ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/LinkedTransferQueue.java
Revision: 1.140
Committed: Sat Jan 14 06:59:57 2017 UTC (7 years, 4 months ago) by jsr166
Branch: MAIN
Changes since 1.139: +86 -53 lines
Log Message:
head and tail should never be null

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.39 * http://creativecommons.org/publicdomain/zero/1.0/
5 jsr166 1.1 */
6    
7     package java.util.concurrent;
8    
9 dl 1.97 import java.lang.invoke.MethodHandles;
10     import java.lang.invoke.VarHandle;
11 jsr166 1.1 import java.util.AbstractQueue;
12 jsr166 1.82 import java.util.Arrays;
13 jsr166 1.1 import java.util.Collection;
14     import java.util.Iterator;
15     import java.util.NoSuchElementException;
16 jsr166 1.111 import java.util.Objects;
17 jsr166 1.5 import java.util.Queue;
18 dl 1.52 import java.util.Spliterator;
19 dl 1.54 import java.util.Spliterators;
20 jsr166 1.76 import java.util.concurrent.locks.LockSupport;
21     import java.util.function.Consumer;
22 jsr166 1.116 import java.util.function.Predicate;
23 dl 1.22
24 jsr166 1.1 /**
25 jsr166 1.6 * An unbounded {@link TransferQueue} based on linked nodes.
26 jsr166 1.1 * This queue orders elements FIFO (first-in-first-out) with respect
27     * to any given producer. The <em>head</em> of the queue is that
28     * element that has been on the queue the longest time for some
29     * producer. The <em>tail</em> of the queue is that element that has
30     * been on the queue the shortest time for some producer.
31     *
32 dl 1.40 * <p>Beware that, unlike in most collections, the {@code size} method
33     * is <em>NOT</em> a constant-time operation. Because of the
34 jsr166 1.1 * asynchronous nature of these queues, determining the current number
35 dl 1.40 * of elements requires a traversal of the elements, and so may report
36     * inaccurate results if this collection is modified during traversal.
37 jsr166 1.1 *
38 jsr166 1.131 * <p>Bulk operations that add, remove, or examine multiple elements,
39     * such as {@link #addAll}, {@link #removeIf} or {@link #forEach},
40     * are <em>not</em> guaranteed to be performed atomically.
41     * For example, a {@code forEach} traversal concurrent with an {@code
42     * addAll} operation might observe only some of the added elements.
43     *
44     * <p>This class and its iterator implement all of the <em>optional</em>
45     * methods of the {@link Collection} and {@link Iterator} interfaces.
46 jsr166 1.1 *
47     * <p>Memory consistency effects: As with other concurrent
48     * collections, actions in a thread prior to placing an object into a
49     * {@code LinkedTransferQueue}
50     * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
51     * actions subsequent to the access or removal of that element from
52     * the {@code LinkedTransferQueue} in another thread.
53     *
54     * <p>This class is a member of the
55     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
56     * Java Collections Framework</a>.
57     *
58     * @since 1.7
59     * @author Doug Lea
60 jsr166 1.75 * @param <E> the type of elements held in this queue
61 jsr166 1.1 */
62     public class LinkedTransferQueue<E> extends AbstractQueue<E>
63     implements TransferQueue<E>, java.io.Serializable {
64     private static final long serialVersionUID = -3223113410248163686L;
65    
66     /*
67 jsr166 1.8 * *** Overview of Dual Queues with Slack ***
68 jsr166 1.1 *
69 jsr166 1.8 * Dual Queues, introduced by Scherer and Scott
70 jsr166 1.99 * (http://www.cs.rochester.edu/~scott/papers/2004_DISC_dual_DS.pdf)
71     * are (linked) queues in which nodes may represent either data or
72 jsr166 1.8 * requests. When a thread tries to enqueue a data node, but
73     * encounters a request node, it instead "matches" and removes it;
74     * and vice versa for enqueuing requests. Blocking Dual Queues
75     * arrange that threads enqueuing unmatched requests block until
76     * other threads provide the match. Dual Synchronous Queues (see
77     * Scherer, Lea, & Scott
78     * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
79     * additionally arrange that threads enqueuing unmatched data also
80     * block. Dual Transfer Queues support all of these modes, as
81     * dictated by callers.
82     *
83     * A FIFO dual queue may be implemented using a variation of the
84     * Michael & Scott (M&S) lock-free queue algorithm
85 jsr166 1.72 * (http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf).
86 jsr166 1.8 * It maintains two pointer fields, "head", pointing to a
87     * (matched) node that in turn points to the first actual
88     * (unmatched) queue node (or null if empty); and "tail" that
89     * points to the last node on the queue (or again null if
90     * empty). For example, here is a possible queue with four data
91     * elements:
92     *
93     * head tail
94     * | |
95     * v v
96     * M -> U -> U -> U -> U
97     *
98     * The M&S queue algorithm is known to be prone to scalability and
99     * overhead limitations when maintaining (via CAS) these head and
100     * tail pointers. This has led to the development of
101     * contention-reducing variants such as elimination arrays (see
102     * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
103     * optimistic back pointers (see Ladan-Mozes & Shavit
104     * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
105     * However, the nature of dual queues enables a simpler tactic for
106     * improving M&S-style implementations when dual-ness is needed.
107     *
108     * In a dual queue, each node must atomically maintain its match
109     * status. While there are other possible variants, we implement
110     * this here as: for a data-mode node, matching entails CASing an
111     * "item" field from a non-null data value to null upon match, and
112     * vice-versa for request nodes, CASing from null to a data
113     * value. (Note that the linearization properties of this style of
114     * queue are easy to verify -- elements are made available by
115     * linking, and unavailable by matching.) Compared to plain M&S
116     * queues, this property of dual queues requires one additional
117     * successful atomic operation per enq/deq pair. But it also
118     * enables lower cost variants of queue maintenance mechanics. (A
119     * variation of this idea applies even for non-dual queues that
120     * support deletion of interior elements, such as
121     * j.u.c.ConcurrentLinkedQueue.)
122     *
123     * Once a node is matched, its match status can never again
124     * change. We may thus arrange that the linked list of them
125     * contain a prefix of zero or more matched nodes, followed by a
126     * suffix of zero or more unmatched nodes. (Note that we allow
127     * both the prefix and suffix to be zero length, which in turn
128     * means that we do not use a dummy header.) If we were not
129     * concerned with either time or space efficiency, we could
130     * correctly perform enqueue and dequeue operations by traversing
131     * from a pointer to the initial node; CASing the item of the
132     * first unmatched node on match and CASing the next field of the
133 jsr166 1.140 * trailing node on appends. While this would be a terrible idea
134     * in itself, it does have the benefit of not requiring ANY atomic
135 jsr166 1.8 * updates on head/tail fields.
136     *
137     * We introduce here an approach that lies between the extremes of
138     * never versus always updating queue (head and tail) pointers.
139     * This offers a tradeoff between sometimes requiring extra
140     * traversal steps to locate the first and/or last unmatched
141     * nodes, versus the reduced overhead and contention of fewer
142     * updates to queue pointers. For example, a possible snapshot of
143     * a queue is:
144     *
145     * head tail
146     * | |
147     * v v
148     * M -> M -> U -> U -> U -> U
149     *
150     * The best value for this "slack" (the targeted maximum distance
151     * between the value of "head" and the first unmatched node, and
152     * similarly for "tail") is an empirical matter. We have found
153     * that using very small constants in the range of 1-3 work best
154     * over a range of platforms. Larger values introduce increasing
155     * costs of cache misses and risks of long traversal chains, while
156     * smaller values increase CAS contention and overhead.
157     *
158     * Dual queues with slack differ from plain M&S dual queues by
159     * virtue of only sometimes updating head or tail pointers when
160     * matching, appending, or even traversing nodes; in order to
161     * maintain a targeted slack. The idea of "sometimes" may be
162     * operationalized in several ways. The simplest is to use a
163     * per-operation counter incremented on each traversal step, and
164     * to try (via CAS) to update the associated queue pointer
165     * whenever the count exceeds a threshold. Another, that requires
166     * more overhead, is to use random number generators to update
167     * with a given probability per traversal step.
168     *
169     * In any strategy along these lines, because CASes updating
170 jsr166 1.126 * fields may fail, the actual slack may exceed targeted slack.
171     * However, they may be retried at any time to maintain targets.
172     * Even when using very small slack values, this approach works
173     * well for dual queues because it allows all operations up to the
174     * point of matching or appending an item (hence potentially
175     * allowing progress by another thread) to be read-only, thus not
176     * introducing any further contention. As described below, we
177     * implement this by performing slack maintenance retries only
178     * after these points.
179 jsr166 1.8 *
180     * As an accompaniment to such techniques, traversal overhead can
181     * be further reduced without increasing contention of head
182     * pointer updates: Threads may sometimes shortcut the "next" link
183     * path from the current "head" node to be closer to the currently
184     * known first unmatched node, and similarly for tail. Again, this
185     * may be triggered with using thresholds or randomization.
186     *
187     * These ideas must be further extended to avoid unbounded amounts
188     * of costly-to-reclaim garbage caused by the sequential "next"
189     * links of nodes starting at old forgotten head nodes: As first
190     * described in detail by Boehm
191 jsr166 1.69 * (http://portal.acm.org/citation.cfm?doid=503272.503282), if a GC
192 jsr166 1.8 * delays noticing that any arbitrarily old node has become
193     * garbage, all newer dead nodes will also be unreclaimed.
194     * (Similar issues arise in non-GC environments.) To cope with
195     * this in our implementation, upon CASing to advance the head
196     * pointer, we set the "next" link of the previous head to point
197 jsr166 1.127 * only to itself; thus limiting the length of chains of dead nodes.
198 jsr166 1.8 * (We also take similar care to wipe out possibly garbage
199     * retaining values held in other Node fields.) However, doing so
200     * adds some further complexity to traversal: If any "next"
201     * pointer links to itself, it indicates that the current thread
202     * has lagged behind a head-update, and so the traversal must
203     * continue from the "head". Traversals trying to find the
204     * current tail starting from "tail" may also encounter
205     * self-links, in which case they also continue at "head".
206     *
207     * It is tempting in slack-based scheme to not even use CAS for
208     * updates (similarly to Ladan-Mozes & Shavit). However, this
209     * cannot be done for head updates under the above link-forgetting
210     * mechanics because an update may leave head at a detached node.
211     * And while direct writes are possible for tail updates, they
212     * increase the risk of long retraversals, and hence long garbage
213     * chains, which can be much more costly than is worthwhile
214     * considering that the cost difference of performing a CAS vs
215     * write is smaller when they are not triggered on each operation
216     * (especially considering that writes and CASes equally require
217     * additional GC bookkeeping ("write barriers") that are sometimes
218     * more costly than the writes themselves because of contention).
219     *
220     * *** Overview of implementation ***
221     *
222     * We use a threshold-based approach to updates, with a slack
223     * threshold of two -- that is, we update head/tail when the
224     * current pointer appears to be two or more steps away from the
225     * first/last node. The slack value is hard-wired: a path greater
226     * than one is naturally implemented by checking equality of
227     * traversal pointers except when the list has only one element,
228     * in which case we keep slack threshold at one. Avoiding tracking
229     * explicit counts across method calls slightly simplifies an
230     * already-messy implementation. Using randomization would
231     * probably work better if there were a low-quality dirt-cheap
232     * per-thread one available, but even ThreadLocalRandom is too
233     * heavy for these purposes.
234     *
235 dl 1.16 * With such a small slack threshold value, it is not worthwhile
236     * to augment this with path short-circuiting (i.e., unsplicing
237     * interior nodes) except in the case of cancellation/removal (see
238     * below).
239 jsr166 1.8 *
240     * All enqueue/dequeue operations are handled by the single method
241     * "xfer" with parameters indicating whether to act as some form
242     * of offer, put, poll, take, or transfer (each possibly with
243     * timeout). The relative complexity of using one monolithic
244     * method outweighs the code bulk and maintenance problems of
245     * using separate methods for each case.
246     *
247     * Operation consists of up to three phases. The first is
248     * implemented within method xfer, the second in tryAppend, and
249     * the third in method awaitMatch.
250     *
251     * 1. Try to match an existing node
252     *
253     * Starting at head, skip already-matched nodes until finding
254     * an unmatched node of opposite mode, if one exists, in which
255     * case matching it and returning, also if necessary updating
256     * head to one past the matched node (or the node itself if the
257     * list has no other unmatched nodes). If the CAS misses, then
258     * a loop retries advancing head by two steps until either
259     * success or the slack is at most two. By requiring that each
260     * attempt advances head by two (if applicable), we ensure that
261     * the slack does not grow without bound. Traversals also check
262     * if the initial head is now off-list, in which case they
263 jsr166 1.128 * restart at the new head.
264 jsr166 1.8 *
265     * If no candidates are found and the call was untimed
266 jsr166 1.128 * poll/offer (argument "how" is NOW), return.
267 jsr166 1.8 *
268     * 2. Try to append a new node (method tryAppend)
269     *
270     * Starting at current tail pointer, find the actual last node
271 jsr166 1.140 * and try to append a new node. Nodes can be appended only if
272     * their predecessors are either already matched or are of the
273     * same mode. If we detect otherwise, then a new node with
274     * opposite mode must have been appended during traversal, so
275     * we must restart at phase 1. The traversal and update steps
276     * are otherwise similar to phase 1: Retrying upon CAS misses
277     * and checking for staleness. In particular, if a self-link
278     * is encountered, then we can safely jump to a node on the
279     * list by continuing the traversal at current head.
280 jsr166 1.8 *
281     * On successful append, if the call was ASYNC, return.
282     *
283     * 3. Await match or cancellation (method awaitMatch)
284     *
285     * Wait for another thread to match node; instead cancelling if
286     * the current thread was interrupted or the wait timed out. On
287     * multiprocessors, we use front-of-queue spinning: If a node
288     * appears to be the first unmatched node in the queue, it
289     * spins a bit before blocking. In either case, before blocking
290     * it tries to unsplice any nodes between the current "head"
291     * and the first unmatched node.
292     *
293     * Front-of-queue spinning vastly improves performance of
294     * heavily contended queues. And so long as it is relatively
295     * brief and "quiet", spinning does not much impact performance
296     * of less-contended queues. During spins threads check their
297     * interrupt status and generate a thread-local random number
298     * to decide to occasionally perform a Thread.yield. While
299 jsr166 1.44 * yield has underdefined specs, we assume that it might help,
300 jsr166 1.45 * and will not hurt, in limiting impact of spinning on busy
301 jsr166 1.8 * systems. We also use smaller (1/2) spins for nodes that are
302     * not known to be front but whose predecessors have not
303     * blocked -- these "chained" spins avoid artifacts of
304     * front-of-queue rules which otherwise lead to alternating
305     * nodes spinning vs blocking. Further, front threads that
306     * represent phase changes (from data to request node or vice
307     * versa) compared to their predecessors receive additional
308     * chained spins, reflecting longer paths typically required to
309     * unblock threads during phase changes.
310 dl 1.16 *
311     *
312     * ** Unlinking removed interior nodes **
313     *
314     * In addition to minimizing garbage retention via self-linking
315     * described above, we also unlink removed interior nodes. These
316     * may arise due to timed out or interrupted waits, or calls to
317     * remove(x) or Iterator.remove. Normally, given a node that was
318     * at one time known to be the predecessor of some node s that is
319     * to be removed, we can unsplice s by CASing the next field of
320     * its predecessor if it still points to s (otherwise s must
321     * already have been removed or is now offlist). But there are two
322     * situations in which we cannot guarantee to make node s
323     * unreachable in this way: (1) If s is the trailing node of list
324     * (i.e., with null next), then it is pinned as the target node
325 jsr166 1.23 * for appends, so can only be removed later after other nodes are
326 dl 1.16 * appended. (2) We cannot necessarily unlink s given a
327     * predecessor node that is matched (including the case of being
328 jsr166 1.17 * cancelled): the predecessor may already be unspliced, in which
329     * case some previous reachable node may still point to s.
330     * (For further explanation see Herlihy & Shavit "The Art of
331 dl 1.16 * Multiprocessor Programming" chapter 9). Although, in both
332     * cases, we can rule out the need for further action if either s
333     * or its predecessor are (or can be made to be) at, or fall off
334     * from, the head of list.
335     *
336     * Without taking these into account, it would be possible for an
337     * unbounded number of supposedly removed nodes to remain
338     * reachable. Situations leading to such buildup are uncommon but
339     * can occur in practice; for example when a series of short timed
340     * calls to poll repeatedly time out but never otherwise fall off
341     * the list because of an untimed call to take at the front of the
342     * queue.
343     *
344     * When these cases arise, rather than always retraversing the
345     * entire list to find an actual predecessor to unlink (which
346     * won't help for case (1) anyway), we record a conservative
347 jsr166 1.24 * estimate of possible unsplice failures (in "sweepVotes").
348     * We trigger a full sweep when the estimate exceeds a threshold
349     * ("SWEEP_THRESHOLD") indicating the maximum number of estimated
350     * removal failures to tolerate before sweeping through, unlinking
351     * cancelled nodes that were not unlinked upon initial removal.
352     * We perform sweeps by the thread hitting threshold (rather than
353     * background threads or by spreading work to other threads)
354     * because in the main contexts in which removal occurs, the
355     * caller is already timed-out, cancelled, or performing a
356     * potentially O(n) operation (e.g. remove(x)), none of which are
357     * time-critical enough to warrant the overhead that alternatives
358     * would impose on other threads.
359 dl 1.16 *
360     * Because the sweepVotes estimate is conservative, and because
361     * nodes become unlinked "naturally" as they fall off the head of
362     * the queue, and because we allow votes to accumulate even while
363 jsr166 1.17 * sweeps are in progress, there are typically significantly fewer
364 dl 1.16 * such nodes than estimated. Choice of a threshold value
365     * balances the likelihood of wasted effort and contention, versus
366     * providing a worst-case bound on retention of interior nodes in
367     * quiescent queues. The value defined below was chosen
368     * empirically to balance these under various timeout scenarios.
369     *
370     * Note that we cannot self-link unlinked interior nodes during
371     * sweeps. However, the associated garbage chains terminate when
372     * some successor ultimately falls off the head of the list and is
373     * self-linked.
374 jsr166 1.8 */
375    
376     /** True if on multiprocessor */
377     private static final boolean MP =
378     Runtime.getRuntime().availableProcessors() > 1;
379    
380     /**
381     * The number of times to spin (with randomly interspersed calls
382     * to Thread.yield) on multiprocessor before blocking when a node
383     * is apparently the first waiter in the queue. See above for
384     * explanation. Must be a power of two. The value is empirically
385     * derived -- it works pretty well across a variety of processors,
386     * numbers of CPUs, and OSes.
387     */
388     private static final int FRONT_SPINS = 1 << 7;
389    
390     /**
391     * The number of times to spin before blocking when a node is
392     * preceded by another node that is apparently spinning. Also
393     * serves as an increment to FRONT_SPINS on phase changes, and as
394     * base average frequency for yielding during spins. Must be a
395     * power of two.
396     */
397     private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
398    
399     /**
400 dl 1.16 * The maximum number of estimated removal failures (sweepVotes)
401     * to tolerate before sweeping through the queue unlinking
402     * cancelled nodes that were not unlinked upon initial
403     * removal. See above for explanation. The value must be at least
404     * two to avoid useless sweeps when removing trailing nodes.
405     */
406     static final int SWEEP_THRESHOLD = 32;
407    
408     /**
409 jsr166 1.8 * Queue nodes. Uses Object, not E, for items to allow forgetting
410 dl 1.97 * them after use. Relies heavily on VarHandles to minimize
411 dl 1.16 * unnecessary ordering constraints: Writes that are intrinsically
412     * ordered wrt other accesses or CASes use simple relaxed forms.
413 jsr166 1.8 */
414 jsr166 1.14 static final class Node {
415 jsr166 1.8 final boolean isData; // false if this is a request node
416     volatile Object item; // initially non-null if isData; CASed to match
417 jsr166 1.14 volatile Node next;
418 jsr166 1.8 volatile Thread waiter; // null until waiting
419    
420 jsr166 1.14 final boolean casNext(Node cmp, Node val) {
421 dl 1.97 return NEXT.compareAndSet(this, cmp, val);
422 jsr166 1.8 }
423 jsr166 1.1
424 jsr166 1.8 final boolean casItem(Object cmp, Object val) {
425 jsr166 1.105 // assert isData == (cmp != null);
426     // assert isData == (val == null);
427     // assert !(cmp instanceof Node);
428 dl 1.97 return ITEM.compareAndSet(this, cmp, val);
429 jsr166 1.8 }
430 jsr166 1.1
431 jsr166 1.8 /**
432 jsr166 1.140 * Constructs a data node holding item if item is non-null,
433     * else a request node. Uses relaxed write because item can
434     * only be seen after piggy-backing publication via CAS.
435 jsr166 1.8 */
436 jsr166 1.101 Node(Object item) {
437 jsr166 1.104 ITEM.set(this, item);
438 jsr166 1.101 isData = (item != null);
439 jsr166 1.8 }
440 jsr166 1.1
441 jsr166 1.140 /** Constructs a dead (matched data) dummy node. */
442     Node() {
443     isData = true;
444     }
445    
446 jsr166 1.8 /**
447     * Links node to itself to avoid garbage retention. Called
448     * only after CASing head field, so uses relaxed write.
449     */
450     final void forgetNext() {
451 jsr166 1.121 NEXT.setRelease(this, this);
452 jsr166 1.8 }
453 jsr166 1.1
454 jsr166 1.140 final void appendRelaxed(Node next) {
455     // assert next != null;
456     // assert this.next == null;
457     NEXT.set(this, next);
458     }
459    
460 jsr166 1.8 /**
461 jsr166 1.105 * Sets item (of a request node) to self and waiter to null,
462     * to avoid garbage retention after matching or cancelling.
463     * Uses relaxed writes because order is already constrained in
464     * the only calling contexts: item is forgotten only after
465 jsr166 1.121 * volatile/atomic mechanics that extract items, and visitors
466     * of request nodes only ever check whether item is null.
467     * Similarly, clearing waiter follows either CAS or return
468     * from park (if ever parked; else we don't care).
469 jsr166 1.8 */
470     final void forgetContents() {
471 jsr166 1.105 // assert isMatched();
472     if (!isData)
473     ITEM.set(this, this);
474 dl 1.97 WAITER.set(this, null);
475 jsr166 1.8 }
476 jsr166 1.1
477 jsr166 1.8 /**
478     * Returns true if this node has been matched, including the
479     * case of artificial matches due to cancellation.
480     */
481     final boolean isMatched() {
482 jsr166 1.105 return isData == (item == null);
483 jsr166 1.11 }
484    
485     /**
486 jsr166 1.8 * Returns true if a node with the given mode cannot be
487     * appended to this node because this node is unmatched and
488     * has opposite data mode.
489     */
490     final boolean cannotPrecede(boolean haveData) {
491     boolean d = isData;
492 jsr166 1.105 return d != haveData && d != (item == null);
493 jsr166 1.8 }
494 jsr166 1.1
495 jsr166 1.8 /**
496     * Tries to artificially match a data node -- used by remove.
497     */
498     final boolean tryMatchData() {
499 dl 1.33 // assert isData;
500 jsr166 1.105 final Object x;
501     if ((x = item) != null && casItem(x, null)) {
502 jsr166 1.8 LockSupport.unpark(waiter);
503     return true;
504     }
505     return false;
506 jsr166 1.1 }
507    
508 dl 1.38 private static final long serialVersionUID = -3375979862319811754L;
509 jsr166 1.1 }
510    
511 jsr166 1.140 /**
512     * A node from which the first live (non-matched) node (if any)
513     * can be reached in O(1) time.
514     * Invariants:
515     * - all live nodes are reachable from head via .next
516     * - head != null
517     * - (tmp = head).next != tmp || tmp != head
518     * Non-invariants:
519     * - head may or may not be live
520     * - it is permitted for tail to lag behind head, that is, for tail
521     * to not be reachable from head!
522     */
523 jsr166 1.14 transient volatile Node head;
524 jsr166 1.8
525 jsr166 1.140 /**
526     * A node from which the last node on list (that is, the unique
527     * node with node.next == null) can be reached in O(1) time.
528     * Invariants:
529     * - the last node is always reachable from tail via .next
530     * - tail != null
531     * Non-invariants:
532     * - tail may or may not be live
533     * - it is permitted for tail to lag behind head, that is, for tail
534     * to not be reachable from head!
535     * - tail.next may or may not be self-linked.
536     */
537 jsr166 1.14 private transient volatile Node tail;
538 jsr166 1.1
539 dl 1.16 /** The number of apparent failures to unsplice removed nodes */
540     private transient volatile int sweepVotes;
541    
542 jsr166 1.14 private boolean casTail(Node cmp, Node val) {
543 jsr166 1.140 // assert cmp != null;
544     // assert val != null;
545 dl 1.97 return TAIL.compareAndSet(this, cmp, val);
546 jsr166 1.8 }
547 jsr166 1.1
548 jsr166 1.14 private boolean casHead(Node cmp, Node val) {
549 dl 1.97 return HEAD.compareAndSet(this, cmp, val);
550 jsr166 1.8 }
551 jsr166 1.1
552 dl 1.16 private boolean casSweepVotes(int cmp, int val) {
553 dl 1.97 return SWEEPVOTES.compareAndSet(this, cmp, val);
554 jsr166 1.8 }
555 jsr166 1.1
556 jsr166 1.122 /**
557     * Tries to CAS pred.next (or head, if pred is null) from c to p.
558 jsr166 1.133 * Caller must ensure that we're not unlinking the trailing node.
559 jsr166 1.122 */
560     private boolean tryCasSuccessor(Node pred, Node c, Node p) {
561 jsr166 1.133 // assert p != null;
562 jsr166 1.136 // assert c.isData != (c.item != null);
563 jsr166 1.122 // assert c != p;
564     if (pred != null)
565     return pred.casNext(c, p);
566     if (casHead(c, p)) {
567     c.forgetNext();
568     return true;
569     }
570     return false;
571     }
572    
573 jsr166 1.137 /**
574     * Collapse dead (matched) nodes between pred and q.
575     * @param pred the last known live node, or null if none
576     * @param c the first dead node
577     * @param p the last dead node
578     * @param q p.next: the next live node, or null if at end
579     * @return either old pred or p if pred dead or CAS failed
580     */
581     private Node skipDeadNodes(Node pred, Node c, Node p, Node q) {
582     // assert pred != c;
583     // assert p != q;
584     // assert c.isMatched();
585     // assert p.isMatched();
586     if (q == null) {
587     // Never unlink trailing node.
588     if (c == p) return pred;
589     q = p;
590     }
591     return (tryCasSuccessor(pred, c, q)
592     && (pred == null || !pred.isMatched()))
593     ? pred : p;
594     }
595    
596     /* Possible values for "how" argument in xfer method. */
597    
598 jsr166 1.14 private static final int NOW = 0; // for untimed poll, tryTransfer
599     private static final int ASYNC = 1; // for offer, put, add
600     private static final int SYNC = 2; // for transfer, take
601     private static final int TIMED = 3; // for timed poll, tryTransfer
602 jsr166 1.1
603     /**
604 jsr166 1.8 * Implements all queuing methods. See above for explanation.
605 jsr166 1.1 *
606 jsr166 1.8 * @param e the item or null for take
607     * @param haveData true if this is a put, else a take
608 jsr166 1.14 * @param how NOW, ASYNC, SYNC, or TIMED
609     * @param nanos timeout in nanosecs, used only if mode is TIMED
610 jsr166 1.8 * @return an item if matched, else e
611     * @throws NullPointerException if haveData mode but e is null
612 jsr166 1.1 */
613 jsr166 1.8 private E xfer(E e, boolean haveData, int how, long nanos) {
614     if (haveData && (e == null))
615     throw new NullPointerException();
616 jsr166 1.130 Node s = null; // the node to append, if needed
617 jsr166 1.1
618 jsr166 1.119 restartFromHead: for (;;) {
619 jsr166 1.14 for (Node h = head, p = h; p != null;) { // find & match first node
620 jsr166 1.8 boolean isData = p.isData;
621     Object item = p.item;
622 jsr166 1.105 if ((item != null) == isData) { // unmatched
623 jsr166 1.8 if (isData == haveData) // can't match
624     break;
625     if (p.casItem(item, e)) { // match
626 jsr166 1.14 for (Node q = p; q != h;) {
627 dl 1.16 Node n = q.next; // update by 2 unless singleton
628 jsr166 1.37 if (head == h && casHead(h, n == null ? q : n)) {
629 jsr166 1.8 h.forgetNext();
630     break;
631     } // advance and retry
632     if ((h = head) == null ||
633     (q = h.next) == null || !q.isMatched())
634     break; // unless slack < 2
635     }
636     LockSupport.unpark(p.waiter);
637 jsr166 1.70 @SuppressWarnings("unchecked") E itemE = (E) item;
638     return itemE;
639 jsr166 1.1 }
640     }
641 jsr166 1.135 if (p == (p = p.next))
642     continue restartFromHead;
643 jsr166 1.8 }
644    
645 jsr166 1.14 if (how != NOW) { // No matches available
646 jsr166 1.130 if (s == null)
647     s = new Node(e);
648 jsr166 1.14 Node pred = tryAppend(s, haveData);
649 jsr166 1.8 if (pred == null)
650 jsr166 1.119 continue restartFromHead; // lost race vs opposite mode
651 jsr166 1.14 if (how != ASYNC)
652     return awaitMatch(s, pred, e, (how == TIMED), nanos);
653 jsr166 1.1 }
654 jsr166 1.8 return e; // not waiting
655 jsr166 1.1 }
656     }
657    
658     /**
659 jsr166 1.8 * Tries to append node s as tail.
660     *
661     * @param s the node to append
662     * @param haveData true if appending in data mode
663     * @return null on failure due to losing race with append in
664     * different mode, else s's predecessor, or s itself if no
665     * predecessor
666 jsr166 1.1 */
667 jsr166 1.14 private Node tryAppend(Node s, boolean haveData) {
668 jsr166 1.140 // assert head != null;
669     // assert tail != null;
670 jsr166 1.14 for (Node t = tail, p = t;;) { // move p to last node and append
671     Node n, u; // temps for reads of next & tail
672 jsr166 1.140 if (p == null)
673     p = head;
674 jsr166 1.8 else if (p.cannotPrecede(haveData))
675     return null; // lost race vs opposite mode
676     else if ((n = p.next) != null) // not last; keep traversing
677     p = p != t && t != (u = tail) ? (t = u) : // stale tail
678     (p != n) ? n : null; // restart if off list
679     else if (!p.casNext(null, s))
680     p = p.next; // re-read on CAS failure
681     else {
682     if (p != t) { // update if slack now >= 2
683     while ((tail != t || !casTail(t, s)) &&
684     (t = tail) != null &&
685     (s = t.next) != null && // advance and retry
686     (s = s.next) != null && s != t);
687 jsr166 1.1 }
688 jsr166 1.8 return p;
689 jsr166 1.1 }
690     }
691     }
692    
693     /**
694 jsr166 1.8 * Spins/yields/blocks until node s is matched or caller gives up.
695 jsr166 1.1 *
696     * @param s the waiting node
697 jsr166 1.8 * @param pred the predecessor of s, or s itself if it has no
698     * predecessor, or null if unknown (the null case does not occur
699     * in any current calls but may in possible future extensions)
700 jsr166 1.1 * @param e the comparison value for checking match
701 jsr166 1.14 * @param timed if true, wait only until timeout elapses
702     * @param nanos timeout in nanosecs, used only if timed is true
703 jsr166 1.8 * @return matched item, or e if unmatched on interrupt or timeout
704 jsr166 1.1 */
705 jsr166 1.14 private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
706 jsr166 1.51 final long deadline = timed ? System.nanoTime() + nanos : 0L;
707 jsr166 1.8 Thread w = Thread.currentThread();
708     int spins = -1; // initialized after first item and cancel checks
709     ThreadLocalRandom randomYields = null; // bound if needed
710 jsr166 1.1
711     for (;;) {
712 jsr166 1.8 Object item = s.item;
713     if (item != e) { // matched
714 dl 1.33 // assert item != s;
715 jsr166 1.8 s.forgetContents(); // avoid garbage
716 jsr166 1.70 @SuppressWarnings("unchecked") E itemE = (E) item;
717     return itemE;
718 jsr166 1.8 }
719 jsr166 1.95 else if (w.isInterrupted() || (timed && nanos <= 0L)) {
720 jsr166 1.102 // try to cancel and unlink
721 jsr166 1.105 if (s.casItem(e, s.isData ? null : s)) {
722 jsr166 1.102 unsplice(pred, s);
723 jsr166 1.77 return e;
724 jsr166 1.102 }
725     // return normally if lost CAS
726 jsr166 1.8 }
727 dl 1.84 else if (spins < 0) { // establish spins at/near front
728 jsr166 1.8 if ((spins = spinsFor(pred, s.isData)) > 0)
729     randomYields = ThreadLocalRandom.current();
730     }
731     else if (spins > 0) { // spin
732 dl 1.16 --spins;
733     if (randomYields.nextInt(CHAINED_SPINS) == 0)
734 jsr166 1.8 Thread.yield(); // occasionally yield
735     }
736     else if (s.waiter == null) {
737     s.waiter = w; // request unpark then recheck
738 jsr166 1.1 }
739 jsr166 1.14 else if (timed) {
740 jsr166 1.51 nanos = deadline - System.nanoTime();
741     if (nanos > 0L)
742 jsr166 1.8 LockSupport.parkNanos(this, nanos);
743 jsr166 1.1 }
744 jsr166 1.8 else {
745 jsr166 1.1 LockSupport.park(this);
746     }
747 jsr166 1.8 }
748     }
749    
750     /**
751     * Returns spin/yield value for a node with given predecessor and
752     * data mode. See above for explanation.
753     */
754 jsr166 1.14 private static int spinsFor(Node pred, boolean haveData) {
755 jsr166 1.8 if (MP && pred != null) {
756     if (pred.isData != haveData) // phase change
757     return FRONT_SPINS + CHAINED_SPINS;
758     if (pred.isMatched()) // probably at front
759     return FRONT_SPINS;
760     if (pred.waiter == null) // pred apparently spinning
761     return CHAINED_SPINS;
762     }
763     return 0;
764     }
765    
766     /* -------------- Traversal methods -------------- */
767    
768     /**
769 jsr166 1.93 * Returns the first unmatched data node, or null if none.
770 jsr166 1.105 * Callers must recheck if the returned node is unmatched
771     * before using.
772 dl 1.52 */
773     final Node firstDataNode() {
774 jsr166 1.139 Node first = null;
775 jsr166 1.91 restartFromHead: for (;;) {
776 jsr166 1.139 Node h = head, p = h;
777     for (; p != null;) {
778     final Object item;
779     if ((item = p.item) != null) {
780     if (p.isData) {
781     first = p;
782     break;
783     }
784 jsr166 1.91 }
785 jsr166 1.139 else if (!p.isData)
786     break;
787     final Node q;
788     if ((q = p.next) == null)
789 jsr166 1.91 break;
790 jsr166 1.139 if (p == (p = q))
791 jsr166 1.91 continue restartFromHead;
792 dl 1.52 }
793 jsr166 1.139 if (p != h && casHead(h, p))
794     h.forgetNext();
795     return first;
796 dl 1.52 }
797     }
798    
799     /**
800 jsr166 1.8 * Traverses and counts unmatched nodes of the given mode.
801     * Used by methods size and getWaitingConsumerCount.
802 jsr166 1.1 */
803 jsr166 1.8 private int countOfMode(boolean data) {
804 jsr166 1.73 restartFromHead: for (;;) {
805     int count = 0;
806     for (Node p = head; p != null;) {
807     if (!p.isMatched()) {
808     if (p.isData != data)
809     return 0;
810     if (++count == Integer.MAX_VALUE)
811     break; // @see Collection.size()
812     }
813 jsr166 1.81 if (p == (p = p.next))
814 jsr166 1.73 continue restartFromHead;
815 jsr166 1.1 }
816 jsr166 1.73 return count;
817 jsr166 1.8 }
818     }
819    
820 jsr166 1.82 public String toString() {
821     String[] a = null;
822     restartFromHead: for (;;) {
823     int charLength = 0;
824     int size = 0;
825     for (Node p = head; p != null;) {
826     Object item = p.item;
827     if (p.isData) {
828 jsr166 1.105 if (item != null) {
829 jsr166 1.82 if (a == null)
830     a = new String[4];
831     else if (size == a.length)
832     a = Arrays.copyOf(a, 2 * size);
833     String s = item.toString();
834     a[size++] = s;
835     charLength += s.length();
836     }
837     } else if (item == null)
838     break;
839     if (p == (p = p.next))
840     continue restartFromHead;
841     }
842    
843     if (size == 0)
844     return "[]";
845    
846 jsr166 1.83 return Helpers.toString(a, size, charLength);
847 jsr166 1.82 }
848     }
849    
850     private Object[] toArrayInternal(Object[] a) {
851     Object[] x = a;
852     restartFromHead: for (;;) {
853     int size = 0;
854     for (Node p = head; p != null;) {
855     Object item = p.item;
856     if (p.isData) {
857 jsr166 1.105 if (item != null) {
858 jsr166 1.82 if (x == null)
859     x = new Object[4];
860     else if (size == x.length)
861     x = Arrays.copyOf(x, 2 * (size + 4));
862     x[size++] = item;
863     }
864     } else if (item == null)
865     break;
866     if (p == (p = p.next))
867     continue restartFromHead;
868     }
869     if (x == null)
870     return new Object[0];
871     else if (a != null && size <= a.length) {
872     if (a != x)
873     System.arraycopy(x, 0, a, 0, size);
874     if (size < a.length)
875     a[size] = null;
876     return a;
877     }
878     return (size == x.length) ? x : Arrays.copyOf(x, size);
879     }
880     }
881    
882     /**
883     * Returns an array containing all of the elements in this queue, in
884     * proper sequence.
885     *
886     * <p>The returned array will be "safe" in that no references to it are
887     * maintained by this queue. (In other words, this method must allocate
888     * a new array). The caller is thus free to modify the returned array.
889     *
890     * <p>This method acts as bridge between array-based and collection-based
891     * APIs.
892     *
893     * @return an array containing all of the elements in this queue
894     */
895     public Object[] toArray() {
896     return toArrayInternal(null);
897     }
898    
899     /**
900     * Returns an array containing all of the elements in this queue, in
901     * proper sequence; the runtime type of the returned array is that of
902     * the specified array. If the queue fits in the specified array, it
903     * is returned therein. Otherwise, a new array is allocated with the
904     * runtime type of the specified array and the size of this queue.
905     *
906     * <p>If this queue fits in the specified array with room to spare
907     * (i.e., the array has more elements than this queue), the element in
908     * the array immediately following the end of the queue is set to
909     * {@code null}.
910     *
911     * <p>Like the {@link #toArray()} method, this method acts as bridge between
912     * array-based and collection-based APIs. Further, this method allows
913     * precise control over the runtime type of the output array, and may,
914     * under certain circumstances, be used to save allocation costs.
915     *
916     * <p>Suppose {@code x} is a queue known to contain only strings.
917     * The following code can be used to dump the queue into a newly
918     * allocated array of {@code String}:
919     *
920     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
921     *
922     * Note that {@code toArray(new Object[0])} is identical in function to
923     * {@code toArray()}.
924     *
925     * @param a the array into which the elements of the queue are to
926     * be stored, if it is big enough; otherwise, a new array of the
927     * same runtime type is allocated for this purpose
928     * @return an array containing all of the elements in this queue
929     * @throws ArrayStoreException if the runtime type of the specified array
930     * is not a supertype of the runtime type of every element in
931     * this queue
932     * @throws NullPointerException if the specified array is null
933     */
934     @SuppressWarnings("unchecked")
935     public <T> T[] toArray(T[] a) {
936 jsr166 1.111 Objects.requireNonNull(a);
937 jsr166 1.82 return (T[]) toArrayInternal(a);
938     }
939    
940 jsr166 1.134 /**
941     * Weakly-consistent iterator.
942     *
943     * Lazily updated ancestor is expected to be amortized O(1) remove(),
944     * but O(n) in the worst case, when lastRet is concurrently deleted.
945     */
946 jsr166 1.8 final class Itr implements Iterator<E> {
947 jsr166 1.14 private Node nextNode; // next node to return item for
948     private E nextItem; // the corresponding item
949     private Node lastRet; // last returned node, to support remove
950 jsr166 1.134 private Node ancestor; // Helps unlink lastRet on remove()
951 jsr166 1.8
952     /**
953 jsr166 1.134 * Moves to next node after pred, or first node if pred null.
954 jsr166 1.8 */
955 jsr166 1.134 @SuppressWarnings("unchecked")
956     private void advance(Node pred) {
957     for (Node p = (pred == null) ? head : pred.next, c = p;
958     p != null; ) {
959     final Object item;
960     if ((item = p.item) != null && p.isData) {
961     nextNode = p;
962     nextItem = (E) item;
963     if (c != p)
964     tryCasSuccessor(pred, c, p);
965     return;
966     }
967     else if (!p.isData && item == null)
968 dl 1.33 break;
969 jsr166 1.134 if (c != p && !tryCasSuccessor(pred, c, c = p)) {
970     pred = p;
971     c = p = p.next;
972 dl 1.33 }
973 jsr166 1.134 else if (p == (p = p.next)) {
974     pred = null;
975     c = p = head;
976 jsr166 1.34 }
977 jsr166 1.1 }
978 jsr166 1.134 nextItem = null;
979 jsr166 1.8 nextNode = null;
980     }
981    
982     Itr() {
983     advance(null);
984     }
985    
986     public final boolean hasNext() {
987     return nextNode != null;
988     }
989    
990     public final E next() {
991 jsr166 1.125 final Node p;
992     if ((p = nextNode) == null) throw new NoSuchElementException();
993 jsr166 1.8 E e = nextItem;
994 jsr166 1.134 advance(lastRet = p);
995 jsr166 1.8 return e;
996     }
997    
998 jsr166 1.134 public void forEachRemaining(Consumer<? super E> action) {
999     Objects.requireNonNull(action);
1000     Node q = null;
1001     for (Node p; (p = nextNode) != null; advance(q = p))
1002     action.accept(nextItem);
1003     if (q != null)
1004     lastRet = q;
1005     }
1006 jsr166 1.116
1007 jsr166 1.8 public final void remove() {
1008 dl 1.33 final Node lastRet = this.lastRet;
1009     if (lastRet == null)
1010     throw new IllegalStateException();
1011     this.lastRet = null;
1012 jsr166 1.134 if (lastRet.item == null) // already deleted?
1013     return;
1014     // Advance ancestor, collapsing intervening dead nodes
1015     Node pred = ancestor;
1016     for (Node p = (pred == null) ? head : pred.next, c = p, q;
1017     p != null; ) {
1018     if (p == lastRet) {
1019     p.tryMatchData();
1020     if ((q = p.next) == null) q = p;
1021     if (c != q) tryCasSuccessor(pred, c, q);
1022     ancestor = pred;
1023     return;
1024     }
1025     final Object item; final boolean pAlive;
1026     if (pAlive = ((item = p.item) != null && p.isData)) {
1027     // exceptionally, nothing to do
1028     }
1029     else if (!p.isData && item == null)
1030     break;
1031     if ((c != p && !tryCasSuccessor(pred, c, c = p)) || pAlive) {
1032     pred = p;
1033     c = p = p.next;
1034     }
1035     else if (p == (p = p.next)) {
1036     pred = null;
1037     c = p = head;
1038     }
1039     }
1040     // traversal failed to find lastRet; must have been deleted;
1041     // leave ancestor at original location to avoid overshoot;
1042     // better luck next time!
1043    
1044     // assert lastRet.isMatched();
1045 jsr166 1.1 }
1046     }
1047 jsr166 1.53
1048 dl 1.57 /** A customized variant of Spliterators.IteratorSpliterator */
1049 jsr166 1.109 final class LTQSpliterator implements Spliterator<E> {
1050 dl 1.60 static final int MAX_BATCH = 1 << 25; // max batch array size;
1051 jsr166 1.87 Node current; // current node; null until initialized
1052 dl 1.52 int batch; // batch size for splits
1053     boolean exhausted; // true when no more nodes
1054 jsr166 1.94 LTQSpliterator() {}
1055 dl 1.52
1056     public Spliterator<E> trySplit() {
1057 jsr166 1.115 Node p, q;
1058     if ((p = current()) == null || (q = p.next) == null)
1059     return null;
1060     int i = 0, n = batch = Math.min(batch + 1, MAX_BATCH);
1061     Object[] a = null;
1062     do {
1063     final Object item = p.item;
1064     if (p.isData) {
1065     if (item != null)
1066     ((a != null) ? a : (a = new Object[n]))[i++] = item;
1067     } else if (item == null) {
1068     p = null;
1069     break;
1070 dl 1.60 }
1071 jsr166 1.117 if (p == (p = q))
1072     p = firstDataNode();
1073 jsr166 1.115 } while (p != null && (q = p.next) != null && i < n);
1074     setCurrent(p);
1075     return (i == 0) ? null :
1076     Spliterators.spliterator(a, 0, i, (Spliterator.ORDERED |
1077     Spliterator.NONNULL |
1078     Spliterator.CONCURRENT));
1079 dl 1.52 }
1080    
1081 dl 1.61 public void forEachRemaining(Consumer<? super E> action) {
1082 jsr166 1.111 Objects.requireNonNull(action);
1083 jsr166 1.116 final Node p;
1084 jsr166 1.115 if ((p = current()) != null) {
1085 jsr166 1.107 current = null;
1086 dl 1.52 exhausted = true;
1087 jsr166 1.116 forEachFrom(action, p);
1088 dl 1.52 }
1089     }
1090    
1091     @SuppressWarnings("unchecked")
1092     public boolean tryAdvance(Consumer<? super E> action) {
1093 jsr166 1.111 Objects.requireNonNull(action);
1094 dl 1.52 Node p;
1095 jsr166 1.115 if ((p = current()) != null) {
1096     E e = null;
1097 dl 1.52 do {
1098 jsr166 1.115 final Object item = p.item;
1099     final boolean isData = p.isData;
1100     if (p == (p = p.next))
1101     p = head;
1102     if (isData) {
1103     if (item != null) {
1104     e = (E) item;
1105 jsr166 1.107 break;
1106     }
1107     }
1108 jsr166 1.115 else if (item == null)
1109     p = null;
1110     } while (p != null);
1111     setCurrent(p);
1112     if (e != null) {
1113     action.accept(e);
1114 dl 1.52 return true;
1115     }
1116     }
1117     return false;
1118     }
1119    
1120 jsr166 1.115 private void setCurrent(Node p) {
1121     if ((current = p) == null)
1122     exhausted = true;
1123     }
1124    
1125     private Node current() {
1126     Node p;
1127     if ((p = current) == null && !exhausted)
1128     setCurrent(p = firstDataNode());
1129     return p;
1130     }
1131    
1132 dl 1.54 public long estimateSize() { return Long.MAX_VALUE; }
1133    
1134 dl 1.52 public int characteristics() {
1135 jsr166 1.100 return (Spliterator.ORDERED |
1136     Spliterator.NONNULL |
1137     Spliterator.CONCURRENT);
1138 dl 1.52 }
1139     }
1140    
1141 jsr166 1.67 /**
1142     * Returns a {@link Spliterator} over the elements in this queue.
1143     *
1144 jsr166 1.68 * <p>The returned spliterator is
1145     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1146     *
1147 jsr166 1.67 * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
1148     * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
1149     *
1150     * @implNote
1151     * The {@code Spliterator} implements {@code trySplit} to permit limited
1152     * parallelism.
1153     *
1154     * @return a {@code Spliterator} over the elements in this queue
1155     * @since 1.8
1156     */
1157 dl 1.56 public Spliterator<E> spliterator() {
1158 jsr166 1.109 return new LTQSpliterator();
1159 dl 1.52 }
1160    
1161 jsr166 1.8 /* -------------- Removal methods -------------- */
1162    
1163 jsr166 1.1 /**
1164 jsr166 1.8 * Unsplices (now or later) the given deleted/cancelled node with
1165     * the given predecessor.
1166 jsr166 1.1 *
1167 dl 1.16 * @param pred a node that was at one time known to be the
1168     * predecessor of s, or null or s itself if s is/was at head
1169 jsr166 1.8 * @param s the node to be unspliced
1170 jsr166 1.1 */
1171 dl 1.16 final void unsplice(Node pred, Node s) {
1172 dl 1.71 s.waiter = null; // disable signals
1173 jsr166 1.1 /*
1174 dl 1.16 * See above for rationale. Briefly: if pred still points to
1175     * s, try to unlink s. If s cannot be unlinked, because it is
1176     * trailing node or pred might be unlinked, and neither pred
1177     * nor s are head or offlist, add to sweepVotes, and if enough
1178     * votes have accumulated, sweep.
1179 jsr166 1.1 */
1180 dl 1.16 if (pred != null && pred != s && pred.next == s) {
1181     Node n = s.next;
1182     if (n == null ||
1183     (n != s && pred.casNext(s, n) && pred.isMatched())) {
1184     for (;;) { // check if at, or could be, head
1185     Node h = head;
1186     if (h == pred || h == s || h == null)
1187     return; // at head or list empty
1188     if (!h.isMatched())
1189     break;
1190     Node hn = h.next;
1191     if (hn == null)
1192     return; // now empty
1193     if (hn != h && casHead(h, hn))
1194     h.forgetNext(); // advance head
1195 jsr166 1.8 }
1196 dl 1.16 if (pred.next != pred && s.next != s) { // recheck if offlist
1197     for (;;) { // sweep now if enough votes
1198     int v = sweepVotes;
1199     if (v < SWEEP_THRESHOLD) {
1200     if (casSweepVotes(v, v + 1))
1201     break;
1202     }
1203     else if (casSweepVotes(v, 0)) {
1204     sweep();
1205     break;
1206     }
1207     }
1208 jsr166 1.12 }
1209 jsr166 1.1 }
1210     }
1211     }
1212    
1213     /**
1214 jsr166 1.26 * Unlinks matched (typically cancelled) nodes encountered in a
1215     * traversal from head.
1216 jsr166 1.1 */
1217 dl 1.16 private void sweep() {
1218 jsr166 1.20 for (Node p = head, s, n; p != null && (s = p.next) != null; ) {
1219 jsr166 1.28 if (!s.isMatched())
1220     // Unmatched nodes are never self-linked
1221 jsr166 1.20 p = s;
1222 jsr166 1.28 else if ((n = s.next) == null) // trailing node is pinned
1223 jsr166 1.20 break;
1224 jsr166 1.28 else if (s == n) // stale
1225     // No need to also check for p == s, since that implies s == n
1226     p = head;
1227 jsr166 1.20 else
1228 dl 1.16 p.casNext(s, n);
1229 jsr166 1.8 }
1230     }
1231    
1232     /**
1233 jsr166 1.1 * Creates an initially empty {@code LinkedTransferQueue}.
1234     */
1235     public LinkedTransferQueue() {
1236 jsr166 1.140 head = tail = new Node();
1237 jsr166 1.1 }
1238    
1239     /**
1240     * Creates a {@code LinkedTransferQueue}
1241     * initially containing the elements of the given collection,
1242     * added in traversal order of the collection's iterator.
1243     *
1244     * @param c the collection of elements to initially contain
1245     * @throws NullPointerException if the specified collection or any
1246     * of its elements are null
1247     */
1248     public LinkedTransferQueue(Collection<? extends E> c) {
1249 jsr166 1.140 Node h = null, t = null;
1250     for (E e : c) {
1251     Node newNode = new Node(Objects.requireNonNull(e));
1252     if (h == null)
1253     h = t = newNode;
1254     else
1255     t.appendRelaxed(t = newNode);
1256     }
1257     if (h == null)
1258     h = t = new Node();
1259     head = h;
1260     tail = t;
1261 jsr166 1.1 }
1262    
1263 jsr166 1.4 /**
1264 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1265     * As the queue is unbounded, this method will never block.
1266     *
1267     * @throws NullPointerException if the specified element is null
1268 jsr166 1.4 */
1269 jsr166 1.5 public void put(E e) {
1270 jsr166 1.8 xfer(e, true, ASYNC, 0);
1271 jsr166 1.1 }
1272    
1273 jsr166 1.4 /**
1274 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1275     * As the queue is unbounded, this method will never block or
1276     * return {@code false}.
1277     *
1278     * @return {@code true} (as specified by
1279 jsr166 1.42 * {@link java.util.concurrent.BlockingQueue#offer(Object,long,TimeUnit)
1280     * BlockingQueue.offer})
1281 jsr166 1.5 * @throws NullPointerException if the specified element is null
1282 jsr166 1.4 */
1283 jsr166 1.5 public boolean offer(E e, long timeout, TimeUnit unit) {
1284 jsr166 1.8 xfer(e, true, ASYNC, 0);
1285     return true;
1286 jsr166 1.1 }
1287    
1288 jsr166 1.4 /**
1289 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1290     * As the queue is unbounded, this method will never return {@code false}.
1291     *
1292 jsr166 1.32 * @return {@code true} (as specified by {@link Queue#offer})
1293 jsr166 1.5 * @throws NullPointerException if the specified element is null
1294 jsr166 1.4 */
1295 jsr166 1.1 public boolean offer(E e) {
1296 jsr166 1.8 xfer(e, true, ASYNC, 0);
1297 jsr166 1.1 return true;
1298     }
1299    
1300 jsr166 1.4 /**
1301 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1302     * As the queue is unbounded, this method will never throw
1303     * {@link IllegalStateException} or return {@code false}.
1304     *
1305     * @return {@code true} (as specified by {@link Collection#add})
1306     * @throws NullPointerException if the specified element is null
1307 jsr166 1.4 */
1308 jsr166 1.1 public boolean add(E e) {
1309 jsr166 1.8 xfer(e, true, ASYNC, 0);
1310     return true;
1311 jsr166 1.5 }
1312    
1313     /**
1314 jsr166 1.6 * Transfers the element to a waiting consumer immediately, if possible.
1315     *
1316     * <p>More precisely, transfers the specified element immediately
1317     * if there exists a consumer already waiting to receive it (in
1318     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1319     * otherwise returning {@code false} without enqueuing the element.
1320 jsr166 1.5 *
1321     * @throws NullPointerException if the specified element is null
1322     */
1323     public boolean tryTransfer(E e) {
1324 jsr166 1.8 return xfer(e, true, NOW, 0) == null;
1325 jsr166 1.1 }
1326    
1327 jsr166 1.4 /**
1328 jsr166 1.6 * Transfers the element to a consumer, waiting if necessary to do so.
1329     *
1330     * <p>More precisely, transfers the specified element immediately
1331     * if there exists a consumer already waiting to receive it (in
1332     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1333     * else inserts the specified element at the tail of this queue
1334     * and waits until the element is received by a consumer.
1335 jsr166 1.5 *
1336     * @throws NullPointerException if the specified element is null
1337 jsr166 1.4 */
1338 jsr166 1.1 public void transfer(E e) throws InterruptedException {
1339 jsr166 1.8 if (xfer(e, true, SYNC, 0) != null) {
1340     Thread.interrupted(); // failure possible only due to interrupt
1341 jsr166 1.1 throw new InterruptedException();
1342     }
1343     }
1344    
1345 jsr166 1.4 /**
1346 jsr166 1.6 * Transfers the element to a consumer if it is possible to do so
1347     * before the timeout elapses.
1348     *
1349     * <p>More precisely, transfers the specified element immediately
1350     * if there exists a consumer already waiting to receive it (in
1351     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1352     * else inserts the specified element at the tail of this queue
1353     * and waits until the element is received by a consumer,
1354     * returning {@code false} if the specified wait time elapses
1355     * before the element can be transferred.
1356 jsr166 1.5 *
1357     * @throws NullPointerException if the specified element is null
1358 jsr166 1.4 */
1359 jsr166 1.1 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1360     throws InterruptedException {
1361 jsr166 1.14 if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1362 jsr166 1.1 return true;
1363     if (!Thread.interrupted())
1364     return false;
1365     throw new InterruptedException();
1366     }
1367    
1368     public E take() throws InterruptedException {
1369 jsr166 1.8 E e = xfer(null, false, SYNC, 0);
1370 jsr166 1.1 if (e != null)
1371 jsr166 1.5 return e;
1372 jsr166 1.1 Thread.interrupted();
1373     throw new InterruptedException();
1374     }
1375    
1376     public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1377 jsr166 1.14 E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1378 jsr166 1.1 if (e != null || !Thread.interrupted())
1379 jsr166 1.5 return e;
1380 jsr166 1.1 throw new InterruptedException();
1381     }
1382    
1383     public E poll() {
1384 jsr166 1.8 return xfer(null, false, NOW, 0);
1385 jsr166 1.1 }
1386    
1387 jsr166 1.4 /**
1388     * @throws NullPointerException {@inheritDoc}
1389     * @throws IllegalArgumentException {@inheritDoc}
1390     */
1391 jsr166 1.1 public int drainTo(Collection<? super E> c) {
1392 jsr166 1.111 Objects.requireNonNull(c);
1393 jsr166 1.1 if (c == this)
1394     throw new IllegalArgumentException();
1395     int n = 0;
1396 jsr166 1.112 for (E e; (e = poll()) != null; n++)
1397 jsr166 1.1 c.add(e);
1398     return n;
1399     }
1400    
1401 jsr166 1.4 /**
1402     * @throws NullPointerException {@inheritDoc}
1403     * @throws IllegalArgumentException {@inheritDoc}
1404     */
1405 jsr166 1.1 public int drainTo(Collection<? super E> c, int maxElements) {
1406 jsr166 1.111 Objects.requireNonNull(c);
1407 jsr166 1.1 if (c == this)
1408     throw new IllegalArgumentException();
1409     int n = 0;
1410 jsr166 1.112 for (E e; n < maxElements && (e = poll()) != null; n++)
1411 jsr166 1.1 c.add(e);
1412     return n;
1413     }
1414    
1415 jsr166 1.5 /**
1416 jsr166 1.36 * Returns an iterator over the elements in this queue in proper sequence.
1417     * The elements will be returned in order from first (head) to last (tail).
1418 jsr166 1.5 *
1419 jsr166 1.68 * <p>The returned iterator is
1420     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1421 jsr166 1.5 *
1422     * @return an iterator over the elements in this queue in proper sequence
1423     */
1424 jsr166 1.1 public Iterator<E> iterator() {
1425     return new Itr();
1426     }
1427    
1428     public E peek() {
1429 jsr166 1.92 restartFromHead: for (;;) {
1430     for (Node p = head; p != null;) {
1431     Object item = p.item;
1432     if (p.isData) {
1433 jsr166 1.105 if (item != null) {
1434 jsr166 1.92 @SuppressWarnings("unchecked") E e = (E) item;
1435     return e;
1436     }
1437     }
1438     else if (item == null)
1439     break;
1440     if (p == (p = p.next))
1441     continue restartFromHead;
1442     }
1443     return null;
1444     }
1445 jsr166 1.1 }
1446    
1447 jsr166 1.6 /**
1448     * Returns {@code true} if this queue contains no elements.
1449     *
1450     * @return {@code true} if this queue contains no elements
1451     */
1452 jsr166 1.1 public boolean isEmpty() {
1453 jsr166 1.90 return firstDataNode() == null;
1454 jsr166 1.1 }
1455    
1456     public boolean hasWaitingConsumer() {
1457 jsr166 1.93 restartFromHead: for (;;) {
1458     for (Node p = head; p != null;) {
1459     Object item = p.item;
1460     if (p.isData) {
1461 jsr166 1.105 if (item != null)
1462 jsr166 1.93 break;
1463     }
1464     else if (item == null)
1465     return true;
1466     if (p == (p = p.next))
1467     continue restartFromHead;
1468     }
1469     return false;
1470     }
1471 jsr166 1.1 }
1472    
1473     /**
1474     * Returns the number of elements in this queue. If this queue
1475     * contains more than {@code Integer.MAX_VALUE} elements, returns
1476     * {@code Integer.MAX_VALUE}.
1477     *
1478     * <p>Beware that, unlike in most collections, this method is
1479     * <em>NOT</em> a constant-time operation. Because of the
1480     * asynchronous nature of these queues, determining the current
1481     * number of elements requires an O(n) traversal.
1482     *
1483     * @return the number of elements in this queue
1484     */
1485     public int size() {
1486 jsr166 1.8 return countOfMode(true);
1487 jsr166 1.1 }
1488    
1489     public int getWaitingConsumerCount() {
1490 jsr166 1.8 return countOfMode(false);
1491 jsr166 1.1 }
1492    
1493 jsr166 1.6 /**
1494     * Removes a single instance of the specified element from this queue,
1495     * if it is present. More formally, removes an element {@code e} such
1496     * that {@code o.equals(e)}, if this queue contains one or more such
1497     * elements.
1498     * Returns {@code true} if this queue contained the specified element
1499     * (or equivalently, if this queue changed as a result of the call).
1500     *
1501     * @param o element to be removed from this queue, if present
1502     * @return {@code true} if this queue changed as a result of the call
1503     */
1504 jsr166 1.1 public boolean remove(Object o) {
1505 jsr166 1.137 if (o == null) return false;
1506 jsr166 1.108 restartFromHead: for (;;) {
1507 jsr166 1.137 for (Node p = head, pred = null; p != null; ) {
1508     Node q = p.next;
1509     final Object item;
1510     if ((item = p.item) != null) {
1511     if (p.isData) {
1512     if (o.equals(item) && p.tryMatchData()) {
1513     skipDeadNodes(pred, p, p, q);
1514     return true;
1515     }
1516     pred = p; p = q; continue;
1517 jsr166 1.108 }
1518     }
1519 jsr166 1.137 else if (!p.isData)
1520 jsr166 1.108 break;
1521 jsr166 1.138 for (Node c = p;; q = p.next) {
1522     if (q == null || !q.isMatched()) {
1523 jsr166 1.137 pred = skipDeadNodes(pred, c, p, q); p = q; break;
1524     }
1525     if (p == (p = q)) continue restartFromHead;
1526 jsr166 1.122 }
1527 jsr166 1.108 }
1528     return false;
1529     }
1530 jsr166 1.1 }
1531    
1532     /**
1533 jsr166 1.30 * Returns {@code true} if this queue contains the specified element.
1534     * More formally, returns {@code true} if and only if this queue contains
1535     * at least one element {@code e} such that {@code o.equals(e)}.
1536     *
1537     * @param o object to be checked for containment in this queue
1538     * @return {@code true} if this queue contains the specified element
1539     */
1540     public boolean contains(Object o) {
1541 jsr166 1.137 if (o == null) return false;
1542 jsr166 1.122 restartFromHead: for (;;) {
1543 jsr166 1.137 for (Node p = head, pred = null; p != null; ) {
1544     Node q = p.next;
1545     final Object item;
1546     if ((item = p.item) != null) {
1547     if (p.isData) {
1548     if (o.equals(item))
1549     return true;
1550     pred = p; p = q; continue;
1551     }
1552 jsr166 1.74 }
1553 jsr166 1.137 else if (!p.isData)
1554 jsr166 1.74 break;
1555 jsr166 1.138 for (Node c = p;; q = p.next) {
1556     if (q == null || !q.isMatched()) {
1557 jsr166 1.137 pred = skipDeadNodes(pred, c, p, q); p = q; break;
1558     }
1559     if (p == (p = q)) continue restartFromHead;
1560 jsr166 1.122 }
1561 jsr166 1.30 }
1562 jsr166 1.122 return false;
1563 jsr166 1.30 }
1564     }
1565    
1566     /**
1567 jsr166 1.5 * Always returns {@code Integer.MAX_VALUE} because a
1568     * {@code LinkedTransferQueue} is not capacity constrained.
1569     *
1570     * @return {@code Integer.MAX_VALUE} (as specified by
1571 jsr166 1.42 * {@link java.util.concurrent.BlockingQueue#remainingCapacity()
1572     * BlockingQueue.remainingCapacity})
1573 jsr166 1.5 */
1574     public int remainingCapacity() {
1575     return Integer.MAX_VALUE;
1576     }
1577    
1578     /**
1579 jsr166 1.50 * Saves this queue to a stream (that is, serializes it).
1580 jsr166 1.1 *
1581 jsr166 1.65 * @param s the stream
1582 jsr166 1.66 * @throws java.io.IOException if an I/O error occurs
1583 jsr166 1.1 * @serialData All of the elements (each an {@code E}) in
1584     * the proper order, followed by a null
1585     */
1586     private void writeObject(java.io.ObjectOutputStream s)
1587     throws java.io.IOException {
1588     s.defaultWriteObject();
1589     for (E e : this)
1590     s.writeObject(e);
1591     // Use trailing null as sentinel
1592     s.writeObject(null);
1593     }
1594    
1595     /**
1596 jsr166 1.50 * Reconstitutes this queue from a stream (that is, deserializes it).
1597 jsr166 1.65 * @param s the stream
1598 jsr166 1.66 * @throws ClassNotFoundException if the class of a serialized object
1599     * could not be found
1600     * @throws java.io.IOException if an I/O error occurs
1601 jsr166 1.1 */
1602     private void readObject(java.io.ObjectInputStream s)
1603     throws java.io.IOException, ClassNotFoundException {
1604 jsr166 1.140
1605     // Read in elements until trailing null sentinel found
1606     Node h = null, t = null;
1607     for (Object item; (item = s.readObject()) != null; ) {
1608 jsr166 1.49 @SuppressWarnings("unchecked")
1609 jsr166 1.140 Node newNode = new Node((E) item);
1610     if (h == null)
1611     h = t = newNode;
1612 jsr166 1.1 else
1613 jsr166 1.140 t.appendRelaxed(t = newNode);
1614 jsr166 1.1 }
1615 jsr166 1.140 if (h == null)
1616     h = t = new Node();
1617     head = h;
1618     tail = t;
1619 jsr166 1.1 }
1620    
1621 jsr166 1.116 /**
1622     * @throws NullPointerException {@inheritDoc}
1623     */
1624     public boolean removeIf(Predicate<? super E> filter) {
1625     Objects.requireNonNull(filter);
1626     return bulkRemove(filter);
1627     }
1628    
1629     /**
1630     * @throws NullPointerException {@inheritDoc}
1631     */
1632     public boolean removeAll(Collection<?> c) {
1633     Objects.requireNonNull(c);
1634     return bulkRemove(e -> c.contains(e));
1635     }
1636    
1637     /**
1638     * @throws NullPointerException {@inheritDoc}
1639     */
1640     public boolean retainAll(Collection<?> c) {
1641     Objects.requireNonNull(c);
1642     return bulkRemove(e -> !c.contains(e));
1643     }
1644    
1645 jsr166 1.124 public void clear() {
1646     bulkRemove(e -> true);
1647     }
1648    
1649     /**
1650     * Tolerate this many consecutive dead nodes before CAS-collapsing.
1651     * Amortized cost of clear() is (1 + 1/MAX_HOPS) CASes per element.
1652     */
1653     private static final int MAX_HOPS = 8;
1654    
1655 jsr166 1.116 /** Implementation of bulk remove methods. */
1656     @SuppressWarnings("unchecked")
1657     private boolean bulkRemove(Predicate<? super E> filter) {
1658     boolean removed = false;
1659     restartFromHead: for (;;) {
1660 jsr166 1.124 int hops = MAX_HOPS;
1661     // c will be CASed to collapse intervening dead nodes between
1662     // pred (or head if null) and p.
1663     for (Node p = head, c = p, pred = null, q; p != null; p = q) {
1664 jsr166 1.138 q = p.next;
1665 jsr166 1.124 final Object item; boolean pAlive;
1666 jsr166 1.132 if (pAlive = ((item = p.item) != null && p.isData)) {
1667 jsr166 1.124 if (filter.test((E) item)) {
1668     if (p.tryMatchData())
1669     removed = true;
1670     pAlive = false;
1671 jsr166 1.116 }
1672     }
1673 jsr166 1.124 else if (!p.isData && item == null)
1674 jsr166 1.116 break;
1675 jsr166 1.138 if (pAlive || q == null || --hops == 0) {
1676 jsr166 1.124 // p might already be self-linked here, but if so:
1677     // - CASing head will surely fail
1678     // - CASing pred's next will be useless but harmless.
1679 jsr166 1.134 if ((c != p && !tryCasSuccessor(pred, c, c = p))
1680     || pAlive) {
1681     // if CAS failed or alive, abandon old pred
1682 jsr166 1.124 hops = MAX_HOPS;
1683     pred = p;
1684     c = q;
1685     }
1686     } else if (p == q)
1687 jsr166 1.116 continue restartFromHead;
1688     }
1689     return removed;
1690     }
1691     }
1692    
1693     /**
1694     * Runs action on each element found during a traversal starting at p.
1695 jsr166 1.118 * If p is null, the action is not run.
1696 jsr166 1.116 */
1697     @SuppressWarnings("unchecked")
1698     void forEachFrom(Consumer<? super E> action, Node p) {
1699 jsr166 1.137 for (Node pred = null; p != null; ) {
1700     Node q = p.next;
1701     final Object item;
1702     if ((item = p.item) != null) {
1703     if (p.isData) {
1704     action.accept((E) item);
1705     pred = p; p = q; continue;
1706     }
1707     }
1708     else if (!p.isData)
1709 jsr166 1.122 break;
1710 jsr166 1.138 for (Node c = p;; q = p.next) {
1711     if (q == null || !q.isMatched()) {
1712 jsr166 1.137 pred = skipDeadNodes(pred, c, p, q); p = q; break;
1713     }
1714     if (p == (p = q)) { pred = null; p = head; break; }
1715 jsr166 1.116 }
1716     }
1717     }
1718    
1719     /**
1720     * @throws NullPointerException {@inheritDoc}
1721     */
1722     public void forEach(Consumer<? super E> action) {
1723     Objects.requireNonNull(action);
1724     forEachFrom(action, head);
1725     }
1726    
1727 dl 1.97 // VarHandle mechanics
1728     private static final VarHandle HEAD;
1729     private static final VarHandle TAIL;
1730     private static final VarHandle SWEEPVOTES;
1731 jsr166 1.140 static final VarHandle ITEM;
1732     static final VarHandle NEXT;
1733     static final VarHandle WAITER;
1734 dl 1.38 static {
1735 jsr166 1.1 try {
1736 dl 1.97 MethodHandles.Lookup l = MethodHandles.lookup();
1737     HEAD = l.findVarHandle(LinkedTransferQueue.class, "head",
1738     Node.class);
1739     TAIL = l.findVarHandle(LinkedTransferQueue.class, "tail",
1740     Node.class);
1741     SWEEPVOTES = l.findVarHandle(LinkedTransferQueue.class, "sweepVotes",
1742     int.class);
1743 jsr166 1.140 ITEM = l.findVarHandle(Node.class, "item", Object.class);
1744     NEXT = l.findVarHandle(Node.class, "next", Node.class);
1745     WAITER = l.findVarHandle(Node.class, "waiter", Thread.class);
1746 jsr166 1.79 } catch (ReflectiveOperationException e) {
1747 dl 1.38 throw new Error(e);
1748 jsr166 1.1 }
1749 jsr166 1.85
1750     // Reduce the risk of rare disastrous classloading in first call to
1751     // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
1752     Class<?> ensureLoaded = LockSupport.class;
1753 jsr166 1.1 }
1754     }