ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/LinkedTransferQueue.java
Revision: 1.134
Committed: Mon Jan 2 04:41:13 2017 UTC (7 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.133: +84 -82 lines
Log Message:
implement expected O(1) Iterator.remove

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.39 * http://creativecommons.org/publicdomain/zero/1.0/
5 jsr166 1.1 */
6    
7     package java.util.concurrent;
8    
9 dl 1.97 import java.lang.invoke.MethodHandles;
10     import java.lang.invoke.VarHandle;
11 jsr166 1.1 import java.util.AbstractQueue;
12 jsr166 1.82 import java.util.Arrays;
13 jsr166 1.1 import java.util.Collection;
14     import java.util.Iterator;
15     import java.util.NoSuchElementException;
16 jsr166 1.111 import java.util.Objects;
17 jsr166 1.5 import java.util.Queue;
18 dl 1.52 import java.util.Spliterator;
19 dl 1.54 import java.util.Spliterators;
20 jsr166 1.76 import java.util.concurrent.locks.LockSupport;
21     import java.util.function.Consumer;
22 jsr166 1.116 import java.util.function.Predicate;
23 dl 1.22
24 jsr166 1.1 /**
25 jsr166 1.6 * An unbounded {@link TransferQueue} based on linked nodes.
26 jsr166 1.1 * This queue orders elements FIFO (first-in-first-out) with respect
27     * to any given producer. The <em>head</em> of the queue is that
28     * element that has been on the queue the longest time for some
29     * producer. The <em>tail</em> of the queue is that element that has
30     * been on the queue the shortest time for some producer.
31     *
32 dl 1.40 * <p>Beware that, unlike in most collections, the {@code size} method
33     * is <em>NOT</em> a constant-time operation. Because of the
34 jsr166 1.1 * asynchronous nature of these queues, determining the current number
35 dl 1.40 * of elements requires a traversal of the elements, and so may report
36     * inaccurate results if this collection is modified during traversal.
37 jsr166 1.1 *
38 jsr166 1.131 * <p>Bulk operations that add, remove, or examine multiple elements,
39     * such as {@link #addAll}, {@link #removeIf} or {@link #forEach},
40     * are <em>not</em> guaranteed to be performed atomically.
41     * For example, a {@code forEach} traversal concurrent with an {@code
42     * addAll} operation might observe only some of the added elements.
43     *
44     * <p>This class and its iterator implement all of the <em>optional</em>
45     * methods of the {@link Collection} and {@link Iterator} interfaces.
46 jsr166 1.1 *
47     * <p>Memory consistency effects: As with other concurrent
48     * collections, actions in a thread prior to placing an object into a
49     * {@code LinkedTransferQueue}
50     * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
51     * actions subsequent to the access or removal of that element from
52     * the {@code LinkedTransferQueue} in another thread.
53     *
54     * <p>This class is a member of the
55     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
56     * Java Collections Framework</a>.
57     *
58     * @since 1.7
59     * @author Doug Lea
60 jsr166 1.75 * @param <E> the type of elements held in this queue
61 jsr166 1.1 */
62     public class LinkedTransferQueue<E> extends AbstractQueue<E>
63     implements TransferQueue<E>, java.io.Serializable {
64     private static final long serialVersionUID = -3223113410248163686L;
65    
66     /*
67 jsr166 1.8 * *** Overview of Dual Queues with Slack ***
68 jsr166 1.1 *
69 jsr166 1.8 * Dual Queues, introduced by Scherer and Scott
70 jsr166 1.99 * (http://www.cs.rochester.edu/~scott/papers/2004_DISC_dual_DS.pdf)
71     * are (linked) queues in which nodes may represent either data or
72 jsr166 1.8 * requests. When a thread tries to enqueue a data node, but
73     * encounters a request node, it instead "matches" and removes it;
74     * and vice versa for enqueuing requests. Blocking Dual Queues
75     * arrange that threads enqueuing unmatched requests block until
76     * other threads provide the match. Dual Synchronous Queues (see
77     * Scherer, Lea, & Scott
78     * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
79     * additionally arrange that threads enqueuing unmatched data also
80     * block. Dual Transfer Queues support all of these modes, as
81     * dictated by callers.
82     *
83     * A FIFO dual queue may be implemented using a variation of the
84     * Michael & Scott (M&S) lock-free queue algorithm
85 jsr166 1.72 * (http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf).
86 jsr166 1.8 * It maintains two pointer fields, "head", pointing to a
87     * (matched) node that in turn points to the first actual
88     * (unmatched) queue node (or null if empty); and "tail" that
89     * points to the last node on the queue (or again null if
90     * empty). For example, here is a possible queue with four data
91     * elements:
92     *
93     * head tail
94     * | |
95     * v v
96     * M -> U -> U -> U -> U
97     *
98     * The M&S queue algorithm is known to be prone to scalability and
99     * overhead limitations when maintaining (via CAS) these head and
100     * tail pointers. This has led to the development of
101     * contention-reducing variants such as elimination arrays (see
102     * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
103     * optimistic back pointers (see Ladan-Mozes & Shavit
104     * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
105     * However, the nature of dual queues enables a simpler tactic for
106     * improving M&S-style implementations when dual-ness is needed.
107     *
108     * In a dual queue, each node must atomically maintain its match
109     * status. While there are other possible variants, we implement
110     * this here as: for a data-mode node, matching entails CASing an
111     * "item" field from a non-null data value to null upon match, and
112     * vice-versa for request nodes, CASing from null to a data
113     * value. (Note that the linearization properties of this style of
114     * queue are easy to verify -- elements are made available by
115     * linking, and unavailable by matching.) Compared to plain M&S
116     * queues, this property of dual queues requires one additional
117     * successful atomic operation per enq/deq pair. But it also
118     * enables lower cost variants of queue maintenance mechanics. (A
119     * variation of this idea applies even for non-dual queues that
120     * support deletion of interior elements, such as
121     * j.u.c.ConcurrentLinkedQueue.)
122     *
123     * Once a node is matched, its match status can never again
124     * change. We may thus arrange that the linked list of them
125     * contain a prefix of zero or more matched nodes, followed by a
126     * suffix of zero or more unmatched nodes. (Note that we allow
127     * both the prefix and suffix to be zero length, which in turn
128     * means that we do not use a dummy header.) If we were not
129     * concerned with either time or space efficiency, we could
130     * correctly perform enqueue and dequeue operations by traversing
131     * from a pointer to the initial node; CASing the item of the
132     * first unmatched node on match and CASing the next field of the
133     * trailing node on appends. (Plus some special-casing when
134     * initially empty). While this would be a terrible idea in
135     * itself, it does have the benefit of not requiring ANY atomic
136     * updates on head/tail fields.
137     *
138     * We introduce here an approach that lies between the extremes of
139     * never versus always updating queue (head and tail) pointers.
140     * This offers a tradeoff between sometimes requiring extra
141     * traversal steps to locate the first and/or last unmatched
142     * nodes, versus the reduced overhead and contention of fewer
143     * updates to queue pointers. For example, a possible snapshot of
144     * a queue is:
145     *
146     * head tail
147     * | |
148     * v v
149     * M -> M -> U -> U -> U -> U
150     *
151     * The best value for this "slack" (the targeted maximum distance
152     * between the value of "head" and the first unmatched node, and
153     * similarly for "tail") is an empirical matter. We have found
154     * that using very small constants in the range of 1-3 work best
155     * over a range of platforms. Larger values introduce increasing
156     * costs of cache misses and risks of long traversal chains, while
157     * smaller values increase CAS contention and overhead.
158     *
159     * Dual queues with slack differ from plain M&S dual queues by
160     * virtue of only sometimes updating head or tail pointers when
161     * matching, appending, or even traversing nodes; in order to
162     * maintain a targeted slack. The idea of "sometimes" may be
163     * operationalized in several ways. The simplest is to use a
164     * per-operation counter incremented on each traversal step, and
165     * to try (via CAS) to update the associated queue pointer
166     * whenever the count exceeds a threshold. Another, that requires
167     * more overhead, is to use random number generators to update
168     * with a given probability per traversal step.
169     *
170     * In any strategy along these lines, because CASes updating
171 jsr166 1.126 * fields may fail, the actual slack may exceed targeted slack.
172     * However, they may be retried at any time to maintain targets.
173     * Even when using very small slack values, this approach works
174     * well for dual queues because it allows all operations up to the
175     * point of matching or appending an item (hence potentially
176     * allowing progress by another thread) to be read-only, thus not
177     * introducing any further contention. As described below, we
178     * implement this by performing slack maintenance retries only
179     * after these points.
180 jsr166 1.8 *
181     * As an accompaniment to such techniques, traversal overhead can
182     * be further reduced without increasing contention of head
183     * pointer updates: Threads may sometimes shortcut the "next" link
184     * path from the current "head" node to be closer to the currently
185     * known first unmatched node, and similarly for tail. Again, this
186     * may be triggered with using thresholds or randomization.
187     *
188     * These ideas must be further extended to avoid unbounded amounts
189     * of costly-to-reclaim garbage caused by the sequential "next"
190     * links of nodes starting at old forgotten head nodes: As first
191     * described in detail by Boehm
192 jsr166 1.69 * (http://portal.acm.org/citation.cfm?doid=503272.503282), if a GC
193 jsr166 1.8 * delays noticing that any arbitrarily old node has become
194     * garbage, all newer dead nodes will also be unreclaimed.
195     * (Similar issues arise in non-GC environments.) To cope with
196     * this in our implementation, upon CASing to advance the head
197     * pointer, we set the "next" link of the previous head to point
198 jsr166 1.127 * only to itself; thus limiting the length of chains of dead nodes.
199 jsr166 1.8 * (We also take similar care to wipe out possibly garbage
200     * retaining values held in other Node fields.) However, doing so
201     * adds some further complexity to traversal: If any "next"
202     * pointer links to itself, it indicates that the current thread
203     * has lagged behind a head-update, and so the traversal must
204     * continue from the "head". Traversals trying to find the
205     * current tail starting from "tail" may also encounter
206     * self-links, in which case they also continue at "head".
207     *
208     * It is tempting in slack-based scheme to not even use CAS for
209     * updates (similarly to Ladan-Mozes & Shavit). However, this
210     * cannot be done for head updates under the above link-forgetting
211     * mechanics because an update may leave head at a detached node.
212     * And while direct writes are possible for tail updates, they
213     * increase the risk of long retraversals, and hence long garbage
214     * chains, which can be much more costly than is worthwhile
215     * considering that the cost difference of performing a CAS vs
216     * write is smaller when they are not triggered on each operation
217     * (especially considering that writes and CASes equally require
218     * additional GC bookkeeping ("write barriers") that are sometimes
219     * more costly than the writes themselves because of contention).
220     *
221     * *** Overview of implementation ***
222     *
223     * We use a threshold-based approach to updates, with a slack
224     * threshold of two -- that is, we update head/tail when the
225     * current pointer appears to be two or more steps away from the
226     * first/last node. The slack value is hard-wired: a path greater
227     * than one is naturally implemented by checking equality of
228     * traversal pointers except when the list has only one element,
229     * in which case we keep slack threshold at one. Avoiding tracking
230     * explicit counts across method calls slightly simplifies an
231     * already-messy implementation. Using randomization would
232     * probably work better if there were a low-quality dirt-cheap
233     * per-thread one available, but even ThreadLocalRandom is too
234     * heavy for these purposes.
235     *
236 dl 1.16 * With such a small slack threshold value, it is not worthwhile
237     * to augment this with path short-circuiting (i.e., unsplicing
238     * interior nodes) except in the case of cancellation/removal (see
239     * below).
240 jsr166 1.8 *
241     * We allow both the head and tail fields to be null before any
242     * nodes are enqueued; initializing upon first append. This
243     * simplifies some other logic, as well as providing more
244     * efficient explicit control paths instead of letting JVMs insert
245     * implicit NullPointerExceptions when they are null. While not
246     * currently fully implemented, we also leave open the possibility
247     * of re-nulling these fields when empty (which is complicated to
248     * arrange, for little benefit.)
249     *
250     * All enqueue/dequeue operations are handled by the single method
251     * "xfer" with parameters indicating whether to act as some form
252     * of offer, put, poll, take, or transfer (each possibly with
253     * timeout). The relative complexity of using one monolithic
254     * method outweighs the code bulk and maintenance problems of
255     * using separate methods for each case.
256     *
257     * Operation consists of up to three phases. The first is
258     * implemented within method xfer, the second in tryAppend, and
259     * the third in method awaitMatch.
260     *
261     * 1. Try to match an existing node
262     *
263     * Starting at head, skip already-matched nodes until finding
264     * an unmatched node of opposite mode, if one exists, in which
265     * case matching it and returning, also if necessary updating
266     * head to one past the matched node (or the node itself if the
267     * list has no other unmatched nodes). If the CAS misses, then
268     * a loop retries advancing head by two steps until either
269     * success or the slack is at most two. By requiring that each
270     * attempt advances head by two (if applicable), we ensure that
271     * the slack does not grow without bound. Traversals also check
272     * if the initial head is now off-list, in which case they
273 jsr166 1.128 * restart at the new head.
274 jsr166 1.8 *
275     * If no candidates are found and the call was untimed
276 jsr166 1.128 * poll/offer (argument "how" is NOW), return.
277 jsr166 1.8 *
278     * 2. Try to append a new node (method tryAppend)
279     *
280     * Starting at current tail pointer, find the actual last node
281     * and try to append a new node (or if head was null, establish
282     * the first node). Nodes can be appended only if their
283     * predecessors are either already matched or are of the same
284     * mode. If we detect otherwise, then a new node with opposite
285     * mode must have been appended during traversal, so we must
286     * restart at phase 1. The traversal and update steps are
287     * otherwise similar to phase 1: Retrying upon CAS misses and
288     * checking for staleness. In particular, if a self-link is
289     * encountered, then we can safely jump to a node on the list
290     * by continuing the traversal at current head.
291     *
292     * On successful append, if the call was ASYNC, return.
293     *
294     * 3. Await match or cancellation (method awaitMatch)
295     *
296     * Wait for another thread to match node; instead cancelling if
297     * the current thread was interrupted or the wait timed out. On
298     * multiprocessors, we use front-of-queue spinning: If a node
299     * appears to be the first unmatched node in the queue, it
300     * spins a bit before blocking. In either case, before blocking
301     * it tries to unsplice any nodes between the current "head"
302     * and the first unmatched node.
303     *
304     * Front-of-queue spinning vastly improves performance of
305     * heavily contended queues. And so long as it is relatively
306     * brief and "quiet", spinning does not much impact performance
307     * of less-contended queues. During spins threads check their
308     * interrupt status and generate a thread-local random number
309     * to decide to occasionally perform a Thread.yield. While
310 jsr166 1.44 * yield has underdefined specs, we assume that it might help,
311 jsr166 1.45 * and will not hurt, in limiting impact of spinning on busy
312 jsr166 1.8 * systems. We also use smaller (1/2) spins for nodes that are
313     * not known to be front but whose predecessors have not
314     * blocked -- these "chained" spins avoid artifacts of
315     * front-of-queue rules which otherwise lead to alternating
316     * nodes spinning vs blocking. Further, front threads that
317     * represent phase changes (from data to request node or vice
318     * versa) compared to their predecessors receive additional
319     * chained spins, reflecting longer paths typically required to
320     * unblock threads during phase changes.
321 dl 1.16 *
322     *
323     * ** Unlinking removed interior nodes **
324     *
325     * In addition to minimizing garbage retention via self-linking
326     * described above, we also unlink removed interior nodes. These
327     * may arise due to timed out or interrupted waits, or calls to
328     * remove(x) or Iterator.remove. Normally, given a node that was
329     * at one time known to be the predecessor of some node s that is
330     * to be removed, we can unsplice s by CASing the next field of
331     * its predecessor if it still points to s (otherwise s must
332     * already have been removed or is now offlist). But there are two
333     * situations in which we cannot guarantee to make node s
334     * unreachable in this way: (1) If s is the trailing node of list
335     * (i.e., with null next), then it is pinned as the target node
336 jsr166 1.23 * for appends, so can only be removed later after other nodes are
337 dl 1.16 * appended. (2) We cannot necessarily unlink s given a
338     * predecessor node that is matched (including the case of being
339 jsr166 1.17 * cancelled): the predecessor may already be unspliced, in which
340     * case some previous reachable node may still point to s.
341     * (For further explanation see Herlihy & Shavit "The Art of
342 dl 1.16 * Multiprocessor Programming" chapter 9). Although, in both
343     * cases, we can rule out the need for further action if either s
344     * or its predecessor are (or can be made to be) at, or fall off
345     * from, the head of list.
346     *
347     * Without taking these into account, it would be possible for an
348     * unbounded number of supposedly removed nodes to remain
349     * reachable. Situations leading to such buildup are uncommon but
350     * can occur in practice; for example when a series of short timed
351     * calls to poll repeatedly time out but never otherwise fall off
352     * the list because of an untimed call to take at the front of the
353     * queue.
354     *
355     * When these cases arise, rather than always retraversing the
356     * entire list to find an actual predecessor to unlink (which
357     * won't help for case (1) anyway), we record a conservative
358 jsr166 1.24 * estimate of possible unsplice failures (in "sweepVotes").
359     * We trigger a full sweep when the estimate exceeds a threshold
360     * ("SWEEP_THRESHOLD") indicating the maximum number of estimated
361     * removal failures to tolerate before sweeping through, unlinking
362     * cancelled nodes that were not unlinked upon initial removal.
363     * We perform sweeps by the thread hitting threshold (rather than
364     * background threads or by spreading work to other threads)
365     * because in the main contexts in which removal occurs, the
366     * caller is already timed-out, cancelled, or performing a
367     * potentially O(n) operation (e.g. remove(x)), none of which are
368     * time-critical enough to warrant the overhead that alternatives
369     * would impose on other threads.
370 dl 1.16 *
371     * Because the sweepVotes estimate is conservative, and because
372     * nodes become unlinked "naturally" as they fall off the head of
373     * the queue, and because we allow votes to accumulate even while
374 jsr166 1.17 * sweeps are in progress, there are typically significantly fewer
375 dl 1.16 * such nodes than estimated. Choice of a threshold value
376     * balances the likelihood of wasted effort and contention, versus
377     * providing a worst-case bound on retention of interior nodes in
378     * quiescent queues. The value defined below was chosen
379     * empirically to balance these under various timeout scenarios.
380     *
381     * Note that we cannot self-link unlinked interior nodes during
382     * sweeps. However, the associated garbage chains terminate when
383     * some successor ultimately falls off the head of the list and is
384     * self-linked.
385 jsr166 1.8 */
386    
387     /** True if on multiprocessor */
388     private static final boolean MP =
389     Runtime.getRuntime().availableProcessors() > 1;
390    
391     /**
392     * The number of times to spin (with randomly interspersed calls
393     * to Thread.yield) on multiprocessor before blocking when a node
394     * is apparently the first waiter in the queue. See above for
395     * explanation. Must be a power of two. The value is empirically
396     * derived -- it works pretty well across a variety of processors,
397     * numbers of CPUs, and OSes.
398     */
399     private static final int FRONT_SPINS = 1 << 7;
400    
401     /**
402     * The number of times to spin before blocking when a node is
403     * preceded by another node that is apparently spinning. Also
404     * serves as an increment to FRONT_SPINS on phase changes, and as
405     * base average frequency for yielding during spins. Must be a
406     * power of two.
407     */
408     private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
409    
410     /**
411 dl 1.16 * The maximum number of estimated removal failures (sweepVotes)
412     * to tolerate before sweeping through the queue unlinking
413     * cancelled nodes that were not unlinked upon initial
414     * removal. See above for explanation. The value must be at least
415     * two to avoid useless sweeps when removing trailing nodes.
416     */
417     static final int SWEEP_THRESHOLD = 32;
418    
419     /**
420 jsr166 1.8 * Queue nodes. Uses Object, not E, for items to allow forgetting
421 dl 1.97 * them after use. Relies heavily on VarHandles to minimize
422 dl 1.16 * unnecessary ordering constraints: Writes that are intrinsically
423     * ordered wrt other accesses or CASes use simple relaxed forms.
424 jsr166 1.8 */
425 jsr166 1.14 static final class Node {
426 jsr166 1.8 final boolean isData; // false if this is a request node
427     volatile Object item; // initially non-null if isData; CASed to match
428 jsr166 1.14 volatile Node next;
429 jsr166 1.8 volatile Thread waiter; // null until waiting
430    
431 jsr166 1.14 final boolean casNext(Node cmp, Node val) {
432 dl 1.97 return NEXT.compareAndSet(this, cmp, val);
433 jsr166 1.8 }
434 jsr166 1.1
435 jsr166 1.8 final boolean casItem(Object cmp, Object val) {
436 jsr166 1.105 // assert isData == (cmp != null);
437     // assert isData == (val == null);
438     // assert !(cmp instanceof Node);
439 dl 1.97 return ITEM.compareAndSet(this, cmp, val);
440 jsr166 1.8 }
441 jsr166 1.1
442 jsr166 1.8 /**
443 jsr166 1.25 * Constructs a new node. Uses relaxed write because item can
444     * only be seen after publication via casNext.
445 jsr166 1.8 */
446 jsr166 1.101 Node(Object item) {
447 jsr166 1.104 ITEM.set(this, item);
448 jsr166 1.101 isData = (item != null);
449 jsr166 1.8 }
450 jsr166 1.1
451 jsr166 1.8 /**
452     * Links node to itself to avoid garbage retention. Called
453     * only after CASing head field, so uses relaxed write.
454     */
455     final void forgetNext() {
456 jsr166 1.121 NEXT.setRelease(this, this);
457 jsr166 1.8 }
458 jsr166 1.1
459 jsr166 1.8 /**
460 jsr166 1.105 * Sets item (of a request node) to self and waiter to null,
461     * to avoid garbage retention after matching or cancelling.
462     * Uses relaxed writes because order is already constrained in
463     * the only calling contexts: item is forgotten only after
464 jsr166 1.121 * volatile/atomic mechanics that extract items, and visitors
465     * of request nodes only ever check whether item is null.
466     * Similarly, clearing waiter follows either CAS or return
467     * from park (if ever parked; else we don't care).
468 jsr166 1.8 */
469     final void forgetContents() {
470 jsr166 1.105 // assert isMatched();
471     if (!isData)
472     ITEM.set(this, this);
473 dl 1.97 WAITER.set(this, null);
474 jsr166 1.8 }
475 jsr166 1.1
476 jsr166 1.8 /**
477     * Returns true if this node has been matched, including the
478     * case of artificial matches due to cancellation.
479     */
480     final boolean isMatched() {
481 jsr166 1.105 return isData == (item == null);
482 jsr166 1.11 }
483    
484     /**
485 jsr166 1.8 * Returns true if a node with the given mode cannot be
486     * appended to this node because this node is unmatched and
487     * has opposite data mode.
488     */
489     final boolean cannotPrecede(boolean haveData) {
490     boolean d = isData;
491 jsr166 1.105 return d != haveData && d != (item == null);
492 jsr166 1.8 }
493 jsr166 1.1
494 jsr166 1.8 /**
495     * Tries to artificially match a data node -- used by remove.
496     */
497     final boolean tryMatchData() {
498 dl 1.33 // assert isData;
499 jsr166 1.105 final Object x;
500     if ((x = item) != null && casItem(x, null)) {
501 jsr166 1.8 LockSupport.unpark(waiter);
502     return true;
503     }
504     return false;
505 jsr166 1.1 }
506    
507 dl 1.38 private static final long serialVersionUID = -3375979862319811754L;
508    
509 dl 1.97 // VarHandle mechanics
510     private static final VarHandle ITEM;
511     private static final VarHandle NEXT;
512     private static final VarHandle WAITER;
513 dl 1.38 static {
514     try {
515 dl 1.97 MethodHandles.Lookup l = MethodHandles.lookup();
516     ITEM = l.findVarHandle(Node.class, "item", Object.class);
517     NEXT = l.findVarHandle(Node.class, "next", Node.class);
518     WAITER = l.findVarHandle(Node.class, "waiter", Thread.class);
519 jsr166 1.79 } catch (ReflectiveOperationException e) {
520 dl 1.38 throw new Error(e);
521     }
522     }
523 jsr166 1.1 }
524    
525 jsr166 1.8 /** head of the queue; null until first enqueue */
526 jsr166 1.14 transient volatile Node head;
527 jsr166 1.8
528     /** tail of the queue; null until first append */
529 jsr166 1.14 private transient volatile Node tail;
530 jsr166 1.1
531 dl 1.16 /** The number of apparent failures to unsplice removed nodes */
532     private transient volatile int sweepVotes;
533    
534 jsr166 1.14 private boolean casTail(Node cmp, Node val) {
535 dl 1.97 return TAIL.compareAndSet(this, cmp, val);
536 jsr166 1.8 }
537 jsr166 1.1
538 jsr166 1.14 private boolean casHead(Node cmp, Node val) {
539 dl 1.97 return HEAD.compareAndSet(this, cmp, val);
540 jsr166 1.8 }
541 jsr166 1.1
542 dl 1.16 private boolean casSweepVotes(int cmp, int val) {
543 dl 1.97 return SWEEPVOTES.compareAndSet(this, cmp, val);
544 jsr166 1.8 }
545 jsr166 1.1
546 jsr166 1.122 /**
547     * Tries to CAS pred.next (or head, if pred is null) from c to p.
548 jsr166 1.133 * Caller must ensure that we're not unlinking the trailing node.
549 jsr166 1.122 */
550     private boolean tryCasSuccessor(Node pred, Node c, Node p) {
551 jsr166 1.133 // assert p != null;
552 jsr166 1.122 // assert c != p;
553     if (pred != null)
554     return pred.casNext(c, p);
555     if (casHead(c, p)) {
556     c.forgetNext();
557     return true;
558     }
559     return false;
560     }
561    
562 jsr166 1.8 /*
563 jsr166 1.14 * Possible values for "how" argument in xfer method.
564 jsr166 1.1 */
565 jsr166 1.14 private static final int NOW = 0; // for untimed poll, tryTransfer
566     private static final int ASYNC = 1; // for offer, put, add
567     private static final int SYNC = 2; // for transfer, take
568     private static final int TIMED = 3; // for timed poll, tryTransfer
569 jsr166 1.1
570     /**
571 jsr166 1.8 * Implements all queuing methods. See above for explanation.
572 jsr166 1.1 *
573 jsr166 1.8 * @param e the item or null for take
574     * @param haveData true if this is a put, else a take
575 jsr166 1.14 * @param how NOW, ASYNC, SYNC, or TIMED
576     * @param nanos timeout in nanosecs, used only if mode is TIMED
577 jsr166 1.8 * @return an item if matched, else e
578     * @throws NullPointerException if haveData mode but e is null
579 jsr166 1.1 */
580 jsr166 1.8 private E xfer(E e, boolean haveData, int how, long nanos) {
581     if (haveData && (e == null))
582     throw new NullPointerException();
583 jsr166 1.130 Node s = null; // the node to append, if needed
584 jsr166 1.1
585 jsr166 1.119 restartFromHead: for (;;) {
586 jsr166 1.14 for (Node h = head, p = h; p != null;) { // find & match first node
587 jsr166 1.8 boolean isData = p.isData;
588     Object item = p.item;
589 jsr166 1.105 if ((item != null) == isData) { // unmatched
590 jsr166 1.8 if (isData == haveData) // can't match
591     break;
592     if (p.casItem(item, e)) { // match
593 jsr166 1.14 for (Node q = p; q != h;) {
594 dl 1.16 Node n = q.next; // update by 2 unless singleton
595 jsr166 1.37 if (head == h && casHead(h, n == null ? q : n)) {
596 jsr166 1.8 h.forgetNext();
597     break;
598     } // advance and retry
599     if ((h = head) == null ||
600     (q = h.next) == null || !q.isMatched())
601     break; // unless slack < 2
602     }
603     LockSupport.unpark(p.waiter);
604 jsr166 1.70 @SuppressWarnings("unchecked") E itemE = (E) item;
605     return itemE;
606 jsr166 1.1 }
607     }
608 jsr166 1.14 Node n = p.next;
609 jsr166 1.8 p = (p != n) ? n : (h = head); // Use head if p offlist
610     }
611    
612 jsr166 1.14 if (how != NOW) { // No matches available
613 jsr166 1.130 if (s == null)
614     s = new Node(e);
615 jsr166 1.14 Node pred = tryAppend(s, haveData);
616 jsr166 1.8 if (pred == null)
617 jsr166 1.119 continue restartFromHead; // lost race vs opposite mode
618 jsr166 1.14 if (how != ASYNC)
619     return awaitMatch(s, pred, e, (how == TIMED), nanos);
620 jsr166 1.1 }
621 jsr166 1.8 return e; // not waiting
622 jsr166 1.1 }
623     }
624    
625     /**
626 jsr166 1.8 * Tries to append node s as tail.
627     *
628     * @param s the node to append
629     * @param haveData true if appending in data mode
630     * @return null on failure due to losing race with append in
631     * different mode, else s's predecessor, or s itself if no
632     * predecessor
633 jsr166 1.1 */
634 jsr166 1.14 private Node tryAppend(Node s, boolean haveData) {
635     for (Node t = tail, p = t;;) { // move p to last node and append
636     Node n, u; // temps for reads of next & tail
637 jsr166 1.8 if (p == null && (p = head) == null) {
638     if (casHead(null, s))
639     return s; // initialize
640     }
641     else if (p.cannotPrecede(haveData))
642     return null; // lost race vs opposite mode
643     else if ((n = p.next) != null) // not last; keep traversing
644     p = p != t && t != (u = tail) ? (t = u) : // stale tail
645     (p != n) ? n : null; // restart if off list
646     else if (!p.casNext(null, s))
647     p = p.next; // re-read on CAS failure
648     else {
649     if (p != t) { // update if slack now >= 2
650     while ((tail != t || !casTail(t, s)) &&
651     (t = tail) != null &&
652     (s = t.next) != null && // advance and retry
653     (s = s.next) != null && s != t);
654 jsr166 1.1 }
655 jsr166 1.8 return p;
656 jsr166 1.1 }
657     }
658     }
659    
660     /**
661 jsr166 1.8 * Spins/yields/blocks until node s is matched or caller gives up.
662 jsr166 1.1 *
663     * @param s the waiting node
664 jsr166 1.8 * @param pred the predecessor of s, or s itself if it has no
665     * predecessor, or null if unknown (the null case does not occur
666     * in any current calls but may in possible future extensions)
667 jsr166 1.1 * @param e the comparison value for checking match
668 jsr166 1.14 * @param timed if true, wait only until timeout elapses
669     * @param nanos timeout in nanosecs, used only if timed is true
670 jsr166 1.8 * @return matched item, or e if unmatched on interrupt or timeout
671 jsr166 1.1 */
672 jsr166 1.14 private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
673 jsr166 1.51 final long deadline = timed ? System.nanoTime() + nanos : 0L;
674 jsr166 1.8 Thread w = Thread.currentThread();
675     int spins = -1; // initialized after first item and cancel checks
676     ThreadLocalRandom randomYields = null; // bound if needed
677 jsr166 1.1
678     for (;;) {
679 jsr166 1.8 Object item = s.item;
680     if (item != e) { // matched
681 dl 1.33 // assert item != s;
682 jsr166 1.8 s.forgetContents(); // avoid garbage
683 jsr166 1.70 @SuppressWarnings("unchecked") E itemE = (E) item;
684     return itemE;
685 jsr166 1.8 }
686 jsr166 1.95 else if (w.isInterrupted() || (timed && nanos <= 0L)) {
687 jsr166 1.102 // try to cancel and unlink
688 jsr166 1.105 if (s.casItem(e, s.isData ? null : s)) {
689 jsr166 1.102 unsplice(pred, s);
690 jsr166 1.77 return e;
691 jsr166 1.102 }
692     // return normally if lost CAS
693 jsr166 1.8 }
694 dl 1.84 else if (spins < 0) { // establish spins at/near front
695 jsr166 1.8 if ((spins = spinsFor(pred, s.isData)) > 0)
696     randomYields = ThreadLocalRandom.current();
697     }
698     else if (spins > 0) { // spin
699 dl 1.16 --spins;
700     if (randomYields.nextInt(CHAINED_SPINS) == 0)
701 jsr166 1.8 Thread.yield(); // occasionally yield
702     }
703     else if (s.waiter == null) {
704     s.waiter = w; // request unpark then recheck
705 jsr166 1.1 }
706 jsr166 1.14 else if (timed) {
707 jsr166 1.51 nanos = deadline - System.nanoTime();
708     if (nanos > 0L)
709 jsr166 1.8 LockSupport.parkNanos(this, nanos);
710 jsr166 1.1 }
711 jsr166 1.8 else {
712 jsr166 1.1 LockSupport.park(this);
713     }
714 jsr166 1.8 }
715     }
716    
717     /**
718     * Returns spin/yield value for a node with given predecessor and
719     * data mode. See above for explanation.
720     */
721 jsr166 1.14 private static int spinsFor(Node pred, boolean haveData) {
722 jsr166 1.8 if (MP && pred != null) {
723     if (pred.isData != haveData) // phase change
724     return FRONT_SPINS + CHAINED_SPINS;
725     if (pred.isMatched()) // probably at front
726     return FRONT_SPINS;
727     if (pred.waiter == null) // pred apparently spinning
728     return CHAINED_SPINS;
729     }
730     return 0;
731     }
732    
733     /* -------------- Traversal methods -------------- */
734    
735     /**
736 jsr166 1.93 * Returns the first unmatched data node, or null if none.
737 jsr166 1.105 * Callers must recheck if the returned node is unmatched
738     * before using.
739 dl 1.52 */
740     final Node firstDataNode() {
741 jsr166 1.91 restartFromHead: for (;;) {
742     for (Node p = head; p != null;) {
743     Object item = p.item;
744     if (p.isData) {
745 jsr166 1.105 if (item != null)
746 jsr166 1.91 return p;
747     }
748     else if (item == null)
749     break;
750     if (p == (p = p.next))
751     continue restartFromHead;
752 dl 1.52 }
753 jsr166 1.91 return null;
754 dl 1.52 }
755     }
756    
757     /**
758 jsr166 1.8 * Traverses and counts unmatched nodes of the given mode.
759     * Used by methods size and getWaitingConsumerCount.
760 jsr166 1.1 */
761 jsr166 1.8 private int countOfMode(boolean data) {
762 jsr166 1.73 restartFromHead: for (;;) {
763     int count = 0;
764     for (Node p = head; p != null;) {
765     if (!p.isMatched()) {
766     if (p.isData != data)
767     return 0;
768     if (++count == Integer.MAX_VALUE)
769     break; // @see Collection.size()
770     }
771 jsr166 1.81 if (p == (p = p.next))
772 jsr166 1.73 continue restartFromHead;
773 jsr166 1.1 }
774 jsr166 1.73 return count;
775 jsr166 1.8 }
776     }
777    
778 jsr166 1.82 public String toString() {
779     String[] a = null;
780     restartFromHead: for (;;) {
781     int charLength = 0;
782     int size = 0;
783     for (Node p = head; p != null;) {
784     Object item = p.item;
785     if (p.isData) {
786 jsr166 1.105 if (item != null) {
787 jsr166 1.82 if (a == null)
788     a = new String[4];
789     else if (size == a.length)
790     a = Arrays.copyOf(a, 2 * size);
791     String s = item.toString();
792     a[size++] = s;
793     charLength += s.length();
794     }
795     } else if (item == null)
796     break;
797     if (p == (p = p.next))
798     continue restartFromHead;
799     }
800    
801     if (size == 0)
802     return "[]";
803    
804 jsr166 1.83 return Helpers.toString(a, size, charLength);
805 jsr166 1.82 }
806     }
807    
808     private Object[] toArrayInternal(Object[] a) {
809     Object[] x = a;
810     restartFromHead: for (;;) {
811     int size = 0;
812     for (Node p = head; p != null;) {
813     Object item = p.item;
814     if (p.isData) {
815 jsr166 1.105 if (item != null) {
816 jsr166 1.82 if (x == null)
817     x = new Object[4];
818     else if (size == x.length)
819     x = Arrays.copyOf(x, 2 * (size + 4));
820     x[size++] = item;
821     }
822     } else if (item == null)
823     break;
824     if (p == (p = p.next))
825     continue restartFromHead;
826     }
827     if (x == null)
828     return new Object[0];
829     else if (a != null && size <= a.length) {
830     if (a != x)
831     System.arraycopy(x, 0, a, 0, size);
832     if (size < a.length)
833     a[size] = null;
834     return a;
835     }
836     return (size == x.length) ? x : Arrays.copyOf(x, size);
837     }
838     }
839    
840     /**
841     * Returns an array containing all of the elements in this queue, in
842     * proper sequence.
843     *
844     * <p>The returned array will be "safe" in that no references to it are
845     * maintained by this queue. (In other words, this method must allocate
846     * a new array). The caller is thus free to modify the returned array.
847     *
848     * <p>This method acts as bridge between array-based and collection-based
849     * APIs.
850     *
851     * @return an array containing all of the elements in this queue
852     */
853     public Object[] toArray() {
854     return toArrayInternal(null);
855     }
856    
857     /**
858     * Returns an array containing all of the elements in this queue, in
859     * proper sequence; the runtime type of the returned array is that of
860     * the specified array. If the queue fits in the specified array, it
861     * is returned therein. Otherwise, a new array is allocated with the
862     * runtime type of the specified array and the size of this queue.
863     *
864     * <p>If this queue fits in the specified array with room to spare
865     * (i.e., the array has more elements than this queue), the element in
866     * the array immediately following the end of the queue is set to
867     * {@code null}.
868     *
869     * <p>Like the {@link #toArray()} method, this method acts as bridge between
870     * array-based and collection-based APIs. Further, this method allows
871     * precise control over the runtime type of the output array, and may,
872     * under certain circumstances, be used to save allocation costs.
873     *
874     * <p>Suppose {@code x} is a queue known to contain only strings.
875     * The following code can be used to dump the queue into a newly
876     * allocated array of {@code String}:
877     *
878     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
879     *
880     * Note that {@code toArray(new Object[0])} is identical in function to
881     * {@code toArray()}.
882     *
883     * @param a the array into which the elements of the queue are to
884     * be stored, if it is big enough; otherwise, a new array of the
885     * same runtime type is allocated for this purpose
886     * @return an array containing all of the elements in this queue
887     * @throws ArrayStoreException if the runtime type of the specified array
888     * is not a supertype of the runtime type of every element in
889     * this queue
890     * @throws NullPointerException if the specified array is null
891     */
892     @SuppressWarnings("unchecked")
893     public <T> T[] toArray(T[] a) {
894 jsr166 1.111 Objects.requireNonNull(a);
895 jsr166 1.82 return (T[]) toArrayInternal(a);
896     }
897    
898 jsr166 1.134 /**
899     * Weakly-consistent iterator.
900     *
901     * Lazily updated ancestor is expected to be amortized O(1) remove(),
902     * but O(n) in the worst case, when lastRet is concurrently deleted.
903     */
904 jsr166 1.8 final class Itr implements Iterator<E> {
905 jsr166 1.14 private Node nextNode; // next node to return item for
906     private E nextItem; // the corresponding item
907     private Node lastRet; // last returned node, to support remove
908 jsr166 1.134 private Node ancestor; // Helps unlink lastRet on remove()
909 jsr166 1.8
910     /**
911 jsr166 1.134 * Moves to next node after pred, or first node if pred null.
912 jsr166 1.8 */
913 jsr166 1.134 @SuppressWarnings("unchecked")
914     private void advance(Node pred) {
915     for (Node p = (pred == null) ? head : pred.next, c = p;
916     p != null; ) {
917     final Object item;
918     if ((item = p.item) != null && p.isData) {
919     nextNode = p;
920     nextItem = (E) item;
921     if (c != p)
922     tryCasSuccessor(pred, c, p);
923     return;
924     }
925     else if (!p.isData && item == null)
926 dl 1.33 break;
927 jsr166 1.134 if (c != p && !tryCasSuccessor(pred, c, c = p)) {
928     pred = p;
929     c = p = p.next;
930 dl 1.33 }
931 jsr166 1.134 else if (p == (p = p.next)) {
932     pred = null;
933     c = p = head;
934 jsr166 1.34 }
935 jsr166 1.1 }
936 jsr166 1.134 nextItem = null;
937 jsr166 1.8 nextNode = null;
938     }
939    
940     Itr() {
941     advance(null);
942     }
943    
944     public final boolean hasNext() {
945     return nextNode != null;
946     }
947    
948     public final E next() {
949 jsr166 1.125 final Node p;
950     if ((p = nextNode) == null) throw new NoSuchElementException();
951 jsr166 1.8 E e = nextItem;
952 jsr166 1.134 advance(lastRet = p);
953 jsr166 1.8 return e;
954     }
955    
956 jsr166 1.134 public void forEachRemaining(Consumer<? super E> action) {
957     Objects.requireNonNull(action);
958     Node q = null;
959     for (Node p; (p = nextNode) != null; advance(q = p))
960     action.accept(nextItem);
961     if (q != null)
962     lastRet = q;
963     }
964 jsr166 1.116
965 jsr166 1.8 public final void remove() {
966 dl 1.33 final Node lastRet = this.lastRet;
967     if (lastRet == null)
968     throw new IllegalStateException();
969     this.lastRet = null;
970 jsr166 1.134 if (lastRet.item == null) // already deleted?
971     return;
972     // Advance ancestor, collapsing intervening dead nodes
973     Node pred = ancestor;
974     for (Node p = (pred == null) ? head : pred.next, c = p, q;
975     p != null; ) {
976     if (p == lastRet) {
977     p.tryMatchData();
978     if ((q = p.next) == null) q = p;
979     if (c != q) tryCasSuccessor(pred, c, q);
980     ancestor = pred;
981     return;
982     }
983     final Object item; final boolean pAlive;
984     if (pAlive = ((item = p.item) != null && p.isData)) {
985     // exceptionally, nothing to do
986     }
987     else if (!p.isData && item == null)
988     break;
989     if ((c != p && !tryCasSuccessor(pred, c, c = p)) || pAlive) {
990     pred = p;
991     c = p = p.next;
992     }
993     else if (p == (p = p.next)) {
994     pred = null;
995     c = p = head;
996     }
997     }
998     // traversal failed to find lastRet; must have been deleted;
999     // leave ancestor at original location to avoid overshoot;
1000     // better luck next time!
1001    
1002     // assert lastRet.isMatched();
1003 jsr166 1.1 }
1004     }
1005 jsr166 1.53
1006 dl 1.57 /** A customized variant of Spliterators.IteratorSpliterator */
1007 jsr166 1.109 final class LTQSpliterator implements Spliterator<E> {
1008 dl 1.60 static final int MAX_BATCH = 1 << 25; // max batch array size;
1009 jsr166 1.87 Node current; // current node; null until initialized
1010 dl 1.52 int batch; // batch size for splits
1011     boolean exhausted; // true when no more nodes
1012 jsr166 1.94 LTQSpliterator() {}
1013 dl 1.52
1014     public Spliterator<E> trySplit() {
1015 jsr166 1.115 Node p, q;
1016     if ((p = current()) == null || (q = p.next) == null)
1017     return null;
1018     int i = 0, n = batch = Math.min(batch + 1, MAX_BATCH);
1019     Object[] a = null;
1020     do {
1021     final Object item = p.item;
1022     if (p.isData) {
1023     if (item != null)
1024     ((a != null) ? a : (a = new Object[n]))[i++] = item;
1025     } else if (item == null) {
1026     p = null;
1027     break;
1028 dl 1.60 }
1029 jsr166 1.117 if (p == (p = q))
1030     p = firstDataNode();
1031 jsr166 1.115 } while (p != null && (q = p.next) != null && i < n);
1032     setCurrent(p);
1033     return (i == 0) ? null :
1034     Spliterators.spliterator(a, 0, i, (Spliterator.ORDERED |
1035     Spliterator.NONNULL |
1036     Spliterator.CONCURRENT));
1037 dl 1.52 }
1038    
1039 dl 1.61 public void forEachRemaining(Consumer<? super E> action) {
1040 jsr166 1.111 Objects.requireNonNull(action);
1041 jsr166 1.116 final Node p;
1042 jsr166 1.115 if ((p = current()) != null) {
1043 jsr166 1.107 current = null;
1044 dl 1.52 exhausted = true;
1045 jsr166 1.116 forEachFrom(action, p);
1046 dl 1.52 }
1047     }
1048    
1049     @SuppressWarnings("unchecked")
1050     public boolean tryAdvance(Consumer<? super E> action) {
1051 jsr166 1.111 Objects.requireNonNull(action);
1052 dl 1.52 Node p;
1053 jsr166 1.115 if ((p = current()) != null) {
1054     E e = null;
1055 dl 1.52 do {
1056 jsr166 1.115 final Object item = p.item;
1057     final boolean isData = p.isData;
1058     if (p == (p = p.next))
1059     p = head;
1060     if (isData) {
1061     if (item != null) {
1062     e = (E) item;
1063 jsr166 1.107 break;
1064     }
1065     }
1066 jsr166 1.115 else if (item == null)
1067     p = null;
1068     } while (p != null);
1069     setCurrent(p);
1070     if (e != null) {
1071     action.accept(e);
1072 dl 1.52 return true;
1073     }
1074     }
1075     return false;
1076     }
1077    
1078 jsr166 1.115 private void setCurrent(Node p) {
1079     if ((current = p) == null)
1080     exhausted = true;
1081     }
1082    
1083     private Node current() {
1084     Node p;
1085     if ((p = current) == null && !exhausted)
1086     setCurrent(p = firstDataNode());
1087     return p;
1088     }
1089    
1090 dl 1.54 public long estimateSize() { return Long.MAX_VALUE; }
1091    
1092 dl 1.52 public int characteristics() {
1093 jsr166 1.100 return (Spliterator.ORDERED |
1094     Spliterator.NONNULL |
1095     Spliterator.CONCURRENT);
1096 dl 1.52 }
1097     }
1098    
1099 jsr166 1.67 /**
1100     * Returns a {@link Spliterator} over the elements in this queue.
1101     *
1102 jsr166 1.68 * <p>The returned spliterator is
1103     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1104     *
1105 jsr166 1.67 * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
1106     * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
1107     *
1108     * @implNote
1109     * The {@code Spliterator} implements {@code trySplit} to permit limited
1110     * parallelism.
1111     *
1112     * @return a {@code Spliterator} over the elements in this queue
1113     * @since 1.8
1114     */
1115 dl 1.56 public Spliterator<E> spliterator() {
1116 jsr166 1.109 return new LTQSpliterator();
1117 dl 1.52 }
1118    
1119 jsr166 1.8 /* -------------- Removal methods -------------- */
1120    
1121 jsr166 1.1 /**
1122 jsr166 1.8 * Unsplices (now or later) the given deleted/cancelled node with
1123     * the given predecessor.
1124 jsr166 1.1 *
1125 dl 1.16 * @param pred a node that was at one time known to be the
1126     * predecessor of s, or null or s itself if s is/was at head
1127 jsr166 1.8 * @param s the node to be unspliced
1128 jsr166 1.1 */
1129 dl 1.16 final void unsplice(Node pred, Node s) {
1130 dl 1.71 s.waiter = null; // disable signals
1131 jsr166 1.1 /*
1132 dl 1.16 * See above for rationale. Briefly: if pred still points to
1133     * s, try to unlink s. If s cannot be unlinked, because it is
1134     * trailing node or pred might be unlinked, and neither pred
1135     * nor s are head or offlist, add to sweepVotes, and if enough
1136     * votes have accumulated, sweep.
1137 jsr166 1.1 */
1138 dl 1.16 if (pred != null && pred != s && pred.next == s) {
1139     Node n = s.next;
1140     if (n == null ||
1141     (n != s && pred.casNext(s, n) && pred.isMatched())) {
1142     for (;;) { // check if at, or could be, head
1143     Node h = head;
1144     if (h == pred || h == s || h == null)
1145     return; // at head or list empty
1146     if (!h.isMatched())
1147     break;
1148     Node hn = h.next;
1149     if (hn == null)
1150     return; // now empty
1151     if (hn != h && casHead(h, hn))
1152     h.forgetNext(); // advance head
1153 jsr166 1.8 }
1154 dl 1.16 if (pred.next != pred && s.next != s) { // recheck if offlist
1155     for (;;) { // sweep now if enough votes
1156     int v = sweepVotes;
1157     if (v < SWEEP_THRESHOLD) {
1158     if (casSweepVotes(v, v + 1))
1159     break;
1160     }
1161     else if (casSweepVotes(v, 0)) {
1162     sweep();
1163     break;
1164     }
1165     }
1166 jsr166 1.12 }
1167 jsr166 1.1 }
1168     }
1169     }
1170    
1171     /**
1172 jsr166 1.26 * Unlinks matched (typically cancelled) nodes encountered in a
1173     * traversal from head.
1174 jsr166 1.1 */
1175 dl 1.16 private void sweep() {
1176 jsr166 1.20 for (Node p = head, s, n; p != null && (s = p.next) != null; ) {
1177 jsr166 1.28 if (!s.isMatched())
1178     // Unmatched nodes are never self-linked
1179 jsr166 1.20 p = s;
1180 jsr166 1.28 else if ((n = s.next) == null) // trailing node is pinned
1181 jsr166 1.20 break;
1182 jsr166 1.28 else if (s == n) // stale
1183     // No need to also check for p == s, since that implies s == n
1184     p = head;
1185 jsr166 1.20 else
1186 dl 1.16 p.casNext(s, n);
1187 jsr166 1.8 }
1188     }
1189    
1190     /**
1191 jsr166 1.1 * Creates an initially empty {@code LinkedTransferQueue}.
1192     */
1193     public LinkedTransferQueue() {
1194     }
1195    
1196     /**
1197     * Creates a {@code LinkedTransferQueue}
1198     * initially containing the elements of the given collection,
1199     * added in traversal order of the collection's iterator.
1200     *
1201     * @param c the collection of elements to initially contain
1202     * @throws NullPointerException if the specified collection or any
1203     * of its elements are null
1204     */
1205     public LinkedTransferQueue(Collection<? extends E> c) {
1206     this();
1207     addAll(c);
1208     }
1209    
1210 jsr166 1.4 /**
1211 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1212     * As the queue is unbounded, this method will never block.
1213     *
1214     * @throws NullPointerException if the specified element is null
1215 jsr166 1.4 */
1216 jsr166 1.5 public void put(E e) {
1217 jsr166 1.8 xfer(e, true, ASYNC, 0);
1218 jsr166 1.1 }
1219    
1220 jsr166 1.4 /**
1221 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1222     * As the queue is unbounded, this method will never block or
1223     * return {@code false}.
1224     *
1225     * @return {@code true} (as specified by
1226 jsr166 1.42 * {@link java.util.concurrent.BlockingQueue#offer(Object,long,TimeUnit)
1227     * BlockingQueue.offer})
1228 jsr166 1.5 * @throws NullPointerException if the specified element is null
1229 jsr166 1.4 */
1230 jsr166 1.5 public boolean offer(E e, long timeout, TimeUnit unit) {
1231 jsr166 1.8 xfer(e, true, ASYNC, 0);
1232     return true;
1233 jsr166 1.1 }
1234    
1235 jsr166 1.4 /**
1236 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1237     * As the queue is unbounded, this method will never return {@code false}.
1238     *
1239 jsr166 1.32 * @return {@code true} (as specified by {@link Queue#offer})
1240 jsr166 1.5 * @throws NullPointerException if the specified element is null
1241 jsr166 1.4 */
1242 jsr166 1.1 public boolean offer(E e) {
1243 jsr166 1.8 xfer(e, true, ASYNC, 0);
1244 jsr166 1.1 return true;
1245     }
1246    
1247 jsr166 1.4 /**
1248 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1249     * As the queue is unbounded, this method will never throw
1250     * {@link IllegalStateException} or return {@code false}.
1251     *
1252     * @return {@code true} (as specified by {@link Collection#add})
1253     * @throws NullPointerException if the specified element is null
1254 jsr166 1.4 */
1255 jsr166 1.1 public boolean add(E e) {
1256 jsr166 1.8 xfer(e, true, ASYNC, 0);
1257     return true;
1258 jsr166 1.5 }
1259    
1260     /**
1261 jsr166 1.6 * Transfers the element to a waiting consumer immediately, if possible.
1262     *
1263     * <p>More precisely, transfers the specified element immediately
1264     * if there exists a consumer already waiting to receive it (in
1265     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1266     * otherwise returning {@code false} without enqueuing the element.
1267 jsr166 1.5 *
1268     * @throws NullPointerException if the specified element is null
1269     */
1270     public boolean tryTransfer(E e) {
1271 jsr166 1.8 return xfer(e, true, NOW, 0) == null;
1272 jsr166 1.1 }
1273    
1274 jsr166 1.4 /**
1275 jsr166 1.6 * Transfers the element to a consumer, waiting if necessary to do so.
1276     *
1277     * <p>More precisely, transfers the specified element immediately
1278     * if there exists a consumer already waiting to receive it (in
1279     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1280     * else inserts the specified element at the tail of this queue
1281     * and waits until the element is received by a consumer.
1282 jsr166 1.5 *
1283     * @throws NullPointerException if the specified element is null
1284 jsr166 1.4 */
1285 jsr166 1.1 public void transfer(E e) throws InterruptedException {
1286 jsr166 1.8 if (xfer(e, true, SYNC, 0) != null) {
1287     Thread.interrupted(); // failure possible only due to interrupt
1288 jsr166 1.1 throw new InterruptedException();
1289     }
1290     }
1291    
1292 jsr166 1.4 /**
1293 jsr166 1.6 * Transfers the element to a consumer if it is possible to do so
1294     * before the timeout elapses.
1295     *
1296     * <p>More precisely, transfers the specified element immediately
1297     * if there exists a consumer already waiting to receive it (in
1298     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1299     * else inserts the specified element at the tail of this queue
1300     * and waits until the element is received by a consumer,
1301     * returning {@code false} if the specified wait time elapses
1302     * before the element can be transferred.
1303 jsr166 1.5 *
1304     * @throws NullPointerException if the specified element is null
1305 jsr166 1.4 */
1306 jsr166 1.1 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1307     throws InterruptedException {
1308 jsr166 1.14 if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1309 jsr166 1.1 return true;
1310     if (!Thread.interrupted())
1311     return false;
1312     throw new InterruptedException();
1313     }
1314    
1315     public E take() throws InterruptedException {
1316 jsr166 1.8 E e = xfer(null, false, SYNC, 0);
1317 jsr166 1.1 if (e != null)
1318 jsr166 1.5 return e;
1319 jsr166 1.1 Thread.interrupted();
1320     throw new InterruptedException();
1321     }
1322    
1323     public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1324 jsr166 1.14 E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1325 jsr166 1.1 if (e != null || !Thread.interrupted())
1326 jsr166 1.5 return e;
1327 jsr166 1.1 throw new InterruptedException();
1328     }
1329    
1330     public E poll() {
1331 jsr166 1.8 return xfer(null, false, NOW, 0);
1332 jsr166 1.1 }
1333    
1334 jsr166 1.4 /**
1335     * @throws NullPointerException {@inheritDoc}
1336     * @throws IllegalArgumentException {@inheritDoc}
1337     */
1338 jsr166 1.1 public int drainTo(Collection<? super E> c) {
1339 jsr166 1.111 Objects.requireNonNull(c);
1340 jsr166 1.1 if (c == this)
1341     throw new IllegalArgumentException();
1342     int n = 0;
1343 jsr166 1.112 for (E e; (e = poll()) != null; n++)
1344 jsr166 1.1 c.add(e);
1345     return n;
1346     }
1347    
1348 jsr166 1.4 /**
1349     * @throws NullPointerException {@inheritDoc}
1350     * @throws IllegalArgumentException {@inheritDoc}
1351     */
1352 jsr166 1.1 public int drainTo(Collection<? super E> c, int maxElements) {
1353 jsr166 1.111 Objects.requireNonNull(c);
1354 jsr166 1.1 if (c == this)
1355     throw new IllegalArgumentException();
1356     int n = 0;
1357 jsr166 1.112 for (E e; n < maxElements && (e = poll()) != null; n++)
1358 jsr166 1.1 c.add(e);
1359     return n;
1360     }
1361    
1362 jsr166 1.5 /**
1363 jsr166 1.36 * Returns an iterator over the elements in this queue in proper sequence.
1364     * The elements will be returned in order from first (head) to last (tail).
1365 jsr166 1.5 *
1366 jsr166 1.68 * <p>The returned iterator is
1367     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1368 jsr166 1.5 *
1369     * @return an iterator over the elements in this queue in proper sequence
1370     */
1371 jsr166 1.1 public Iterator<E> iterator() {
1372     return new Itr();
1373     }
1374    
1375     public E peek() {
1376 jsr166 1.92 restartFromHead: for (;;) {
1377     for (Node p = head; p != null;) {
1378     Object item = p.item;
1379     if (p.isData) {
1380 jsr166 1.105 if (item != null) {
1381 jsr166 1.92 @SuppressWarnings("unchecked") E e = (E) item;
1382     return e;
1383     }
1384     }
1385     else if (item == null)
1386     break;
1387     if (p == (p = p.next))
1388     continue restartFromHead;
1389     }
1390     return null;
1391     }
1392 jsr166 1.1 }
1393    
1394 jsr166 1.6 /**
1395     * Returns {@code true} if this queue contains no elements.
1396     *
1397     * @return {@code true} if this queue contains no elements
1398     */
1399 jsr166 1.1 public boolean isEmpty() {
1400 jsr166 1.90 return firstDataNode() == null;
1401 jsr166 1.1 }
1402    
1403     public boolean hasWaitingConsumer() {
1404 jsr166 1.93 restartFromHead: for (;;) {
1405     for (Node p = head; p != null;) {
1406     Object item = p.item;
1407     if (p.isData) {
1408 jsr166 1.105 if (item != null)
1409 jsr166 1.93 break;
1410     }
1411     else if (item == null)
1412     return true;
1413     if (p == (p = p.next))
1414     continue restartFromHead;
1415     }
1416     return false;
1417     }
1418 jsr166 1.1 }
1419    
1420     /**
1421     * Returns the number of elements in this queue. If this queue
1422     * contains more than {@code Integer.MAX_VALUE} elements, returns
1423     * {@code Integer.MAX_VALUE}.
1424     *
1425     * <p>Beware that, unlike in most collections, this method is
1426     * <em>NOT</em> a constant-time operation. Because of the
1427     * asynchronous nature of these queues, determining the current
1428     * number of elements requires an O(n) traversal.
1429     *
1430     * @return the number of elements in this queue
1431     */
1432     public int size() {
1433 jsr166 1.8 return countOfMode(true);
1434 jsr166 1.1 }
1435    
1436     public int getWaitingConsumerCount() {
1437 jsr166 1.8 return countOfMode(false);
1438 jsr166 1.1 }
1439    
1440 jsr166 1.6 /**
1441     * Removes a single instance of the specified element from this queue,
1442     * if it is present. More formally, removes an element {@code e} such
1443     * that {@code o.equals(e)}, if this queue contains one or more such
1444     * elements.
1445     * Returns {@code true} if this queue contained the specified element
1446     * (or equivalently, if this queue changed as a result of the call).
1447     *
1448     * @param o element to be removed from this queue, if present
1449     * @return {@code true} if this queue changed as a result of the call
1450     */
1451 jsr166 1.1 public boolean remove(Object o) {
1452 jsr166 1.108 if (o == null)
1453     return false;
1454     restartFromHead: for (;;) {
1455 jsr166 1.122 for (Node p = head, c = p, pred = null, q; p != null; ) {
1456     final Object item; boolean pAlive;
1457 jsr166 1.132 if (pAlive = ((item = p.item) != null && p.isData)) {
1458 jsr166 1.122 if (o.equals(item) && p.tryMatchData()) {
1459     if ((q = p.next) == null) q = p;
1460     if (c != q) tryCasSuccessor(pred, c, q);
1461 jsr166 1.108 return true;
1462     }
1463     }
1464 jsr166 1.122 else if (!p.isData && item == null)
1465 jsr166 1.108 break;
1466 jsr166 1.134 if ((c != p && !tryCasSuccessor(pred, c, c = p)) || pAlive) {
1467 jsr166 1.122 pred = p;
1468 jsr166 1.134 c = p = p.next;
1469 jsr166 1.122 }
1470 jsr166 1.134 else if (p == (p = p.next))
1471 jsr166 1.108 continue restartFromHead;
1472     }
1473     return false;
1474     }
1475 jsr166 1.1 }
1476    
1477     /**
1478 jsr166 1.30 * Returns {@code true} if this queue contains the specified element.
1479     * More formally, returns {@code true} if and only if this queue contains
1480     * at least one element {@code e} such that {@code o.equals(e)}.
1481     *
1482     * @param o object to be checked for containment in this queue
1483     * @return {@code true} if this queue contains the specified element
1484     */
1485     public boolean contains(Object o) {
1486 jsr166 1.122 if (o == null)
1487     return false;
1488     restartFromHead: for (;;) {
1489 jsr166 1.134 for (Node p = head, c = p, pred = null; p != null; ) {
1490 jsr166 1.122 final Object item; final boolean pAlive;
1491 jsr166 1.132 if (pAlive = ((item = p.item) != null && p.isData)) {
1492 jsr166 1.122 if (o.equals(item))
1493 jsr166 1.74 return true;
1494     }
1495 jsr166 1.122 else if (!p.isData && item == null)
1496 jsr166 1.74 break;
1497 jsr166 1.134 if ((c != p && !tryCasSuccessor(pred, c, c = p)) || pAlive) {
1498 jsr166 1.122 pred = p;
1499 jsr166 1.134 c = p = p.next;
1500 jsr166 1.122 }
1501 jsr166 1.134 else if (p == (p = p.next))
1502 jsr166 1.122 continue restartFromHead;
1503 jsr166 1.30 }
1504 jsr166 1.122 return false;
1505 jsr166 1.30 }
1506     }
1507    
1508     /**
1509 jsr166 1.5 * Always returns {@code Integer.MAX_VALUE} because a
1510     * {@code LinkedTransferQueue} is not capacity constrained.
1511     *
1512     * @return {@code Integer.MAX_VALUE} (as specified by
1513 jsr166 1.42 * {@link java.util.concurrent.BlockingQueue#remainingCapacity()
1514     * BlockingQueue.remainingCapacity})
1515 jsr166 1.5 */
1516     public int remainingCapacity() {
1517     return Integer.MAX_VALUE;
1518     }
1519    
1520     /**
1521 jsr166 1.50 * Saves this queue to a stream (that is, serializes it).
1522 jsr166 1.1 *
1523 jsr166 1.65 * @param s the stream
1524 jsr166 1.66 * @throws java.io.IOException if an I/O error occurs
1525 jsr166 1.1 * @serialData All of the elements (each an {@code E}) in
1526     * the proper order, followed by a null
1527     */
1528     private void writeObject(java.io.ObjectOutputStream s)
1529     throws java.io.IOException {
1530     s.defaultWriteObject();
1531     for (E e : this)
1532     s.writeObject(e);
1533     // Use trailing null as sentinel
1534     s.writeObject(null);
1535     }
1536    
1537     /**
1538 jsr166 1.50 * Reconstitutes this queue from a stream (that is, deserializes it).
1539 jsr166 1.65 * @param s the stream
1540 jsr166 1.66 * @throws ClassNotFoundException if the class of a serialized object
1541     * could not be found
1542     * @throws java.io.IOException if an I/O error occurs
1543 jsr166 1.1 */
1544     private void readObject(java.io.ObjectInputStream s)
1545     throws java.io.IOException, ClassNotFoundException {
1546     s.defaultReadObject();
1547     for (;;) {
1548 jsr166 1.49 @SuppressWarnings("unchecked")
1549     E item = (E) s.readObject();
1550 jsr166 1.1 if (item == null)
1551     break;
1552     else
1553     offer(item);
1554     }
1555     }
1556    
1557 jsr166 1.116 /**
1558     * @throws NullPointerException {@inheritDoc}
1559     */
1560     public boolean removeIf(Predicate<? super E> filter) {
1561     Objects.requireNonNull(filter);
1562     return bulkRemove(filter);
1563     }
1564    
1565     /**
1566     * @throws NullPointerException {@inheritDoc}
1567     */
1568     public boolean removeAll(Collection<?> c) {
1569     Objects.requireNonNull(c);
1570     return bulkRemove(e -> c.contains(e));
1571     }
1572    
1573     /**
1574     * @throws NullPointerException {@inheritDoc}
1575     */
1576     public boolean retainAll(Collection<?> c) {
1577     Objects.requireNonNull(c);
1578     return bulkRemove(e -> !c.contains(e));
1579     }
1580    
1581 jsr166 1.124 public void clear() {
1582     bulkRemove(e -> true);
1583     }
1584    
1585     /**
1586     * Tolerate this many consecutive dead nodes before CAS-collapsing.
1587     * Amortized cost of clear() is (1 + 1/MAX_HOPS) CASes per element.
1588     */
1589     private static final int MAX_HOPS = 8;
1590    
1591 jsr166 1.116 /** Implementation of bulk remove methods. */
1592     @SuppressWarnings("unchecked")
1593     private boolean bulkRemove(Predicate<? super E> filter) {
1594     boolean removed = false;
1595     restartFromHead: for (;;) {
1596 jsr166 1.124 int hops = MAX_HOPS;
1597     // c will be CASed to collapse intervening dead nodes between
1598     // pred (or head if null) and p.
1599     for (Node p = head, c = p, pred = null, q; p != null; p = q) {
1600     final Object item; boolean pAlive;
1601 jsr166 1.132 if (pAlive = ((item = p.item) != null && p.isData)) {
1602 jsr166 1.124 if (filter.test((E) item)) {
1603     if (p.tryMatchData())
1604     removed = true;
1605     pAlive = false;
1606 jsr166 1.116 }
1607     }
1608 jsr166 1.124 else if (!p.isData && item == null)
1609 jsr166 1.116 break;
1610 jsr166 1.124 if ((q = p.next) == null || pAlive || --hops == 0) {
1611     // p might already be self-linked here, but if so:
1612     // - CASing head will surely fail
1613     // - CASing pred's next will be useless but harmless.
1614 jsr166 1.134 if ((c != p && !tryCasSuccessor(pred, c, c = p))
1615     || pAlive) {
1616     // if CAS failed or alive, abandon old pred
1617 jsr166 1.124 hops = MAX_HOPS;
1618     pred = p;
1619     c = q;
1620     }
1621     } else if (p == q)
1622 jsr166 1.116 continue restartFromHead;
1623     }
1624     return removed;
1625     }
1626     }
1627    
1628     /**
1629     * Runs action on each element found during a traversal starting at p.
1630 jsr166 1.118 * If p is null, the action is not run.
1631 jsr166 1.116 */
1632     @SuppressWarnings("unchecked")
1633     void forEachFrom(Consumer<? super E> action, Node p) {
1634 jsr166 1.134 for (Node c = p, pred = null; p != null; ) {
1635 jsr166 1.122 final Object item; final boolean pAlive;
1636 jsr166 1.132 if (pAlive = ((item = p.item) != null && p.isData))
1637 jsr166 1.122 action.accept((E) item);
1638     else if (!p.isData && item == null)
1639     break;
1640 jsr166 1.134 if ((c != p && !tryCasSuccessor(pred, c, c = p)) || pAlive) {
1641 jsr166 1.122 pred = p;
1642 jsr166 1.134 c = p = p.next;
1643 jsr166 1.122 }
1644 jsr166 1.134 else if (p == (p = p.next)) {
1645 jsr166 1.122 pred = null;
1646     c = p = head;
1647 jsr166 1.116 }
1648     }
1649     }
1650    
1651     /**
1652     * @throws NullPointerException {@inheritDoc}
1653     */
1654     public void forEach(Consumer<? super E> action) {
1655     Objects.requireNonNull(action);
1656     forEachFrom(action, head);
1657     }
1658    
1659 dl 1.97 // VarHandle mechanics
1660     private static final VarHandle HEAD;
1661     private static final VarHandle TAIL;
1662     private static final VarHandle SWEEPVOTES;
1663 dl 1.38 static {
1664 jsr166 1.1 try {
1665 dl 1.97 MethodHandles.Lookup l = MethodHandles.lookup();
1666     HEAD = l.findVarHandle(LinkedTransferQueue.class, "head",
1667     Node.class);
1668     TAIL = l.findVarHandle(LinkedTransferQueue.class, "tail",
1669     Node.class);
1670     SWEEPVOTES = l.findVarHandle(LinkedTransferQueue.class, "sweepVotes",
1671     int.class);
1672 jsr166 1.79 } catch (ReflectiveOperationException e) {
1673 dl 1.38 throw new Error(e);
1674 jsr166 1.1 }
1675 jsr166 1.85
1676     // Reduce the risk of rare disastrous classloading in first call to
1677     // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
1678     Class<?> ensureLoaded = LockSupport.class;
1679 jsr166 1.1 }
1680     }