ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/LinkedTransferQueue.java
Revision: 1.104
Committed: Sat Dec 24 09:13:10 2016 UTC (7 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.103: +1 -1 lines
Log Message:
remove obvious comment

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.39 * http://creativecommons.org/publicdomain/zero/1.0/
5 jsr166 1.1 */
6    
7     package java.util.concurrent;
8    
9 dl 1.97 import java.lang.invoke.MethodHandles;
10     import java.lang.invoke.VarHandle;
11 jsr166 1.1 import java.util.AbstractQueue;
12 jsr166 1.82 import java.util.Arrays;
13 jsr166 1.1 import java.util.Collection;
14     import java.util.Iterator;
15     import java.util.NoSuchElementException;
16 jsr166 1.5 import java.util.Queue;
17 dl 1.52 import java.util.Spliterator;
18 dl 1.54 import java.util.Spliterators;
19 jsr166 1.76 import java.util.concurrent.locks.LockSupport;
20     import java.util.function.Consumer;
21 dl 1.22
22 jsr166 1.1 /**
23 jsr166 1.6 * An unbounded {@link TransferQueue} based on linked nodes.
24 jsr166 1.1 * This queue orders elements FIFO (first-in-first-out) with respect
25     * to any given producer. The <em>head</em> of the queue is that
26     * element that has been on the queue the longest time for some
27     * producer. The <em>tail</em> of the queue is that element that has
28     * been on the queue the shortest time for some producer.
29     *
30 dl 1.40 * <p>Beware that, unlike in most collections, the {@code size} method
31     * is <em>NOT</em> a constant-time operation. Because of the
32 jsr166 1.1 * asynchronous nature of these queues, determining the current number
33 dl 1.40 * of elements requires a traversal of the elements, and so may report
34     * inaccurate results if this collection is modified during traversal.
35 dl 1.41 * Additionally, the bulk operations {@code addAll},
36     * {@code removeAll}, {@code retainAll}, {@code containsAll},
37 jsr166 1.98 * and {@code toArray} are <em>not</em> guaranteed
38 dl 1.40 * to be performed atomically. For example, an iterator operating
39 dl 1.41 * concurrently with an {@code addAll} operation might view only some
40 dl 1.40 * of the added elements.
41 jsr166 1.1 *
42     * <p>This class and its iterator implement all of the
43     * <em>optional</em> methods of the {@link Collection} and {@link
44     * Iterator} interfaces.
45     *
46     * <p>Memory consistency effects: As with other concurrent
47     * collections, actions in a thread prior to placing an object into a
48     * {@code LinkedTransferQueue}
49     * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
50     * actions subsequent to the access or removal of that element from
51     * the {@code LinkedTransferQueue} in another thread.
52     *
53     * <p>This class is a member of the
54     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
55     * Java Collections Framework</a>.
56     *
57     * @since 1.7
58     * @author Doug Lea
59 jsr166 1.75 * @param <E> the type of elements held in this queue
60 jsr166 1.1 */
61     public class LinkedTransferQueue<E> extends AbstractQueue<E>
62     implements TransferQueue<E>, java.io.Serializable {
63     private static final long serialVersionUID = -3223113410248163686L;
64    
65     /*
66 jsr166 1.8 * *** Overview of Dual Queues with Slack ***
67 jsr166 1.1 *
68 jsr166 1.8 * Dual Queues, introduced by Scherer and Scott
69 jsr166 1.99 * (http://www.cs.rochester.edu/~scott/papers/2004_DISC_dual_DS.pdf)
70     * are (linked) queues in which nodes may represent either data or
71 jsr166 1.8 * requests. When a thread tries to enqueue a data node, but
72     * encounters a request node, it instead "matches" and removes it;
73     * and vice versa for enqueuing requests. Blocking Dual Queues
74     * arrange that threads enqueuing unmatched requests block until
75     * other threads provide the match. Dual Synchronous Queues (see
76     * Scherer, Lea, & Scott
77     * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
78     * additionally arrange that threads enqueuing unmatched data also
79     * block. Dual Transfer Queues support all of these modes, as
80     * dictated by callers.
81     *
82     * A FIFO dual queue may be implemented using a variation of the
83     * Michael & Scott (M&S) lock-free queue algorithm
84 jsr166 1.72 * (http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf).
85 jsr166 1.8 * It maintains two pointer fields, "head", pointing to a
86     * (matched) node that in turn points to the first actual
87     * (unmatched) queue node (or null if empty); and "tail" that
88     * points to the last node on the queue (or again null if
89     * empty). For example, here is a possible queue with four data
90     * elements:
91     *
92     * head tail
93     * | |
94     * v v
95     * M -> U -> U -> U -> U
96     *
97     * The M&S queue algorithm is known to be prone to scalability and
98     * overhead limitations when maintaining (via CAS) these head and
99     * tail pointers. This has led to the development of
100     * contention-reducing variants such as elimination arrays (see
101     * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
102     * optimistic back pointers (see Ladan-Mozes & Shavit
103     * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
104     * However, the nature of dual queues enables a simpler tactic for
105     * improving M&S-style implementations when dual-ness is needed.
106     *
107     * In a dual queue, each node must atomically maintain its match
108     * status. While there are other possible variants, we implement
109     * this here as: for a data-mode node, matching entails CASing an
110     * "item" field from a non-null data value to null upon match, and
111     * vice-versa for request nodes, CASing from null to a data
112     * value. (Note that the linearization properties of this style of
113     * queue are easy to verify -- elements are made available by
114     * linking, and unavailable by matching.) Compared to plain M&S
115     * queues, this property of dual queues requires one additional
116     * successful atomic operation per enq/deq pair. But it also
117     * enables lower cost variants of queue maintenance mechanics. (A
118     * variation of this idea applies even for non-dual queues that
119     * support deletion of interior elements, such as
120     * j.u.c.ConcurrentLinkedQueue.)
121     *
122     * Once a node is matched, its match status can never again
123     * change. We may thus arrange that the linked list of them
124     * contain a prefix of zero or more matched nodes, followed by a
125     * suffix of zero or more unmatched nodes. (Note that we allow
126     * both the prefix and suffix to be zero length, which in turn
127     * means that we do not use a dummy header.) If we were not
128     * concerned with either time or space efficiency, we could
129     * correctly perform enqueue and dequeue operations by traversing
130     * from a pointer to the initial node; CASing the item of the
131     * first unmatched node on match and CASing the next field of the
132     * trailing node on appends. (Plus some special-casing when
133     * initially empty). While this would be a terrible idea in
134     * itself, it does have the benefit of not requiring ANY atomic
135     * updates on head/tail fields.
136     *
137     * We introduce here an approach that lies between the extremes of
138     * never versus always updating queue (head and tail) pointers.
139     * This offers a tradeoff between sometimes requiring extra
140     * traversal steps to locate the first and/or last unmatched
141     * nodes, versus the reduced overhead and contention of fewer
142     * updates to queue pointers. For example, a possible snapshot of
143     * a queue is:
144     *
145     * head tail
146     * | |
147     * v v
148     * M -> M -> U -> U -> U -> U
149     *
150     * The best value for this "slack" (the targeted maximum distance
151     * between the value of "head" and the first unmatched node, and
152     * similarly for "tail") is an empirical matter. We have found
153     * that using very small constants in the range of 1-3 work best
154     * over a range of platforms. Larger values introduce increasing
155     * costs of cache misses and risks of long traversal chains, while
156     * smaller values increase CAS contention and overhead.
157     *
158     * Dual queues with slack differ from plain M&S dual queues by
159     * virtue of only sometimes updating head or tail pointers when
160     * matching, appending, or even traversing nodes; in order to
161     * maintain a targeted slack. The idea of "sometimes" may be
162     * operationalized in several ways. The simplest is to use a
163     * per-operation counter incremented on each traversal step, and
164     * to try (via CAS) to update the associated queue pointer
165     * whenever the count exceeds a threshold. Another, that requires
166     * more overhead, is to use random number generators to update
167     * with a given probability per traversal step.
168     *
169     * In any strategy along these lines, because CASes updating
170     * fields may fail, the actual slack may exceed targeted
171     * slack. However, they may be retried at any time to maintain
172     * targets. Even when using very small slack values, this
173     * approach works well for dual queues because it allows all
174     * operations up to the point of matching or appending an item
175     * (hence potentially allowing progress by another thread) to be
176     * read-only, thus not introducing any further contention. As
177     * described below, we implement this by performing slack
178     * maintenance retries only after these points.
179     *
180     * As an accompaniment to such techniques, traversal overhead can
181     * be further reduced without increasing contention of head
182     * pointer updates: Threads may sometimes shortcut the "next" link
183     * path from the current "head" node to be closer to the currently
184     * known first unmatched node, and similarly for tail. Again, this
185     * may be triggered with using thresholds or randomization.
186     *
187     * These ideas must be further extended to avoid unbounded amounts
188     * of costly-to-reclaim garbage caused by the sequential "next"
189     * links of nodes starting at old forgotten head nodes: As first
190     * described in detail by Boehm
191 jsr166 1.69 * (http://portal.acm.org/citation.cfm?doid=503272.503282), if a GC
192 jsr166 1.8 * delays noticing that any arbitrarily old node has become
193     * garbage, all newer dead nodes will also be unreclaimed.
194     * (Similar issues arise in non-GC environments.) To cope with
195     * this in our implementation, upon CASing to advance the head
196     * pointer, we set the "next" link of the previous head to point
197     * only to itself; thus limiting the length of connected dead lists.
198     * (We also take similar care to wipe out possibly garbage
199     * retaining values held in other Node fields.) However, doing so
200     * adds some further complexity to traversal: If any "next"
201     * pointer links to itself, it indicates that the current thread
202     * has lagged behind a head-update, and so the traversal must
203     * continue from the "head". Traversals trying to find the
204     * current tail starting from "tail" may also encounter
205     * self-links, in which case they also continue at "head".
206     *
207     * It is tempting in slack-based scheme to not even use CAS for
208     * updates (similarly to Ladan-Mozes & Shavit). However, this
209     * cannot be done for head updates under the above link-forgetting
210     * mechanics because an update may leave head at a detached node.
211     * And while direct writes are possible for tail updates, they
212     * increase the risk of long retraversals, and hence long garbage
213     * chains, which can be much more costly than is worthwhile
214     * considering that the cost difference of performing a CAS vs
215     * write is smaller when they are not triggered on each operation
216     * (especially considering that writes and CASes equally require
217     * additional GC bookkeeping ("write barriers") that are sometimes
218     * more costly than the writes themselves because of contention).
219     *
220     * *** Overview of implementation ***
221     *
222     * We use a threshold-based approach to updates, with a slack
223     * threshold of two -- that is, we update head/tail when the
224     * current pointer appears to be two or more steps away from the
225     * first/last node. The slack value is hard-wired: a path greater
226     * than one is naturally implemented by checking equality of
227     * traversal pointers except when the list has only one element,
228     * in which case we keep slack threshold at one. Avoiding tracking
229     * explicit counts across method calls slightly simplifies an
230     * already-messy implementation. Using randomization would
231     * probably work better if there were a low-quality dirt-cheap
232     * per-thread one available, but even ThreadLocalRandom is too
233     * heavy for these purposes.
234     *
235 dl 1.16 * With such a small slack threshold value, it is not worthwhile
236     * to augment this with path short-circuiting (i.e., unsplicing
237     * interior nodes) except in the case of cancellation/removal (see
238     * below).
239 jsr166 1.8 *
240     * We allow both the head and tail fields to be null before any
241     * nodes are enqueued; initializing upon first append. This
242     * simplifies some other logic, as well as providing more
243     * efficient explicit control paths instead of letting JVMs insert
244     * implicit NullPointerExceptions when they are null. While not
245     * currently fully implemented, we also leave open the possibility
246     * of re-nulling these fields when empty (which is complicated to
247     * arrange, for little benefit.)
248     *
249     * All enqueue/dequeue operations are handled by the single method
250     * "xfer" with parameters indicating whether to act as some form
251     * of offer, put, poll, take, or transfer (each possibly with
252     * timeout). The relative complexity of using one monolithic
253     * method outweighs the code bulk and maintenance problems of
254     * using separate methods for each case.
255     *
256     * Operation consists of up to three phases. The first is
257     * implemented within method xfer, the second in tryAppend, and
258     * the third in method awaitMatch.
259     *
260     * 1. Try to match an existing node
261     *
262     * Starting at head, skip already-matched nodes until finding
263     * an unmatched node of opposite mode, if one exists, in which
264     * case matching it and returning, also if necessary updating
265     * head to one past the matched node (or the node itself if the
266     * list has no other unmatched nodes). If the CAS misses, then
267     * a loop retries advancing head by two steps until either
268     * success or the slack is at most two. By requiring that each
269     * attempt advances head by two (if applicable), we ensure that
270     * the slack does not grow without bound. Traversals also check
271     * if the initial head is now off-list, in which case they
272     * start at the new head.
273     *
274     * If no candidates are found and the call was untimed
275     * poll/offer, (argument "how" is NOW) return.
276     *
277     * 2. Try to append a new node (method tryAppend)
278     *
279     * Starting at current tail pointer, find the actual last node
280     * and try to append a new node (or if head was null, establish
281     * the first node). Nodes can be appended only if their
282     * predecessors are either already matched or are of the same
283     * mode. If we detect otherwise, then a new node with opposite
284     * mode must have been appended during traversal, so we must
285     * restart at phase 1. The traversal and update steps are
286     * otherwise similar to phase 1: Retrying upon CAS misses and
287     * checking for staleness. In particular, if a self-link is
288     * encountered, then we can safely jump to a node on the list
289     * by continuing the traversal at current head.
290     *
291     * On successful append, if the call was ASYNC, return.
292     *
293     * 3. Await match or cancellation (method awaitMatch)
294     *
295     * Wait for another thread to match node; instead cancelling if
296     * the current thread was interrupted or the wait timed out. On
297     * multiprocessors, we use front-of-queue spinning: If a node
298     * appears to be the first unmatched node in the queue, it
299     * spins a bit before blocking. In either case, before blocking
300     * it tries to unsplice any nodes between the current "head"
301     * and the first unmatched node.
302     *
303     * Front-of-queue spinning vastly improves performance of
304     * heavily contended queues. And so long as it is relatively
305     * brief and "quiet", spinning does not much impact performance
306     * of less-contended queues. During spins threads check their
307     * interrupt status and generate a thread-local random number
308     * to decide to occasionally perform a Thread.yield. While
309 jsr166 1.44 * yield has underdefined specs, we assume that it might help,
310 jsr166 1.45 * and will not hurt, in limiting impact of spinning on busy
311 jsr166 1.8 * systems. We also use smaller (1/2) spins for nodes that are
312     * not known to be front but whose predecessors have not
313     * blocked -- these "chained" spins avoid artifacts of
314     * front-of-queue rules which otherwise lead to alternating
315     * nodes spinning vs blocking. Further, front threads that
316     * represent phase changes (from data to request node or vice
317     * versa) compared to their predecessors receive additional
318     * chained spins, reflecting longer paths typically required to
319     * unblock threads during phase changes.
320 dl 1.16 *
321     *
322     * ** Unlinking removed interior nodes **
323     *
324     * In addition to minimizing garbage retention via self-linking
325     * described above, we also unlink removed interior nodes. These
326     * may arise due to timed out or interrupted waits, or calls to
327     * remove(x) or Iterator.remove. Normally, given a node that was
328     * at one time known to be the predecessor of some node s that is
329     * to be removed, we can unsplice s by CASing the next field of
330     * its predecessor if it still points to s (otherwise s must
331     * already have been removed or is now offlist). But there are two
332     * situations in which we cannot guarantee to make node s
333     * unreachable in this way: (1) If s is the trailing node of list
334     * (i.e., with null next), then it is pinned as the target node
335 jsr166 1.23 * for appends, so can only be removed later after other nodes are
336 dl 1.16 * appended. (2) We cannot necessarily unlink s given a
337     * predecessor node that is matched (including the case of being
338 jsr166 1.17 * cancelled): the predecessor may already be unspliced, in which
339     * case some previous reachable node may still point to s.
340     * (For further explanation see Herlihy & Shavit "The Art of
341 dl 1.16 * Multiprocessor Programming" chapter 9). Although, in both
342     * cases, we can rule out the need for further action if either s
343     * or its predecessor are (or can be made to be) at, or fall off
344     * from, the head of list.
345     *
346     * Without taking these into account, it would be possible for an
347     * unbounded number of supposedly removed nodes to remain
348     * reachable. Situations leading to such buildup are uncommon but
349     * can occur in practice; for example when a series of short timed
350     * calls to poll repeatedly time out but never otherwise fall off
351     * the list because of an untimed call to take at the front of the
352     * queue.
353     *
354     * When these cases arise, rather than always retraversing the
355     * entire list to find an actual predecessor to unlink (which
356     * won't help for case (1) anyway), we record a conservative
357 jsr166 1.24 * estimate of possible unsplice failures (in "sweepVotes").
358     * We trigger a full sweep when the estimate exceeds a threshold
359     * ("SWEEP_THRESHOLD") indicating the maximum number of estimated
360     * removal failures to tolerate before sweeping through, unlinking
361     * cancelled nodes that were not unlinked upon initial removal.
362     * We perform sweeps by the thread hitting threshold (rather than
363     * background threads or by spreading work to other threads)
364     * because in the main contexts in which removal occurs, the
365     * caller is already timed-out, cancelled, or performing a
366     * potentially O(n) operation (e.g. remove(x)), none of which are
367     * time-critical enough to warrant the overhead that alternatives
368     * would impose on other threads.
369 dl 1.16 *
370     * Because the sweepVotes estimate is conservative, and because
371     * nodes become unlinked "naturally" as they fall off the head of
372     * the queue, and because we allow votes to accumulate even while
373 jsr166 1.17 * sweeps are in progress, there are typically significantly fewer
374 dl 1.16 * such nodes than estimated. Choice of a threshold value
375     * balances the likelihood of wasted effort and contention, versus
376     * providing a worst-case bound on retention of interior nodes in
377     * quiescent queues. The value defined below was chosen
378     * empirically to balance these under various timeout scenarios.
379     *
380     * Note that we cannot self-link unlinked interior nodes during
381     * sweeps. However, the associated garbage chains terminate when
382     * some successor ultimately falls off the head of the list and is
383     * self-linked.
384 jsr166 1.8 */
385    
386     /** True if on multiprocessor */
387     private static final boolean MP =
388     Runtime.getRuntime().availableProcessors() > 1;
389    
390     /**
391     * The number of times to spin (with randomly interspersed calls
392     * to Thread.yield) on multiprocessor before blocking when a node
393     * is apparently the first waiter in the queue. See above for
394     * explanation. Must be a power of two. The value is empirically
395     * derived -- it works pretty well across a variety of processors,
396     * numbers of CPUs, and OSes.
397     */
398     private static final int FRONT_SPINS = 1 << 7;
399    
400     /**
401     * The number of times to spin before blocking when a node is
402     * preceded by another node that is apparently spinning. Also
403     * serves as an increment to FRONT_SPINS on phase changes, and as
404     * base average frequency for yielding during spins. Must be a
405     * power of two.
406     */
407     private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
408    
409     /**
410 dl 1.16 * The maximum number of estimated removal failures (sweepVotes)
411     * to tolerate before sweeping through the queue unlinking
412     * cancelled nodes that were not unlinked upon initial
413     * removal. See above for explanation. The value must be at least
414     * two to avoid useless sweeps when removing trailing nodes.
415     */
416     static final int SWEEP_THRESHOLD = 32;
417    
418     /**
419 jsr166 1.8 * Queue nodes. Uses Object, not E, for items to allow forgetting
420 dl 1.97 * them after use. Relies heavily on VarHandles to minimize
421 dl 1.16 * unnecessary ordering constraints: Writes that are intrinsically
422     * ordered wrt other accesses or CASes use simple relaxed forms.
423 jsr166 1.8 */
424 jsr166 1.14 static final class Node {
425 jsr166 1.8 final boolean isData; // false if this is a request node
426     volatile Object item; // initially non-null if isData; CASed to match
427 jsr166 1.14 volatile Node next;
428 jsr166 1.8 volatile Thread waiter; // null until waiting
429    
430     // CAS methods for fields
431 jsr166 1.14 final boolean casNext(Node cmp, Node val) {
432 dl 1.97 return NEXT.compareAndSet(this, cmp, val);
433 jsr166 1.8 }
434 jsr166 1.1
435 jsr166 1.8 final boolean casItem(Object cmp, Object val) {
436 dl 1.33 // assert cmp == null || cmp.getClass() != Node.class;
437 dl 1.97 return ITEM.compareAndSet(this, cmp, val);
438 jsr166 1.8 }
439 jsr166 1.1
440 jsr166 1.8 /**
441 jsr166 1.25 * Constructs a new node. Uses relaxed write because item can
442     * only be seen after publication via casNext.
443 jsr166 1.8 */
444 jsr166 1.101 Node(Object item) {
445 jsr166 1.104 ITEM.set(this, item);
446 jsr166 1.101 isData = (item != null);
447 jsr166 1.8 }
448 jsr166 1.1
449 jsr166 1.8 /**
450     * Links node to itself to avoid garbage retention. Called
451     * only after CASing head field, so uses relaxed write.
452     */
453     final void forgetNext() {
454 dl 1.97 NEXT.set(this, this);
455 jsr166 1.8 }
456 jsr166 1.1
457 jsr166 1.8 /**
458 dl 1.16 * Sets item to self and waiter to null, to avoid garbage
459     * retention after matching or cancelling. Uses relaxed writes
460 dl 1.22 * because order is already constrained in the only calling
461 dl 1.16 * contexts: item is forgotten only after volatile/atomic
462     * mechanics that extract items. Similarly, clearing waiter
463     * follows either CAS or return from park (if ever parked;
464     * else we don't care).
465 jsr166 1.8 */
466     final void forgetContents() {
467 dl 1.97 ITEM.set(this, this);
468     WAITER.set(this, null);
469 jsr166 1.8 }
470 jsr166 1.1
471 jsr166 1.8 /**
472     * Returns true if this node has been matched, including the
473     * case of artificial matches due to cancellation.
474     */
475     final boolean isMatched() {
476     Object x = item;
477 jsr166 1.11 return (x == this) || ((x == null) == isData);
478     }
479    
480     /**
481 jsr166 1.8 * Returns true if a node with the given mode cannot be
482     * appended to this node because this node is unmatched and
483     * has opposite data mode.
484     */
485     final boolean cannotPrecede(boolean haveData) {
486     boolean d = isData;
487     Object x;
488     return d != haveData && (x = item) != this && (x != null) == d;
489     }
490 jsr166 1.1
491 jsr166 1.8 /**
492     * Tries to artificially match a data node -- used by remove.
493     */
494     final boolean tryMatchData() {
495 dl 1.33 // assert isData;
496 jsr166 1.8 Object x = item;
497     if (x != null && x != this && casItem(x, null)) {
498     LockSupport.unpark(waiter);
499     return true;
500     }
501     return false;
502 jsr166 1.1 }
503    
504 dl 1.38 private static final long serialVersionUID = -3375979862319811754L;
505    
506 dl 1.97 // VarHandle mechanics
507     private static final VarHandle ITEM;
508     private static final VarHandle NEXT;
509     private static final VarHandle WAITER;
510 dl 1.38 static {
511     try {
512 dl 1.97 MethodHandles.Lookup l = MethodHandles.lookup();
513     ITEM = l.findVarHandle(Node.class, "item", Object.class);
514     NEXT = l.findVarHandle(Node.class, "next", Node.class);
515     WAITER = l.findVarHandle(Node.class, "waiter", Thread.class);
516 jsr166 1.79 } catch (ReflectiveOperationException e) {
517 dl 1.38 throw new Error(e);
518     }
519     }
520 jsr166 1.1 }
521    
522 jsr166 1.8 /** head of the queue; null until first enqueue */
523 jsr166 1.14 transient volatile Node head;
524 jsr166 1.8
525     /** tail of the queue; null until first append */
526 jsr166 1.14 private transient volatile Node tail;
527 jsr166 1.1
528 dl 1.16 /** The number of apparent failures to unsplice removed nodes */
529     private transient volatile int sweepVotes;
530    
531 jsr166 1.8 // CAS methods for fields
532 jsr166 1.14 private boolean casTail(Node cmp, Node val) {
533 dl 1.97 return TAIL.compareAndSet(this, cmp, val);
534 jsr166 1.8 }
535 jsr166 1.1
536 jsr166 1.14 private boolean casHead(Node cmp, Node val) {
537 dl 1.97 return HEAD.compareAndSet(this, cmp, val);
538 jsr166 1.8 }
539 jsr166 1.1
540 dl 1.16 private boolean casSweepVotes(int cmp, int val) {
541 dl 1.97 return SWEEPVOTES.compareAndSet(this, cmp, val);
542 jsr166 1.8 }
543 jsr166 1.1
544 jsr166 1.8 /*
545 jsr166 1.14 * Possible values for "how" argument in xfer method.
546 jsr166 1.1 */
547 jsr166 1.14 private static final int NOW = 0; // for untimed poll, tryTransfer
548     private static final int ASYNC = 1; // for offer, put, add
549     private static final int SYNC = 2; // for transfer, take
550     private static final int TIMED = 3; // for timed poll, tryTransfer
551 jsr166 1.1
552     /**
553 jsr166 1.8 * Implements all queuing methods. See above for explanation.
554 jsr166 1.1 *
555 jsr166 1.8 * @param e the item or null for take
556     * @param haveData true if this is a put, else a take
557 jsr166 1.14 * @param how NOW, ASYNC, SYNC, or TIMED
558     * @param nanos timeout in nanosecs, used only if mode is TIMED
559 jsr166 1.8 * @return an item if matched, else e
560     * @throws NullPointerException if haveData mode but e is null
561 jsr166 1.1 */
562 jsr166 1.8 private E xfer(E e, boolean haveData, int how, long nanos) {
563     if (haveData && (e == null))
564     throw new NullPointerException();
565 jsr166 1.14 Node s = null; // the node to append, if needed
566 jsr166 1.1
567 jsr166 1.29 retry:
568     for (;;) { // restart on append race
569 jsr166 1.1
570 jsr166 1.14 for (Node h = head, p = h; p != null;) { // find & match first node
571 jsr166 1.8 boolean isData = p.isData;
572     Object item = p.item;
573     if (item != p && (item != null) == isData) { // unmatched
574     if (isData == haveData) // can't match
575     break;
576     if (p.casItem(item, e)) { // match
577 jsr166 1.14 for (Node q = p; q != h;) {
578 dl 1.16 Node n = q.next; // update by 2 unless singleton
579 jsr166 1.37 if (head == h && casHead(h, n == null ? q : n)) {
580 jsr166 1.8 h.forgetNext();
581     break;
582     } // advance and retry
583     if ((h = head) == null ||
584     (q = h.next) == null || !q.isMatched())
585     break; // unless slack < 2
586     }
587     LockSupport.unpark(p.waiter);
588 jsr166 1.70 @SuppressWarnings("unchecked") E itemE = (E) item;
589     return itemE;
590 jsr166 1.1 }
591     }
592 jsr166 1.14 Node n = p.next;
593 jsr166 1.8 p = (p != n) ? n : (h = head); // Use head if p offlist
594     }
595    
596 jsr166 1.14 if (how != NOW) { // No matches available
597 jsr166 1.8 if (s == null)
598 jsr166 1.101 s = new Node(e);
599 jsr166 1.14 Node pred = tryAppend(s, haveData);
600 jsr166 1.8 if (pred == null)
601     continue retry; // lost race vs opposite mode
602 jsr166 1.14 if (how != ASYNC)
603     return awaitMatch(s, pred, e, (how == TIMED), nanos);
604 jsr166 1.1 }
605 jsr166 1.8 return e; // not waiting
606 jsr166 1.1 }
607     }
608    
609     /**
610 jsr166 1.8 * Tries to append node s as tail.
611     *
612     * @param s the node to append
613     * @param haveData true if appending in data mode
614     * @return null on failure due to losing race with append in
615     * different mode, else s's predecessor, or s itself if no
616     * predecessor
617 jsr166 1.1 */
618 jsr166 1.14 private Node tryAppend(Node s, boolean haveData) {
619     for (Node t = tail, p = t;;) { // move p to last node and append
620     Node n, u; // temps for reads of next & tail
621 jsr166 1.8 if (p == null && (p = head) == null) {
622     if (casHead(null, s))
623     return s; // initialize
624     }
625     else if (p.cannotPrecede(haveData))
626     return null; // lost race vs opposite mode
627     else if ((n = p.next) != null) // not last; keep traversing
628     p = p != t && t != (u = tail) ? (t = u) : // stale tail
629     (p != n) ? n : null; // restart if off list
630     else if (!p.casNext(null, s))
631     p = p.next; // re-read on CAS failure
632     else {
633     if (p != t) { // update if slack now >= 2
634     while ((tail != t || !casTail(t, s)) &&
635     (t = tail) != null &&
636     (s = t.next) != null && // advance and retry
637     (s = s.next) != null && s != t);
638 jsr166 1.1 }
639 jsr166 1.8 return p;
640 jsr166 1.1 }
641     }
642     }
643    
644     /**
645 jsr166 1.8 * Spins/yields/blocks until node s is matched or caller gives up.
646 jsr166 1.1 *
647     * @param s the waiting node
648 jsr166 1.8 * @param pred the predecessor of s, or s itself if it has no
649     * predecessor, or null if unknown (the null case does not occur
650     * in any current calls but may in possible future extensions)
651 jsr166 1.1 * @param e the comparison value for checking match
652 jsr166 1.14 * @param timed if true, wait only until timeout elapses
653     * @param nanos timeout in nanosecs, used only if timed is true
654 jsr166 1.8 * @return matched item, or e if unmatched on interrupt or timeout
655 jsr166 1.1 */
656 jsr166 1.14 private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
657 jsr166 1.51 final long deadline = timed ? System.nanoTime() + nanos : 0L;
658 jsr166 1.8 Thread w = Thread.currentThread();
659     int spins = -1; // initialized after first item and cancel checks
660     ThreadLocalRandom randomYields = null; // bound if needed
661 jsr166 1.1
662     for (;;) {
663 jsr166 1.8 Object item = s.item;
664     if (item != e) { // matched
665 dl 1.33 // assert item != s;
666 jsr166 1.8 s.forgetContents(); // avoid garbage
667 jsr166 1.70 @SuppressWarnings("unchecked") E itemE = (E) item;
668     return itemE;
669 jsr166 1.8 }
670 jsr166 1.95 else if (w.isInterrupted() || (timed && nanos <= 0L)) {
671 jsr166 1.102 // try to cancel and unlink
672     if (s.casItem(e, s)) {
673     unsplice(pred, s);
674 jsr166 1.77 return e;
675 jsr166 1.102 }
676     // return normally if lost CAS
677 jsr166 1.8 }
678 dl 1.84 else if (spins < 0) { // establish spins at/near front
679 jsr166 1.8 if ((spins = spinsFor(pred, s.isData)) > 0)
680     randomYields = ThreadLocalRandom.current();
681     }
682     else if (spins > 0) { // spin
683 dl 1.16 --spins;
684     if (randomYields.nextInt(CHAINED_SPINS) == 0)
685 jsr166 1.8 Thread.yield(); // occasionally yield
686     }
687     else if (s.waiter == null) {
688     s.waiter = w; // request unpark then recheck
689 jsr166 1.1 }
690 jsr166 1.14 else if (timed) {
691 jsr166 1.51 nanos = deadline - System.nanoTime();
692     if (nanos > 0L)
693 jsr166 1.8 LockSupport.parkNanos(this, nanos);
694 jsr166 1.1 }
695 jsr166 1.8 else {
696 jsr166 1.1 LockSupport.park(this);
697     }
698 jsr166 1.8 }
699     }
700    
701     /**
702     * Returns spin/yield value for a node with given predecessor and
703     * data mode. See above for explanation.
704     */
705 jsr166 1.14 private static int spinsFor(Node pred, boolean haveData) {
706 jsr166 1.8 if (MP && pred != null) {
707     if (pred.isData != haveData) // phase change
708     return FRONT_SPINS + CHAINED_SPINS;
709     if (pred.isMatched()) // probably at front
710     return FRONT_SPINS;
711     if (pred.waiter == null) // pred apparently spinning
712     return CHAINED_SPINS;
713     }
714     return 0;
715     }
716    
717     /* -------------- Traversal methods -------------- */
718    
719     /**
720 jsr166 1.14 * Returns the successor of p, or the head node if p.next has been
721     * linked to self, which will only be true if traversing with a
722     * stale pointer that is now off the list.
723     */
724     final Node succ(Node p) {
725     Node next = p.next;
726     return (p == next) ? head : next;
727     }
728    
729     /**
730 jsr166 1.93 * Returns the first unmatched data node, or null if none.
731     * Callers must recheck if the returned node's item field is null
732     * or self-linked before using.
733 dl 1.52 */
734     final Node firstDataNode() {
735 jsr166 1.91 restartFromHead: for (;;) {
736     for (Node p = head; p != null;) {
737     Object item = p.item;
738     if (p.isData) {
739     if (item != null && item != p)
740     return p;
741     }
742     else if (item == null)
743     break;
744     if (p == (p = p.next))
745     continue restartFromHead;
746 dl 1.52 }
747 jsr166 1.91 return null;
748 dl 1.52 }
749     }
750    
751     /**
752 jsr166 1.8 * Traverses and counts unmatched nodes of the given mode.
753     * Used by methods size and getWaitingConsumerCount.
754 jsr166 1.1 */
755 jsr166 1.8 private int countOfMode(boolean data) {
756 jsr166 1.73 restartFromHead: for (;;) {
757     int count = 0;
758     for (Node p = head; p != null;) {
759     if (!p.isMatched()) {
760     if (p.isData != data)
761     return 0;
762     if (++count == Integer.MAX_VALUE)
763     break; // @see Collection.size()
764     }
765 jsr166 1.81 if (p == (p = p.next))
766 jsr166 1.73 continue restartFromHead;
767 jsr166 1.1 }
768 jsr166 1.73 return count;
769 jsr166 1.8 }
770     }
771    
772 jsr166 1.82 public String toString() {
773     String[] a = null;
774     restartFromHead: for (;;) {
775     int charLength = 0;
776     int size = 0;
777     for (Node p = head; p != null;) {
778     Object item = p.item;
779     if (p.isData) {
780     if (item != null && item != p) {
781     if (a == null)
782     a = new String[4];
783     else if (size == a.length)
784     a = Arrays.copyOf(a, 2 * size);
785     String s = item.toString();
786     a[size++] = s;
787     charLength += s.length();
788     }
789     } else if (item == null)
790     break;
791     if (p == (p = p.next))
792     continue restartFromHead;
793     }
794    
795     if (size == 0)
796     return "[]";
797    
798 jsr166 1.83 return Helpers.toString(a, size, charLength);
799 jsr166 1.82 }
800     }
801    
802     private Object[] toArrayInternal(Object[] a) {
803     Object[] x = a;
804     restartFromHead: for (;;) {
805     int size = 0;
806     for (Node p = head; p != null;) {
807     Object item = p.item;
808     if (p.isData) {
809     if (item != null && item != p) {
810     if (x == null)
811     x = new Object[4];
812     else if (size == x.length)
813     x = Arrays.copyOf(x, 2 * (size + 4));
814     x[size++] = item;
815     }
816     } else if (item == null)
817     break;
818     if (p == (p = p.next))
819     continue restartFromHead;
820     }
821     if (x == null)
822     return new Object[0];
823     else if (a != null && size <= a.length) {
824     if (a != x)
825     System.arraycopy(x, 0, a, 0, size);
826     if (size < a.length)
827     a[size] = null;
828     return a;
829     }
830     return (size == x.length) ? x : Arrays.copyOf(x, size);
831     }
832     }
833    
834     /**
835     * Returns an array containing all of the elements in this queue, in
836     * proper sequence.
837     *
838     * <p>The returned array will be "safe" in that no references to it are
839     * maintained by this queue. (In other words, this method must allocate
840     * a new array). The caller is thus free to modify the returned array.
841     *
842     * <p>This method acts as bridge between array-based and collection-based
843     * APIs.
844     *
845     * @return an array containing all of the elements in this queue
846     */
847     public Object[] toArray() {
848     return toArrayInternal(null);
849     }
850    
851     /**
852     * Returns an array containing all of the elements in this queue, in
853     * proper sequence; the runtime type of the returned array is that of
854     * the specified array. If the queue fits in the specified array, it
855     * is returned therein. Otherwise, a new array is allocated with the
856     * runtime type of the specified array and the size of this queue.
857     *
858     * <p>If this queue fits in the specified array with room to spare
859     * (i.e., the array has more elements than this queue), the element in
860     * the array immediately following the end of the queue is set to
861     * {@code null}.
862     *
863     * <p>Like the {@link #toArray()} method, this method acts as bridge between
864     * array-based and collection-based APIs. Further, this method allows
865     * precise control over the runtime type of the output array, and may,
866     * under certain circumstances, be used to save allocation costs.
867     *
868     * <p>Suppose {@code x} is a queue known to contain only strings.
869     * The following code can be used to dump the queue into a newly
870     * allocated array of {@code String}:
871     *
872     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
873     *
874     * Note that {@code toArray(new Object[0])} is identical in function to
875     * {@code toArray()}.
876     *
877     * @param a the array into which the elements of the queue are to
878     * be stored, if it is big enough; otherwise, a new array of the
879     * same runtime type is allocated for this purpose
880     * @return an array containing all of the elements in this queue
881     * @throws ArrayStoreException if the runtime type of the specified array
882     * is not a supertype of the runtime type of every element in
883     * this queue
884     * @throws NullPointerException if the specified array is null
885     */
886     @SuppressWarnings("unchecked")
887     public <T> T[] toArray(T[] a) {
888     if (a == null) throw new NullPointerException();
889     return (T[]) toArrayInternal(a);
890     }
891    
892 jsr166 1.8 final class Itr implements Iterator<E> {
893 jsr166 1.14 private Node nextNode; // next node to return item for
894     private E nextItem; // the corresponding item
895     private Node lastRet; // last returned node, to support remove
896     private Node lastPred; // predecessor to unlink lastRet
897 jsr166 1.8
898     /**
899     * Moves to next node after prev, or first node if prev null.
900     */
901 jsr166 1.14 private void advance(Node prev) {
902 dl 1.33 /*
903     * To track and avoid buildup of deleted nodes in the face
904     * of calls to both Queue.remove and Itr.remove, we must
905     * include variants of unsplice and sweep upon each
906     * advance: Upon Itr.remove, we may need to catch up links
907     * from lastPred, and upon other removes, we might need to
908     * skip ahead from stale nodes and unsplice deleted ones
909     * found while advancing.
910     */
911    
912     Node r, b; // reset lastPred upon possible deletion of lastRet
913     if ((r = lastRet) != null && !r.isMatched())
914     lastPred = r; // next lastPred is old lastRet
915     else if ((b = lastPred) == null || b.isMatched())
916     lastPred = null; // at start of list
917 jsr166 1.34 else {
918 dl 1.33 Node s, n; // help with removal of lastPred.next
919     while ((s = b.next) != null &&
920     s != b && s.isMatched() &&
921     (n = s.next) != null && n != s)
922     b.casNext(s, n);
923     }
924    
925     this.lastRet = prev;
926 jsr166 1.35
927 dl 1.33 for (Node p = prev, s, n;;) {
928     s = (p == null) ? head : p.next;
929     if (s == null)
930     break;
931     else if (s == p) {
932     p = null;
933     continue;
934     }
935     Object item = s.item;
936     if (s.isData) {
937     if (item != null && item != s) {
938 jsr166 1.70 @SuppressWarnings("unchecked") E itemE = (E) item;
939     nextItem = itemE;
940 dl 1.33 nextNode = s;
941 jsr166 1.8 return;
942     }
943 jsr166 1.34 }
944 jsr166 1.8 else if (item == null)
945     break;
946 dl 1.33 // assert s.isMatched();
947     if (p == null)
948     p = s;
949     else if ((n = s.next) == null)
950     break;
951     else if (s == n)
952     p = null;
953     else
954     p.casNext(s, n);
955 jsr166 1.1 }
956 jsr166 1.8 nextNode = null;
957 dl 1.33 nextItem = null;
958 jsr166 1.8 }
959    
960     Itr() {
961     advance(null);
962     }
963    
964     public final boolean hasNext() {
965     return nextNode != null;
966     }
967    
968     public final E next() {
969 jsr166 1.14 Node p = nextNode;
970 jsr166 1.8 if (p == null) throw new NoSuchElementException();
971     E e = nextItem;
972     advance(p);
973     return e;
974     }
975    
976     public final void remove() {
977 dl 1.33 final Node lastRet = this.lastRet;
978     if (lastRet == null)
979     throw new IllegalStateException();
980     this.lastRet = null;
981     if (lastRet.tryMatchData())
982     unsplice(lastPred, lastRet);
983 jsr166 1.1 }
984     }
985 jsr166 1.53
986 dl 1.57 /** A customized variant of Spliterators.IteratorSpliterator */
987 jsr166 1.94 final class LTQSpliterator<E> implements Spliterator<E> {
988 dl 1.60 static final int MAX_BATCH = 1 << 25; // max batch array size;
989 jsr166 1.87 Node current; // current node; null until initialized
990 dl 1.52 int batch; // batch size for splits
991     boolean exhausted; // true when no more nodes
992 jsr166 1.94 LTQSpliterator() {}
993 dl 1.52
994     public Spliterator<E> trySplit() {
995 dl 1.60 Node p;
996     int b = batch;
997     int n = (b <= 0) ? 1 : (b >= MAX_BATCH) ? MAX_BATCH : b + 1;
998 jsr166 1.58 if (!exhausted &&
999 jsr166 1.94 ((p = current) != null || (p = firstDataNode()) != null) &&
1000 dl 1.54 p.next != null) {
1001 dl 1.63 Object[] a = new Object[n];
1002 dl 1.52 int i = 0;
1003     do {
1004 dl 1.88 Object e = p.item;
1005     if (e != p && (a[i] = e) != null)
1006 dl 1.52 ++i;
1007 jsr166 1.53 if (p == (p = p.next))
1008 jsr166 1.94 p = firstDataNode();
1009 dl 1.89 } while (p != null && i < n && p.isData);
1010 dl 1.52 if ((current = p) == null)
1011     exhausted = true;
1012 dl 1.60 if (i > 0) {
1013     batch = i;
1014     return Spliterators.spliterator
1015 jsr166 1.86 (a, 0, i, (Spliterator.ORDERED |
1016     Spliterator.NONNULL |
1017     Spliterator.CONCURRENT));
1018 dl 1.60 }
1019 dl 1.52 }
1020     return null;
1021     }
1022    
1023     @SuppressWarnings("unchecked")
1024 dl 1.61 public void forEachRemaining(Consumer<? super E> action) {
1025 dl 1.52 Node p;
1026     if (action == null) throw new NullPointerException();
1027     if (!exhausted &&
1028 jsr166 1.94 ((p = current) != null || (p = firstDataNode()) != null)) {
1029 dl 1.52 exhausted = true;
1030     do {
1031     Object e = p.item;
1032 dl 1.88 if (e != null && e != p)
1033     action.accept((E)e);
1034 jsr166 1.53 if (p == (p = p.next))
1035 jsr166 1.94 p = firstDataNode();
1036 dl 1.89 } while (p != null && p.isData);
1037 dl 1.52 }
1038     }
1039    
1040     @SuppressWarnings("unchecked")
1041     public boolean tryAdvance(Consumer<? super E> action) {
1042     Node p;
1043     if (action == null) throw new NullPointerException();
1044     if (!exhausted &&
1045 jsr166 1.94 ((p = current) != null || (p = firstDataNode()) != null)) {
1046 dl 1.52 Object e;
1047     do {
1048 dl 1.88 if ((e = p.item) == p)
1049     e = null;
1050 jsr166 1.53 if (p == (p = p.next))
1051 jsr166 1.94 p = firstDataNode();
1052 dl 1.89 } while (e == null && p != null && p.isData);
1053 dl 1.52 if ((current = p) == null)
1054     exhausted = true;
1055     if (e != null) {
1056     action.accept((E)e);
1057     return true;
1058     }
1059     }
1060     return false;
1061     }
1062    
1063 dl 1.54 public long estimateSize() { return Long.MAX_VALUE; }
1064    
1065 dl 1.52 public int characteristics() {
1066 jsr166 1.100 return (Spliterator.ORDERED |
1067     Spliterator.NONNULL |
1068     Spliterator.CONCURRENT);
1069 dl 1.52 }
1070     }
1071    
1072 jsr166 1.67 /**
1073     * Returns a {@link Spliterator} over the elements in this queue.
1074     *
1075 jsr166 1.68 * <p>The returned spliterator is
1076     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1077     *
1078 jsr166 1.67 * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
1079     * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
1080     *
1081     * @implNote
1082     * The {@code Spliterator} implements {@code trySplit} to permit limited
1083     * parallelism.
1084     *
1085     * @return a {@code Spliterator} over the elements in this queue
1086     * @since 1.8
1087     */
1088 dl 1.56 public Spliterator<E> spliterator() {
1089 jsr166 1.94 return new LTQSpliterator<E>();
1090 dl 1.52 }
1091    
1092 jsr166 1.8 /* -------------- Removal methods -------------- */
1093    
1094 jsr166 1.1 /**
1095 jsr166 1.8 * Unsplices (now or later) the given deleted/cancelled node with
1096     * the given predecessor.
1097 jsr166 1.1 *
1098 dl 1.16 * @param pred a node that was at one time known to be the
1099     * predecessor of s, or null or s itself if s is/was at head
1100 jsr166 1.8 * @param s the node to be unspliced
1101 jsr166 1.1 */
1102 dl 1.16 final void unsplice(Node pred, Node s) {
1103 dl 1.71 s.waiter = null; // disable signals
1104 jsr166 1.1 /*
1105 dl 1.16 * See above for rationale. Briefly: if pred still points to
1106     * s, try to unlink s. If s cannot be unlinked, because it is
1107     * trailing node or pred might be unlinked, and neither pred
1108     * nor s are head or offlist, add to sweepVotes, and if enough
1109     * votes have accumulated, sweep.
1110 jsr166 1.1 */
1111 dl 1.16 if (pred != null && pred != s && pred.next == s) {
1112     Node n = s.next;
1113     if (n == null ||
1114     (n != s && pred.casNext(s, n) && pred.isMatched())) {
1115     for (;;) { // check if at, or could be, head
1116     Node h = head;
1117     if (h == pred || h == s || h == null)
1118     return; // at head or list empty
1119     if (!h.isMatched())
1120     break;
1121     Node hn = h.next;
1122     if (hn == null)
1123     return; // now empty
1124     if (hn != h && casHead(h, hn))
1125     h.forgetNext(); // advance head
1126 jsr166 1.8 }
1127 dl 1.16 if (pred.next != pred && s.next != s) { // recheck if offlist
1128     for (;;) { // sweep now if enough votes
1129     int v = sweepVotes;
1130     if (v < SWEEP_THRESHOLD) {
1131     if (casSweepVotes(v, v + 1))
1132     break;
1133     }
1134     else if (casSweepVotes(v, 0)) {
1135     sweep();
1136     break;
1137     }
1138     }
1139 jsr166 1.12 }
1140 jsr166 1.1 }
1141     }
1142     }
1143    
1144     /**
1145 jsr166 1.26 * Unlinks matched (typically cancelled) nodes encountered in a
1146     * traversal from head.
1147 jsr166 1.1 */
1148 dl 1.16 private void sweep() {
1149 jsr166 1.20 for (Node p = head, s, n; p != null && (s = p.next) != null; ) {
1150 jsr166 1.28 if (!s.isMatched())
1151     // Unmatched nodes are never self-linked
1152 jsr166 1.20 p = s;
1153 jsr166 1.28 else if ((n = s.next) == null) // trailing node is pinned
1154 jsr166 1.20 break;
1155 jsr166 1.28 else if (s == n) // stale
1156     // No need to also check for p == s, since that implies s == n
1157     p = head;
1158 jsr166 1.20 else
1159 dl 1.16 p.casNext(s, n);
1160 jsr166 1.8 }
1161     }
1162    
1163     /**
1164     * Main implementation of remove(Object)
1165     */
1166     private boolean findAndRemove(Object e) {
1167     if (e != null) {
1168 jsr166 1.14 for (Node pred = null, p = head; p != null; ) {
1169 jsr166 1.8 Object item = p.item;
1170     if (p.isData) {
1171     if (item != null && item != p && e.equals(item) &&
1172     p.tryMatchData()) {
1173     unsplice(pred, p);
1174     return true;
1175     }
1176     }
1177     else if (item == null)
1178     break;
1179     pred = p;
1180 jsr166 1.11 if ((p = p.next) == pred) { // stale
1181 jsr166 1.8 pred = null;
1182     p = head;
1183     }
1184     }
1185     }
1186     return false;
1187     }
1188    
1189     /**
1190 jsr166 1.1 * Creates an initially empty {@code LinkedTransferQueue}.
1191     */
1192     public LinkedTransferQueue() {
1193     }
1194    
1195     /**
1196     * Creates a {@code LinkedTransferQueue}
1197     * initially containing the elements of the given collection,
1198     * added in traversal order of the collection's iterator.
1199     *
1200     * @param c the collection of elements to initially contain
1201     * @throws NullPointerException if the specified collection or any
1202     * of its elements are null
1203     */
1204     public LinkedTransferQueue(Collection<? extends E> c) {
1205     this();
1206     addAll(c);
1207     }
1208    
1209 jsr166 1.4 /**
1210 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1211     * As the queue is unbounded, this method will never block.
1212     *
1213     * @throws NullPointerException if the specified element is null
1214 jsr166 1.4 */
1215 jsr166 1.5 public void put(E e) {
1216 jsr166 1.8 xfer(e, true, ASYNC, 0);
1217 jsr166 1.1 }
1218    
1219 jsr166 1.4 /**
1220 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1221     * As the queue is unbounded, this method will never block or
1222     * return {@code false}.
1223     *
1224     * @return {@code true} (as specified by
1225 jsr166 1.42 * {@link java.util.concurrent.BlockingQueue#offer(Object,long,TimeUnit)
1226     * BlockingQueue.offer})
1227 jsr166 1.5 * @throws NullPointerException if the specified element is null
1228 jsr166 1.4 */
1229 jsr166 1.5 public boolean offer(E e, long timeout, TimeUnit unit) {
1230 jsr166 1.8 xfer(e, true, ASYNC, 0);
1231     return true;
1232 jsr166 1.1 }
1233    
1234 jsr166 1.4 /**
1235 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1236     * As the queue is unbounded, this method will never return {@code false}.
1237     *
1238 jsr166 1.32 * @return {@code true} (as specified by {@link Queue#offer})
1239 jsr166 1.5 * @throws NullPointerException if the specified element is null
1240 jsr166 1.4 */
1241 jsr166 1.1 public boolean offer(E e) {
1242 jsr166 1.8 xfer(e, true, ASYNC, 0);
1243 jsr166 1.1 return true;
1244     }
1245    
1246 jsr166 1.4 /**
1247 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1248     * As the queue is unbounded, this method will never throw
1249     * {@link IllegalStateException} or return {@code false}.
1250     *
1251     * @return {@code true} (as specified by {@link Collection#add})
1252     * @throws NullPointerException if the specified element is null
1253 jsr166 1.4 */
1254 jsr166 1.1 public boolean add(E e) {
1255 jsr166 1.8 xfer(e, true, ASYNC, 0);
1256     return true;
1257 jsr166 1.5 }
1258    
1259     /**
1260 jsr166 1.6 * Transfers the element to a waiting consumer immediately, if possible.
1261     *
1262     * <p>More precisely, transfers the specified element immediately
1263     * if there exists a consumer already waiting to receive it (in
1264     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1265     * otherwise returning {@code false} without enqueuing the element.
1266 jsr166 1.5 *
1267     * @throws NullPointerException if the specified element is null
1268     */
1269     public boolean tryTransfer(E e) {
1270 jsr166 1.8 return xfer(e, true, NOW, 0) == null;
1271 jsr166 1.1 }
1272    
1273 jsr166 1.4 /**
1274 jsr166 1.6 * Transfers the element to a consumer, waiting if necessary to do so.
1275     *
1276     * <p>More precisely, transfers the specified element immediately
1277     * if there exists a consumer already waiting to receive it (in
1278     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1279     * else inserts the specified element at the tail of this queue
1280     * and waits until the element is received by a consumer.
1281 jsr166 1.5 *
1282     * @throws NullPointerException if the specified element is null
1283 jsr166 1.4 */
1284 jsr166 1.1 public void transfer(E e) throws InterruptedException {
1285 jsr166 1.8 if (xfer(e, true, SYNC, 0) != null) {
1286     Thread.interrupted(); // failure possible only due to interrupt
1287 jsr166 1.1 throw new InterruptedException();
1288     }
1289     }
1290    
1291 jsr166 1.4 /**
1292 jsr166 1.6 * Transfers the element to a consumer if it is possible to do so
1293     * before the timeout elapses.
1294     *
1295     * <p>More precisely, transfers the specified element immediately
1296     * if there exists a consumer already waiting to receive it (in
1297     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1298     * else inserts the specified element at the tail of this queue
1299     * and waits until the element is received by a consumer,
1300     * returning {@code false} if the specified wait time elapses
1301     * before the element can be transferred.
1302 jsr166 1.5 *
1303     * @throws NullPointerException if the specified element is null
1304 jsr166 1.4 */
1305 jsr166 1.1 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1306     throws InterruptedException {
1307 jsr166 1.14 if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1308 jsr166 1.1 return true;
1309     if (!Thread.interrupted())
1310     return false;
1311     throw new InterruptedException();
1312     }
1313    
1314     public E take() throws InterruptedException {
1315 jsr166 1.8 E e = xfer(null, false, SYNC, 0);
1316 jsr166 1.1 if (e != null)
1317 jsr166 1.5 return e;
1318 jsr166 1.1 Thread.interrupted();
1319     throw new InterruptedException();
1320     }
1321    
1322     public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1323 jsr166 1.14 E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1324 jsr166 1.1 if (e != null || !Thread.interrupted())
1325 jsr166 1.5 return e;
1326 jsr166 1.1 throw new InterruptedException();
1327     }
1328    
1329     public E poll() {
1330 jsr166 1.8 return xfer(null, false, NOW, 0);
1331 jsr166 1.1 }
1332    
1333 jsr166 1.4 /**
1334     * @throws NullPointerException {@inheritDoc}
1335     * @throws IllegalArgumentException {@inheritDoc}
1336     */
1337 jsr166 1.1 public int drainTo(Collection<? super E> c) {
1338     if (c == null)
1339     throw new NullPointerException();
1340     if (c == this)
1341     throw new IllegalArgumentException();
1342     int n = 0;
1343 jsr166 1.47 for (E e; (e = poll()) != null;) {
1344 jsr166 1.1 c.add(e);
1345     ++n;
1346     }
1347     return n;
1348     }
1349    
1350 jsr166 1.4 /**
1351     * @throws NullPointerException {@inheritDoc}
1352     * @throws IllegalArgumentException {@inheritDoc}
1353     */
1354 jsr166 1.1 public int drainTo(Collection<? super E> c, int maxElements) {
1355     if (c == null)
1356     throw new NullPointerException();
1357     if (c == this)
1358     throw new IllegalArgumentException();
1359     int n = 0;
1360 jsr166 1.47 for (E e; n < maxElements && (e = poll()) != null;) {
1361 jsr166 1.1 c.add(e);
1362     ++n;
1363     }
1364     return n;
1365     }
1366    
1367 jsr166 1.5 /**
1368 jsr166 1.36 * Returns an iterator over the elements in this queue in proper sequence.
1369     * The elements will be returned in order from first (head) to last (tail).
1370 jsr166 1.5 *
1371 jsr166 1.68 * <p>The returned iterator is
1372     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1373 jsr166 1.5 *
1374     * @return an iterator over the elements in this queue in proper sequence
1375     */
1376 jsr166 1.1 public Iterator<E> iterator() {
1377     return new Itr();
1378     }
1379    
1380     public E peek() {
1381 jsr166 1.92 restartFromHead: for (;;) {
1382     for (Node p = head; p != null;) {
1383     Object item = p.item;
1384     if (p.isData) {
1385     if (item != null && item != p) {
1386     @SuppressWarnings("unchecked") E e = (E) item;
1387     return e;
1388     }
1389     }
1390     else if (item == null)
1391     break;
1392     if (p == (p = p.next))
1393     continue restartFromHead;
1394     }
1395     return null;
1396     }
1397 jsr166 1.1 }
1398    
1399 jsr166 1.6 /**
1400     * Returns {@code true} if this queue contains no elements.
1401     *
1402     * @return {@code true} if this queue contains no elements
1403     */
1404 jsr166 1.1 public boolean isEmpty() {
1405 jsr166 1.90 return firstDataNode() == null;
1406 jsr166 1.1 }
1407    
1408     public boolean hasWaitingConsumer() {
1409 jsr166 1.93 restartFromHead: for (;;) {
1410     for (Node p = head; p != null;) {
1411     Object item = p.item;
1412     if (p.isData) {
1413     if (item != null && item != p)
1414     break;
1415     }
1416     else if (item == null)
1417     return true;
1418     if (p == (p = p.next))
1419     continue restartFromHead;
1420     }
1421     return false;
1422     }
1423 jsr166 1.1 }
1424    
1425     /**
1426     * Returns the number of elements in this queue. If this queue
1427     * contains more than {@code Integer.MAX_VALUE} elements, returns
1428     * {@code Integer.MAX_VALUE}.
1429     *
1430     * <p>Beware that, unlike in most collections, this method is
1431     * <em>NOT</em> a constant-time operation. Because of the
1432     * asynchronous nature of these queues, determining the current
1433     * number of elements requires an O(n) traversal.
1434     *
1435     * @return the number of elements in this queue
1436     */
1437     public int size() {
1438 jsr166 1.8 return countOfMode(true);
1439 jsr166 1.1 }
1440    
1441     public int getWaitingConsumerCount() {
1442 jsr166 1.8 return countOfMode(false);
1443 jsr166 1.1 }
1444    
1445 jsr166 1.6 /**
1446     * Removes a single instance of the specified element from this queue,
1447     * if it is present. More formally, removes an element {@code e} such
1448     * that {@code o.equals(e)}, if this queue contains one or more such
1449     * elements.
1450     * Returns {@code true} if this queue contained the specified element
1451     * (or equivalently, if this queue changed as a result of the call).
1452     *
1453     * @param o element to be removed from this queue, if present
1454     * @return {@code true} if this queue changed as a result of the call
1455     */
1456 jsr166 1.1 public boolean remove(Object o) {
1457 jsr166 1.8 return findAndRemove(o);
1458 jsr166 1.1 }
1459    
1460     /**
1461 jsr166 1.30 * Returns {@code true} if this queue contains the specified element.
1462     * More formally, returns {@code true} if and only if this queue contains
1463     * at least one element {@code e} such that {@code o.equals(e)}.
1464     *
1465     * @param o object to be checked for containment in this queue
1466     * @return {@code true} if this queue contains the specified element
1467     */
1468     public boolean contains(Object o) {
1469 jsr166 1.74 if (o != null) {
1470     for (Node p = head; p != null; p = succ(p)) {
1471     Object item = p.item;
1472     if (p.isData) {
1473     if (item != null && item != p && o.equals(item))
1474     return true;
1475     }
1476     else if (item == null)
1477     break;
1478 jsr166 1.30 }
1479     }
1480     return false;
1481     }
1482    
1483     /**
1484 jsr166 1.5 * Always returns {@code Integer.MAX_VALUE} because a
1485     * {@code LinkedTransferQueue} is not capacity constrained.
1486     *
1487     * @return {@code Integer.MAX_VALUE} (as specified by
1488 jsr166 1.42 * {@link java.util.concurrent.BlockingQueue#remainingCapacity()
1489     * BlockingQueue.remainingCapacity})
1490 jsr166 1.5 */
1491     public int remainingCapacity() {
1492     return Integer.MAX_VALUE;
1493     }
1494    
1495     /**
1496 jsr166 1.50 * Saves this queue to a stream (that is, serializes it).
1497 jsr166 1.1 *
1498 jsr166 1.65 * @param s the stream
1499 jsr166 1.66 * @throws java.io.IOException if an I/O error occurs
1500 jsr166 1.1 * @serialData All of the elements (each an {@code E}) in
1501     * the proper order, followed by a null
1502     */
1503     private void writeObject(java.io.ObjectOutputStream s)
1504     throws java.io.IOException {
1505     s.defaultWriteObject();
1506     for (E e : this)
1507     s.writeObject(e);
1508     // Use trailing null as sentinel
1509     s.writeObject(null);
1510     }
1511    
1512     /**
1513 jsr166 1.50 * Reconstitutes this queue from a stream (that is, deserializes it).
1514 jsr166 1.65 * @param s the stream
1515 jsr166 1.66 * @throws ClassNotFoundException if the class of a serialized object
1516     * could not be found
1517     * @throws java.io.IOException if an I/O error occurs
1518 jsr166 1.1 */
1519     private void readObject(java.io.ObjectInputStream s)
1520     throws java.io.IOException, ClassNotFoundException {
1521     s.defaultReadObject();
1522     for (;;) {
1523 jsr166 1.49 @SuppressWarnings("unchecked")
1524     E item = (E) s.readObject();
1525 jsr166 1.1 if (item == null)
1526     break;
1527     else
1528     offer(item);
1529     }
1530     }
1531    
1532 dl 1.97 // VarHandle mechanics
1533     private static final VarHandle HEAD;
1534     private static final VarHandle TAIL;
1535     private static final VarHandle SWEEPVOTES;
1536 dl 1.38 static {
1537 jsr166 1.1 try {
1538 dl 1.97 MethodHandles.Lookup l = MethodHandles.lookup();
1539     HEAD = l.findVarHandle(LinkedTransferQueue.class, "head",
1540     Node.class);
1541     TAIL = l.findVarHandle(LinkedTransferQueue.class, "tail",
1542     Node.class);
1543     SWEEPVOTES = l.findVarHandle(LinkedTransferQueue.class, "sweepVotes",
1544     int.class);
1545 jsr166 1.79 } catch (ReflectiveOperationException e) {
1546 dl 1.38 throw new Error(e);
1547 jsr166 1.1 }
1548 jsr166 1.85
1549     // Reduce the risk of rare disastrous classloading in first call to
1550     // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
1551     Class<?> ensureLoaded = LockSupport.class;
1552 jsr166 1.1 }
1553     }