ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/LinkedTransferQueue.java
Revision: 1.14
Committed: Mon Nov 2 15:33:59 2009 UTC (14 years, 7 months ago) by jsr166
Branch: MAIN
Changes since 1.13: +82 -79 lines
Log Message:
sync with jsr166y package

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4     * http://creativecommons.org/licenses/publicdomain
5     */
6    
7     package java.util.concurrent;
8    
9     import java.util.AbstractQueue;
10     import java.util.Collection;
11 jsr166 1.5 import java.util.ConcurrentModificationException;
12 jsr166 1.1 import java.util.Iterator;
13     import java.util.NoSuchElementException;
14 jsr166 1.5 import java.util.Queue;
15 jsr166 1.1 import java.util.concurrent.locks.LockSupport;
16     /**
17 jsr166 1.6 * An unbounded {@link TransferQueue} based on linked nodes.
18 jsr166 1.1 * This queue orders elements FIFO (first-in-first-out) with respect
19     * to any given producer. The <em>head</em> of the queue is that
20     * element that has been on the queue the longest time for some
21     * producer. The <em>tail</em> of the queue is that element that has
22     * been on the queue the shortest time for some producer.
23     *
24     * <p>Beware that, unlike in most collections, the {@code size}
25     * method is <em>NOT</em> a constant-time operation. Because of the
26     * asynchronous nature of these queues, determining the current number
27     * of elements requires a traversal of the elements.
28     *
29     * <p>This class and its iterator implement all of the
30     * <em>optional</em> methods of the {@link Collection} and {@link
31     * Iterator} interfaces.
32     *
33     * <p>Memory consistency effects: As with other concurrent
34     * collections, actions in a thread prior to placing an object into a
35     * {@code LinkedTransferQueue}
36     * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
37     * actions subsequent to the access or removal of that element from
38     * the {@code LinkedTransferQueue} in another thread.
39     *
40     * <p>This class is a member of the
41     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
42     * Java Collections Framework</a>.
43     *
44     * @since 1.7
45     * @author Doug Lea
46     * @param <E> the type of elements held in this collection
47     */
48     public class LinkedTransferQueue<E> extends AbstractQueue<E>
49     implements TransferQueue<E>, java.io.Serializable {
50     private static final long serialVersionUID = -3223113410248163686L;
51    
52     /*
53 jsr166 1.8 * *** Overview of Dual Queues with Slack ***
54 jsr166 1.1 *
55 jsr166 1.8 * Dual Queues, introduced by Scherer and Scott
56     * (http://www.cs.rice.edu/~wns1/papers/2004-DISC-DDS.pdf) are
57     * (linked) queues in which nodes may represent either data or
58     * requests. When a thread tries to enqueue a data node, but
59     * encounters a request node, it instead "matches" and removes it;
60     * and vice versa for enqueuing requests. Blocking Dual Queues
61     * arrange that threads enqueuing unmatched requests block until
62     * other threads provide the match. Dual Synchronous Queues (see
63     * Scherer, Lea, & Scott
64     * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
65     * additionally arrange that threads enqueuing unmatched data also
66     * block. Dual Transfer Queues support all of these modes, as
67     * dictated by callers.
68     *
69     * A FIFO dual queue may be implemented using a variation of the
70     * Michael & Scott (M&S) lock-free queue algorithm
71     * (http://www.cs.rochester.edu/u/scott/papers/1996_PODC_queues.pdf).
72     * It maintains two pointer fields, "head", pointing to a
73     * (matched) node that in turn points to the first actual
74     * (unmatched) queue node (or null if empty); and "tail" that
75     * points to the last node on the queue (or again null if
76     * empty). For example, here is a possible queue with four data
77     * elements:
78     *
79     * head tail
80     * | |
81     * v v
82     * M -> U -> U -> U -> U
83     *
84     * The M&S queue algorithm is known to be prone to scalability and
85     * overhead limitations when maintaining (via CAS) these head and
86     * tail pointers. This has led to the development of
87     * contention-reducing variants such as elimination arrays (see
88     * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
89     * optimistic back pointers (see Ladan-Mozes & Shavit
90     * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
91     * However, the nature of dual queues enables a simpler tactic for
92     * improving M&S-style implementations when dual-ness is needed.
93     *
94     * In a dual queue, each node must atomically maintain its match
95     * status. While there are other possible variants, we implement
96     * this here as: for a data-mode node, matching entails CASing an
97     * "item" field from a non-null data value to null upon match, and
98     * vice-versa for request nodes, CASing from null to a data
99     * value. (Note that the linearization properties of this style of
100     * queue are easy to verify -- elements are made available by
101     * linking, and unavailable by matching.) Compared to plain M&S
102     * queues, this property of dual queues requires one additional
103     * successful atomic operation per enq/deq pair. But it also
104     * enables lower cost variants of queue maintenance mechanics. (A
105     * variation of this idea applies even for non-dual queues that
106     * support deletion of interior elements, such as
107     * j.u.c.ConcurrentLinkedQueue.)
108     *
109     * Once a node is matched, its match status can never again
110     * change. We may thus arrange that the linked list of them
111     * contain a prefix of zero or more matched nodes, followed by a
112     * suffix of zero or more unmatched nodes. (Note that we allow
113     * both the prefix and suffix to be zero length, which in turn
114     * means that we do not use a dummy header.) If we were not
115     * concerned with either time or space efficiency, we could
116     * correctly perform enqueue and dequeue operations by traversing
117     * from a pointer to the initial node; CASing the item of the
118     * first unmatched node on match and CASing the next field of the
119     * trailing node on appends. (Plus some special-casing when
120     * initially empty). While this would be a terrible idea in
121     * itself, it does have the benefit of not requiring ANY atomic
122     * updates on head/tail fields.
123     *
124     * We introduce here an approach that lies between the extremes of
125     * never versus always updating queue (head and tail) pointers.
126     * This offers a tradeoff between sometimes requiring extra
127     * traversal steps to locate the first and/or last unmatched
128     * nodes, versus the reduced overhead and contention of fewer
129     * updates to queue pointers. For example, a possible snapshot of
130     * a queue is:
131     *
132     * head tail
133     * | |
134     * v v
135     * M -> M -> U -> U -> U -> U
136     *
137     * The best value for this "slack" (the targeted maximum distance
138     * between the value of "head" and the first unmatched node, and
139     * similarly for "tail") is an empirical matter. We have found
140     * that using very small constants in the range of 1-3 work best
141     * over a range of platforms. Larger values introduce increasing
142     * costs of cache misses and risks of long traversal chains, while
143     * smaller values increase CAS contention and overhead.
144     *
145     * Dual queues with slack differ from plain M&S dual queues by
146     * virtue of only sometimes updating head or tail pointers when
147     * matching, appending, or even traversing nodes; in order to
148     * maintain a targeted slack. The idea of "sometimes" may be
149     * operationalized in several ways. The simplest is to use a
150     * per-operation counter incremented on each traversal step, and
151     * to try (via CAS) to update the associated queue pointer
152     * whenever the count exceeds a threshold. Another, that requires
153     * more overhead, is to use random number generators to update
154     * with a given probability per traversal step.
155     *
156     * In any strategy along these lines, because CASes updating
157     * fields may fail, the actual slack may exceed targeted
158     * slack. However, they may be retried at any time to maintain
159     * targets. Even when using very small slack values, this
160     * approach works well for dual queues because it allows all
161     * operations up to the point of matching or appending an item
162     * (hence potentially allowing progress by another thread) to be
163     * read-only, thus not introducing any further contention. As
164     * described below, we implement this by performing slack
165     * maintenance retries only after these points.
166     *
167     * As an accompaniment to such techniques, traversal overhead can
168     * be further reduced without increasing contention of head
169     * pointer updates: Threads may sometimes shortcut the "next" link
170     * path from the current "head" node to be closer to the currently
171     * known first unmatched node, and similarly for tail. Again, this
172     * may be triggered with using thresholds or randomization.
173     *
174     * These ideas must be further extended to avoid unbounded amounts
175     * of costly-to-reclaim garbage caused by the sequential "next"
176     * links of nodes starting at old forgotten head nodes: As first
177     * described in detail by Boehm
178     * (http://portal.acm.org/citation.cfm?doid=503272.503282) if a GC
179     * delays noticing that any arbitrarily old node has become
180     * garbage, all newer dead nodes will also be unreclaimed.
181     * (Similar issues arise in non-GC environments.) To cope with
182     * this in our implementation, upon CASing to advance the head
183     * pointer, we set the "next" link of the previous head to point
184     * only to itself; thus limiting the length of connected dead lists.
185     * (We also take similar care to wipe out possibly garbage
186     * retaining values held in other Node fields.) However, doing so
187     * adds some further complexity to traversal: If any "next"
188     * pointer links to itself, it indicates that the current thread
189     * has lagged behind a head-update, and so the traversal must
190     * continue from the "head". Traversals trying to find the
191     * current tail starting from "tail" may also encounter
192     * self-links, in which case they also continue at "head".
193     *
194     * It is tempting in slack-based scheme to not even use CAS for
195     * updates (similarly to Ladan-Mozes & Shavit). However, this
196     * cannot be done for head updates under the above link-forgetting
197     * mechanics because an update may leave head at a detached node.
198     * And while direct writes are possible for tail updates, they
199     * increase the risk of long retraversals, and hence long garbage
200     * chains, which can be much more costly than is worthwhile
201     * considering that the cost difference of performing a CAS vs
202     * write is smaller when they are not triggered on each operation
203     * (especially considering that writes and CASes equally require
204     * additional GC bookkeeping ("write barriers") that are sometimes
205     * more costly than the writes themselves because of contention).
206     *
207     * Removal of interior nodes (due to timed out or interrupted
208     * waits, or calls to remove(x) or Iterator.remove) can use a
209     * scheme roughly similar to that described in Scherer, Lea, and
210     * Scott's SynchronousQueue. Given a predecessor, we can unsplice
211     * any node except the (actual) tail of the queue. To avoid
212     * build-up of cancelled trailing nodes, upon a request to remove
213     * a trailing node, it is placed in field "cleanMe" to be
214     * unspliced upon the next call to unsplice any other node.
215     * Situations needing such mechanics are not common but do occur
216     * in practice; for example when an unbounded series of short
217     * timed calls to poll repeatedly time out but never otherwise
218     * fall off the list because of an untimed call to take at the
219     * front of the queue. Note that maintaining field cleanMe does
220     * not otherwise much impact garbage retention even if never
221     * cleared by some other call because the held node will
222     * eventually either directly or indirectly lead to a self-link
223     * once off the list.
224     *
225     * *** Overview of implementation ***
226     *
227     * We use a threshold-based approach to updates, with a slack
228     * threshold of two -- that is, we update head/tail when the
229     * current pointer appears to be two or more steps away from the
230     * first/last node. The slack value is hard-wired: a path greater
231     * than one is naturally implemented by checking equality of
232     * traversal pointers except when the list has only one element,
233     * in which case we keep slack threshold at one. Avoiding tracking
234     * explicit counts across method calls slightly simplifies an
235     * already-messy implementation. Using randomization would
236     * probably work better if there were a low-quality dirt-cheap
237     * per-thread one available, but even ThreadLocalRandom is too
238     * heavy for these purposes.
239     *
240     * With such a small slack threshold value, it is rarely
241     * worthwhile to augment this with path short-circuiting; i.e.,
242     * unsplicing nodes between head and the first unmatched node, or
243     * similarly for tail, rather than advancing head or tail
244     * proper. However, it is used (in awaitMatch) immediately before
245     * a waiting thread starts to block, as a final bit of helping at
246     * a point when contention with others is extremely unlikely
247     * (since if other threads that could release it are operating,
248     * then the current thread wouldn't be blocking).
249     *
250     * We allow both the head and tail fields to be null before any
251     * nodes are enqueued; initializing upon first append. This
252     * simplifies some other logic, as well as providing more
253     * efficient explicit control paths instead of letting JVMs insert
254     * implicit NullPointerExceptions when they are null. While not
255     * currently fully implemented, we also leave open the possibility
256     * of re-nulling these fields when empty (which is complicated to
257     * arrange, for little benefit.)
258     *
259     * All enqueue/dequeue operations are handled by the single method
260     * "xfer" with parameters indicating whether to act as some form
261     * of offer, put, poll, take, or transfer (each possibly with
262     * timeout). The relative complexity of using one monolithic
263     * method outweighs the code bulk and maintenance problems of
264     * using separate methods for each case.
265     *
266     * Operation consists of up to three phases. The first is
267     * implemented within method xfer, the second in tryAppend, and
268     * the third in method awaitMatch.
269     *
270     * 1. Try to match an existing node
271     *
272     * Starting at head, skip already-matched nodes until finding
273     * an unmatched node of opposite mode, if one exists, in which
274     * case matching it and returning, also if necessary updating
275     * head to one past the matched node (or the node itself if the
276     * list has no other unmatched nodes). If the CAS misses, then
277     * a loop retries advancing head by two steps until either
278     * success or the slack is at most two. By requiring that each
279     * attempt advances head by two (if applicable), we ensure that
280     * the slack does not grow without bound. Traversals also check
281     * if the initial head is now off-list, in which case they
282     * start at the new head.
283     *
284     * If no candidates are found and the call was untimed
285     * poll/offer, (argument "how" is NOW) return.
286     *
287     * 2. Try to append a new node (method tryAppend)
288     *
289     * Starting at current tail pointer, find the actual last node
290     * and try to append a new node (or if head was null, establish
291     * the first node). Nodes can be appended only if their
292     * predecessors are either already matched or are of the same
293     * mode. If we detect otherwise, then a new node with opposite
294     * mode must have been appended during traversal, so we must
295     * restart at phase 1. The traversal and update steps are
296     * otherwise similar to phase 1: Retrying upon CAS misses and
297     * checking for staleness. In particular, if a self-link is
298     * encountered, then we can safely jump to a node on the list
299     * by continuing the traversal at current head.
300     *
301     * On successful append, if the call was ASYNC, return.
302     *
303     * 3. Await match or cancellation (method awaitMatch)
304     *
305     * Wait for another thread to match node; instead cancelling if
306     * the current thread was interrupted or the wait timed out. On
307     * multiprocessors, we use front-of-queue spinning: If a node
308     * appears to be the first unmatched node in the queue, it
309     * spins a bit before blocking. In either case, before blocking
310     * it tries to unsplice any nodes between the current "head"
311     * and the first unmatched node.
312     *
313     * Front-of-queue spinning vastly improves performance of
314     * heavily contended queues. And so long as it is relatively
315     * brief and "quiet", spinning does not much impact performance
316     * of less-contended queues. During spins threads check their
317     * interrupt status and generate a thread-local random number
318     * to decide to occasionally perform a Thread.yield. While
319     * yield has underdefined specs, we assume that might it help,
320     * and will not hurt in limiting impact of spinning on busy
321     * systems. We also use smaller (1/2) spins for nodes that are
322     * not known to be front but whose predecessors have not
323     * blocked -- these "chained" spins avoid artifacts of
324     * front-of-queue rules which otherwise lead to alternating
325     * nodes spinning vs blocking. Further, front threads that
326     * represent phase changes (from data to request node or vice
327     * versa) compared to their predecessors receive additional
328     * chained spins, reflecting longer paths typically required to
329     * unblock threads during phase changes.
330     */
331    
332     /** True if on multiprocessor */
333     private static final boolean MP =
334     Runtime.getRuntime().availableProcessors() > 1;
335    
336     /**
337     * The number of times to spin (with randomly interspersed calls
338     * to Thread.yield) on multiprocessor before blocking when a node
339     * is apparently the first waiter in the queue. See above for
340     * explanation. Must be a power of two. The value is empirically
341     * derived -- it works pretty well across a variety of processors,
342     * numbers of CPUs, and OSes.
343     */
344     private static final int FRONT_SPINS = 1 << 7;
345    
346     /**
347     * The number of times to spin before blocking when a node is
348     * preceded by another node that is apparently spinning. Also
349     * serves as an increment to FRONT_SPINS on phase changes, and as
350     * base average frequency for yielding during spins. Must be a
351     * power of two.
352     */
353     private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
354    
355     /**
356     * Queue nodes. Uses Object, not E, for items to allow forgetting
357     * them after use. Relies heavily on Unsafe mechanics to minimize
358     * unnecessary ordering constraints: Writes that intrinsically
359     * precede or follow CASes use simple relaxed forms. Other
360     * cleanups use releasing/lazy writes.
361     */
362 jsr166 1.14 static final class Node {
363 jsr166 1.8 final boolean isData; // false if this is a request node
364     volatile Object item; // initially non-null if isData; CASed to match
365 jsr166 1.14 volatile Node next;
366 jsr166 1.8 volatile Thread waiter; // null until waiting
367    
368     // CAS methods for fields
369 jsr166 1.14 final boolean casNext(Node cmp, Node val) {
370 jsr166 1.8 return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
371     }
372 jsr166 1.1
373 jsr166 1.8 final boolean casItem(Object cmp, Object val) {
374 jsr166 1.9 assert cmp == null || cmp.getClass() != Node.class;
375 jsr166 1.8 return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
376     }
377 jsr166 1.1
378 jsr166 1.8 /**
379     * Creates a new node. Uses relaxed write because item can only
380     * be seen if followed by CAS.
381     */
382 jsr166 1.14 Node(Object item, boolean isData) {
383 jsr166 1.8 UNSAFE.putObject(this, itemOffset, item); // relaxed write
384     this.isData = isData;
385     }
386 jsr166 1.1
387 jsr166 1.8 /**
388     * Links node to itself to avoid garbage retention. Called
389     * only after CASing head field, so uses relaxed write.
390     */
391     final void forgetNext() {
392     UNSAFE.putObject(this, nextOffset, this);
393     }
394 jsr166 1.1
395 jsr166 1.8 /**
396     * Sets item to self (using a releasing/lazy write) and waiter
397     * to null, to avoid garbage retention after extracting or
398     * cancelling.
399     */
400     final void forgetContents() {
401     UNSAFE.putOrderedObject(this, itemOffset, this);
402     UNSAFE.putOrderedObject(this, waiterOffset, null);
403     }
404 jsr166 1.1
405 jsr166 1.8 /**
406     * Returns true if this node has been matched, including the
407     * case of artificial matches due to cancellation.
408     */
409     final boolean isMatched() {
410     Object x = item;
411 jsr166 1.11 return (x == this) || ((x == null) == isData);
412     }
413    
414     /**
415     * Returns true if this is an unmatched request node.
416     */
417     final boolean isUnmatchedRequest() {
418     return !isData && item == null;
419 jsr166 1.8 }
420 jsr166 1.1
421 jsr166 1.8 /**
422     * Returns true if a node with the given mode cannot be
423     * appended to this node because this node is unmatched and
424     * has opposite data mode.
425     */
426     final boolean cannotPrecede(boolean haveData) {
427     boolean d = isData;
428     Object x;
429     return d != haveData && (x = item) != this && (x != null) == d;
430     }
431 jsr166 1.1
432 jsr166 1.8 /**
433     * Tries to artificially match a data node -- used by remove.
434     */
435     final boolean tryMatchData() {
436 jsr166 1.11 assert isData;
437 jsr166 1.8 Object x = item;
438     if (x != null && x != this && casItem(x, null)) {
439     LockSupport.unpark(waiter);
440     return true;
441     }
442     return false;
443 jsr166 1.1 }
444    
445 jsr166 1.4 // Unsafe mechanics
446     private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
447     private static final long nextOffset =
448     objectFieldOffset(UNSAFE, "next", Node.class);
449 jsr166 1.8 private static final long itemOffset =
450     objectFieldOffset(UNSAFE, "item", Node.class);
451     private static final long waiterOffset =
452     objectFieldOffset(UNSAFE, "waiter", Node.class);
453 jsr166 1.1
454     private static final long serialVersionUID = -3375979862319811754L;
455     }
456    
457 jsr166 1.8 /** head of the queue; null until first enqueue */
458 jsr166 1.14 transient volatile Node head;
459 jsr166 1.8
460     /** predecessor of dangling unspliceable node */
461 jsr166 1.14 private transient volatile Node cleanMe; // decl here reduces contention
462 jsr166 1.1
463 jsr166 1.8 /** tail of the queue; null until first append */
464 jsr166 1.14 private transient volatile Node tail;
465 jsr166 1.1
466 jsr166 1.8 // CAS methods for fields
467 jsr166 1.14 private boolean casTail(Node cmp, Node val) {
468 jsr166 1.8 return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
469     }
470 jsr166 1.1
471 jsr166 1.14 private boolean casHead(Node cmp, Node val) {
472 jsr166 1.8 return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
473     }
474 jsr166 1.1
475 jsr166 1.14 private boolean casCleanMe(Node cmp, Node val) {
476 jsr166 1.8 return UNSAFE.compareAndSwapObject(this, cleanMeOffset, cmp, val);
477     }
478 jsr166 1.1
479 jsr166 1.8 /*
480 jsr166 1.14 * Possible values for "how" argument in xfer method.
481 jsr166 1.1 */
482 jsr166 1.14 private static final int NOW = 0; // for untimed poll, tryTransfer
483     private static final int ASYNC = 1; // for offer, put, add
484     private static final int SYNC = 2; // for transfer, take
485     private static final int TIMED = 3; // for timed poll, tryTransfer
486 jsr166 1.1
487 jsr166 1.10 @SuppressWarnings("unchecked")
488     static <E> E cast(Object item) {
489     assert item == null || item.getClass() != Node.class;
490     return (E) item;
491     }
492    
493 jsr166 1.1 /**
494 jsr166 1.8 * Implements all queuing methods. See above for explanation.
495 jsr166 1.1 *
496 jsr166 1.8 * @param e the item or null for take
497     * @param haveData true if this is a put, else a take
498 jsr166 1.14 * @param how NOW, ASYNC, SYNC, or TIMED
499     * @param nanos timeout in nanosecs, used only if mode is TIMED
500 jsr166 1.8 * @return an item if matched, else e
501     * @throws NullPointerException if haveData mode but e is null
502 jsr166 1.1 */
503 jsr166 1.8 private E xfer(E e, boolean haveData, int how, long nanos) {
504     if (haveData && (e == null))
505     throw new NullPointerException();
506 jsr166 1.14 Node s = null; // the node to append, if needed
507 jsr166 1.1
508 jsr166 1.8 retry: for (;;) { // restart on append race
509 jsr166 1.1
510 jsr166 1.14 for (Node h = head, p = h; p != null;) { // find & match first node
511 jsr166 1.8 boolean isData = p.isData;
512     Object item = p.item;
513     if (item != p && (item != null) == isData) { // unmatched
514     if (isData == haveData) // can't match
515     break;
516     if (p.casItem(item, e)) { // match
517 jsr166 1.14 for (Node q = p; q != h;) {
518     Node n = q.next; // update head by 2
519 jsr166 1.8 if (n != null) // unless singleton
520     q = n;
521     if (head == h && casHead(h, q)) {
522     h.forgetNext();
523     break;
524     } // advance and retry
525     if ((h = head) == null ||
526     (q = h.next) == null || !q.isMatched())
527     break; // unless slack < 2
528     }
529     LockSupport.unpark(p.waiter);
530     return this.<E>cast(item);
531 jsr166 1.1 }
532     }
533 jsr166 1.14 Node n = p.next;
534 jsr166 1.8 p = (p != n) ? n : (h = head); // Use head if p offlist
535     }
536    
537 jsr166 1.14 if (how != NOW) { // No matches available
538 jsr166 1.8 if (s == null)
539 jsr166 1.14 s = new Node(e, haveData);
540     Node pred = tryAppend(s, haveData);
541 jsr166 1.8 if (pred == null)
542     continue retry; // lost race vs opposite mode
543 jsr166 1.14 if (how != ASYNC)
544     return awaitMatch(s, pred, e, (how == TIMED), nanos);
545 jsr166 1.1 }
546 jsr166 1.8 return e; // not waiting
547 jsr166 1.1 }
548     }
549    
550     /**
551 jsr166 1.8 * Tries to append node s as tail.
552     *
553     * @param s the node to append
554     * @param haveData true if appending in data mode
555     * @return null on failure due to losing race with append in
556     * different mode, else s's predecessor, or s itself if no
557     * predecessor
558 jsr166 1.1 */
559 jsr166 1.14 private Node tryAppend(Node s, boolean haveData) {
560     for (Node t = tail, p = t;;) { // move p to last node and append
561     Node n, u; // temps for reads of next & tail
562 jsr166 1.8 if (p == null && (p = head) == null) {
563     if (casHead(null, s))
564     return s; // initialize
565     }
566     else if (p.cannotPrecede(haveData))
567     return null; // lost race vs opposite mode
568     else if ((n = p.next) != null) // not last; keep traversing
569     p = p != t && t != (u = tail) ? (t = u) : // stale tail
570     (p != n) ? n : null; // restart if off list
571     else if (!p.casNext(null, s))
572     p = p.next; // re-read on CAS failure
573     else {
574     if (p != t) { // update if slack now >= 2
575     while ((tail != t || !casTail(t, s)) &&
576     (t = tail) != null &&
577     (s = t.next) != null && // advance and retry
578     (s = s.next) != null && s != t);
579 jsr166 1.1 }
580 jsr166 1.8 return p;
581 jsr166 1.1 }
582     }
583     }
584    
585     /**
586 jsr166 1.8 * Spins/yields/blocks until node s is matched or caller gives up.
587 jsr166 1.1 *
588     * @param s the waiting node
589 jsr166 1.8 * @param pred the predecessor of s, or s itself if it has no
590     * predecessor, or null if unknown (the null case does not occur
591     * in any current calls but may in possible future extensions)
592 jsr166 1.1 * @param e the comparison value for checking match
593 jsr166 1.14 * @param timed if true, wait only until timeout elapses
594     * @param nanos timeout in nanosecs, used only if timed is true
595 jsr166 1.8 * @return matched item, or e if unmatched on interrupt or timeout
596 jsr166 1.1 */
597 jsr166 1.14 private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
598     long lastTime = timed ? System.nanoTime() : 0L;
599 jsr166 1.8 Thread w = Thread.currentThread();
600     int spins = -1; // initialized after first item and cancel checks
601     ThreadLocalRandom randomYields = null; // bound if needed
602 jsr166 1.1
603     for (;;) {
604 jsr166 1.8 Object item = s.item;
605     if (item != e) { // matched
606     assert item != s;
607     s.forgetContents(); // avoid garbage
608     return this.<E>cast(item);
609     }
610 jsr166 1.14 if ((w.isInterrupted() || (timed && nanos <= 0)) &&
611 jsr166 1.8 s.casItem(e, s)) { // cancel
612     unsplice(pred, s);
613     return e;
614     }
615    
616     if (spins < 0) { // establish spins at/near front
617     if ((spins = spinsFor(pred, s.isData)) > 0)
618     randomYields = ThreadLocalRandom.current();
619     }
620     else if (spins > 0) { // spin
621     if (--spins == 0)
622     shortenHeadPath(); // reduce slack before blocking
623     else if (randomYields.nextInt(CHAINED_SPINS) == 0)
624     Thread.yield(); // occasionally yield
625     }
626     else if (s.waiter == null) {
627     s.waiter = w; // request unpark then recheck
628 jsr166 1.1 }
629 jsr166 1.14 else if (timed) {
630 jsr166 1.1 long now = System.nanoTime();
631 jsr166 1.8 if ((nanos -= now - lastTime) > 0)
632     LockSupport.parkNanos(this, nanos);
633 jsr166 1.1 lastTime = now;
634     }
635 jsr166 1.8 else {
636 jsr166 1.1 LockSupport.park(this);
637     s.waiter = null;
638 jsr166 1.8 spins = -1; // spin if front upon wakeup
639 jsr166 1.1 }
640 jsr166 1.8 }
641     }
642    
643     /**
644     * Returns spin/yield value for a node with given predecessor and
645     * data mode. See above for explanation.
646     */
647 jsr166 1.14 private static int spinsFor(Node pred, boolean haveData) {
648 jsr166 1.8 if (MP && pred != null) {
649     if (pred.isData != haveData) // phase change
650     return FRONT_SPINS + CHAINED_SPINS;
651     if (pred.isMatched()) // probably at front
652     return FRONT_SPINS;
653     if (pred.waiter == null) // pred apparently spinning
654     return CHAINED_SPINS;
655     }
656     return 0;
657     }
658    
659     /**
660     * Tries (once) to unsplice nodes between head and first unmatched
661     * or trailing node; failing on contention.
662     */
663     private void shortenHeadPath() {
664 jsr166 1.14 Node h, hn, p, q;
665 jsr166 1.8 if ((p = h = head) != null && h.isMatched() &&
666     (q = hn = h.next) != null) {
667 jsr166 1.14 Node n;
668 jsr166 1.8 while ((n = q.next) != q) {
669     if (n == null || !q.isMatched()) {
670     if (hn != q && h.next == hn)
671     h.casNext(hn, q);
672     break;
673     }
674     p = q;
675     q = n;
676 jsr166 1.1 }
677     }
678     }
679    
680 jsr166 1.8 /* -------------- Traversal methods -------------- */
681    
682     /**
683 jsr166 1.14 * Returns the successor of p, or the head node if p.next has been
684     * linked to self, which will only be true if traversing with a
685     * stale pointer that is now off the list.
686     */
687     final Node succ(Node p) {
688     Node next = p.next;
689     return (p == next) ? head : next;
690     }
691    
692     /**
693 jsr166 1.8 * Returns the first unmatched node of the given mode, or null if
694     * none. Used by methods isEmpty, hasWaitingConsumer.
695     */
696 jsr166 1.14 private Node firstOfMode(boolean isData) {
697     for (Node p = head; p != null; p = succ(p)) {
698 jsr166 1.8 if (!p.isMatched())
699 jsr166 1.14 return (p.isData == isData) ? p : null;
700 jsr166 1.8 }
701     return null;
702     }
703    
704     /**
705     * Returns the item in the first unmatched node with isData; or
706     * null if none. Used by peek.
707     */
708     private E firstDataItem() {
709 jsr166 1.14 for (Node p = head; p != null; p = succ(p)) {
710 jsr166 1.8 Object item = p.item;
711 jsr166 1.14 if (p.isData) {
712     if (item != null && item != p)
713     return this.<E>cast(item);
714     }
715     else if (item == null)
716     return null;
717 jsr166 1.8 }
718     return null;
719     }
720    
721 jsr166 1.1 /**
722 jsr166 1.8 * Traverses and counts unmatched nodes of the given mode.
723     * Used by methods size and getWaitingConsumerCount.
724 jsr166 1.1 */
725 jsr166 1.8 private int countOfMode(boolean data) {
726     int count = 0;
727 jsr166 1.14 for (Node p = head; p != null; ) {
728 jsr166 1.8 if (!p.isMatched()) {
729     if (p.isData != data)
730     return 0;
731     if (++count == Integer.MAX_VALUE) // saturated
732     break;
733     }
734 jsr166 1.14 Node n = p.next;
735 jsr166 1.8 if (n != p)
736     p = n;
737     else {
738     count = 0;
739     p = head;
740 jsr166 1.1 }
741 jsr166 1.8 }
742     return count;
743     }
744    
745     final class Itr implements Iterator<E> {
746 jsr166 1.14 private Node nextNode; // next node to return item for
747     private E nextItem; // the corresponding item
748     private Node lastRet; // last returned node, to support remove
749     private Node lastPred; // predecessor to unlink lastRet
750 jsr166 1.8
751     /**
752     * Moves to next node after prev, or first node if prev null.
753     */
754 jsr166 1.14 private void advance(Node prev) {
755 jsr166 1.13 lastPred = lastRet;
756 jsr166 1.8 lastRet = prev;
757 jsr166 1.14 for (Node p = (prev == null) ? head : succ(prev);
758     p != null; p = succ(p)) {
759 jsr166 1.8 Object item = p.item;
760     if (p.isData) {
761     if (item != null && item != p) {
762     nextItem = LinkedTransferQueue.this.<E>cast(item);
763     nextNode = p;
764     return;
765     }
766     }
767     else if (item == null)
768     break;
769 jsr166 1.1 }
770 jsr166 1.8 nextNode = null;
771     }
772    
773     Itr() {
774     advance(null);
775     }
776    
777     public final boolean hasNext() {
778     return nextNode != null;
779     }
780    
781     public final E next() {
782 jsr166 1.14 Node p = nextNode;
783 jsr166 1.8 if (p == null) throw new NoSuchElementException();
784     E e = nextItem;
785     advance(p);
786     return e;
787     }
788    
789     public final void remove() {
790 jsr166 1.14 Node p = lastRet;
791 jsr166 1.8 if (p == null) throw new IllegalStateException();
792 jsr166 1.13 findAndRemoveDataNode(lastPred, p);
793 jsr166 1.1 }
794     }
795    
796 jsr166 1.8 /* -------------- Removal methods -------------- */
797    
798 jsr166 1.1 /**
799 jsr166 1.8 * Unsplices (now or later) the given deleted/cancelled node with
800     * the given predecessor.
801 jsr166 1.1 *
802 jsr166 1.8 * @param pred predecessor of node to be unspliced
803     * @param s the node to be unspliced
804 jsr166 1.1 */
805 jsr166 1.14 private void unsplice(Node pred, Node s) {
806 jsr166 1.8 s.forgetContents(); // clear unneeded fields
807 jsr166 1.1 /*
808     * At any given time, exactly one node on list cannot be
809 jsr166 1.8 * unlinked -- the last inserted node. To accommodate this, if
810     * we cannot unlink s, we save its predecessor as "cleanMe",
811     * processing the previously saved version first. Because only
812     * one node in the list can have a null next, at least one of
813     * node s or the node previously saved can always be
814 jsr166 1.1 * processed, so this always terminates.
815     */
816 jsr166 1.8 if (pred != null && pred != s) {
817     while (pred.next == s) {
818 jsr166 1.14 Node oldpred = (cleanMe == null) ? null : reclean();
819     Node n = s.next;
820 jsr166 1.8 if (n != null) {
821     if (n != s)
822     pred.casNext(s, n);
823 jsr166 1.1 break;
824 jsr166 1.8 }
825     if (oldpred == pred || // Already saved
826 jsr166 1.12 ((oldpred == null || oldpred.next == s) &&
827     casCleanMe(oldpred, pred))) {
828     break;
829     }
830 jsr166 1.1 }
831     }
832     }
833    
834     /**
835 jsr166 1.8 * Tries to unsplice the deleted/cancelled node held in cleanMe
836     * that was previously uncleanable because it was at tail.
837 jsr166 1.1 *
838     * @return current cleanMe node (or null)
839     */
840 jsr166 1.14 private Node reclean() {
841 jsr166 1.1 /*
842 jsr166 1.8 * cleanMe is, or at one time was, predecessor of a cancelled
843     * node s that was the tail so could not be unspliced. If it
844 jsr166 1.1 * is no longer the tail, try to unsplice if necessary and
845     * make cleanMe slot available. This differs from similar
846 jsr166 1.8 * code in unsplice() because we must check that pred still
847     * points to a matched node that can be unspliced -- if not,
848     * we can (must) clear cleanMe without unsplicing. This can
849     * loop only due to contention.
850 jsr166 1.1 */
851 jsr166 1.14 Node pred;
852 jsr166 1.8 while ((pred = cleanMe) != null) {
853 jsr166 1.14 Node s = pred.next;
854     Node n;
855 jsr166 1.8 if (s == null || s == pred || !s.isMatched())
856     casCleanMe(pred, null); // already gone
857     else if ((n = s.next) != null) {
858     if (n != s)
859     pred.casNext(s, n);
860     casCleanMe(pred, null);
861 jsr166 1.1 }
862 jsr166 1.8 else
863 jsr166 1.1 break;
864     }
865     return pred;
866     }
867    
868     /**
869 jsr166 1.8 * Main implementation of Iterator.remove(). Find
870 jsr166 1.11 * and unsplice the given data node.
871 jsr166 1.13 * @param possiblePred possible predecessor of s
872     * @param s the node to remove
873 jsr166 1.8 */
874 jsr166 1.14 final void findAndRemoveDataNode(Node possiblePred, Node s) {
875 jsr166 1.11 assert s.isData;
876 jsr166 1.8 if (s.tryMatchData()) {
877 jsr166 1.13 if (possiblePred != null && possiblePred.next == s)
878     unsplice(possiblePred, s); // was actual predecessor
879     else {
880 jsr166 1.14 for (Node pred = null, p = head; p != null; ) {
881 jsr166 1.13 if (p == s) {
882     unsplice(pred, p);
883     break;
884     }
885     if (p.isUnmatchedRequest())
886     break;
887     pred = p;
888     if ((p = p.next) == pred) { // stale
889     pred = null;
890     p = head;
891     }
892 jsr166 1.8 }
893     }
894     }
895     }
896    
897     /**
898     * Main implementation of remove(Object)
899     */
900     private boolean findAndRemove(Object e) {
901     if (e != null) {
902 jsr166 1.14 for (Node pred = null, p = head; p != null; ) {
903 jsr166 1.8 Object item = p.item;
904     if (p.isData) {
905     if (item != null && item != p && e.equals(item) &&
906     p.tryMatchData()) {
907     unsplice(pred, p);
908     return true;
909     }
910     }
911     else if (item == null)
912     break;
913     pred = p;
914 jsr166 1.11 if ((p = p.next) == pred) { // stale
915 jsr166 1.8 pred = null;
916     p = head;
917     }
918     }
919     }
920     return false;
921     }
922    
923    
924     /**
925 jsr166 1.1 * Creates an initially empty {@code LinkedTransferQueue}.
926     */
927     public LinkedTransferQueue() {
928     }
929    
930     /**
931     * Creates a {@code LinkedTransferQueue}
932     * initially containing the elements of the given collection,
933     * added in traversal order of the collection's iterator.
934     *
935     * @param c the collection of elements to initially contain
936     * @throws NullPointerException if the specified collection or any
937     * of its elements are null
938     */
939     public LinkedTransferQueue(Collection<? extends E> c) {
940     this();
941     addAll(c);
942     }
943    
944 jsr166 1.4 /**
945 jsr166 1.5 * Inserts the specified element at the tail of this queue.
946     * As the queue is unbounded, this method will never block.
947     *
948     * @throws NullPointerException if the specified element is null
949 jsr166 1.4 */
950 jsr166 1.5 public void put(E e) {
951 jsr166 1.8 xfer(e, true, ASYNC, 0);
952 jsr166 1.1 }
953    
954 jsr166 1.4 /**
955 jsr166 1.5 * Inserts the specified element at the tail of this queue.
956     * As the queue is unbounded, this method will never block or
957     * return {@code false}.
958     *
959     * @return {@code true} (as specified by
960     * {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
961     * @throws NullPointerException if the specified element is null
962 jsr166 1.4 */
963 jsr166 1.5 public boolean offer(E e, long timeout, TimeUnit unit) {
964 jsr166 1.8 xfer(e, true, ASYNC, 0);
965     return true;
966 jsr166 1.1 }
967    
968 jsr166 1.4 /**
969 jsr166 1.5 * Inserts the specified element at the tail of this queue.
970     * As the queue is unbounded, this method will never return {@code false}.
971     *
972     * @return {@code true} (as specified by
973     * {@link BlockingQueue#offer(Object) BlockingQueue.offer})
974     * @throws NullPointerException if the specified element is null
975 jsr166 1.4 */
976 jsr166 1.1 public boolean offer(E e) {
977 jsr166 1.8 xfer(e, true, ASYNC, 0);
978 jsr166 1.1 return true;
979     }
980    
981 jsr166 1.4 /**
982 jsr166 1.5 * Inserts the specified element at the tail of this queue.
983     * As the queue is unbounded, this method will never throw
984     * {@link IllegalStateException} or return {@code false}.
985     *
986     * @return {@code true} (as specified by {@link Collection#add})
987     * @throws NullPointerException if the specified element is null
988 jsr166 1.4 */
989 jsr166 1.1 public boolean add(E e) {
990 jsr166 1.8 xfer(e, true, ASYNC, 0);
991     return true;
992 jsr166 1.5 }
993    
994     /**
995 jsr166 1.6 * Transfers the element to a waiting consumer immediately, if possible.
996     *
997     * <p>More precisely, transfers the specified element immediately
998     * if there exists a consumer already waiting to receive it (in
999     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1000     * otherwise returning {@code false} without enqueuing the element.
1001 jsr166 1.5 *
1002     * @throws NullPointerException if the specified element is null
1003     */
1004     public boolean tryTransfer(E e) {
1005 jsr166 1.8 return xfer(e, true, NOW, 0) == null;
1006 jsr166 1.1 }
1007    
1008 jsr166 1.4 /**
1009 jsr166 1.6 * Transfers the element to a consumer, waiting if necessary to do so.
1010     *
1011     * <p>More precisely, transfers the specified element immediately
1012     * if there exists a consumer already waiting to receive it (in
1013     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1014     * else inserts the specified element at the tail of this queue
1015     * and waits until the element is received by a consumer.
1016 jsr166 1.5 *
1017     * @throws NullPointerException if the specified element is null
1018 jsr166 1.4 */
1019 jsr166 1.1 public void transfer(E e) throws InterruptedException {
1020 jsr166 1.8 if (xfer(e, true, SYNC, 0) != null) {
1021     Thread.interrupted(); // failure possible only due to interrupt
1022 jsr166 1.1 throw new InterruptedException();
1023     }
1024     }
1025    
1026 jsr166 1.4 /**
1027 jsr166 1.6 * Transfers the element to a consumer if it is possible to do so
1028     * before the timeout elapses.
1029     *
1030     * <p>More precisely, transfers the specified element immediately
1031     * if there exists a consumer already waiting to receive it (in
1032     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1033     * else inserts the specified element at the tail of this queue
1034     * and waits until the element is received by a consumer,
1035     * returning {@code false} if the specified wait time elapses
1036     * before the element can be transferred.
1037 jsr166 1.5 *
1038     * @throws NullPointerException if the specified element is null
1039 jsr166 1.4 */
1040 jsr166 1.1 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1041     throws InterruptedException {
1042 jsr166 1.14 if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1043 jsr166 1.1 return true;
1044     if (!Thread.interrupted())
1045     return false;
1046     throw new InterruptedException();
1047     }
1048    
1049     public E take() throws InterruptedException {
1050 jsr166 1.8 E e = xfer(null, false, SYNC, 0);
1051 jsr166 1.1 if (e != null)
1052 jsr166 1.5 return e;
1053 jsr166 1.1 Thread.interrupted();
1054     throw new InterruptedException();
1055     }
1056    
1057     public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1058 jsr166 1.14 E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1059 jsr166 1.1 if (e != null || !Thread.interrupted())
1060 jsr166 1.5 return e;
1061 jsr166 1.1 throw new InterruptedException();
1062     }
1063    
1064     public E poll() {
1065 jsr166 1.8 return xfer(null, false, NOW, 0);
1066 jsr166 1.1 }
1067    
1068 jsr166 1.4 /**
1069     * @throws NullPointerException {@inheritDoc}
1070     * @throws IllegalArgumentException {@inheritDoc}
1071     */
1072 jsr166 1.1 public int drainTo(Collection<? super E> c) {
1073     if (c == null)
1074     throw new NullPointerException();
1075     if (c == this)
1076     throw new IllegalArgumentException();
1077     int n = 0;
1078     E e;
1079     while ( (e = poll()) != null) {
1080     c.add(e);
1081     ++n;
1082     }
1083     return n;
1084     }
1085    
1086 jsr166 1.4 /**
1087     * @throws NullPointerException {@inheritDoc}
1088     * @throws IllegalArgumentException {@inheritDoc}
1089     */
1090 jsr166 1.1 public int drainTo(Collection<? super E> c, int maxElements) {
1091     if (c == null)
1092     throw new NullPointerException();
1093     if (c == this)
1094     throw new IllegalArgumentException();
1095     int n = 0;
1096     E e;
1097     while (n < maxElements && (e = poll()) != null) {
1098     c.add(e);
1099     ++n;
1100     }
1101     return n;
1102     }
1103    
1104 jsr166 1.5 /**
1105     * Returns an iterator over the elements in this queue in proper
1106     * sequence, from head to tail.
1107     *
1108     * <p>The returned iterator is a "weakly consistent" iterator that
1109     * will never throw
1110     * {@link ConcurrentModificationException ConcurrentModificationException},
1111     * and guarantees to traverse elements as they existed upon
1112     * construction of the iterator, and may (but is not guaranteed
1113     * to) reflect any modifications subsequent to construction.
1114     *
1115     * @return an iterator over the elements in this queue in proper sequence
1116     */
1117 jsr166 1.1 public Iterator<E> iterator() {
1118     return new Itr();
1119     }
1120    
1121     public E peek() {
1122 jsr166 1.8 return firstDataItem();
1123 jsr166 1.1 }
1124    
1125 jsr166 1.6 /**
1126     * Returns {@code true} if this queue contains no elements.
1127     *
1128     * @return {@code true} if this queue contains no elements
1129     */
1130 jsr166 1.1 public boolean isEmpty() {
1131 jsr166 1.8 return firstOfMode(true) == null;
1132 jsr166 1.1 }
1133    
1134     public boolean hasWaitingConsumer() {
1135 jsr166 1.8 return firstOfMode(false) != null;
1136 jsr166 1.1 }
1137    
1138     /**
1139     * Returns the number of elements in this queue. If this queue
1140     * contains more than {@code Integer.MAX_VALUE} elements, returns
1141     * {@code Integer.MAX_VALUE}.
1142     *
1143     * <p>Beware that, unlike in most collections, this method is
1144     * <em>NOT</em> a constant-time operation. Because of the
1145     * asynchronous nature of these queues, determining the current
1146     * number of elements requires an O(n) traversal.
1147     *
1148     * @return the number of elements in this queue
1149     */
1150     public int size() {
1151 jsr166 1.8 return countOfMode(true);
1152 jsr166 1.1 }
1153    
1154     public int getWaitingConsumerCount() {
1155 jsr166 1.8 return countOfMode(false);
1156 jsr166 1.1 }
1157    
1158 jsr166 1.6 /**
1159     * Removes a single instance of the specified element from this queue,
1160     * if it is present. More formally, removes an element {@code e} such
1161     * that {@code o.equals(e)}, if this queue contains one or more such
1162     * elements.
1163     * Returns {@code true} if this queue contained the specified element
1164     * (or equivalently, if this queue changed as a result of the call).
1165     *
1166     * @param o element to be removed from this queue, if present
1167     * @return {@code true} if this queue changed as a result of the call
1168     */
1169 jsr166 1.1 public boolean remove(Object o) {
1170 jsr166 1.8 return findAndRemove(o);
1171 jsr166 1.1 }
1172    
1173     /**
1174 jsr166 1.5 * Always returns {@code Integer.MAX_VALUE} because a
1175     * {@code LinkedTransferQueue} is not capacity constrained.
1176     *
1177     * @return {@code Integer.MAX_VALUE} (as specified by
1178     * {@link BlockingQueue#remainingCapacity()})
1179     */
1180     public int remainingCapacity() {
1181     return Integer.MAX_VALUE;
1182     }
1183    
1184     /**
1185 jsr166 1.8 * Saves the state to a stream (that is, serializes it).
1186 jsr166 1.1 *
1187     * @serialData All of the elements (each an {@code E}) in
1188     * the proper order, followed by a null
1189     * @param s the stream
1190     */
1191     private void writeObject(java.io.ObjectOutputStream s)
1192     throws java.io.IOException {
1193     s.defaultWriteObject();
1194     for (E e : this)
1195     s.writeObject(e);
1196     // Use trailing null as sentinel
1197     s.writeObject(null);
1198     }
1199    
1200     /**
1201 jsr166 1.8 * Reconstitutes the Queue instance from a stream (that is,
1202     * deserializes it).
1203 jsr166 1.1 *
1204     * @param s the stream
1205     */
1206     private void readObject(java.io.ObjectInputStream s)
1207     throws java.io.IOException, ClassNotFoundException {
1208     s.defaultReadObject();
1209     for (;;) {
1210     @SuppressWarnings("unchecked") E item = (E) s.readObject();
1211     if (item == null)
1212     break;
1213     else
1214     offer(item);
1215     }
1216     }
1217    
1218 jsr166 1.3 // Unsafe mechanics
1219 jsr166 1.1
1220 jsr166 1.3 private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
1221     private static final long headOffset =
1222 jsr166 1.4 objectFieldOffset(UNSAFE, "head", LinkedTransferQueue.class);
1223 jsr166 1.3 private static final long tailOffset =
1224 jsr166 1.4 objectFieldOffset(UNSAFE, "tail", LinkedTransferQueue.class);
1225 jsr166 1.3 private static final long cleanMeOffset =
1226 jsr166 1.4 objectFieldOffset(UNSAFE, "cleanMe", LinkedTransferQueue.class);
1227    
1228     static long objectFieldOffset(sun.misc.Unsafe UNSAFE,
1229     String field, Class<?> klazz) {
1230 jsr166 1.1 try {
1231 jsr166 1.3 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1232 jsr166 1.1 } catch (NoSuchFieldException e) {
1233 jsr166 1.3 // Convert Exception to corresponding Error
1234     NoSuchFieldError error = new NoSuchFieldError(field);
1235 jsr166 1.1 error.initCause(e);
1236     throw error;
1237     }
1238     }
1239 jsr166 1.8
1240 jsr166 1.1 }