ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/LinkedTransferQueue.java
Revision: 1.139
Committed: Mon Jan 9 17:46:26 2017 UTC (7 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.138: +17 -8 lines
Log Message:
firstDataNode: update head when dead node found

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.39 * http://creativecommons.org/publicdomain/zero/1.0/
5 jsr166 1.1 */
6    
7     package java.util.concurrent;
8    
9 dl 1.97 import java.lang.invoke.MethodHandles;
10     import java.lang.invoke.VarHandle;
11 jsr166 1.1 import java.util.AbstractQueue;
12 jsr166 1.82 import java.util.Arrays;
13 jsr166 1.1 import java.util.Collection;
14     import java.util.Iterator;
15     import java.util.NoSuchElementException;
16 jsr166 1.111 import java.util.Objects;
17 jsr166 1.5 import java.util.Queue;
18 dl 1.52 import java.util.Spliterator;
19 dl 1.54 import java.util.Spliterators;
20 jsr166 1.76 import java.util.concurrent.locks.LockSupport;
21     import java.util.function.Consumer;
22 jsr166 1.116 import java.util.function.Predicate;
23 dl 1.22
24 jsr166 1.1 /**
25 jsr166 1.6 * An unbounded {@link TransferQueue} based on linked nodes.
26 jsr166 1.1 * This queue orders elements FIFO (first-in-first-out) with respect
27     * to any given producer. The <em>head</em> of the queue is that
28     * element that has been on the queue the longest time for some
29     * producer. The <em>tail</em> of the queue is that element that has
30     * been on the queue the shortest time for some producer.
31     *
32 dl 1.40 * <p>Beware that, unlike in most collections, the {@code size} method
33     * is <em>NOT</em> a constant-time operation. Because of the
34 jsr166 1.1 * asynchronous nature of these queues, determining the current number
35 dl 1.40 * of elements requires a traversal of the elements, and so may report
36     * inaccurate results if this collection is modified during traversal.
37 jsr166 1.1 *
38 jsr166 1.131 * <p>Bulk operations that add, remove, or examine multiple elements,
39     * such as {@link #addAll}, {@link #removeIf} or {@link #forEach},
40     * are <em>not</em> guaranteed to be performed atomically.
41     * For example, a {@code forEach} traversal concurrent with an {@code
42     * addAll} operation might observe only some of the added elements.
43     *
44     * <p>This class and its iterator implement all of the <em>optional</em>
45     * methods of the {@link Collection} and {@link Iterator} interfaces.
46 jsr166 1.1 *
47     * <p>Memory consistency effects: As with other concurrent
48     * collections, actions in a thread prior to placing an object into a
49     * {@code LinkedTransferQueue}
50     * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
51     * actions subsequent to the access or removal of that element from
52     * the {@code LinkedTransferQueue} in another thread.
53     *
54     * <p>This class is a member of the
55     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
56     * Java Collections Framework</a>.
57     *
58     * @since 1.7
59     * @author Doug Lea
60 jsr166 1.75 * @param <E> the type of elements held in this queue
61 jsr166 1.1 */
62     public class LinkedTransferQueue<E> extends AbstractQueue<E>
63     implements TransferQueue<E>, java.io.Serializable {
64     private static final long serialVersionUID = -3223113410248163686L;
65    
66     /*
67 jsr166 1.8 * *** Overview of Dual Queues with Slack ***
68 jsr166 1.1 *
69 jsr166 1.8 * Dual Queues, introduced by Scherer and Scott
70 jsr166 1.99 * (http://www.cs.rochester.edu/~scott/papers/2004_DISC_dual_DS.pdf)
71     * are (linked) queues in which nodes may represent either data or
72 jsr166 1.8 * requests. When a thread tries to enqueue a data node, but
73     * encounters a request node, it instead "matches" and removes it;
74     * and vice versa for enqueuing requests. Blocking Dual Queues
75     * arrange that threads enqueuing unmatched requests block until
76     * other threads provide the match. Dual Synchronous Queues (see
77     * Scherer, Lea, & Scott
78     * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
79     * additionally arrange that threads enqueuing unmatched data also
80     * block. Dual Transfer Queues support all of these modes, as
81     * dictated by callers.
82     *
83     * A FIFO dual queue may be implemented using a variation of the
84     * Michael & Scott (M&S) lock-free queue algorithm
85 jsr166 1.72 * (http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf).
86 jsr166 1.8 * It maintains two pointer fields, "head", pointing to a
87     * (matched) node that in turn points to the first actual
88     * (unmatched) queue node (or null if empty); and "tail" that
89     * points to the last node on the queue (or again null if
90     * empty). For example, here is a possible queue with four data
91     * elements:
92     *
93     * head tail
94     * | |
95     * v v
96     * M -> U -> U -> U -> U
97     *
98     * The M&S queue algorithm is known to be prone to scalability and
99     * overhead limitations when maintaining (via CAS) these head and
100     * tail pointers. This has led to the development of
101     * contention-reducing variants such as elimination arrays (see
102     * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
103     * optimistic back pointers (see Ladan-Mozes & Shavit
104     * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
105     * However, the nature of dual queues enables a simpler tactic for
106     * improving M&S-style implementations when dual-ness is needed.
107     *
108     * In a dual queue, each node must atomically maintain its match
109     * status. While there are other possible variants, we implement
110     * this here as: for a data-mode node, matching entails CASing an
111     * "item" field from a non-null data value to null upon match, and
112     * vice-versa for request nodes, CASing from null to a data
113     * value. (Note that the linearization properties of this style of
114     * queue are easy to verify -- elements are made available by
115     * linking, and unavailable by matching.) Compared to plain M&S
116     * queues, this property of dual queues requires one additional
117     * successful atomic operation per enq/deq pair. But it also
118     * enables lower cost variants of queue maintenance mechanics. (A
119     * variation of this idea applies even for non-dual queues that
120     * support deletion of interior elements, such as
121     * j.u.c.ConcurrentLinkedQueue.)
122     *
123     * Once a node is matched, its match status can never again
124     * change. We may thus arrange that the linked list of them
125     * contain a prefix of zero or more matched nodes, followed by a
126     * suffix of zero or more unmatched nodes. (Note that we allow
127     * both the prefix and suffix to be zero length, which in turn
128     * means that we do not use a dummy header.) If we were not
129     * concerned with either time or space efficiency, we could
130     * correctly perform enqueue and dequeue operations by traversing
131     * from a pointer to the initial node; CASing the item of the
132     * first unmatched node on match and CASing the next field of the
133     * trailing node on appends. (Plus some special-casing when
134     * initially empty). While this would be a terrible idea in
135     * itself, it does have the benefit of not requiring ANY atomic
136     * updates on head/tail fields.
137     *
138     * We introduce here an approach that lies between the extremes of
139     * never versus always updating queue (head and tail) pointers.
140     * This offers a tradeoff between sometimes requiring extra
141     * traversal steps to locate the first and/or last unmatched
142     * nodes, versus the reduced overhead and contention of fewer
143     * updates to queue pointers. For example, a possible snapshot of
144     * a queue is:
145     *
146     * head tail
147     * | |
148     * v v
149     * M -> M -> U -> U -> U -> U
150     *
151     * The best value for this "slack" (the targeted maximum distance
152     * between the value of "head" and the first unmatched node, and
153     * similarly for "tail") is an empirical matter. We have found
154     * that using very small constants in the range of 1-3 work best
155     * over a range of platforms. Larger values introduce increasing
156     * costs of cache misses and risks of long traversal chains, while
157     * smaller values increase CAS contention and overhead.
158     *
159     * Dual queues with slack differ from plain M&S dual queues by
160     * virtue of only sometimes updating head or tail pointers when
161     * matching, appending, or even traversing nodes; in order to
162     * maintain a targeted slack. The idea of "sometimes" may be
163     * operationalized in several ways. The simplest is to use a
164     * per-operation counter incremented on each traversal step, and
165     * to try (via CAS) to update the associated queue pointer
166     * whenever the count exceeds a threshold. Another, that requires
167     * more overhead, is to use random number generators to update
168     * with a given probability per traversal step.
169     *
170     * In any strategy along these lines, because CASes updating
171 jsr166 1.126 * fields may fail, the actual slack may exceed targeted slack.
172     * However, they may be retried at any time to maintain targets.
173     * Even when using very small slack values, this approach works
174     * well for dual queues because it allows all operations up to the
175     * point of matching or appending an item (hence potentially
176     * allowing progress by another thread) to be read-only, thus not
177     * introducing any further contention. As described below, we
178     * implement this by performing slack maintenance retries only
179     * after these points.
180 jsr166 1.8 *
181     * As an accompaniment to such techniques, traversal overhead can
182     * be further reduced without increasing contention of head
183     * pointer updates: Threads may sometimes shortcut the "next" link
184     * path from the current "head" node to be closer to the currently
185     * known first unmatched node, and similarly for tail. Again, this
186     * may be triggered with using thresholds or randomization.
187     *
188     * These ideas must be further extended to avoid unbounded amounts
189     * of costly-to-reclaim garbage caused by the sequential "next"
190     * links of nodes starting at old forgotten head nodes: As first
191     * described in detail by Boehm
192 jsr166 1.69 * (http://portal.acm.org/citation.cfm?doid=503272.503282), if a GC
193 jsr166 1.8 * delays noticing that any arbitrarily old node has become
194     * garbage, all newer dead nodes will also be unreclaimed.
195     * (Similar issues arise in non-GC environments.) To cope with
196     * this in our implementation, upon CASing to advance the head
197     * pointer, we set the "next" link of the previous head to point
198 jsr166 1.127 * only to itself; thus limiting the length of chains of dead nodes.
199 jsr166 1.8 * (We also take similar care to wipe out possibly garbage
200     * retaining values held in other Node fields.) However, doing so
201     * adds some further complexity to traversal: If any "next"
202     * pointer links to itself, it indicates that the current thread
203     * has lagged behind a head-update, and so the traversal must
204     * continue from the "head". Traversals trying to find the
205     * current tail starting from "tail" may also encounter
206     * self-links, in which case they also continue at "head".
207     *
208     * It is tempting in slack-based scheme to not even use CAS for
209     * updates (similarly to Ladan-Mozes & Shavit). However, this
210     * cannot be done for head updates under the above link-forgetting
211     * mechanics because an update may leave head at a detached node.
212     * And while direct writes are possible for tail updates, they
213     * increase the risk of long retraversals, and hence long garbage
214     * chains, which can be much more costly than is worthwhile
215     * considering that the cost difference of performing a CAS vs
216     * write is smaller when they are not triggered on each operation
217     * (especially considering that writes and CASes equally require
218     * additional GC bookkeeping ("write barriers") that are sometimes
219     * more costly than the writes themselves because of contention).
220     *
221     * *** Overview of implementation ***
222     *
223     * We use a threshold-based approach to updates, with a slack
224     * threshold of two -- that is, we update head/tail when the
225     * current pointer appears to be two or more steps away from the
226     * first/last node. The slack value is hard-wired: a path greater
227     * than one is naturally implemented by checking equality of
228     * traversal pointers except when the list has only one element,
229     * in which case we keep slack threshold at one. Avoiding tracking
230     * explicit counts across method calls slightly simplifies an
231     * already-messy implementation. Using randomization would
232     * probably work better if there were a low-quality dirt-cheap
233     * per-thread one available, but even ThreadLocalRandom is too
234     * heavy for these purposes.
235     *
236 dl 1.16 * With such a small slack threshold value, it is not worthwhile
237     * to augment this with path short-circuiting (i.e., unsplicing
238     * interior nodes) except in the case of cancellation/removal (see
239     * below).
240 jsr166 1.8 *
241     * We allow both the head and tail fields to be null before any
242     * nodes are enqueued; initializing upon first append. This
243     * simplifies some other logic, as well as providing more
244     * efficient explicit control paths instead of letting JVMs insert
245     * implicit NullPointerExceptions when they are null. While not
246     * currently fully implemented, we also leave open the possibility
247     * of re-nulling these fields when empty (which is complicated to
248     * arrange, for little benefit.)
249     *
250     * All enqueue/dequeue operations are handled by the single method
251     * "xfer" with parameters indicating whether to act as some form
252     * of offer, put, poll, take, or transfer (each possibly with
253     * timeout). The relative complexity of using one monolithic
254     * method outweighs the code bulk and maintenance problems of
255     * using separate methods for each case.
256     *
257     * Operation consists of up to three phases. The first is
258     * implemented within method xfer, the second in tryAppend, and
259     * the third in method awaitMatch.
260     *
261     * 1. Try to match an existing node
262     *
263     * Starting at head, skip already-matched nodes until finding
264     * an unmatched node of opposite mode, if one exists, in which
265     * case matching it and returning, also if necessary updating
266     * head to one past the matched node (or the node itself if the
267     * list has no other unmatched nodes). If the CAS misses, then
268     * a loop retries advancing head by two steps until either
269     * success or the slack is at most two. By requiring that each
270     * attempt advances head by two (if applicable), we ensure that
271     * the slack does not grow without bound. Traversals also check
272     * if the initial head is now off-list, in which case they
273 jsr166 1.128 * restart at the new head.
274 jsr166 1.8 *
275     * If no candidates are found and the call was untimed
276 jsr166 1.128 * poll/offer (argument "how" is NOW), return.
277 jsr166 1.8 *
278     * 2. Try to append a new node (method tryAppend)
279     *
280     * Starting at current tail pointer, find the actual last node
281     * and try to append a new node (or if head was null, establish
282     * the first node). Nodes can be appended only if their
283     * predecessors are either already matched or are of the same
284     * mode. If we detect otherwise, then a new node with opposite
285     * mode must have been appended during traversal, so we must
286     * restart at phase 1. The traversal and update steps are
287     * otherwise similar to phase 1: Retrying upon CAS misses and
288     * checking for staleness. In particular, if a self-link is
289     * encountered, then we can safely jump to a node on the list
290     * by continuing the traversal at current head.
291     *
292     * On successful append, if the call was ASYNC, return.
293     *
294     * 3. Await match or cancellation (method awaitMatch)
295     *
296     * Wait for another thread to match node; instead cancelling if
297     * the current thread was interrupted or the wait timed out. On
298     * multiprocessors, we use front-of-queue spinning: If a node
299     * appears to be the first unmatched node in the queue, it
300     * spins a bit before blocking. In either case, before blocking
301     * it tries to unsplice any nodes between the current "head"
302     * and the first unmatched node.
303     *
304     * Front-of-queue spinning vastly improves performance of
305     * heavily contended queues. And so long as it is relatively
306     * brief and "quiet", spinning does not much impact performance
307     * of less-contended queues. During spins threads check their
308     * interrupt status and generate a thread-local random number
309     * to decide to occasionally perform a Thread.yield. While
310 jsr166 1.44 * yield has underdefined specs, we assume that it might help,
311 jsr166 1.45 * and will not hurt, in limiting impact of spinning on busy
312 jsr166 1.8 * systems. We also use smaller (1/2) spins for nodes that are
313     * not known to be front but whose predecessors have not
314     * blocked -- these "chained" spins avoid artifacts of
315     * front-of-queue rules which otherwise lead to alternating
316     * nodes spinning vs blocking. Further, front threads that
317     * represent phase changes (from data to request node or vice
318     * versa) compared to their predecessors receive additional
319     * chained spins, reflecting longer paths typically required to
320     * unblock threads during phase changes.
321 dl 1.16 *
322     *
323     * ** Unlinking removed interior nodes **
324     *
325     * In addition to minimizing garbage retention via self-linking
326     * described above, we also unlink removed interior nodes. These
327     * may arise due to timed out or interrupted waits, or calls to
328     * remove(x) or Iterator.remove. Normally, given a node that was
329     * at one time known to be the predecessor of some node s that is
330     * to be removed, we can unsplice s by CASing the next field of
331     * its predecessor if it still points to s (otherwise s must
332     * already have been removed or is now offlist). But there are two
333     * situations in which we cannot guarantee to make node s
334     * unreachable in this way: (1) If s is the trailing node of list
335     * (i.e., with null next), then it is pinned as the target node
336 jsr166 1.23 * for appends, so can only be removed later after other nodes are
337 dl 1.16 * appended. (2) We cannot necessarily unlink s given a
338     * predecessor node that is matched (including the case of being
339 jsr166 1.17 * cancelled): the predecessor may already be unspliced, in which
340     * case some previous reachable node may still point to s.
341     * (For further explanation see Herlihy & Shavit "The Art of
342 dl 1.16 * Multiprocessor Programming" chapter 9). Although, in both
343     * cases, we can rule out the need for further action if either s
344     * or its predecessor are (or can be made to be) at, or fall off
345     * from, the head of list.
346     *
347     * Without taking these into account, it would be possible for an
348     * unbounded number of supposedly removed nodes to remain
349     * reachable. Situations leading to such buildup are uncommon but
350     * can occur in practice; for example when a series of short timed
351     * calls to poll repeatedly time out but never otherwise fall off
352     * the list because of an untimed call to take at the front of the
353     * queue.
354     *
355     * When these cases arise, rather than always retraversing the
356     * entire list to find an actual predecessor to unlink (which
357     * won't help for case (1) anyway), we record a conservative
358 jsr166 1.24 * estimate of possible unsplice failures (in "sweepVotes").
359     * We trigger a full sweep when the estimate exceeds a threshold
360     * ("SWEEP_THRESHOLD") indicating the maximum number of estimated
361     * removal failures to tolerate before sweeping through, unlinking
362     * cancelled nodes that were not unlinked upon initial removal.
363     * We perform sweeps by the thread hitting threshold (rather than
364     * background threads or by spreading work to other threads)
365     * because in the main contexts in which removal occurs, the
366     * caller is already timed-out, cancelled, or performing a
367     * potentially O(n) operation (e.g. remove(x)), none of which are
368     * time-critical enough to warrant the overhead that alternatives
369     * would impose on other threads.
370 dl 1.16 *
371     * Because the sweepVotes estimate is conservative, and because
372     * nodes become unlinked "naturally" as they fall off the head of
373     * the queue, and because we allow votes to accumulate even while
374 jsr166 1.17 * sweeps are in progress, there are typically significantly fewer
375 dl 1.16 * such nodes than estimated. Choice of a threshold value
376     * balances the likelihood of wasted effort and contention, versus
377     * providing a worst-case bound on retention of interior nodes in
378     * quiescent queues. The value defined below was chosen
379     * empirically to balance these under various timeout scenarios.
380     *
381     * Note that we cannot self-link unlinked interior nodes during
382     * sweeps. However, the associated garbage chains terminate when
383     * some successor ultimately falls off the head of the list and is
384     * self-linked.
385 jsr166 1.8 */
386    
387     /** True if on multiprocessor */
388     private static final boolean MP =
389     Runtime.getRuntime().availableProcessors() > 1;
390    
391     /**
392     * The number of times to spin (with randomly interspersed calls
393     * to Thread.yield) on multiprocessor before blocking when a node
394     * is apparently the first waiter in the queue. See above for
395     * explanation. Must be a power of two. The value is empirically
396     * derived -- it works pretty well across a variety of processors,
397     * numbers of CPUs, and OSes.
398     */
399     private static final int FRONT_SPINS = 1 << 7;
400    
401     /**
402     * The number of times to spin before blocking when a node is
403     * preceded by another node that is apparently spinning. Also
404     * serves as an increment to FRONT_SPINS on phase changes, and as
405     * base average frequency for yielding during spins. Must be a
406     * power of two.
407     */
408     private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
409    
410     /**
411 dl 1.16 * The maximum number of estimated removal failures (sweepVotes)
412     * to tolerate before sweeping through the queue unlinking
413     * cancelled nodes that were not unlinked upon initial
414     * removal. See above for explanation. The value must be at least
415     * two to avoid useless sweeps when removing trailing nodes.
416     */
417     static final int SWEEP_THRESHOLD = 32;
418    
419     /**
420 jsr166 1.8 * Queue nodes. Uses Object, not E, for items to allow forgetting
421 dl 1.97 * them after use. Relies heavily on VarHandles to minimize
422 dl 1.16 * unnecessary ordering constraints: Writes that are intrinsically
423     * ordered wrt other accesses or CASes use simple relaxed forms.
424 jsr166 1.8 */
425 jsr166 1.14 static final class Node {
426 jsr166 1.8 final boolean isData; // false if this is a request node
427     volatile Object item; // initially non-null if isData; CASed to match
428 jsr166 1.14 volatile Node next;
429 jsr166 1.8 volatile Thread waiter; // null until waiting
430    
431 jsr166 1.14 final boolean casNext(Node cmp, Node val) {
432 dl 1.97 return NEXT.compareAndSet(this, cmp, val);
433 jsr166 1.8 }
434 jsr166 1.1
435 jsr166 1.8 final boolean casItem(Object cmp, Object val) {
436 jsr166 1.105 // assert isData == (cmp != null);
437     // assert isData == (val == null);
438     // assert !(cmp instanceof Node);
439 dl 1.97 return ITEM.compareAndSet(this, cmp, val);
440 jsr166 1.8 }
441 jsr166 1.1
442 jsr166 1.8 /**
443 jsr166 1.25 * Constructs a new node. Uses relaxed write because item can
444     * only be seen after publication via casNext.
445 jsr166 1.8 */
446 jsr166 1.101 Node(Object item) {
447 jsr166 1.104 ITEM.set(this, item);
448 jsr166 1.101 isData = (item != null);
449 jsr166 1.8 }
450 jsr166 1.1
451 jsr166 1.8 /**
452     * Links node to itself to avoid garbage retention. Called
453     * only after CASing head field, so uses relaxed write.
454     */
455     final void forgetNext() {
456 jsr166 1.121 NEXT.setRelease(this, this);
457 jsr166 1.8 }
458 jsr166 1.1
459 jsr166 1.8 /**
460 jsr166 1.105 * Sets item (of a request node) to self and waiter to null,
461     * to avoid garbage retention after matching or cancelling.
462     * Uses relaxed writes because order is already constrained in
463     * the only calling contexts: item is forgotten only after
464 jsr166 1.121 * volatile/atomic mechanics that extract items, and visitors
465     * of request nodes only ever check whether item is null.
466     * Similarly, clearing waiter follows either CAS or return
467     * from park (if ever parked; else we don't care).
468 jsr166 1.8 */
469     final void forgetContents() {
470 jsr166 1.105 // assert isMatched();
471     if (!isData)
472     ITEM.set(this, this);
473 dl 1.97 WAITER.set(this, null);
474 jsr166 1.8 }
475 jsr166 1.1
476 jsr166 1.8 /**
477     * Returns true if this node has been matched, including the
478     * case of artificial matches due to cancellation.
479     */
480     final boolean isMatched() {
481 jsr166 1.105 return isData == (item == null);
482 jsr166 1.11 }
483    
484     /**
485 jsr166 1.8 * Returns true if a node with the given mode cannot be
486     * appended to this node because this node is unmatched and
487     * has opposite data mode.
488     */
489     final boolean cannotPrecede(boolean haveData) {
490     boolean d = isData;
491 jsr166 1.105 return d != haveData && d != (item == null);
492 jsr166 1.8 }
493 jsr166 1.1
494 jsr166 1.8 /**
495     * Tries to artificially match a data node -- used by remove.
496     */
497     final boolean tryMatchData() {
498 dl 1.33 // assert isData;
499 jsr166 1.105 final Object x;
500     if ((x = item) != null && casItem(x, null)) {
501 jsr166 1.8 LockSupport.unpark(waiter);
502     return true;
503     }
504     return false;
505 jsr166 1.1 }
506    
507 dl 1.38 private static final long serialVersionUID = -3375979862319811754L;
508    
509 dl 1.97 // VarHandle mechanics
510     private static final VarHandle ITEM;
511     private static final VarHandle NEXT;
512     private static final VarHandle WAITER;
513 dl 1.38 static {
514     try {
515 dl 1.97 MethodHandles.Lookup l = MethodHandles.lookup();
516     ITEM = l.findVarHandle(Node.class, "item", Object.class);
517     NEXT = l.findVarHandle(Node.class, "next", Node.class);
518     WAITER = l.findVarHandle(Node.class, "waiter", Thread.class);
519 jsr166 1.79 } catch (ReflectiveOperationException e) {
520 dl 1.38 throw new Error(e);
521     }
522     }
523 jsr166 1.1 }
524    
525 jsr166 1.8 /** head of the queue; null until first enqueue */
526 jsr166 1.14 transient volatile Node head;
527 jsr166 1.8
528     /** tail of the queue; null until first append */
529 jsr166 1.14 private transient volatile Node tail;
530 jsr166 1.1
531 dl 1.16 /** The number of apparent failures to unsplice removed nodes */
532     private transient volatile int sweepVotes;
533    
534 jsr166 1.14 private boolean casTail(Node cmp, Node val) {
535 dl 1.97 return TAIL.compareAndSet(this, cmp, val);
536 jsr166 1.8 }
537 jsr166 1.1
538 jsr166 1.14 private boolean casHead(Node cmp, Node val) {
539 dl 1.97 return HEAD.compareAndSet(this, cmp, val);
540 jsr166 1.8 }
541 jsr166 1.1
542 dl 1.16 private boolean casSweepVotes(int cmp, int val) {
543 dl 1.97 return SWEEPVOTES.compareAndSet(this, cmp, val);
544 jsr166 1.8 }
545 jsr166 1.1
546 jsr166 1.122 /**
547     * Tries to CAS pred.next (or head, if pred is null) from c to p.
548 jsr166 1.133 * Caller must ensure that we're not unlinking the trailing node.
549 jsr166 1.122 */
550     private boolean tryCasSuccessor(Node pred, Node c, Node p) {
551 jsr166 1.133 // assert p != null;
552 jsr166 1.136 // assert c.isData != (c.item != null);
553 jsr166 1.122 // assert c != p;
554     if (pred != null)
555     return pred.casNext(c, p);
556     if (casHead(c, p)) {
557     c.forgetNext();
558     return true;
559     }
560     return false;
561     }
562    
563 jsr166 1.137 /**
564     * Collapse dead (matched) nodes between pred and q.
565     * @param pred the last known live node, or null if none
566     * @param c the first dead node
567     * @param p the last dead node
568     * @param q p.next: the next live node, or null if at end
569     * @return either old pred or p if pred dead or CAS failed
570     */
571     private Node skipDeadNodes(Node pred, Node c, Node p, Node q) {
572     // assert pred != c;
573     // assert p != q;
574     // assert c.isMatched();
575     // assert p.isMatched();
576     if (q == null) {
577     // Never unlink trailing node.
578     if (c == p) return pred;
579     q = p;
580     }
581     return (tryCasSuccessor(pred, c, q)
582     && (pred == null || !pred.isMatched()))
583     ? pred : p;
584     }
585    
586     /* Possible values for "how" argument in xfer method. */
587    
588 jsr166 1.14 private static final int NOW = 0; // for untimed poll, tryTransfer
589     private static final int ASYNC = 1; // for offer, put, add
590     private static final int SYNC = 2; // for transfer, take
591     private static final int TIMED = 3; // for timed poll, tryTransfer
592 jsr166 1.1
593     /**
594 jsr166 1.8 * Implements all queuing methods. See above for explanation.
595 jsr166 1.1 *
596 jsr166 1.8 * @param e the item or null for take
597     * @param haveData true if this is a put, else a take
598 jsr166 1.14 * @param how NOW, ASYNC, SYNC, or TIMED
599     * @param nanos timeout in nanosecs, used only if mode is TIMED
600 jsr166 1.8 * @return an item if matched, else e
601     * @throws NullPointerException if haveData mode but e is null
602 jsr166 1.1 */
603 jsr166 1.8 private E xfer(E e, boolean haveData, int how, long nanos) {
604     if (haveData && (e == null))
605     throw new NullPointerException();
606 jsr166 1.130 Node s = null; // the node to append, if needed
607 jsr166 1.1
608 jsr166 1.119 restartFromHead: for (;;) {
609 jsr166 1.14 for (Node h = head, p = h; p != null;) { // find & match first node
610 jsr166 1.8 boolean isData = p.isData;
611     Object item = p.item;
612 jsr166 1.105 if ((item != null) == isData) { // unmatched
613 jsr166 1.8 if (isData == haveData) // can't match
614     break;
615     if (p.casItem(item, e)) { // match
616 jsr166 1.14 for (Node q = p; q != h;) {
617 dl 1.16 Node n = q.next; // update by 2 unless singleton
618 jsr166 1.37 if (head == h && casHead(h, n == null ? q : n)) {
619 jsr166 1.8 h.forgetNext();
620     break;
621     } // advance and retry
622     if ((h = head) == null ||
623     (q = h.next) == null || !q.isMatched())
624     break; // unless slack < 2
625     }
626     LockSupport.unpark(p.waiter);
627 jsr166 1.70 @SuppressWarnings("unchecked") E itemE = (E) item;
628     return itemE;
629 jsr166 1.1 }
630     }
631 jsr166 1.135 if (p == (p = p.next))
632     continue restartFromHead;
633 jsr166 1.8 }
634    
635 jsr166 1.14 if (how != NOW) { // No matches available
636 jsr166 1.130 if (s == null)
637     s = new Node(e);
638 jsr166 1.14 Node pred = tryAppend(s, haveData);
639 jsr166 1.8 if (pred == null)
640 jsr166 1.119 continue restartFromHead; // lost race vs opposite mode
641 jsr166 1.14 if (how != ASYNC)
642     return awaitMatch(s, pred, e, (how == TIMED), nanos);
643 jsr166 1.1 }
644 jsr166 1.8 return e; // not waiting
645 jsr166 1.1 }
646     }
647    
648     /**
649 jsr166 1.8 * Tries to append node s as tail.
650     *
651     * @param s the node to append
652     * @param haveData true if appending in data mode
653     * @return null on failure due to losing race with append in
654     * different mode, else s's predecessor, or s itself if no
655     * predecessor
656 jsr166 1.1 */
657 jsr166 1.14 private Node tryAppend(Node s, boolean haveData) {
658     for (Node t = tail, p = t;;) { // move p to last node and append
659     Node n, u; // temps for reads of next & tail
660 jsr166 1.8 if (p == null && (p = head) == null) {
661     if (casHead(null, s))
662     return s; // initialize
663     }
664     else if (p.cannotPrecede(haveData))
665     return null; // lost race vs opposite mode
666     else if ((n = p.next) != null) // not last; keep traversing
667     p = p != t && t != (u = tail) ? (t = u) : // stale tail
668     (p != n) ? n : null; // restart if off list
669     else if (!p.casNext(null, s))
670     p = p.next; // re-read on CAS failure
671     else {
672     if (p != t) { // update if slack now >= 2
673     while ((tail != t || !casTail(t, s)) &&
674     (t = tail) != null &&
675     (s = t.next) != null && // advance and retry
676     (s = s.next) != null && s != t);
677 jsr166 1.1 }
678 jsr166 1.8 return p;
679 jsr166 1.1 }
680     }
681     }
682    
683     /**
684 jsr166 1.8 * Spins/yields/blocks until node s is matched or caller gives up.
685 jsr166 1.1 *
686     * @param s the waiting node
687 jsr166 1.8 * @param pred the predecessor of s, or s itself if it has no
688     * predecessor, or null if unknown (the null case does not occur
689     * in any current calls but may in possible future extensions)
690 jsr166 1.1 * @param e the comparison value for checking match
691 jsr166 1.14 * @param timed if true, wait only until timeout elapses
692     * @param nanos timeout in nanosecs, used only if timed is true
693 jsr166 1.8 * @return matched item, or e if unmatched on interrupt or timeout
694 jsr166 1.1 */
695 jsr166 1.14 private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
696 jsr166 1.51 final long deadline = timed ? System.nanoTime() + nanos : 0L;
697 jsr166 1.8 Thread w = Thread.currentThread();
698     int spins = -1; // initialized after first item and cancel checks
699     ThreadLocalRandom randomYields = null; // bound if needed
700 jsr166 1.1
701     for (;;) {
702 jsr166 1.8 Object item = s.item;
703     if (item != e) { // matched
704 dl 1.33 // assert item != s;
705 jsr166 1.8 s.forgetContents(); // avoid garbage
706 jsr166 1.70 @SuppressWarnings("unchecked") E itemE = (E) item;
707     return itemE;
708 jsr166 1.8 }
709 jsr166 1.95 else if (w.isInterrupted() || (timed && nanos <= 0L)) {
710 jsr166 1.102 // try to cancel and unlink
711 jsr166 1.105 if (s.casItem(e, s.isData ? null : s)) {
712 jsr166 1.102 unsplice(pred, s);
713 jsr166 1.77 return e;
714 jsr166 1.102 }
715     // return normally if lost CAS
716 jsr166 1.8 }
717 dl 1.84 else if (spins < 0) { // establish spins at/near front
718 jsr166 1.8 if ((spins = spinsFor(pred, s.isData)) > 0)
719     randomYields = ThreadLocalRandom.current();
720     }
721     else if (spins > 0) { // spin
722 dl 1.16 --spins;
723     if (randomYields.nextInt(CHAINED_SPINS) == 0)
724 jsr166 1.8 Thread.yield(); // occasionally yield
725     }
726     else if (s.waiter == null) {
727     s.waiter = w; // request unpark then recheck
728 jsr166 1.1 }
729 jsr166 1.14 else if (timed) {
730 jsr166 1.51 nanos = deadline - System.nanoTime();
731     if (nanos > 0L)
732 jsr166 1.8 LockSupport.parkNanos(this, nanos);
733 jsr166 1.1 }
734 jsr166 1.8 else {
735 jsr166 1.1 LockSupport.park(this);
736     }
737 jsr166 1.8 }
738     }
739    
740     /**
741     * Returns spin/yield value for a node with given predecessor and
742     * data mode. See above for explanation.
743     */
744 jsr166 1.14 private static int spinsFor(Node pred, boolean haveData) {
745 jsr166 1.8 if (MP && pred != null) {
746     if (pred.isData != haveData) // phase change
747     return FRONT_SPINS + CHAINED_SPINS;
748     if (pred.isMatched()) // probably at front
749     return FRONT_SPINS;
750     if (pred.waiter == null) // pred apparently spinning
751     return CHAINED_SPINS;
752     }
753     return 0;
754     }
755    
756     /* -------------- Traversal methods -------------- */
757    
758     /**
759 jsr166 1.93 * Returns the first unmatched data node, or null if none.
760 jsr166 1.105 * Callers must recheck if the returned node is unmatched
761     * before using.
762 dl 1.52 */
763     final Node firstDataNode() {
764 jsr166 1.139 Node first = null;
765 jsr166 1.91 restartFromHead: for (;;) {
766 jsr166 1.139 Node h = head, p = h;
767     for (; p != null;) {
768     final Object item;
769     if ((item = p.item) != null) {
770     if (p.isData) {
771     first = p;
772     break;
773     }
774 jsr166 1.91 }
775 jsr166 1.139 else if (!p.isData)
776     break;
777     final Node q;
778     if ((q = p.next) == null)
779 jsr166 1.91 break;
780 jsr166 1.139 if (p == (p = q))
781 jsr166 1.91 continue restartFromHead;
782 dl 1.52 }
783 jsr166 1.139 if (p != h && casHead(h, p))
784     h.forgetNext();
785     return first;
786 dl 1.52 }
787     }
788    
789     /**
790 jsr166 1.8 * Traverses and counts unmatched nodes of the given mode.
791     * Used by methods size and getWaitingConsumerCount.
792 jsr166 1.1 */
793 jsr166 1.8 private int countOfMode(boolean data) {
794 jsr166 1.73 restartFromHead: for (;;) {
795     int count = 0;
796     for (Node p = head; p != null;) {
797     if (!p.isMatched()) {
798     if (p.isData != data)
799     return 0;
800     if (++count == Integer.MAX_VALUE)
801     break; // @see Collection.size()
802     }
803 jsr166 1.81 if (p == (p = p.next))
804 jsr166 1.73 continue restartFromHead;
805 jsr166 1.1 }
806 jsr166 1.73 return count;
807 jsr166 1.8 }
808     }
809    
810 jsr166 1.82 public String toString() {
811     String[] a = null;
812     restartFromHead: for (;;) {
813     int charLength = 0;
814     int size = 0;
815     for (Node p = head; p != null;) {
816     Object item = p.item;
817     if (p.isData) {
818 jsr166 1.105 if (item != null) {
819 jsr166 1.82 if (a == null)
820     a = new String[4];
821     else if (size == a.length)
822     a = Arrays.copyOf(a, 2 * size);
823     String s = item.toString();
824     a[size++] = s;
825     charLength += s.length();
826     }
827     } else if (item == null)
828     break;
829     if (p == (p = p.next))
830     continue restartFromHead;
831     }
832    
833     if (size == 0)
834     return "[]";
835    
836 jsr166 1.83 return Helpers.toString(a, size, charLength);
837 jsr166 1.82 }
838     }
839    
840     private Object[] toArrayInternal(Object[] a) {
841     Object[] x = a;
842     restartFromHead: for (;;) {
843     int size = 0;
844     for (Node p = head; p != null;) {
845     Object item = p.item;
846     if (p.isData) {
847 jsr166 1.105 if (item != null) {
848 jsr166 1.82 if (x == null)
849     x = new Object[4];
850     else if (size == x.length)
851     x = Arrays.copyOf(x, 2 * (size + 4));
852     x[size++] = item;
853     }
854     } else if (item == null)
855     break;
856     if (p == (p = p.next))
857     continue restartFromHead;
858     }
859     if (x == null)
860     return new Object[0];
861     else if (a != null && size <= a.length) {
862     if (a != x)
863     System.arraycopy(x, 0, a, 0, size);
864     if (size < a.length)
865     a[size] = null;
866     return a;
867     }
868     return (size == x.length) ? x : Arrays.copyOf(x, size);
869     }
870     }
871    
872     /**
873     * Returns an array containing all of the elements in this queue, in
874     * proper sequence.
875     *
876     * <p>The returned array will be "safe" in that no references to it are
877     * maintained by this queue. (In other words, this method must allocate
878     * a new array). The caller is thus free to modify the returned array.
879     *
880     * <p>This method acts as bridge between array-based and collection-based
881     * APIs.
882     *
883     * @return an array containing all of the elements in this queue
884     */
885     public Object[] toArray() {
886     return toArrayInternal(null);
887     }
888    
889     /**
890     * Returns an array containing all of the elements in this queue, in
891     * proper sequence; the runtime type of the returned array is that of
892     * the specified array. If the queue fits in the specified array, it
893     * is returned therein. Otherwise, a new array is allocated with the
894     * runtime type of the specified array and the size of this queue.
895     *
896     * <p>If this queue fits in the specified array with room to spare
897     * (i.e., the array has more elements than this queue), the element in
898     * the array immediately following the end of the queue is set to
899     * {@code null}.
900     *
901     * <p>Like the {@link #toArray()} method, this method acts as bridge between
902     * array-based and collection-based APIs. Further, this method allows
903     * precise control over the runtime type of the output array, and may,
904     * under certain circumstances, be used to save allocation costs.
905     *
906     * <p>Suppose {@code x} is a queue known to contain only strings.
907     * The following code can be used to dump the queue into a newly
908     * allocated array of {@code String}:
909     *
910     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
911     *
912     * Note that {@code toArray(new Object[0])} is identical in function to
913     * {@code toArray()}.
914     *
915     * @param a the array into which the elements of the queue are to
916     * be stored, if it is big enough; otherwise, a new array of the
917     * same runtime type is allocated for this purpose
918     * @return an array containing all of the elements in this queue
919     * @throws ArrayStoreException if the runtime type of the specified array
920     * is not a supertype of the runtime type of every element in
921     * this queue
922     * @throws NullPointerException if the specified array is null
923     */
924     @SuppressWarnings("unchecked")
925     public <T> T[] toArray(T[] a) {
926 jsr166 1.111 Objects.requireNonNull(a);
927 jsr166 1.82 return (T[]) toArrayInternal(a);
928     }
929    
930 jsr166 1.134 /**
931     * Weakly-consistent iterator.
932     *
933     * Lazily updated ancestor is expected to be amortized O(1) remove(),
934     * but O(n) in the worst case, when lastRet is concurrently deleted.
935     */
936 jsr166 1.8 final class Itr implements Iterator<E> {
937 jsr166 1.14 private Node nextNode; // next node to return item for
938     private E nextItem; // the corresponding item
939     private Node lastRet; // last returned node, to support remove
940 jsr166 1.134 private Node ancestor; // Helps unlink lastRet on remove()
941 jsr166 1.8
942     /**
943 jsr166 1.134 * Moves to next node after pred, or first node if pred null.
944 jsr166 1.8 */
945 jsr166 1.134 @SuppressWarnings("unchecked")
946     private void advance(Node pred) {
947     for (Node p = (pred == null) ? head : pred.next, c = p;
948     p != null; ) {
949     final Object item;
950     if ((item = p.item) != null && p.isData) {
951     nextNode = p;
952     nextItem = (E) item;
953     if (c != p)
954     tryCasSuccessor(pred, c, p);
955     return;
956     }
957     else if (!p.isData && item == null)
958 dl 1.33 break;
959 jsr166 1.134 if (c != p && !tryCasSuccessor(pred, c, c = p)) {
960     pred = p;
961     c = p = p.next;
962 dl 1.33 }
963 jsr166 1.134 else if (p == (p = p.next)) {
964     pred = null;
965     c = p = head;
966 jsr166 1.34 }
967 jsr166 1.1 }
968 jsr166 1.134 nextItem = null;
969 jsr166 1.8 nextNode = null;
970     }
971    
972     Itr() {
973     advance(null);
974     }
975    
976     public final boolean hasNext() {
977     return nextNode != null;
978     }
979    
980     public final E next() {
981 jsr166 1.125 final Node p;
982     if ((p = nextNode) == null) throw new NoSuchElementException();
983 jsr166 1.8 E e = nextItem;
984 jsr166 1.134 advance(lastRet = p);
985 jsr166 1.8 return e;
986     }
987    
988 jsr166 1.134 public void forEachRemaining(Consumer<? super E> action) {
989     Objects.requireNonNull(action);
990     Node q = null;
991     for (Node p; (p = nextNode) != null; advance(q = p))
992     action.accept(nextItem);
993     if (q != null)
994     lastRet = q;
995     }
996 jsr166 1.116
997 jsr166 1.8 public final void remove() {
998 dl 1.33 final Node lastRet = this.lastRet;
999     if (lastRet == null)
1000     throw new IllegalStateException();
1001     this.lastRet = null;
1002 jsr166 1.134 if (lastRet.item == null) // already deleted?
1003     return;
1004     // Advance ancestor, collapsing intervening dead nodes
1005     Node pred = ancestor;
1006     for (Node p = (pred == null) ? head : pred.next, c = p, q;
1007     p != null; ) {
1008     if (p == lastRet) {
1009     p.tryMatchData();
1010     if ((q = p.next) == null) q = p;
1011     if (c != q) tryCasSuccessor(pred, c, q);
1012     ancestor = pred;
1013     return;
1014     }
1015     final Object item; final boolean pAlive;
1016     if (pAlive = ((item = p.item) != null && p.isData)) {
1017     // exceptionally, nothing to do
1018     }
1019     else if (!p.isData && item == null)
1020     break;
1021     if ((c != p && !tryCasSuccessor(pred, c, c = p)) || pAlive) {
1022     pred = p;
1023     c = p = p.next;
1024     }
1025     else if (p == (p = p.next)) {
1026     pred = null;
1027     c = p = head;
1028     }
1029     }
1030     // traversal failed to find lastRet; must have been deleted;
1031     // leave ancestor at original location to avoid overshoot;
1032     // better luck next time!
1033    
1034     // assert lastRet.isMatched();
1035 jsr166 1.1 }
1036     }
1037 jsr166 1.53
1038 dl 1.57 /** A customized variant of Spliterators.IteratorSpliterator */
1039 jsr166 1.109 final class LTQSpliterator implements Spliterator<E> {
1040 dl 1.60 static final int MAX_BATCH = 1 << 25; // max batch array size;
1041 jsr166 1.87 Node current; // current node; null until initialized
1042 dl 1.52 int batch; // batch size for splits
1043     boolean exhausted; // true when no more nodes
1044 jsr166 1.94 LTQSpliterator() {}
1045 dl 1.52
1046     public Spliterator<E> trySplit() {
1047 jsr166 1.115 Node p, q;
1048     if ((p = current()) == null || (q = p.next) == null)
1049     return null;
1050     int i = 0, n = batch = Math.min(batch + 1, MAX_BATCH);
1051     Object[] a = null;
1052     do {
1053     final Object item = p.item;
1054     if (p.isData) {
1055     if (item != null)
1056     ((a != null) ? a : (a = new Object[n]))[i++] = item;
1057     } else if (item == null) {
1058     p = null;
1059     break;
1060 dl 1.60 }
1061 jsr166 1.117 if (p == (p = q))
1062     p = firstDataNode();
1063 jsr166 1.115 } while (p != null && (q = p.next) != null && i < n);
1064     setCurrent(p);
1065     return (i == 0) ? null :
1066     Spliterators.spliterator(a, 0, i, (Spliterator.ORDERED |
1067     Spliterator.NONNULL |
1068     Spliterator.CONCURRENT));
1069 dl 1.52 }
1070    
1071 dl 1.61 public void forEachRemaining(Consumer<? super E> action) {
1072 jsr166 1.111 Objects.requireNonNull(action);
1073 jsr166 1.116 final Node p;
1074 jsr166 1.115 if ((p = current()) != null) {
1075 jsr166 1.107 current = null;
1076 dl 1.52 exhausted = true;
1077 jsr166 1.116 forEachFrom(action, p);
1078 dl 1.52 }
1079     }
1080    
1081     @SuppressWarnings("unchecked")
1082     public boolean tryAdvance(Consumer<? super E> action) {
1083 jsr166 1.111 Objects.requireNonNull(action);
1084 dl 1.52 Node p;
1085 jsr166 1.115 if ((p = current()) != null) {
1086     E e = null;
1087 dl 1.52 do {
1088 jsr166 1.115 final Object item = p.item;
1089     final boolean isData = p.isData;
1090     if (p == (p = p.next))
1091     p = head;
1092     if (isData) {
1093     if (item != null) {
1094     e = (E) item;
1095 jsr166 1.107 break;
1096     }
1097     }
1098 jsr166 1.115 else if (item == null)
1099     p = null;
1100     } while (p != null);
1101     setCurrent(p);
1102     if (e != null) {
1103     action.accept(e);
1104 dl 1.52 return true;
1105     }
1106     }
1107     return false;
1108     }
1109    
1110 jsr166 1.115 private void setCurrent(Node p) {
1111     if ((current = p) == null)
1112     exhausted = true;
1113     }
1114    
1115     private Node current() {
1116     Node p;
1117     if ((p = current) == null && !exhausted)
1118     setCurrent(p = firstDataNode());
1119     return p;
1120     }
1121    
1122 dl 1.54 public long estimateSize() { return Long.MAX_VALUE; }
1123    
1124 dl 1.52 public int characteristics() {
1125 jsr166 1.100 return (Spliterator.ORDERED |
1126     Spliterator.NONNULL |
1127     Spliterator.CONCURRENT);
1128 dl 1.52 }
1129     }
1130    
1131 jsr166 1.67 /**
1132     * Returns a {@link Spliterator} over the elements in this queue.
1133     *
1134 jsr166 1.68 * <p>The returned spliterator is
1135     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1136     *
1137 jsr166 1.67 * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
1138     * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
1139     *
1140     * @implNote
1141     * The {@code Spliterator} implements {@code trySplit} to permit limited
1142     * parallelism.
1143     *
1144     * @return a {@code Spliterator} over the elements in this queue
1145     * @since 1.8
1146     */
1147 dl 1.56 public Spliterator<E> spliterator() {
1148 jsr166 1.109 return new LTQSpliterator();
1149 dl 1.52 }
1150    
1151 jsr166 1.8 /* -------------- Removal methods -------------- */
1152    
1153 jsr166 1.1 /**
1154 jsr166 1.8 * Unsplices (now or later) the given deleted/cancelled node with
1155     * the given predecessor.
1156 jsr166 1.1 *
1157 dl 1.16 * @param pred a node that was at one time known to be the
1158     * predecessor of s, or null or s itself if s is/was at head
1159 jsr166 1.8 * @param s the node to be unspliced
1160 jsr166 1.1 */
1161 dl 1.16 final void unsplice(Node pred, Node s) {
1162 dl 1.71 s.waiter = null; // disable signals
1163 jsr166 1.1 /*
1164 dl 1.16 * See above for rationale. Briefly: if pred still points to
1165     * s, try to unlink s. If s cannot be unlinked, because it is
1166     * trailing node or pred might be unlinked, and neither pred
1167     * nor s are head or offlist, add to sweepVotes, and if enough
1168     * votes have accumulated, sweep.
1169 jsr166 1.1 */
1170 dl 1.16 if (pred != null && pred != s && pred.next == s) {
1171     Node n = s.next;
1172     if (n == null ||
1173     (n != s && pred.casNext(s, n) && pred.isMatched())) {
1174     for (;;) { // check if at, or could be, head
1175     Node h = head;
1176     if (h == pred || h == s || h == null)
1177     return; // at head or list empty
1178     if (!h.isMatched())
1179     break;
1180     Node hn = h.next;
1181     if (hn == null)
1182     return; // now empty
1183     if (hn != h && casHead(h, hn))
1184     h.forgetNext(); // advance head
1185 jsr166 1.8 }
1186 dl 1.16 if (pred.next != pred && s.next != s) { // recheck if offlist
1187     for (;;) { // sweep now if enough votes
1188     int v = sweepVotes;
1189     if (v < SWEEP_THRESHOLD) {
1190     if (casSweepVotes(v, v + 1))
1191     break;
1192     }
1193     else if (casSweepVotes(v, 0)) {
1194     sweep();
1195     break;
1196     }
1197     }
1198 jsr166 1.12 }
1199 jsr166 1.1 }
1200     }
1201     }
1202    
1203     /**
1204 jsr166 1.26 * Unlinks matched (typically cancelled) nodes encountered in a
1205     * traversal from head.
1206 jsr166 1.1 */
1207 dl 1.16 private void sweep() {
1208 jsr166 1.20 for (Node p = head, s, n; p != null && (s = p.next) != null; ) {
1209 jsr166 1.28 if (!s.isMatched())
1210     // Unmatched nodes are never self-linked
1211 jsr166 1.20 p = s;
1212 jsr166 1.28 else if ((n = s.next) == null) // trailing node is pinned
1213 jsr166 1.20 break;
1214 jsr166 1.28 else if (s == n) // stale
1215     // No need to also check for p == s, since that implies s == n
1216     p = head;
1217 jsr166 1.20 else
1218 dl 1.16 p.casNext(s, n);
1219 jsr166 1.8 }
1220     }
1221    
1222     /**
1223 jsr166 1.1 * Creates an initially empty {@code LinkedTransferQueue}.
1224     */
1225     public LinkedTransferQueue() {
1226     }
1227    
1228     /**
1229     * Creates a {@code LinkedTransferQueue}
1230     * initially containing the elements of the given collection,
1231     * added in traversal order of the collection's iterator.
1232     *
1233     * @param c the collection of elements to initially contain
1234     * @throws NullPointerException if the specified collection or any
1235     * of its elements are null
1236     */
1237     public LinkedTransferQueue(Collection<? extends E> c) {
1238     this();
1239     addAll(c);
1240     }
1241    
1242 jsr166 1.4 /**
1243 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1244     * As the queue is unbounded, this method will never block.
1245     *
1246     * @throws NullPointerException if the specified element is null
1247 jsr166 1.4 */
1248 jsr166 1.5 public void put(E e) {
1249 jsr166 1.8 xfer(e, true, ASYNC, 0);
1250 jsr166 1.1 }
1251    
1252 jsr166 1.4 /**
1253 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1254     * As the queue is unbounded, this method will never block or
1255     * return {@code false}.
1256     *
1257     * @return {@code true} (as specified by
1258 jsr166 1.42 * {@link java.util.concurrent.BlockingQueue#offer(Object,long,TimeUnit)
1259     * BlockingQueue.offer})
1260 jsr166 1.5 * @throws NullPointerException if the specified element is null
1261 jsr166 1.4 */
1262 jsr166 1.5 public boolean offer(E e, long timeout, TimeUnit unit) {
1263 jsr166 1.8 xfer(e, true, ASYNC, 0);
1264     return true;
1265 jsr166 1.1 }
1266    
1267 jsr166 1.4 /**
1268 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1269     * As the queue is unbounded, this method will never return {@code false}.
1270     *
1271 jsr166 1.32 * @return {@code true} (as specified by {@link Queue#offer})
1272 jsr166 1.5 * @throws NullPointerException if the specified element is null
1273 jsr166 1.4 */
1274 jsr166 1.1 public boolean offer(E e) {
1275 jsr166 1.8 xfer(e, true, ASYNC, 0);
1276 jsr166 1.1 return true;
1277     }
1278    
1279 jsr166 1.4 /**
1280 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1281     * As the queue is unbounded, this method will never throw
1282     * {@link IllegalStateException} or return {@code false}.
1283     *
1284     * @return {@code true} (as specified by {@link Collection#add})
1285     * @throws NullPointerException if the specified element is null
1286 jsr166 1.4 */
1287 jsr166 1.1 public boolean add(E e) {
1288 jsr166 1.8 xfer(e, true, ASYNC, 0);
1289     return true;
1290 jsr166 1.5 }
1291    
1292     /**
1293 jsr166 1.6 * Transfers the element to a waiting consumer immediately, if possible.
1294     *
1295     * <p>More precisely, transfers the specified element immediately
1296     * if there exists a consumer already waiting to receive it (in
1297     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1298     * otherwise returning {@code false} without enqueuing the element.
1299 jsr166 1.5 *
1300     * @throws NullPointerException if the specified element is null
1301     */
1302     public boolean tryTransfer(E e) {
1303 jsr166 1.8 return xfer(e, true, NOW, 0) == null;
1304 jsr166 1.1 }
1305    
1306 jsr166 1.4 /**
1307 jsr166 1.6 * Transfers the element to a consumer, waiting if necessary to do so.
1308     *
1309     * <p>More precisely, transfers the specified element immediately
1310     * if there exists a consumer already waiting to receive it (in
1311     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1312     * else inserts the specified element at the tail of this queue
1313     * and waits until the element is received by a consumer.
1314 jsr166 1.5 *
1315     * @throws NullPointerException if the specified element is null
1316 jsr166 1.4 */
1317 jsr166 1.1 public void transfer(E e) throws InterruptedException {
1318 jsr166 1.8 if (xfer(e, true, SYNC, 0) != null) {
1319     Thread.interrupted(); // failure possible only due to interrupt
1320 jsr166 1.1 throw new InterruptedException();
1321     }
1322     }
1323    
1324 jsr166 1.4 /**
1325 jsr166 1.6 * Transfers the element to a consumer if it is possible to do so
1326     * before the timeout elapses.
1327     *
1328     * <p>More precisely, transfers the specified element immediately
1329     * if there exists a consumer already waiting to receive it (in
1330     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1331     * else inserts the specified element at the tail of this queue
1332     * and waits until the element is received by a consumer,
1333     * returning {@code false} if the specified wait time elapses
1334     * before the element can be transferred.
1335 jsr166 1.5 *
1336     * @throws NullPointerException if the specified element is null
1337 jsr166 1.4 */
1338 jsr166 1.1 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1339     throws InterruptedException {
1340 jsr166 1.14 if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1341 jsr166 1.1 return true;
1342     if (!Thread.interrupted())
1343     return false;
1344     throw new InterruptedException();
1345     }
1346    
1347     public E take() throws InterruptedException {
1348 jsr166 1.8 E e = xfer(null, false, SYNC, 0);
1349 jsr166 1.1 if (e != null)
1350 jsr166 1.5 return e;
1351 jsr166 1.1 Thread.interrupted();
1352     throw new InterruptedException();
1353     }
1354    
1355     public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1356 jsr166 1.14 E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1357 jsr166 1.1 if (e != null || !Thread.interrupted())
1358 jsr166 1.5 return e;
1359 jsr166 1.1 throw new InterruptedException();
1360     }
1361    
1362     public E poll() {
1363 jsr166 1.8 return xfer(null, false, NOW, 0);
1364 jsr166 1.1 }
1365    
1366 jsr166 1.4 /**
1367     * @throws NullPointerException {@inheritDoc}
1368     * @throws IllegalArgumentException {@inheritDoc}
1369     */
1370 jsr166 1.1 public int drainTo(Collection<? super E> c) {
1371 jsr166 1.111 Objects.requireNonNull(c);
1372 jsr166 1.1 if (c == this)
1373     throw new IllegalArgumentException();
1374     int n = 0;
1375 jsr166 1.112 for (E e; (e = poll()) != null; n++)
1376 jsr166 1.1 c.add(e);
1377     return n;
1378     }
1379    
1380 jsr166 1.4 /**
1381     * @throws NullPointerException {@inheritDoc}
1382     * @throws IllegalArgumentException {@inheritDoc}
1383     */
1384 jsr166 1.1 public int drainTo(Collection<? super E> c, int maxElements) {
1385 jsr166 1.111 Objects.requireNonNull(c);
1386 jsr166 1.1 if (c == this)
1387     throw new IllegalArgumentException();
1388     int n = 0;
1389 jsr166 1.112 for (E e; n < maxElements && (e = poll()) != null; n++)
1390 jsr166 1.1 c.add(e);
1391     return n;
1392     }
1393    
1394 jsr166 1.5 /**
1395 jsr166 1.36 * Returns an iterator over the elements in this queue in proper sequence.
1396     * The elements will be returned in order from first (head) to last (tail).
1397 jsr166 1.5 *
1398 jsr166 1.68 * <p>The returned iterator is
1399     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1400 jsr166 1.5 *
1401     * @return an iterator over the elements in this queue in proper sequence
1402     */
1403 jsr166 1.1 public Iterator<E> iterator() {
1404     return new Itr();
1405     }
1406    
1407     public E peek() {
1408 jsr166 1.92 restartFromHead: for (;;) {
1409     for (Node p = head; p != null;) {
1410     Object item = p.item;
1411     if (p.isData) {
1412 jsr166 1.105 if (item != null) {
1413 jsr166 1.92 @SuppressWarnings("unchecked") E e = (E) item;
1414     return e;
1415     }
1416     }
1417     else if (item == null)
1418     break;
1419     if (p == (p = p.next))
1420     continue restartFromHead;
1421     }
1422     return null;
1423     }
1424 jsr166 1.1 }
1425    
1426 jsr166 1.6 /**
1427     * Returns {@code true} if this queue contains no elements.
1428     *
1429     * @return {@code true} if this queue contains no elements
1430     */
1431 jsr166 1.1 public boolean isEmpty() {
1432 jsr166 1.90 return firstDataNode() == null;
1433 jsr166 1.1 }
1434    
1435     public boolean hasWaitingConsumer() {
1436 jsr166 1.93 restartFromHead: for (;;) {
1437     for (Node p = head; p != null;) {
1438     Object item = p.item;
1439     if (p.isData) {
1440 jsr166 1.105 if (item != null)
1441 jsr166 1.93 break;
1442     }
1443     else if (item == null)
1444     return true;
1445     if (p == (p = p.next))
1446     continue restartFromHead;
1447     }
1448     return false;
1449     }
1450 jsr166 1.1 }
1451    
1452     /**
1453     * Returns the number of elements in this queue. If this queue
1454     * contains more than {@code Integer.MAX_VALUE} elements, returns
1455     * {@code Integer.MAX_VALUE}.
1456     *
1457     * <p>Beware that, unlike in most collections, this method is
1458     * <em>NOT</em> a constant-time operation. Because of the
1459     * asynchronous nature of these queues, determining the current
1460     * number of elements requires an O(n) traversal.
1461     *
1462     * @return the number of elements in this queue
1463     */
1464     public int size() {
1465 jsr166 1.8 return countOfMode(true);
1466 jsr166 1.1 }
1467    
1468     public int getWaitingConsumerCount() {
1469 jsr166 1.8 return countOfMode(false);
1470 jsr166 1.1 }
1471    
1472 jsr166 1.6 /**
1473     * Removes a single instance of the specified element from this queue,
1474     * if it is present. More formally, removes an element {@code e} such
1475     * that {@code o.equals(e)}, if this queue contains one or more such
1476     * elements.
1477     * Returns {@code true} if this queue contained the specified element
1478     * (or equivalently, if this queue changed as a result of the call).
1479     *
1480     * @param o element to be removed from this queue, if present
1481     * @return {@code true} if this queue changed as a result of the call
1482     */
1483 jsr166 1.1 public boolean remove(Object o) {
1484 jsr166 1.137 if (o == null) return false;
1485 jsr166 1.108 restartFromHead: for (;;) {
1486 jsr166 1.137 for (Node p = head, pred = null; p != null; ) {
1487     Node q = p.next;
1488     final Object item;
1489     if ((item = p.item) != null) {
1490     if (p.isData) {
1491     if (o.equals(item) && p.tryMatchData()) {
1492     skipDeadNodes(pred, p, p, q);
1493     return true;
1494     }
1495     pred = p; p = q; continue;
1496 jsr166 1.108 }
1497     }
1498 jsr166 1.137 else if (!p.isData)
1499 jsr166 1.108 break;
1500 jsr166 1.138 for (Node c = p;; q = p.next) {
1501     if (q == null || !q.isMatched()) {
1502 jsr166 1.137 pred = skipDeadNodes(pred, c, p, q); p = q; break;
1503     }
1504     if (p == (p = q)) continue restartFromHead;
1505 jsr166 1.122 }
1506 jsr166 1.108 }
1507     return false;
1508     }
1509 jsr166 1.1 }
1510    
1511     /**
1512 jsr166 1.30 * Returns {@code true} if this queue contains the specified element.
1513     * More formally, returns {@code true} if and only if this queue contains
1514     * at least one element {@code e} such that {@code o.equals(e)}.
1515     *
1516     * @param o object to be checked for containment in this queue
1517     * @return {@code true} if this queue contains the specified element
1518     */
1519     public boolean contains(Object o) {
1520 jsr166 1.137 if (o == null) return false;
1521 jsr166 1.122 restartFromHead: for (;;) {
1522 jsr166 1.137 for (Node p = head, pred = null; p != null; ) {
1523     Node q = p.next;
1524     final Object item;
1525     if ((item = p.item) != null) {
1526     if (p.isData) {
1527     if (o.equals(item))
1528     return true;
1529     pred = p; p = q; continue;
1530     }
1531 jsr166 1.74 }
1532 jsr166 1.137 else if (!p.isData)
1533 jsr166 1.74 break;
1534 jsr166 1.138 for (Node c = p;; q = p.next) {
1535     if (q == null || !q.isMatched()) {
1536 jsr166 1.137 pred = skipDeadNodes(pred, c, p, q); p = q; break;
1537     }
1538     if (p == (p = q)) continue restartFromHead;
1539 jsr166 1.122 }
1540 jsr166 1.30 }
1541 jsr166 1.122 return false;
1542 jsr166 1.30 }
1543     }
1544    
1545     /**
1546 jsr166 1.5 * Always returns {@code Integer.MAX_VALUE} because a
1547     * {@code LinkedTransferQueue} is not capacity constrained.
1548     *
1549     * @return {@code Integer.MAX_VALUE} (as specified by
1550 jsr166 1.42 * {@link java.util.concurrent.BlockingQueue#remainingCapacity()
1551     * BlockingQueue.remainingCapacity})
1552 jsr166 1.5 */
1553     public int remainingCapacity() {
1554     return Integer.MAX_VALUE;
1555     }
1556    
1557     /**
1558 jsr166 1.50 * Saves this queue to a stream (that is, serializes it).
1559 jsr166 1.1 *
1560 jsr166 1.65 * @param s the stream
1561 jsr166 1.66 * @throws java.io.IOException if an I/O error occurs
1562 jsr166 1.1 * @serialData All of the elements (each an {@code E}) in
1563     * the proper order, followed by a null
1564     */
1565     private void writeObject(java.io.ObjectOutputStream s)
1566     throws java.io.IOException {
1567     s.defaultWriteObject();
1568     for (E e : this)
1569     s.writeObject(e);
1570     // Use trailing null as sentinel
1571     s.writeObject(null);
1572     }
1573    
1574     /**
1575 jsr166 1.50 * Reconstitutes this queue from a stream (that is, deserializes it).
1576 jsr166 1.65 * @param s the stream
1577 jsr166 1.66 * @throws ClassNotFoundException if the class of a serialized object
1578     * could not be found
1579     * @throws java.io.IOException if an I/O error occurs
1580 jsr166 1.1 */
1581     private void readObject(java.io.ObjectInputStream s)
1582     throws java.io.IOException, ClassNotFoundException {
1583     s.defaultReadObject();
1584     for (;;) {
1585 jsr166 1.49 @SuppressWarnings("unchecked")
1586     E item = (E) s.readObject();
1587 jsr166 1.1 if (item == null)
1588     break;
1589     else
1590     offer(item);
1591     }
1592     }
1593    
1594 jsr166 1.116 /**
1595     * @throws NullPointerException {@inheritDoc}
1596     */
1597     public boolean removeIf(Predicate<? super E> filter) {
1598     Objects.requireNonNull(filter);
1599     return bulkRemove(filter);
1600     }
1601    
1602     /**
1603     * @throws NullPointerException {@inheritDoc}
1604     */
1605     public boolean removeAll(Collection<?> c) {
1606     Objects.requireNonNull(c);
1607     return bulkRemove(e -> c.contains(e));
1608     }
1609    
1610     /**
1611     * @throws NullPointerException {@inheritDoc}
1612     */
1613     public boolean retainAll(Collection<?> c) {
1614     Objects.requireNonNull(c);
1615     return bulkRemove(e -> !c.contains(e));
1616     }
1617    
1618 jsr166 1.124 public void clear() {
1619     bulkRemove(e -> true);
1620     }
1621    
1622     /**
1623     * Tolerate this many consecutive dead nodes before CAS-collapsing.
1624     * Amortized cost of clear() is (1 + 1/MAX_HOPS) CASes per element.
1625     */
1626     private static final int MAX_HOPS = 8;
1627    
1628 jsr166 1.116 /** Implementation of bulk remove methods. */
1629     @SuppressWarnings("unchecked")
1630     private boolean bulkRemove(Predicate<? super E> filter) {
1631     boolean removed = false;
1632     restartFromHead: for (;;) {
1633 jsr166 1.124 int hops = MAX_HOPS;
1634     // c will be CASed to collapse intervening dead nodes between
1635     // pred (or head if null) and p.
1636     for (Node p = head, c = p, pred = null, q; p != null; p = q) {
1637 jsr166 1.138 q = p.next;
1638 jsr166 1.124 final Object item; boolean pAlive;
1639 jsr166 1.132 if (pAlive = ((item = p.item) != null && p.isData)) {
1640 jsr166 1.124 if (filter.test((E) item)) {
1641     if (p.tryMatchData())
1642     removed = true;
1643     pAlive = false;
1644 jsr166 1.116 }
1645     }
1646 jsr166 1.124 else if (!p.isData && item == null)
1647 jsr166 1.116 break;
1648 jsr166 1.138 if (pAlive || q == null || --hops == 0) {
1649 jsr166 1.124 // p might already be self-linked here, but if so:
1650     // - CASing head will surely fail
1651     // - CASing pred's next will be useless but harmless.
1652 jsr166 1.134 if ((c != p && !tryCasSuccessor(pred, c, c = p))
1653     || pAlive) {
1654     // if CAS failed or alive, abandon old pred
1655 jsr166 1.124 hops = MAX_HOPS;
1656     pred = p;
1657     c = q;
1658     }
1659     } else if (p == q)
1660 jsr166 1.116 continue restartFromHead;
1661     }
1662     return removed;
1663     }
1664     }
1665    
1666     /**
1667     * Runs action on each element found during a traversal starting at p.
1668 jsr166 1.118 * If p is null, the action is not run.
1669 jsr166 1.116 */
1670     @SuppressWarnings("unchecked")
1671     void forEachFrom(Consumer<? super E> action, Node p) {
1672 jsr166 1.137 for (Node pred = null; p != null; ) {
1673     Node q = p.next;
1674     final Object item;
1675     if ((item = p.item) != null) {
1676     if (p.isData) {
1677     action.accept((E) item);
1678     pred = p; p = q; continue;
1679     }
1680     }
1681     else if (!p.isData)
1682 jsr166 1.122 break;
1683 jsr166 1.138 for (Node c = p;; q = p.next) {
1684     if (q == null || !q.isMatched()) {
1685 jsr166 1.137 pred = skipDeadNodes(pred, c, p, q); p = q; break;
1686     }
1687     if (p == (p = q)) { pred = null; p = head; break; }
1688 jsr166 1.116 }
1689     }
1690     }
1691    
1692     /**
1693     * @throws NullPointerException {@inheritDoc}
1694     */
1695     public void forEach(Consumer<? super E> action) {
1696     Objects.requireNonNull(action);
1697     forEachFrom(action, head);
1698     }
1699    
1700 dl 1.97 // VarHandle mechanics
1701     private static final VarHandle HEAD;
1702     private static final VarHandle TAIL;
1703     private static final VarHandle SWEEPVOTES;
1704 dl 1.38 static {
1705 jsr166 1.1 try {
1706 dl 1.97 MethodHandles.Lookup l = MethodHandles.lookup();
1707     HEAD = l.findVarHandle(LinkedTransferQueue.class, "head",
1708     Node.class);
1709     TAIL = l.findVarHandle(LinkedTransferQueue.class, "tail",
1710     Node.class);
1711     SWEEPVOTES = l.findVarHandle(LinkedTransferQueue.class, "sweepVotes",
1712     int.class);
1713 jsr166 1.79 } catch (ReflectiveOperationException e) {
1714 dl 1.38 throw new Error(e);
1715 jsr166 1.1 }
1716 jsr166 1.85
1717     // Reduce the risk of rare disastrous classloading in first call to
1718     // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
1719     Class<?> ensureLoaded = LockSupport.class;
1720 jsr166 1.1 }
1721     }