ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/LinkedTransferQueue.java
Revision: 1.121
Committed: Wed Dec 28 18:07:18 2016 UTC (7 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.120: +5 -4 lines
Log Message:
using release write in forgetNext seems slightly safer

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.39 * http://creativecommons.org/publicdomain/zero/1.0/
5 jsr166 1.1 */
6    
7     package java.util.concurrent;
8    
9 dl 1.97 import java.lang.invoke.MethodHandles;
10     import java.lang.invoke.VarHandle;
11 jsr166 1.1 import java.util.AbstractQueue;
12 jsr166 1.82 import java.util.Arrays;
13 jsr166 1.1 import java.util.Collection;
14     import java.util.Iterator;
15     import java.util.NoSuchElementException;
16 jsr166 1.111 import java.util.Objects;
17 jsr166 1.5 import java.util.Queue;
18 dl 1.52 import java.util.Spliterator;
19 dl 1.54 import java.util.Spliterators;
20 jsr166 1.76 import java.util.concurrent.locks.LockSupport;
21     import java.util.function.Consumer;
22 jsr166 1.116 import java.util.function.Predicate;
23 dl 1.22
24 jsr166 1.1 /**
25 jsr166 1.6 * An unbounded {@link TransferQueue} based on linked nodes.
26 jsr166 1.1 * This queue orders elements FIFO (first-in-first-out) with respect
27     * to any given producer. The <em>head</em> of the queue is that
28     * element that has been on the queue the longest time for some
29     * producer. The <em>tail</em> of the queue is that element that has
30     * been on the queue the shortest time for some producer.
31     *
32 dl 1.40 * <p>Beware that, unlike in most collections, the {@code size} method
33     * is <em>NOT</em> a constant-time operation. Because of the
34 jsr166 1.1 * asynchronous nature of these queues, determining the current number
35 dl 1.40 * of elements requires a traversal of the elements, and so may report
36     * inaccurate results if this collection is modified during traversal.
37 dl 1.41 * Additionally, the bulk operations {@code addAll},
38     * {@code removeAll}, {@code retainAll}, {@code containsAll},
39 jsr166 1.98 * and {@code toArray} are <em>not</em> guaranteed
40 dl 1.40 * to be performed atomically. For example, an iterator operating
41 dl 1.41 * concurrently with an {@code addAll} operation might view only some
42 dl 1.40 * of the added elements.
43 jsr166 1.1 *
44     * <p>This class and its iterator implement all of the
45     * <em>optional</em> methods of the {@link Collection} and {@link
46     * Iterator} interfaces.
47     *
48     * <p>Memory consistency effects: As with other concurrent
49     * collections, actions in a thread prior to placing an object into a
50     * {@code LinkedTransferQueue}
51     * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
52     * actions subsequent to the access or removal of that element from
53     * the {@code LinkedTransferQueue} in another thread.
54     *
55     * <p>This class is a member of the
56     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
57     * Java Collections Framework</a>.
58     *
59     * @since 1.7
60     * @author Doug Lea
61 jsr166 1.75 * @param <E> the type of elements held in this queue
62 jsr166 1.1 */
63     public class LinkedTransferQueue<E> extends AbstractQueue<E>
64     implements TransferQueue<E>, java.io.Serializable {
65     private static final long serialVersionUID = -3223113410248163686L;
66    
67     /*
68 jsr166 1.8 * *** Overview of Dual Queues with Slack ***
69 jsr166 1.1 *
70 jsr166 1.8 * Dual Queues, introduced by Scherer and Scott
71 jsr166 1.99 * (http://www.cs.rochester.edu/~scott/papers/2004_DISC_dual_DS.pdf)
72     * are (linked) queues in which nodes may represent either data or
73 jsr166 1.8 * requests. When a thread tries to enqueue a data node, but
74     * encounters a request node, it instead "matches" and removes it;
75     * and vice versa for enqueuing requests. Blocking Dual Queues
76     * arrange that threads enqueuing unmatched requests block until
77     * other threads provide the match. Dual Synchronous Queues (see
78     * Scherer, Lea, & Scott
79     * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
80     * additionally arrange that threads enqueuing unmatched data also
81     * block. Dual Transfer Queues support all of these modes, as
82     * dictated by callers.
83     *
84     * A FIFO dual queue may be implemented using a variation of the
85     * Michael & Scott (M&S) lock-free queue algorithm
86 jsr166 1.72 * (http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf).
87 jsr166 1.8 * It maintains two pointer fields, "head", pointing to a
88     * (matched) node that in turn points to the first actual
89     * (unmatched) queue node (or null if empty); and "tail" that
90     * points to the last node on the queue (or again null if
91     * empty). For example, here is a possible queue with four data
92     * elements:
93     *
94     * head tail
95     * | |
96     * v v
97     * M -> U -> U -> U -> U
98     *
99     * The M&S queue algorithm is known to be prone to scalability and
100     * overhead limitations when maintaining (via CAS) these head and
101     * tail pointers. This has led to the development of
102     * contention-reducing variants such as elimination arrays (see
103     * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
104     * optimistic back pointers (see Ladan-Mozes & Shavit
105     * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
106     * However, the nature of dual queues enables a simpler tactic for
107     * improving M&S-style implementations when dual-ness is needed.
108     *
109     * In a dual queue, each node must atomically maintain its match
110     * status. While there are other possible variants, we implement
111     * this here as: for a data-mode node, matching entails CASing an
112     * "item" field from a non-null data value to null upon match, and
113     * vice-versa for request nodes, CASing from null to a data
114     * value. (Note that the linearization properties of this style of
115     * queue are easy to verify -- elements are made available by
116     * linking, and unavailable by matching.) Compared to plain M&S
117     * queues, this property of dual queues requires one additional
118     * successful atomic operation per enq/deq pair. But it also
119     * enables lower cost variants of queue maintenance mechanics. (A
120     * variation of this idea applies even for non-dual queues that
121     * support deletion of interior elements, such as
122     * j.u.c.ConcurrentLinkedQueue.)
123     *
124     * Once a node is matched, its match status can never again
125     * change. We may thus arrange that the linked list of them
126     * contain a prefix of zero or more matched nodes, followed by a
127     * suffix of zero or more unmatched nodes. (Note that we allow
128     * both the prefix and suffix to be zero length, which in turn
129     * means that we do not use a dummy header.) If we were not
130     * concerned with either time or space efficiency, we could
131     * correctly perform enqueue and dequeue operations by traversing
132     * from a pointer to the initial node; CASing the item of the
133     * first unmatched node on match and CASing the next field of the
134     * trailing node on appends. (Plus some special-casing when
135     * initially empty). While this would be a terrible idea in
136     * itself, it does have the benefit of not requiring ANY atomic
137     * updates on head/tail fields.
138     *
139     * We introduce here an approach that lies between the extremes of
140     * never versus always updating queue (head and tail) pointers.
141     * This offers a tradeoff between sometimes requiring extra
142     * traversal steps to locate the first and/or last unmatched
143     * nodes, versus the reduced overhead and contention of fewer
144     * updates to queue pointers. For example, a possible snapshot of
145     * a queue is:
146     *
147     * head tail
148     * | |
149     * v v
150     * M -> M -> U -> U -> U -> U
151     *
152     * The best value for this "slack" (the targeted maximum distance
153     * between the value of "head" and the first unmatched node, and
154     * similarly for "tail") is an empirical matter. We have found
155     * that using very small constants in the range of 1-3 work best
156     * over a range of platforms. Larger values introduce increasing
157     * costs of cache misses and risks of long traversal chains, while
158     * smaller values increase CAS contention and overhead.
159     *
160     * Dual queues with slack differ from plain M&S dual queues by
161     * virtue of only sometimes updating head or tail pointers when
162     * matching, appending, or even traversing nodes; in order to
163     * maintain a targeted slack. The idea of "sometimes" may be
164     * operationalized in several ways. The simplest is to use a
165     * per-operation counter incremented on each traversal step, and
166     * to try (via CAS) to update the associated queue pointer
167     * whenever the count exceeds a threshold. Another, that requires
168     * more overhead, is to use random number generators to update
169     * with a given probability per traversal step.
170     *
171     * In any strategy along these lines, because CASes updating
172     * fields may fail, the actual slack may exceed targeted
173     * slack. However, they may be retried at any time to maintain
174     * targets. Even when using very small slack values, this
175     * approach works well for dual queues because it allows all
176     * operations up to the point of matching or appending an item
177     * (hence potentially allowing progress by another thread) to be
178     * read-only, thus not introducing any further contention. As
179     * described below, we implement this by performing slack
180     * maintenance retries only after these points.
181     *
182     * As an accompaniment to such techniques, traversal overhead can
183     * be further reduced without increasing contention of head
184     * pointer updates: Threads may sometimes shortcut the "next" link
185     * path from the current "head" node to be closer to the currently
186     * known first unmatched node, and similarly for tail. Again, this
187     * may be triggered with using thresholds or randomization.
188     *
189     * These ideas must be further extended to avoid unbounded amounts
190     * of costly-to-reclaim garbage caused by the sequential "next"
191     * links of nodes starting at old forgotten head nodes: As first
192     * described in detail by Boehm
193 jsr166 1.69 * (http://portal.acm.org/citation.cfm?doid=503272.503282), if a GC
194 jsr166 1.8 * delays noticing that any arbitrarily old node has become
195     * garbage, all newer dead nodes will also be unreclaimed.
196     * (Similar issues arise in non-GC environments.) To cope with
197     * this in our implementation, upon CASing to advance the head
198     * pointer, we set the "next" link of the previous head to point
199     * only to itself; thus limiting the length of connected dead lists.
200     * (We also take similar care to wipe out possibly garbage
201     * retaining values held in other Node fields.) However, doing so
202     * adds some further complexity to traversal: If any "next"
203     * pointer links to itself, it indicates that the current thread
204     * has lagged behind a head-update, and so the traversal must
205     * continue from the "head". Traversals trying to find the
206     * current tail starting from "tail" may also encounter
207     * self-links, in which case they also continue at "head".
208     *
209     * It is tempting in slack-based scheme to not even use CAS for
210     * updates (similarly to Ladan-Mozes & Shavit). However, this
211     * cannot be done for head updates under the above link-forgetting
212     * mechanics because an update may leave head at a detached node.
213     * And while direct writes are possible for tail updates, they
214     * increase the risk of long retraversals, and hence long garbage
215     * chains, which can be much more costly than is worthwhile
216     * considering that the cost difference of performing a CAS vs
217     * write is smaller when they are not triggered on each operation
218     * (especially considering that writes and CASes equally require
219     * additional GC bookkeeping ("write barriers") that are sometimes
220     * more costly than the writes themselves because of contention).
221     *
222     * *** Overview of implementation ***
223     *
224     * We use a threshold-based approach to updates, with a slack
225     * threshold of two -- that is, we update head/tail when the
226     * current pointer appears to be two or more steps away from the
227     * first/last node. The slack value is hard-wired: a path greater
228     * than one is naturally implemented by checking equality of
229     * traversal pointers except when the list has only one element,
230     * in which case we keep slack threshold at one. Avoiding tracking
231     * explicit counts across method calls slightly simplifies an
232     * already-messy implementation. Using randomization would
233     * probably work better if there were a low-quality dirt-cheap
234     * per-thread one available, but even ThreadLocalRandom is too
235     * heavy for these purposes.
236     *
237 dl 1.16 * With such a small slack threshold value, it is not worthwhile
238     * to augment this with path short-circuiting (i.e., unsplicing
239     * interior nodes) except in the case of cancellation/removal (see
240     * below).
241 jsr166 1.8 *
242     * We allow both the head and tail fields to be null before any
243     * nodes are enqueued; initializing upon first append. This
244     * simplifies some other logic, as well as providing more
245     * efficient explicit control paths instead of letting JVMs insert
246     * implicit NullPointerExceptions when they are null. While not
247     * currently fully implemented, we also leave open the possibility
248     * of re-nulling these fields when empty (which is complicated to
249     * arrange, for little benefit.)
250     *
251     * All enqueue/dequeue operations are handled by the single method
252     * "xfer" with parameters indicating whether to act as some form
253     * of offer, put, poll, take, or transfer (each possibly with
254     * timeout). The relative complexity of using one monolithic
255     * method outweighs the code bulk and maintenance problems of
256     * using separate methods for each case.
257     *
258     * Operation consists of up to three phases. The first is
259     * implemented within method xfer, the second in tryAppend, and
260     * the third in method awaitMatch.
261     *
262     * 1. Try to match an existing node
263     *
264     * Starting at head, skip already-matched nodes until finding
265     * an unmatched node of opposite mode, if one exists, in which
266     * case matching it and returning, also if necessary updating
267     * head to one past the matched node (or the node itself if the
268     * list has no other unmatched nodes). If the CAS misses, then
269     * a loop retries advancing head by two steps until either
270     * success or the slack is at most two. By requiring that each
271     * attempt advances head by two (if applicable), we ensure that
272     * the slack does not grow without bound. Traversals also check
273     * if the initial head is now off-list, in which case they
274     * start at the new head.
275     *
276     * If no candidates are found and the call was untimed
277     * poll/offer, (argument "how" is NOW) return.
278     *
279     * 2. Try to append a new node (method tryAppend)
280     *
281     * Starting at current tail pointer, find the actual last node
282     * and try to append a new node (or if head was null, establish
283     * the first node). Nodes can be appended only if their
284     * predecessors are either already matched or are of the same
285     * mode. If we detect otherwise, then a new node with opposite
286     * mode must have been appended during traversal, so we must
287     * restart at phase 1. The traversal and update steps are
288     * otherwise similar to phase 1: Retrying upon CAS misses and
289     * checking for staleness. In particular, if a self-link is
290     * encountered, then we can safely jump to a node on the list
291     * by continuing the traversal at current head.
292     *
293     * On successful append, if the call was ASYNC, return.
294     *
295     * 3. Await match or cancellation (method awaitMatch)
296     *
297     * Wait for another thread to match node; instead cancelling if
298     * the current thread was interrupted or the wait timed out. On
299     * multiprocessors, we use front-of-queue spinning: If a node
300     * appears to be the first unmatched node in the queue, it
301     * spins a bit before blocking. In either case, before blocking
302     * it tries to unsplice any nodes between the current "head"
303     * and the first unmatched node.
304     *
305     * Front-of-queue spinning vastly improves performance of
306     * heavily contended queues. And so long as it is relatively
307     * brief and "quiet", spinning does not much impact performance
308     * of less-contended queues. During spins threads check their
309     * interrupt status and generate a thread-local random number
310     * to decide to occasionally perform a Thread.yield. While
311 jsr166 1.44 * yield has underdefined specs, we assume that it might help,
312 jsr166 1.45 * and will not hurt, in limiting impact of spinning on busy
313 jsr166 1.8 * systems. We also use smaller (1/2) spins for nodes that are
314     * not known to be front but whose predecessors have not
315     * blocked -- these "chained" spins avoid artifacts of
316     * front-of-queue rules which otherwise lead to alternating
317     * nodes spinning vs blocking. Further, front threads that
318     * represent phase changes (from data to request node or vice
319     * versa) compared to their predecessors receive additional
320     * chained spins, reflecting longer paths typically required to
321     * unblock threads during phase changes.
322 dl 1.16 *
323     *
324     * ** Unlinking removed interior nodes **
325     *
326     * In addition to minimizing garbage retention via self-linking
327     * described above, we also unlink removed interior nodes. These
328     * may arise due to timed out or interrupted waits, or calls to
329     * remove(x) or Iterator.remove. Normally, given a node that was
330     * at one time known to be the predecessor of some node s that is
331     * to be removed, we can unsplice s by CASing the next field of
332     * its predecessor if it still points to s (otherwise s must
333     * already have been removed or is now offlist). But there are two
334     * situations in which we cannot guarantee to make node s
335     * unreachable in this way: (1) If s is the trailing node of list
336     * (i.e., with null next), then it is pinned as the target node
337 jsr166 1.23 * for appends, so can only be removed later after other nodes are
338 dl 1.16 * appended. (2) We cannot necessarily unlink s given a
339     * predecessor node that is matched (including the case of being
340 jsr166 1.17 * cancelled): the predecessor may already be unspliced, in which
341     * case some previous reachable node may still point to s.
342     * (For further explanation see Herlihy & Shavit "The Art of
343 dl 1.16 * Multiprocessor Programming" chapter 9). Although, in both
344     * cases, we can rule out the need for further action if either s
345     * or its predecessor are (or can be made to be) at, or fall off
346     * from, the head of list.
347     *
348     * Without taking these into account, it would be possible for an
349     * unbounded number of supposedly removed nodes to remain
350     * reachable. Situations leading to such buildup are uncommon but
351     * can occur in practice; for example when a series of short timed
352     * calls to poll repeatedly time out but never otherwise fall off
353     * the list because of an untimed call to take at the front of the
354     * queue.
355     *
356     * When these cases arise, rather than always retraversing the
357     * entire list to find an actual predecessor to unlink (which
358     * won't help for case (1) anyway), we record a conservative
359 jsr166 1.24 * estimate of possible unsplice failures (in "sweepVotes").
360     * We trigger a full sweep when the estimate exceeds a threshold
361     * ("SWEEP_THRESHOLD") indicating the maximum number of estimated
362     * removal failures to tolerate before sweeping through, unlinking
363     * cancelled nodes that were not unlinked upon initial removal.
364     * We perform sweeps by the thread hitting threshold (rather than
365     * background threads or by spreading work to other threads)
366     * because in the main contexts in which removal occurs, the
367     * caller is already timed-out, cancelled, or performing a
368     * potentially O(n) operation (e.g. remove(x)), none of which are
369     * time-critical enough to warrant the overhead that alternatives
370     * would impose on other threads.
371 dl 1.16 *
372     * Because the sweepVotes estimate is conservative, and because
373     * nodes become unlinked "naturally" as they fall off the head of
374     * the queue, and because we allow votes to accumulate even while
375 jsr166 1.17 * sweeps are in progress, there are typically significantly fewer
376 dl 1.16 * such nodes than estimated. Choice of a threshold value
377     * balances the likelihood of wasted effort and contention, versus
378     * providing a worst-case bound on retention of interior nodes in
379     * quiescent queues. The value defined below was chosen
380     * empirically to balance these under various timeout scenarios.
381     *
382     * Note that we cannot self-link unlinked interior nodes during
383     * sweeps. However, the associated garbage chains terminate when
384     * some successor ultimately falls off the head of the list and is
385     * self-linked.
386 jsr166 1.8 */
387    
388     /** True if on multiprocessor */
389     private static final boolean MP =
390     Runtime.getRuntime().availableProcessors() > 1;
391    
392     /**
393     * The number of times to spin (with randomly interspersed calls
394     * to Thread.yield) on multiprocessor before blocking when a node
395     * is apparently the first waiter in the queue. See above for
396     * explanation. Must be a power of two. The value is empirically
397     * derived -- it works pretty well across a variety of processors,
398     * numbers of CPUs, and OSes.
399     */
400     private static final int FRONT_SPINS = 1 << 7;
401    
402     /**
403     * The number of times to spin before blocking when a node is
404     * preceded by another node that is apparently spinning. Also
405     * serves as an increment to FRONT_SPINS on phase changes, and as
406     * base average frequency for yielding during spins. Must be a
407     * power of two.
408     */
409     private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
410    
411     /**
412 dl 1.16 * The maximum number of estimated removal failures (sweepVotes)
413     * to tolerate before sweeping through the queue unlinking
414     * cancelled nodes that were not unlinked upon initial
415     * removal. See above for explanation. The value must be at least
416     * two to avoid useless sweeps when removing trailing nodes.
417     */
418     static final int SWEEP_THRESHOLD = 32;
419    
420     /**
421 jsr166 1.8 * Queue nodes. Uses Object, not E, for items to allow forgetting
422 dl 1.97 * them after use. Relies heavily on VarHandles to minimize
423 dl 1.16 * unnecessary ordering constraints: Writes that are intrinsically
424     * ordered wrt other accesses or CASes use simple relaxed forms.
425 jsr166 1.8 */
426 jsr166 1.14 static final class Node {
427 jsr166 1.8 final boolean isData; // false if this is a request node
428     volatile Object item; // initially non-null if isData; CASed to match
429 jsr166 1.14 volatile Node next;
430 jsr166 1.8 volatile Thread waiter; // null until waiting
431    
432 jsr166 1.14 final boolean casNext(Node cmp, Node val) {
433 dl 1.97 return NEXT.compareAndSet(this, cmp, val);
434 jsr166 1.8 }
435 jsr166 1.1
436 jsr166 1.8 final boolean casItem(Object cmp, Object val) {
437 jsr166 1.105 // assert isData == (cmp != null);
438     // assert isData == (val == null);
439     // assert !(cmp instanceof Node);
440 dl 1.97 return ITEM.compareAndSet(this, cmp, val);
441 jsr166 1.8 }
442 jsr166 1.1
443 jsr166 1.8 /**
444 jsr166 1.25 * Constructs a new node. Uses relaxed write because item can
445     * only be seen after publication via casNext.
446 jsr166 1.8 */
447 jsr166 1.101 Node(Object item) {
448 jsr166 1.104 ITEM.set(this, item);
449 jsr166 1.101 isData = (item != null);
450 jsr166 1.8 }
451 jsr166 1.1
452 jsr166 1.8 /**
453     * Links node to itself to avoid garbage retention. Called
454     * only after CASing head field, so uses relaxed write.
455     */
456     final void forgetNext() {
457 jsr166 1.121 NEXT.setRelease(this, this);
458 jsr166 1.8 }
459 jsr166 1.1
460 jsr166 1.8 /**
461 jsr166 1.105 * Sets item (of a request node) to self and waiter to null,
462     * to avoid garbage retention after matching or cancelling.
463     * Uses relaxed writes because order is already constrained in
464     * the only calling contexts: item is forgotten only after
465 jsr166 1.121 * volatile/atomic mechanics that extract items, and visitors
466     * of request nodes only ever check whether item is null.
467     * Similarly, clearing waiter follows either CAS or return
468     * from park (if ever parked; else we don't care).
469 jsr166 1.8 */
470     final void forgetContents() {
471 jsr166 1.105 // assert isMatched();
472     if (!isData)
473     ITEM.set(this, this);
474 dl 1.97 WAITER.set(this, null);
475 jsr166 1.8 }
476 jsr166 1.1
477 jsr166 1.8 /**
478     * Returns true if this node has been matched, including the
479     * case of artificial matches due to cancellation.
480     */
481     final boolean isMatched() {
482 jsr166 1.105 return isData == (item == null);
483 jsr166 1.11 }
484    
485     /**
486 jsr166 1.8 * Returns true if a node with the given mode cannot be
487     * appended to this node because this node is unmatched and
488     * has opposite data mode.
489     */
490     final boolean cannotPrecede(boolean haveData) {
491     boolean d = isData;
492 jsr166 1.105 return d != haveData && d != (item == null);
493 jsr166 1.8 }
494 jsr166 1.1
495 jsr166 1.8 /**
496     * Tries to artificially match a data node -- used by remove.
497     */
498     final boolean tryMatchData() {
499 dl 1.33 // assert isData;
500 jsr166 1.105 final Object x;
501     if ((x = item) != null && casItem(x, null)) {
502 jsr166 1.8 LockSupport.unpark(waiter);
503     return true;
504     }
505     return false;
506 jsr166 1.1 }
507    
508 dl 1.38 private static final long serialVersionUID = -3375979862319811754L;
509    
510 dl 1.97 // VarHandle mechanics
511     private static final VarHandle ITEM;
512     private static final VarHandle NEXT;
513     private static final VarHandle WAITER;
514 dl 1.38 static {
515     try {
516 dl 1.97 MethodHandles.Lookup l = MethodHandles.lookup();
517     ITEM = l.findVarHandle(Node.class, "item", Object.class);
518     NEXT = l.findVarHandle(Node.class, "next", Node.class);
519     WAITER = l.findVarHandle(Node.class, "waiter", Thread.class);
520 jsr166 1.79 } catch (ReflectiveOperationException e) {
521 dl 1.38 throw new Error(e);
522     }
523     }
524 jsr166 1.1 }
525    
526 jsr166 1.8 /** head of the queue; null until first enqueue */
527 jsr166 1.14 transient volatile Node head;
528 jsr166 1.8
529     /** tail of the queue; null until first append */
530 jsr166 1.14 private transient volatile Node tail;
531 jsr166 1.1
532 dl 1.16 /** The number of apparent failures to unsplice removed nodes */
533     private transient volatile int sweepVotes;
534    
535 jsr166 1.14 private boolean casTail(Node cmp, Node val) {
536 dl 1.97 return TAIL.compareAndSet(this, cmp, val);
537 jsr166 1.8 }
538 jsr166 1.1
539 jsr166 1.14 private boolean casHead(Node cmp, Node val) {
540 dl 1.97 return HEAD.compareAndSet(this, cmp, val);
541 jsr166 1.8 }
542 jsr166 1.1
543 dl 1.16 private boolean casSweepVotes(int cmp, int val) {
544 dl 1.97 return SWEEPVOTES.compareAndSet(this, cmp, val);
545 jsr166 1.8 }
546 jsr166 1.1
547 jsr166 1.8 /*
548 jsr166 1.14 * Possible values for "how" argument in xfer method.
549 jsr166 1.1 */
550 jsr166 1.14 private static final int NOW = 0; // for untimed poll, tryTransfer
551     private static final int ASYNC = 1; // for offer, put, add
552     private static final int SYNC = 2; // for transfer, take
553     private static final int TIMED = 3; // for timed poll, tryTransfer
554 jsr166 1.1
555     /**
556 jsr166 1.8 * Implements all queuing methods. See above for explanation.
557 jsr166 1.1 *
558 jsr166 1.8 * @param e the item or null for take
559     * @param haveData true if this is a put, else a take
560 jsr166 1.14 * @param how NOW, ASYNC, SYNC, or TIMED
561     * @param nanos timeout in nanosecs, used only if mode is TIMED
562 jsr166 1.8 * @return an item if matched, else e
563     * @throws NullPointerException if haveData mode but e is null
564 jsr166 1.1 */
565 jsr166 1.8 private E xfer(E e, boolean haveData, int how, long nanos) {
566     if (haveData && (e == null))
567     throw new NullPointerException();
568 jsr166 1.14 Node s = null; // the node to append, if needed
569 jsr166 1.1
570 jsr166 1.119 restartFromHead: for (;;) {
571 jsr166 1.14 for (Node h = head, p = h; p != null;) { // find & match first node
572 jsr166 1.8 boolean isData = p.isData;
573     Object item = p.item;
574 jsr166 1.105 if ((item != null) == isData) { // unmatched
575 jsr166 1.8 if (isData == haveData) // can't match
576     break;
577     if (p.casItem(item, e)) { // match
578 jsr166 1.14 for (Node q = p; q != h;) {
579 dl 1.16 Node n = q.next; // update by 2 unless singleton
580 jsr166 1.37 if (head == h && casHead(h, n == null ? q : n)) {
581 jsr166 1.8 h.forgetNext();
582     break;
583     } // advance and retry
584     if ((h = head) == null ||
585     (q = h.next) == null || !q.isMatched())
586     break; // unless slack < 2
587     }
588     LockSupport.unpark(p.waiter);
589 jsr166 1.70 @SuppressWarnings("unchecked") E itemE = (E) item;
590     return itemE;
591 jsr166 1.1 }
592     }
593 jsr166 1.14 Node n = p.next;
594 jsr166 1.8 p = (p != n) ? n : (h = head); // Use head if p offlist
595     }
596    
597 jsr166 1.14 if (how != NOW) { // No matches available
598 jsr166 1.8 if (s == null)
599 jsr166 1.101 s = new Node(e);
600 jsr166 1.14 Node pred = tryAppend(s, haveData);
601 jsr166 1.8 if (pred == null)
602 jsr166 1.119 continue restartFromHead; // lost race vs opposite mode
603 jsr166 1.14 if (how != ASYNC)
604     return awaitMatch(s, pred, e, (how == TIMED), nanos);
605 jsr166 1.1 }
606 jsr166 1.8 return e; // not waiting
607 jsr166 1.1 }
608     }
609    
610     /**
611 jsr166 1.8 * Tries to append node s as tail.
612     *
613     * @param s the node to append
614     * @param haveData true if appending in data mode
615     * @return null on failure due to losing race with append in
616     * different mode, else s's predecessor, or s itself if no
617     * predecessor
618 jsr166 1.1 */
619 jsr166 1.14 private Node tryAppend(Node s, boolean haveData) {
620     for (Node t = tail, p = t;;) { // move p to last node and append
621     Node n, u; // temps for reads of next & tail
622 jsr166 1.8 if (p == null && (p = head) == null) {
623     if (casHead(null, s))
624     return s; // initialize
625     }
626     else if (p.cannotPrecede(haveData))
627     return null; // lost race vs opposite mode
628     else if ((n = p.next) != null) // not last; keep traversing
629     p = p != t && t != (u = tail) ? (t = u) : // stale tail
630     (p != n) ? n : null; // restart if off list
631     else if (!p.casNext(null, s))
632     p = p.next; // re-read on CAS failure
633     else {
634     if (p != t) { // update if slack now >= 2
635     while ((tail != t || !casTail(t, s)) &&
636     (t = tail) != null &&
637     (s = t.next) != null && // advance and retry
638     (s = s.next) != null && s != t);
639 jsr166 1.1 }
640 jsr166 1.8 return p;
641 jsr166 1.1 }
642     }
643     }
644    
645     /**
646 jsr166 1.8 * Spins/yields/blocks until node s is matched or caller gives up.
647 jsr166 1.1 *
648     * @param s the waiting node
649 jsr166 1.8 * @param pred the predecessor of s, or s itself if it has no
650     * predecessor, or null if unknown (the null case does not occur
651     * in any current calls but may in possible future extensions)
652 jsr166 1.1 * @param e the comparison value for checking match
653 jsr166 1.14 * @param timed if true, wait only until timeout elapses
654     * @param nanos timeout in nanosecs, used only if timed is true
655 jsr166 1.8 * @return matched item, or e if unmatched on interrupt or timeout
656 jsr166 1.1 */
657 jsr166 1.14 private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
658 jsr166 1.51 final long deadline = timed ? System.nanoTime() + nanos : 0L;
659 jsr166 1.8 Thread w = Thread.currentThread();
660     int spins = -1; // initialized after first item and cancel checks
661     ThreadLocalRandom randomYields = null; // bound if needed
662 jsr166 1.1
663     for (;;) {
664 jsr166 1.8 Object item = s.item;
665     if (item != e) { // matched
666 dl 1.33 // assert item != s;
667 jsr166 1.8 s.forgetContents(); // avoid garbage
668 jsr166 1.70 @SuppressWarnings("unchecked") E itemE = (E) item;
669     return itemE;
670 jsr166 1.8 }
671 jsr166 1.95 else if (w.isInterrupted() || (timed && nanos <= 0L)) {
672 jsr166 1.102 // try to cancel and unlink
673 jsr166 1.105 if (s.casItem(e, s.isData ? null : s)) {
674 jsr166 1.102 unsplice(pred, s);
675 jsr166 1.77 return e;
676 jsr166 1.102 }
677     // return normally if lost CAS
678 jsr166 1.8 }
679 dl 1.84 else if (spins < 0) { // establish spins at/near front
680 jsr166 1.8 if ((spins = spinsFor(pred, s.isData)) > 0)
681     randomYields = ThreadLocalRandom.current();
682     }
683     else if (spins > 0) { // spin
684 dl 1.16 --spins;
685     if (randomYields.nextInt(CHAINED_SPINS) == 0)
686 jsr166 1.8 Thread.yield(); // occasionally yield
687     }
688     else if (s.waiter == null) {
689     s.waiter = w; // request unpark then recheck
690 jsr166 1.1 }
691 jsr166 1.14 else if (timed) {
692 jsr166 1.51 nanos = deadline - System.nanoTime();
693     if (nanos > 0L)
694 jsr166 1.8 LockSupport.parkNanos(this, nanos);
695 jsr166 1.1 }
696 jsr166 1.8 else {
697 jsr166 1.1 LockSupport.park(this);
698     }
699 jsr166 1.8 }
700     }
701    
702     /**
703     * Returns spin/yield value for a node with given predecessor and
704     * data mode. See above for explanation.
705     */
706 jsr166 1.14 private static int spinsFor(Node pred, boolean haveData) {
707 jsr166 1.8 if (MP && pred != null) {
708     if (pred.isData != haveData) // phase change
709     return FRONT_SPINS + CHAINED_SPINS;
710     if (pred.isMatched()) // probably at front
711     return FRONT_SPINS;
712     if (pred.waiter == null) // pred apparently spinning
713     return CHAINED_SPINS;
714     }
715     return 0;
716     }
717    
718     /* -------------- Traversal methods -------------- */
719    
720     /**
721 jsr166 1.93 * Returns the first unmatched data node, or null if none.
722 jsr166 1.105 * Callers must recheck if the returned node is unmatched
723     * before using.
724 dl 1.52 */
725     final Node firstDataNode() {
726 jsr166 1.91 restartFromHead: for (;;) {
727     for (Node p = head; p != null;) {
728     Object item = p.item;
729     if (p.isData) {
730 jsr166 1.105 if (item != null)
731 jsr166 1.91 return p;
732     }
733     else if (item == null)
734     break;
735     if (p == (p = p.next))
736     continue restartFromHead;
737 dl 1.52 }
738 jsr166 1.91 return null;
739 dl 1.52 }
740     }
741    
742     /**
743 jsr166 1.8 * Traverses and counts unmatched nodes of the given mode.
744     * Used by methods size and getWaitingConsumerCount.
745 jsr166 1.1 */
746 jsr166 1.8 private int countOfMode(boolean data) {
747 jsr166 1.73 restartFromHead: for (;;) {
748     int count = 0;
749     for (Node p = head; p != null;) {
750     if (!p.isMatched()) {
751     if (p.isData != data)
752     return 0;
753     if (++count == Integer.MAX_VALUE)
754     break; // @see Collection.size()
755     }
756 jsr166 1.81 if (p == (p = p.next))
757 jsr166 1.73 continue restartFromHead;
758 jsr166 1.1 }
759 jsr166 1.73 return count;
760 jsr166 1.8 }
761     }
762    
763 jsr166 1.82 public String toString() {
764     String[] a = null;
765     restartFromHead: for (;;) {
766     int charLength = 0;
767     int size = 0;
768     for (Node p = head; p != null;) {
769     Object item = p.item;
770     if (p.isData) {
771 jsr166 1.105 if (item != null) {
772 jsr166 1.82 if (a == null)
773     a = new String[4];
774     else if (size == a.length)
775     a = Arrays.copyOf(a, 2 * size);
776     String s = item.toString();
777     a[size++] = s;
778     charLength += s.length();
779     }
780     } else if (item == null)
781     break;
782     if (p == (p = p.next))
783     continue restartFromHead;
784     }
785    
786     if (size == 0)
787     return "[]";
788    
789 jsr166 1.83 return Helpers.toString(a, size, charLength);
790 jsr166 1.82 }
791     }
792    
793     private Object[] toArrayInternal(Object[] a) {
794     Object[] x = a;
795     restartFromHead: for (;;) {
796     int size = 0;
797     for (Node p = head; p != null;) {
798     Object item = p.item;
799     if (p.isData) {
800 jsr166 1.105 if (item != null) {
801 jsr166 1.82 if (x == null)
802     x = new Object[4];
803     else if (size == x.length)
804     x = Arrays.copyOf(x, 2 * (size + 4));
805     x[size++] = item;
806     }
807     } else if (item == null)
808     break;
809     if (p == (p = p.next))
810     continue restartFromHead;
811     }
812     if (x == null)
813     return new Object[0];
814     else if (a != null && size <= a.length) {
815     if (a != x)
816     System.arraycopy(x, 0, a, 0, size);
817     if (size < a.length)
818     a[size] = null;
819     return a;
820     }
821     return (size == x.length) ? x : Arrays.copyOf(x, size);
822     }
823     }
824    
825     /**
826     * Returns an array containing all of the elements in this queue, in
827     * proper sequence.
828     *
829     * <p>The returned array will be "safe" in that no references to it are
830     * maintained by this queue. (In other words, this method must allocate
831     * a new array). The caller is thus free to modify the returned array.
832     *
833     * <p>This method acts as bridge between array-based and collection-based
834     * APIs.
835     *
836     * @return an array containing all of the elements in this queue
837     */
838     public Object[] toArray() {
839     return toArrayInternal(null);
840     }
841    
842     /**
843     * Returns an array containing all of the elements in this queue, in
844     * proper sequence; the runtime type of the returned array is that of
845     * the specified array. If the queue fits in the specified array, it
846     * is returned therein. Otherwise, a new array is allocated with the
847     * runtime type of the specified array and the size of this queue.
848     *
849     * <p>If this queue fits in the specified array with room to spare
850     * (i.e., the array has more elements than this queue), the element in
851     * the array immediately following the end of the queue is set to
852     * {@code null}.
853     *
854     * <p>Like the {@link #toArray()} method, this method acts as bridge between
855     * array-based and collection-based APIs. Further, this method allows
856     * precise control over the runtime type of the output array, and may,
857     * under certain circumstances, be used to save allocation costs.
858     *
859     * <p>Suppose {@code x} is a queue known to contain only strings.
860     * The following code can be used to dump the queue into a newly
861     * allocated array of {@code String}:
862     *
863     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
864     *
865     * Note that {@code toArray(new Object[0])} is identical in function to
866     * {@code toArray()}.
867     *
868     * @param a the array into which the elements of the queue are to
869     * be stored, if it is big enough; otherwise, a new array of the
870     * same runtime type is allocated for this purpose
871     * @return an array containing all of the elements in this queue
872     * @throws ArrayStoreException if the runtime type of the specified array
873     * is not a supertype of the runtime type of every element in
874     * this queue
875     * @throws NullPointerException if the specified array is null
876     */
877     @SuppressWarnings("unchecked")
878     public <T> T[] toArray(T[] a) {
879 jsr166 1.111 Objects.requireNonNull(a);
880 jsr166 1.82 return (T[]) toArrayInternal(a);
881     }
882    
883 jsr166 1.8 final class Itr implements Iterator<E> {
884 jsr166 1.14 private Node nextNode; // next node to return item for
885     private E nextItem; // the corresponding item
886     private Node lastRet; // last returned node, to support remove
887     private Node lastPred; // predecessor to unlink lastRet
888 jsr166 1.8
889     /**
890     * Moves to next node after prev, or first node if prev null.
891     */
892 jsr166 1.14 private void advance(Node prev) {
893 dl 1.33 /*
894     * To track and avoid buildup of deleted nodes in the face
895     * of calls to both Queue.remove and Itr.remove, we must
896     * include variants of unsplice and sweep upon each
897     * advance: Upon Itr.remove, we may need to catch up links
898     * from lastPred, and upon other removes, we might need to
899     * skip ahead from stale nodes and unsplice deleted ones
900     * found while advancing.
901     */
902    
903     Node r, b; // reset lastPred upon possible deletion of lastRet
904     if ((r = lastRet) != null && !r.isMatched())
905     lastPred = r; // next lastPred is old lastRet
906     else if ((b = lastPred) == null || b.isMatched())
907     lastPred = null; // at start of list
908 jsr166 1.34 else {
909 dl 1.33 Node s, n; // help with removal of lastPred.next
910     while ((s = b.next) != null &&
911     s != b && s.isMatched() &&
912     (n = s.next) != null && n != s)
913     b.casNext(s, n);
914     }
915    
916     this.lastRet = prev;
917 jsr166 1.35
918 dl 1.33 for (Node p = prev, s, n;;) {
919     s = (p == null) ? head : p.next;
920     if (s == null)
921     break;
922     else if (s == p) {
923     p = null;
924     continue;
925     }
926     Object item = s.item;
927     if (s.isData) {
928 jsr166 1.105 if (item != null) {
929 jsr166 1.70 @SuppressWarnings("unchecked") E itemE = (E) item;
930     nextItem = itemE;
931 dl 1.33 nextNode = s;
932 jsr166 1.8 return;
933     }
934 jsr166 1.34 }
935 jsr166 1.8 else if (item == null)
936     break;
937 dl 1.33 // assert s.isMatched();
938     if (p == null)
939     p = s;
940     else if ((n = s.next) == null)
941     break;
942     else if (s == n)
943     p = null;
944     else
945     p.casNext(s, n);
946 jsr166 1.1 }
947 jsr166 1.8 nextNode = null;
948 dl 1.33 nextItem = null;
949 jsr166 1.8 }
950    
951     Itr() {
952     advance(null);
953     }
954    
955     public final boolean hasNext() {
956     return nextNode != null;
957     }
958    
959     public final E next() {
960 jsr166 1.14 Node p = nextNode;
961 jsr166 1.8 if (p == null) throw new NoSuchElementException();
962     E e = nextItem;
963     advance(p);
964     return e;
965     }
966    
967 jsr166 1.116 // Default implementation of forEachRemaining is "good enough".
968    
969 jsr166 1.8 public final void remove() {
970 dl 1.33 final Node lastRet = this.lastRet;
971     if (lastRet == null)
972     throw new IllegalStateException();
973     this.lastRet = null;
974     if (lastRet.tryMatchData())
975     unsplice(lastPred, lastRet);
976 jsr166 1.1 }
977     }
978 jsr166 1.53
979 dl 1.57 /** A customized variant of Spliterators.IteratorSpliterator */
980 jsr166 1.109 final class LTQSpliterator implements Spliterator<E> {
981 dl 1.60 static final int MAX_BATCH = 1 << 25; // max batch array size;
982 jsr166 1.87 Node current; // current node; null until initialized
983 dl 1.52 int batch; // batch size for splits
984     boolean exhausted; // true when no more nodes
985 jsr166 1.94 LTQSpliterator() {}
986 dl 1.52
987     public Spliterator<E> trySplit() {
988 jsr166 1.115 Node p, q;
989     if ((p = current()) == null || (q = p.next) == null)
990     return null;
991     int i = 0, n = batch = Math.min(batch + 1, MAX_BATCH);
992     Object[] a = null;
993     do {
994     final Object item = p.item;
995     if (p.isData) {
996     if (item != null)
997     ((a != null) ? a : (a = new Object[n]))[i++] = item;
998     } else if (item == null) {
999     p = null;
1000     break;
1001 dl 1.60 }
1002 jsr166 1.117 if (p == (p = q))
1003     p = firstDataNode();
1004 jsr166 1.115 } while (p != null && (q = p.next) != null && i < n);
1005     setCurrent(p);
1006     return (i == 0) ? null :
1007     Spliterators.spliterator(a, 0, i, (Spliterator.ORDERED |
1008     Spliterator.NONNULL |
1009     Spliterator.CONCURRENT));
1010 dl 1.52 }
1011    
1012     @SuppressWarnings("unchecked")
1013 dl 1.61 public void forEachRemaining(Consumer<? super E> action) {
1014 jsr166 1.111 Objects.requireNonNull(action);
1015 jsr166 1.116 final Node p;
1016 jsr166 1.115 if ((p = current()) != null) {
1017 jsr166 1.107 current = null;
1018 dl 1.52 exhausted = true;
1019 jsr166 1.116 forEachFrom(action, p);
1020 dl 1.52 }
1021     }
1022    
1023     @SuppressWarnings("unchecked")
1024     public boolean tryAdvance(Consumer<? super E> action) {
1025 jsr166 1.111 Objects.requireNonNull(action);
1026 dl 1.52 Node p;
1027 jsr166 1.115 if ((p = current()) != null) {
1028     E e = null;
1029 dl 1.52 do {
1030 jsr166 1.115 final Object item = p.item;
1031     final boolean isData = p.isData;
1032     if (p == (p = p.next))
1033     p = head;
1034     if (isData) {
1035     if (item != null) {
1036     e = (E) item;
1037 jsr166 1.107 break;
1038     }
1039     }
1040 jsr166 1.115 else if (item == null)
1041     p = null;
1042     } while (p != null);
1043     setCurrent(p);
1044     if (e != null) {
1045     action.accept(e);
1046 dl 1.52 return true;
1047     }
1048     }
1049     return false;
1050     }
1051    
1052 jsr166 1.115 private void setCurrent(Node p) {
1053     if ((current = p) == null)
1054     exhausted = true;
1055     }
1056    
1057     private Node current() {
1058     Node p;
1059     if ((p = current) == null && !exhausted)
1060     setCurrent(p = firstDataNode());
1061     return p;
1062     }
1063    
1064 dl 1.54 public long estimateSize() { return Long.MAX_VALUE; }
1065    
1066 dl 1.52 public int characteristics() {
1067 jsr166 1.100 return (Spliterator.ORDERED |
1068     Spliterator.NONNULL |
1069     Spliterator.CONCURRENT);
1070 dl 1.52 }
1071     }
1072    
1073 jsr166 1.67 /**
1074     * Returns a {@link Spliterator} over the elements in this queue.
1075     *
1076 jsr166 1.68 * <p>The returned spliterator is
1077     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1078     *
1079 jsr166 1.67 * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
1080     * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
1081     *
1082     * @implNote
1083     * The {@code Spliterator} implements {@code trySplit} to permit limited
1084     * parallelism.
1085     *
1086     * @return a {@code Spliterator} over the elements in this queue
1087     * @since 1.8
1088     */
1089 dl 1.56 public Spliterator<E> spliterator() {
1090 jsr166 1.109 return new LTQSpliterator();
1091 dl 1.52 }
1092    
1093 jsr166 1.8 /* -------------- Removal methods -------------- */
1094    
1095 jsr166 1.1 /**
1096 jsr166 1.8 * Unsplices (now or later) the given deleted/cancelled node with
1097     * the given predecessor.
1098 jsr166 1.1 *
1099 dl 1.16 * @param pred a node that was at one time known to be the
1100     * predecessor of s, or null or s itself if s is/was at head
1101 jsr166 1.8 * @param s the node to be unspliced
1102 jsr166 1.1 */
1103 dl 1.16 final void unsplice(Node pred, Node s) {
1104 dl 1.71 s.waiter = null; // disable signals
1105 jsr166 1.1 /*
1106 dl 1.16 * See above for rationale. Briefly: if pred still points to
1107     * s, try to unlink s. If s cannot be unlinked, because it is
1108     * trailing node or pred might be unlinked, and neither pred
1109     * nor s are head or offlist, add to sweepVotes, and if enough
1110     * votes have accumulated, sweep.
1111 jsr166 1.1 */
1112 dl 1.16 if (pred != null && pred != s && pred.next == s) {
1113     Node n = s.next;
1114     if (n == null ||
1115     (n != s && pred.casNext(s, n) && pred.isMatched())) {
1116     for (;;) { // check if at, or could be, head
1117     Node h = head;
1118     if (h == pred || h == s || h == null)
1119     return; // at head or list empty
1120     if (!h.isMatched())
1121     break;
1122     Node hn = h.next;
1123     if (hn == null)
1124     return; // now empty
1125     if (hn != h && casHead(h, hn))
1126     h.forgetNext(); // advance head
1127 jsr166 1.8 }
1128 dl 1.16 if (pred.next != pred && s.next != s) { // recheck if offlist
1129     for (;;) { // sweep now if enough votes
1130     int v = sweepVotes;
1131     if (v < SWEEP_THRESHOLD) {
1132     if (casSweepVotes(v, v + 1))
1133     break;
1134     }
1135     else if (casSweepVotes(v, 0)) {
1136     sweep();
1137     break;
1138     }
1139     }
1140 jsr166 1.12 }
1141 jsr166 1.1 }
1142     }
1143     }
1144    
1145     /**
1146 jsr166 1.26 * Unlinks matched (typically cancelled) nodes encountered in a
1147     * traversal from head.
1148 jsr166 1.1 */
1149 dl 1.16 private void sweep() {
1150 jsr166 1.20 for (Node p = head, s, n; p != null && (s = p.next) != null; ) {
1151 jsr166 1.28 if (!s.isMatched())
1152     // Unmatched nodes are never self-linked
1153 jsr166 1.20 p = s;
1154 jsr166 1.28 else if ((n = s.next) == null) // trailing node is pinned
1155 jsr166 1.20 break;
1156 jsr166 1.28 else if (s == n) // stale
1157     // No need to also check for p == s, since that implies s == n
1158     p = head;
1159 jsr166 1.20 else
1160 dl 1.16 p.casNext(s, n);
1161 jsr166 1.8 }
1162     }
1163    
1164     /**
1165 jsr166 1.1 * Creates an initially empty {@code LinkedTransferQueue}.
1166     */
1167     public LinkedTransferQueue() {
1168     }
1169    
1170     /**
1171     * Creates a {@code LinkedTransferQueue}
1172     * initially containing the elements of the given collection,
1173     * added in traversal order of the collection's iterator.
1174     *
1175     * @param c the collection of elements to initially contain
1176     * @throws NullPointerException if the specified collection or any
1177     * of its elements are null
1178     */
1179     public LinkedTransferQueue(Collection<? extends E> c) {
1180     this();
1181     addAll(c);
1182     }
1183    
1184 jsr166 1.4 /**
1185 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1186     * As the queue is unbounded, this method will never block.
1187     *
1188     * @throws NullPointerException if the specified element is null
1189 jsr166 1.4 */
1190 jsr166 1.5 public void put(E e) {
1191 jsr166 1.8 xfer(e, true, ASYNC, 0);
1192 jsr166 1.1 }
1193    
1194 jsr166 1.4 /**
1195 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1196     * As the queue is unbounded, this method will never block or
1197     * return {@code false}.
1198     *
1199     * @return {@code true} (as specified by
1200 jsr166 1.42 * {@link java.util.concurrent.BlockingQueue#offer(Object,long,TimeUnit)
1201     * BlockingQueue.offer})
1202 jsr166 1.5 * @throws NullPointerException if the specified element is null
1203 jsr166 1.4 */
1204 jsr166 1.5 public boolean offer(E e, long timeout, TimeUnit unit) {
1205 jsr166 1.8 xfer(e, true, ASYNC, 0);
1206     return true;
1207 jsr166 1.1 }
1208    
1209 jsr166 1.4 /**
1210 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1211     * As the queue is unbounded, this method will never return {@code false}.
1212     *
1213 jsr166 1.32 * @return {@code true} (as specified by {@link Queue#offer})
1214 jsr166 1.5 * @throws NullPointerException if the specified element is null
1215 jsr166 1.4 */
1216 jsr166 1.1 public boolean offer(E e) {
1217 jsr166 1.8 xfer(e, true, ASYNC, 0);
1218 jsr166 1.1 return true;
1219     }
1220    
1221 jsr166 1.4 /**
1222 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1223     * As the queue is unbounded, this method will never throw
1224     * {@link IllegalStateException} or return {@code false}.
1225     *
1226     * @return {@code true} (as specified by {@link Collection#add})
1227     * @throws NullPointerException if the specified element is null
1228 jsr166 1.4 */
1229 jsr166 1.1 public boolean add(E e) {
1230 jsr166 1.8 xfer(e, true, ASYNC, 0);
1231     return true;
1232 jsr166 1.5 }
1233    
1234     /**
1235 jsr166 1.6 * Transfers the element to a waiting consumer immediately, if possible.
1236     *
1237     * <p>More precisely, transfers the specified element immediately
1238     * if there exists a consumer already waiting to receive it (in
1239     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1240     * otherwise returning {@code false} without enqueuing the element.
1241 jsr166 1.5 *
1242     * @throws NullPointerException if the specified element is null
1243     */
1244     public boolean tryTransfer(E e) {
1245 jsr166 1.8 return xfer(e, true, NOW, 0) == null;
1246 jsr166 1.1 }
1247    
1248 jsr166 1.4 /**
1249 jsr166 1.6 * Transfers the element to a consumer, waiting if necessary to do so.
1250     *
1251     * <p>More precisely, transfers the specified element immediately
1252     * if there exists a consumer already waiting to receive it (in
1253     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1254     * else inserts the specified element at the tail of this queue
1255     * and waits until the element is received by a consumer.
1256 jsr166 1.5 *
1257     * @throws NullPointerException if the specified element is null
1258 jsr166 1.4 */
1259 jsr166 1.1 public void transfer(E e) throws InterruptedException {
1260 jsr166 1.8 if (xfer(e, true, SYNC, 0) != null) {
1261     Thread.interrupted(); // failure possible only due to interrupt
1262 jsr166 1.1 throw new InterruptedException();
1263     }
1264     }
1265    
1266 jsr166 1.4 /**
1267 jsr166 1.6 * Transfers the element to a consumer if it is possible to do so
1268     * before the timeout elapses.
1269     *
1270     * <p>More precisely, transfers the specified element immediately
1271     * if there exists a consumer already waiting to receive it (in
1272     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1273     * else inserts the specified element at the tail of this queue
1274     * and waits until the element is received by a consumer,
1275     * returning {@code false} if the specified wait time elapses
1276     * before the element can be transferred.
1277 jsr166 1.5 *
1278     * @throws NullPointerException if the specified element is null
1279 jsr166 1.4 */
1280 jsr166 1.1 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1281     throws InterruptedException {
1282 jsr166 1.14 if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1283 jsr166 1.1 return true;
1284     if (!Thread.interrupted())
1285     return false;
1286     throw new InterruptedException();
1287     }
1288    
1289     public E take() throws InterruptedException {
1290 jsr166 1.8 E e = xfer(null, false, SYNC, 0);
1291 jsr166 1.1 if (e != null)
1292 jsr166 1.5 return e;
1293 jsr166 1.1 Thread.interrupted();
1294     throw new InterruptedException();
1295     }
1296    
1297     public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1298 jsr166 1.14 E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1299 jsr166 1.1 if (e != null || !Thread.interrupted())
1300 jsr166 1.5 return e;
1301 jsr166 1.1 throw new InterruptedException();
1302     }
1303    
1304     public E poll() {
1305 jsr166 1.8 return xfer(null, false, NOW, 0);
1306 jsr166 1.1 }
1307    
1308 jsr166 1.4 /**
1309     * @throws NullPointerException {@inheritDoc}
1310     * @throws IllegalArgumentException {@inheritDoc}
1311     */
1312 jsr166 1.1 public int drainTo(Collection<? super E> c) {
1313 jsr166 1.111 Objects.requireNonNull(c);
1314 jsr166 1.1 if (c == this)
1315     throw new IllegalArgumentException();
1316     int n = 0;
1317 jsr166 1.112 for (E e; (e = poll()) != null; n++)
1318 jsr166 1.1 c.add(e);
1319     return n;
1320     }
1321    
1322 jsr166 1.4 /**
1323     * @throws NullPointerException {@inheritDoc}
1324     * @throws IllegalArgumentException {@inheritDoc}
1325     */
1326 jsr166 1.1 public int drainTo(Collection<? super E> c, int maxElements) {
1327 jsr166 1.111 Objects.requireNonNull(c);
1328 jsr166 1.1 if (c == this)
1329     throw new IllegalArgumentException();
1330     int n = 0;
1331 jsr166 1.112 for (E e; n < maxElements && (e = poll()) != null; n++)
1332 jsr166 1.1 c.add(e);
1333     return n;
1334     }
1335    
1336 jsr166 1.5 /**
1337 jsr166 1.36 * Returns an iterator over the elements in this queue in proper sequence.
1338     * The elements will be returned in order from first (head) to last (tail).
1339 jsr166 1.5 *
1340 jsr166 1.68 * <p>The returned iterator is
1341     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1342 jsr166 1.5 *
1343     * @return an iterator over the elements in this queue in proper sequence
1344     */
1345 jsr166 1.1 public Iterator<E> iterator() {
1346     return new Itr();
1347     }
1348    
1349     public E peek() {
1350 jsr166 1.92 restartFromHead: for (;;) {
1351     for (Node p = head; p != null;) {
1352     Object item = p.item;
1353     if (p.isData) {
1354 jsr166 1.105 if (item != null) {
1355 jsr166 1.92 @SuppressWarnings("unchecked") E e = (E) item;
1356     return e;
1357     }
1358     }
1359     else if (item == null)
1360     break;
1361     if (p == (p = p.next))
1362     continue restartFromHead;
1363     }
1364     return null;
1365     }
1366 jsr166 1.1 }
1367    
1368 jsr166 1.6 /**
1369     * Returns {@code true} if this queue contains no elements.
1370     *
1371     * @return {@code true} if this queue contains no elements
1372     */
1373 jsr166 1.1 public boolean isEmpty() {
1374 jsr166 1.90 return firstDataNode() == null;
1375 jsr166 1.1 }
1376    
1377     public boolean hasWaitingConsumer() {
1378 jsr166 1.93 restartFromHead: for (;;) {
1379     for (Node p = head; p != null;) {
1380     Object item = p.item;
1381     if (p.isData) {
1382 jsr166 1.105 if (item != null)
1383 jsr166 1.93 break;
1384     }
1385     else if (item == null)
1386     return true;
1387     if (p == (p = p.next))
1388     continue restartFromHead;
1389     }
1390     return false;
1391     }
1392 jsr166 1.1 }
1393    
1394     /**
1395     * Returns the number of elements in this queue. If this queue
1396     * contains more than {@code Integer.MAX_VALUE} elements, returns
1397     * {@code Integer.MAX_VALUE}.
1398     *
1399     * <p>Beware that, unlike in most collections, this method is
1400     * <em>NOT</em> a constant-time operation. Because of the
1401     * asynchronous nature of these queues, determining the current
1402     * number of elements requires an O(n) traversal.
1403     *
1404     * @return the number of elements in this queue
1405     */
1406     public int size() {
1407 jsr166 1.8 return countOfMode(true);
1408 jsr166 1.1 }
1409    
1410     public int getWaitingConsumerCount() {
1411 jsr166 1.8 return countOfMode(false);
1412 jsr166 1.1 }
1413    
1414 jsr166 1.6 /**
1415     * Removes a single instance of the specified element from this queue,
1416     * if it is present. More formally, removes an element {@code e} such
1417     * that {@code o.equals(e)}, if this queue contains one or more such
1418     * elements.
1419     * Returns {@code true} if this queue contained the specified element
1420     * (or equivalently, if this queue changed as a result of the call).
1421     *
1422     * @param o element to be removed from this queue, if present
1423     * @return {@code true} if this queue changed as a result of the call
1424     */
1425 jsr166 1.1 public boolean remove(Object o) {
1426 jsr166 1.108 if (o == null)
1427     return false;
1428     restartFromHead: for (;;) {
1429     for (Node pred = null, p = head; p != null; ) {
1430     Object item = p.item;
1431     if (p.isData) {
1432     if (item != null
1433     && o.equals(item)
1434     && p.tryMatchData()) {
1435     unsplice(pred, p);
1436     return true;
1437     }
1438     }
1439     else if (item == null)
1440     break;
1441     if ((pred = p) == (p = p.next))
1442     continue restartFromHead;
1443     }
1444     return false;
1445     }
1446 jsr166 1.1 }
1447    
1448     /**
1449 jsr166 1.30 * Returns {@code true} if this queue contains the specified element.
1450     * More formally, returns {@code true} if and only if this queue contains
1451     * at least one element {@code e} such that {@code o.equals(e)}.
1452     *
1453     * @param o object to be checked for containment in this queue
1454     * @return {@code true} if this queue contains the specified element
1455     */
1456     public boolean contains(Object o) {
1457 jsr166 1.74 if (o != null) {
1458 jsr166 1.110 for (Node p = head; p != null; ) {
1459 jsr166 1.74 Object item = p.item;
1460     if (p.isData) {
1461 jsr166 1.105 if (item != null && o.equals(item))
1462 jsr166 1.74 return true;
1463     }
1464     else if (item == null)
1465     break;
1466 jsr166 1.110 if (p == (p = p.next))
1467     p = head;
1468 jsr166 1.30 }
1469     }
1470     return false;
1471     }
1472    
1473     /**
1474 jsr166 1.5 * Always returns {@code Integer.MAX_VALUE} because a
1475     * {@code LinkedTransferQueue} is not capacity constrained.
1476     *
1477     * @return {@code Integer.MAX_VALUE} (as specified by
1478 jsr166 1.42 * {@link java.util.concurrent.BlockingQueue#remainingCapacity()
1479     * BlockingQueue.remainingCapacity})
1480 jsr166 1.5 */
1481     public int remainingCapacity() {
1482     return Integer.MAX_VALUE;
1483     }
1484    
1485     /**
1486 jsr166 1.50 * Saves this queue to a stream (that is, serializes it).
1487 jsr166 1.1 *
1488 jsr166 1.65 * @param s the stream
1489 jsr166 1.66 * @throws java.io.IOException if an I/O error occurs
1490 jsr166 1.1 * @serialData All of the elements (each an {@code E}) in
1491     * the proper order, followed by a null
1492     */
1493     private void writeObject(java.io.ObjectOutputStream s)
1494     throws java.io.IOException {
1495     s.defaultWriteObject();
1496     for (E e : this)
1497     s.writeObject(e);
1498     // Use trailing null as sentinel
1499     s.writeObject(null);
1500     }
1501    
1502     /**
1503 jsr166 1.50 * Reconstitutes this queue from a stream (that is, deserializes it).
1504 jsr166 1.65 * @param s the stream
1505 jsr166 1.66 * @throws ClassNotFoundException if the class of a serialized object
1506     * could not be found
1507     * @throws java.io.IOException if an I/O error occurs
1508 jsr166 1.1 */
1509     private void readObject(java.io.ObjectInputStream s)
1510     throws java.io.IOException, ClassNotFoundException {
1511     s.defaultReadObject();
1512     for (;;) {
1513 jsr166 1.49 @SuppressWarnings("unchecked")
1514     E item = (E) s.readObject();
1515 jsr166 1.1 if (item == null)
1516     break;
1517     else
1518     offer(item);
1519     }
1520     }
1521    
1522 jsr166 1.116 /**
1523     * @throws NullPointerException {@inheritDoc}
1524     */
1525     public boolean removeIf(Predicate<? super E> filter) {
1526     Objects.requireNonNull(filter);
1527     return bulkRemove(filter);
1528     }
1529    
1530     /**
1531     * @throws NullPointerException {@inheritDoc}
1532     */
1533     public boolean removeAll(Collection<?> c) {
1534     Objects.requireNonNull(c);
1535     return bulkRemove(e -> c.contains(e));
1536     }
1537    
1538     /**
1539     * @throws NullPointerException {@inheritDoc}
1540     */
1541     public boolean retainAll(Collection<?> c) {
1542     Objects.requireNonNull(c);
1543     return bulkRemove(e -> !c.contains(e));
1544     }
1545    
1546     /** Implementation of bulk remove methods. */
1547     @SuppressWarnings("unchecked")
1548     private boolean bulkRemove(Predicate<? super E> filter) {
1549     boolean removed = false;
1550     restartFromHead: for (;;) {
1551     for (Node pred = null, p = head; p != null; ) {
1552     final Object item = p.item;
1553     if (p.isData) {
1554     if (item != null
1555     && filter.test((E)item)
1556     && p.tryMatchData()) {
1557     removed = true;
1558     unsplice(pred, p);
1559     p = p.next;
1560     continue;
1561     }
1562     }
1563     else if (item == null)
1564     break;
1565     if ((pred = p) == (p = p.next))
1566     continue restartFromHead;
1567     }
1568     return removed;
1569     }
1570     }
1571    
1572     /**
1573     * Runs action on each element found during a traversal starting at p.
1574 jsr166 1.118 * If p is null, the action is not run.
1575 jsr166 1.116 */
1576     @SuppressWarnings("unchecked")
1577     void forEachFrom(Consumer<? super E> action, Node p) {
1578     while (p != null) {
1579     final Object item = p.item;
1580     if (p.isData) {
1581     if (item != null)
1582     action.accept((E) item);
1583     }
1584     else if (item == null)
1585     break;
1586     if (p == (p = p.next))
1587     p = head;
1588     }
1589     }
1590    
1591     /**
1592     * @throws NullPointerException {@inheritDoc}
1593     */
1594     public void forEach(Consumer<? super E> action) {
1595     Objects.requireNonNull(action);
1596     forEachFrom(action, head);
1597     }
1598    
1599 dl 1.97 // VarHandle mechanics
1600     private static final VarHandle HEAD;
1601     private static final VarHandle TAIL;
1602     private static final VarHandle SWEEPVOTES;
1603 dl 1.38 static {
1604 jsr166 1.1 try {
1605 dl 1.97 MethodHandles.Lookup l = MethodHandles.lookup();
1606     HEAD = l.findVarHandle(LinkedTransferQueue.class, "head",
1607     Node.class);
1608     TAIL = l.findVarHandle(LinkedTransferQueue.class, "tail",
1609     Node.class);
1610     SWEEPVOTES = l.findVarHandle(LinkedTransferQueue.class, "sweepVotes",
1611     int.class);
1612 jsr166 1.79 } catch (ReflectiveOperationException e) {
1613 dl 1.38 throw new Error(e);
1614 jsr166 1.1 }
1615 jsr166 1.85
1616     // Reduce the risk of rare disastrous classloading in first call to
1617     // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
1618     Class<?> ensureLoaded = LockSupport.class;
1619 jsr166 1.1 }
1620     }