ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/LinkedTransferQueue.java
Revision: 1.13
Committed: Fri Oct 30 18:35:22 2009 UTC (14 years, 7 months ago) by jsr166
Branch: MAIN
Changes since 1.12: +21 -14 lines
Log Message:
sync with jsr166y package

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package java.util.concurrent;
8    
9     import java.util.AbstractQueue;
10     import java.util.Collection;
11 jsr166 1.5 import java.util.ConcurrentModificationException;
12 jsr166 1.1 import java.util.Iterator;
13     import java.util.NoSuchElementException;
14 jsr166 1.5 import java.util.Queue;
15 jsr166 1.1 import java.util.concurrent.locks.LockSupport;
16     /**
17 jsr166 1.6 * An unbounded {@link TransferQueue} based on linked nodes.
18 jsr166 1.1 * This queue orders elements FIFO (first-in-first-out) with respect
19     * to any given producer. The <em>head</em> of the queue is that
20     * element that has been on the queue the longest time for some
21     * producer. The <em>tail</em> of the queue is that element that has
22     * been on the queue the shortest time for some producer.
23     *
24     * <p>Beware that, unlike in most collections, the {@code size}
25     * method is <em>NOT</em> a constant-time operation. Because of the
26     * asynchronous nature of these queues, determining the current number
27     * of elements requires a traversal of the elements.
28     *
29     * <p>This class and its iterator implement all of the
30     * <em>optional</em> methods of the {@link Collection} and {@link
31     * Iterator} interfaces.
32     *
33     * <p>Memory consistency effects: As with other concurrent
34     * collections, actions in a thread prior to placing an object into a
35     * {@code LinkedTransferQueue}
36     * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
37     * actions subsequent to the access or removal of that element from
38     * the {@code LinkedTransferQueue} in another thread.
39     *
40     * <p>This class is a member of the
41     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
42     * Java Collections Framework</a>.
43     *
44     * @since 1.7
45     * @author Doug Lea
46     * @param <E> the type of elements held in this collection
47     */
48     public class LinkedTransferQueue<E> extends AbstractQueue<E>
49     implements TransferQueue<E>, java.io.Serializable {
50     private static final long serialVersionUID = -3223113410248163686L;
51    
52     /*
53 jsr166 1.8 * *** Overview of Dual Queues with Slack ***
54 jsr166 1.1 *
55 jsr166 1.8 * Dual Queues, introduced by Scherer and Scott
56     * (http://www.cs.rice.edu/~wns1/papers/2004-DISC-DDS.pdf) are
57     * (linked) queues in which nodes may represent either data or
58     * requests. When a thread tries to enqueue a data node, but
59     * encounters a request node, it instead "matches" and removes it;
60     * and vice versa for enqueuing requests. Blocking Dual Queues
61     * arrange that threads enqueuing unmatched requests block until
62     * other threads provide the match. Dual Synchronous Queues (see
63     * Scherer, Lea, & Scott
64     * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
65     * additionally arrange that threads enqueuing unmatched data also
66     * block. Dual Transfer Queues support all of these modes, as
67     * dictated by callers.
68     *
69     * A FIFO dual queue may be implemented using a variation of the
70     * Michael & Scott (M&S) lock-free queue algorithm
71     * (http://www.cs.rochester.edu/u/scott/papers/1996_PODC_queues.pdf).
72     * It maintains two pointer fields, "head", pointing to a
73     * (matched) node that in turn points to the first actual
74     * (unmatched) queue node (or null if empty); and "tail" that
75     * points to the last node on the queue (or again null if
76     * empty). For example, here is a possible queue with four data
77     * elements:
78     *
79     * head tail
80     * | |
81     * v v
82     * M -> U -> U -> U -> U
83     *
84     * The M&S queue algorithm is known to be prone to scalability and
85     * overhead limitations when maintaining (via CAS) these head and
86     * tail pointers. This has led to the development of
87     * contention-reducing variants such as elimination arrays (see
88     * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
89     * optimistic back pointers (see Ladan-Mozes & Shavit
90     * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
91     * However, the nature of dual queues enables a simpler tactic for
92     * improving M&S-style implementations when dual-ness is needed.
93     *
94     * In a dual queue, each node must atomically maintain its match
95     * status. While there are other possible variants, we implement
96     * this here as: for a data-mode node, matching entails CASing an
97     * "item" field from a non-null data value to null upon match, and
98     * vice-versa for request nodes, CASing from null to a data
99     * value. (Note that the linearization properties of this style of
100     * queue are easy to verify -- elements are made available by
101     * linking, and unavailable by matching.) Compared to plain M&S
102     * queues, this property of dual queues requires one additional
103     * successful atomic operation per enq/deq pair. But it also
104     * enables lower cost variants of queue maintenance mechanics. (A
105     * variation of this idea applies even for non-dual queues that
106     * support deletion of interior elements, such as
107     * j.u.c.ConcurrentLinkedQueue.)
108     *
109     * Once a node is matched, its match status can never again
110     * change. We may thus arrange that the linked list of them
111     * contain a prefix of zero or more matched nodes, followed by a
112     * suffix of zero or more unmatched nodes. (Note that we allow
113     * both the prefix and suffix to be zero length, which in turn
114     * means that we do not use a dummy header.) If we were not
115     * concerned with either time or space efficiency, we could
116     * correctly perform enqueue and dequeue operations by traversing
117     * from a pointer to the initial node; CASing the item of the
118     * first unmatched node on match and CASing the next field of the
119     * trailing node on appends. (Plus some special-casing when
120     * initially empty). While this would be a terrible idea in
121     * itself, it does have the benefit of not requiring ANY atomic
122     * updates on head/tail fields.
123     *
124     * We introduce here an approach that lies between the extremes of
125     * never versus always updating queue (head and tail) pointers.
126     * This offers a tradeoff between sometimes requiring extra
127     * traversal steps to locate the first and/or last unmatched
128     * nodes, versus the reduced overhead and contention of fewer
129     * updates to queue pointers. For example, a possible snapshot of
130     * a queue is:
131     *
132     * head tail
133     * | |
134     * v v
135     * M -> M -> U -> U -> U -> U
136     *
137     * The best value for this "slack" (the targeted maximum distance
138     * between the value of "head" and the first unmatched node, and
139     * similarly for "tail") is an empirical matter. We have found
140     * that using very small constants in the range of 1-3 work best
141     * over a range of platforms. Larger values introduce increasing
142     * costs of cache misses and risks of long traversal chains, while
143     * smaller values increase CAS contention and overhead.
144     *
145     * Dual queues with slack differ from plain M&S dual queues by
146     * virtue of only sometimes updating head or tail pointers when
147     * matching, appending, or even traversing nodes; in order to
148     * maintain a targeted slack. The idea of "sometimes" may be
149     * operationalized in several ways. The simplest is to use a
150     * per-operation counter incremented on each traversal step, and
151     * to try (via CAS) to update the associated queue pointer
152     * whenever the count exceeds a threshold. Another, that requires
153     * more overhead, is to use random number generators to update
154     * with a given probability per traversal step.
155     *
156     * In any strategy along these lines, because CASes updating
157     * fields may fail, the actual slack may exceed targeted
158     * slack. However, they may be retried at any time to maintain
159     * targets. Even when using very small slack values, this
160     * approach works well for dual queues because it allows all
161     * operations up to the point of matching or appending an item
162     * (hence potentially allowing progress by another thread) to be
163     * read-only, thus not introducing any further contention. As
164     * described below, we implement this by performing slack
165     * maintenance retries only after these points.
166     *
167     * As an accompaniment to such techniques, traversal overhead can
168     * be further reduced without increasing contention of head
169     * pointer updates: Threads may sometimes shortcut the "next" link
170     * path from the current "head" node to be closer to the currently
171     * known first unmatched node, and similarly for tail. Again, this
172     * may be triggered with using thresholds or randomization.
173     *
174     * These ideas must be further extended to avoid unbounded amounts
175     * of costly-to-reclaim garbage caused by the sequential "next"
176     * links of nodes starting at old forgotten head nodes: As first
177     * described in detail by Boehm
178     * (http://portal.acm.org/citation.cfm?doid=503272.503282) if a GC
179     * delays noticing that any arbitrarily old node has become
180     * garbage, all newer dead nodes will also be unreclaimed.
181     * (Similar issues arise in non-GC environments.) To cope with
182     * this in our implementation, upon CASing to advance the head
183     * pointer, we set the "next" link of the previous head to point
184     * only to itself; thus limiting the length of connected dead lists.
185     * (We also take similar care to wipe out possibly garbage
186     * retaining values held in other Node fields.) However, doing so
187     * adds some further complexity to traversal: If any "next"
188     * pointer links to itself, it indicates that the current thread
189     * has lagged behind a head-update, and so the traversal must
190     * continue from the "head". Traversals trying to find the
191     * current tail starting from "tail" may also encounter
192     * self-links, in which case they also continue at "head".
193     *
194     * It is tempting in slack-based scheme to not even use CAS for
195     * updates (similarly to Ladan-Mozes & Shavit). However, this
196     * cannot be done for head updates under the above link-forgetting
197     * mechanics because an update may leave head at a detached node.
198     * And while direct writes are possible for tail updates, they
199     * increase the risk of long retraversals, and hence long garbage
200     * chains, which can be much more costly than is worthwhile
201     * considering that the cost difference of performing a CAS vs
202     * write is smaller when they are not triggered on each operation
203     * (especially considering that writes and CASes equally require
204     * additional GC bookkeeping ("write barriers") that are sometimes
205     * more costly than the writes themselves because of contention).
206     *
207     * Removal of interior nodes (due to timed out or interrupted
208     * waits, or calls to remove(x) or Iterator.remove) can use a
209     * scheme roughly similar to that described in Scherer, Lea, and
210     * Scott's SynchronousQueue. Given a predecessor, we can unsplice
211     * any node except the (actual) tail of the queue. To avoid
212     * build-up of cancelled trailing nodes, upon a request to remove
213     * a trailing node, it is placed in field "cleanMe" to be
214     * unspliced upon the next call to unsplice any other node.
215     * Situations needing such mechanics are not common but do occur
216     * in practice; for example when an unbounded series of short
217     * timed calls to poll repeatedly time out but never otherwise
218     * fall off the list because of an untimed call to take at the
219     * front of the queue. Note that maintaining field cleanMe does
220     * not otherwise much impact garbage retention even if never
221     * cleared by some other call because the held node will
222     * eventually either directly or indirectly lead to a self-link
223     * once off the list.
224     *
225     * *** Overview of implementation ***
226     *
227     * We use a threshold-based approach to updates, with a slack
228     * threshold of two -- that is, we update head/tail when the
229     * current pointer appears to be two or more steps away from the
230     * first/last node. The slack value is hard-wired: a path greater
231     * than one is naturally implemented by checking equality of
232     * traversal pointers except when the list has only one element,
233     * in which case we keep slack threshold at one. Avoiding tracking
234     * explicit counts across method calls slightly simplifies an
235     * already-messy implementation. Using randomization would
236     * probably work better if there were a low-quality dirt-cheap
237     * per-thread one available, but even ThreadLocalRandom is too
238     * heavy for these purposes.
239     *
240     * With such a small slack threshold value, it is rarely
241     * worthwhile to augment this with path short-circuiting; i.e.,
242     * unsplicing nodes between head and the first unmatched node, or
243     * similarly for tail, rather than advancing head or tail
244     * proper. However, it is used (in awaitMatch) immediately before
245     * a waiting thread starts to block, as a final bit of helping at
246     * a point when contention with others is extremely unlikely
247     * (since if other threads that could release it are operating,
248     * then the current thread wouldn't be blocking).
249     *
250     * We allow both the head and tail fields to be null before any
251     * nodes are enqueued; initializing upon first append. This
252     * simplifies some other logic, as well as providing more
253     * efficient explicit control paths instead of letting JVMs insert
254     * implicit NullPointerExceptions when they are null. While not
255     * currently fully implemented, we also leave open the possibility
256     * of re-nulling these fields when empty (which is complicated to
257     * arrange, for little benefit.)
258     *
259     * All enqueue/dequeue operations are handled by the single method
260     * "xfer" with parameters indicating whether to act as some form
261     * of offer, put, poll, take, or transfer (each possibly with
262     * timeout). The relative complexity of using one monolithic
263     * method outweighs the code bulk and maintenance problems of
264     * using separate methods for each case.
265     *
266     * Operation consists of up to three phases. The first is
267     * implemented within method xfer, the second in tryAppend, and
268     * the third in method awaitMatch.
269     *
270     * 1. Try to match an existing node
271     *
272     * Starting at head, skip already-matched nodes until finding
273     * an unmatched node of opposite mode, if one exists, in which
274     * case matching it and returning, also if necessary updating
275     * head to one past the matched node (or the node itself if the
276     * list has no other unmatched nodes). If the CAS misses, then
277     * a loop retries advancing head by two steps until either
278     * success or the slack is at most two. By requiring that each
279     * attempt advances head by two (if applicable), we ensure that
280     * the slack does not grow without bound. Traversals also check
281     * if the initial head is now off-list, in which case they
282     * start at the new head.
283     *
284     * If no candidates are found and the call was untimed
285     * poll/offer, (argument "how" is NOW) return.
286     *
287     * 2. Try to append a new node (method tryAppend)
288     *
289     * Starting at current tail pointer, find the actual last node
290     * and try to append a new node (or if head was null, establish
291     * the first node). Nodes can be appended only if their
292     * predecessors are either already matched or are of the same
293     * mode. If we detect otherwise, then a new node with opposite
294     * mode must have been appended during traversal, so we must
295     * restart at phase 1. The traversal and update steps are
296     * otherwise similar to phase 1: Retrying upon CAS misses and
297     * checking for staleness. In particular, if a self-link is
298     * encountered, then we can safely jump to a node on the list
299     * by continuing the traversal at current head.
300     *
301     * On successful append, if the call was ASYNC, return.
302     *
303     * 3. Await match or cancellation (method awaitMatch)
304     *
305     * Wait for another thread to match node; instead cancelling if
306     * the current thread was interrupted or the wait timed out. On
307     * multiprocessors, we use front-of-queue spinning: If a node
308     * appears to be the first unmatched node in the queue, it
309     * spins a bit before blocking. In either case, before blocking
310     * it tries to unsplice any nodes between the current "head"
311     * and the first unmatched node.
312     *
313     * Front-of-queue spinning vastly improves performance of
314     * heavily contended queues. And so long as it is relatively
315     * brief and "quiet", spinning does not much impact performance
316     * of less-contended queues. During spins threads check their
317     * interrupt status and generate a thread-local random number
318     * to decide to occasionally perform a Thread.yield. While
319     * yield has underdefined specs, we assume that might it help,
320     * and will not hurt in limiting impact of spinning on busy
321     * systems. We also use smaller (1/2) spins for nodes that are
322     * not known to be front but whose predecessors have not
323     * blocked -- these "chained" spins avoid artifacts of
324     * front-of-queue rules which otherwise lead to alternating
325     * nodes spinning vs blocking. Further, front threads that
326     * represent phase changes (from data to request node or vice
327     * versa) compared to their predecessors receive additional
328     * chained spins, reflecting longer paths typically required to
329     * unblock threads during phase changes.
330     */
331    
332     /** True if on multiprocessor */
333     private static final boolean MP =
334     Runtime.getRuntime().availableProcessors() > 1;
335    
336     /**
337     * The number of times to spin (with randomly interspersed calls
338     * to Thread.yield) on multiprocessor before blocking when a node
339     * is apparently the first waiter in the queue. See above for
340     * explanation. Must be a power of two. The value is empirically
341     * derived -- it works pretty well across a variety of processors,
342     * numbers of CPUs, and OSes.
343     */
344     private static final int FRONT_SPINS = 1 << 7;
345    
346     /**
347     * The number of times to spin before blocking when a node is
348     * preceded by another node that is apparently spinning. Also
349     * serves as an increment to FRONT_SPINS on phase changes, and as
350     * base average frequency for yielding during spins. Must be a
351     * power of two.
352     */
353     private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
354    
355     /**
356     * Queue nodes. Uses Object, not E, for items to allow forgetting
357     * them after use. Relies heavily on Unsafe mechanics to minimize
358     * unnecessary ordering constraints: Writes that intrinsically
359     * precede or follow CASes use simple relaxed forms. Other
360     * cleanups use releasing/lazy writes.
361     */
362     static final class Node<E> {
363     final boolean isData; // false if this is a request node
364     volatile Object item; // initially non-null if isData; CASed to match
365     volatile Node<E> next;
366     volatile Thread waiter; // null until waiting
367    
368     // CAS methods for fields
369     final boolean casNext(Node<E> cmp, Node<E> val) {
370     return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
371     }
372 jsr166 1.1
373 jsr166 1.8 final boolean casItem(Object cmp, Object val) {
374 jsr166 1.9 assert cmp == null || cmp.getClass() != Node.class;
375 jsr166 1.8 return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
376     }
377 jsr166 1.1
378 jsr166 1.8 /**
379     * Creates a new node. Uses relaxed write because item can only
380     * be seen if followed by CAS.
381     */
382     Node(E item, boolean isData) {
383     UNSAFE.putObject(this, itemOffset, item); // relaxed write
384     this.isData = isData;
385     }
386 jsr166 1.1
387 jsr166 1.8 /**
388     * Links node to itself to avoid garbage retention. Called
389     * only after CASing head field, so uses relaxed write.
390     */
391     final void forgetNext() {
392     UNSAFE.putObject(this, nextOffset, this);
393     }
394 jsr166 1.1
395 jsr166 1.8 /**
396     * Sets item to self (using a releasing/lazy write) and waiter
397     * to null, to avoid garbage retention after extracting or
398     * cancelling.
399     */
400     final void forgetContents() {
401     UNSAFE.putOrderedObject(this, itemOffset, this);
402     UNSAFE.putOrderedObject(this, waiterOffset, null);
403     }
404 jsr166 1.1
405 jsr166 1.8 /**
406     * Returns true if this node has been matched, including the
407     * case of artificial matches due to cancellation.
408     */
409     final boolean isMatched() {
410     Object x = item;
411 jsr166 1.11 return (x == this) || ((x == null) == isData);
412     }
413    
414     /**
415     * Returns true if this is an unmatched request node.
416     */
417     final boolean isUnmatchedRequest() {
418     return !isData && item == null;
419 jsr166 1.8 }
420 jsr166 1.1
421 jsr166 1.8 /**
422     * Returns true if a node with the given mode cannot be
423     * appended to this node because this node is unmatched and
424     * has opposite data mode.
425     */
426     final boolean cannotPrecede(boolean haveData) {
427     boolean d = isData;
428     Object x;
429     return d != haveData && (x = item) != this && (x != null) == d;
430     }
431 jsr166 1.1
432 jsr166 1.8 /**
433     * Tries to artificially match a data node -- used by remove.
434     */
435     final boolean tryMatchData() {
436 jsr166 1.11 assert isData;
437 jsr166 1.8 Object x = item;
438     if (x != null && x != this && casItem(x, null)) {
439     LockSupport.unpark(waiter);
440     return true;
441     }
442     return false;
443 jsr166 1.1 }
444    
445 jsr166 1.4 // Unsafe mechanics
446     private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
447     private static final long nextOffset =
448     objectFieldOffset(UNSAFE, "next", Node.class);
449 jsr166 1.8 private static final long itemOffset =
450     objectFieldOffset(UNSAFE, "item", Node.class);
451     private static final long waiterOffset =
452     objectFieldOffset(UNSAFE, "waiter", Node.class);
453 jsr166 1.1
454     private static final long serialVersionUID = -3375979862319811754L;
455     }
456    
457 jsr166 1.8 /** head of the queue; null until first enqueue */
458     transient volatile Node<E> head;
459    
460     /** predecessor of dangling unspliceable node */
461     private transient volatile Node<E> cleanMe; // decl here reduces contention
462 jsr166 1.1
463 jsr166 1.8 /** tail of the queue; null until first append */
464     private transient volatile Node<E> tail;
465 jsr166 1.1
466 jsr166 1.8 // CAS methods for fields
467     private boolean casTail(Node<E> cmp, Node<E> val) {
468     return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
469     }
470 jsr166 1.1
471 jsr166 1.8 private boolean casHead(Node<E> cmp, Node<E> val) {
472     return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
473     }
474 jsr166 1.1
475 jsr166 1.8 private boolean casCleanMe(Node<E> cmp, Node<E> val) {
476     return UNSAFE.compareAndSwapObject(this, cleanMeOffset, cmp, val);
477     }
478 jsr166 1.1
479 jsr166 1.8 /*
480     * Possible values for "how" argument in xfer method. Beware that
481     * the order of assigned numerical values matters.
482 jsr166 1.1 */
483 jsr166 1.8 private static final int NOW = 0; // for untimed poll, tryTransfer
484     private static final int ASYNC = 1; // for offer, put, add
485     private static final int SYNC = 2; // for transfer, take
486     private static final int TIMEOUT = 3; // for timed poll, tryTransfer
487 jsr166 1.1
488 jsr166 1.10 @SuppressWarnings("unchecked")
489     static <E> E cast(Object item) {
490     assert item == null || item.getClass() != Node.class;
491     return (E) item;
492     }
493    
494 jsr166 1.1 /**
495 jsr166 1.8 * Implements all queuing methods. See above for explanation.
496 jsr166 1.1 *
497 jsr166 1.8 * @param e the item or null for take
498     * @param haveData true if this is a put, else a take
499     * @param how NOW, ASYNC, SYNC, or TIMEOUT
500 jsr166 1.1 * @param nanos timeout in nanosecs, used only if mode is TIMEOUT
501 jsr166 1.8 * @return an item if matched, else e
502     * @throws NullPointerException if haveData mode but e is null
503 jsr166 1.1 */
504 jsr166 1.8 private E xfer(E e, boolean haveData, int how, long nanos) {
505     if (haveData && (e == null))
506     throw new NullPointerException();
507     Node<E> s = null; // the node to append, if needed
508 jsr166 1.1
509 jsr166 1.8 retry: for (;;) { // restart on append race
510 jsr166 1.1
511 jsr166 1.8 for (Node<E> h = head, p = h; p != null;) {
512     // find & match first node
513     boolean isData = p.isData;
514     Object item = p.item;
515     if (item != p && (item != null) == isData) { // unmatched
516     if (isData == haveData) // can't match
517     break;
518     if (p.casItem(item, e)) { // match
519     for (Node<E> q = p; q != h;) {
520     Node<E> n = q.next; // update head by 2
521     if (n != null) // unless singleton
522     q = n;
523     if (head == h && casHead(h, q)) {
524     h.forgetNext();
525     break;
526     } // advance and retry
527     if ((h = head) == null ||
528     (q = h.next) == null || !q.isMatched())
529     break; // unless slack < 2
530     }
531     LockSupport.unpark(p.waiter);
532     return this.<E>cast(item);
533 jsr166 1.1 }
534     }
535 jsr166 1.8 Node<E> n = p.next;
536     p = (p != n) ? n : (h = head); // Use head if p offlist
537     }
538    
539     if (how >= ASYNC) { // No matches available
540     if (s == null)
541     s = new Node<E>(e, haveData);
542     Node<E> pred = tryAppend(s, haveData);
543     if (pred == null)
544     continue retry; // lost race vs opposite mode
545     if (how >= SYNC)
546     return awaitMatch(s, pred, e, how, nanos);
547 jsr166 1.1 }
548 jsr166 1.8 return e; // not waiting
549 jsr166 1.1 }
550     }
551    
552     /**
553 jsr166 1.8 * Tries to append node s as tail.
554     *
555     * @param s the node to append
556     * @param haveData true if appending in data mode
557     * @return null on failure due to losing race with append in
558     * different mode, else s's predecessor, or s itself if no
559     * predecessor
560 jsr166 1.1 */
561 jsr166 1.8 private Node<E> tryAppend(Node<E> s, boolean haveData) {
562     for (Node<E> t = tail, p = t;;) { // move p to last node and append
563     Node<E> n, u; // temps for reads of next & tail
564     if (p == null && (p = head) == null) {
565     if (casHead(null, s))
566     return s; // initialize
567     }
568     else if (p.cannotPrecede(haveData))
569     return null; // lost race vs opposite mode
570     else if ((n = p.next) != null) // not last; keep traversing
571     p = p != t && t != (u = tail) ? (t = u) : // stale tail
572     (p != n) ? n : null; // restart if off list
573     else if (!p.casNext(null, s))
574     p = p.next; // re-read on CAS failure
575     else {
576     if (p != t) { // update if slack now >= 2
577     while ((tail != t || !casTail(t, s)) &&
578     (t = tail) != null &&
579     (s = t.next) != null && // advance and retry
580     (s = s.next) != null && s != t);
581 jsr166 1.1 }
582 jsr166 1.8 return p;
583 jsr166 1.1 }
584     }
585     }
586    
587     /**
588 jsr166 1.8 * Spins/yields/blocks until node s is matched or caller gives up.
589 jsr166 1.1 *
590     * @param s the waiting node
591 jsr166 1.8 * @param pred the predecessor of s, or s itself if it has no
592     * predecessor, or null if unknown (the null case does not occur
593     * in any current calls but may in possible future extensions)
594 jsr166 1.1 * @param e the comparison value for checking match
595 jsr166 1.8 * @param how either SYNC or TIMEOUT
596 jsr166 1.1 * @param nanos timeout value
597 jsr166 1.8 * @return matched item, or e if unmatched on interrupt or timeout
598 jsr166 1.1 */
599 jsr166 1.8 private E awaitMatch(Node<E> s, Node<E> pred, E e, int how, long nanos) {
600     long lastTime = (how == TIMEOUT) ? System.nanoTime() : 0L;
601     Thread w = Thread.currentThread();
602     int spins = -1; // initialized after first item and cancel checks
603     ThreadLocalRandom randomYields = null; // bound if needed
604 jsr166 1.1
605     for (;;) {
606 jsr166 1.8 Object item = s.item;
607     if (item != e) { // matched
608     assert item != s;
609     s.forgetContents(); // avoid garbage
610     return this.<E>cast(item);
611     }
612     if ((w.isInterrupted() || (how == TIMEOUT && nanos <= 0)) &&
613     s.casItem(e, s)) { // cancel
614     unsplice(pred, s);
615     return e;
616     }
617    
618     if (spins < 0) { // establish spins at/near front
619     if ((spins = spinsFor(pred, s.isData)) > 0)
620     randomYields = ThreadLocalRandom.current();
621     }
622     else if (spins > 0) { // spin
623     if (--spins == 0)
624     shortenHeadPath(); // reduce slack before blocking
625     else if (randomYields.nextInt(CHAINED_SPINS) == 0)
626     Thread.yield(); // occasionally yield
627     }
628     else if (s.waiter == null) {
629     s.waiter = w; // request unpark then recheck
630 jsr166 1.1 }
631 jsr166 1.8 else if (how == TIMEOUT) {
632 jsr166 1.1 long now = System.nanoTime();
633 jsr166 1.8 if ((nanos -= now - lastTime) > 0)
634     LockSupport.parkNanos(this, nanos);
635 jsr166 1.1 lastTime = now;
636     }
637 jsr166 1.8 else {
638 jsr166 1.1 LockSupport.park(this);
639     s.waiter = null;
640 jsr166 1.8 spins = -1; // spin if front upon wakeup
641 jsr166 1.1 }
642 jsr166 1.8 }
643     }
644    
645     /**
646     * Returns spin/yield value for a node with given predecessor and
647     * data mode. See above for explanation.
648     */
649     private static int spinsFor(Node<?> pred, boolean haveData) {
650     if (MP && pred != null) {
651     if (pred.isData != haveData) // phase change
652     return FRONT_SPINS + CHAINED_SPINS;
653     if (pred.isMatched()) // probably at front
654     return FRONT_SPINS;
655     if (pred.waiter == null) // pred apparently spinning
656     return CHAINED_SPINS;
657     }
658     return 0;
659     }
660    
661     /**
662     * Tries (once) to unsplice nodes between head and first unmatched
663     * or trailing node; failing on contention.
664     */
665     private void shortenHeadPath() {
666     Node<E> h, hn, p, q;
667     if ((p = h = head) != null && h.isMatched() &&
668     (q = hn = h.next) != null) {
669     Node<E> n;
670     while ((n = q.next) != q) {
671     if (n == null || !q.isMatched()) {
672     if (hn != q && h.next == hn)
673     h.casNext(hn, q);
674     break;
675     }
676     p = q;
677     q = n;
678 jsr166 1.1 }
679     }
680     }
681    
682 jsr166 1.8 /* -------------- Traversal methods -------------- */
683    
684     /**
685     * Returns the first unmatched node of the given mode, or null if
686     * none. Used by methods isEmpty, hasWaitingConsumer.
687     */
688     private Node<E> firstOfMode(boolean data) {
689     for (Node<E> p = head; p != null; ) {
690     if (!p.isMatched())
691     return (p.isData == data) ? p : null;
692     Node<E> n = p.next;
693     p = (n != p) ? n : head;
694     }
695     return null;
696     }
697    
698     /**
699     * Returns the item in the first unmatched node with isData; or
700     * null if none. Used by peek.
701     */
702     private E firstDataItem() {
703     for (Node<E> p = head; p != null; ) {
704     boolean isData = p.isData;
705     Object item = p.item;
706     if (item != p && (item != null) == isData)
707     return isData ? this.<E>cast(item) : null;
708     Node<E> n = p.next;
709     p = (n != p) ? n : head;
710     }
711     return null;
712     }
713    
714 jsr166 1.1 /**
715 jsr166 1.8 * Traverses and counts unmatched nodes of the given mode.
716     * Used by methods size and getWaitingConsumerCount.
717 jsr166 1.1 */
718 jsr166 1.8 private int countOfMode(boolean data) {
719     int count = 0;
720     for (Node<E> p = head; p != null; ) {
721     if (!p.isMatched()) {
722     if (p.isData != data)
723     return 0;
724     if (++count == Integer.MAX_VALUE) // saturated
725     break;
726     }
727     Node<E> n = p.next;
728     if (n != p)
729     p = n;
730     else {
731     count = 0;
732     p = head;
733 jsr166 1.1 }
734 jsr166 1.8 }
735     return count;
736     }
737    
738     final class Itr implements Iterator<E> {
739     private Node<E> nextNode; // next node to return item for
740     private E nextItem; // the corresponding item
741     private Node<E> lastRet; // last returned node, to support remove
742 jsr166 1.13 private Node<E> lastPred; // predecessor to unlink lastRet
743 jsr166 1.8
744     /**
745     * Moves to next node after prev, or first node if prev null.
746     */
747     private void advance(Node<E> prev) {
748 jsr166 1.13 lastPred = lastRet;
749 jsr166 1.8 lastRet = prev;
750     Node<E> p;
751     if (prev == null || (p = prev.next) == prev)
752     p = head;
753     while (p != null) {
754     Object item = p.item;
755     if (p.isData) {
756     if (item != null && item != p) {
757     nextItem = LinkedTransferQueue.this.<E>cast(item);
758     nextNode = p;
759     return;
760     }
761     }
762     else if (item == null)
763     break;
764     Node<E> n = p.next;
765     p = (n != p) ? n : head;
766 jsr166 1.1 }
767 jsr166 1.8 nextNode = null;
768     }
769    
770     Itr() {
771     advance(null);
772     }
773    
774     public final boolean hasNext() {
775     return nextNode != null;
776     }
777    
778     public final E next() {
779     Node<E> p = nextNode;
780     if (p == null) throw new NoSuchElementException();
781     E e = nextItem;
782     advance(p);
783     return e;
784     }
785    
786     public final void remove() {
787     Node<E> p = lastRet;
788     if (p == null) throw new IllegalStateException();
789 jsr166 1.13 findAndRemoveDataNode(lastPred, p);
790 jsr166 1.1 }
791     }
792    
793 jsr166 1.8 /* -------------- Removal methods -------------- */
794    
795 jsr166 1.1 /**
796 jsr166 1.8 * Unsplices (now or later) the given deleted/cancelled node with
797     * the given predecessor.
798 jsr166 1.1 *
799 jsr166 1.8 * @param pred predecessor of node to be unspliced
800     * @param s the node to be unspliced
801 jsr166 1.1 */
802 jsr166 1.8 private void unsplice(Node<E> pred, Node<E> s) {
803     s.forgetContents(); // clear unneeded fields
804 jsr166 1.1 /*
805     * At any given time, exactly one node on list cannot be
806 jsr166 1.8 * unlinked -- the last inserted node. To accommodate this, if
807     * we cannot unlink s, we save its predecessor as "cleanMe",
808     * processing the previously saved version first. Because only
809     * one node in the list can have a null next, at least one of
810     * node s or the node previously saved can always be
811 jsr166 1.1 * processed, so this always terminates.
812     */
813 jsr166 1.8 if (pred != null && pred != s) {
814     while (pred.next == s) {
815     Node<E> oldpred = (cleanMe == null) ? null : reclean();
816     Node<E> n = s.next;
817     if (n != null) {
818     if (n != s)
819     pred.casNext(s, n);
820 jsr166 1.1 break;
821 jsr166 1.8 }
822     if (oldpred == pred || // Already saved
823 jsr166 1.12 ((oldpred == null || oldpred.next == s) &&
824     casCleanMe(oldpred, pred))) {
825     break;
826     }
827 jsr166 1.1 }
828     }
829     }
830    
831     /**
832 jsr166 1.8 * Tries to unsplice the deleted/cancelled node held in cleanMe
833     * that was previously uncleanable because it was at tail.
834 jsr166 1.1 *
835     * @return current cleanMe node (or null)
836     */
837     private Node<E> reclean() {
838     /*
839 jsr166 1.8 * cleanMe is, or at one time was, predecessor of a cancelled
840     * node s that was the tail so could not be unspliced. If it
841 jsr166 1.1 * is no longer the tail, try to unsplice if necessary and
842     * make cleanMe slot available. This differs from similar
843 jsr166 1.8 * code in unsplice() because we must check that pred still
844     * points to a matched node that can be unspliced -- if not,
845     * we can (must) clear cleanMe without unsplicing. This can
846     * loop only due to contention.
847 jsr166 1.1 */
848     Node<E> pred;
849 jsr166 1.8 while ((pred = cleanMe) != null) {
850 jsr166 1.1 Node<E> s = pred.next;
851 jsr166 1.8 Node<E> n;
852     if (s == null || s == pred || !s.isMatched())
853     casCleanMe(pred, null); // already gone
854     else if ((n = s.next) != null) {
855     if (n != s)
856     pred.casNext(s, n);
857     casCleanMe(pred, null);
858 jsr166 1.1 }
859 jsr166 1.8 else
860 jsr166 1.1 break;
861     }
862     return pred;
863     }
864    
865     /**
866 jsr166 1.8 * Main implementation of Iterator.remove(). Find
867 jsr166 1.11 * and unsplice the given data node.
868 jsr166 1.13 * @param possiblePred possible predecessor of s
869     * @param s the node to remove
870 jsr166 1.8 */
871 jsr166 1.13 final void findAndRemoveDataNode(Node<E> possiblePred, Node<E> s) {
872 jsr166 1.11 assert s.isData;
873 jsr166 1.8 if (s.tryMatchData()) {
874 jsr166 1.13 if (possiblePred != null && possiblePred.next == s)
875     unsplice(possiblePred, s); // was actual predecessor
876     else {
877     for (Node<E> pred = null, p = head; p != null; ) {
878     if (p == s) {
879     unsplice(pred, p);
880     break;
881     }
882     if (p.isUnmatchedRequest())
883     break;
884     pred = p;
885     if ((p = p.next) == pred) { // stale
886     pred = null;
887     p = head;
888     }
889 jsr166 1.8 }
890     }
891     }
892     }
893    
894     /**
895     * Main implementation of remove(Object)
896     */
897     private boolean findAndRemove(Object e) {
898     if (e != null) {
899 jsr166 1.11 for (Node<E> pred = null, p = head; p != null; ) {
900 jsr166 1.8 Object item = p.item;
901     if (p.isData) {
902     if (item != null && item != p && e.equals(item) &&
903     p.tryMatchData()) {
904     unsplice(pred, p);
905     return true;
906     }
907     }
908     else if (item == null)
909     break;
910     pred = p;
911 jsr166 1.11 if ((p = p.next) == pred) { // stale
912 jsr166 1.8 pred = null;
913     p = head;
914     }
915     }
916     }
917     return false;
918     }
919    
920    
921     /**
922 jsr166 1.1 * Creates an initially empty {@code LinkedTransferQueue}.
923     */
924     public LinkedTransferQueue() {
925     }
926    
927     /**
928     * Creates a {@code LinkedTransferQueue}
929     * initially containing the elements of the given collection,
930     * added in traversal order of the collection's iterator.
931     *
932     * @param c the collection of elements to initially contain
933     * @throws NullPointerException if the specified collection or any
934     * of its elements are null
935     */
936     public LinkedTransferQueue(Collection<? extends E> c) {
937     this();
938     addAll(c);
939     }
940    
941 jsr166 1.4 /**
942 jsr166 1.5 * Inserts the specified element at the tail of this queue.
943     * As the queue is unbounded, this method will never block.
944     *
945     * @throws NullPointerException if the specified element is null
946 jsr166 1.4 */
947 jsr166 1.5 public void put(E e) {
948 jsr166 1.8 xfer(e, true, ASYNC, 0);
949 jsr166 1.1 }
950    
951 jsr166 1.4 /**
952 jsr166 1.5 * Inserts the specified element at the tail of this queue.
953     * As the queue is unbounded, this method will never block or
954     * return {@code false}.
955     *
956     * @return {@code true} (as specified by
957     * {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
958     * @throws NullPointerException if the specified element is null
959 jsr166 1.4 */
960 jsr166 1.5 public boolean offer(E e, long timeout, TimeUnit unit) {
961 jsr166 1.8 xfer(e, true, ASYNC, 0);
962     return true;
963 jsr166 1.1 }
964    
965 jsr166 1.4 /**
966 jsr166 1.5 * Inserts the specified element at the tail of this queue.
967     * As the queue is unbounded, this method will never return {@code false}.
968     *
969     * @return {@code true} (as specified by
970     * {@link BlockingQueue#offer(Object) BlockingQueue.offer})
971     * @throws NullPointerException if the specified element is null
972 jsr166 1.4 */
973 jsr166 1.1 public boolean offer(E e) {
974 jsr166 1.8 xfer(e, true, ASYNC, 0);
975 jsr166 1.1 return true;
976     }
977    
978 jsr166 1.4 /**
979 jsr166 1.5 * Inserts the specified element at the tail of this queue.
980     * As the queue is unbounded, this method will never throw
981     * {@link IllegalStateException} or return {@code false}.
982     *
983     * @return {@code true} (as specified by {@link Collection#add})
984     * @throws NullPointerException if the specified element is null
985 jsr166 1.4 */
986 jsr166 1.1 public boolean add(E e) {
987 jsr166 1.8 xfer(e, true, ASYNC, 0);
988     return true;
989 jsr166 1.5 }
990    
991     /**
992 jsr166 1.6 * Transfers the element to a waiting consumer immediately, if possible.
993     *
994     * <p>More precisely, transfers the specified element immediately
995     * if there exists a consumer already waiting to receive it (in
996     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
997     * otherwise returning {@code false} without enqueuing the element.
998 jsr166 1.5 *
999     * @throws NullPointerException if the specified element is null
1000     */
1001     public boolean tryTransfer(E e) {
1002 jsr166 1.8 return xfer(e, true, NOW, 0) == null;
1003 jsr166 1.1 }
1004    
1005 jsr166 1.4 /**
1006 jsr166 1.6 * Transfers the element to a consumer, waiting if necessary to do so.
1007     *
1008     * <p>More precisely, transfers the specified element immediately
1009     * if there exists a consumer already waiting to receive it (in
1010     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1011     * else inserts the specified element at the tail of this queue
1012     * and waits until the element is received by a consumer.
1013 jsr166 1.5 *
1014     * @throws NullPointerException if the specified element is null
1015 jsr166 1.4 */
1016 jsr166 1.1 public void transfer(E e) throws InterruptedException {
1017 jsr166 1.8 if (xfer(e, true, SYNC, 0) != null) {
1018     Thread.interrupted(); // failure possible only due to interrupt
1019 jsr166 1.1 throw new InterruptedException();
1020     }
1021     }
1022    
1023 jsr166 1.4 /**
1024 jsr166 1.6 * Transfers the element to a consumer if it is possible to do so
1025     * before the timeout elapses.
1026     *
1027     * <p>More precisely, transfers the specified element immediately
1028     * if there exists a consumer already waiting to receive it (in
1029     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1030     * else inserts the specified element at the tail of this queue
1031     * and waits until the element is received by a consumer,
1032     * returning {@code false} if the specified wait time elapses
1033     * before the element can be transferred.
1034 jsr166 1.5 *
1035     * @throws NullPointerException if the specified element is null
1036 jsr166 1.4 */
1037 jsr166 1.1 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1038     throws InterruptedException {
1039 jsr166 1.8 if (xfer(e, true, TIMEOUT, unit.toNanos(timeout)) == null)
1040 jsr166 1.1 return true;
1041     if (!Thread.interrupted())
1042     return false;
1043     throw new InterruptedException();
1044     }
1045    
1046     public E take() throws InterruptedException {
1047 jsr166 1.8 E e = xfer(null, false, SYNC, 0);
1048 jsr166 1.1 if (e != null)
1049 jsr166 1.5 return e;
1050 jsr166 1.1 Thread.interrupted();
1051     throw new InterruptedException();
1052     }
1053    
1054     public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1055 jsr166 1.8 E e = xfer(null, false, TIMEOUT, unit.toNanos(timeout));
1056 jsr166 1.1 if (e != null || !Thread.interrupted())
1057 jsr166 1.5 return e;
1058 jsr166 1.1 throw new InterruptedException();
1059     }
1060    
1061     public E poll() {
1062 jsr166 1.8 return xfer(null, false, NOW, 0);
1063 jsr166 1.1 }
1064    
1065 jsr166 1.4 /**
1066     * @throws NullPointerException {@inheritDoc}
1067     * @throws IllegalArgumentException {@inheritDoc}
1068     */
1069 jsr166 1.1 public int drainTo(Collection<? super E> c) {
1070     if (c == null)
1071     throw new NullPointerException();
1072     if (c == this)
1073     throw new IllegalArgumentException();
1074     int n = 0;
1075     E e;
1076     while ( (e = poll()) != null) {
1077     c.add(e);
1078     ++n;
1079     }
1080     return n;
1081     }
1082    
1083 jsr166 1.4 /**
1084     * @throws NullPointerException {@inheritDoc}
1085     * @throws IllegalArgumentException {@inheritDoc}
1086     */
1087 jsr166 1.1 public int drainTo(Collection<? super E> c, int maxElements) {
1088     if (c == null)
1089     throw new NullPointerException();
1090     if (c == this)
1091     throw new IllegalArgumentException();
1092     int n = 0;
1093     E e;
1094     while (n < maxElements && (e = poll()) != null) {
1095     c.add(e);
1096     ++n;
1097     }
1098     return n;
1099     }
1100    
1101 jsr166 1.5 /**
1102     * Returns an iterator over the elements in this queue in proper
1103     * sequence, from head to tail.
1104     *
1105     * <p>The returned iterator is a "weakly consistent" iterator that
1106     * will never throw
1107     * {@link ConcurrentModificationException ConcurrentModificationException},
1108     * and guarantees to traverse elements as they existed upon
1109     * construction of the iterator, and may (but is not guaranteed
1110     * to) reflect any modifications subsequent to construction.
1111     *
1112     * @return an iterator over the elements in this queue in proper sequence
1113     */
1114 jsr166 1.1 public Iterator<E> iterator() {
1115     return new Itr();
1116     }
1117    
1118     public E peek() {
1119 jsr166 1.8 return firstDataItem();
1120 jsr166 1.1 }
1121    
1122 jsr166 1.6 /**
1123     * Returns {@code true} if this queue contains no elements.
1124     *
1125     * @return {@code true} if this queue contains no elements
1126     */
1127 jsr166 1.1 public boolean isEmpty() {
1128 jsr166 1.8 return firstOfMode(true) == null;
1129 jsr166 1.1 }
1130    
1131     public boolean hasWaitingConsumer() {
1132 jsr166 1.8 return firstOfMode(false) != null;
1133 jsr166 1.1 }
1134    
1135     /**
1136     * Returns the number of elements in this queue. If this queue
1137     * contains more than {@code Integer.MAX_VALUE} elements, returns
1138     * {@code Integer.MAX_VALUE}.
1139     *
1140     * <p>Beware that, unlike in most collections, this method is
1141     * <em>NOT</em> a constant-time operation. Because of the
1142     * asynchronous nature of these queues, determining the current
1143     * number of elements requires an O(n) traversal.
1144     *
1145     * @return the number of elements in this queue
1146     */
1147     public int size() {
1148 jsr166 1.8 return countOfMode(true);
1149 jsr166 1.1 }
1150    
1151     public int getWaitingConsumerCount() {
1152 jsr166 1.8 return countOfMode(false);
1153 jsr166 1.1 }
1154    
1155 jsr166 1.6 /**
1156     * Removes a single instance of the specified element from this queue,
1157     * if it is present. More formally, removes an element {@code e} such
1158     * that {@code o.equals(e)}, if this queue contains one or more such
1159     * elements.
1160     * Returns {@code true} if this queue contained the specified element
1161     * (or equivalently, if this queue changed as a result of the call).
1162     *
1163     * @param o element to be removed from this queue, if present
1164     * @return {@code true} if this queue changed as a result of the call
1165     */
1166 jsr166 1.1 public boolean remove(Object o) {
1167 jsr166 1.8 return findAndRemove(o);
1168 jsr166 1.1 }
1169    
1170     /**
1171 jsr166 1.5 * Always returns {@code Integer.MAX_VALUE} because a
1172     * {@code LinkedTransferQueue} is not capacity constrained.
1173     *
1174     * @return {@code Integer.MAX_VALUE} (as specified by
1175     * {@link BlockingQueue#remainingCapacity()})
1176     */
1177     public int remainingCapacity() {
1178     return Integer.MAX_VALUE;
1179     }
1180    
1181     /**
1182 jsr166 1.8 * Saves the state to a stream (that is, serializes it).
1183 jsr166 1.1 *
1184     * @serialData All of the elements (each an {@code E}) in
1185     * the proper order, followed by a null
1186     * @param s the stream
1187     */
1188     private void writeObject(java.io.ObjectOutputStream s)
1189     throws java.io.IOException {
1190     s.defaultWriteObject();
1191     for (E e : this)
1192     s.writeObject(e);
1193     // Use trailing null as sentinel
1194     s.writeObject(null);
1195     }
1196    
1197     /**
1198 jsr166 1.8 * Reconstitutes the Queue instance from a stream (that is,
1199     * deserializes it).
1200 jsr166 1.1 *
1201     * @param s the stream
1202     */
1203     private void readObject(java.io.ObjectInputStream s)
1204     throws java.io.IOException, ClassNotFoundException {
1205     s.defaultReadObject();
1206     for (;;) {
1207     @SuppressWarnings("unchecked") E item = (E) s.readObject();
1208     if (item == null)
1209     break;
1210     else
1211     offer(item);
1212     }
1213     }
1214    
1215 jsr166 1.3 // Unsafe mechanics
1216 jsr166 1.1
1217 jsr166 1.3 private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
1218     private static final long headOffset =
1219 jsr166 1.4 objectFieldOffset(UNSAFE, "head", LinkedTransferQueue.class);
1220 jsr166 1.3 private static final long tailOffset =
1221 jsr166 1.4 objectFieldOffset(UNSAFE, "tail", LinkedTransferQueue.class);
1222 jsr166 1.3 private static final long cleanMeOffset =
1223 jsr166 1.4 objectFieldOffset(UNSAFE, "cleanMe", LinkedTransferQueue.class);
1224    
1225     static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
1226     String field, Class<?> klazz) {
1227 jsr166 1.1 try {
1228 jsr166 1.3 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1229 jsr166 1.1 } catch (NoSuchFieldException e) {
1230 jsr166 1.3 // Convert Exception to corresponding Error
1231     NoSuchFieldError error = new NoSuchFieldError(field);
1232 jsr166 1.1 error.initCause(e);
1233     throw error;
1234     }
1235     }
1236 jsr166 1.8
1237 jsr166 1.1 }