ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/LinkedTransferQueue.java
Revision: 1.138
Committed: Sun Jan 8 03:48:36 2017 UTC (7 years, 4 months ago) by jsr166
Branch: MAIN
Changes since 1.137: +8 -7 lines
Log Message:
save a few volatile reads

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.39 * http://creativecommons.org/publicdomain/zero/1.0/
5 jsr166 1.1 */
6    
7     package java.util.concurrent;
8    
9 dl 1.97 import java.lang.invoke.MethodHandles;
10     import java.lang.invoke.VarHandle;
11 jsr166 1.1 import java.util.AbstractQueue;
12 jsr166 1.82 import java.util.Arrays;
13 jsr166 1.1 import java.util.Collection;
14     import java.util.Iterator;
15     import java.util.NoSuchElementException;
16 jsr166 1.111 import java.util.Objects;
17 jsr166 1.5 import java.util.Queue;
18 dl 1.52 import java.util.Spliterator;
19 dl 1.54 import java.util.Spliterators;
20 jsr166 1.76 import java.util.concurrent.locks.LockSupport;
21     import java.util.function.Consumer;
22 jsr166 1.116 import java.util.function.Predicate;
23 dl 1.22
24 jsr166 1.1 /**
25 jsr166 1.6 * An unbounded {@link TransferQueue} based on linked nodes.
26 jsr166 1.1 * This queue orders elements FIFO (first-in-first-out) with respect
27     * to any given producer. The <em>head</em> of the queue is that
28     * element that has been on the queue the longest time for some
29     * producer. The <em>tail</em> of the queue is that element that has
30     * been on the queue the shortest time for some producer.
31     *
32 dl 1.40 * <p>Beware that, unlike in most collections, the {@code size} method
33     * is <em>NOT</em> a constant-time operation. Because of the
34 jsr166 1.1 * asynchronous nature of these queues, determining the current number
35 dl 1.40 * of elements requires a traversal of the elements, and so may report
36     * inaccurate results if this collection is modified during traversal.
37 jsr166 1.1 *
38 jsr166 1.131 * <p>Bulk operations that add, remove, or examine multiple elements,
39     * such as {@link #addAll}, {@link #removeIf} or {@link #forEach},
40     * are <em>not</em> guaranteed to be performed atomically.
41     * For example, a {@code forEach} traversal concurrent with an {@code
42     * addAll} operation might observe only some of the added elements.
43     *
44     * <p>This class and its iterator implement all of the <em>optional</em>
45     * methods of the {@link Collection} and {@link Iterator} interfaces.
46 jsr166 1.1 *
47     * <p>Memory consistency effects: As with other concurrent
48     * collections, actions in a thread prior to placing an object into a
49     * {@code LinkedTransferQueue}
50     * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
51     * actions subsequent to the access or removal of that element from
52     * the {@code LinkedTransferQueue} in another thread.
53     *
54     * <p>This class is a member of the
55     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
56     * Java Collections Framework</a>.
57     *
58     * @since 1.7
59     * @author Doug Lea
60 jsr166 1.75 * @param <E> the type of elements held in this queue
61 jsr166 1.1 */
62     public class LinkedTransferQueue<E> extends AbstractQueue<E>
63     implements TransferQueue<E>, java.io.Serializable {
64     private static final long serialVersionUID = -3223113410248163686L;
65    
66     /*
67 jsr166 1.8 * *** Overview of Dual Queues with Slack ***
68 jsr166 1.1 *
69 jsr166 1.8 * Dual Queues, introduced by Scherer and Scott
70 jsr166 1.99 * (http://www.cs.rochester.edu/~scott/papers/2004_DISC_dual_DS.pdf)
71     * are (linked) queues in which nodes may represent either data or
72 jsr166 1.8 * requests. When a thread tries to enqueue a data node, but
73     * encounters a request node, it instead "matches" and removes it;
74     * and vice versa for enqueuing requests. Blocking Dual Queues
75     * arrange that threads enqueuing unmatched requests block until
76     * other threads provide the match. Dual Synchronous Queues (see
77     * Scherer, Lea, & Scott
78     * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
79     * additionally arrange that threads enqueuing unmatched data also
80     * block. Dual Transfer Queues support all of these modes, as
81     * dictated by callers.
82     *
83     * A FIFO dual queue may be implemented using a variation of the
84     * Michael & Scott (M&S) lock-free queue algorithm
85 jsr166 1.72 * (http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf).
86 jsr166 1.8 * It maintains two pointer fields, "head", pointing to a
87     * (matched) node that in turn points to the first actual
88     * (unmatched) queue node (or null if empty); and "tail" that
89     * points to the last node on the queue (or again null if
90     * empty). For example, here is a possible queue with four data
91     * elements:
92     *
93     * head tail
94     * | |
95     * v v
96     * M -> U -> U -> U -> U
97     *
98     * The M&S queue algorithm is known to be prone to scalability and
99     * overhead limitations when maintaining (via CAS) these head and
100     * tail pointers. This has led to the development of
101     * contention-reducing variants such as elimination arrays (see
102     * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
103     * optimistic back pointers (see Ladan-Mozes & Shavit
104     * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
105     * However, the nature of dual queues enables a simpler tactic for
106     * improving M&S-style implementations when dual-ness is needed.
107     *
108     * In a dual queue, each node must atomically maintain its match
109     * status. While there are other possible variants, we implement
110     * this here as: for a data-mode node, matching entails CASing an
111     * "item" field from a non-null data value to null upon match, and
112     * vice-versa for request nodes, CASing from null to a data
113     * value. (Note that the linearization properties of this style of
114     * queue are easy to verify -- elements are made available by
115     * linking, and unavailable by matching.) Compared to plain M&S
116     * queues, this property of dual queues requires one additional
117     * successful atomic operation per enq/deq pair. But it also
118     * enables lower cost variants of queue maintenance mechanics. (A
119     * variation of this idea applies even for non-dual queues that
120     * support deletion of interior elements, such as
121     * j.u.c.ConcurrentLinkedQueue.)
122     *
123     * Once a node is matched, its match status can never again
124     * change. We may thus arrange that the linked list of them
125     * contain a prefix of zero or more matched nodes, followed by a
126     * suffix of zero or more unmatched nodes. (Note that we allow
127     * both the prefix and suffix to be zero length, which in turn
128     * means that we do not use a dummy header.) If we were not
129     * concerned with either time or space efficiency, we could
130     * correctly perform enqueue and dequeue operations by traversing
131     * from a pointer to the initial node; CASing the item of the
132     * first unmatched node on match and CASing the next field of the
133     * trailing node on appends. (Plus some special-casing when
134     * initially empty). While this would be a terrible idea in
135     * itself, it does have the benefit of not requiring ANY atomic
136     * updates on head/tail fields.
137     *
138     * We introduce here an approach that lies between the extremes of
139     * never versus always updating queue (head and tail) pointers.
140     * This offers a tradeoff between sometimes requiring extra
141     * traversal steps to locate the first and/or last unmatched
142     * nodes, versus the reduced overhead and contention of fewer
143     * updates to queue pointers. For example, a possible snapshot of
144     * a queue is:
145     *
146     * head tail
147     * | |
148     * v v
149     * M -> M -> U -> U -> U -> U
150     *
151     * The best value for this "slack" (the targeted maximum distance
152     * between the value of "head" and the first unmatched node, and
153     * similarly for "tail") is an empirical matter. We have found
154     * that using very small constants in the range of 1-3 work best
155     * over a range of platforms. Larger values introduce increasing
156     * costs of cache misses and risks of long traversal chains, while
157     * smaller values increase CAS contention and overhead.
158     *
159     * Dual queues with slack differ from plain M&S dual queues by
160     * virtue of only sometimes updating head or tail pointers when
161     * matching, appending, or even traversing nodes; in order to
162     * maintain a targeted slack. The idea of "sometimes" may be
163     * operationalized in several ways. The simplest is to use a
164     * per-operation counter incremented on each traversal step, and
165     * to try (via CAS) to update the associated queue pointer
166     * whenever the count exceeds a threshold. Another, that requires
167     * more overhead, is to use random number generators to update
168     * with a given probability per traversal step.
169     *
170     * In any strategy along these lines, because CASes updating
171 jsr166 1.126 * fields may fail, the actual slack may exceed targeted slack.
172     * However, they may be retried at any time to maintain targets.
173     * Even when using very small slack values, this approach works
174     * well for dual queues because it allows all operations up to the
175     * point of matching or appending an item (hence potentially
176     * allowing progress by another thread) to be read-only, thus not
177     * introducing any further contention. As described below, we
178     * implement this by performing slack maintenance retries only
179     * after these points.
180 jsr166 1.8 *
181     * As an accompaniment to such techniques, traversal overhead can
182     * be further reduced without increasing contention of head
183     * pointer updates: Threads may sometimes shortcut the "next" link
184     * path from the current "head" node to be closer to the currently
185     * known first unmatched node, and similarly for tail. Again, this
186     * may be triggered with using thresholds or randomization.
187     *
188     * These ideas must be further extended to avoid unbounded amounts
189     * of costly-to-reclaim garbage caused by the sequential "next"
190     * links of nodes starting at old forgotten head nodes: As first
191     * described in detail by Boehm
192 jsr166 1.69 * (http://portal.acm.org/citation.cfm?doid=503272.503282), if a GC
193 jsr166 1.8 * delays noticing that any arbitrarily old node has become
194     * garbage, all newer dead nodes will also be unreclaimed.
195     * (Similar issues arise in non-GC environments.) To cope with
196     * this in our implementation, upon CASing to advance the head
197     * pointer, we set the "next" link of the previous head to point
198 jsr166 1.127 * only to itself; thus limiting the length of chains of dead nodes.
199 jsr166 1.8 * (We also take similar care to wipe out possibly garbage
200     * retaining values held in other Node fields.) However, doing so
201     * adds some further complexity to traversal: If any "next"
202     * pointer links to itself, it indicates that the current thread
203     * has lagged behind a head-update, and so the traversal must
204     * continue from the "head". Traversals trying to find the
205     * current tail starting from "tail" may also encounter
206     * self-links, in which case they also continue at "head".
207     *
208     * It is tempting in slack-based scheme to not even use CAS for
209     * updates (similarly to Ladan-Mozes & Shavit). However, this
210     * cannot be done for head updates under the above link-forgetting
211     * mechanics because an update may leave head at a detached node.
212     * And while direct writes are possible for tail updates, they
213     * increase the risk of long retraversals, and hence long garbage
214     * chains, which can be much more costly than is worthwhile
215     * considering that the cost difference of performing a CAS vs
216     * write is smaller when they are not triggered on each operation
217     * (especially considering that writes and CASes equally require
218     * additional GC bookkeeping ("write barriers") that are sometimes
219     * more costly than the writes themselves because of contention).
220     *
221     * *** Overview of implementation ***
222     *
223     * We use a threshold-based approach to updates, with a slack
224     * threshold of two -- that is, we update head/tail when the
225     * current pointer appears to be two or more steps away from the
226     * first/last node. The slack value is hard-wired: a path greater
227     * than one is naturally implemented by checking equality of
228     * traversal pointers except when the list has only one element,
229     * in which case we keep slack threshold at one. Avoiding tracking
230     * explicit counts across method calls slightly simplifies an
231     * already-messy implementation. Using randomization would
232     * probably work better if there were a low-quality dirt-cheap
233     * per-thread one available, but even ThreadLocalRandom is too
234     * heavy for these purposes.
235     *
236 dl 1.16 * With such a small slack threshold value, it is not worthwhile
237     * to augment this with path short-circuiting (i.e., unsplicing
238     * interior nodes) except in the case of cancellation/removal (see
239     * below).
240 jsr166 1.8 *
241     * We allow both the head and tail fields to be null before any
242     * nodes are enqueued; initializing upon first append. This
243     * simplifies some other logic, as well as providing more
244     * efficient explicit control paths instead of letting JVMs insert
245     * implicit NullPointerExceptions when they are null. While not
246     * currently fully implemented, we also leave open the possibility
247     * of re-nulling these fields when empty (which is complicated to
248     * arrange, for little benefit.)
249     *
250     * All enqueue/dequeue operations are handled by the single method
251     * "xfer" with parameters indicating whether to act as some form
252     * of offer, put, poll, take, or transfer (each possibly with
253     * timeout). The relative complexity of using one monolithic
254     * method outweighs the code bulk and maintenance problems of
255     * using separate methods for each case.
256     *
257     * Operation consists of up to three phases. The first is
258     * implemented within method xfer, the second in tryAppend, and
259     * the third in method awaitMatch.
260     *
261     * 1. Try to match an existing node
262     *
263     * Starting at head, skip already-matched nodes until finding
264     * an unmatched node of opposite mode, if one exists, in which
265     * case matching it and returning, also if necessary updating
266     * head to one past the matched node (or the node itself if the
267     * list has no other unmatched nodes). If the CAS misses, then
268     * a loop retries advancing head by two steps until either
269     * success or the slack is at most two. By requiring that each
270     * attempt advances head by two (if applicable), we ensure that
271     * the slack does not grow without bound. Traversals also check
272     * if the initial head is now off-list, in which case they
273 jsr166 1.128 * restart at the new head.
274 jsr166 1.8 *
275     * If no candidates are found and the call was untimed
276 jsr166 1.128 * poll/offer (argument "how" is NOW), return.
277 jsr166 1.8 *
278     * 2. Try to append a new node (method tryAppend)
279     *
280     * Starting at current tail pointer, find the actual last node
281     * and try to append a new node (or if head was null, establish
282     * the first node). Nodes can be appended only if their
283     * predecessors are either already matched or are of the same
284     * mode. If we detect otherwise, then a new node with opposite
285     * mode must have been appended during traversal, so we must
286     * restart at phase 1. The traversal and update steps are
287     * otherwise similar to phase 1: Retrying upon CAS misses and
288     * checking for staleness. In particular, if a self-link is
289     * encountered, then we can safely jump to a node on the list
290     * by continuing the traversal at current head.
291     *
292     * On successful append, if the call was ASYNC, return.
293     *
294     * 3. Await match or cancellation (method awaitMatch)
295     *
296     * Wait for another thread to match node; instead cancelling if
297     * the current thread was interrupted or the wait timed out. On
298     * multiprocessors, we use front-of-queue spinning: If a node
299     * appears to be the first unmatched node in the queue, it
300     * spins a bit before blocking. In either case, before blocking
301     * it tries to unsplice any nodes between the current "head"
302     * and the first unmatched node.
303     *
304     * Front-of-queue spinning vastly improves performance of
305     * heavily contended queues. And so long as it is relatively
306     * brief and "quiet", spinning does not much impact performance
307     * of less-contended queues. During spins threads check their
308     * interrupt status and generate a thread-local random number
309     * to decide to occasionally perform a Thread.yield. While
310 jsr166 1.44 * yield has underdefined specs, we assume that it might help,
311 jsr166 1.45 * and will not hurt, in limiting impact of spinning on busy
312 jsr166 1.8 * systems. We also use smaller (1/2) spins for nodes that are
313     * not known to be front but whose predecessors have not
314     * blocked -- these "chained" spins avoid artifacts of
315     * front-of-queue rules which otherwise lead to alternating
316     * nodes spinning vs blocking. Further, front threads that
317     * represent phase changes (from data to request node or vice
318     * versa) compared to their predecessors receive additional
319     * chained spins, reflecting longer paths typically required to
320     * unblock threads during phase changes.
321 dl 1.16 *
322     *
323     * ** Unlinking removed interior nodes **
324     *
325     * In addition to minimizing garbage retention via self-linking
326     * described above, we also unlink removed interior nodes. These
327     * may arise due to timed out or interrupted waits, or calls to
328     * remove(x) or Iterator.remove. Normally, given a node that was
329     * at one time known to be the predecessor of some node s that is
330     * to be removed, we can unsplice s by CASing the next field of
331     * its predecessor if it still points to s (otherwise s must
332     * already have been removed or is now offlist). But there are two
333     * situations in which we cannot guarantee to make node s
334     * unreachable in this way: (1) If s is the trailing node of list
335     * (i.e., with null next), then it is pinned as the target node
336 jsr166 1.23 * for appends, so can only be removed later after other nodes are
337 dl 1.16 * appended. (2) We cannot necessarily unlink s given a
338     * predecessor node that is matched (including the case of being
339 jsr166 1.17 * cancelled): the predecessor may already be unspliced, in which
340     * case some previous reachable node may still point to s.
341     * (For further explanation see Herlihy & Shavit "The Art of
342 dl 1.16 * Multiprocessor Programming" chapter 9). Although, in both
343     * cases, we can rule out the need for further action if either s
344     * or its predecessor are (or can be made to be) at, or fall off
345     * from, the head of list.
346     *
347     * Without taking these into account, it would be possible for an
348     * unbounded number of supposedly removed nodes to remain
349     * reachable. Situations leading to such buildup are uncommon but
350     * can occur in practice; for example when a series of short timed
351     * calls to poll repeatedly time out but never otherwise fall off
352     * the list because of an untimed call to take at the front of the
353     * queue.
354     *
355     * When these cases arise, rather than always retraversing the
356     * entire list to find an actual predecessor to unlink (which
357     * won't help for case (1) anyway), we record a conservative
358 jsr166 1.24 * estimate of possible unsplice failures (in "sweepVotes").
359     * We trigger a full sweep when the estimate exceeds a threshold
360     * ("SWEEP_THRESHOLD") indicating the maximum number of estimated
361     * removal failures to tolerate before sweeping through, unlinking
362     * cancelled nodes that were not unlinked upon initial removal.
363     * We perform sweeps by the thread hitting threshold (rather than
364     * background threads or by spreading work to other threads)
365     * because in the main contexts in which removal occurs, the
366     * caller is already timed-out, cancelled, or performing a
367     * potentially O(n) operation (e.g. remove(x)), none of which are
368     * time-critical enough to warrant the overhead that alternatives
369     * would impose on other threads.
370 dl 1.16 *
371     * Because the sweepVotes estimate is conservative, and because
372     * nodes become unlinked "naturally" as they fall off the head of
373     * the queue, and because we allow votes to accumulate even while
374 jsr166 1.17 * sweeps are in progress, there are typically significantly fewer
375 dl 1.16 * such nodes than estimated. Choice of a threshold value
376     * balances the likelihood of wasted effort and contention, versus
377     * providing a worst-case bound on retention of interior nodes in
378     * quiescent queues. The value defined below was chosen
379     * empirically to balance these under various timeout scenarios.
380     *
381     * Note that we cannot self-link unlinked interior nodes during
382     * sweeps. However, the associated garbage chains terminate when
383     * some successor ultimately falls off the head of the list and is
384     * self-linked.
385 jsr166 1.8 */
386    
387     /** True if on multiprocessor */
388     private static final boolean MP =
389     Runtime.getRuntime().availableProcessors() > 1;
390    
391     /**
392     * The number of times to spin (with randomly interspersed calls
393     * to Thread.yield) on multiprocessor before blocking when a node
394     * is apparently the first waiter in the queue. See above for
395     * explanation. Must be a power of two. The value is empirically
396     * derived -- it works pretty well across a variety of processors,
397     * numbers of CPUs, and OSes.
398     */
399     private static final int FRONT_SPINS = 1 << 7;
400    
401     /**
402     * The number of times to spin before blocking when a node is
403     * preceded by another node that is apparently spinning. Also
404     * serves as an increment to FRONT_SPINS on phase changes, and as
405     * base average frequency for yielding during spins. Must be a
406     * power of two.
407     */
408     private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
409    
410     /**
411 dl 1.16 * The maximum number of estimated removal failures (sweepVotes)
412     * to tolerate before sweeping through the queue unlinking
413     * cancelled nodes that were not unlinked upon initial
414     * removal. See above for explanation. The value must be at least
415     * two to avoid useless sweeps when removing trailing nodes.
416     */
417     static final int SWEEP_THRESHOLD = 32;
418    
419     /**
420 jsr166 1.8 * Queue nodes. Uses Object, not E, for items to allow forgetting
421 dl 1.97 * them after use. Relies heavily on VarHandles to minimize
422 dl 1.16 * unnecessary ordering constraints: Writes that are intrinsically
423     * ordered wrt other accesses or CASes use simple relaxed forms.
424 jsr166 1.8 */
425 jsr166 1.14 static final class Node {
426 jsr166 1.8 final boolean isData; // false if this is a request node
427     volatile Object item; // initially non-null if isData; CASed to match
428 jsr166 1.14 volatile Node next;
429 jsr166 1.8 volatile Thread waiter; // null until waiting
430    
431 jsr166 1.14 final boolean casNext(Node cmp, Node val) {
432 dl 1.97 return NEXT.compareAndSet(this, cmp, val);
433 jsr166 1.8 }
434 jsr166 1.1
435 jsr166 1.8 final boolean casItem(Object cmp, Object val) {
436 jsr166 1.105 // assert isData == (cmp != null);
437     // assert isData == (val == null);
438     // assert !(cmp instanceof Node);
439 dl 1.97 return ITEM.compareAndSet(this, cmp, val);
440 jsr166 1.8 }
441 jsr166 1.1
442 jsr166 1.8 /**
443 jsr166 1.25 * Constructs a new node. Uses relaxed write because item can
444     * only be seen after publication via casNext.
445 jsr166 1.8 */
446 jsr166 1.101 Node(Object item) {
447 jsr166 1.104 ITEM.set(this, item);
448 jsr166 1.101 isData = (item != null);
449 jsr166 1.8 }
450 jsr166 1.1
451 jsr166 1.8 /**
452     * Links node to itself to avoid garbage retention. Called
453     * only after CASing head field, so uses relaxed write.
454     */
455     final void forgetNext() {
456 jsr166 1.121 NEXT.setRelease(this, this);
457 jsr166 1.8 }
458 jsr166 1.1
459 jsr166 1.8 /**
460 jsr166 1.105 * Sets item (of a request node) to self and waiter to null,
461     * to avoid garbage retention after matching or cancelling.
462     * Uses relaxed writes because order is already constrained in
463     * the only calling contexts: item is forgotten only after
464 jsr166 1.121 * volatile/atomic mechanics that extract items, and visitors
465     * of request nodes only ever check whether item is null.
466     * Similarly, clearing waiter follows either CAS or return
467     * from park (if ever parked; else we don't care).
468 jsr166 1.8 */
469     final void forgetContents() {
470 jsr166 1.105 // assert isMatched();
471     if (!isData)
472     ITEM.set(this, this);
473 dl 1.97 WAITER.set(this, null);
474 jsr166 1.8 }
475 jsr166 1.1
476 jsr166 1.8 /**
477     * Returns true if this node has been matched, including the
478     * case of artificial matches due to cancellation.
479     */
480     final boolean isMatched() {
481 jsr166 1.105 return isData == (item == null);
482 jsr166 1.11 }
483    
484     /**
485 jsr166 1.8 * Returns true if a node with the given mode cannot be
486     * appended to this node because this node is unmatched and
487     * has opposite data mode.
488     */
489     final boolean cannotPrecede(boolean haveData) {
490     boolean d = isData;
491 jsr166 1.105 return d != haveData && d != (item == null);
492 jsr166 1.8 }
493 jsr166 1.1
494 jsr166 1.8 /**
495     * Tries to artificially match a data node -- used by remove.
496     */
497     final boolean tryMatchData() {
498 dl 1.33 // assert isData;
499 jsr166 1.105 final Object x;
500     if ((x = item) != null && casItem(x, null)) {
501 jsr166 1.8 LockSupport.unpark(waiter);
502     return true;
503     }
504     return false;
505 jsr166 1.1 }
506    
507 dl 1.38 private static final long serialVersionUID = -3375979862319811754L;
508    
509 dl 1.97 // VarHandle mechanics
510     private static final VarHandle ITEM;
511     private static final VarHandle NEXT;
512     private static final VarHandle WAITER;
513 dl 1.38 static {
514     try {
515 dl 1.97 MethodHandles.Lookup l = MethodHandles.lookup();
516     ITEM = l.findVarHandle(Node.class, "item", Object.class);
517     NEXT = l.findVarHandle(Node.class, "next", Node.class);
518     WAITER = l.findVarHandle(Node.class, "waiter", Thread.class);
519 jsr166 1.79 } catch (ReflectiveOperationException e) {
520 dl 1.38 throw new Error(e);
521     }
522     }
523 jsr166 1.1 }
524    
525 jsr166 1.8 /** head of the queue; null until first enqueue */
526 jsr166 1.14 transient volatile Node head;
527 jsr166 1.8
528     /** tail of the queue; null until first append */
529 jsr166 1.14 private transient volatile Node tail;
530 jsr166 1.1
531 dl 1.16 /** The number of apparent failures to unsplice removed nodes */
532     private transient volatile int sweepVotes;
533    
534 jsr166 1.14 private boolean casTail(Node cmp, Node val) {
535 dl 1.97 return TAIL.compareAndSet(this, cmp, val);
536 jsr166 1.8 }
537 jsr166 1.1
538 jsr166 1.14 private boolean casHead(Node cmp, Node val) {
539 dl 1.97 return HEAD.compareAndSet(this, cmp, val);
540 jsr166 1.8 }
541 jsr166 1.1
542 dl 1.16 private boolean casSweepVotes(int cmp, int val) {
543 dl 1.97 return SWEEPVOTES.compareAndSet(this, cmp, val);
544 jsr166 1.8 }
545 jsr166 1.1
546 jsr166 1.122 /**
547     * Tries to CAS pred.next (or head, if pred is null) from c to p.
548 jsr166 1.133 * Caller must ensure that we're not unlinking the trailing node.
549 jsr166 1.122 */
550     private boolean tryCasSuccessor(Node pred, Node c, Node p) {
551 jsr166 1.133 // assert p != null;
552 jsr166 1.136 // assert c.isData != (c.item != null);
553 jsr166 1.122 // assert c != p;
554     if (pred != null)
555     return pred.casNext(c, p);
556     if (casHead(c, p)) {
557     c.forgetNext();
558     return true;
559     }
560     return false;
561     }
562    
563 jsr166 1.137 /**
564     * Collapse dead (matched) nodes between pred and q.
565     * @param pred the last known live node, or null if none
566     * @param c the first dead node
567     * @param p the last dead node
568     * @param q p.next: the next live node, or null if at end
569     * @return either old pred or p if pred dead or CAS failed
570     */
571     private Node skipDeadNodes(Node pred, Node c, Node p, Node q) {
572     // assert pred != c;
573     // assert p != q;
574     // assert c.isMatched();
575     // assert p.isMatched();
576     if (q == null) {
577     // Never unlink trailing node.
578     if (c == p) return pred;
579     q = p;
580     }
581     return (tryCasSuccessor(pred, c, q)
582     && (pred == null || !pred.isMatched()))
583     ? pred : p;
584     }
585    
586     /* Possible values for "how" argument in xfer method. */
587    
588 jsr166 1.14 private static final int NOW = 0; // for untimed poll, tryTransfer
589     private static final int ASYNC = 1; // for offer, put, add
590     private static final int SYNC = 2; // for transfer, take
591     private static final int TIMED = 3; // for timed poll, tryTransfer
592 jsr166 1.1
593     /**
594 jsr166 1.8 * Implements all queuing methods. See above for explanation.
595 jsr166 1.1 *
596 jsr166 1.8 * @param e the item or null for take
597     * @param haveData true if this is a put, else a take
598 jsr166 1.14 * @param how NOW, ASYNC, SYNC, or TIMED
599     * @param nanos timeout in nanosecs, used only if mode is TIMED
600 jsr166 1.8 * @return an item if matched, else e
601     * @throws NullPointerException if haveData mode but e is null
602 jsr166 1.1 */
603 jsr166 1.8 private E xfer(E e, boolean haveData, int how, long nanos) {
604     if (haveData && (e == null))
605     throw new NullPointerException();
606 jsr166 1.130 Node s = null; // the node to append, if needed
607 jsr166 1.1
608 jsr166 1.119 restartFromHead: for (;;) {
609 jsr166 1.14 for (Node h = head, p = h; p != null;) { // find & match first node
610 jsr166 1.8 boolean isData = p.isData;
611     Object item = p.item;
612 jsr166 1.105 if ((item != null) == isData) { // unmatched
613 jsr166 1.8 if (isData == haveData) // can't match
614     break;
615     if (p.casItem(item, e)) { // match
616 jsr166 1.14 for (Node q = p; q != h;) {
617 dl 1.16 Node n = q.next; // update by 2 unless singleton
618 jsr166 1.37 if (head == h && casHead(h, n == null ? q : n)) {
619 jsr166 1.8 h.forgetNext();
620     break;
621     } // advance and retry
622     if ((h = head) == null ||
623     (q = h.next) == null || !q.isMatched())
624     break; // unless slack < 2
625     }
626     LockSupport.unpark(p.waiter);
627 jsr166 1.70 @SuppressWarnings("unchecked") E itemE = (E) item;
628     return itemE;
629 jsr166 1.1 }
630     }
631 jsr166 1.135 if (p == (p = p.next))
632     continue restartFromHead;
633 jsr166 1.8 }
634    
635 jsr166 1.14 if (how != NOW) { // No matches available
636 jsr166 1.130 if (s == null)
637     s = new Node(e);
638 jsr166 1.14 Node pred = tryAppend(s, haveData);
639 jsr166 1.8 if (pred == null)
640 jsr166 1.119 continue restartFromHead; // lost race vs opposite mode
641 jsr166 1.14 if (how != ASYNC)
642     return awaitMatch(s, pred, e, (how == TIMED), nanos);
643 jsr166 1.1 }
644 jsr166 1.8 return e; // not waiting
645 jsr166 1.1 }
646     }
647    
648     /**
649 jsr166 1.8 * Tries to append node s as tail.
650     *
651     * @param s the node to append
652     * @param haveData true if appending in data mode
653     * @return null on failure due to losing race with append in
654     * different mode, else s's predecessor, or s itself if no
655     * predecessor
656 jsr166 1.1 */
657 jsr166 1.14 private Node tryAppend(Node s, boolean haveData) {
658     for (Node t = tail, p = t;;) { // move p to last node and append
659     Node n, u; // temps for reads of next & tail
660 jsr166 1.8 if (p == null && (p = head) == null) {
661     if (casHead(null, s))
662     return s; // initialize
663     }
664     else if (p.cannotPrecede(haveData))
665     return null; // lost race vs opposite mode
666     else if ((n = p.next) != null) // not last; keep traversing
667     p = p != t && t != (u = tail) ? (t = u) : // stale tail
668     (p != n) ? n : null; // restart if off list
669     else if (!p.casNext(null, s))
670     p = p.next; // re-read on CAS failure
671     else {
672     if (p != t) { // update if slack now >= 2
673     while ((tail != t || !casTail(t, s)) &&
674     (t = tail) != null &&
675     (s = t.next) != null && // advance and retry
676     (s = s.next) != null && s != t);
677 jsr166 1.1 }
678 jsr166 1.8 return p;
679 jsr166 1.1 }
680     }
681     }
682    
683     /**
684 jsr166 1.8 * Spins/yields/blocks until node s is matched or caller gives up.
685 jsr166 1.1 *
686     * @param s the waiting node
687 jsr166 1.8 * @param pred the predecessor of s, or s itself if it has no
688     * predecessor, or null if unknown (the null case does not occur
689     * in any current calls but may in possible future extensions)
690 jsr166 1.1 * @param e the comparison value for checking match
691 jsr166 1.14 * @param timed if true, wait only until timeout elapses
692     * @param nanos timeout in nanosecs, used only if timed is true
693 jsr166 1.8 * @return matched item, or e if unmatched on interrupt or timeout
694 jsr166 1.1 */
695 jsr166 1.14 private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
696 jsr166 1.51 final long deadline = timed ? System.nanoTime() + nanos : 0L;
697 jsr166 1.8 Thread w = Thread.currentThread();
698     int spins = -1; // initialized after first item and cancel checks
699     ThreadLocalRandom randomYields = null; // bound if needed
700 jsr166 1.1
701     for (;;) {
702 jsr166 1.8 Object item = s.item;
703     if (item != e) { // matched
704 dl 1.33 // assert item != s;
705 jsr166 1.8 s.forgetContents(); // avoid garbage
706 jsr166 1.70 @SuppressWarnings("unchecked") E itemE = (E) item;
707     return itemE;
708 jsr166 1.8 }
709 jsr166 1.95 else if (w.isInterrupted() || (timed && nanos <= 0L)) {
710 jsr166 1.102 // try to cancel and unlink
711 jsr166 1.105 if (s.casItem(e, s.isData ? null : s)) {
712 jsr166 1.102 unsplice(pred, s);
713 jsr166 1.77 return e;
714 jsr166 1.102 }
715     // return normally if lost CAS
716 jsr166 1.8 }
717 dl 1.84 else if (spins < 0) { // establish spins at/near front
718 jsr166 1.8 if ((spins = spinsFor(pred, s.isData)) > 0)
719     randomYields = ThreadLocalRandom.current();
720     }
721     else if (spins > 0) { // spin
722 dl 1.16 --spins;
723     if (randomYields.nextInt(CHAINED_SPINS) == 0)
724 jsr166 1.8 Thread.yield(); // occasionally yield
725     }
726     else if (s.waiter == null) {
727     s.waiter = w; // request unpark then recheck
728 jsr166 1.1 }
729 jsr166 1.14 else if (timed) {
730 jsr166 1.51 nanos = deadline - System.nanoTime();
731     if (nanos > 0L)
732 jsr166 1.8 LockSupport.parkNanos(this, nanos);
733 jsr166 1.1 }
734 jsr166 1.8 else {
735 jsr166 1.1 LockSupport.park(this);
736     }
737 jsr166 1.8 }
738     }
739    
740     /**
741     * Returns spin/yield value for a node with given predecessor and
742     * data mode. See above for explanation.
743     */
744 jsr166 1.14 private static int spinsFor(Node pred, boolean haveData) {
745 jsr166 1.8 if (MP && pred != null) {
746     if (pred.isData != haveData) // phase change
747     return FRONT_SPINS + CHAINED_SPINS;
748     if (pred.isMatched()) // probably at front
749     return FRONT_SPINS;
750     if (pred.waiter == null) // pred apparently spinning
751     return CHAINED_SPINS;
752     }
753     return 0;
754     }
755    
756     /* -------------- Traversal methods -------------- */
757    
758     /**
759 jsr166 1.93 * Returns the first unmatched data node, or null if none.
760 jsr166 1.105 * Callers must recheck if the returned node is unmatched
761     * before using.
762 dl 1.52 */
763     final Node firstDataNode() {
764 jsr166 1.91 restartFromHead: for (;;) {
765     for (Node p = head; p != null;) {
766     Object item = p.item;
767     if (p.isData) {
768 jsr166 1.105 if (item != null)
769 jsr166 1.91 return p;
770     }
771     else if (item == null)
772     break;
773     if (p == (p = p.next))
774     continue restartFromHead;
775 dl 1.52 }
776 jsr166 1.91 return null;
777 dl 1.52 }
778     }
779    
780     /**
781 jsr166 1.8 * Traverses and counts unmatched nodes of the given mode.
782     * Used by methods size and getWaitingConsumerCount.
783 jsr166 1.1 */
784 jsr166 1.8 private int countOfMode(boolean data) {
785 jsr166 1.73 restartFromHead: for (;;) {
786     int count = 0;
787     for (Node p = head; p != null;) {
788     if (!p.isMatched()) {
789     if (p.isData != data)
790     return 0;
791     if (++count == Integer.MAX_VALUE)
792     break; // @see Collection.size()
793     }
794 jsr166 1.81 if (p == (p = p.next))
795 jsr166 1.73 continue restartFromHead;
796 jsr166 1.1 }
797 jsr166 1.73 return count;
798 jsr166 1.8 }
799     }
800    
801 jsr166 1.82 public String toString() {
802     String[] a = null;
803     restartFromHead: for (;;) {
804     int charLength = 0;
805     int size = 0;
806     for (Node p = head; p != null;) {
807     Object item = p.item;
808     if (p.isData) {
809 jsr166 1.105 if (item != null) {
810 jsr166 1.82 if (a == null)
811     a = new String[4];
812     else if (size == a.length)
813     a = Arrays.copyOf(a, 2 * size);
814     String s = item.toString();
815     a[size++] = s;
816     charLength += s.length();
817     }
818     } else if (item == null)
819     break;
820     if (p == (p = p.next))
821     continue restartFromHead;
822     }
823    
824     if (size == 0)
825     return "[]";
826    
827 jsr166 1.83 return Helpers.toString(a, size, charLength);
828 jsr166 1.82 }
829     }
830    
831     private Object[] toArrayInternal(Object[] a) {
832     Object[] x = a;
833     restartFromHead: for (;;) {
834     int size = 0;
835     for (Node p = head; p != null;) {
836     Object item = p.item;
837     if (p.isData) {
838 jsr166 1.105 if (item != null) {
839 jsr166 1.82 if (x == null)
840     x = new Object[4];
841     else if (size == x.length)
842     x = Arrays.copyOf(x, 2 * (size + 4));
843     x[size++] = item;
844     }
845     } else if (item == null)
846     break;
847     if (p == (p = p.next))
848     continue restartFromHead;
849     }
850     if (x == null)
851     return new Object[0];
852     else if (a != null && size <= a.length) {
853     if (a != x)
854     System.arraycopy(x, 0, a, 0, size);
855     if (size < a.length)
856     a[size] = null;
857     return a;
858     }
859     return (size == x.length) ? x : Arrays.copyOf(x, size);
860     }
861     }
862    
863     /**
864     * Returns an array containing all of the elements in this queue, in
865     * proper sequence.
866     *
867     * <p>The returned array will be "safe" in that no references to it are
868     * maintained by this queue. (In other words, this method must allocate
869     * a new array). The caller is thus free to modify the returned array.
870     *
871     * <p>This method acts as bridge between array-based and collection-based
872     * APIs.
873     *
874     * @return an array containing all of the elements in this queue
875     */
876     public Object[] toArray() {
877     return toArrayInternal(null);
878     }
879    
880     /**
881     * Returns an array containing all of the elements in this queue, in
882     * proper sequence; the runtime type of the returned array is that of
883     * the specified array. If the queue fits in the specified array, it
884     * is returned therein. Otherwise, a new array is allocated with the
885     * runtime type of the specified array and the size of this queue.
886     *
887     * <p>If this queue fits in the specified array with room to spare
888     * (i.e., the array has more elements than this queue), the element in
889     * the array immediately following the end of the queue is set to
890     * {@code null}.
891     *
892     * <p>Like the {@link #toArray()} method, this method acts as bridge between
893     * array-based and collection-based APIs. Further, this method allows
894     * precise control over the runtime type of the output array, and may,
895     * under certain circumstances, be used to save allocation costs.
896     *
897     * <p>Suppose {@code x} is a queue known to contain only strings.
898     * The following code can be used to dump the queue into a newly
899     * allocated array of {@code String}:
900     *
901     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
902     *
903     * Note that {@code toArray(new Object[0])} is identical in function to
904     * {@code toArray()}.
905     *
906     * @param a the array into which the elements of the queue are to
907     * be stored, if it is big enough; otherwise, a new array of the
908     * same runtime type is allocated for this purpose
909     * @return an array containing all of the elements in this queue
910     * @throws ArrayStoreException if the runtime type of the specified array
911     * is not a supertype of the runtime type of every element in
912     * this queue
913     * @throws NullPointerException if the specified array is null
914     */
915     @SuppressWarnings("unchecked")
916     public <T> T[] toArray(T[] a) {
917 jsr166 1.111 Objects.requireNonNull(a);
918 jsr166 1.82 return (T[]) toArrayInternal(a);
919     }
920    
921 jsr166 1.134 /**
922     * Weakly-consistent iterator.
923     *
924     * Lazily updated ancestor is expected to be amortized O(1) remove(),
925     * but O(n) in the worst case, when lastRet is concurrently deleted.
926     */
927 jsr166 1.8 final class Itr implements Iterator<E> {
928 jsr166 1.14 private Node nextNode; // next node to return item for
929     private E nextItem; // the corresponding item
930     private Node lastRet; // last returned node, to support remove
931 jsr166 1.134 private Node ancestor; // Helps unlink lastRet on remove()
932 jsr166 1.8
933     /**
934 jsr166 1.134 * Moves to next node after pred, or first node if pred null.
935 jsr166 1.8 */
936 jsr166 1.134 @SuppressWarnings("unchecked")
937     private void advance(Node pred) {
938     for (Node p = (pred == null) ? head : pred.next, c = p;
939     p != null; ) {
940     final Object item;
941     if ((item = p.item) != null && p.isData) {
942     nextNode = p;
943     nextItem = (E) item;
944     if (c != p)
945     tryCasSuccessor(pred, c, p);
946     return;
947     }
948     else if (!p.isData && item == null)
949 dl 1.33 break;
950 jsr166 1.134 if (c != p && !tryCasSuccessor(pred, c, c = p)) {
951     pred = p;
952     c = p = p.next;
953 dl 1.33 }
954 jsr166 1.134 else if (p == (p = p.next)) {
955     pred = null;
956     c = p = head;
957 jsr166 1.34 }
958 jsr166 1.1 }
959 jsr166 1.134 nextItem = null;
960 jsr166 1.8 nextNode = null;
961     }
962    
963     Itr() {
964     advance(null);
965     }
966    
967     public final boolean hasNext() {
968     return nextNode != null;
969     }
970    
971     public final E next() {
972 jsr166 1.125 final Node p;
973     if ((p = nextNode) == null) throw new NoSuchElementException();
974 jsr166 1.8 E e = nextItem;
975 jsr166 1.134 advance(lastRet = p);
976 jsr166 1.8 return e;
977     }
978    
979 jsr166 1.134 public void forEachRemaining(Consumer<? super E> action) {
980     Objects.requireNonNull(action);
981     Node q = null;
982     for (Node p; (p = nextNode) != null; advance(q = p))
983     action.accept(nextItem);
984     if (q != null)
985     lastRet = q;
986     }
987 jsr166 1.116
988 jsr166 1.8 public final void remove() {
989 dl 1.33 final Node lastRet = this.lastRet;
990     if (lastRet == null)
991     throw new IllegalStateException();
992     this.lastRet = null;
993 jsr166 1.134 if (lastRet.item == null) // already deleted?
994     return;
995     // Advance ancestor, collapsing intervening dead nodes
996     Node pred = ancestor;
997     for (Node p = (pred == null) ? head : pred.next, c = p, q;
998     p != null; ) {
999     if (p == lastRet) {
1000     p.tryMatchData();
1001     if ((q = p.next) == null) q = p;
1002     if (c != q) tryCasSuccessor(pred, c, q);
1003     ancestor = pred;
1004     return;
1005     }
1006     final Object item; final boolean pAlive;
1007     if (pAlive = ((item = p.item) != null && p.isData)) {
1008     // exceptionally, nothing to do
1009     }
1010     else if (!p.isData && item == null)
1011     break;
1012     if ((c != p && !tryCasSuccessor(pred, c, c = p)) || pAlive) {
1013     pred = p;
1014     c = p = p.next;
1015     }
1016     else if (p == (p = p.next)) {
1017     pred = null;
1018     c = p = head;
1019     }
1020     }
1021     // traversal failed to find lastRet; must have been deleted;
1022     // leave ancestor at original location to avoid overshoot;
1023     // better luck next time!
1024    
1025     // assert lastRet.isMatched();
1026 jsr166 1.1 }
1027     }
1028 jsr166 1.53
1029 dl 1.57 /** A customized variant of Spliterators.IteratorSpliterator */
1030 jsr166 1.109 final class LTQSpliterator implements Spliterator<E> {
1031 dl 1.60 static final int MAX_BATCH = 1 << 25; // max batch array size;
1032 jsr166 1.87 Node current; // current node; null until initialized
1033 dl 1.52 int batch; // batch size for splits
1034     boolean exhausted; // true when no more nodes
1035 jsr166 1.94 LTQSpliterator() {}
1036 dl 1.52
1037     public Spliterator<E> trySplit() {
1038 jsr166 1.115 Node p, q;
1039     if ((p = current()) == null || (q = p.next) == null)
1040     return null;
1041     int i = 0, n = batch = Math.min(batch + 1, MAX_BATCH);
1042     Object[] a = null;
1043     do {
1044     final Object item = p.item;
1045     if (p.isData) {
1046     if (item != null)
1047     ((a != null) ? a : (a = new Object[n]))[i++] = item;
1048     } else if (item == null) {
1049     p = null;
1050     break;
1051 dl 1.60 }
1052 jsr166 1.117 if (p == (p = q))
1053     p = firstDataNode();
1054 jsr166 1.115 } while (p != null && (q = p.next) != null && i < n);
1055     setCurrent(p);
1056     return (i == 0) ? null :
1057     Spliterators.spliterator(a, 0, i, (Spliterator.ORDERED |
1058     Spliterator.NONNULL |
1059     Spliterator.CONCURRENT));
1060 dl 1.52 }
1061    
1062 dl 1.61 public void forEachRemaining(Consumer<? super E> action) {
1063 jsr166 1.111 Objects.requireNonNull(action);
1064 jsr166 1.116 final Node p;
1065 jsr166 1.115 if ((p = current()) != null) {
1066 jsr166 1.107 current = null;
1067 dl 1.52 exhausted = true;
1068 jsr166 1.116 forEachFrom(action, p);
1069 dl 1.52 }
1070     }
1071    
1072     @SuppressWarnings("unchecked")
1073     public boolean tryAdvance(Consumer<? super E> action) {
1074 jsr166 1.111 Objects.requireNonNull(action);
1075 dl 1.52 Node p;
1076 jsr166 1.115 if ((p = current()) != null) {
1077     E e = null;
1078 dl 1.52 do {
1079 jsr166 1.115 final Object item = p.item;
1080     final boolean isData = p.isData;
1081     if (p == (p = p.next))
1082     p = head;
1083     if (isData) {
1084     if (item != null) {
1085     e = (E) item;
1086 jsr166 1.107 break;
1087     }
1088     }
1089 jsr166 1.115 else if (item == null)
1090     p = null;
1091     } while (p != null);
1092     setCurrent(p);
1093     if (e != null) {
1094     action.accept(e);
1095 dl 1.52 return true;
1096     }
1097     }
1098     return false;
1099     }
1100    
1101 jsr166 1.115 private void setCurrent(Node p) {
1102     if ((current = p) == null)
1103     exhausted = true;
1104     }
1105    
1106     private Node current() {
1107     Node p;
1108     if ((p = current) == null && !exhausted)
1109     setCurrent(p = firstDataNode());
1110     return p;
1111     }
1112    
1113 dl 1.54 public long estimateSize() { return Long.MAX_VALUE; }
1114    
1115 dl 1.52 public int characteristics() {
1116 jsr166 1.100 return (Spliterator.ORDERED |
1117     Spliterator.NONNULL |
1118     Spliterator.CONCURRENT);
1119 dl 1.52 }
1120     }
1121    
1122 jsr166 1.67 /**
1123     * Returns a {@link Spliterator} over the elements in this queue.
1124     *
1125 jsr166 1.68 * <p>The returned spliterator is
1126     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1127     *
1128 jsr166 1.67 * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
1129     * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
1130     *
1131     * @implNote
1132     * The {@code Spliterator} implements {@code trySplit} to permit limited
1133     * parallelism.
1134     *
1135     * @return a {@code Spliterator} over the elements in this queue
1136     * @since 1.8
1137     */
1138 dl 1.56 public Spliterator<E> spliterator() {
1139 jsr166 1.109 return new LTQSpliterator();
1140 dl 1.52 }
1141    
1142 jsr166 1.8 /* -------------- Removal methods -------------- */
1143    
1144 jsr166 1.1 /**
1145 jsr166 1.8 * Unsplices (now or later) the given deleted/cancelled node with
1146     * the given predecessor.
1147 jsr166 1.1 *
1148 dl 1.16 * @param pred a node that was at one time known to be the
1149     * predecessor of s, or null or s itself if s is/was at head
1150 jsr166 1.8 * @param s the node to be unspliced
1151 jsr166 1.1 */
1152 dl 1.16 final void unsplice(Node pred, Node s) {
1153 dl 1.71 s.waiter = null; // disable signals
1154 jsr166 1.1 /*
1155 dl 1.16 * See above for rationale. Briefly: if pred still points to
1156     * s, try to unlink s. If s cannot be unlinked, because it is
1157     * trailing node or pred might be unlinked, and neither pred
1158     * nor s are head or offlist, add to sweepVotes, and if enough
1159     * votes have accumulated, sweep.
1160 jsr166 1.1 */
1161 dl 1.16 if (pred != null && pred != s && pred.next == s) {
1162     Node n = s.next;
1163     if (n == null ||
1164     (n != s && pred.casNext(s, n) && pred.isMatched())) {
1165     for (;;) { // check if at, or could be, head
1166     Node h = head;
1167     if (h == pred || h == s || h == null)
1168     return; // at head or list empty
1169     if (!h.isMatched())
1170     break;
1171     Node hn = h.next;
1172     if (hn == null)
1173     return; // now empty
1174     if (hn != h && casHead(h, hn))
1175     h.forgetNext(); // advance head
1176 jsr166 1.8 }
1177 dl 1.16 if (pred.next != pred && s.next != s) { // recheck if offlist
1178     for (;;) { // sweep now if enough votes
1179     int v = sweepVotes;
1180     if (v < SWEEP_THRESHOLD) {
1181     if (casSweepVotes(v, v + 1))
1182     break;
1183     }
1184     else if (casSweepVotes(v, 0)) {
1185     sweep();
1186     break;
1187     }
1188     }
1189 jsr166 1.12 }
1190 jsr166 1.1 }
1191     }
1192     }
1193    
1194     /**
1195 jsr166 1.26 * Unlinks matched (typically cancelled) nodes encountered in a
1196     * traversal from head.
1197 jsr166 1.1 */
1198 dl 1.16 private void sweep() {
1199 jsr166 1.20 for (Node p = head, s, n; p != null && (s = p.next) != null; ) {
1200 jsr166 1.28 if (!s.isMatched())
1201     // Unmatched nodes are never self-linked
1202 jsr166 1.20 p = s;
1203 jsr166 1.28 else if ((n = s.next) == null) // trailing node is pinned
1204 jsr166 1.20 break;
1205 jsr166 1.28 else if (s == n) // stale
1206     // No need to also check for p == s, since that implies s == n
1207     p = head;
1208 jsr166 1.20 else
1209 dl 1.16 p.casNext(s, n);
1210 jsr166 1.8 }
1211     }
1212    
1213     /**
1214 jsr166 1.1 * Creates an initially empty {@code LinkedTransferQueue}.
1215     */
1216     public LinkedTransferQueue() {
1217     }
1218    
1219     /**
1220     * Creates a {@code LinkedTransferQueue}
1221     * initially containing the elements of the given collection,
1222     * added in traversal order of the collection's iterator.
1223     *
1224     * @param c the collection of elements to initially contain
1225     * @throws NullPointerException if the specified collection or any
1226     * of its elements are null
1227     */
1228     public LinkedTransferQueue(Collection<? extends E> c) {
1229     this();
1230     addAll(c);
1231     }
1232    
1233 jsr166 1.4 /**
1234 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1235     * As the queue is unbounded, this method will never block.
1236     *
1237     * @throws NullPointerException if the specified element is null
1238 jsr166 1.4 */
1239 jsr166 1.5 public void put(E e) {
1240 jsr166 1.8 xfer(e, true, ASYNC, 0);
1241 jsr166 1.1 }
1242    
1243 jsr166 1.4 /**
1244 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1245     * As the queue is unbounded, this method will never block or
1246     * return {@code false}.
1247     *
1248     * @return {@code true} (as specified by
1249 jsr166 1.42 * {@link java.util.concurrent.BlockingQueue#offer(Object,long,TimeUnit)
1250     * BlockingQueue.offer})
1251 jsr166 1.5 * @throws NullPointerException if the specified element is null
1252 jsr166 1.4 */
1253 jsr166 1.5 public boolean offer(E e, long timeout, TimeUnit unit) {
1254 jsr166 1.8 xfer(e, true, ASYNC, 0);
1255     return true;
1256 jsr166 1.1 }
1257    
1258 jsr166 1.4 /**
1259 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1260     * As the queue is unbounded, this method will never return {@code false}.
1261     *
1262 jsr166 1.32 * @return {@code true} (as specified by {@link Queue#offer})
1263 jsr166 1.5 * @throws NullPointerException if the specified element is null
1264 jsr166 1.4 */
1265 jsr166 1.1 public boolean offer(E e) {
1266 jsr166 1.8 xfer(e, true, ASYNC, 0);
1267 jsr166 1.1 return true;
1268     }
1269    
1270 jsr166 1.4 /**
1271 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1272     * As the queue is unbounded, this method will never throw
1273     * {@link IllegalStateException} or return {@code false}.
1274     *
1275     * @return {@code true} (as specified by {@link Collection#add})
1276     * @throws NullPointerException if the specified element is null
1277 jsr166 1.4 */
1278 jsr166 1.1 public boolean add(E e) {
1279 jsr166 1.8 xfer(e, true, ASYNC, 0);
1280     return true;
1281 jsr166 1.5 }
1282    
1283     /**
1284 jsr166 1.6 * Transfers the element to a waiting consumer immediately, if possible.
1285     *
1286     * <p>More precisely, transfers the specified element immediately
1287     * if there exists a consumer already waiting to receive it (in
1288     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1289     * otherwise returning {@code false} without enqueuing the element.
1290 jsr166 1.5 *
1291     * @throws NullPointerException if the specified element is null
1292     */
1293     public boolean tryTransfer(E e) {
1294 jsr166 1.8 return xfer(e, true, NOW, 0) == null;
1295 jsr166 1.1 }
1296    
1297 jsr166 1.4 /**
1298 jsr166 1.6 * Transfers the element to a consumer, waiting if necessary to do so.
1299     *
1300     * <p>More precisely, transfers the specified element immediately
1301     * if there exists a consumer already waiting to receive it (in
1302     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1303     * else inserts the specified element at the tail of this queue
1304     * and waits until the element is received by a consumer.
1305 jsr166 1.5 *
1306     * @throws NullPointerException if the specified element is null
1307 jsr166 1.4 */
1308 jsr166 1.1 public void transfer(E e) throws InterruptedException {
1309 jsr166 1.8 if (xfer(e, true, SYNC, 0) != null) {
1310     Thread.interrupted(); // failure possible only due to interrupt
1311 jsr166 1.1 throw new InterruptedException();
1312     }
1313     }
1314    
1315 jsr166 1.4 /**
1316 jsr166 1.6 * Transfers the element to a consumer if it is possible to do so
1317     * before the timeout elapses.
1318     *
1319     * <p>More precisely, transfers the specified element immediately
1320     * if there exists a consumer already waiting to receive it (in
1321     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1322     * else inserts the specified element at the tail of this queue
1323     * and waits until the element is received by a consumer,
1324     * returning {@code false} if the specified wait time elapses
1325     * before the element can be transferred.
1326 jsr166 1.5 *
1327     * @throws NullPointerException if the specified element is null
1328 jsr166 1.4 */
1329 jsr166 1.1 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1330     throws InterruptedException {
1331 jsr166 1.14 if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1332 jsr166 1.1 return true;
1333     if (!Thread.interrupted())
1334     return false;
1335     throw new InterruptedException();
1336     }
1337    
1338     public E take() throws InterruptedException {
1339 jsr166 1.8 E e = xfer(null, false, SYNC, 0);
1340 jsr166 1.1 if (e != null)
1341 jsr166 1.5 return e;
1342 jsr166 1.1 Thread.interrupted();
1343     throw new InterruptedException();
1344     }
1345    
1346     public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1347 jsr166 1.14 E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1348 jsr166 1.1 if (e != null || !Thread.interrupted())
1349 jsr166 1.5 return e;
1350 jsr166 1.1 throw new InterruptedException();
1351     }
1352    
1353     public E poll() {
1354 jsr166 1.8 return xfer(null, false, NOW, 0);
1355 jsr166 1.1 }
1356    
1357 jsr166 1.4 /**
1358     * @throws NullPointerException {@inheritDoc}
1359     * @throws IllegalArgumentException {@inheritDoc}
1360     */
1361 jsr166 1.1 public int drainTo(Collection<? super E> c) {
1362 jsr166 1.111 Objects.requireNonNull(c);
1363 jsr166 1.1 if (c == this)
1364     throw new IllegalArgumentException();
1365     int n = 0;
1366 jsr166 1.112 for (E e; (e = poll()) != null; n++)
1367 jsr166 1.1 c.add(e);
1368     return n;
1369     }
1370    
1371 jsr166 1.4 /**
1372     * @throws NullPointerException {@inheritDoc}
1373     * @throws IllegalArgumentException {@inheritDoc}
1374     */
1375 jsr166 1.1 public int drainTo(Collection<? super E> c, int maxElements) {
1376 jsr166 1.111 Objects.requireNonNull(c);
1377 jsr166 1.1 if (c == this)
1378     throw new IllegalArgumentException();
1379     int n = 0;
1380 jsr166 1.112 for (E e; n < maxElements && (e = poll()) != null; n++)
1381 jsr166 1.1 c.add(e);
1382     return n;
1383     }
1384    
1385 jsr166 1.5 /**
1386 jsr166 1.36 * Returns an iterator over the elements in this queue in proper sequence.
1387     * The elements will be returned in order from first (head) to last (tail).
1388 jsr166 1.5 *
1389 jsr166 1.68 * <p>The returned iterator is
1390     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1391 jsr166 1.5 *
1392     * @return an iterator over the elements in this queue in proper sequence
1393     */
1394 jsr166 1.1 public Iterator<E> iterator() {
1395     return new Itr();
1396     }
1397    
1398     public E peek() {
1399 jsr166 1.92 restartFromHead: for (;;) {
1400     for (Node p = head; p != null;) {
1401     Object item = p.item;
1402     if (p.isData) {
1403 jsr166 1.105 if (item != null) {
1404 jsr166 1.92 @SuppressWarnings("unchecked") E e = (E) item;
1405     return e;
1406     }
1407     }
1408     else if (item == null)
1409     break;
1410     if (p == (p = p.next))
1411     continue restartFromHead;
1412     }
1413     return null;
1414     }
1415 jsr166 1.1 }
1416    
1417 jsr166 1.6 /**
1418     * Returns {@code true} if this queue contains no elements.
1419     *
1420     * @return {@code true} if this queue contains no elements
1421     */
1422 jsr166 1.1 public boolean isEmpty() {
1423 jsr166 1.90 return firstDataNode() == null;
1424 jsr166 1.1 }
1425    
1426     public boolean hasWaitingConsumer() {
1427 jsr166 1.93 restartFromHead: for (;;) {
1428     for (Node p = head; p != null;) {
1429     Object item = p.item;
1430     if (p.isData) {
1431 jsr166 1.105 if (item != null)
1432 jsr166 1.93 break;
1433     }
1434     else if (item == null)
1435     return true;
1436     if (p == (p = p.next))
1437     continue restartFromHead;
1438     }
1439     return false;
1440     }
1441 jsr166 1.1 }
1442    
1443     /**
1444     * Returns the number of elements in this queue. If this queue
1445     * contains more than {@code Integer.MAX_VALUE} elements, returns
1446     * {@code Integer.MAX_VALUE}.
1447     *
1448     * <p>Beware that, unlike in most collections, this method is
1449     * <em>NOT</em> a constant-time operation. Because of the
1450     * asynchronous nature of these queues, determining the current
1451     * number of elements requires an O(n) traversal.
1452     *
1453     * @return the number of elements in this queue
1454     */
1455     public int size() {
1456 jsr166 1.8 return countOfMode(true);
1457 jsr166 1.1 }
1458    
1459     public int getWaitingConsumerCount() {
1460 jsr166 1.8 return countOfMode(false);
1461 jsr166 1.1 }
1462    
1463 jsr166 1.6 /**
1464     * Removes a single instance of the specified element from this queue,
1465     * if it is present. More formally, removes an element {@code e} such
1466     * that {@code o.equals(e)}, if this queue contains one or more such
1467     * elements.
1468     * Returns {@code true} if this queue contained the specified element
1469     * (or equivalently, if this queue changed as a result of the call).
1470     *
1471     * @param o element to be removed from this queue, if present
1472     * @return {@code true} if this queue changed as a result of the call
1473     */
1474 jsr166 1.1 public boolean remove(Object o) {
1475 jsr166 1.137 if (o == null) return false;
1476 jsr166 1.108 restartFromHead: for (;;) {
1477 jsr166 1.137 for (Node p = head, pred = null; p != null; ) {
1478     Node q = p.next;
1479     final Object item;
1480     if ((item = p.item) != null) {
1481     if (p.isData) {
1482     if (o.equals(item) && p.tryMatchData()) {
1483     skipDeadNodes(pred, p, p, q);
1484     return true;
1485     }
1486     pred = p; p = q; continue;
1487 jsr166 1.108 }
1488     }
1489 jsr166 1.137 else if (!p.isData)
1490 jsr166 1.108 break;
1491 jsr166 1.138 for (Node c = p;; q = p.next) {
1492     if (q == null || !q.isMatched()) {
1493 jsr166 1.137 pred = skipDeadNodes(pred, c, p, q); p = q; break;
1494     }
1495     if (p == (p = q)) continue restartFromHead;
1496 jsr166 1.122 }
1497 jsr166 1.108 }
1498     return false;
1499     }
1500 jsr166 1.1 }
1501    
1502     /**
1503 jsr166 1.30 * Returns {@code true} if this queue contains the specified element.
1504     * More formally, returns {@code true} if and only if this queue contains
1505     * at least one element {@code e} such that {@code o.equals(e)}.
1506     *
1507     * @param o object to be checked for containment in this queue
1508     * @return {@code true} if this queue contains the specified element
1509     */
1510     public boolean contains(Object o) {
1511 jsr166 1.137 if (o == null) return false;
1512 jsr166 1.122 restartFromHead: for (;;) {
1513 jsr166 1.137 for (Node p = head, pred = null; p != null; ) {
1514     Node q = p.next;
1515     final Object item;
1516     if ((item = p.item) != null) {
1517     if (p.isData) {
1518     if (o.equals(item))
1519     return true;
1520     pred = p; p = q; continue;
1521     }
1522 jsr166 1.74 }
1523 jsr166 1.137 else if (!p.isData)
1524 jsr166 1.74 break;
1525 jsr166 1.138 for (Node c = p;; q = p.next) {
1526     if (q == null || !q.isMatched()) {
1527 jsr166 1.137 pred = skipDeadNodes(pred, c, p, q); p = q; break;
1528     }
1529     if (p == (p = q)) continue restartFromHead;
1530 jsr166 1.122 }
1531 jsr166 1.30 }
1532 jsr166 1.122 return false;
1533 jsr166 1.30 }
1534     }
1535    
1536     /**
1537 jsr166 1.5 * Always returns {@code Integer.MAX_VALUE} because a
1538     * {@code LinkedTransferQueue} is not capacity constrained.
1539     *
1540     * @return {@code Integer.MAX_VALUE} (as specified by
1541 jsr166 1.42 * {@link java.util.concurrent.BlockingQueue#remainingCapacity()
1542     * BlockingQueue.remainingCapacity})
1543 jsr166 1.5 */
1544     public int remainingCapacity() {
1545     return Integer.MAX_VALUE;
1546     }
1547    
1548     /**
1549 jsr166 1.50 * Saves this queue to a stream (that is, serializes it).
1550 jsr166 1.1 *
1551 jsr166 1.65 * @param s the stream
1552 jsr166 1.66 * @throws java.io.IOException if an I/O error occurs
1553 jsr166 1.1 * @serialData All of the elements (each an {@code E}) in
1554     * the proper order, followed by a null
1555     */
1556     private void writeObject(java.io.ObjectOutputStream s)
1557     throws java.io.IOException {
1558     s.defaultWriteObject();
1559     for (E e : this)
1560     s.writeObject(e);
1561     // Use trailing null as sentinel
1562     s.writeObject(null);
1563     }
1564    
1565     /**
1566 jsr166 1.50 * Reconstitutes this queue from a stream (that is, deserializes it).
1567 jsr166 1.65 * @param s the stream
1568 jsr166 1.66 * @throws ClassNotFoundException if the class of a serialized object
1569     * could not be found
1570     * @throws java.io.IOException if an I/O error occurs
1571 jsr166 1.1 */
1572     private void readObject(java.io.ObjectInputStream s)
1573     throws java.io.IOException, ClassNotFoundException {
1574     s.defaultReadObject();
1575     for (;;) {
1576 jsr166 1.49 @SuppressWarnings("unchecked")
1577     E item = (E) s.readObject();
1578 jsr166 1.1 if (item == null)
1579     break;
1580     else
1581     offer(item);
1582     }
1583     }
1584    
1585 jsr166 1.116 /**
1586     * @throws NullPointerException {@inheritDoc}
1587     */
1588     public boolean removeIf(Predicate<? super E> filter) {
1589     Objects.requireNonNull(filter);
1590     return bulkRemove(filter);
1591     }
1592    
1593     /**
1594     * @throws NullPointerException {@inheritDoc}
1595     */
1596     public boolean removeAll(Collection<?> c) {
1597     Objects.requireNonNull(c);
1598     return bulkRemove(e -> c.contains(e));
1599     }
1600    
1601     /**
1602     * @throws NullPointerException {@inheritDoc}
1603     */
1604     public boolean retainAll(Collection<?> c) {
1605     Objects.requireNonNull(c);
1606     return bulkRemove(e -> !c.contains(e));
1607     }
1608    
1609 jsr166 1.124 public void clear() {
1610     bulkRemove(e -> true);
1611     }
1612    
1613     /**
1614     * Tolerate this many consecutive dead nodes before CAS-collapsing.
1615     * Amortized cost of clear() is (1 + 1/MAX_HOPS) CASes per element.
1616     */
1617     private static final int MAX_HOPS = 8;
1618    
1619 jsr166 1.116 /** Implementation of bulk remove methods. */
1620     @SuppressWarnings("unchecked")
1621     private boolean bulkRemove(Predicate<? super E> filter) {
1622     boolean removed = false;
1623     restartFromHead: for (;;) {
1624 jsr166 1.124 int hops = MAX_HOPS;
1625     // c will be CASed to collapse intervening dead nodes between
1626     // pred (or head if null) and p.
1627     for (Node p = head, c = p, pred = null, q; p != null; p = q) {
1628 jsr166 1.138 q = p.next;
1629 jsr166 1.124 final Object item; boolean pAlive;
1630 jsr166 1.132 if (pAlive = ((item = p.item) != null && p.isData)) {
1631 jsr166 1.124 if (filter.test((E) item)) {
1632     if (p.tryMatchData())
1633     removed = true;
1634     pAlive = false;
1635 jsr166 1.116 }
1636     }
1637 jsr166 1.124 else if (!p.isData && item == null)
1638 jsr166 1.116 break;
1639 jsr166 1.138 if (pAlive || q == null || --hops == 0) {
1640 jsr166 1.124 // p might already be self-linked here, but if so:
1641     // - CASing head will surely fail
1642     // - CASing pred's next will be useless but harmless.
1643 jsr166 1.134 if ((c != p && !tryCasSuccessor(pred, c, c = p))
1644     || pAlive) {
1645     // if CAS failed or alive, abandon old pred
1646 jsr166 1.124 hops = MAX_HOPS;
1647     pred = p;
1648     c = q;
1649     }
1650     } else if (p == q)
1651 jsr166 1.116 continue restartFromHead;
1652     }
1653     return removed;
1654     }
1655     }
1656    
1657     /**
1658     * Runs action on each element found during a traversal starting at p.
1659 jsr166 1.118 * If p is null, the action is not run.
1660 jsr166 1.116 */
1661     @SuppressWarnings("unchecked")
1662     void forEachFrom(Consumer<? super E> action, Node p) {
1663 jsr166 1.137 for (Node pred = null; p != null; ) {
1664     Node q = p.next;
1665     final Object item;
1666     if ((item = p.item) != null) {
1667     if (p.isData) {
1668     action.accept((E) item);
1669     pred = p; p = q; continue;
1670     }
1671     }
1672     else if (!p.isData)
1673 jsr166 1.122 break;
1674 jsr166 1.138 for (Node c = p;; q = p.next) {
1675     if (q == null || !q.isMatched()) {
1676 jsr166 1.137 pred = skipDeadNodes(pred, c, p, q); p = q; break;
1677     }
1678     if (p == (p = q)) { pred = null; p = head; break; }
1679 jsr166 1.116 }
1680     }
1681     }
1682    
1683     /**
1684     * @throws NullPointerException {@inheritDoc}
1685     */
1686     public void forEach(Consumer<? super E> action) {
1687     Objects.requireNonNull(action);
1688     forEachFrom(action, head);
1689     }
1690    
1691 dl 1.97 // VarHandle mechanics
1692     private static final VarHandle HEAD;
1693     private static final VarHandle TAIL;
1694     private static final VarHandle SWEEPVOTES;
1695 dl 1.38 static {
1696 jsr166 1.1 try {
1697 dl 1.97 MethodHandles.Lookup l = MethodHandles.lookup();
1698     HEAD = l.findVarHandle(LinkedTransferQueue.class, "head",
1699     Node.class);
1700     TAIL = l.findVarHandle(LinkedTransferQueue.class, "tail",
1701     Node.class);
1702     SWEEPVOTES = l.findVarHandle(LinkedTransferQueue.class, "sweepVotes",
1703     int.class);
1704 jsr166 1.79 } catch (ReflectiveOperationException e) {
1705 dl 1.38 throw new Error(e);
1706 jsr166 1.1 }
1707 jsr166 1.85
1708     // Reduce the risk of rare disastrous classloading in first call to
1709     // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
1710     Class<?> ensureLoaded = LockSupport.class;
1711 jsr166 1.1 }
1712     }