ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/concurrent/LinkedTransferQueue.java
Revision: 1.147
Committed: Mon Jan 16 01:41:35 2017 UTC (7 years, 4 months ago) by jsr166
Branch: MAIN
Changes since 1.146: +1 -2 lines
Log Message:
tryAppend: remove stale comment about returning s itself

File Contents

# User Rev Content
1 jsr166 1.1 /*
2     * Written by Doug Lea with assistance from members of JCP JSR-166
3     * Expert Group and released to the public domain, as explained at
4 jsr166 1.39 * http://creativecommons.org/publicdomain/zero/1.0/
5 jsr166 1.1 */
6    
7     package java.util.concurrent;
8    
9 dl 1.97 import java.lang.invoke.MethodHandles;
10     import java.lang.invoke.VarHandle;
11 jsr166 1.1 import java.util.AbstractQueue;
12 jsr166 1.82 import java.util.Arrays;
13 jsr166 1.1 import java.util.Collection;
14     import java.util.Iterator;
15     import java.util.NoSuchElementException;
16 jsr166 1.111 import java.util.Objects;
17 jsr166 1.5 import java.util.Queue;
18 dl 1.52 import java.util.Spliterator;
19 dl 1.54 import java.util.Spliterators;
20 jsr166 1.76 import java.util.concurrent.locks.LockSupport;
21     import java.util.function.Consumer;
22 jsr166 1.116 import java.util.function.Predicate;
23 dl 1.22
24 jsr166 1.1 /**
25 jsr166 1.6 * An unbounded {@link TransferQueue} based on linked nodes.
26 jsr166 1.1 * This queue orders elements FIFO (first-in-first-out) with respect
27     * to any given producer. The <em>head</em> of the queue is that
28     * element that has been on the queue the longest time for some
29     * producer. The <em>tail</em> of the queue is that element that has
30     * been on the queue the shortest time for some producer.
31     *
32 dl 1.40 * <p>Beware that, unlike in most collections, the {@code size} method
33     * is <em>NOT</em> a constant-time operation. Because of the
34 jsr166 1.1 * asynchronous nature of these queues, determining the current number
35 dl 1.40 * of elements requires a traversal of the elements, and so may report
36     * inaccurate results if this collection is modified during traversal.
37 jsr166 1.1 *
38 jsr166 1.131 * <p>Bulk operations that add, remove, or examine multiple elements,
39     * such as {@link #addAll}, {@link #removeIf} or {@link #forEach},
40     * are <em>not</em> guaranteed to be performed atomically.
41     * For example, a {@code forEach} traversal concurrent with an {@code
42     * addAll} operation might observe only some of the added elements.
43     *
44     * <p>This class and its iterator implement all of the <em>optional</em>
45     * methods of the {@link Collection} and {@link Iterator} interfaces.
46 jsr166 1.1 *
47     * <p>Memory consistency effects: As with other concurrent
48     * collections, actions in a thread prior to placing an object into a
49     * {@code LinkedTransferQueue}
50     * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
51     * actions subsequent to the access or removal of that element from
52     * the {@code LinkedTransferQueue} in another thread.
53     *
54     * <p>This class is a member of the
55     * <a href="{@docRoot}/../technotes/guides/collections/index.html">
56     * Java Collections Framework</a>.
57     *
58     * @since 1.7
59     * @author Doug Lea
60 jsr166 1.75 * @param <E> the type of elements held in this queue
61 jsr166 1.1 */
62     public class LinkedTransferQueue<E> extends AbstractQueue<E>
63     implements TransferQueue<E>, java.io.Serializable {
64     private static final long serialVersionUID = -3223113410248163686L;
65    
66     /*
67 jsr166 1.8 * *** Overview of Dual Queues with Slack ***
68 jsr166 1.1 *
69 jsr166 1.8 * Dual Queues, introduced by Scherer and Scott
70 jsr166 1.99 * (http://www.cs.rochester.edu/~scott/papers/2004_DISC_dual_DS.pdf)
71     * are (linked) queues in which nodes may represent either data or
72 jsr166 1.8 * requests. When a thread tries to enqueue a data node, but
73     * encounters a request node, it instead "matches" and removes it;
74     * and vice versa for enqueuing requests. Blocking Dual Queues
75     * arrange that threads enqueuing unmatched requests block until
76     * other threads provide the match. Dual Synchronous Queues (see
77     * Scherer, Lea, & Scott
78     * http://www.cs.rochester.edu/u/scott/papers/2009_Scherer_CACM_SSQ.pdf)
79     * additionally arrange that threads enqueuing unmatched data also
80     * block. Dual Transfer Queues support all of these modes, as
81     * dictated by callers.
82     *
83     * A FIFO dual queue may be implemented using a variation of the
84     * Michael & Scott (M&S) lock-free queue algorithm
85 jsr166 1.72 * (http://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf).
86 jsr166 1.8 * It maintains two pointer fields, "head", pointing to a
87     * (matched) node that in turn points to the first actual
88     * (unmatched) queue node (or null if empty); and "tail" that
89     * points to the last node on the queue (or again null if
90     * empty). For example, here is a possible queue with four data
91     * elements:
92     *
93     * head tail
94     * | |
95     * v v
96     * M -> U -> U -> U -> U
97     *
98     * The M&S queue algorithm is known to be prone to scalability and
99     * overhead limitations when maintaining (via CAS) these head and
100     * tail pointers. This has led to the development of
101     * contention-reducing variants such as elimination arrays (see
102     * Moir et al http://portal.acm.org/citation.cfm?id=1074013) and
103     * optimistic back pointers (see Ladan-Mozes & Shavit
104     * http://people.csail.mit.edu/edya/publications/OptimisticFIFOQueue-journal.pdf).
105     * However, the nature of dual queues enables a simpler tactic for
106     * improving M&S-style implementations when dual-ness is needed.
107     *
108     * In a dual queue, each node must atomically maintain its match
109     * status. While there are other possible variants, we implement
110     * this here as: for a data-mode node, matching entails CASing an
111     * "item" field from a non-null data value to null upon match, and
112     * vice-versa for request nodes, CASing from null to a data
113     * value. (Note that the linearization properties of this style of
114     * queue are easy to verify -- elements are made available by
115     * linking, and unavailable by matching.) Compared to plain M&S
116     * queues, this property of dual queues requires one additional
117     * successful atomic operation per enq/deq pair. But it also
118     * enables lower cost variants of queue maintenance mechanics. (A
119     * variation of this idea applies even for non-dual queues that
120     * support deletion of interior elements, such as
121     * j.u.c.ConcurrentLinkedQueue.)
122     *
123     * Once a node is matched, its match status can never again
124     * change. We may thus arrange that the linked list of them
125     * contain a prefix of zero or more matched nodes, followed by a
126     * suffix of zero or more unmatched nodes. (Note that we allow
127     * both the prefix and suffix to be zero length, which in turn
128     * means that we do not use a dummy header.) If we were not
129     * concerned with either time or space efficiency, we could
130     * correctly perform enqueue and dequeue operations by traversing
131     * from a pointer to the initial node; CASing the item of the
132     * first unmatched node on match and CASing the next field of the
133 jsr166 1.140 * trailing node on appends. While this would be a terrible idea
134     * in itself, it does have the benefit of not requiring ANY atomic
135 jsr166 1.8 * updates on head/tail fields.
136     *
137     * We introduce here an approach that lies between the extremes of
138     * never versus always updating queue (head and tail) pointers.
139     * This offers a tradeoff between sometimes requiring extra
140     * traversal steps to locate the first and/or last unmatched
141     * nodes, versus the reduced overhead and contention of fewer
142     * updates to queue pointers. For example, a possible snapshot of
143     * a queue is:
144     *
145     * head tail
146     * | |
147     * v v
148     * M -> M -> U -> U -> U -> U
149     *
150     * The best value for this "slack" (the targeted maximum distance
151     * between the value of "head" and the first unmatched node, and
152     * similarly for "tail") is an empirical matter. We have found
153     * that using very small constants in the range of 1-3 work best
154     * over a range of platforms. Larger values introduce increasing
155     * costs of cache misses and risks of long traversal chains, while
156     * smaller values increase CAS contention and overhead.
157     *
158     * Dual queues with slack differ from plain M&S dual queues by
159     * virtue of only sometimes updating head or tail pointers when
160     * matching, appending, or even traversing nodes; in order to
161     * maintain a targeted slack. The idea of "sometimes" may be
162     * operationalized in several ways. The simplest is to use a
163     * per-operation counter incremented on each traversal step, and
164     * to try (via CAS) to update the associated queue pointer
165     * whenever the count exceeds a threshold. Another, that requires
166     * more overhead, is to use random number generators to update
167     * with a given probability per traversal step.
168     *
169     * In any strategy along these lines, because CASes updating
170 jsr166 1.126 * fields may fail, the actual slack may exceed targeted slack.
171     * However, they may be retried at any time to maintain targets.
172     * Even when using very small slack values, this approach works
173     * well for dual queues because it allows all operations up to the
174     * point of matching or appending an item (hence potentially
175     * allowing progress by another thread) to be read-only, thus not
176     * introducing any further contention. As described below, we
177     * implement this by performing slack maintenance retries only
178     * after these points.
179 jsr166 1.8 *
180     * As an accompaniment to such techniques, traversal overhead can
181     * be further reduced without increasing contention of head
182     * pointer updates: Threads may sometimes shortcut the "next" link
183     * path from the current "head" node to be closer to the currently
184     * known first unmatched node, and similarly for tail. Again, this
185     * may be triggered with using thresholds or randomization.
186     *
187     * These ideas must be further extended to avoid unbounded amounts
188     * of costly-to-reclaim garbage caused by the sequential "next"
189     * links of nodes starting at old forgotten head nodes: As first
190     * described in detail by Boehm
191 jsr166 1.69 * (http://portal.acm.org/citation.cfm?doid=503272.503282), if a GC
192 jsr166 1.8 * delays noticing that any arbitrarily old node has become
193     * garbage, all newer dead nodes will also be unreclaimed.
194     * (Similar issues arise in non-GC environments.) To cope with
195     * this in our implementation, upon CASing to advance the head
196     * pointer, we set the "next" link of the previous head to point
197 jsr166 1.127 * only to itself; thus limiting the length of chains of dead nodes.
198 jsr166 1.8 * (We also take similar care to wipe out possibly garbage
199     * retaining values held in other Node fields.) However, doing so
200     * adds some further complexity to traversal: If any "next"
201     * pointer links to itself, it indicates that the current thread
202     * has lagged behind a head-update, and so the traversal must
203     * continue from the "head". Traversals trying to find the
204     * current tail starting from "tail" may also encounter
205     * self-links, in which case they also continue at "head".
206     *
207     * It is tempting in slack-based scheme to not even use CAS for
208     * updates (similarly to Ladan-Mozes & Shavit). However, this
209     * cannot be done for head updates under the above link-forgetting
210     * mechanics because an update may leave head at a detached node.
211     * And while direct writes are possible for tail updates, they
212     * increase the risk of long retraversals, and hence long garbage
213     * chains, which can be much more costly than is worthwhile
214     * considering that the cost difference of performing a CAS vs
215     * write is smaller when they are not triggered on each operation
216     * (especially considering that writes and CASes equally require
217     * additional GC bookkeeping ("write barriers") that are sometimes
218     * more costly than the writes themselves because of contention).
219     *
220     * *** Overview of implementation ***
221     *
222     * We use a threshold-based approach to updates, with a slack
223     * threshold of two -- that is, we update head/tail when the
224     * current pointer appears to be two or more steps away from the
225     * first/last node. The slack value is hard-wired: a path greater
226     * than one is naturally implemented by checking equality of
227     * traversal pointers except when the list has only one element,
228     * in which case we keep slack threshold at one. Avoiding tracking
229     * explicit counts across method calls slightly simplifies an
230     * already-messy implementation. Using randomization would
231     * probably work better if there were a low-quality dirt-cheap
232     * per-thread one available, but even ThreadLocalRandom is too
233     * heavy for these purposes.
234     *
235 dl 1.16 * With such a small slack threshold value, it is not worthwhile
236     * to augment this with path short-circuiting (i.e., unsplicing
237     * interior nodes) except in the case of cancellation/removal (see
238     * below).
239 jsr166 1.8 *
240     * All enqueue/dequeue operations are handled by the single method
241     * "xfer" with parameters indicating whether to act as some form
242     * of offer, put, poll, take, or transfer (each possibly with
243     * timeout). The relative complexity of using one monolithic
244     * method outweighs the code bulk and maintenance problems of
245     * using separate methods for each case.
246     *
247     * Operation consists of up to three phases. The first is
248     * implemented within method xfer, the second in tryAppend, and
249     * the third in method awaitMatch.
250     *
251     * 1. Try to match an existing node
252     *
253     * Starting at head, skip already-matched nodes until finding
254     * an unmatched node of opposite mode, if one exists, in which
255     * case matching it and returning, also if necessary updating
256     * head to one past the matched node (or the node itself if the
257     * list has no other unmatched nodes). If the CAS misses, then
258     * a loop retries advancing head by two steps until either
259     * success or the slack is at most two. By requiring that each
260     * attempt advances head by two (if applicable), we ensure that
261     * the slack does not grow without bound. Traversals also check
262     * if the initial head is now off-list, in which case they
263 jsr166 1.128 * restart at the new head.
264 jsr166 1.8 *
265     * If no candidates are found and the call was untimed
266 jsr166 1.128 * poll/offer (argument "how" is NOW), return.
267 jsr166 1.8 *
268     * 2. Try to append a new node (method tryAppend)
269     *
270     * Starting at current tail pointer, find the actual last node
271 jsr166 1.140 * and try to append a new node. Nodes can be appended only if
272     * their predecessors are either already matched or are of the
273     * same mode. If we detect otherwise, then a new node with
274     * opposite mode must have been appended during traversal, so
275     * we must restart at phase 1. The traversal and update steps
276     * are otherwise similar to phase 1: Retrying upon CAS misses
277     * and checking for staleness. In particular, if a self-link
278     * is encountered, then we can safely jump to a node on the
279     * list by continuing the traversal at current head.
280 jsr166 1.8 *
281     * On successful append, if the call was ASYNC, return.
282     *
283     * 3. Await match or cancellation (method awaitMatch)
284     *
285     * Wait for another thread to match node; instead cancelling if
286     * the current thread was interrupted or the wait timed out. On
287     * multiprocessors, we use front-of-queue spinning: If a node
288     * appears to be the first unmatched node in the queue, it
289     * spins a bit before blocking. In either case, before blocking
290     * it tries to unsplice any nodes between the current "head"
291     * and the first unmatched node.
292     *
293     * Front-of-queue spinning vastly improves performance of
294     * heavily contended queues. And so long as it is relatively
295     * brief and "quiet", spinning does not much impact performance
296     * of less-contended queues. During spins threads check their
297     * interrupt status and generate a thread-local random number
298     * to decide to occasionally perform a Thread.yield. While
299 jsr166 1.44 * yield has underdefined specs, we assume that it might help,
300 jsr166 1.45 * and will not hurt, in limiting impact of spinning on busy
301 jsr166 1.8 * systems. We also use smaller (1/2) spins for nodes that are
302     * not known to be front but whose predecessors have not
303     * blocked -- these "chained" spins avoid artifacts of
304     * front-of-queue rules which otherwise lead to alternating
305     * nodes spinning vs blocking. Further, front threads that
306     * represent phase changes (from data to request node or vice
307     * versa) compared to their predecessors receive additional
308     * chained spins, reflecting longer paths typically required to
309     * unblock threads during phase changes.
310 dl 1.16 *
311     *
312     * ** Unlinking removed interior nodes **
313     *
314     * In addition to minimizing garbage retention via self-linking
315     * described above, we also unlink removed interior nodes. These
316     * may arise due to timed out or interrupted waits, or calls to
317     * remove(x) or Iterator.remove. Normally, given a node that was
318     * at one time known to be the predecessor of some node s that is
319     * to be removed, we can unsplice s by CASing the next field of
320     * its predecessor if it still points to s (otherwise s must
321     * already have been removed or is now offlist). But there are two
322     * situations in which we cannot guarantee to make node s
323     * unreachable in this way: (1) If s is the trailing node of list
324     * (i.e., with null next), then it is pinned as the target node
325 jsr166 1.23 * for appends, so can only be removed later after other nodes are
326 dl 1.16 * appended. (2) We cannot necessarily unlink s given a
327     * predecessor node that is matched (including the case of being
328 jsr166 1.17 * cancelled): the predecessor may already be unspliced, in which
329     * case some previous reachable node may still point to s.
330     * (For further explanation see Herlihy & Shavit "The Art of
331 dl 1.16 * Multiprocessor Programming" chapter 9). Although, in both
332     * cases, we can rule out the need for further action if either s
333     * or its predecessor are (or can be made to be) at, or fall off
334     * from, the head of list.
335     *
336     * Without taking these into account, it would be possible for an
337     * unbounded number of supposedly removed nodes to remain
338     * reachable. Situations leading to such buildup are uncommon but
339     * can occur in practice; for example when a series of short timed
340     * calls to poll repeatedly time out but never otherwise fall off
341     * the list because of an untimed call to take at the front of the
342     * queue.
343     *
344     * When these cases arise, rather than always retraversing the
345     * entire list to find an actual predecessor to unlink (which
346     * won't help for case (1) anyway), we record a conservative
347 jsr166 1.24 * estimate of possible unsplice failures (in "sweepVotes").
348     * We trigger a full sweep when the estimate exceeds a threshold
349     * ("SWEEP_THRESHOLD") indicating the maximum number of estimated
350     * removal failures to tolerate before sweeping through, unlinking
351     * cancelled nodes that were not unlinked upon initial removal.
352     * We perform sweeps by the thread hitting threshold (rather than
353     * background threads or by spreading work to other threads)
354     * because in the main contexts in which removal occurs, the
355     * caller is already timed-out, cancelled, or performing a
356     * potentially O(n) operation (e.g. remove(x)), none of which are
357     * time-critical enough to warrant the overhead that alternatives
358     * would impose on other threads.
359 dl 1.16 *
360     * Because the sweepVotes estimate is conservative, and because
361     * nodes become unlinked "naturally" as they fall off the head of
362     * the queue, and because we allow votes to accumulate even while
363 jsr166 1.17 * sweeps are in progress, there are typically significantly fewer
364 dl 1.16 * such nodes than estimated. Choice of a threshold value
365     * balances the likelihood of wasted effort and contention, versus
366     * providing a worst-case bound on retention of interior nodes in
367     * quiescent queues. The value defined below was chosen
368     * empirically to balance these under various timeout scenarios.
369     *
370     * Note that we cannot self-link unlinked interior nodes during
371     * sweeps. However, the associated garbage chains terminate when
372     * some successor ultimately falls off the head of the list and is
373     * self-linked.
374 jsr166 1.8 */
375    
376     /** True if on multiprocessor */
377     private static final boolean MP =
378     Runtime.getRuntime().availableProcessors() > 1;
379    
380     /**
381     * The number of times to spin (with randomly interspersed calls
382     * to Thread.yield) on multiprocessor before blocking when a node
383     * is apparently the first waiter in the queue. See above for
384     * explanation. Must be a power of two. The value is empirically
385     * derived -- it works pretty well across a variety of processors,
386     * numbers of CPUs, and OSes.
387     */
388     private static final int FRONT_SPINS = 1 << 7;
389    
390     /**
391     * The number of times to spin before blocking when a node is
392     * preceded by another node that is apparently spinning. Also
393     * serves as an increment to FRONT_SPINS on phase changes, and as
394     * base average frequency for yielding during spins. Must be a
395     * power of two.
396     */
397     private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
398    
399     /**
400 dl 1.16 * The maximum number of estimated removal failures (sweepVotes)
401     * to tolerate before sweeping through the queue unlinking
402     * cancelled nodes that were not unlinked upon initial
403     * removal. See above for explanation. The value must be at least
404     * two to avoid useless sweeps when removing trailing nodes.
405     */
406     static final int SWEEP_THRESHOLD = 32;
407    
408     /**
409 jsr166 1.8 * Queue nodes. Uses Object, not E, for items to allow forgetting
410 jsr166 1.142 * them after use. Writes that are intrinsically ordered wrt
411     * other accesses or CASes use simple relaxed forms.
412 jsr166 1.8 */
413 jsr166 1.14 static final class Node {
414 jsr166 1.8 final boolean isData; // false if this is a request node
415     volatile Object item; // initially non-null if isData; CASed to match
416 jsr166 1.14 volatile Node next;
417 jsr166 1.142 volatile Thread waiter; // null when not waiting for a match
418 jsr166 1.1
419 jsr166 1.8 /**
420 jsr166 1.140 * Constructs a data node holding item if item is non-null,
421     * else a request node. Uses relaxed write because item can
422     * only be seen after piggy-backing publication via CAS.
423 jsr166 1.8 */
424 jsr166 1.101 Node(Object item) {
425 jsr166 1.104 ITEM.set(this, item);
426 jsr166 1.101 isData = (item != null);
427 jsr166 1.8 }
428 jsr166 1.1
429 jsr166 1.142 /** Constructs a (matched data) dummy node. */
430 jsr166 1.140 Node() {
431     isData = true;
432     }
433    
434 jsr166 1.142 final boolean casNext(Node cmp, Node val) {
435     // assert val != null;
436     return NEXT.compareAndSet(this, cmp, val);
437     }
438    
439     final boolean casItem(Object cmp, Object val) {
440     // assert isData == (cmp != null);
441     // assert isData == (val == null);
442     // assert !(cmp instanceof Node);
443     return ITEM.compareAndSet(this, cmp, val);
444     }
445    
446 jsr166 1.8 /**
447     * Links node to itself to avoid garbage retention. Called
448     * only after CASing head field, so uses relaxed write.
449     */
450 jsr166 1.142 final void selfLink() {
451     // assert isMatched();
452 jsr166 1.121 NEXT.setRelease(this, this);
453 jsr166 1.8 }
454 jsr166 1.1
455 jsr166 1.140 final void appendRelaxed(Node next) {
456     // assert next != null;
457     // assert this.next == null;
458     NEXT.set(this, next);
459     }
460    
461 jsr166 1.8 /**
462 jsr166 1.105 * Sets item (of a request node) to self and waiter to null,
463     * to avoid garbage retention after matching or cancelling.
464     * Uses relaxed writes because order is already constrained in
465     * the only calling contexts: item is forgotten only after
466 jsr166 1.121 * volatile/atomic mechanics that extract items, and visitors
467     * of request nodes only ever check whether item is null.
468     * Similarly, clearing waiter follows either CAS or return
469     * from park (if ever parked; else we don't care).
470 jsr166 1.8 */
471     final void forgetContents() {
472 jsr166 1.105 // assert isMatched();
473     if (!isData)
474     ITEM.set(this, this);
475 dl 1.97 WAITER.set(this, null);
476 jsr166 1.8 }
477 jsr166 1.1
478 jsr166 1.8 /**
479     * Returns true if this node has been matched, including the
480     * case of artificial matches due to cancellation.
481     */
482     final boolean isMatched() {
483 jsr166 1.105 return isData == (item == null);
484 jsr166 1.11 }
485    
486 jsr166 1.142 /** Tries to CAS-match this node; if successful, wakes waiter. */
487     final boolean tryMatch(Object cmp, Object val) {
488     if (casItem(cmp, val)) {
489     LockSupport.unpark(waiter);
490     return true;
491     }
492     return false;
493     }
494    
495 jsr166 1.11 /**
496 jsr166 1.8 * Returns true if a node with the given mode cannot be
497     * appended to this node because this node is unmatched and
498     * has opposite data mode.
499     */
500     final boolean cannotPrecede(boolean haveData) {
501     boolean d = isData;
502 jsr166 1.105 return d != haveData && d != (item == null);
503 jsr166 1.8 }
504 jsr166 1.1
505 dl 1.38 private static final long serialVersionUID = -3375979862319811754L;
506 jsr166 1.1 }
507    
508 jsr166 1.140 /**
509     * A node from which the first live (non-matched) node (if any)
510     * can be reached in O(1) time.
511     * Invariants:
512     * - all live nodes are reachable from head via .next
513     * - head != null
514     * - (tmp = head).next != tmp || tmp != head
515     * Non-invariants:
516     * - head may or may not be live
517     * - it is permitted for tail to lag behind head, that is, for tail
518     * to not be reachable from head!
519     */
520 jsr166 1.14 transient volatile Node head;
521 jsr166 1.8
522 jsr166 1.140 /**
523     * A node from which the last node on list (that is, the unique
524     * node with node.next == null) can be reached in O(1) time.
525     * Invariants:
526     * - the last node is always reachable from tail via .next
527     * - tail != null
528     * Non-invariants:
529     * - tail may or may not be live
530     * - it is permitted for tail to lag behind head, that is, for tail
531     * to not be reachable from head!
532     * - tail.next may or may not be self-linked.
533     */
534 jsr166 1.14 private transient volatile Node tail;
535 jsr166 1.1
536 dl 1.16 /** The number of apparent failures to unsplice removed nodes */
537     private transient volatile int sweepVotes;
538    
539 jsr166 1.14 private boolean casTail(Node cmp, Node val) {
540 jsr166 1.140 // assert cmp != null;
541     // assert val != null;
542 dl 1.97 return TAIL.compareAndSet(this, cmp, val);
543 jsr166 1.8 }
544 jsr166 1.1
545 jsr166 1.14 private boolean casHead(Node cmp, Node val) {
546 dl 1.97 return HEAD.compareAndSet(this, cmp, val);
547 jsr166 1.8 }
548 jsr166 1.1
549 dl 1.16 private boolean casSweepVotes(int cmp, int val) {
550 dl 1.97 return SWEEPVOTES.compareAndSet(this, cmp, val);
551 jsr166 1.8 }
552 jsr166 1.1
553 jsr166 1.122 /**
554     * Tries to CAS pred.next (or head, if pred is null) from c to p.
555 jsr166 1.133 * Caller must ensure that we're not unlinking the trailing node.
556 jsr166 1.122 */
557     private boolean tryCasSuccessor(Node pred, Node c, Node p) {
558 jsr166 1.133 // assert p != null;
559 jsr166 1.136 // assert c.isData != (c.item != null);
560 jsr166 1.122 // assert c != p;
561     if (pred != null)
562     return pred.casNext(c, p);
563     if (casHead(c, p)) {
564 jsr166 1.142 c.selfLink();
565 jsr166 1.122 return true;
566     }
567     return false;
568     }
569    
570 jsr166 1.137 /**
571 jsr166 1.144 * Collapses dead (matched) nodes between pred and q.
572 jsr166 1.137 * @param pred the last known live node, or null if none
573     * @param c the first dead node
574     * @param p the last dead node
575     * @param q p.next: the next live node, or null if at end
576     * @return either old pred or p if pred dead or CAS failed
577     */
578     private Node skipDeadNodes(Node pred, Node c, Node p, Node q) {
579     // assert pred != c;
580     // assert p != q;
581     // assert c.isMatched();
582     // assert p.isMatched();
583     if (q == null) {
584     // Never unlink trailing node.
585     if (c == p) return pred;
586     q = p;
587     }
588     return (tryCasSuccessor(pred, c, q)
589     && (pred == null || !pred.isMatched()))
590     ? pred : p;
591     }
592    
593 jsr166 1.144 /**
594     * Collapses dead (matched) nodes between h and p.
595     * h was once head, and all nodes between h and p are dead.
596     */
597     private void skipDeadNodesNearHead(Node h, Node p) {
598     // assert h != p;
599     // assert p.isMatched();
600     // find live or trailing node, starting at p
601     for (Node q; (q = p.next) != null; ) {
602     if (!q.isMatched()) {
603     p = q;
604     break;
605     }
606     if (p == (p = q))
607     return;
608     }
609     if (h == HEAD.getAcquire(this) && casHead(h, p))
610     h.selfLink();
611     }
612    
613 jsr166 1.137 /* Possible values for "how" argument in xfer method. */
614    
615 jsr166 1.14 private static final int NOW = 0; // for untimed poll, tryTransfer
616     private static final int ASYNC = 1; // for offer, put, add
617     private static final int SYNC = 2; // for transfer, take
618     private static final int TIMED = 3; // for timed poll, tryTransfer
619 jsr166 1.1
620     /**
621 jsr166 1.8 * Implements all queuing methods. See above for explanation.
622 jsr166 1.1 *
623 jsr166 1.8 * @param e the item or null for take
624     * @param haveData true if this is a put, else a take
625 jsr166 1.14 * @param how NOW, ASYNC, SYNC, or TIMED
626     * @param nanos timeout in nanosecs, used only if mode is TIMED
627 jsr166 1.8 * @return an item if matched, else e
628     * @throws NullPointerException if haveData mode but e is null
629 jsr166 1.1 */
630 jsr166 1.8 private E xfer(E e, boolean haveData, int how, long nanos) {
631     if (haveData && (e == null))
632     throw new NullPointerException();
633 jsr166 1.130 Node s = null; // the node to append, if needed
634 jsr166 1.1
635 jsr166 1.119 restartFromHead: for (;;) {
636 jsr166 1.14 for (Node h = head, p = h; p != null;) { // find & match first node
637 jsr166 1.141 final boolean isData;
638     final Object item;
639     if (((item = p.item) != null) == (isData = p.isData)) {
640     // unmatched
641 jsr166 1.8 if (isData == haveData) // can't match
642     break;
643 jsr166 1.142 if (p.tryMatch(item, e)) {
644 jsr166 1.143 // collapse at least 2
645 jsr166 1.144 if (h != p) skipDeadNodesNearHead(h, p);
646 jsr166 1.70 @SuppressWarnings("unchecked") E itemE = (E) item;
647     return itemE;
648 jsr166 1.1 }
649     }
650 jsr166 1.135 if (p == (p = p.next))
651     continue restartFromHead;
652 jsr166 1.8 }
653    
654 jsr166 1.14 if (how != NOW) { // No matches available
655 jsr166 1.130 if (s == null)
656     s = new Node(e);
657 jsr166 1.14 Node pred = tryAppend(s, haveData);
658 jsr166 1.8 if (pred == null)
659 jsr166 1.119 continue restartFromHead; // lost race vs opposite mode
660 jsr166 1.14 if (how != ASYNC)
661     return awaitMatch(s, pred, e, (how == TIMED), nanos);
662 jsr166 1.1 }
663 jsr166 1.8 return e; // not waiting
664 jsr166 1.1 }
665     }
666    
667     /**
668 jsr166 1.8 * Tries to append node s as tail.
669     *
670     * @param s the node to append
671     * @param haveData true if appending in data mode
672     * @return null on failure due to losing race with append in
673 jsr166 1.147 * different mode, else s's predecessor
674 jsr166 1.1 */
675 jsr166 1.14 private Node tryAppend(Node s, boolean haveData) {
676 jsr166 1.140 // assert head != null;
677     // assert tail != null;
678 jsr166 1.144 // assert s.isData == haveData;
679 jsr166 1.14 for (Node t = tail, p = t;;) { // move p to last node and append
680 jsr166 1.146 Node n;
681 jsr166 1.145 if (p.cannotPrecede(haveData))
682 jsr166 1.8 return null; // lost race vs opposite mode
683     else if ((n = p.next) != null) // not last; keep traversing
684 jsr166 1.146 p = (p != t && t != (t = tail)) ? t : // stale tail
685 jsr166 1.145 (p != n) ? n : head; // restart if off list
686 jsr166 1.8 else if (!p.casNext(null, s))
687     p = p.next; // re-read on CAS failure
688     else {
689     if (p != t) { // update if slack now >= 2
690     while ((tail != t || !casTail(t, s)) &&
691     (t = tail) != null &&
692     (s = t.next) != null && // advance and retry
693     (s = s.next) != null && s != t);
694 jsr166 1.1 }
695 jsr166 1.8 return p;
696 jsr166 1.1 }
697     }
698     }
699    
700     /**
701 jsr166 1.8 * Spins/yields/blocks until node s is matched or caller gives up.
702 jsr166 1.1 *
703     * @param s the waiting node
704 jsr166 1.8 * @param pred the predecessor of s, or s itself if it has no
705     * predecessor, or null if unknown (the null case does not occur
706     * in any current calls but may in possible future extensions)
707 jsr166 1.1 * @param e the comparison value for checking match
708 jsr166 1.14 * @param timed if true, wait only until timeout elapses
709     * @param nanos timeout in nanosecs, used only if timed is true
710 jsr166 1.8 * @return matched item, or e if unmatched on interrupt or timeout
711 jsr166 1.1 */
712 jsr166 1.14 private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
713 jsr166 1.51 final long deadline = timed ? System.nanoTime() + nanos : 0L;
714 jsr166 1.8 Thread w = Thread.currentThread();
715     int spins = -1; // initialized after first item and cancel checks
716     ThreadLocalRandom randomYields = null; // bound if needed
717 jsr166 1.1
718     for (;;) {
719 jsr166 1.141 final Object item;
720     if ((item = s.item) != e) { // matched
721 dl 1.33 // assert item != s;
722 jsr166 1.8 s.forgetContents(); // avoid garbage
723 jsr166 1.70 @SuppressWarnings("unchecked") E itemE = (E) item;
724     return itemE;
725 jsr166 1.8 }
726 jsr166 1.95 else if (w.isInterrupted() || (timed && nanos <= 0L)) {
727 jsr166 1.102 // try to cancel and unlink
728 jsr166 1.105 if (s.casItem(e, s.isData ? null : s)) {
729 jsr166 1.102 unsplice(pred, s);
730 jsr166 1.77 return e;
731 jsr166 1.102 }
732     // return normally if lost CAS
733 jsr166 1.8 }
734 dl 1.84 else if (spins < 0) { // establish spins at/near front
735 jsr166 1.8 if ((spins = spinsFor(pred, s.isData)) > 0)
736     randomYields = ThreadLocalRandom.current();
737     }
738     else if (spins > 0) { // spin
739 dl 1.16 --spins;
740     if (randomYields.nextInt(CHAINED_SPINS) == 0)
741 jsr166 1.8 Thread.yield(); // occasionally yield
742     }
743     else if (s.waiter == null) {
744     s.waiter = w; // request unpark then recheck
745 jsr166 1.1 }
746 jsr166 1.14 else if (timed) {
747 jsr166 1.51 nanos = deadline - System.nanoTime();
748     if (nanos > 0L)
749 jsr166 1.8 LockSupport.parkNanos(this, nanos);
750 jsr166 1.1 }
751 jsr166 1.8 else {
752 jsr166 1.1 LockSupport.park(this);
753     }
754 jsr166 1.8 }
755     }
756    
757     /**
758     * Returns spin/yield value for a node with given predecessor and
759     * data mode. See above for explanation.
760     */
761 jsr166 1.14 private static int spinsFor(Node pred, boolean haveData) {
762 jsr166 1.8 if (MP && pred != null) {
763     if (pred.isData != haveData) // phase change
764     return FRONT_SPINS + CHAINED_SPINS;
765     if (pred.isMatched()) // probably at front
766     return FRONT_SPINS;
767     if (pred.waiter == null) // pred apparently spinning
768     return CHAINED_SPINS;
769     }
770     return 0;
771     }
772    
773     /* -------------- Traversal methods -------------- */
774    
775     /**
776 jsr166 1.93 * Returns the first unmatched data node, or null if none.
777 jsr166 1.105 * Callers must recheck if the returned node is unmatched
778     * before using.
779 dl 1.52 */
780     final Node firstDataNode() {
781 jsr166 1.139 Node first = null;
782 jsr166 1.91 restartFromHead: for (;;) {
783 jsr166 1.139 Node h = head, p = h;
784     for (; p != null;) {
785     final Object item;
786     if ((item = p.item) != null) {
787     if (p.isData) {
788     first = p;
789     break;
790     }
791 jsr166 1.91 }
792 jsr166 1.139 else if (!p.isData)
793     break;
794     final Node q;
795     if ((q = p.next) == null)
796 jsr166 1.91 break;
797 jsr166 1.139 if (p == (p = q))
798 jsr166 1.91 continue restartFromHead;
799 dl 1.52 }
800 jsr166 1.139 if (p != h && casHead(h, p))
801 jsr166 1.142 h.selfLink();
802 jsr166 1.139 return first;
803 dl 1.52 }
804     }
805    
806     /**
807 jsr166 1.8 * Traverses and counts unmatched nodes of the given mode.
808     * Used by methods size and getWaitingConsumerCount.
809 jsr166 1.1 */
810 jsr166 1.8 private int countOfMode(boolean data) {
811 jsr166 1.73 restartFromHead: for (;;) {
812     int count = 0;
813     for (Node p = head; p != null;) {
814     if (!p.isMatched()) {
815     if (p.isData != data)
816     return 0;
817     if (++count == Integer.MAX_VALUE)
818     break; // @see Collection.size()
819     }
820 jsr166 1.81 if (p == (p = p.next))
821 jsr166 1.73 continue restartFromHead;
822 jsr166 1.1 }
823 jsr166 1.73 return count;
824 jsr166 1.8 }
825     }
826    
827 jsr166 1.82 public String toString() {
828     String[] a = null;
829     restartFromHead: for (;;) {
830     int charLength = 0;
831     int size = 0;
832     for (Node p = head; p != null;) {
833     Object item = p.item;
834     if (p.isData) {
835 jsr166 1.105 if (item != null) {
836 jsr166 1.82 if (a == null)
837     a = new String[4];
838     else if (size == a.length)
839     a = Arrays.copyOf(a, 2 * size);
840     String s = item.toString();
841     a[size++] = s;
842     charLength += s.length();
843     }
844     } else if (item == null)
845     break;
846     if (p == (p = p.next))
847     continue restartFromHead;
848     }
849    
850     if (size == 0)
851     return "[]";
852    
853 jsr166 1.83 return Helpers.toString(a, size, charLength);
854 jsr166 1.82 }
855     }
856    
857     private Object[] toArrayInternal(Object[] a) {
858     Object[] x = a;
859     restartFromHead: for (;;) {
860     int size = 0;
861     for (Node p = head; p != null;) {
862     Object item = p.item;
863     if (p.isData) {
864 jsr166 1.105 if (item != null) {
865 jsr166 1.82 if (x == null)
866     x = new Object[4];
867     else if (size == x.length)
868     x = Arrays.copyOf(x, 2 * (size + 4));
869     x[size++] = item;
870     }
871     } else if (item == null)
872     break;
873     if (p == (p = p.next))
874     continue restartFromHead;
875     }
876     if (x == null)
877     return new Object[0];
878     else if (a != null && size <= a.length) {
879     if (a != x)
880     System.arraycopy(x, 0, a, 0, size);
881     if (size < a.length)
882     a[size] = null;
883     return a;
884     }
885     return (size == x.length) ? x : Arrays.copyOf(x, size);
886     }
887     }
888    
889     /**
890     * Returns an array containing all of the elements in this queue, in
891     * proper sequence.
892     *
893     * <p>The returned array will be "safe" in that no references to it are
894     * maintained by this queue. (In other words, this method must allocate
895     * a new array). The caller is thus free to modify the returned array.
896     *
897     * <p>This method acts as bridge between array-based and collection-based
898     * APIs.
899     *
900     * @return an array containing all of the elements in this queue
901     */
902     public Object[] toArray() {
903     return toArrayInternal(null);
904     }
905    
906     /**
907     * Returns an array containing all of the elements in this queue, in
908     * proper sequence; the runtime type of the returned array is that of
909     * the specified array. If the queue fits in the specified array, it
910     * is returned therein. Otherwise, a new array is allocated with the
911     * runtime type of the specified array and the size of this queue.
912     *
913     * <p>If this queue fits in the specified array with room to spare
914     * (i.e., the array has more elements than this queue), the element in
915     * the array immediately following the end of the queue is set to
916     * {@code null}.
917     *
918     * <p>Like the {@link #toArray()} method, this method acts as bridge between
919     * array-based and collection-based APIs. Further, this method allows
920     * precise control over the runtime type of the output array, and may,
921     * under certain circumstances, be used to save allocation costs.
922     *
923     * <p>Suppose {@code x} is a queue known to contain only strings.
924     * The following code can be used to dump the queue into a newly
925     * allocated array of {@code String}:
926     *
927     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
928     *
929     * Note that {@code toArray(new Object[0])} is identical in function to
930     * {@code toArray()}.
931     *
932     * @param a the array into which the elements of the queue are to
933     * be stored, if it is big enough; otherwise, a new array of the
934     * same runtime type is allocated for this purpose
935     * @return an array containing all of the elements in this queue
936     * @throws ArrayStoreException if the runtime type of the specified array
937     * is not a supertype of the runtime type of every element in
938     * this queue
939     * @throws NullPointerException if the specified array is null
940     */
941     @SuppressWarnings("unchecked")
942     public <T> T[] toArray(T[] a) {
943 jsr166 1.111 Objects.requireNonNull(a);
944 jsr166 1.82 return (T[]) toArrayInternal(a);
945     }
946    
947 jsr166 1.134 /**
948     * Weakly-consistent iterator.
949     *
950     * Lazily updated ancestor is expected to be amortized O(1) remove(),
951     * but O(n) in the worst case, when lastRet is concurrently deleted.
952     */
953 jsr166 1.8 final class Itr implements Iterator<E> {
954 jsr166 1.14 private Node nextNode; // next node to return item for
955     private E nextItem; // the corresponding item
956     private Node lastRet; // last returned node, to support remove
957 jsr166 1.134 private Node ancestor; // Helps unlink lastRet on remove()
958 jsr166 1.8
959     /**
960 jsr166 1.134 * Moves to next node after pred, or first node if pred null.
961 jsr166 1.8 */
962 jsr166 1.134 @SuppressWarnings("unchecked")
963     private void advance(Node pred) {
964     for (Node p = (pred == null) ? head : pred.next, c = p;
965     p != null; ) {
966     final Object item;
967     if ((item = p.item) != null && p.isData) {
968     nextNode = p;
969     nextItem = (E) item;
970     if (c != p)
971     tryCasSuccessor(pred, c, p);
972     return;
973     }
974     else if (!p.isData && item == null)
975 dl 1.33 break;
976 jsr166 1.134 if (c != p && !tryCasSuccessor(pred, c, c = p)) {
977     pred = p;
978     c = p = p.next;
979 dl 1.33 }
980 jsr166 1.134 else if (p == (p = p.next)) {
981     pred = null;
982     c = p = head;
983 jsr166 1.34 }
984 jsr166 1.1 }
985 jsr166 1.134 nextItem = null;
986 jsr166 1.8 nextNode = null;
987     }
988    
989     Itr() {
990     advance(null);
991     }
992    
993     public final boolean hasNext() {
994     return nextNode != null;
995     }
996    
997     public final E next() {
998 jsr166 1.125 final Node p;
999     if ((p = nextNode) == null) throw new NoSuchElementException();
1000 jsr166 1.8 E e = nextItem;
1001 jsr166 1.134 advance(lastRet = p);
1002 jsr166 1.8 return e;
1003     }
1004    
1005 jsr166 1.134 public void forEachRemaining(Consumer<? super E> action) {
1006     Objects.requireNonNull(action);
1007     Node q = null;
1008     for (Node p; (p = nextNode) != null; advance(q = p))
1009     action.accept(nextItem);
1010     if (q != null)
1011     lastRet = q;
1012     }
1013 jsr166 1.116
1014 jsr166 1.8 public final void remove() {
1015 dl 1.33 final Node lastRet = this.lastRet;
1016     if (lastRet == null)
1017     throw new IllegalStateException();
1018     this.lastRet = null;
1019 jsr166 1.134 if (lastRet.item == null) // already deleted?
1020     return;
1021     // Advance ancestor, collapsing intervening dead nodes
1022     Node pred = ancestor;
1023     for (Node p = (pred == null) ? head : pred.next, c = p, q;
1024     p != null; ) {
1025     if (p == lastRet) {
1026 jsr166 1.142 final Object item;
1027     if ((item = p.item) != null)
1028     p.tryMatch(item, null);
1029 jsr166 1.134 if ((q = p.next) == null) q = p;
1030     if (c != q) tryCasSuccessor(pred, c, q);
1031     ancestor = pred;
1032     return;
1033     }
1034     final Object item; final boolean pAlive;
1035     if (pAlive = ((item = p.item) != null && p.isData)) {
1036     // exceptionally, nothing to do
1037     }
1038     else if (!p.isData && item == null)
1039     break;
1040     if ((c != p && !tryCasSuccessor(pred, c, c = p)) || pAlive) {
1041     pred = p;
1042     c = p = p.next;
1043     }
1044     else if (p == (p = p.next)) {
1045     pred = null;
1046     c = p = head;
1047     }
1048     }
1049     // traversal failed to find lastRet; must have been deleted;
1050     // leave ancestor at original location to avoid overshoot;
1051     // better luck next time!
1052    
1053     // assert lastRet.isMatched();
1054 jsr166 1.1 }
1055     }
1056 jsr166 1.53
1057 dl 1.57 /** A customized variant of Spliterators.IteratorSpliterator */
1058 jsr166 1.109 final class LTQSpliterator implements Spliterator<E> {
1059 dl 1.60 static final int MAX_BATCH = 1 << 25; // max batch array size;
1060 jsr166 1.87 Node current; // current node; null until initialized
1061 dl 1.52 int batch; // batch size for splits
1062     boolean exhausted; // true when no more nodes
1063 jsr166 1.94 LTQSpliterator() {}
1064 dl 1.52
1065     public Spliterator<E> trySplit() {
1066 jsr166 1.115 Node p, q;
1067     if ((p = current()) == null || (q = p.next) == null)
1068     return null;
1069     int i = 0, n = batch = Math.min(batch + 1, MAX_BATCH);
1070     Object[] a = null;
1071     do {
1072     final Object item = p.item;
1073     if (p.isData) {
1074     if (item != null)
1075     ((a != null) ? a : (a = new Object[n]))[i++] = item;
1076     } else if (item == null) {
1077     p = null;
1078     break;
1079 dl 1.60 }
1080 jsr166 1.117 if (p == (p = q))
1081     p = firstDataNode();
1082 jsr166 1.115 } while (p != null && (q = p.next) != null && i < n);
1083     setCurrent(p);
1084     return (i == 0) ? null :
1085     Spliterators.spliterator(a, 0, i, (Spliterator.ORDERED |
1086     Spliterator.NONNULL |
1087     Spliterator.CONCURRENT));
1088 dl 1.52 }
1089    
1090 dl 1.61 public void forEachRemaining(Consumer<? super E> action) {
1091 jsr166 1.111 Objects.requireNonNull(action);
1092 jsr166 1.116 final Node p;
1093 jsr166 1.115 if ((p = current()) != null) {
1094 jsr166 1.107 current = null;
1095 dl 1.52 exhausted = true;
1096 jsr166 1.116 forEachFrom(action, p);
1097 dl 1.52 }
1098     }
1099    
1100     @SuppressWarnings("unchecked")
1101     public boolean tryAdvance(Consumer<? super E> action) {
1102 jsr166 1.111 Objects.requireNonNull(action);
1103 dl 1.52 Node p;
1104 jsr166 1.115 if ((p = current()) != null) {
1105     E e = null;
1106 dl 1.52 do {
1107 jsr166 1.115 final Object item = p.item;
1108     final boolean isData = p.isData;
1109     if (p == (p = p.next))
1110     p = head;
1111     if (isData) {
1112     if (item != null) {
1113     e = (E) item;
1114 jsr166 1.107 break;
1115     }
1116     }
1117 jsr166 1.115 else if (item == null)
1118     p = null;
1119     } while (p != null);
1120     setCurrent(p);
1121     if (e != null) {
1122     action.accept(e);
1123 dl 1.52 return true;
1124     }
1125     }
1126     return false;
1127     }
1128    
1129 jsr166 1.115 private void setCurrent(Node p) {
1130     if ((current = p) == null)
1131     exhausted = true;
1132     }
1133    
1134     private Node current() {
1135     Node p;
1136     if ((p = current) == null && !exhausted)
1137     setCurrent(p = firstDataNode());
1138     return p;
1139     }
1140    
1141 dl 1.54 public long estimateSize() { return Long.MAX_VALUE; }
1142    
1143 dl 1.52 public int characteristics() {
1144 jsr166 1.100 return (Spliterator.ORDERED |
1145     Spliterator.NONNULL |
1146     Spliterator.CONCURRENT);
1147 dl 1.52 }
1148     }
1149    
1150 jsr166 1.67 /**
1151     * Returns a {@link Spliterator} over the elements in this queue.
1152     *
1153 jsr166 1.68 * <p>The returned spliterator is
1154     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1155     *
1156 jsr166 1.67 * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
1157     * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
1158     *
1159     * @implNote
1160     * The {@code Spliterator} implements {@code trySplit} to permit limited
1161     * parallelism.
1162     *
1163     * @return a {@code Spliterator} over the elements in this queue
1164     * @since 1.8
1165     */
1166 dl 1.56 public Spliterator<E> spliterator() {
1167 jsr166 1.109 return new LTQSpliterator();
1168 dl 1.52 }
1169    
1170 jsr166 1.8 /* -------------- Removal methods -------------- */
1171    
1172 jsr166 1.1 /**
1173 jsr166 1.8 * Unsplices (now or later) the given deleted/cancelled node with
1174     * the given predecessor.
1175 jsr166 1.1 *
1176 dl 1.16 * @param pred a node that was at one time known to be the
1177     * predecessor of s, or null or s itself if s is/was at head
1178 jsr166 1.8 * @param s the node to be unspliced
1179 jsr166 1.1 */
1180 dl 1.16 final void unsplice(Node pred, Node s) {
1181 dl 1.71 s.waiter = null; // disable signals
1182 jsr166 1.1 /*
1183 dl 1.16 * See above for rationale. Briefly: if pred still points to
1184     * s, try to unlink s. If s cannot be unlinked, because it is
1185     * trailing node or pred might be unlinked, and neither pred
1186     * nor s are head or offlist, add to sweepVotes, and if enough
1187     * votes have accumulated, sweep.
1188 jsr166 1.1 */
1189 dl 1.16 if (pred != null && pred != s && pred.next == s) {
1190     Node n = s.next;
1191     if (n == null ||
1192     (n != s && pred.casNext(s, n) && pred.isMatched())) {
1193     for (;;) { // check if at, or could be, head
1194     Node h = head;
1195     if (h == pred || h == s || h == null)
1196     return; // at head or list empty
1197     if (!h.isMatched())
1198     break;
1199     Node hn = h.next;
1200     if (hn == null)
1201     return; // now empty
1202     if (hn != h && casHead(h, hn))
1203 jsr166 1.142 h.selfLink(); // advance head
1204 jsr166 1.8 }
1205 dl 1.16 if (pred.next != pred && s.next != s) { // recheck if offlist
1206     for (;;) { // sweep now if enough votes
1207     int v = sweepVotes;
1208     if (v < SWEEP_THRESHOLD) {
1209     if (casSweepVotes(v, v + 1))
1210     break;
1211     }
1212     else if (casSweepVotes(v, 0)) {
1213     sweep();
1214     break;
1215     }
1216     }
1217 jsr166 1.12 }
1218 jsr166 1.1 }
1219     }
1220     }
1221    
1222     /**
1223 jsr166 1.26 * Unlinks matched (typically cancelled) nodes encountered in a
1224     * traversal from head.
1225 jsr166 1.1 */
1226 dl 1.16 private void sweep() {
1227 jsr166 1.20 for (Node p = head, s, n; p != null && (s = p.next) != null; ) {
1228 jsr166 1.28 if (!s.isMatched())
1229     // Unmatched nodes are never self-linked
1230 jsr166 1.20 p = s;
1231 jsr166 1.28 else if ((n = s.next) == null) // trailing node is pinned
1232 jsr166 1.20 break;
1233 jsr166 1.28 else if (s == n) // stale
1234     // No need to also check for p == s, since that implies s == n
1235     p = head;
1236 jsr166 1.20 else
1237 dl 1.16 p.casNext(s, n);
1238 jsr166 1.8 }
1239     }
1240    
1241     /**
1242 jsr166 1.1 * Creates an initially empty {@code LinkedTransferQueue}.
1243     */
1244     public LinkedTransferQueue() {
1245 jsr166 1.140 head = tail = new Node();
1246 jsr166 1.1 }
1247    
1248     /**
1249     * Creates a {@code LinkedTransferQueue}
1250     * initially containing the elements of the given collection,
1251     * added in traversal order of the collection's iterator.
1252     *
1253     * @param c the collection of elements to initially contain
1254     * @throws NullPointerException if the specified collection or any
1255     * of its elements are null
1256     */
1257     public LinkedTransferQueue(Collection<? extends E> c) {
1258 jsr166 1.140 Node h = null, t = null;
1259     for (E e : c) {
1260     Node newNode = new Node(Objects.requireNonNull(e));
1261     if (h == null)
1262     h = t = newNode;
1263     else
1264     t.appendRelaxed(t = newNode);
1265     }
1266     if (h == null)
1267     h = t = new Node();
1268     head = h;
1269     tail = t;
1270 jsr166 1.1 }
1271    
1272 jsr166 1.4 /**
1273 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1274     * As the queue is unbounded, this method will never block.
1275     *
1276     * @throws NullPointerException if the specified element is null
1277 jsr166 1.4 */
1278 jsr166 1.5 public void put(E e) {
1279 jsr166 1.8 xfer(e, true, ASYNC, 0);
1280 jsr166 1.1 }
1281    
1282 jsr166 1.4 /**
1283 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1284     * As the queue is unbounded, this method will never block or
1285     * return {@code false}.
1286     *
1287     * @return {@code true} (as specified by
1288 jsr166 1.42 * {@link java.util.concurrent.BlockingQueue#offer(Object,long,TimeUnit)
1289     * BlockingQueue.offer})
1290 jsr166 1.5 * @throws NullPointerException if the specified element is null
1291 jsr166 1.4 */
1292 jsr166 1.5 public boolean offer(E e, long timeout, TimeUnit unit) {
1293 jsr166 1.8 xfer(e, true, ASYNC, 0);
1294     return true;
1295 jsr166 1.1 }
1296    
1297 jsr166 1.4 /**
1298 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1299     * As the queue is unbounded, this method will never return {@code false}.
1300     *
1301 jsr166 1.32 * @return {@code true} (as specified by {@link Queue#offer})
1302 jsr166 1.5 * @throws NullPointerException if the specified element is null
1303 jsr166 1.4 */
1304 jsr166 1.1 public boolean offer(E e) {
1305 jsr166 1.8 xfer(e, true, ASYNC, 0);
1306 jsr166 1.1 return true;
1307     }
1308    
1309 jsr166 1.4 /**
1310 jsr166 1.5 * Inserts the specified element at the tail of this queue.
1311     * As the queue is unbounded, this method will never throw
1312     * {@link IllegalStateException} or return {@code false}.
1313     *
1314     * @return {@code true} (as specified by {@link Collection#add})
1315     * @throws NullPointerException if the specified element is null
1316 jsr166 1.4 */
1317 jsr166 1.1 public boolean add(E e) {
1318 jsr166 1.8 xfer(e, true, ASYNC, 0);
1319     return true;
1320 jsr166 1.5 }
1321    
1322     /**
1323 jsr166 1.6 * Transfers the element to a waiting consumer immediately, if possible.
1324     *
1325     * <p>More precisely, transfers the specified element immediately
1326     * if there exists a consumer already waiting to receive it (in
1327     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1328     * otherwise returning {@code false} without enqueuing the element.
1329 jsr166 1.5 *
1330     * @throws NullPointerException if the specified element is null
1331     */
1332     public boolean tryTransfer(E e) {
1333 jsr166 1.8 return xfer(e, true, NOW, 0) == null;
1334 jsr166 1.1 }
1335    
1336 jsr166 1.4 /**
1337 jsr166 1.6 * Transfers the element to a consumer, waiting if necessary to do so.
1338     *
1339     * <p>More precisely, transfers the specified element immediately
1340     * if there exists a consumer already waiting to receive it (in
1341     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1342     * else inserts the specified element at the tail of this queue
1343     * and waits until the element is received by a consumer.
1344 jsr166 1.5 *
1345     * @throws NullPointerException if the specified element is null
1346 jsr166 1.4 */
1347 jsr166 1.1 public void transfer(E e) throws InterruptedException {
1348 jsr166 1.8 if (xfer(e, true, SYNC, 0) != null) {
1349     Thread.interrupted(); // failure possible only due to interrupt
1350 jsr166 1.1 throw new InterruptedException();
1351     }
1352     }
1353    
1354 jsr166 1.4 /**
1355 jsr166 1.6 * Transfers the element to a consumer if it is possible to do so
1356     * before the timeout elapses.
1357     *
1358     * <p>More precisely, transfers the specified element immediately
1359     * if there exists a consumer already waiting to receive it (in
1360     * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1361     * else inserts the specified element at the tail of this queue
1362     * and waits until the element is received by a consumer,
1363     * returning {@code false} if the specified wait time elapses
1364     * before the element can be transferred.
1365 jsr166 1.5 *
1366     * @throws NullPointerException if the specified element is null
1367 jsr166 1.4 */
1368 jsr166 1.1 public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1369     throws InterruptedException {
1370 jsr166 1.14 if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1371 jsr166 1.1 return true;
1372     if (!Thread.interrupted())
1373     return false;
1374     throw new InterruptedException();
1375     }
1376    
1377     public E take() throws InterruptedException {
1378 jsr166 1.8 E e = xfer(null, false, SYNC, 0);
1379 jsr166 1.1 if (e != null)
1380 jsr166 1.5 return e;
1381 jsr166 1.1 Thread.interrupted();
1382     throw new InterruptedException();
1383     }
1384    
1385     public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1386 jsr166 1.14 E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1387 jsr166 1.1 if (e != null || !Thread.interrupted())
1388 jsr166 1.5 return e;
1389 jsr166 1.1 throw new InterruptedException();
1390     }
1391    
1392     public E poll() {
1393 jsr166 1.8 return xfer(null, false, NOW, 0);
1394 jsr166 1.1 }
1395    
1396 jsr166 1.4 /**
1397     * @throws NullPointerException {@inheritDoc}
1398     * @throws IllegalArgumentException {@inheritDoc}
1399     */
1400 jsr166 1.1 public int drainTo(Collection<? super E> c) {
1401 jsr166 1.111 Objects.requireNonNull(c);
1402 jsr166 1.1 if (c == this)
1403     throw new IllegalArgumentException();
1404     int n = 0;
1405 jsr166 1.112 for (E e; (e = poll()) != null; n++)
1406 jsr166 1.1 c.add(e);
1407     return n;
1408     }
1409    
1410 jsr166 1.4 /**
1411     * @throws NullPointerException {@inheritDoc}
1412     * @throws IllegalArgumentException {@inheritDoc}
1413     */
1414 jsr166 1.1 public int drainTo(Collection<? super E> c, int maxElements) {
1415 jsr166 1.111 Objects.requireNonNull(c);
1416 jsr166 1.1 if (c == this)
1417     throw new IllegalArgumentException();
1418     int n = 0;
1419 jsr166 1.112 for (E e; n < maxElements && (e = poll()) != null; n++)
1420 jsr166 1.1 c.add(e);
1421     return n;
1422     }
1423    
1424 jsr166 1.5 /**
1425 jsr166 1.36 * Returns an iterator over the elements in this queue in proper sequence.
1426     * The elements will be returned in order from first (head) to last (tail).
1427 jsr166 1.5 *
1428 jsr166 1.68 * <p>The returned iterator is
1429     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
1430 jsr166 1.5 *
1431     * @return an iterator over the elements in this queue in proper sequence
1432     */
1433 jsr166 1.1 public Iterator<E> iterator() {
1434     return new Itr();
1435     }
1436    
1437     public E peek() {
1438 jsr166 1.92 restartFromHead: for (;;) {
1439     for (Node p = head; p != null;) {
1440     Object item = p.item;
1441     if (p.isData) {
1442 jsr166 1.105 if (item != null) {
1443 jsr166 1.92 @SuppressWarnings("unchecked") E e = (E) item;
1444     return e;
1445     }
1446     }
1447     else if (item == null)
1448     break;
1449     if (p == (p = p.next))
1450     continue restartFromHead;
1451     }
1452     return null;
1453     }
1454 jsr166 1.1 }
1455    
1456 jsr166 1.6 /**
1457     * Returns {@code true} if this queue contains no elements.
1458     *
1459     * @return {@code true} if this queue contains no elements
1460     */
1461 jsr166 1.1 public boolean isEmpty() {
1462 jsr166 1.90 return firstDataNode() == null;
1463 jsr166 1.1 }
1464    
1465     public boolean hasWaitingConsumer() {
1466 jsr166 1.93 restartFromHead: for (;;) {
1467     for (Node p = head; p != null;) {
1468     Object item = p.item;
1469     if (p.isData) {
1470 jsr166 1.105 if (item != null)
1471 jsr166 1.93 break;
1472     }
1473     else if (item == null)
1474     return true;
1475     if (p == (p = p.next))
1476     continue restartFromHead;
1477     }
1478     return false;
1479     }
1480 jsr166 1.1 }
1481    
1482     /**
1483     * Returns the number of elements in this queue. If this queue
1484     * contains more than {@code Integer.MAX_VALUE} elements, returns
1485     * {@code Integer.MAX_VALUE}.
1486     *
1487     * <p>Beware that, unlike in most collections, this method is
1488     * <em>NOT</em> a constant-time operation. Because of the
1489     * asynchronous nature of these queues, determining the current
1490     * number of elements requires an O(n) traversal.
1491     *
1492     * @return the number of elements in this queue
1493     */
1494     public int size() {
1495 jsr166 1.8 return countOfMode(true);
1496 jsr166 1.1 }
1497    
1498     public int getWaitingConsumerCount() {
1499 jsr166 1.8 return countOfMode(false);
1500 jsr166 1.1 }
1501    
1502 jsr166 1.6 /**
1503     * Removes a single instance of the specified element from this queue,
1504     * if it is present. More formally, removes an element {@code e} such
1505     * that {@code o.equals(e)}, if this queue contains one or more such
1506     * elements.
1507     * Returns {@code true} if this queue contained the specified element
1508     * (or equivalently, if this queue changed as a result of the call).
1509     *
1510     * @param o element to be removed from this queue, if present
1511     * @return {@code true} if this queue changed as a result of the call
1512     */
1513 jsr166 1.1 public boolean remove(Object o) {
1514 jsr166 1.137 if (o == null) return false;
1515 jsr166 1.108 restartFromHead: for (;;) {
1516 jsr166 1.137 for (Node p = head, pred = null; p != null; ) {
1517     Node q = p.next;
1518     final Object item;
1519     if ((item = p.item) != null) {
1520     if (p.isData) {
1521 jsr166 1.142 if (o.equals(item) && p.tryMatch(item, null)) {
1522 jsr166 1.137 skipDeadNodes(pred, p, p, q);
1523     return true;
1524     }
1525     pred = p; p = q; continue;
1526 jsr166 1.108 }
1527     }
1528 jsr166 1.137 else if (!p.isData)
1529 jsr166 1.108 break;
1530 jsr166 1.138 for (Node c = p;; q = p.next) {
1531     if (q == null || !q.isMatched()) {
1532 jsr166 1.137 pred = skipDeadNodes(pred, c, p, q); p = q; break;
1533     }
1534     if (p == (p = q)) continue restartFromHead;
1535 jsr166 1.122 }
1536 jsr166 1.108 }
1537     return false;
1538     }
1539 jsr166 1.1 }
1540    
1541     /**
1542 jsr166 1.30 * Returns {@code true} if this queue contains the specified element.
1543     * More formally, returns {@code true} if and only if this queue contains
1544     * at least one element {@code e} such that {@code o.equals(e)}.
1545     *
1546     * @param o object to be checked for containment in this queue
1547     * @return {@code true} if this queue contains the specified element
1548     */
1549     public boolean contains(Object o) {
1550 jsr166 1.137 if (o == null) return false;
1551 jsr166 1.122 restartFromHead: for (;;) {
1552 jsr166 1.137 for (Node p = head, pred = null; p != null; ) {
1553     Node q = p.next;
1554     final Object item;
1555     if ((item = p.item) != null) {
1556     if (p.isData) {
1557     if (o.equals(item))
1558     return true;
1559     pred = p; p = q; continue;
1560     }
1561 jsr166 1.74 }
1562 jsr166 1.137 else if (!p.isData)
1563 jsr166 1.74 break;
1564 jsr166 1.138 for (Node c = p;; q = p.next) {
1565     if (q == null || !q.isMatched()) {
1566 jsr166 1.137 pred = skipDeadNodes(pred, c, p, q); p = q; break;
1567     }
1568     if (p == (p = q)) continue restartFromHead;
1569 jsr166 1.122 }
1570 jsr166 1.30 }
1571 jsr166 1.122 return false;
1572 jsr166 1.30 }
1573     }
1574    
1575     /**
1576 jsr166 1.5 * Always returns {@code Integer.MAX_VALUE} because a
1577     * {@code LinkedTransferQueue} is not capacity constrained.
1578     *
1579     * @return {@code Integer.MAX_VALUE} (as specified by
1580 jsr166 1.42 * {@link java.util.concurrent.BlockingQueue#remainingCapacity()
1581     * BlockingQueue.remainingCapacity})
1582 jsr166 1.5 */
1583     public int remainingCapacity() {
1584     return Integer.MAX_VALUE;
1585     }
1586    
1587     /**
1588 jsr166 1.50 * Saves this queue to a stream (that is, serializes it).
1589 jsr166 1.1 *
1590 jsr166 1.65 * @param s the stream
1591 jsr166 1.66 * @throws java.io.IOException if an I/O error occurs
1592 jsr166 1.1 * @serialData All of the elements (each an {@code E}) in
1593     * the proper order, followed by a null
1594     */
1595     private void writeObject(java.io.ObjectOutputStream s)
1596     throws java.io.IOException {
1597     s.defaultWriteObject();
1598     for (E e : this)
1599     s.writeObject(e);
1600     // Use trailing null as sentinel
1601     s.writeObject(null);
1602     }
1603    
1604     /**
1605 jsr166 1.50 * Reconstitutes this queue from a stream (that is, deserializes it).
1606 jsr166 1.65 * @param s the stream
1607 jsr166 1.66 * @throws ClassNotFoundException if the class of a serialized object
1608     * could not be found
1609     * @throws java.io.IOException if an I/O error occurs
1610 jsr166 1.1 */
1611     private void readObject(java.io.ObjectInputStream s)
1612     throws java.io.IOException, ClassNotFoundException {
1613 jsr166 1.140
1614     // Read in elements until trailing null sentinel found
1615     Node h = null, t = null;
1616     for (Object item; (item = s.readObject()) != null; ) {
1617 jsr166 1.49 @SuppressWarnings("unchecked")
1618 jsr166 1.140 Node newNode = new Node((E) item);
1619     if (h == null)
1620     h = t = newNode;
1621 jsr166 1.1 else
1622 jsr166 1.140 t.appendRelaxed(t = newNode);
1623 jsr166 1.1 }
1624 jsr166 1.140 if (h == null)
1625     h = t = new Node();
1626     head = h;
1627     tail = t;
1628 jsr166 1.1 }
1629    
1630 jsr166 1.116 /**
1631     * @throws NullPointerException {@inheritDoc}
1632     */
1633     public boolean removeIf(Predicate<? super E> filter) {
1634     Objects.requireNonNull(filter);
1635     return bulkRemove(filter);
1636     }
1637    
1638     /**
1639     * @throws NullPointerException {@inheritDoc}
1640     */
1641     public boolean removeAll(Collection<?> c) {
1642     Objects.requireNonNull(c);
1643     return bulkRemove(e -> c.contains(e));
1644     }
1645    
1646     /**
1647     * @throws NullPointerException {@inheritDoc}
1648     */
1649     public boolean retainAll(Collection<?> c) {
1650     Objects.requireNonNull(c);
1651     return bulkRemove(e -> !c.contains(e));
1652     }
1653    
1654 jsr166 1.124 public void clear() {
1655     bulkRemove(e -> true);
1656     }
1657    
1658     /**
1659     * Tolerate this many consecutive dead nodes before CAS-collapsing.
1660     * Amortized cost of clear() is (1 + 1/MAX_HOPS) CASes per element.
1661     */
1662     private static final int MAX_HOPS = 8;
1663    
1664 jsr166 1.116 /** Implementation of bulk remove methods. */
1665     @SuppressWarnings("unchecked")
1666     private boolean bulkRemove(Predicate<? super E> filter) {
1667     boolean removed = false;
1668     restartFromHead: for (;;) {
1669 jsr166 1.124 int hops = MAX_HOPS;
1670     // c will be CASed to collapse intervening dead nodes between
1671     // pred (or head if null) and p.
1672     for (Node p = head, c = p, pred = null, q; p != null; p = q) {
1673 jsr166 1.138 q = p.next;
1674 jsr166 1.124 final Object item; boolean pAlive;
1675 jsr166 1.132 if (pAlive = ((item = p.item) != null && p.isData)) {
1676 jsr166 1.124 if (filter.test((E) item)) {
1677 jsr166 1.142 if (p.tryMatch(item, null))
1678 jsr166 1.124 removed = true;
1679     pAlive = false;
1680 jsr166 1.116 }
1681     }
1682 jsr166 1.124 else if (!p.isData && item == null)
1683 jsr166 1.116 break;
1684 jsr166 1.138 if (pAlive || q == null || --hops == 0) {
1685 jsr166 1.124 // p might already be self-linked here, but if so:
1686     // - CASing head will surely fail
1687     // - CASing pred's next will be useless but harmless.
1688 jsr166 1.134 if ((c != p && !tryCasSuccessor(pred, c, c = p))
1689     || pAlive) {
1690     // if CAS failed or alive, abandon old pred
1691 jsr166 1.124 hops = MAX_HOPS;
1692     pred = p;
1693     c = q;
1694     }
1695     } else if (p == q)
1696 jsr166 1.116 continue restartFromHead;
1697     }
1698     return removed;
1699     }
1700     }
1701    
1702     /**
1703     * Runs action on each element found during a traversal starting at p.
1704 jsr166 1.118 * If p is null, the action is not run.
1705 jsr166 1.116 */
1706     @SuppressWarnings("unchecked")
1707     void forEachFrom(Consumer<? super E> action, Node p) {
1708 jsr166 1.137 for (Node pred = null; p != null; ) {
1709     Node q = p.next;
1710     final Object item;
1711     if ((item = p.item) != null) {
1712     if (p.isData) {
1713     action.accept((E) item);
1714     pred = p; p = q; continue;
1715     }
1716     }
1717     else if (!p.isData)
1718 jsr166 1.122 break;
1719 jsr166 1.138 for (Node c = p;; q = p.next) {
1720     if (q == null || !q.isMatched()) {
1721 jsr166 1.137 pred = skipDeadNodes(pred, c, p, q); p = q; break;
1722     }
1723     if (p == (p = q)) { pred = null; p = head; break; }
1724 jsr166 1.116 }
1725     }
1726     }
1727    
1728     /**
1729     * @throws NullPointerException {@inheritDoc}
1730     */
1731     public void forEach(Consumer<? super E> action) {
1732     Objects.requireNonNull(action);
1733     forEachFrom(action, head);
1734     }
1735    
1736 dl 1.97 // VarHandle mechanics
1737     private static final VarHandle HEAD;
1738     private static final VarHandle TAIL;
1739     private static final VarHandle SWEEPVOTES;
1740 jsr166 1.140 static final VarHandle ITEM;
1741     static final VarHandle NEXT;
1742     static final VarHandle WAITER;
1743 dl 1.38 static {
1744 jsr166 1.1 try {
1745 dl 1.97 MethodHandles.Lookup l = MethodHandles.lookup();
1746     HEAD = l.findVarHandle(LinkedTransferQueue.class, "head",
1747     Node.class);
1748     TAIL = l.findVarHandle(LinkedTransferQueue.class, "tail",
1749     Node.class);
1750     SWEEPVOTES = l.findVarHandle(LinkedTransferQueue.class, "sweepVotes",
1751     int.class);
1752 jsr166 1.140 ITEM = l.findVarHandle(Node.class, "item", Object.class);
1753     NEXT = l.findVarHandle(Node.class, "next", Node.class);
1754     WAITER = l.findVarHandle(Node.class, "waiter", Thread.class);
1755 jsr166 1.79 } catch (ReflectiveOperationException e) {
1756 dl 1.38 throw new Error(e);
1757 jsr166 1.1 }
1758 jsr166 1.85
1759     // Reduce the risk of rare disastrous classloading in first call to
1760     // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
1761     Class<?> ensureLoaded = LockSupport.class;
1762 jsr166 1.1 }
1763     }