock.lock(); takeLock.lock(); try { current = head.next; if (current != null) currentElement = current.item; } finally { takeLock.unlock(); putLock.unlock(); } } public boolean hasNext() { return current != null; } public E next() { final ReentrantLock putLock = LinkedBlockingQueue.this.putLock; final ReentrantLock takeLock = LinkedBlockingQueue.this.takeLock; putLock.lock(); takeLock.lock(); try { if (current == null) throw new NoSuchElementException(); E x = currentElement; lastRet = current; current = current.next; if (current != null) currentElement = current.item; return x; } finally { takeLock.unlock(); putLock.unlock(); } } public void remove() { if (lastRet == null) throw new IllegalStateException(); final ReentrantLock putLock = LinkedBlockingQueue.this.putLock; final ReentrantLock takeLock = LinkedBlockingQueue.this.takeLock; putLock.lock(); takeLock.lock(); try { Node node = lastRet; lastRet = null; Node trail = head; Node p = head.next; while (p != null && p != node) { trail = p; p = p.next; } if (p == node) { p.item = null; trail.next = p.next; int c = count.getAndDecrement(); if (c == capacity) notFull.signalAll(); } } finally { takeLock.unlock(); putLock.unlock(); } } } /** * Save the state to a stream (that is, serialize it). * * @serialData The capacity is emitted (int), followed by all of * its elements (each an Object) in the proper order, * followed by a null * @param s the stream */ private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { fullyLock(); try { // Write out any hidden stuff, plus capacity s.defaultWriteObject(); // Write out all elements in the proper order. for (Node p = head.next; p != null; p = p.next) s.writeObject(p.item); // Use trailing null as sentinel s.writeObject(null); } finally { fullyUnlock(); } } /** * Reconstitute this queue instance from a stream (that is, * deserialize it). * @param s the stream */ private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { // Read in capacity, and any hidden stuff s.defaultReadObject(); count.set(0); last = head = new Node(null); // Read in all elements and place in queue for (;;) { E item = (E)s.readObject(); if (item == null) break; add(item); } } }