ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/LinkedTransferQueue.java
Revision: 1.113
Committed: Sat Dec 24 20:51:00 2016 UTC (7 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.112: +5 -5 lines
Log Message:
Most uses of firstDataNode are clearer and more efficient if we just hop to head

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.39 * http://creativecommons.org/publicdomain/zero/1.0/
5 jsr166 1.1 */
6    
7     package java.util.concurrent;
8    
9 dl 1.97 import java.lang.invoke.MethodHandles;
10     import java.lang.invoke.VarHandle;
11 jsr166 1.1 import java.util.AbstractQueue;
12 jsr166 1.82 import java.util.Arrays;
13 jsr166 1.1 import java.util.Collection;
14     import java.util.Iterator;
15     import java.util.NoSuchElementException;
16 jsr166 1.111 import java.util.Objects;
17 jsr166 1.5 import java.util.Queue;
18 dl 1.52 import java.util.Spliterator;
19 dl 1.54 import java.util.Spliterators;
20 jsr166 1.76 import java.util.concurrent.locks.LockSupport;
21     import java.util.function.Consumer;
22 dl 1.22
23 jsr166 1.1 /**
24 jsr166 1.6 * An unbounded {@link TransferQueue} based on linked nodes.
25 jsr166 1.1 * This queue orders elements FIFO (first-in-first-out) with respect
26     * to any given producer. The <em>head</em> of the queue is that
27     * element that has been on the queue the longest time for some
28     * producer. The <em>tail</em> of the queue is that element that has
29     * been on the queue the shortest time for some producer.
30     *
31 dl 1.40 * <p>Beware that, unlike in most collections, the {@code size} method
32     * is <em>NOT</em> a constant-time operation. Because of the
33 jsr166 1.1 * asynchronous nature of these queues, determining the current number
34 dl 1.40 * of elements requires a traversal of the elements, and so may report
35     * inaccurate results if this collection is modified during traversal.
36 dl 1.41 * Additionally, the bulk operations {@code addAll},
37     * {@code removeAll}, {@code retainAll}, {@code containsAll},
38 jsr166 1.98 * and {@code toArray} are <em>not</em> guaranteed
39 dl 1.40 * to be performed atomically. For example, an iterator operating
40 dl 1.41 * concurrently with an {@code addAll} operation might view only some
41 dl 1.40 * of the added elements.
42 jsr166 1.1 *
43     * <p>This class and its iterator implement all of the
44     * <em>optional</em> methods of the {@link Collection} and {@link
45     * Iterator} interfaces.
46     *
47     * <p>Memory consistency effects: As with other concurrent
48     * collections, actions in a thread prior to placing an object into a
49     * {@code LinkedTransferQueue}
50     * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
51     * actions subsequent to the access or removal of that element from
52     * the {@code LinkedTransferQueue} in another thread.
53     *
54     * <p>This class is a member of the
55     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
56     * Java Collections Framework</a>.
57     *
58     * @since 1.7
59     * @author Doug Lea
60 jsr166 1.75 * @param <E> the type of elements held in this queue
61 jsr166 1.1 */
62     public class LinkedTransferQueue<E> extends AbstractQueue<E>
63     implements TransferQueue<E>, java.io.Serializable {
64     private static final long serialVersionUID = -3223113410248163686L;
65    
66     /*
67 jsr166 1.8 * *** Overview of Dual Queues with Slack ***
68 jsr166 1.1 *
69 jsr166 1.8 * Dual Queues, introduced by Scherer and Scott
70 jsr166 1.99 * (http://www.cs.rochester.edu/~scott/papers/2004_DISC_dual_DS.pdf)
71     * are (linked) queues in which nodes may represent either data or
72 jsr166 1.8 * requests. When a thread tries to enqueue a data node, but
73     * encounters a request node, it instead "matches" and removes it;
74     * and vice versa for enqueuing requests. Blocking Dual Queues
75     * arrange that threads enqueuing unmatched requests block until
76     * other threads provide the match. Dual Synchronous Queues (see
77     * Scherer, Lea, & Scott
78     * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
79     * additionally arrange that threads enqueuing unmatched data also
80     * block. Dual Transfer Queues support all of these modes, as
81     * dictated by callers.
82     *
83     * A FIFO dual queue may be implemented using a variation of the
84     * Michael & Scott (M&S) lock-free queue algorithm
85 jsr166 1.72 * (http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf).
86 jsr166 1.8 * It maintains two pointer fields, "head", pointing to a
87     * (matched) node that in turn points to the first actual
88     * (unmatched) queue node (or null if empty); and "tail" that
89     * points to the last node on the queue (or again null if
90     * empty). For example, here is a possible queue with four data
91     * elements:
92     *
93     * head tail
94     * | |
95     * v v
96     * M -> U -> U -> U -> U
97     *
98     * The M&S queue algorithm is known to be prone to scalability and
99     * overhead limitations when maintaining (via CAS) these head and
100     * tail pointers. This has led to the development of
101     * contention-reducing variants such as elimination arrays (see
102     * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
103     * optimistic back pointers (see Ladan-Mozes & Shavit
104     * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
105     * However, the nature of dual queues enables a simpler tactic for
106     * improving M&S-style implementations when dual-ness is needed.
107     *
108     * In a dual queue, each node must atomically maintain its match
109     * status. While there are other possible variants, we implement
110     * this here as: for a data-mode node, matching entails CASing an
111     * "item" field from a non-null data value to null upon match, and
112     * vice-versa for request nodes, CASing from null to a data
113     * value. (Note that the linearization properties of this style of
114     * queue are easy to verify -- elements are made available by
115     * linking, and unavailable by matching.) Compared to plain M&S
116     * queues, this property of dual queues requires one additional
117     * successful atomic operation per enq/deq pair. But it also
118     * enables lower cost variants of queue maintenance mechanics. (A
119     * variation of this idea applies even for non-dual queues that
120     * support deletion of interior elements, such as
121     * j.u.c.ConcurrentLinkedQueue.)
122     *
123     * Once a node is matched, its match status can never again
124     * change. We may thus arrange that the linked list of them
125     * contain a prefix of zero or more matched nodes, followed by a
126     * suffix of zero or more unmatched nodes. (Note that we allow
127     * both the prefix and suffix to be zero length, which in turn
128     * means that we do not use a dummy header.) If we were not
129     * concerned with either time or space efficiency, we could
130     * correctly perform enqueue and dequeue operations by traversing
131     * from a pointer to the initial node; CASing the item of the
132     * first unmatched node on match and CASing the next field of the
133     * trailing node on appends. (Plus some special-casing when
134     * initially empty). While this would be a terrible idea in
135     * itself, it does have the benefit of not requiring ANY atomic
136     * updates on head/tail fields.
137     *
138     * We introduce here an approach that lies between the extremes of
139     * never versus always updating queue (head and tail) pointers.
140     * This offers a tradeoff between sometimes requiring extra
141     * traversal steps to locate the first and/or last unmatched
142     * nodes, versus the reduced overhead and contention of fewer
143     * updates to queue pointers. For example, a possible snapshot of
144     * a queue is:
145     *
146     * head tail
147     * | |
148     * v v
149     * M -> M -> U -> U -> U -> U
150     *
151     * The best value for this "slack" (the targeted maximum distance
152     * between the value of "head" and the first unmatched node, and
153     * similarly for "tail") is an empirical matter. We have found
154     * that using very small constants in the range of 1-3 work best
155     * over a range of platforms. Larger values introduce increasing
156     * costs of cache misses and risks of long traversal chains, while
157     * smaller values increase CAS contention and overhead.
158     *
159     * Dual queues with slack differ from plain M&S dual queues by
160     * virtue of only sometimes updating head or tail pointers when
161     * matching, appending, or even traversing nodes; in order to
162     * maintain a targeted slack. The idea of "sometimes" may be
163     * operationalized in several ways. The simplest is to use a
164     * per-operation counter incremented on each traversal step, and
165     * to try (via CAS) to update the associated queue pointer
166     * whenever the count exceeds a threshold. Another, that requires
167     * more overhead, is to use random number generators to update
168     * with a given probability per traversal step.
169     *
170     * In any strategy along these lines, because CASes updating
171     * fields may fail, the actual slack may exceed targeted
172     * slack. However, they may be retried at any time to maintain
173     * targets. Even when using very small slack values, this
174     * approach works well for dual queues because it allows all
175     * operations up to the point of matching or appending an item
176     * (hence potentially allowing progress by another thread) to be
177     * read-only, thus not introducing any further contention. As
178     * described below, we implement this by performing slack
179     * maintenance retries only after these points.
180     *
181     * As an accompaniment to such techniques, traversal overhead can
182     * be further reduced without increasing contention of head
183     * pointer updates: Threads may sometimes shortcut the "next" link
184     * path from the current "head" node to be closer to the currently
185     * known first unmatched node, and similarly for tail. Again, this
186     * may be triggered with using thresholds or randomization.
187     *
188     * These ideas must be further extended to avoid unbounded amounts
189     * of costly-to-reclaim garbage caused by the sequential "next"
190     * links of nodes starting at old forgotten head nodes: As first
191     * described in detail by Boehm
192 jsr166 1.69 * (http://portal.acm.org/citation.cfm?doid=503272.503282), if a GC
193 jsr166 1.8 * delays noticing that any arbitrarily old node has become
194     * garbage, all newer dead nodes will also be unreclaimed.
195     * (Similar issues arise in non-GC environments.) To cope with
196     * this in our implementation, upon CASing to advance the head
197     * pointer, we set the "next" link of the previous head to point
198     * only to itself; thus limiting the length of connected dead lists.
199     * (We also take similar care to wipe out possibly garbage
200     * retaining values held in other Node fields.) However, doing so
201     * adds some further complexity to traversal: If any "next"
202     * pointer links to itself, it indicates that the current thread
203     * has lagged behind a head-update, and so the traversal must
204     * continue from the "head". Traversals trying to find the
205     * current tail starting from "tail" may also encounter
206     * self-links, in which case they also continue at "head".
207     *
208     * It is tempting in slack-based scheme to not even use CAS for
209     * updates (similarly to Ladan-Mozes & Shavit). However, this
210     * cannot be done for head updates under the above link-forgetting
211     * mechanics because an update may leave head at a detached node.
212     * And while direct writes are possible for tail updates, they
213     * increase the risk of long retraversals, and hence long garbage
214     * chains, which can be much more costly than is worthwhile
215     * considering that the cost difference of performing a CAS vs
216     * write is smaller when they are not triggered on each operation
217     * (especially considering that writes and CASes equally require
218     * additional GC bookkeeping ("write barriers") that are sometimes
219     * more costly than the writes themselves because of contention).
220     *
221     * *** Overview of implementation ***
222     *
223     * We use a threshold-based approach to updates, with a slack
224     * threshold of two -- that is, we update head/tail when the
225     * current pointer appears to be two or more steps away from the
226     * first/last node. The slack value is hard-wired: a path greater
227     * than one is naturally implemented by checking equality of
228     * traversal pointers except when the list has only one element,
229     * in which case we keep slack threshold at one. Avoiding tracking
230     * explicit counts across method calls slightly simplifies an
231     * already-messy implementation. Using randomization would
232     * probably work better if there were a low-quality dirt-cheap
233     * per-thread one available, but even ThreadLocalRandom is too
234     * heavy for these purposes.
235     *
236 dl 1.16 * With such a small slack threshold value, it is not worthwhile
237     * to augment this with path short-circuiting (i.e., unsplicing
238     * interior nodes) except in the case of cancellation/removal (see
239     * below).
240 jsr166 1.8 *
241     * We allow both the head and tail fields to be null before any
242     * nodes are enqueued; initializing upon first append. This
243     * simplifies some other logic, as well as providing more
244     * efficient explicit control paths instead of letting JVMs insert
245     * implicit NullPointerExceptions when they are null. While not
246     * currently fully implemented, we also leave open the possibility
247     * of re-nulling these fields when empty (which is complicated to
248     * arrange, for little benefit.)
249     *
250     * All enqueue/dequeue operations are handled by the single method
251     * "xfer" with parameters indicating whether to act as some form
252     * of offer, put, poll, take, or transfer (each possibly with
253     * timeout). The relative complexity of using one monolithic
254     * method outweighs the code bulk and maintenance problems of
255     * using separate methods for each case.
256     *
257     * Operation consists of up to three phases. The first is
258     * implemented within method xfer, the second in tryAppend, and
259     * the third in method awaitMatch.
260     *
261     * 1. Try to match an existing node
262     *
263     * Starting at head, skip already-matched nodes until finding
264     * an unmatched node of opposite mode, if one exists, in which
265     * case matching it and returning, also if necessary updating
266     * head to one past the matched node (or the node itself if the
267     * list has no other unmatched nodes). If the CAS misses, then
268     * a loop retries advancing head by two steps until either
269     * success or the slack is at most two. By requiring that each
270     * attempt advances head by two (if applicable), we ensure that
271     * the slack does not grow without bound. Traversals also check
272     * if the initial head is now off-list, in which case they
273     * start at the new head.
274     *
275     * If no candidates are found and the call was untimed
276     * poll/offer, (argument "how" is NOW) return.
277     *
278     * 2. Try to append a new node (method tryAppend)
279     *
280     * Starting at current tail pointer, find the actual last node
281     * and try to append a new node (or if head was null, establish
282     * the first node). Nodes can be appended only if their
283     * predecessors are either already matched or are of the same
284     * mode. If we detect otherwise, then a new node with opposite
285     * mode must have been appended during traversal, so we must
286     * restart at phase 1. The traversal and update steps are
287     * otherwise similar to phase 1: Retrying upon CAS misses and
288     * checking for staleness. In particular, if a self-link is
289     * encountered, then we can safely jump to a node on the list
290     * by continuing the traversal at current head.
291     *
292     * On successful append, if the call was ASYNC, return.
293     *
294     * 3. Await match or cancellation (method awaitMatch)
295     *
296     * Wait for another thread to match node; instead cancelling if
297     * the current thread was interrupted or the wait timed out. On
298     * multiprocessors, we use front-of-queue spinning: If a node
299     * appears to be the first unmatched node in the queue, it
300     * spins a bit before blocking. In either case, before blocking
301     * it tries to unsplice any nodes between the current "head"
302     * and the first unmatched node.
303     *
304     * Front-of-queue spinning vastly improves performance of
305     * heavily contended queues. And so long as it is relatively
306     * brief and "quiet", spinning does not much impact performance
307     * of less-contended queues. During spins threads check their
308     * interrupt status and generate a thread-local random number
309     * to decide to occasionally perform a Thread.yield. While
310 jsr166 1.44 * yield has underdefined specs, we assume that it might help,
311 jsr166 1.45 * and will not hurt, in limiting impact of spinning on busy
312 jsr166 1.8 * systems. We also use smaller (1/2) spins for nodes that are
313     * not known to be front but whose predecessors have not
314     * blocked -- these "chained" spins avoid artifacts of
315     * front-of-queue rules which otherwise lead to alternating
316     * nodes spinning vs blocking. Further, front threads that
317     * represent phase changes (from data to request node or vice
318     * versa) compared to their predecessors receive additional
319     * chained spins, reflecting longer paths typically required to
320     * unblock threads during phase changes.
321 dl 1.16 *
322     *
323     * ** Unlinking removed interior nodes **
324     *
325     * In addition to minimizing garbage retention via self-linking
326     * described above, we also unlink removed interior nodes. These
327     * may arise due to timed out or interrupted waits, or calls to
328     * remove(x) or Iterator.remove. Normally, given a node that was
329     * at one time known to be the predecessor of some node s that is
330     * to be removed, we can unsplice s by CASing the next field of
331     * its predecessor if it still points to s (otherwise s must
332     * already have been removed or is now offlist). But there are two
333     * situations in which we cannot guarantee to make node s
334     * unreachable in this way: (1) If s is the trailing node of list
335     * (i.e., with null next), then it is pinned as the target node
336 jsr166 1.23 * for appends, so can only be removed later after other nodes are
337 dl 1.16 * appended. (2) We cannot necessarily unlink s given a
338     * predecessor node that is matched (including the case of being
339 jsr166 1.17 * cancelled): the predecessor may already be unspliced, in which
340     * case some previous reachable node may still point to s.
341     * (For further explanation see Herlihy & Shavit "The Art of
342 dl 1.16 * Multiprocessor Programming" chapter 9). Although, in both
343     * cases, we can rule out the need for further action if either s
344     * or its predecessor are (or can be made to be) at, or fall off
345     * from, the head of list.
346     *
347     * Without taking these into account, it would be possible for an
348     * unbounded number of supposedly removed nodes to remain
349     * reachable. Situations leading to such buildup are uncommon but
350     * can occur in practice; for example when a series of short timed
351     * calls to poll repeatedly time out but never otherwise fall off
352     * the list because of an untimed call to take at the front of the
353     * queue.
354     *
355     * When these cases arise, rather than always retraversing the
356     * entire list to find an actual predecessor to unlink (which
357     * won't help for case (1) anyway), we record a conservative
358 jsr166 1.24 * estimate of possible unsplice failures (in "sweepVotes").
359     * We trigger a full sweep when the estimate exceeds a threshold
360     * ("SWEEP_THRESHOLD") indicating the maximum number of estimated
361     * removal failures to tolerate before sweeping through, unlinking
362     * cancelled nodes that were not unlinked upon initial removal.
363     * We perform sweeps by the thread hitting threshold (rather than
364     * background threads or by spreading work to other threads)
365     * because in the main contexts in which removal occurs, the
366     * caller is already timed-out, cancelled, or performing a
367     * potentially O(n) operation (e.g. remove(x)), none of which are
368     * time-critical enough to warrant the overhead that alternatives
369     * would impose on other threads.
370 dl 1.16 *
371     * Because the sweepVotes estimate is conservative, and because
372     * nodes become unlinked "naturally" as they fall off the head of
373     * the queue, and because we allow votes to accumulate even while
374 jsr166 1.17 * sweeps are in progress, there are typically significantly fewer
375 dl 1.16 * such nodes than estimated. Choice of a threshold value
376     * balances the likelihood of wasted effort and contention, versus
377     * providing a worst-case bound on retention of interior nodes in
378     * quiescent queues. The value defined below was chosen
379     * empirically to balance these under various timeout scenarios.
380     *
381     * Note that we cannot self-link unlinked interior nodes during
382     * sweeps. However, the associated garbage chains terminate when
383     * some successor ultimately falls off the head of the list and is
384     * self-linked.
385 jsr166 1.8 */
386    
387     /** True if on multiprocessor */
388     private static final boolean MP =
389     Runtime.getRuntime().availableProcessors() > 1;
390    
391     /**
392     * The number of times to spin (with randomly interspersed calls
393     * to Thread.yield) on multiprocessor before blocking when a node
394     * is apparently the first waiter in the queue. See above for
395     * explanation. Must be a power of two. The value is empirically
396     * derived -- it works pretty well across a variety of processors,
397     * numbers of CPUs, and OSes.
398     */
399     private static final int FRONT_SPINS = 1 << 7;
400    
401     /**
402     * The number of times to spin before blocking when a node is
403     * preceded by another node that is apparently spinning. Also
404     * serves as an increment to FRONT_SPINS on phase changes, and as
405     * base average frequency for yielding during spins. Must be a
406     * power of two.
407     */
408     private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
409    
410     /**
411 dl 1.16 * The maximum number of estimated removal failures (sweepVotes)
412     * to tolerate before sweeping through the queue unlinking
413     * cancelled nodes that were not unlinked upon initial
414     * removal. See above for explanation. The value must be at least
415     * two to avoid useless sweeps when removing trailing nodes.
416     */
417     static final int SWEEP_THRESHOLD = 32;
418    
419     /**
420 jsr166 1.8 * Queue nodes. Uses Object, not E, for items to allow forgetting
421 dl 1.97 * them after use. Relies heavily on VarHandles to minimize
422 dl 1.16 * unnecessary ordering constraints: Writes that are intrinsically
423     * ordered wrt other accesses or CASes use simple relaxed forms.
424 jsr166 1.8 */
425 jsr166 1.14 static final class Node {
426 jsr166 1.8 final boolean isData; // false if this is a request node
427     volatile Object item; // initially non-null if isData; CASed to match
428 jsr166 1.14 volatile Node next;
429 jsr166 1.8 volatile Thread waiter; // null until waiting
430    
431     // CAS methods for fields
432 jsr166 1.14 final boolean casNext(Node cmp, Node val) {
433 dl 1.97 return NEXT.compareAndSet(this, cmp, val);
434 jsr166 1.8 }
435 jsr166 1.1
436 jsr166 1.8 final boolean casItem(Object cmp, Object val) {
437 jsr166 1.105 // assert isData == (cmp != null);
438     // assert isData == (val == null);
439     // assert !(cmp instanceof Node);
440 dl 1.97 return ITEM.compareAndSet(this, cmp, val);
441 jsr166 1.8 }
442 jsr166 1.1
443 jsr166 1.8 /**
444 jsr166 1.25 * Constructs a new node. Uses relaxed write because item can
445     * only be seen after publication via casNext.
446 jsr166 1.8 */
447 jsr166 1.101 Node(Object item) {
448 jsr166 1.104 ITEM.set(this, item);
449 jsr166 1.101 isData = (item != null);
450 jsr166 1.8 }
451 jsr166 1.1
452 jsr166 1.8 /**
453     * Links node to itself to avoid garbage retention. Called
454     * only after CASing head field, so uses relaxed write.
455     */
456     final void forgetNext() {
457 dl 1.97 NEXT.set(this, this);
458 jsr166 1.8 }
459 jsr166 1.1
460 jsr166 1.8 /**
461 jsr166 1.105 * Sets item (of a request node) to self and waiter to null,
462     * to avoid garbage retention after matching or cancelling.
463     * Uses relaxed writes because order is already constrained in
464     * the only calling contexts: item is forgotten only after
465     * volatile/atomic mechanics that extract items. Similarly,
466     * clearing waiter follows either CAS or return from park (if
467     * ever parked; else we don't care).
468 jsr166 1.8 */
469     final void forgetContents() {
470 jsr166 1.105 // assert isMatched();
471     if (!isData)
472     ITEM.set(this, this);
473 dl 1.97 WAITER.set(this, null);
474 jsr166 1.8 }
475 jsr166 1.1
476 jsr166 1.8 /**
477     * Returns true if this node has been matched, including the
478     * case of artificial matches due to cancellation.
479     */
480     final boolean isMatched() {
481 jsr166 1.105 return isData == (item == null);
482 jsr166 1.11 }
483    
484     /**
485 jsr166 1.8 * Returns true if a node with the given mode cannot be
486     * appended to this node because this node is unmatched and
487     * has opposite data mode.
488     */
489     final boolean cannotPrecede(boolean haveData) {
490     boolean d = isData;
491 jsr166 1.105 return d != haveData && d != (item == null);
492 jsr166 1.8 }
493 jsr166 1.1
494 jsr166 1.8 /**
495     * Tries to artificially match a data node -- used by remove.
496     */
497     final boolean tryMatchData() {
498 dl 1.33 // assert isData;
499 jsr166 1.105 final Object x;
500     if ((x = item) != null && casItem(x, null)) {
501 jsr166 1.8 LockSupport.unpark(waiter);
502     return true;
503     }
504     return false;
505 jsr166 1.1 }
506    
507 dl 1.38 private static final long serialVersionUID = -3375979862319811754L;
508    
509 dl 1.97 // VarHandle mechanics
510     private static final VarHandle ITEM;
511     private static final VarHandle NEXT;
512     private static final VarHandle WAITER;
513 dl 1.38 static {
514     try {
515 dl 1.97 MethodHandles.Lookup l = MethodHandles.lookup();
516     ITEM = l.findVarHandle(Node.class, "item", Object.class);
517     NEXT = l.findVarHandle(Node.class, "next", Node.class);
518     WAITER = l.findVarHandle(Node.class, "waiter", Thread.class);
519 jsr166 1.79 } catch (ReflectiveOperationException e) {
520 dl 1.38 throw new Error(e);
521     }
522     }
523 jsr166 1.1 }
524    
525 jsr166 1.8 /** head of the queue; null until first enqueue */
526 jsr166 1.14 transient volatile Node head;
527 jsr166 1.8
528     /** tail of the queue; null until first append */
529 jsr166 1.14 private transient volatile Node tail;
530 jsr166 1.1
531 dl 1.16 /** The number of apparent failures to unsplice removed nodes */
532     private transient volatile int sweepVotes;
533    
534 jsr166 1.8 // CAS methods for fields
535 jsr166 1.14 private boolean casTail(Node cmp, Node val) {
536 dl 1.97 return TAIL.compareAndSet(this, cmp, val);
537 jsr166 1.8 }
538 jsr166 1.1
539 jsr166 1.14 private boolean casHead(Node cmp, Node val) {
540 dl 1.97 return HEAD.compareAndSet(this, cmp, val);
541 jsr166 1.8 }
542 jsr166 1.1
543 dl 1.16 private boolean casSweepVotes(int cmp, int val) {
544 dl 1.97 return SWEEPVOTES.compareAndSet(this, cmp, val);
545 jsr166 1.8 }
546 jsr166 1.1
547 jsr166 1.8 /*
548 jsr166 1.14 * Possible values for "how" argument in xfer method.
549 jsr166 1.1 */
550 jsr166 1.14 private static final int NOW = 0; // for untimed poll, tryTransfer
551     private static final int ASYNC = 1; // for offer, put, add
552     private static final int SYNC = 2; // for transfer, take
553     private static final int TIMED = 3; // for timed poll, tryTransfer
554 jsr166 1.1
555     /**
556 jsr166 1.8 * Implements all queuing methods. See above for explanation.
557 jsr166 1.1 *
558 jsr166 1.8 * @param e the item or null for take
559     * @param haveData true if this is a put, else a take
560 jsr166 1.14 * @param how NOW, ASYNC, SYNC, or TIMED
561     * @param nanos timeout in nanosecs, used only if mode is TIMED
562 jsr166 1.8 * @return an item if matched, else e
563     * @throws NullPointerException if haveData mode but e is null
564 jsr166 1.1 */
565 jsr166 1.8 private E xfer(E e, boolean haveData, int how, long nanos) {
566     if (haveData && (e == null))
567     throw new NullPointerException();
568 jsr166 1.14 Node s = null; // the node to append, if needed
569 jsr166 1.1
570 jsr166 1.29 retry:
571     for (;;) { // restart on append race
572 jsr166 1.1
573 jsr166 1.14 for (Node h = head, p = h; p != null;) { // find & match first node
574 jsr166 1.8 boolean isData = p.isData;
575     Object item = p.item;
576 jsr166 1.105 if ((item != null) == isData) { // unmatched
577 jsr166 1.8 if (isData == haveData) // can't match
578     break;
579     if (p.casItem(item, e)) { // match
580 jsr166 1.14 for (Node q = p; q != h;) {
581 dl 1.16 Node n = q.next; // update by 2 unless singleton
582 jsr166 1.37 if (head == h && casHead(h, n == null ? q : n)) {
583 jsr166 1.8 h.forgetNext();
584     break;
585     } // advance and retry
586     if ((h = head) == null ||
587     (q = h.next) == null || !q.isMatched())
588     break; // unless slack < 2
589     }
590     LockSupport.unpark(p.waiter);
591 jsr166 1.70 @SuppressWarnings("unchecked") E itemE = (E) item;
592     return itemE;
593 jsr166 1.1 }
594     }
595 jsr166 1.14 Node n = p.next;
596 jsr166 1.8 p = (p != n) ? n : (h = head); // Use head if p offlist
597     }
598    
599 jsr166 1.14 if (how != NOW) { // No matches available
600 jsr166 1.8 if (s == null)
601 jsr166 1.101 s = new Node(e);
602 jsr166 1.14 Node pred = tryAppend(s, haveData);
603 jsr166 1.8 if (pred == null)
604     continue retry; // lost race vs opposite mode
605 jsr166 1.14 if (how != ASYNC)
606     return awaitMatch(s, pred, e, (how == TIMED), nanos);
607 jsr166 1.1 }
608 jsr166 1.8 return e; // not waiting
609 jsr166 1.1 }
610     }
611    
612     /**
613 jsr166 1.8 * Tries to append node s as tail.
614     *
615     * @param s the node to append
616     * @param haveData true if appending in data mode
617     * @return null on failure due to losing race with append in
618     * different mode, else s's predecessor, or s itself if no
619     * predecessor
620 jsr166 1.1 */
621 jsr166 1.14 private Node tryAppend(Node s, boolean haveData) {
622     for (Node t = tail, p = t;;) { // move p to last node and append
623     Node n, u; // temps for reads of next & tail
624 jsr166 1.8 if (p == null && (p = head) == null) {
625     if (casHead(null, s))
626     return s; // initialize
627     }
628     else if (p.cannotPrecede(haveData))
629     return null; // lost race vs opposite mode
630     else if ((n = p.next) != null) // not last; keep traversing
631     p = p != t && t != (u = tail) ? (t = u) : // stale tail
632     (p != n) ? n : null; // restart if off list
633     else if (!p.casNext(null, s))
634     p = p.next; // re-read on CAS failure
635     else {
636     if (p != t) { // update if slack now >= 2
637     while ((tail != t || !casTail(t, s)) &&
638     (t = tail) != null &&
639     (s = t.next) != null && // advance and retry
640     (s = s.next) != null && s != t);
641 jsr166 1.1 }
642 jsr166 1.8 return p;
643 jsr166 1.1 }
644     }
645     }
646    
647     /**
648 jsr166 1.8 * Spins/yields/blocks until node s is matched or caller gives up.
649 jsr166 1.1 *
650     * @param s the waiting node
651 jsr166 1.8 * @param pred the predecessor of s, or s itself if it has no
652     * predecessor, or null if unknown (the null case does not occur
653     * in any current calls but may in possible future extensions)
654 jsr166 1.1 * @param e the comparison value for checking match
655 jsr166 1.14 * @param timed if true, wait only until timeout elapses
656     * @param nanos timeout in nanosecs, used only if timed is true
657 jsr166 1.8 * @return matched item, or e if unmatched on interrupt or timeout
658 jsr166 1.1 */
659 jsr166 1.14 private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
660 jsr166 1.51 final long deadline = timed ? System.nanoTime() + nanos : 0L;
661 jsr166 1.8 Thread w = Thread.currentThread();
662     int spins = -1; // initialized after first item and cancel checks
663     ThreadLocalRandom randomYields = null; // bound if needed
664 jsr166 1.1
665     for (;;) {
666 jsr166 1.8 Object item = s.item;
667     if (item != e) { // matched
668 dl 1.33 // assert item != s;
669 jsr166 1.8 s.forgetContents(); // avoid garbage
670 jsr166 1.70 @SuppressWarnings("unchecked") E itemE = (E) item;
671     return itemE;
672 jsr166 1.8 }
673 jsr166 1.95 else if (w.isInterrupted() || (timed && nanos <= 0L)) {
674 jsr166 1.102 // try to cancel and unlink
675 jsr166 1.105 if (s.casItem(e, s.isData ? null : s)) {
676 jsr166 1.102 unsplice(pred, s);
677 jsr166 1.77 return e;
678 jsr166 1.102 }
679     // return normally if lost CAS
680 jsr166 1.8 }
681 dl 1.84 else if (spins < 0) { // establish spins at/near front
682 jsr166 1.8 if ((spins = spinsFor(pred, s.isData)) > 0)
683     randomYields = ThreadLocalRandom.current();
684     }
685     else if (spins > 0) { // spin
686 dl 1.16 --spins;
687     if (randomYields.nextInt(CHAINED_SPINS) == 0)
688 jsr166 1.8 Thread.yield(); // occasionally yield
689     }
690     else if (s.waiter == null) {
691     s.waiter = w; // request unpark then recheck
692 jsr166 1.1 }
693 jsr166 1.14 else if (timed) {
694 jsr166 1.51 nanos = deadline - System.nanoTime();
695     if (nanos > 0L)
696 jsr166 1.8 LockSupport.parkNanos(this, nanos);
697 jsr166 1.1 }
698 jsr166 1.8 else {
699 jsr166 1.1 LockSupport.park(this);
700     }
701 jsr166 1.8 }
702     }
703    
704     /**
705     * Returns spin/yield value for a node with given predecessor and
706     * data mode. See above for explanation.
707     */
708 jsr166 1.14 private static int spinsFor(Node pred, boolean haveData) {
709 jsr166 1.8 if (MP && pred != null) {
710     if (pred.isData != haveData) // phase change
711     return FRONT_SPINS + CHAINED_SPINS;
712     if (pred.isMatched()) // probably at front
713     return FRONT_SPINS;
714     if (pred.waiter == null) // pred apparently spinning
715     return CHAINED_SPINS;
716     }
717     return 0;
718     }
719    
720     /* -------------- Traversal methods -------------- */
721    
722     /**
723 jsr166 1.93 * Returns the first unmatched data node, or null if none.
724 jsr166 1.105 * Callers must recheck if the returned node is unmatched
725     * before using.
726 dl 1.52 */
727     final Node firstDataNode() {
728 jsr166 1.91 restartFromHead: for (;;) {
729     for (Node p = head; p != null;) {
730     Object item = p.item;
731     if (p.isData) {
732 jsr166 1.105 if (item != null)
733 jsr166 1.91 return p;
734     }
735     else if (item == null)
736     break;
737     if (p == (p = p.next))
738     continue restartFromHead;
739 dl 1.52 }
740 jsr166 1.91 return null;
741 dl 1.52 }
742     }
743    
744     /**
745 jsr166 1.8 * Traverses and counts unmatched nodes of the given mode.
746     * Used by methods size and getWaitingConsumerCount.
747 jsr166 1.1 */
748 jsr166 1.8 private int countOfMode(boolean data) {
749 jsr166 1.73 restartFromHead: for (;;) {
750     int count = 0;
751     for (Node p = head; p != null;) {
752     if (!p.isMatched()) {
753     if (p.isData != data)
754     return 0;
755     if (++count == Integer.MAX_VALUE)
756     break; // @see Collection.size()
757     }
758 jsr166 1.81 if (p == (p = p.next))
759 jsr166 1.73 continue restartFromHead;
760 jsr166 1.1 }
761 jsr166 1.73 return count;
762 jsr166 1.8 }
763     }
764    
765 jsr166 1.82 public String toString() {
766     String[] a = null;
767     restartFromHead: for (;;) {
768     int charLength = 0;
769     int size = 0;
770     for (Node p = head; p != null;) {
771     Object item = p.item;
772     if (p.isData) {
773 jsr166 1.105 if (item != null) {
774 jsr166 1.82 if (a == null)
775     a = new String[4];
776     else if (size == a.length)
777     a = Arrays.copyOf(a, 2 * size);
778     String s = item.toString();
779     a[size++] = s;
780     charLength += s.length();
781     }
782     } else if (item == null)
783     break;
784     if (p == (p = p.next))
785     continue restartFromHead;
786     }
787    
788     if (size == 0)
789     return "[]";
790    
791 jsr166 1.83 return Helpers.toString(a, size, charLength);
792 jsr166 1.82 }
793     }
794    
795     private Object[] toArrayInternal(Object[] a) {
796     Object[] x = a;
797     restartFromHead: for (;;) {
798     int size = 0;
799     for (Node p = head; p != null;) {
800     Object item = p.item;
801     if (p.isData) {
802 jsr166 1.105 if (item != null) {
803 jsr166 1.82 if (x == null)
804     x = new Object[4];
805     else if (size == x.length)
806     x = Arrays.copyOf(x, 2 * (size + 4));
807     x[size++] = item;
808     }
809     } else if (item == null)
810     break;
811     if (p == (p = p.next))
812     continue restartFromHead;
813     }
814     if (x == null)
815     return new Object[0];
816     else if (a != null && size <= a.length) {
817     if (a != x)
818     System.arraycopy(x, 0, a, 0, size);
819     if (size < a.length)
820     a[size] = null;
821     return a;
822     }
823     return (size == x.length) ? x : Arrays.copyOf(x, size);
824     }
825     }
826    
827     /**
828     * Returns an array containing all of the elements in this queue, in
829     * proper sequence.
830     *
831     * <p>The returned array will be "safe" in that no references to it are
832     * maintained by this queue. (In other words, this method must allocate
833     * a new array). The caller is thus free to modify the returned array.
834     *
835     * <p>This method acts as bridge between array-based and collection-based
836     * APIs.
837     *
838     * @return an array containing all of the elements in this queue
839     */
840     public Object[] toArray() {
841     return toArrayInternal(null);
842     }
843    
844     /**
845     * Returns an array containing all of the elements in this queue, in
846     * proper sequence; the runtime type of the returned array is that of
847     * the specified array. If the queue fits in the specified array, it
848     * is returned therein. Otherwise, a new array is allocated with the
849     * runtime type of the specified array and the size of this queue.
850     *
851     * <p>If this queue fits in the specified array with room to spare
852     * (i.e., the array has more elements than this queue), the element in
853     * the array immediately following the end of the queue is set to
854     * {@code null}.
855     *
856     * <p>Like the {@link #toArray()} method, this method acts as bridge between
857     * array-based and collection-based APIs. Further, this method allows
858     * precise control over the runtime type of the output array, and may,
859     * under certain circumstances, be used to save allocation costs.
860     *
861     * <p>Suppose {@code x} is a queue known to contain only strings.
862     * The following code can be used to dump the queue into a newly
863     * allocated array of {@code String}:
864     *
865     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
866     *
867     * Note that {@code toArray(new Object[0])} is identical in function to
868     * {@code toArray()}.
869     *
870     * @param a the array into which the elements of the queue are to
871     * be stored, if it is big enough; otherwise, a new array of the
872     * same runtime type is allocated for this purpose
873     * @return an array containing all of the elements in this queue
874     * @throws ArrayStoreException if the runtime type of the specified array
875     * is not a supertype of the runtime type of every element in
876     * this queue
877     * @throws NullPointerException if the specified array is null
878     */
879     @SuppressWarnings("unchecked")
880     public <T> T[] toArray(T[] a) {
881 jsr166 1.111 Objects.requireNonNull(a);
882 jsr166 1.82 return (T[]) toArrayInternal(a);
883     }
884    
885 jsr166 1.8 final class Itr implements Iterator<E> {
886 jsr166 1.14 private Node nextNode; // next node to return item for
887     private E nextItem; // the corresponding item
888     private Node lastRet; // last returned node, to support remove
889     private Node lastPred; // predecessor to unlink lastRet
890 jsr166 1.8
891     /**
892     * Moves to next node after prev, or first node if prev null.
893     */
894 jsr166 1.14 private void advance(Node prev) {
895 dl 1.33 /*
896     * To track and avoid buildup of deleted nodes in the face
897     * of calls to both Queue.remove and Itr.remove, we must
898     * include variants of unsplice and sweep upon each
899     * advance: Upon Itr.remove, we may need to catch up links
900     * from lastPred, and upon other removes, we might need to
901     * skip ahead from stale nodes and unsplice deleted ones
902     * found while advancing.
903     */
904    
905     Node r, b; // reset lastPred upon possible deletion of lastRet
906     if ((r = lastRet) != null && !r.isMatched())
907     lastPred = r; // next lastPred is old lastRet
908     else if ((b = lastPred) == null || b.isMatched())
909     lastPred = null; // at start of list
910 jsr166 1.34 else {
911 dl 1.33 Node s, n; // help with removal of lastPred.next
912     while ((s = b.next) != null &&
913     s != b && s.isMatched() &&
914     (n = s.next) != null && n != s)
915     b.casNext(s, n);
916     }
917    
918     this.lastRet = prev;
919 jsr166 1.35
920 dl 1.33 for (Node p = prev, s, n;;) {
921     s = (p == null) ? head : p.next;
922     if (s == null)
923     break;
924     else if (s == p) {
925     p = null;
926     continue;
927     }
928     Object item = s.item;
929     if (s.isData) {
930 jsr166 1.105 if (item != null) {
931 jsr166 1.70 @SuppressWarnings("unchecked") E itemE = (E) item;
932     nextItem = itemE;
933 dl 1.33 nextNode = s;
934 jsr166 1.8 return;
935     }
936 jsr166 1.34 }
937 jsr166 1.8 else if (item == null)
938     break;
939 dl 1.33 // assert s.isMatched();
940     if (p == null)
941     p = s;
942     else if ((n = s.next) == null)
943     break;
944     else if (s == n)
945     p = null;
946     else
947     p.casNext(s, n);
948 jsr166 1.1 }
949 jsr166 1.8 nextNode = null;
950 dl 1.33 nextItem = null;
951 jsr166 1.8 }
952    
953     Itr() {
954     advance(null);
955     }
956    
957     public final boolean hasNext() {
958     return nextNode != null;
959     }
960    
961     public final E next() {
962 jsr166 1.14 Node p = nextNode;
963 jsr166 1.8 if (p == null) throw new NoSuchElementException();
964     E e = nextItem;
965     advance(p);
966     return e;
967     }
968    
969     public final void remove() {
970 dl 1.33 final Node lastRet = this.lastRet;
971     if (lastRet == null)
972     throw new IllegalStateException();
973     this.lastRet = null;
974     if (lastRet.tryMatchData())
975     unsplice(lastPred, lastRet);
976 jsr166 1.1 }
977     }
978 jsr166 1.53
979 dl 1.57 /** A customized variant of Spliterators.IteratorSpliterator */
980 jsr166 1.109 final class LTQSpliterator implements Spliterator<E> {
981 dl 1.60 static final int MAX_BATCH = 1 << 25; // max batch array size;
982 jsr166 1.87 Node current; // current node; null until initialized
983 dl 1.52 int batch; // batch size for splits
984     boolean exhausted; // true when no more nodes
985 jsr166 1.94 LTQSpliterator() {}
986 dl 1.52
987     public Spliterator<E> trySplit() {
988 dl 1.60 Node p;
989     int b = batch;
990     int n = (b <= 0) ? 1 : (b >= MAX_BATCH) ? MAX_BATCH : b + 1;
991 jsr166 1.58 if (!exhausted &&
992 jsr166 1.94 ((p = current) != null || (p = firstDataNode()) != null) &&
993 dl 1.54 p.next != null) {
994 dl 1.63 Object[] a = new Object[n];
995 dl 1.52 int i = 0;
996     do {
997 jsr166 1.107 final Object item = p.item;
998     if (p.isData) {
999     if (item != null)
1000     a[i++] = item;
1001     }
1002     else if (item == null) {
1003     p = null;
1004     break;
1005     }
1006 jsr166 1.53 if (p == (p = p.next))
1007 jsr166 1.113 p = head;
1008 jsr166 1.107 } while (p != null && i < n);
1009     exhausted = ((current = p) == null);
1010 dl 1.60 if (i > 0) {
1011     batch = i;
1012     return Spliterators.spliterator
1013 jsr166 1.86 (a, 0, i, (Spliterator.ORDERED |
1014     Spliterator.NONNULL |
1015     Spliterator.CONCURRENT));
1016 dl 1.60 }
1017 dl 1.52 }
1018     return null;
1019     }
1020    
1021     @SuppressWarnings("unchecked")
1022 dl 1.61 public void forEachRemaining(Consumer<? super E> action) {
1023 jsr166 1.111 Objects.requireNonNull(action);
1024 dl 1.52 Node p;
1025     if (!exhausted &&
1026 jsr166 1.113 ((p = current) != null || (p = head) != null)) {
1027 jsr166 1.107 current = null;
1028 dl 1.52 exhausted = true;
1029     do {
1030 jsr166 1.107 final Object item = p.item;
1031     if (p.isData) {
1032     if (item != null)
1033     action.accept((E)item);
1034     }
1035     else if (item == null)
1036     break;
1037 jsr166 1.53 if (p == (p = p.next))
1038 jsr166 1.113 p = head;
1039 jsr166 1.107 } while (p != null);
1040 dl 1.52 }
1041     }
1042    
1043     @SuppressWarnings("unchecked")
1044     public boolean tryAdvance(Consumer<? super E> action) {
1045 jsr166 1.111 Objects.requireNonNull(action);
1046 dl 1.52 Node p;
1047     if (!exhausted &&
1048 jsr166 1.113 ((p = current) != null || (p = head) != null)) {
1049 jsr166 1.106 Object item;
1050 dl 1.52 do {
1051 jsr166 1.107 if (p.isData)
1052     item = p.item;
1053     else {
1054 jsr166 1.106 item = null;
1055 jsr166 1.107 if (p.item == null) {
1056     p = null;
1057     break;
1058     }
1059     }
1060 jsr166 1.53 if (p == (p = p.next))
1061 jsr166 1.113 p = head;
1062 jsr166 1.107 } while (item == null && p != null);
1063     exhausted = ((current = p) == null);
1064 jsr166 1.106 if (item != null) {
1065     action.accept((E)item);
1066 dl 1.52 return true;
1067     }
1068     }
1069     return false;
1070     }
1071    
1072 dl 1.54 public long estimateSize() { return Long.MAX_VALUE; }
1073    
1074 dl 1.52 public int characteristics() {
1075 jsr166 1.100 return (Spliterator.ORDERED |
1076     Spliterator.NONNULL |
1077     Spliterator.CONCURRENT);
1078 dl 1.52 }
1079     }
1080    
1081 jsr166 1.67 /**
1082     * Returns a {@link Spliterator} over the elements in this queue.
1083     *
1084 jsr166 1.68 * <p>The returned spliterator is
1085     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1086     *
1087 jsr166 1.67 * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
1088     * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
1089     *
1090     * @implNote
1091     * The {@code Spliterator} implements {@code trySplit} to permit limited
1092     * parallelism.
1093     *
1094     * @return a {@code Spliterator} over the elements in this queue
1095     * @since 1.8
1096     */
1097 dl 1.56 public Spliterator<E> spliterator() {
1098 jsr166 1.109 return new LTQSpliterator();
1099 dl 1.52 }
1100    
1101 jsr166 1.8 /* -------------- Removal methods -------------- */
1102    
1103 jsr166 1.1 /**
1104 jsr166 1.8 * Unsplices (now or later) the given deleted/cancelled node with
1105     * the given predecessor.
1106 jsr166 1.1 *
1107 dl 1.16 * @param pred a node that was at one time known to be the
1108     * predecessor of s, or null or s itself if s is/was at head
1109 jsr166 1.8 * @param s the node to be unspliced
1110 jsr166 1.1 */
1111 dl 1.16 final void unsplice(Node pred, Node s) {
1112 dl 1.71 s.waiter = null; // disable signals
1113 jsr166 1.1 /*
1114 dl 1.16 * See above for rationale. Briefly: if pred still points to
1115     * s, try to unlink s. If s cannot be unlinked, because it is
1116     * trailing node or pred might be unlinked, and neither pred
1117     * nor s are head or offlist, add to sweepVotes, and if enough
1118     * votes have accumulated, sweep.
1119 jsr166 1.1 */
1120 dl 1.16 if (pred != null && pred != s && pred.next == s) {
1121     Node n = s.next;
1122     if (n == null ||
1123     (n != s && pred.casNext(s, n) && pred.isMatched())) {
1124     for (;;) { // check if at, or could be, head
1125     Node h = head;
1126     if (h == pred || h == s || h == null)
1127     return; // at head or list empty
1128     if (!h.isMatched())
1129     break;
1130     Node hn = h.next;
1131     if (hn == null)
1132     return; // now empty
1133     if (hn != h && casHead(h, hn))
1134     h.forgetNext(); // advance head
1135 jsr166 1.8 }
1136 dl 1.16 if (pred.next != pred && s.next != s) { // recheck if offlist
1137     for (;;) { // sweep now if enough votes
1138     int v = sweepVotes;
1139     if (v < SWEEP_THRESHOLD) {
1140     if (casSweepVotes(v, v + 1))
1141     break;
1142     }
1143     else if (casSweepVotes(v, 0)) {
1144     sweep();
1145     break;
1146     }
1147     }
1148 jsr166 1.12 }
1149 jsr166 1.1 }
1150     }
1151     }
1152    
1153     /**
1154 jsr166 1.26 * Unlinks matched (typically cancelled) nodes encountered in a
1155     * traversal from head.
1156 jsr166 1.1 */
1157 dl 1.16 private void sweep() {
1158 jsr166 1.20 for (Node p = head, s, n; p != null && (s = p.next) != null; ) {
1159 jsr166 1.28 if (!s.isMatched())
1160     // Unmatched nodes are never self-linked
1161 jsr166 1.20 p = s;
1162 jsr166 1.28 else if ((n = s.next) == null) // trailing node is pinned
1163 jsr166 1.20 break;
1164 jsr166 1.28 else if (s == n) // stale
1165     // No need to also check for p == s, since that implies s == n
1166     p = head;
1167 jsr166 1.20 else
1168 dl 1.16 p.casNext(s, n);
1169 jsr166 1.8 }
1170     }
1171    
1172     /**
1173 jsr166 1.1 * Creates an initially empty {@code LinkedTransferQueue}.
1174     */
1175     public LinkedTransferQueue() {
1176     }
1177    
1178     /**
1179     * Creates a {@code LinkedTransferQueue}
1180     * initially containing the elements of the given collection,
1181     * added in traversal order of the collection's iterator.
1182     *
1183     * @param c the collection of elements to initially contain
1184     * @throws NullPointerException if the specified collection or any
1185     * of its elements are null
1186     */
1187     public LinkedTransferQueue(Collection<? extends E> c) {
1188     this();
1189     addAll(c);
1190     }
1191    
1192 jsr166 1.4 /**
1193 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1194     * As the queue is unbounded, this method will never block.
1195     *
1196     * @throws NullPointerException if the specified element is null
1197 jsr166 1.4 */
1198 jsr166 1.5 public void put(E e) {
1199 jsr166 1.8 xfer(e, true, ASYNC, 0);
1200 jsr166 1.1 }
1201    
1202 jsr166 1.4 /**
1203 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1204     * As the queue is unbounded, this method will never block or
1205     * return {@code false}.
1206     *
1207     * @return {@code true} (as specified by
1208 jsr166 1.42 * {@link java.util.concurrent.BlockingQueue#offer(Object,long,TimeUnit)
1209     * BlockingQueue.offer})
1210 jsr166 1.5 * @throws NullPointerException if the specified element is null
1211 jsr166 1.4 */
1212 jsr166 1.5 public boolean offer(E e, long timeout, TimeUnit unit) {
1213 jsr166 1.8 xfer(e, true, ASYNC, 0);
1214     return true;
1215 jsr166 1.1 }
1216    
1217 jsr166 1.4 /**
1218 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1219     * As the queue is unbounded, this method will never return {@code false}.
1220     *
1221 jsr166 1.32 * @return {@code true} (as specified by {@link Queue#offer})
1222 jsr166 1.5 * @throws NullPointerException if the specified element is null
1223 jsr166 1.4 */
1224 jsr166 1.1 public boolean offer(E e) {
1225 jsr166 1.8 xfer(e, true, ASYNC, 0);
1226 jsr166 1.1 return true;
1227     }
1228    
1229 jsr166 1.4 /**
1230 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1231     * As the queue is unbounded, this method will never throw
1232     * {@link IllegalStateException} or return {@code false}.
1233     *
1234     * @return {@code true} (as specified by {@link Collection#add})
1235     * @throws NullPointerException if the specified element is null
1236 jsr166 1.4 */
1237 jsr166 1.1 public boolean add(E e) {
1238 jsr166 1.8 xfer(e, true, ASYNC, 0);
1239     return true;
1240 jsr166 1.5 }
1241    
1242     /**
1243 jsr166 1.6 * Transfers the element to a waiting consumer immediately, if possible.
1244     *
1245     * <p>More precisely, transfers the specified element immediately
1246     * if there exists a consumer already waiting to receive it (in
1247     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1248     * otherwise returning {@code false} without enqueuing the element.
1249 jsr166 1.5 *
1250     * @throws NullPointerException if the specified element is null
1251     */
1252     public boolean tryTransfer(E e) {
1253 jsr166 1.8 return xfer(e, true, NOW, 0) == null;
1254 jsr166 1.1 }
1255    
1256 jsr166 1.4 /**
1257 jsr166 1.6 * Transfers the element to a consumer, waiting if necessary to do so.
1258     *
1259     * <p>More precisely, transfers the specified element immediately
1260     * if there exists a consumer already waiting to receive it (in
1261     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1262     * else inserts the specified element at the tail of this queue
1263     * and waits until the element is received by a consumer.
1264 jsr166 1.5 *
1265     * @throws NullPointerException if the specified element is null
1266 jsr166 1.4 */
1267 jsr166 1.1 public void transfer(E e) throws InterruptedException {
1268 jsr166 1.8 if (xfer(e, true, SYNC, 0) != null) {
1269     Thread.interrupted(); // failure possible only due to interrupt
1270 jsr166 1.1 throw new InterruptedException();
1271     }
1272     }
1273    
1274 jsr166 1.4 /**
1275 jsr166 1.6 * Transfers the element to a consumer if it is possible to do so
1276     * before the timeout elapses.
1277     *
1278     * <p>More precisely, transfers the specified element immediately
1279     * if there exists a consumer already waiting to receive it (in
1280     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1281     * else inserts the specified element at the tail of this queue
1282     * and waits until the element is received by a consumer,
1283     * returning {@code false} if the specified wait time elapses
1284     * before the element can be transferred.
1285 jsr166 1.5 *
1286     * @throws NullPointerException if the specified element is null
1287 jsr166 1.4 */
1288 jsr166 1.1 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1289     throws InterruptedException {
1290 jsr166 1.14 if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1291 jsr166 1.1 return true;
1292     if (!Thread.interrupted())
1293     return false;
1294     throw new InterruptedException();
1295     }
1296    
1297     public E take() throws InterruptedException {
1298 jsr166 1.8 E e = xfer(null, false, SYNC, 0);
1299 jsr166 1.1 if (e != null)
1300 jsr166 1.5 return e;
1301 jsr166 1.1 Thread.interrupted();
1302     throw new InterruptedException();
1303     }
1304    
1305     public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1306 jsr166 1.14 E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1307 jsr166 1.1 if (e != null || !Thread.interrupted())
1308 jsr166 1.5 return e;
1309 jsr166 1.1 throw new InterruptedException();
1310     }
1311    
1312     public E poll() {
1313 jsr166 1.8 return xfer(null, false, NOW, 0);
1314 jsr166 1.1 }
1315    
1316 jsr166 1.4 /**
1317     * @throws NullPointerException {@inheritDoc}
1318     * @throws IllegalArgumentException {@inheritDoc}
1319     */
1320 jsr166 1.1 public int drainTo(Collection<? super E> c) {
1321 jsr166 1.111 Objects.requireNonNull(c);
1322 jsr166 1.1 if (c == this)
1323     throw new IllegalArgumentException();
1324     int n = 0;
1325 jsr166 1.112 for (E e; (e = poll()) != null; n++)
1326 jsr166 1.1 c.add(e);
1327     return n;
1328     }
1329    
1330 jsr166 1.4 /**
1331     * @throws NullPointerException {@inheritDoc}
1332     * @throws IllegalArgumentException {@inheritDoc}
1333     */
1334 jsr166 1.1 public int drainTo(Collection<? super E> c, int maxElements) {
1335 jsr166 1.111 Objects.requireNonNull(c);
1336 jsr166 1.1 if (c == this)
1337     throw new IllegalArgumentException();
1338     int n = 0;
1339 jsr166 1.112 for (E e; n < maxElements && (e = poll()) != null; n++)
1340 jsr166 1.1 c.add(e);
1341     return n;
1342     }
1343    
1344 jsr166 1.5 /**
1345 jsr166 1.36 * Returns an iterator over the elements in this queue in proper sequence.
1346     * The elements will be returned in order from first (head) to last (tail).
1347 jsr166 1.5 *
1348 jsr166 1.68 * <p>The returned iterator is
1349     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1350 jsr166 1.5 *
1351     * @return an iterator over the elements in this queue in proper sequence
1352     */
1353 jsr166 1.1 public Iterator<E> iterator() {
1354     return new Itr();
1355     }
1356    
1357     public E peek() {
1358 jsr166 1.92 restartFromHead: for (;;) {
1359     for (Node p = head; p != null;) {
1360     Object item = p.item;
1361     if (p.isData) {
1362 jsr166 1.105 if (item != null) {
1363 jsr166 1.92 @SuppressWarnings("unchecked") E e = (E) item;
1364     return e;
1365     }
1366     }
1367     else if (item == null)
1368     break;
1369     if (p == (p = p.next))
1370     continue restartFromHead;
1371     }
1372     return null;
1373     }
1374 jsr166 1.1 }
1375    
1376 jsr166 1.6 /**
1377     * Returns {@code true} if this queue contains no elements.
1378     *
1379     * @return {@code true} if this queue contains no elements
1380     */
1381 jsr166 1.1 public boolean isEmpty() {
1382 jsr166 1.90 return firstDataNode() == null;
1383 jsr166 1.1 }
1384    
1385     public boolean hasWaitingConsumer() {
1386 jsr166 1.93 restartFromHead: for (;;) {
1387     for (Node p = head; p != null;) {
1388     Object item = p.item;
1389     if (p.isData) {
1390 jsr166 1.105 if (item != null)
1391 jsr166 1.93 break;
1392     }
1393     else if (item == null)
1394     return true;
1395     if (p == (p = p.next))
1396     continue restartFromHead;
1397     }
1398     return false;
1399     }
1400 jsr166 1.1 }
1401    
1402     /**
1403     * Returns the number of elements in this queue. If this queue
1404     * contains more than {@code Integer.MAX_VALUE} elements, returns
1405     * {@code Integer.MAX_VALUE}.
1406     *
1407     * <p>Beware that, unlike in most collections, this method is
1408     * <em>NOT</em> a constant-time operation. Because of the
1409     * asynchronous nature of these queues, determining the current
1410     * number of elements requires an O(n) traversal.
1411     *
1412     * @return the number of elements in this queue
1413     */
1414     public int size() {
1415 jsr166 1.8 return countOfMode(true);
1416 jsr166 1.1 }
1417    
1418     public int getWaitingConsumerCount() {
1419 jsr166 1.8 return countOfMode(false);
1420 jsr166 1.1 }
1421    
1422 jsr166 1.6 /**
1423     * Removes a single instance of the specified element from this queue,
1424     * if it is present. More formally, removes an element {@code e} such
1425     * that {@code o.equals(e)}, if this queue contains one or more such
1426     * elements.
1427     * Returns {@code true} if this queue contained the specified element
1428     * (or equivalently, if this queue changed as a result of the call).
1429     *
1430     * @param o element to be removed from this queue, if present
1431     * @return {@code true} if this queue changed as a result of the call
1432     */
1433 jsr166 1.1 public boolean remove(Object o) {
1434 jsr166 1.108 if (o == null)
1435     return false;
1436     restartFromHead: for (;;) {
1437     for (Node pred = null, p = head; p != null; ) {
1438     Object item = p.item;
1439     if (p.isData) {
1440     if (item != null
1441     && o.equals(item)
1442     && p.tryMatchData()) {
1443     unsplice(pred, p);
1444     return true;
1445     }
1446     }
1447     else if (item == null)
1448     break;
1449     if ((pred = p) == (p = p.next))
1450     continue restartFromHead;
1451     }
1452     return false;
1453     }
1454 jsr166 1.1 }
1455    
1456     /**
1457 jsr166 1.30 * Returns {@code true} if this queue contains the specified element.
1458     * More formally, returns {@code true} if and only if this queue contains
1459     * at least one element {@code e} such that {@code o.equals(e)}.
1460     *
1461     * @param o object to be checked for containment in this queue
1462     * @return {@code true} if this queue contains the specified element
1463     */
1464     public boolean contains(Object o) {
1465 jsr166 1.74 if (o != null) {
1466 jsr166 1.110 for (Node p = head; p != null; ) {
1467 jsr166 1.74 Object item = p.item;
1468     if (p.isData) {
1469 jsr166 1.105 if (item != null && o.equals(item))
1470 jsr166 1.74 return true;
1471     }
1472     else if (item == null)
1473     break;
1474 jsr166 1.110 if (p == (p = p.next))
1475     p = head;
1476 jsr166 1.30 }
1477     }
1478     return false;
1479     }
1480    
1481     /**
1482 jsr166 1.5 * Always returns {@code Integer.MAX_VALUE} because a
1483     * {@code LinkedTransferQueue} is not capacity constrained.
1484     *
1485     * @return {@code Integer.MAX_VALUE} (as specified by
1486 jsr166 1.42 * {@link java.util.concurrent.BlockingQueue#remainingCapacity()
1487     * BlockingQueue.remainingCapacity})
1488 jsr166 1.5 */
1489     public int remainingCapacity() {
1490     return Integer.MAX_VALUE;
1491     }
1492    
1493     /**
1494 jsr166 1.50 * Saves this queue to a stream (that is, serializes it).
1495 jsr166 1.1 *
1496 jsr166 1.65 * @param s the stream
1497 jsr166 1.66 * @throws java.io.IOException if an I/O error occurs
1498 jsr166 1.1 * @serialData All of the elements (each an {@code E}) in
1499     * the proper order, followed by a null
1500     */
1501     private void writeObject(java.io.ObjectOutputStream s)
1502     throws java.io.IOException {
1503     s.defaultWriteObject();
1504     for (E e : this)
1505     s.writeObject(e);
1506     // Use trailing null as sentinel
1507     s.writeObject(null);
1508     }
1509    
1510     /**
1511 jsr166 1.50 * Reconstitutes this queue from a stream (that is, deserializes it).
1512 jsr166 1.65 * @param s the stream
1513 jsr166 1.66 * @throws ClassNotFoundException if the class of a serialized object
1514     * could not be found
1515     * @throws java.io.IOException if an I/O error occurs
1516 jsr166 1.1 */
1517     private void readObject(java.io.ObjectInputStream s)
1518     throws java.io.IOException, ClassNotFoundException {
1519     s.defaultReadObject();
1520     for (;;) {
1521 jsr166 1.49 @SuppressWarnings("unchecked")
1522     E item = (E) s.readObject();
1523 jsr166 1.1 if (item == null)
1524     break;
1525     else
1526     offer(item);
1527     }
1528     }
1529    
1530 dl 1.97 // VarHandle mechanics
1531     private static final VarHandle HEAD;
1532     private static final VarHandle TAIL;
1533     private static final VarHandle SWEEPVOTES;
1534 dl 1.38 static {
1535 jsr166 1.1 try {
1536 dl 1.97 MethodHandles.Lookup l = MethodHandles.lookup();
1537     HEAD = l.findVarHandle(LinkedTransferQueue.class, "head",
1538     Node.class);
1539     TAIL = l.findVarHandle(LinkedTransferQueue.class, "tail",
1540     Node.class);
1541     SWEEPVOTES = l.findVarHandle(LinkedTransferQueue.class, "sweepVotes",
1542     int.class);
1543 jsr166 1.79 } catch (ReflectiveOperationException e) {
1544 dl 1.38 throw new Error(e);
1545 jsr166 1.1 }
1546 jsr166 1.85
1547     // Reduce the risk of rare disastrous classloading in first call to
1548     // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
1549     Class<?> ensureLoaded = LockSupport.class;
1550 jsr166 1.1 }
1551     }