ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/LinkedTransferQueue.java
Revision: 1.136
Committed: Sat Jan 7 20:07:49 2017 UTC (7 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.135: +1 -0 lines
Log Message:
tryCasSuccessor: add assertion

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.39 * http://creativecommons.org/publicdomain/zero/1.0/
5 jsr166 1.1 */
6    
7     package java.util.concurrent;
8    
9 dl 1.97 import java.lang.invoke.MethodHandles;
10     import java.lang.invoke.VarHandle;
11 jsr166 1.1 import java.util.AbstractQueue;
12 jsr166 1.82 import java.util.Arrays;
13 jsr166 1.1 import java.util.Collection;
14     import java.util.Iterator;
15     import java.util.NoSuchElementException;
16 jsr166 1.111 import java.util.Objects;
17 jsr166 1.5 import java.util.Queue;
18 dl 1.52 import java.util.Spliterator;
19 dl 1.54 import java.util.Spliterators;
20 jsr166 1.76 import java.util.concurrent.locks.LockSupport;
21     import java.util.function.Consumer;
22 jsr166 1.116 import java.util.function.Predicate;
23 dl 1.22
24 jsr166 1.1 /**
25 jsr166 1.6 * An unbounded {@link TransferQueue} based on linked nodes.
26 jsr166 1.1 * This queue orders elements FIFO (first-in-first-out) with respect
27     * to any given producer. The <em>head</em> of the queue is that
28     * element that has been on the queue the longest time for some
29     * producer. The <em>tail</em> of the queue is that element that has
30     * been on the queue the shortest time for some producer.
31     *
32 dl 1.40 * <p>Beware that, unlike in most collections, the {@code size} method
33     * is <em>NOT</em> a constant-time operation. Because of the
34 jsr166 1.1 * asynchronous nature of these queues, determining the current number
35 dl 1.40 * of elements requires a traversal of the elements, and so may report
36     * inaccurate results if this collection is modified during traversal.
37 jsr166 1.1 *
38 jsr166 1.131 * <p>Bulk operations that add, remove, or examine multiple elements,
39     * such as {@link #addAll}, {@link #removeIf} or {@link #forEach},
40     * are <em>not</em> guaranteed to be performed atomically.
41     * For example, a {@code forEach} traversal concurrent with an {@code
42     * addAll} operation might observe only some of the added elements.
43     *
44     * <p>This class and its iterator implement all of the <em>optional</em>
45     * methods of the {@link Collection} and {@link Iterator} interfaces.
46 jsr166 1.1 *
47     * <p>Memory consistency effects: As with other concurrent
48     * collections, actions in a thread prior to placing an object into a
49     * {@code LinkedTransferQueue}
50     * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
51     * actions subsequent to the access or removal of that element from
52     * the {@code LinkedTransferQueue} in another thread.
53     *
54     * <p>This class is a member of the
55     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
56     * Java Collections Framework</a>.
57     *
58     * @since 1.7
59     * @author Doug Lea
60 jsr166 1.75 * @param <E> the type of elements held in this queue
61 jsr166 1.1 */
62     public class LinkedTransferQueue<E> extends AbstractQueue<E>
63     implements TransferQueue<E>, java.io.Serializable {
64     private static final long serialVersionUID = -3223113410248163686L;
65    
66     /*
67 jsr166 1.8 * *** Overview of Dual Queues with Slack ***
68 jsr166 1.1 *
69 jsr166 1.8 * Dual Queues, introduced by Scherer and Scott
70 jsr166 1.99 * (http://www.cs.rochester.edu/~scott/papers/2004_DISC_dual_DS.pdf)
71     * are (linked) queues in which nodes may represent either data or
72 jsr166 1.8 * requests. When a thread tries to enqueue a data node, but
73     * encounters a request node, it instead "matches" and removes it;
74     * and vice versa for enqueuing requests. Blocking Dual Queues
75     * arrange that threads enqueuing unmatched requests block until
76     * other threads provide the match. Dual Synchronous Queues (see
77     * Scherer, Lea, & Scott
78     * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
79     * additionally arrange that threads enqueuing unmatched data also
80     * block. Dual Transfer Queues support all of these modes, as
81     * dictated by callers.
82     *
83     * A FIFO dual queue may be implemented using a variation of the
84     * Michael & Scott (M&S) lock-free queue algorithm
85 jsr166 1.72 * (http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf).
86 jsr166 1.8 * It maintains two pointer fields, "head", pointing to a
87     * (matched) node that in turn points to the first actual
88     * (unmatched) queue node (or null if empty); and "tail" that
89     * points to the last node on the queue (or again null if
90     * empty). For example, here is a possible queue with four data
91     * elements:
92     *
93     * head tail
94     * | |
95     * v v
96     * M -> U -> U -> U -> U
97     *
98     * The M&S queue algorithm is known to be prone to scalability and
99     * overhead limitations when maintaining (via CAS) these head and
100     * tail pointers. This has led to the development of
101     * contention-reducing variants such as elimination arrays (see
102     * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
103     * optimistic back pointers (see Ladan-Mozes & Shavit
104     * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
105     * However, the nature of dual queues enables a simpler tactic for
106     * improving M&S-style implementations when dual-ness is needed.
107     *
108     * In a dual queue, each node must atomically maintain its match
109     * status. While there are other possible variants, we implement
110     * this here as: for a data-mode node, matching entails CASing an
111     * "item" field from a non-null data value to null upon match, and
112     * vice-versa for request nodes, CASing from null to a data
113     * value. (Note that the linearization properties of this style of
114     * queue are easy to verify -- elements are made available by
115     * linking, and unavailable by matching.) Compared to plain M&S
116     * queues, this property of dual queues requires one additional
117     * successful atomic operation per enq/deq pair. But it also
118     * enables lower cost variants of queue maintenance mechanics. (A
119     * variation of this idea applies even for non-dual queues that
120     * support deletion of interior elements, such as
121     * j.u.c.ConcurrentLinkedQueue.)
122     *
123     * Once a node is matched, its match status can never again
124     * change. We may thus arrange that the linked list of them
125     * contain a prefix of zero or more matched nodes, followed by a
126     * suffix of zero or more unmatched nodes. (Note that we allow
127     * both the prefix and suffix to be zero length, which in turn
128     * means that we do not use a dummy header.) If we were not
129     * concerned with either time or space efficiency, we could
130     * correctly perform enqueue and dequeue operations by traversing
131     * from a pointer to the initial node; CASing the item of the
132     * first unmatched node on match and CASing the next field of the
133     * trailing node on appends. (Plus some special-casing when
134     * initially empty). While this would be a terrible idea in
135     * itself, it does have the benefit of not requiring ANY atomic
136     * updates on head/tail fields.
137     *
138     * We introduce here an approach that lies between the extremes of
139     * never versus always updating queue (head and tail) pointers.
140     * This offers a tradeoff between sometimes requiring extra
141     * traversal steps to locate the first and/or last unmatched
142     * nodes, versus the reduced overhead and contention of fewer
143     * updates to queue pointers. For example, a possible snapshot of
144     * a queue is:
145     *
146     * head tail
147     * | |
148     * v v
149     * M -> M -> U -> U -> U -> U
150     *
151     * The best value for this "slack" (the targeted maximum distance
152     * between the value of "head" and the first unmatched node, and
153     * similarly for "tail") is an empirical matter. We have found
154     * that using very small constants in the range of 1-3 work best
155     * over a range of platforms. Larger values introduce increasing
156     * costs of cache misses and risks of long traversal chains, while
157     * smaller values increase CAS contention and overhead.
158     *
159     * Dual queues with slack differ from plain M&S dual queues by
160     * virtue of only sometimes updating head or tail pointers when
161     * matching, appending, or even traversing nodes; in order to
162     * maintain a targeted slack. The idea of "sometimes" may be
163     * operationalized in several ways. The simplest is to use a
164     * per-operation counter incremented on each traversal step, and
165     * to try (via CAS) to update the associated queue pointer
166     * whenever the count exceeds a threshold. Another, that requires
167     * more overhead, is to use random number generators to update
168     * with a given probability per traversal step.
169     *
170     * In any strategy along these lines, because CASes updating
171 jsr166 1.126 * fields may fail, the actual slack may exceed targeted slack.
172     * However, they may be retried at any time to maintain targets.
173     * Even when using very small slack values, this approach works
174     * well for dual queues because it allows all operations up to the
175     * point of matching or appending an item (hence potentially
176     * allowing progress by another thread) to be read-only, thus not
177     * introducing any further contention. As described below, we
178     * implement this by performing slack maintenance retries only
179     * after these points.
180 jsr166 1.8 *
181     * As an accompaniment to such techniques, traversal overhead can
182     * be further reduced without increasing contention of head
183     * pointer updates: Threads may sometimes shortcut the "next" link
184     * path from the current "head" node to be closer to the currently
185     * known first unmatched node, and similarly for tail. Again, this
186     * may be triggered with using thresholds or randomization.
187     *
188     * These ideas must be further extended to avoid unbounded amounts
189     * of costly-to-reclaim garbage caused by the sequential "next"
190     * links of nodes starting at old forgotten head nodes: As first
191     * described in detail by Boehm
192 jsr166 1.69 * (http://portal.acm.org/citation.cfm?doid=503272.503282), if a GC
193 jsr166 1.8 * delays noticing that any arbitrarily old node has become
194     * garbage, all newer dead nodes will also be unreclaimed.
195     * (Similar issues arise in non-GC environments.) To cope with
196     * this in our implementation, upon CASing to advance the head
197     * pointer, we set the "next" link of the previous head to point
198 jsr166 1.127 * only to itself; thus limiting the length of chains of dead nodes.
199 jsr166 1.8 * (We also take similar care to wipe out possibly garbage
200     * retaining values held in other Node fields.) However, doing so
201     * adds some further complexity to traversal: If any "next"
202     * pointer links to itself, it indicates that the current thread
203     * has lagged behind a head-update, and so the traversal must
204     * continue from the "head". Traversals trying to find the
205     * current tail starting from "tail" may also encounter
206     * self-links, in which case they also continue at "head".
207     *
208     * It is tempting in slack-based scheme to not even use CAS for
209     * updates (similarly to Ladan-Mozes & Shavit). However, this
210     * cannot be done for head updates under the above link-forgetting
211     * mechanics because an update may leave head at a detached node.
212     * And while direct writes are possible for tail updates, they
213     * increase the risk of long retraversals, and hence long garbage
214     * chains, which can be much more costly than is worthwhile
215     * considering that the cost difference of performing a CAS vs
216     * write is smaller when they are not triggered on each operation
217     * (especially considering that writes and CASes equally require
218     * additional GC bookkeeping ("write barriers") that are sometimes
219     * more costly than the writes themselves because of contention).
220     *
221     * *** Overview of implementation ***
222     *
223     * We use a threshold-based approach to updates, with a slack
224     * threshold of two -- that is, we update head/tail when the
225     * current pointer appears to be two or more steps away from the
226     * first/last node. The slack value is hard-wired: a path greater
227     * than one is naturally implemented by checking equality of
228     * traversal pointers except when the list has only one element,
229     * in which case we keep slack threshold at one. Avoiding tracking
230     * explicit counts across method calls slightly simplifies an
231     * already-messy implementation. Using randomization would
232     * probably work better if there were a low-quality dirt-cheap
233     * per-thread one available, but even ThreadLocalRandom is too
234     * heavy for these purposes.
235     *
236 dl 1.16 * With such a small slack threshold value, it is not worthwhile
237     * to augment this with path short-circuiting (i.e., unsplicing
238     * interior nodes) except in the case of cancellation/removal (see
239     * below).
240 jsr166 1.8 *
241     * We allow both the head and tail fields to be null before any
242     * nodes are enqueued; initializing upon first append. This
243     * simplifies some other logic, as well as providing more
244     * efficient explicit control paths instead of letting JVMs insert
245     * implicit NullPointerExceptions when they are null. While not
246     * currently fully implemented, we also leave open the possibility
247     * of re-nulling these fields when empty (which is complicated to
248     * arrange, for little benefit.)
249     *
250     * All enqueue/dequeue operations are handled by the single method
251     * "xfer" with parameters indicating whether to act as some form
252     * of offer, put, poll, take, or transfer (each possibly with
253     * timeout). The relative complexity of using one monolithic
254     * method outweighs the code bulk and maintenance problems of
255     * using separate methods for each case.
256     *
257     * Operation consists of up to three phases. The first is
258     * implemented within method xfer, the second in tryAppend, and
259     * the third in method awaitMatch.
260     *
261     * 1. Try to match an existing node
262     *
263     * Starting at head, skip already-matched nodes until finding
264     * an unmatched node of opposite mode, if one exists, in which
265     * case matching it and returning, also if necessary updating
266     * head to one past the matched node (or the node itself if the
267     * list has no other unmatched nodes). If the CAS misses, then
268     * a loop retries advancing head by two steps until either
269     * success or the slack is at most two. By requiring that each
270     * attempt advances head by two (if applicable), we ensure that
271     * the slack does not grow without bound. Traversals also check
272     * if the initial head is now off-list, in which case they
273 jsr166 1.128 * restart at the new head.
274 jsr166 1.8 *
275     * If no candidates are found and the call was untimed
276 jsr166 1.128 * poll/offer (argument "how" is NOW), return.
277 jsr166 1.8 *
278     * 2. Try to append a new node (method tryAppend)
279     *
280     * Starting at current tail pointer, find the actual last node
281     * and try to append a new node (or if head was null, establish
282     * the first node). Nodes can be appended only if their
283     * predecessors are either already matched or are of the same
284     * mode. If we detect otherwise, then a new node with opposite
285     * mode must have been appended during traversal, so we must
286     * restart at phase 1. The traversal and update steps are
287     * otherwise similar to phase 1: Retrying upon CAS misses and
288     * checking for staleness. In particular, if a self-link is
289     * encountered, then we can safely jump to a node on the list
290     * by continuing the traversal at current head.
291     *
292     * On successful append, if the call was ASYNC, return.
293     *
294     * 3. Await match or cancellation (method awaitMatch)
295     *
296     * Wait for another thread to match node; instead cancelling if
297     * the current thread was interrupted or the wait timed out. On
298     * multiprocessors, we use front-of-queue spinning: If a node
299     * appears to be the first unmatched node in the queue, it
300     * spins a bit before blocking. In either case, before blocking
301     * it tries to unsplice any nodes between the current "head"
302     * and the first unmatched node.
303     *
304     * Front-of-queue spinning vastly improves performance of
305     * heavily contended queues. And so long as it is relatively
306     * brief and "quiet", spinning does not much impact performance
307     * of less-contended queues. During spins threads check their
308     * interrupt status and generate a thread-local random number
309     * to decide to occasionally perform a Thread.yield. While
310 jsr166 1.44 * yield has underdefined specs, we assume that it might help,
311 jsr166 1.45 * and will not hurt, in limiting impact of spinning on busy
312 jsr166 1.8 * systems. We also use smaller (1/2) spins for nodes that are
313     * not known to be front but whose predecessors have not
314     * blocked -- these "chained" spins avoid artifacts of
315     * front-of-queue rules which otherwise lead to alternating
316     * nodes spinning vs blocking. Further, front threads that
317     * represent phase changes (from data to request node or vice
318     * versa) compared to their predecessors receive additional
319     * chained spins, reflecting longer paths typically required to
320     * unblock threads during phase changes.
321 dl 1.16 *
322     *
323     * ** Unlinking removed interior nodes **
324     *
325     * In addition to minimizing garbage retention via self-linking
326     * described above, we also unlink removed interior nodes. These
327     * may arise due to timed out or interrupted waits, or calls to
328     * remove(x) or Iterator.remove. Normally, given a node that was
329     * at one time known to be the predecessor of some node s that is
330     * to be removed, we can unsplice s by CASing the next field of
331     * its predecessor if it still points to s (otherwise s must
332     * already have been removed or is now offlist). But there are two
333     * situations in which we cannot guarantee to make node s
334     * unreachable in this way: (1) If s is the trailing node of list
335     * (i.e., with null next), then it is pinned as the target node
336 jsr166 1.23 * for appends, so can only be removed later after other nodes are
337 dl 1.16 * appended. (2) We cannot necessarily unlink s given a
338     * predecessor node that is matched (including the case of being
339 jsr166 1.17 * cancelled): the predecessor may already be unspliced, in which
340     * case some previous reachable node may still point to s.
341     * (For further explanation see Herlihy & Shavit "The Art of
342 dl 1.16 * Multiprocessor Programming" chapter 9). Although, in both
343     * cases, we can rule out the need for further action if either s
344     * or its predecessor are (or can be made to be) at, or fall off
345     * from, the head of list.
346     *
347     * Without taking these into account, it would be possible for an
348     * unbounded number of supposedly removed nodes to remain
349     * reachable. Situations leading to such buildup are uncommon but
350     * can occur in practice; for example when a series of short timed
351     * calls to poll repeatedly time out but never otherwise fall off
352     * the list because of an untimed call to take at the front of the
353     * queue.
354     *
355     * When these cases arise, rather than always retraversing the
356     * entire list to find an actual predecessor to unlink (which
357     * won't help for case (1) anyway), we record a conservative
358 jsr166 1.24 * estimate of possible unsplice failures (in "sweepVotes").
359     * We trigger a full sweep when the estimate exceeds a threshold
360     * ("SWEEP_THRESHOLD") indicating the maximum number of estimated
361     * removal failures to tolerate before sweeping through, unlinking
362     * cancelled nodes that were not unlinked upon initial removal.
363     * We perform sweeps by the thread hitting threshold (rather than
364     * background threads or by spreading work to other threads)
365     * because in the main contexts in which removal occurs, the
366     * caller is already timed-out, cancelled, or performing a
367     * potentially O(n) operation (e.g. remove(x)), none of which are
368     * time-critical enough to warrant the overhead that alternatives
369     * would impose on other threads.
370 dl 1.16 *
371     * Because the sweepVotes estimate is conservative, and because
372     * nodes become unlinked "naturally" as they fall off the head of
373     * the queue, and because we allow votes to accumulate even while
374 jsr166 1.17 * sweeps are in progress, there are typically significantly fewer
375 dl 1.16 * such nodes than estimated. Choice of a threshold value
376     * balances the likelihood of wasted effort and contention, versus
377     * providing a worst-case bound on retention of interior nodes in
378     * quiescent queues. The value defined below was chosen
379     * empirically to balance these under various timeout scenarios.
380     *
381     * Note that we cannot self-link unlinked interior nodes during
382     * sweeps. However, the associated garbage chains terminate when
383     * some successor ultimately falls off the head of the list and is
384     * self-linked.
385 jsr166 1.8 */
386    
387     /** True if on multiprocessor */
388     private static final boolean MP =
389     Runtime.getRuntime().availableProcessors() > 1;
390    
391     /**
392     * The number of times to spin (with randomly interspersed calls
393     * to Thread.yield) on multiprocessor before blocking when a node
394     * is apparently the first waiter in the queue. See above for
395     * explanation. Must be a power of two. The value is empirically
396     * derived -- it works pretty well across a variety of processors,
397     * numbers of CPUs, and OSes.
398     */
399     private static final int FRONT_SPINS = 1 << 7;
400    
401     /**
402     * The number of times to spin before blocking when a node is
403     * preceded by another node that is apparently spinning. Also
404     * serves as an increment to FRONT_SPINS on phase changes, and as
405     * base average frequency for yielding during spins. Must be a
406     * power of two.
407     */
408     private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
409    
410     /**
411 dl 1.16 * The maximum number of estimated removal failures (sweepVotes)
412     * to tolerate before sweeping through the queue unlinking
413     * cancelled nodes that were not unlinked upon initial
414     * removal. See above for explanation. The value must be at least
415     * two to avoid useless sweeps when removing trailing nodes.
416     */
417     static final int SWEEP_THRESHOLD = 32;
418    
419     /**
420 jsr166 1.8 * Queue nodes. Uses Object, not E, for items to allow forgetting
421 dl 1.97 * them after use. Relies heavily on VarHandles to minimize
422 dl 1.16 * unnecessary ordering constraints: Writes that are intrinsically
423     * ordered wrt other accesses or CASes use simple relaxed forms.
424 jsr166 1.8 */
425 jsr166 1.14 static final class Node {
426 jsr166 1.8 final boolean isData; // false if this is a request node
427     volatile Object item; // initially non-null if isData; CASed to match
428 jsr166 1.14 volatile Node next;
429 jsr166 1.8 volatile Thread waiter; // null until waiting
430    
431 jsr166 1.14 final boolean casNext(Node cmp, Node val) {
432 dl 1.97 return NEXT.compareAndSet(this, cmp, val);
433 jsr166 1.8 }
434 jsr166 1.1
435 jsr166 1.8 final boolean casItem(Object cmp, Object val) {
436 jsr166 1.105 // assert isData == (cmp != null);
437     // assert isData == (val == null);
438     // assert !(cmp instanceof Node);
439 dl 1.97 return ITEM.compareAndSet(this, cmp, val);
440 jsr166 1.8 }
441 jsr166 1.1
442 jsr166 1.8 /**
443 jsr166 1.25 * Constructs a new node. Uses relaxed write because item can
444     * only be seen after publication via casNext.
445 jsr166 1.8 */
446 jsr166 1.101 Node(Object item) {
447 jsr166 1.104 ITEM.set(this, item);
448 jsr166 1.101 isData = (item != null);
449 jsr166 1.8 }
450 jsr166 1.1
451 jsr166 1.8 /**
452     * Links node to itself to avoid garbage retention. Called
453     * only after CASing head field, so uses relaxed write.
454     */
455     final void forgetNext() {
456 jsr166 1.121 NEXT.setRelease(this, this);
457 jsr166 1.8 }
458 jsr166 1.1
459 jsr166 1.8 /**
460 jsr166 1.105 * Sets item (of a request node) to self and waiter to null,
461     * to avoid garbage retention after matching or cancelling.
462     * Uses relaxed writes because order is already constrained in
463     * the only calling contexts: item is forgotten only after
464 jsr166 1.121 * volatile/atomic mechanics that extract items, and visitors
465     * of request nodes only ever check whether item is null.
466     * Similarly, clearing waiter follows either CAS or return
467     * from park (if ever parked; else we don't care).
468 jsr166 1.8 */
469     final void forgetContents() {
470 jsr166 1.105 // assert isMatched();
471     if (!isData)
472     ITEM.set(this, this);
473 dl 1.97 WAITER.set(this, null);
474 jsr166 1.8 }
475 jsr166 1.1
476 jsr166 1.8 /**
477     * Returns true if this node has been matched, including the
478     * case of artificial matches due to cancellation.
479     */
480     final boolean isMatched() {
481 jsr166 1.105 return isData == (item == null);
482 jsr166 1.11 }
483    
484     /**
485 jsr166 1.8 * Returns true if a node with the given mode cannot be
486     * appended to this node because this node is unmatched and
487     * has opposite data mode.
488     */
489     final boolean cannotPrecede(boolean haveData) {
490     boolean d = isData;
491 jsr166 1.105 return d != haveData && d != (item == null);
492 jsr166 1.8 }
493 jsr166 1.1
494 jsr166 1.8 /**
495     * Tries to artificially match a data node -- used by remove.
496     */
497     final boolean tryMatchData() {
498 dl 1.33 // assert isData;
499 jsr166 1.105 final Object x;
500     if ((x = item) != null && casItem(x, null)) {
501 jsr166 1.8 LockSupport.unpark(waiter);
502     return true;
503     }
504     return false;
505 jsr166 1.1 }
506    
507 dl 1.38 private static final long serialVersionUID = -3375979862319811754L;
508    
509 dl 1.97 // VarHandle mechanics
510     private static final VarHandle ITEM;
511     private static final VarHandle NEXT;
512     private static final VarHandle WAITER;
513 dl 1.38 static {
514     try {
515 dl 1.97 MethodHandles.Lookup l = MethodHandles.lookup();
516     ITEM = l.findVarHandle(Node.class, "item", Object.class);
517     NEXT = l.findVarHandle(Node.class, "next", Node.class);
518     WAITER = l.findVarHandle(Node.class, "waiter", Thread.class);
519 jsr166 1.79 } catch (ReflectiveOperationException e) {
520 dl 1.38 throw new Error(e);
521     }
522     }
523 jsr166 1.1 }
524    
525 jsr166 1.8 /** head of the queue; null until first enqueue */
526 jsr166 1.14 transient volatile Node head;
527 jsr166 1.8
528     /** tail of the queue; null until first append */
529 jsr166 1.14 private transient volatile Node tail;
530 jsr166 1.1
531 dl 1.16 /** The number of apparent failures to unsplice removed nodes */
532     private transient volatile int sweepVotes;
533    
534 jsr166 1.14 private boolean casTail(Node cmp, Node val) {
535 dl 1.97 return TAIL.compareAndSet(this, cmp, val);
536 jsr166 1.8 }
537 jsr166 1.1
538 jsr166 1.14 private boolean casHead(Node cmp, Node val) {
539 dl 1.97 return HEAD.compareAndSet(this, cmp, val);
540 jsr166 1.8 }
541 jsr166 1.1
542 dl 1.16 private boolean casSweepVotes(int cmp, int val) {
543 dl 1.97 return SWEEPVOTES.compareAndSet(this, cmp, val);
544 jsr166 1.8 }
545 jsr166 1.1
546 jsr166 1.122 /**
547     * Tries to CAS pred.next (or head, if pred is null) from c to p.
548 jsr166 1.133 * Caller must ensure that we're not unlinking the trailing node.
549 jsr166 1.122 */
550     private boolean tryCasSuccessor(Node pred, Node c, Node p) {
551 jsr166 1.133 // assert p != null;
552 jsr166 1.136 // assert c.isData != (c.item != null);
553 jsr166 1.122 // assert c != p;
554     if (pred != null)
555     return pred.casNext(c, p);
556     if (casHead(c, p)) {
557     c.forgetNext();
558     return true;
559     }
560     return false;
561     }
562    
563 jsr166 1.8 /*
564 jsr166 1.14 * Possible values for "how" argument in xfer method.
565 jsr166 1.1 */
566 jsr166 1.14 private static final int NOW = 0; // for untimed poll, tryTransfer
567     private static final int ASYNC = 1; // for offer, put, add
568     private static final int SYNC = 2; // for transfer, take
569     private static final int TIMED = 3; // for timed poll, tryTransfer
570 jsr166 1.1
571     /**
572 jsr166 1.8 * Implements all queuing methods. See above for explanation.
573 jsr166 1.1 *
574 jsr166 1.8 * @param e the item or null for take
575     * @param haveData true if this is a put, else a take
576 jsr166 1.14 * @param how NOW, ASYNC, SYNC, or TIMED
577     * @param nanos timeout in nanosecs, used only if mode is TIMED
578 jsr166 1.8 * @return an item if matched, else e
579     * @throws NullPointerException if haveData mode but e is null
580 jsr166 1.1 */
581 jsr166 1.8 private E xfer(E e, boolean haveData, int how, long nanos) {
582     if (haveData && (e == null))
583     throw new NullPointerException();
584 jsr166 1.130 Node s = null; // the node to append, if needed
585 jsr166 1.1
586 jsr166 1.119 restartFromHead: for (;;) {
587 jsr166 1.14 for (Node h = head, p = h; p != null;) { // find & match first node
588 jsr166 1.8 boolean isData = p.isData;
589     Object item = p.item;
590 jsr166 1.105 if ((item != null) == isData) { // unmatched
591 jsr166 1.8 if (isData == haveData) // can't match
592     break;
593     if (p.casItem(item, e)) { // match
594 jsr166 1.14 for (Node q = p; q != h;) {
595 dl 1.16 Node n = q.next; // update by 2 unless singleton
596 jsr166 1.37 if (head == h && casHead(h, n == null ? q : n)) {
597 jsr166 1.8 h.forgetNext();
598     break;
599     } // advance and retry
600     if ((h = head) == null ||
601     (q = h.next) == null || !q.isMatched())
602     break; // unless slack < 2
603     }
604     LockSupport.unpark(p.waiter);
605 jsr166 1.70 @SuppressWarnings("unchecked") E itemE = (E) item;
606     return itemE;
607 jsr166 1.1 }
608     }
609 jsr166 1.135 if (p == (p = p.next))
610     continue restartFromHead;
611 jsr166 1.8 }
612    
613 jsr166 1.14 if (how != NOW) { // No matches available
614 jsr166 1.130 if (s == null)
615     s = new Node(e);
616 jsr166 1.14 Node pred = tryAppend(s, haveData);
617 jsr166 1.8 if (pred == null)
618 jsr166 1.119 continue restartFromHead; // lost race vs opposite mode
619 jsr166 1.14 if (how != ASYNC)
620     return awaitMatch(s, pred, e, (how == TIMED), nanos);
621 jsr166 1.1 }
622 jsr166 1.8 return e; // not waiting
623 jsr166 1.1 }
624     }
625    
626     /**
627 jsr166 1.8 * Tries to append node s as tail.
628     *
629     * @param s the node to append
630     * @param haveData true if appending in data mode
631     * @return null on failure due to losing race with append in
632     * different mode, else s's predecessor, or s itself if no
633     * predecessor
634 jsr166 1.1 */
635 jsr166 1.14 private Node tryAppend(Node s, boolean haveData) {
636     for (Node t = tail, p = t;;) { // move p to last node and append
637     Node n, u; // temps for reads of next & tail
638 jsr166 1.8 if (p == null && (p = head) == null) {
639     if (casHead(null, s))
640     return s; // initialize
641     }
642     else if (p.cannotPrecede(haveData))
643     return null; // lost race vs opposite mode
644     else if ((n = p.next) != null) // not last; keep traversing
645     p = p != t && t != (u = tail) ? (t = u) : // stale tail
646     (p != n) ? n : null; // restart if off list
647     else if (!p.casNext(null, s))
648     p = p.next; // re-read on CAS failure
649     else {
650     if (p != t) { // update if slack now >= 2
651     while ((tail != t || !casTail(t, s)) &&
652     (t = tail) != null &&
653     (s = t.next) != null && // advance and retry
654     (s = s.next) != null && s != t);
655 jsr166 1.1 }
656 jsr166 1.8 return p;
657 jsr166 1.1 }
658     }
659     }
660    
661     /**
662 jsr166 1.8 * Spins/yields/blocks until node s is matched or caller gives up.
663 jsr166 1.1 *
664     * @param s the waiting node
665 jsr166 1.8 * @param pred the predecessor of s, or s itself if it has no
666     * predecessor, or null if unknown (the null case does not occur
667     * in any current calls but may in possible future extensions)
668 jsr166 1.1 * @param e the comparison value for checking match
669 jsr166 1.14 * @param timed if true, wait only until timeout elapses
670     * @param nanos timeout in nanosecs, used only if timed is true
671 jsr166 1.8 * @return matched item, or e if unmatched on interrupt or timeout
672 jsr166 1.1 */
673 jsr166 1.14 private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
674 jsr166 1.51 final long deadline = timed ? System.nanoTime() + nanos : 0L;
675 jsr166 1.8 Thread w = Thread.currentThread();
676     int spins = -1; // initialized after first item and cancel checks
677     ThreadLocalRandom randomYields = null; // bound if needed
678 jsr166 1.1
679     for (;;) {
680 jsr166 1.8 Object item = s.item;
681     if (item != e) { // matched
682 dl 1.33 // assert item != s;
683 jsr166 1.8 s.forgetContents(); // avoid garbage
684 jsr166 1.70 @SuppressWarnings("unchecked") E itemE = (E) item;
685     return itemE;
686 jsr166 1.8 }
687 jsr166 1.95 else if (w.isInterrupted() || (timed && nanos <= 0L)) {
688 jsr166 1.102 // try to cancel and unlink
689 jsr166 1.105 if (s.casItem(e, s.isData ? null : s)) {
690 jsr166 1.102 unsplice(pred, s);
691 jsr166 1.77 return e;
692 jsr166 1.102 }
693     // return normally if lost CAS
694 jsr166 1.8 }
695 dl 1.84 else if (spins < 0) { // establish spins at/near front
696 jsr166 1.8 if ((spins = spinsFor(pred, s.isData)) > 0)
697     randomYields = ThreadLocalRandom.current();
698     }
699     else if (spins > 0) { // spin
700 dl 1.16 --spins;
701     if (randomYields.nextInt(CHAINED_SPINS) == 0)
702 jsr166 1.8 Thread.yield(); // occasionally yield
703     }
704     else if (s.waiter == null) {
705     s.waiter = w; // request unpark then recheck
706 jsr166 1.1 }
707 jsr166 1.14 else if (timed) {
708 jsr166 1.51 nanos = deadline - System.nanoTime();
709     if (nanos > 0L)
710 jsr166 1.8 LockSupport.parkNanos(this, nanos);
711 jsr166 1.1 }
712 jsr166 1.8 else {
713 jsr166 1.1 LockSupport.park(this);
714     }
715 jsr166 1.8 }
716     }
717    
718     /**
719     * Returns spin/yield value for a node with given predecessor and
720     * data mode. See above for explanation.
721     */
722 jsr166 1.14 private static int spinsFor(Node pred, boolean haveData) {
723 jsr166 1.8 if (MP && pred != null) {
724     if (pred.isData != haveData) // phase change
725     return FRONT_SPINS + CHAINED_SPINS;
726     if (pred.isMatched()) // probably at front
727     return FRONT_SPINS;
728     if (pred.waiter == null) // pred apparently spinning
729     return CHAINED_SPINS;
730     }
731     return 0;
732     }
733    
734     /* -------------- Traversal methods -------------- */
735    
736     /**
737 jsr166 1.93 * Returns the first unmatched data node, or null if none.
738 jsr166 1.105 * Callers must recheck if the returned node is unmatched
739     * before using.
740 dl 1.52 */
741     final Node firstDataNode() {
742 jsr166 1.91 restartFromHead: for (;;) {
743     for (Node p = head; p != null;) {
744     Object item = p.item;
745     if (p.isData) {
746 jsr166 1.105 if (item != null)
747 jsr166 1.91 return p;
748     }
749     else if (item == null)
750     break;
751     if (p == (p = p.next))
752     continue restartFromHead;
753 dl 1.52 }
754 jsr166 1.91 return null;
755 dl 1.52 }
756     }
757    
758     /**
759 jsr166 1.8 * Traverses and counts unmatched nodes of the given mode.
760     * Used by methods size and getWaitingConsumerCount.
761 jsr166 1.1 */
762 jsr166 1.8 private int countOfMode(boolean data) {
763 jsr166 1.73 restartFromHead: for (;;) {
764     int count = 0;
765     for (Node p = head; p != null;) {
766     if (!p.isMatched()) {
767     if (p.isData != data)
768     return 0;
769     if (++count == Integer.MAX_VALUE)
770     break; // @see Collection.size()
771     }
772 jsr166 1.81 if (p == (p = p.next))
773 jsr166 1.73 continue restartFromHead;
774 jsr166 1.1 }
775 jsr166 1.73 return count;
776 jsr166 1.8 }
777     }
778    
779 jsr166 1.82 public String toString() {
780     String[] a = null;
781     restartFromHead: for (;;) {
782     int charLength = 0;
783     int size = 0;
784     for (Node p = head; p != null;) {
785     Object item = p.item;
786     if (p.isData) {
787 jsr166 1.105 if (item != null) {
788 jsr166 1.82 if (a == null)
789     a = new String[4];
790     else if (size == a.length)
791     a = Arrays.copyOf(a, 2 * size);
792     String s = item.toString();
793     a[size++] = s;
794     charLength += s.length();
795     }
796     } else if (item == null)
797     break;
798     if (p == (p = p.next))
799     continue restartFromHead;
800     }
801    
802     if (size == 0)
803     return "[]";
804    
805 jsr166 1.83 return Helpers.toString(a, size, charLength);
806 jsr166 1.82 }
807     }
808    
809     private Object[] toArrayInternal(Object[] a) {
810     Object[] x = a;
811     restartFromHead: for (;;) {
812     int size = 0;
813     for (Node p = head; p != null;) {
814     Object item = p.item;
815     if (p.isData) {
816 jsr166 1.105 if (item != null) {
817 jsr166 1.82 if (x == null)
818     x = new Object[4];
819     else if (size == x.length)
820     x = Arrays.copyOf(x, 2 * (size + 4));
821     x[size++] = item;
822     }
823     } else if (item == null)
824     break;
825     if (p == (p = p.next))
826     continue restartFromHead;
827     }
828     if (x == null)
829     return new Object[0];
830     else if (a != null && size <= a.length) {
831     if (a != x)
832     System.arraycopy(x, 0, a, 0, size);
833     if (size < a.length)
834     a[size] = null;
835     return a;
836     }
837     return (size == x.length) ? x : Arrays.copyOf(x, size);
838     }
839     }
840    
841     /**
842     * Returns an array containing all of the elements in this queue, in
843     * proper sequence.
844     *
845     * <p>The returned array will be "safe" in that no references to it are
846     * maintained by this queue. (In other words, this method must allocate
847     * a new array). The caller is thus free to modify the returned array.
848     *
849     * <p>This method acts as bridge between array-based and collection-based
850     * APIs.
851     *
852     * @return an array containing all of the elements in this queue
853     */
854     public Object[] toArray() {
855     return toArrayInternal(null);
856     }
857    
858     /**
859     * Returns an array containing all of the elements in this queue, in
860     * proper sequence; the runtime type of the returned array is that of
861     * the specified array. If the queue fits in the specified array, it
862     * is returned therein. Otherwise, a new array is allocated with the
863     * runtime type of the specified array and the size of this queue.
864     *
865     * <p>If this queue fits in the specified array with room to spare
866     * (i.e., the array has more elements than this queue), the element in
867     * the array immediately following the end of the queue is set to
868     * {@code null}.
869     *
870     * <p>Like the {@link #toArray()} method, this method acts as bridge between
871     * array-based and collection-based APIs. Further, this method allows
872     * precise control over the runtime type of the output array, and may,
873     * under certain circumstances, be used to save allocation costs.
874     *
875     * <p>Suppose {@code x} is a queue known to contain only strings.
876     * The following code can be used to dump the queue into a newly
877     * allocated array of {@code String}:
878     *
879     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
880     *
881     * Note that {@code toArray(new Object[0])} is identical in function to
882     * {@code toArray()}.
883     *
884     * @param a the array into which the elements of the queue are to
885     * be stored, if it is big enough; otherwise, a new array of the
886     * same runtime type is allocated for this purpose
887     * @return an array containing all of the elements in this queue
888     * @throws ArrayStoreException if the runtime type of the specified array
889     * is not a supertype of the runtime type of every element in
890     * this queue
891     * @throws NullPointerException if the specified array is null
892     */
893     @SuppressWarnings("unchecked")
894     public <T> T[] toArray(T[] a) {
895 jsr166 1.111 Objects.requireNonNull(a);
896 jsr166 1.82 return (T[]) toArrayInternal(a);
897     }
898    
899 jsr166 1.134 /**
900     * Weakly-consistent iterator.
901     *
902     * Lazily updated ancestor is expected to be amortized O(1) remove(),
903     * but O(n) in the worst case, when lastRet is concurrently deleted.
904     */
905 jsr166 1.8 final class Itr implements Iterator<E> {
906 jsr166 1.14 private Node nextNode; // next node to return item for
907     private E nextItem; // the corresponding item
908     private Node lastRet; // last returned node, to support remove
909 jsr166 1.134 private Node ancestor; // Helps unlink lastRet on remove()
910 jsr166 1.8
911     /**
912 jsr166 1.134 * Moves to next node after pred, or first node if pred null.
913 jsr166 1.8 */
914 jsr166 1.134 @SuppressWarnings("unchecked")
915     private void advance(Node pred) {
916     for (Node p = (pred == null) ? head : pred.next, c = p;
917     p != null; ) {
918     final Object item;
919     if ((item = p.item) != null && p.isData) {
920     nextNode = p;
921     nextItem = (E) item;
922     if (c != p)
923     tryCasSuccessor(pred, c, p);
924     return;
925     }
926     else if (!p.isData && item == null)
927 dl 1.33 break;
928 jsr166 1.134 if (c != p && !tryCasSuccessor(pred, c, c = p)) {
929     pred = p;
930     c = p = p.next;
931 dl 1.33 }
932 jsr166 1.134 else if (p == (p = p.next)) {
933     pred = null;
934     c = p = head;
935 jsr166 1.34 }
936 jsr166 1.1 }
937 jsr166 1.134 nextItem = null;
938 jsr166 1.8 nextNode = null;
939     }
940    
941     Itr() {
942     advance(null);
943     }
944    
945     public final boolean hasNext() {
946     return nextNode != null;
947     }
948    
949     public final E next() {
950 jsr166 1.125 final Node p;
951     if ((p = nextNode) == null) throw new NoSuchElementException();
952 jsr166 1.8 E e = nextItem;
953 jsr166 1.134 advance(lastRet = p);
954 jsr166 1.8 return e;
955     }
956    
957 jsr166 1.134 public void forEachRemaining(Consumer<? super E> action) {
958     Objects.requireNonNull(action);
959     Node q = null;
960     for (Node p; (p = nextNode) != null; advance(q = p))
961     action.accept(nextItem);
962     if (q != null)
963     lastRet = q;
964     }
965 jsr166 1.116
966 jsr166 1.8 public final void remove() {
967 dl 1.33 final Node lastRet = this.lastRet;
968     if (lastRet == null)
969     throw new IllegalStateException();
970     this.lastRet = null;
971 jsr166 1.134 if (lastRet.item == null) // already deleted?
972     return;
973     // Advance ancestor, collapsing intervening dead nodes
974     Node pred = ancestor;
975     for (Node p = (pred == null) ? head : pred.next, c = p, q;
976     p != null; ) {
977     if (p == lastRet) {
978     p.tryMatchData();
979     if ((q = p.next) == null) q = p;
980     if (c != q) tryCasSuccessor(pred, c, q);
981     ancestor = pred;
982     return;
983     }
984     final Object item; final boolean pAlive;
985     if (pAlive = ((item = p.item) != null && p.isData)) {
986     // exceptionally, nothing to do
987     }
988     else if (!p.isData && item == null)
989     break;
990     if ((c != p && !tryCasSuccessor(pred, c, c = p)) || pAlive) {
991     pred = p;
992     c = p = p.next;
993     }
994     else if (p == (p = p.next)) {
995     pred = null;
996     c = p = head;
997     }
998     }
999     // traversal failed to find lastRet; must have been deleted;
1000     // leave ancestor at original location to avoid overshoot;
1001     // better luck next time!
1002    
1003     // assert lastRet.isMatched();
1004 jsr166 1.1 }
1005     }
1006 jsr166 1.53
1007 dl 1.57 /** A customized variant of Spliterators.IteratorSpliterator */
1008 jsr166 1.109 final class LTQSpliterator implements Spliterator<E> {
1009 dl 1.60 static final int MAX_BATCH = 1 << 25; // max batch array size;
1010 jsr166 1.87 Node current; // current node; null until initialized
1011 dl 1.52 int batch; // batch size for splits
1012     boolean exhausted; // true when no more nodes
1013 jsr166 1.94 LTQSpliterator() {}
1014 dl 1.52
1015     public Spliterator<E> trySplit() {
1016 jsr166 1.115 Node p, q;
1017     if ((p = current()) == null || (q = p.next) == null)
1018     return null;
1019     int i = 0, n = batch = Math.min(batch + 1, MAX_BATCH);
1020     Object[] a = null;
1021     do {
1022     final Object item = p.item;
1023     if (p.isData) {
1024     if (item != null)
1025     ((a != null) ? a : (a = new Object[n]))[i++] = item;
1026     } else if (item == null) {
1027     p = null;
1028     break;
1029 dl 1.60 }
1030 jsr166 1.117 if (p == (p = q))
1031     p = firstDataNode();
1032 jsr166 1.115 } while (p != null && (q = p.next) != null && i < n);
1033     setCurrent(p);
1034     return (i == 0) ? null :
1035     Spliterators.spliterator(a, 0, i, (Spliterator.ORDERED |
1036     Spliterator.NONNULL |
1037     Spliterator.CONCURRENT));
1038 dl 1.52 }
1039    
1040 dl 1.61 public void forEachRemaining(Consumer<? super E> action) {
1041 jsr166 1.111 Objects.requireNonNull(action);
1042 jsr166 1.116 final Node p;
1043 jsr166 1.115 if ((p = current()) != null) {
1044 jsr166 1.107 current = null;
1045 dl 1.52 exhausted = true;
1046 jsr166 1.116 forEachFrom(action, p);
1047 dl 1.52 }
1048     }
1049    
1050     @SuppressWarnings("unchecked")
1051     public boolean tryAdvance(Consumer<? super E> action) {
1052 jsr166 1.111 Objects.requireNonNull(action);
1053 dl 1.52 Node p;
1054 jsr166 1.115 if ((p = current()) != null) {
1055     E e = null;
1056 dl 1.52 do {
1057 jsr166 1.115 final Object item = p.item;
1058     final boolean isData = p.isData;
1059     if (p == (p = p.next))
1060     p = head;
1061     if (isData) {
1062     if (item != null) {
1063     e = (E) item;
1064 jsr166 1.107 break;
1065     }
1066     }
1067 jsr166 1.115 else if (item == null)
1068     p = null;
1069     } while (p != null);
1070     setCurrent(p);
1071     if (e != null) {
1072     action.accept(e);
1073 dl 1.52 return true;
1074     }
1075     }
1076     return false;
1077     }
1078    
1079 jsr166 1.115 private void setCurrent(Node p) {
1080     if ((current = p) == null)
1081     exhausted = true;
1082     }
1083    
1084     private Node current() {
1085     Node p;
1086     if ((p = current) == null && !exhausted)
1087     setCurrent(p = firstDataNode());
1088     return p;
1089     }
1090    
1091 dl 1.54 public long estimateSize() { return Long.MAX_VALUE; }
1092    
1093 dl 1.52 public int characteristics() {
1094 jsr166 1.100 return (Spliterator.ORDERED |
1095     Spliterator.NONNULL |
1096     Spliterator.CONCURRENT);
1097 dl 1.52 }
1098     }
1099    
1100 jsr166 1.67 /**
1101     * Returns a {@link Spliterator} over the elements in this queue.
1102     *
1103 jsr166 1.68 * <p>The returned spliterator is
1104     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1105     *
1106 jsr166 1.67 * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
1107     * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
1108     *
1109     * @implNote
1110     * The {@code Spliterator} implements {@code trySplit} to permit limited
1111     * parallelism.
1112     *
1113     * @return a {@code Spliterator} over the elements in this queue
1114     * @since 1.8
1115     */
1116 dl 1.56 public Spliterator<E> spliterator() {
1117 jsr166 1.109 return new LTQSpliterator();
1118 dl 1.52 }
1119    
1120 jsr166 1.8 /* -------------- Removal methods -------------- */
1121    
1122 jsr166 1.1 /**
1123 jsr166 1.8 * Unsplices (now or later) the given deleted/cancelled node with
1124     * the given predecessor.
1125 jsr166 1.1 *
1126 dl 1.16 * @param pred a node that was at one time known to be the
1127     * predecessor of s, or null or s itself if s is/was at head
1128 jsr166 1.8 * @param s the node to be unspliced
1129 jsr166 1.1 */
1130 dl 1.16 final void unsplice(Node pred, Node s) {
1131 dl 1.71 s.waiter = null; // disable signals
1132 jsr166 1.1 /*
1133 dl 1.16 * See above for rationale. Briefly: if pred still points to
1134     * s, try to unlink s. If s cannot be unlinked, because it is
1135     * trailing node or pred might be unlinked, and neither pred
1136     * nor s are head or offlist, add to sweepVotes, and if enough
1137     * votes have accumulated, sweep.
1138 jsr166 1.1 */
1139 dl 1.16 if (pred != null && pred != s && pred.next == s) {
1140     Node n = s.next;
1141     if (n == null ||
1142     (n != s && pred.casNext(s, n) && pred.isMatched())) {
1143     for (;;) { // check if at, or could be, head
1144     Node h = head;
1145     if (h == pred || h == s || h == null)
1146     return; // at head or list empty
1147     if (!h.isMatched())
1148     break;
1149     Node hn = h.next;
1150     if (hn == null)
1151     return; // now empty
1152     if (hn != h && casHead(h, hn))
1153     h.forgetNext(); // advance head
1154 jsr166 1.8 }
1155 dl 1.16 if (pred.next != pred && s.next != s) { // recheck if offlist
1156     for (;;) { // sweep now if enough votes
1157     int v = sweepVotes;
1158     if (v < SWEEP_THRESHOLD) {
1159     if (casSweepVotes(v, v + 1))
1160     break;
1161     }
1162     else if (casSweepVotes(v, 0)) {
1163     sweep();
1164     break;
1165     }
1166     }
1167 jsr166 1.12 }
1168 jsr166 1.1 }
1169     }
1170     }
1171    
1172     /**
1173 jsr166 1.26 * Unlinks matched (typically cancelled) nodes encountered in a
1174     * traversal from head.
1175 jsr166 1.1 */
1176 dl 1.16 private void sweep() {
1177 jsr166 1.20 for (Node p = head, s, n; p != null && (s = p.next) != null; ) {
1178 jsr166 1.28 if (!s.isMatched())
1179     // Unmatched nodes are never self-linked
1180 jsr166 1.20 p = s;
1181 jsr166 1.28 else if ((n = s.next) == null) // trailing node is pinned
1182 jsr166 1.20 break;
1183 jsr166 1.28 else if (s == n) // stale
1184     // No need to also check for p == s, since that implies s == n
1185     p = head;
1186 jsr166 1.20 else
1187 dl 1.16 p.casNext(s, n);
1188 jsr166 1.8 }
1189     }
1190    
1191     /**
1192 jsr166 1.1 * Creates an initially empty {@code LinkedTransferQueue}.
1193     */
1194     public LinkedTransferQueue() {
1195     }
1196    
1197     /**
1198     * Creates a {@code LinkedTransferQueue}
1199     * initially containing the elements of the given collection,
1200     * added in traversal order of the collection's iterator.
1201     *
1202     * @param c the collection of elements to initially contain
1203     * @throws NullPointerException if the specified collection or any
1204     * of its elements are null
1205     */
1206     public LinkedTransferQueue(Collection<? extends E> c) {
1207     this();
1208     addAll(c);
1209     }
1210    
1211 jsr166 1.4 /**
1212 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1213     * As the queue is unbounded, this method will never block.
1214     *
1215     * @throws NullPointerException if the specified element is null
1216 jsr166 1.4 */
1217 jsr166 1.5 public void put(E e) {
1218 jsr166 1.8 xfer(e, true, ASYNC, 0);
1219 jsr166 1.1 }
1220    
1221 jsr166 1.4 /**
1222 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1223     * As the queue is unbounded, this method will never block or
1224     * return {@code false}.
1225     *
1226     * @return {@code true} (as specified by
1227 jsr166 1.42 * {@link java.util.concurrent.BlockingQueue#offer(Object,long,TimeUnit)
1228     * BlockingQueue.offer})
1229 jsr166 1.5 * @throws NullPointerException if the specified element is null
1230 jsr166 1.4 */
1231 jsr166 1.5 public boolean offer(E e, long timeout, TimeUnit unit) {
1232 jsr166 1.8 xfer(e, true, ASYNC, 0);
1233     return true;
1234 jsr166 1.1 }
1235    
1236 jsr166 1.4 /**
1237 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1238     * As the queue is unbounded, this method will never return {@code false}.
1239     *
1240 jsr166 1.32 * @return {@code true} (as specified by {@link Queue#offer})
1241 jsr166 1.5 * @throws NullPointerException if the specified element is null
1242 jsr166 1.4 */
1243 jsr166 1.1 public boolean offer(E e) {
1244 jsr166 1.8 xfer(e, true, ASYNC, 0);
1245 jsr166 1.1 return true;
1246     }
1247    
1248 jsr166 1.4 /**
1249 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1250     * As the queue is unbounded, this method will never throw
1251     * {@link IllegalStateException} or return {@code false}.
1252     *
1253     * @return {@code true} (as specified by {@link Collection#add})
1254     * @throws NullPointerException if the specified element is null
1255 jsr166 1.4 */
1256 jsr166 1.1 public boolean add(E e) {
1257 jsr166 1.8 xfer(e, true, ASYNC, 0);
1258     return true;
1259 jsr166 1.5 }
1260    
1261     /**
1262 jsr166 1.6 * Transfers the element to a waiting consumer immediately, if possible.
1263     *
1264     * <p>More precisely, transfers the specified element immediately
1265     * if there exists a consumer already waiting to receive it (in
1266     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1267     * otherwise returning {@code false} without enqueuing the element.
1268 jsr166 1.5 *
1269     * @throws NullPointerException if the specified element is null
1270     */
1271     public boolean tryTransfer(E e) {
1272 jsr166 1.8 return xfer(e, true, NOW, 0) == null;
1273 jsr166 1.1 }
1274    
1275 jsr166 1.4 /**
1276 jsr166 1.6 * Transfers the element to a consumer, waiting if necessary to do so.
1277     *
1278     * <p>More precisely, transfers the specified element immediately
1279     * if there exists a consumer already waiting to receive it (in
1280     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1281     * else inserts the specified element at the tail of this queue
1282     * and waits until the element is received by a consumer.
1283 jsr166 1.5 *
1284     * @throws NullPointerException if the specified element is null
1285 jsr166 1.4 */
1286 jsr166 1.1 public void transfer(E e) throws InterruptedException {
1287 jsr166 1.8 if (xfer(e, true, SYNC, 0) != null) {
1288     Thread.interrupted(); // failure possible only due to interrupt
1289 jsr166 1.1 throw new InterruptedException();
1290     }
1291     }
1292    
1293 jsr166 1.4 /**
1294 jsr166 1.6 * Transfers the element to a consumer if it is possible to do so
1295     * before the timeout elapses.
1296     *
1297     * <p>More precisely, transfers the specified element immediately
1298     * if there exists a consumer already waiting to receive it (in
1299     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1300     * else inserts the specified element at the tail of this queue
1301     * and waits until the element is received by a consumer,
1302     * returning {@code false} if the specified wait time elapses
1303     * before the element can be transferred.
1304 jsr166 1.5 *
1305     * @throws NullPointerException if the specified element is null
1306 jsr166 1.4 */
1307 jsr166 1.1 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1308     throws InterruptedException {
1309 jsr166 1.14 if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1310 jsr166 1.1 return true;
1311     if (!Thread.interrupted())
1312     return false;
1313     throw new InterruptedException();
1314     }
1315    
1316     public E take() throws InterruptedException {
1317 jsr166 1.8 E e = xfer(null, false, SYNC, 0);
1318 jsr166 1.1 if (e != null)
1319 jsr166 1.5 return e;
1320 jsr166 1.1 Thread.interrupted();
1321     throw new InterruptedException();
1322     }
1323    
1324     public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1325 jsr166 1.14 E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1326 jsr166 1.1 if (e != null || !Thread.interrupted())
1327 jsr166 1.5 return e;
1328 jsr166 1.1 throw new InterruptedException();
1329     }
1330    
1331     public E poll() {
1332 jsr166 1.8 return xfer(null, false, NOW, 0);
1333 jsr166 1.1 }
1334    
1335 jsr166 1.4 /**
1336     * @throws NullPointerException {@inheritDoc}
1337     * @throws IllegalArgumentException {@inheritDoc}
1338     */
1339 jsr166 1.1 public int drainTo(Collection<? super E> c) {
1340 jsr166 1.111 Objects.requireNonNull(c);
1341 jsr166 1.1 if (c == this)
1342     throw new IllegalArgumentException();
1343     int n = 0;
1344 jsr166 1.112 for (E e; (e = poll()) != null; n++)
1345 jsr166 1.1 c.add(e);
1346     return n;
1347     }
1348    
1349 jsr166 1.4 /**
1350     * @throws NullPointerException {@inheritDoc}
1351     * @throws IllegalArgumentException {@inheritDoc}
1352     */
1353 jsr166 1.1 public int drainTo(Collection<? super E> c, int maxElements) {
1354 jsr166 1.111 Objects.requireNonNull(c);
1355 jsr166 1.1 if (c == this)
1356     throw new IllegalArgumentException();
1357     int n = 0;
1358 jsr166 1.112 for (E e; n < maxElements && (e = poll()) != null; n++)
1359 jsr166 1.1 c.add(e);
1360     return n;
1361     }
1362    
1363 jsr166 1.5 /**
1364 jsr166 1.36 * Returns an iterator over the elements in this queue in proper sequence.
1365     * The elements will be returned in order from first (head) to last (tail).
1366 jsr166 1.5 *
1367 jsr166 1.68 * <p>The returned iterator is
1368     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1369 jsr166 1.5 *
1370     * @return an iterator over the elements in this queue in proper sequence
1371     */
1372 jsr166 1.1 public Iterator<E> iterator() {
1373     return new Itr();
1374     }
1375    
1376     public E peek() {
1377 jsr166 1.92 restartFromHead: for (;;) {
1378     for (Node p = head; p != null;) {
1379     Object item = p.item;
1380     if (p.isData) {
1381 jsr166 1.105 if (item != null) {
1382 jsr166 1.92 @SuppressWarnings("unchecked") E e = (E) item;
1383     return e;
1384     }
1385     }
1386     else if (item == null)
1387     break;
1388     if (p == (p = p.next))
1389     continue restartFromHead;
1390     }
1391     return null;
1392     }
1393 jsr166 1.1 }
1394    
1395 jsr166 1.6 /**
1396     * Returns {@code true} if this queue contains no elements.
1397     *
1398     * @return {@code true} if this queue contains no elements
1399     */
1400 jsr166 1.1 public boolean isEmpty() {
1401 jsr166 1.90 return firstDataNode() == null;
1402 jsr166 1.1 }
1403    
1404     public boolean hasWaitingConsumer() {
1405 jsr166 1.93 restartFromHead: for (;;) {
1406     for (Node p = head; p != null;) {
1407     Object item = p.item;
1408     if (p.isData) {
1409 jsr166 1.105 if (item != null)
1410 jsr166 1.93 break;
1411     }
1412     else if (item == null)
1413     return true;
1414     if (p == (p = p.next))
1415     continue restartFromHead;
1416     }
1417     return false;
1418     }
1419 jsr166 1.1 }
1420    
1421     /**
1422     * Returns the number of elements in this queue. If this queue
1423     * contains more than {@code Integer.MAX_VALUE} elements, returns
1424     * {@code Integer.MAX_VALUE}.
1425     *
1426     * <p>Beware that, unlike in most collections, this method is
1427     * <em>NOT</em> a constant-time operation. Because of the
1428     * asynchronous nature of these queues, determining the current
1429     * number of elements requires an O(n) traversal.
1430     *
1431     * @return the number of elements in this queue
1432     */
1433     public int size() {
1434 jsr166 1.8 return countOfMode(true);
1435 jsr166 1.1 }
1436    
1437     public int getWaitingConsumerCount() {
1438 jsr166 1.8 return countOfMode(false);
1439 jsr166 1.1 }
1440    
1441 jsr166 1.6 /**
1442     * Removes a single instance of the specified element from this queue,
1443     * if it is present. More formally, removes an element {@code e} such
1444     * that {@code o.equals(e)}, if this queue contains one or more such
1445     * elements.
1446     * Returns {@code true} if this queue contained the specified element
1447     * (or equivalently, if this queue changed as a result of the call).
1448     *
1449     * @param o element to be removed from this queue, if present
1450     * @return {@code true} if this queue changed as a result of the call
1451     */
1452 jsr166 1.1 public boolean remove(Object o) {
1453 jsr166 1.108 if (o == null)
1454     return false;
1455     restartFromHead: for (;;) {
1456 jsr166 1.122 for (Node p = head, c = p, pred = null, q; p != null; ) {
1457     final Object item; boolean pAlive;
1458 jsr166 1.132 if (pAlive = ((item = p.item) != null && p.isData)) {
1459 jsr166 1.122 if (o.equals(item) && p.tryMatchData()) {
1460     if ((q = p.next) == null) q = p;
1461     if (c != q) tryCasSuccessor(pred, c, q);
1462 jsr166 1.108 return true;
1463     }
1464     }
1465 jsr166 1.122 else if (!p.isData && item == null)
1466 jsr166 1.108 break;
1467 jsr166 1.134 if ((c != p && !tryCasSuccessor(pred, c, c = p)) || pAlive) {
1468 jsr166 1.122 pred = p;
1469 jsr166 1.134 c = p = p.next;
1470 jsr166 1.122 }
1471 jsr166 1.134 else if (p == (p = p.next))
1472 jsr166 1.108 continue restartFromHead;
1473     }
1474     return false;
1475     }
1476 jsr166 1.1 }
1477    
1478     /**
1479 jsr166 1.30 * Returns {@code true} if this queue contains the specified element.
1480     * More formally, returns {@code true} if and only if this queue contains
1481     * at least one element {@code e} such that {@code o.equals(e)}.
1482     *
1483     * @param o object to be checked for containment in this queue
1484     * @return {@code true} if this queue contains the specified element
1485     */
1486     public boolean contains(Object o) {
1487 jsr166 1.122 if (o == null)
1488     return false;
1489     restartFromHead: for (;;) {
1490 jsr166 1.134 for (Node p = head, c = p, pred = null; p != null; ) {
1491 jsr166 1.122 final Object item; final boolean pAlive;
1492 jsr166 1.132 if (pAlive = ((item = p.item) != null && p.isData)) {
1493 jsr166 1.122 if (o.equals(item))
1494 jsr166 1.74 return true;
1495     }
1496 jsr166 1.122 else if (!p.isData && item == null)
1497 jsr166 1.74 break;
1498 jsr166 1.134 if ((c != p && !tryCasSuccessor(pred, c, c = p)) || pAlive) {
1499 jsr166 1.122 pred = p;
1500 jsr166 1.134 c = p = p.next;
1501 jsr166 1.122 }
1502 jsr166 1.134 else if (p == (p = p.next))
1503 jsr166 1.122 continue restartFromHead;
1504 jsr166 1.30 }
1505 jsr166 1.122 return false;
1506 jsr166 1.30 }
1507     }
1508    
1509     /**
1510 jsr166 1.5 * Always returns {@code Integer.MAX_VALUE} because a
1511     * {@code LinkedTransferQueue} is not capacity constrained.
1512     *
1513     * @return {@code Integer.MAX_VALUE} (as specified by
1514 jsr166 1.42 * {@link java.util.concurrent.BlockingQueue#remainingCapacity()
1515     * BlockingQueue.remainingCapacity})
1516 jsr166 1.5 */
1517     public int remainingCapacity() {
1518     return Integer.MAX_VALUE;
1519     }
1520    
1521     /**
1522 jsr166 1.50 * Saves this queue to a stream (that is, serializes it).
1523 jsr166 1.1 *
1524 jsr166 1.65 * @param s the stream
1525 jsr166 1.66 * @throws java.io.IOException if an I/O error occurs
1526 jsr166 1.1 * @serialData All of the elements (each an {@code E}) in
1527     * the proper order, followed by a null
1528     */
1529     private void writeObject(java.io.ObjectOutputStream s)
1530     throws java.io.IOException {
1531     s.defaultWriteObject();
1532     for (E e : this)
1533     s.writeObject(e);
1534     // Use trailing null as sentinel
1535     s.writeObject(null);
1536     }
1537    
1538     /**
1539 jsr166 1.50 * Reconstitutes this queue from a stream (that is, deserializes it).
1540 jsr166 1.65 * @param s the stream
1541 jsr166 1.66 * @throws ClassNotFoundException if the class of a serialized object
1542     * could not be found
1543     * @throws java.io.IOException if an I/O error occurs
1544 jsr166 1.1 */
1545     private void readObject(java.io.ObjectInputStream s)
1546     throws java.io.IOException, ClassNotFoundException {
1547     s.defaultReadObject();
1548     for (;;) {
1549 jsr166 1.49 @SuppressWarnings("unchecked")
1550     E item = (E) s.readObject();
1551 jsr166 1.1 if (item == null)
1552     break;
1553     else
1554     offer(item);
1555     }
1556     }
1557    
1558 jsr166 1.116 /**
1559     * @throws NullPointerException {@inheritDoc}
1560     */
1561     public boolean removeIf(Predicate<? super E> filter) {
1562     Objects.requireNonNull(filter);
1563     return bulkRemove(filter);
1564     }
1565    
1566     /**
1567     * @throws NullPointerException {@inheritDoc}
1568     */
1569     public boolean removeAll(Collection<?> c) {
1570     Objects.requireNonNull(c);
1571     return bulkRemove(e -> c.contains(e));
1572     }
1573    
1574     /**
1575     * @throws NullPointerException {@inheritDoc}
1576     */
1577     public boolean retainAll(Collection<?> c) {
1578     Objects.requireNonNull(c);
1579     return bulkRemove(e -> !c.contains(e));
1580     }
1581    
1582 jsr166 1.124 public void clear() {
1583     bulkRemove(e -> true);
1584     }
1585    
1586     /**
1587     * Tolerate this many consecutive dead nodes before CAS-collapsing.
1588     * Amortized cost of clear() is (1 + 1/MAX_HOPS) CASes per element.
1589     */
1590     private static final int MAX_HOPS = 8;
1591    
1592 jsr166 1.116 /** Implementation of bulk remove methods. */
1593     @SuppressWarnings("unchecked")
1594     private boolean bulkRemove(Predicate<? super E> filter) {
1595     boolean removed = false;
1596     restartFromHead: for (;;) {
1597 jsr166 1.124 int hops = MAX_HOPS;
1598     // c will be CASed to collapse intervening dead nodes between
1599     // pred (or head if null) and p.
1600     for (Node p = head, c = p, pred = null, q; p != null; p = q) {
1601     final Object item; boolean pAlive;
1602 jsr166 1.132 if (pAlive = ((item = p.item) != null && p.isData)) {
1603 jsr166 1.124 if (filter.test((E) item)) {
1604     if (p.tryMatchData())
1605     removed = true;
1606     pAlive = false;
1607 jsr166 1.116 }
1608     }
1609 jsr166 1.124 else if (!p.isData && item == null)
1610 jsr166 1.116 break;
1611 jsr166 1.124 if ((q = p.next) == null || pAlive || --hops == 0) {
1612     // p might already be self-linked here, but if so:
1613     // - CASing head will surely fail
1614     // - CASing pred's next will be useless but harmless.
1615 jsr166 1.134 if ((c != p && !tryCasSuccessor(pred, c, c = p))
1616     || pAlive) {
1617     // if CAS failed or alive, abandon old pred
1618 jsr166 1.124 hops = MAX_HOPS;
1619     pred = p;
1620     c = q;
1621     }
1622     } else if (p == q)
1623 jsr166 1.116 continue restartFromHead;
1624     }
1625     return removed;
1626     }
1627     }
1628    
1629     /**
1630     * Runs action on each element found during a traversal starting at p.
1631 jsr166 1.118 * If p is null, the action is not run.
1632 jsr166 1.116 */
1633     @SuppressWarnings("unchecked")
1634     void forEachFrom(Consumer<? super E> action, Node p) {
1635 jsr166 1.134 for (Node c = p, pred = null; p != null; ) {
1636 jsr166 1.122 final Object item; final boolean pAlive;
1637 jsr166 1.132 if (pAlive = ((item = p.item) != null && p.isData))
1638 jsr166 1.122 action.accept((E) item);
1639     else if (!p.isData && item == null)
1640     break;
1641 jsr166 1.134 if ((c != p && !tryCasSuccessor(pred, c, c = p)) || pAlive) {
1642 jsr166 1.122 pred = p;
1643 jsr166 1.134 c = p = p.next;
1644 jsr166 1.122 }
1645 jsr166 1.134 else if (p == (p = p.next)) {
1646 jsr166 1.122 pred = null;
1647     c = p = head;
1648 jsr166 1.116 }
1649     }
1650     }
1651    
1652     /**
1653     * @throws NullPointerException {@inheritDoc}
1654     */
1655     public void forEach(Consumer<? super E> action) {
1656     Objects.requireNonNull(action);
1657     forEachFrom(action, head);
1658     }
1659    
1660 dl 1.97 // VarHandle mechanics
1661     private static final VarHandle HEAD;
1662     private static final VarHandle TAIL;
1663     private static final VarHandle SWEEPVOTES;
1664 dl 1.38 static {
1665 jsr166 1.1 try {
1666 dl 1.97 MethodHandles.Lookup l = MethodHandles.lookup();
1667     HEAD = l.findVarHandle(LinkedTransferQueue.class, "head",
1668     Node.class);
1669     TAIL = l.findVarHandle(LinkedTransferQueue.class, "tail",
1670     Node.class);
1671     SWEEPVOTES = l.findVarHandle(LinkedTransferQueue.class, "sweepVotes",
1672     int.class);
1673 jsr166 1.79 } catch (ReflectiveOperationException e) {
1674 dl 1.38 throw new Error(e);
1675 jsr166 1.1 }
1676 jsr166 1.85
1677     // Reduce the risk of rare disastrous classloading in first call to
1678     // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
1679     Class<?> ensureLoaded = LockSupport.class;
1680 jsr166 1.1 }
1681     }